
Háskólinn á Akureyri

Viðskipta og raunvísindadeild

Final Year Project Dissertation

2007

Jón Orri Kristjánsson

Glyph Identification Using Neural Network

Techniques

HORUS Project

Final Year Dissertation

Jón Orri Kristjánsson.

Supervisor: Dr. Nicola Whitehead.

School of Computing

Faculty of Business and Natural Sciences,

University of Akureyri.

Submitted April 2007, in partial fulfilment of the conditions of the award of the degree BSc.

I hereby declare that this interim report is all my own work, except as indicated in the text:

Signature

Date: 13/04/2007

I dedicate this project to all of those who have enough courage(stupidity?) to take on a neural

network final year project without having had one single course in artificial intelligence nor

C-Programming.

May God be with you !

Abstract

This document describes the work on the development of a semi-automatic hieroglyphic recog-

nition system which uses neural network techniques. This system is developed for the HORUS

project which is a cooperation between Nicola Whitehead, Nick Capanni and Stuart Watt. The

necessary steps to create this system was to take an image in converting it to some grid and

sending that on to a neural network which is the recognition part of the system. It is anticipated

that this work will contribute towards the development of the HORUS project.

Table of Contents

1 Introduction 1
1.1 Project Description . 1
1.2 Project Objectives . 1
1.3 Motivation for the work . 2
1.4 Related Work . 2

1.4.1 Backpropagation with momentum . 3
1.4.2 Visual Character Recognition using Artificial Neural Networks 3

1.5 Project Overview . 4

2 Background Readings 5
2.1 The HORUS Project . 5
2.2 Neural Networks . 6

2.2.1 Neurons . 6
2.2.2 Learning . 6
2.2.3 Architecture . 6

2.3 Bitmap File Structure . 7
2.3.1 Bitmap File Header . 8
2.3.2 Bitmap Info Header . 8
2.3.3 Pixel Colors . 9

2.4 Summary . 9

3 System Design 10
3.1 Acquire Images . 12

3.1.1 Input Image . 12
3.1.2 Preprocessing . 12
3.1.3 Hex Reader . 13
3.1.4 Example . 13

3.2 Make Black-White . 14
3.2.1 Color -> Black/White Converter . 14
3.2.2 Example . 15

3.3 Identify Glyph . 16

i

TABLE OF CONTENTS TABLE OF CONTENTS

3.3.1 DividerFinder . 17
3.3.2 DownCutter . 17
3.3.3 White Space Cutter . 17
3.3.4 Resizer . 17

3.4 Recognize Glyph . 18
3.5 Output . 19

3.5.1 Print to console . 19
3.5.2 Draw Images . 19

3.6 Input and Output . 19
3.6.1 Image Processing . 20
3.6.2 Neural Network . 20
3.6.3 Test train file creator . 20

3.7 Summary . 20

4 System Implementation 21
4.1 Technologies . 21

4.1.1 C . 21
4.1.2 Feed-Forward Back-Propagation Neural Network 22

4.2 Implementation Issues . 25
4.2.1 Maximum Array Size . 25
4.2.2 Delimiter Problem . 26
4.2.3 Image Noise . 26
4.2.4 Resizing . 26

4.3 The System . 27
4.3.1 Image Processing . 28
4.3.2 Neural Network . 30
4.3.3 Test & train file creator . 30

4.4 Summary . 32

5 Evaluation 33
5.1 Testing . 34

5.1.1 Experiment #1 . 34
5.1.2 Experiment #2 . 35

5.2 Results . 36
5.3 Summary . 36

6 Conclusions 37
6.1 Objectives Reflection . 37
6.2 Further Work . 38
6.3 Importance and Contribution . 39
6.4 My Work . 39
6.5 Personal Reflections . 40

TABLE OF CONTENTS TABLE OF CONTENTS

References 42

A Code Listing 45
A.1 trainingPatternCreator.c . 45
A.2 imageProcessing.c . 54
A.3 neuralNetwork.c . 81
A.4 prototypes.h . 96
A.5 neuralNetworkDefines.h . 97

B Project Plan 99
B.1 View of Project . 99
B.2 Reading . 99
B.3 Design . 100
B.4 Programming . 100
B.5 Deliverables . 100

C User Manual 102
C.1 How do I recognize ? . 102
C.2 Errors . 103

C.2.1 TERMINAL ERROR #1 . 103
C.2.2 TERMINAL ERROR #2 . 103
C.2.3 TERMINAL ERROR #3 . 103
C.2.4 TERMINAL ERROR #4 . 104
C.2.5 TERMINAL ERROR #5 . 104
C.2.6 TERMINAL ERROR #6 . 104

D Input-Output 105

E Sample Run 107

F The System I Modified - bkProp.c 110

List of Figures

2.1 A Neural Network Structure with 3 Layers . 7

3.1 Data Flow Diagram - Original Full System . 11
3.2 Data Flow Diagram - Acquire Images . 12
3.3 Example Hieroglyph . 13
3.4 Example Hex Code . 14
3.5 Data Flow Diagram - Make Black-White . 14
3.6 Data Flow Diagram - Identify Glyph . 16
3.7 Data Flow Diagram - Recognize Glyph . 18
3.8 Data Flow Diagram - Output . 19

4.1 Data Flow Diagram - Whole Complete System 27
4.2 Black-White Conversion Traced Images . 28
4.3 Black-White Conversion Untraced Images . 29
4.4 Applying the White Space Cutters . 29
4.5 Data Flow Diagram - Neural Network . 31

B.1 Timeline of the project - Gantt Chart . 101

D.1 Color Images . 105
D.2 Black-White Images . 105
D.3 No White-Space Images . 106
D.4 Images After Resizing . 106

iv

List of Tables

2.1 Bitmap File Header(Hetzl 1998) . 8
2.2 Bitmap Info Header(Hetzl 1998) . 8

4.1 Neural Network Architecture . 30

5.1 Experiment # 1 - Output Activations . 34
5.2 Experiment # 1 - Output Activations . 35

6.1 Current System - What is left to do . 38

v

Chapter 1

Introduction

1.1 Project Description

This project’s aim was to produce a system that was able to take in an image of up to 60

hieroglyphs aligned vertically and output the names of the glyphs. This process should be

autonomous and the user shouldn’t have to input a lot of parameters if the image imported was

good.

1.2 Project Objectives

This project will work with a subset of 29 common glyphs in order to develop an identification

system that can then be extended and generalized to a larger number of glyphs. Before they

can be fed to the neural net, the individual glyphs must be extracted from an image containing

a number of these glyphs, although it may not be necessary to use a neural net for this task.

A common problem with images of hieroglyphics is that they may be incomplete due to damage

or variations in lighting. This is likely to affect the neural net’s ability to recognize glyphs and

will also be investigated.

(Whitehead et al. 2007)

1

1.3. Motivation for the work Chapter 1. Introduction

1.3 Motivation for the work

Today the steps to translate a hieroglyph from a wall or a monument are the following:

• Take a picture of it.

• Manually input all the glyphs from the picture into a complex word processor.

• Translate all the glyphs into some language.

However what I would like to succeed with this project is to take out the 2nd step in the preceding

example. That is to try and be able to translate any glyph from a picture straight by inputting

the picture. So the steps to translate the glyphs from the a wall or a monument would be as

follows:

• Take a picture of it.

• Feed the picture into the system and get as an output the translation straightaway.

The main problem about image recognition like the problem at hand, is that images of the same

thing can look really different according to the lighting in the picture and other variations in

colour and etc. One approach to try and solve this problem is to try and build a neural network

to identify the glyphs no matter how the lighting and colour changes in the pictures.

The project that I worked was aimed on a subset of 29 common glyphs but the system is also

extendable so it can recognize all the other glyphs.

The things I had to do to complete this task were to:

• Recognize individual glyphs from a picture with a couple of glyphs on top of each other.

• Create a system that is able to identify the 29 common glyphs.

• Figure out a good learning mechanism so the neural network can recognize images with

“noise”(image distortion, different lighting or variations in color).

1.4 Related Work

There are many systems available to recognize characters from images either handwritten or

scanned in. However none of them can recognize either handwritten characters with noise nor

1.4. Related Work Chapter 1. Introduction

hieroglyphics so none of them can actually be compared to the system that I am trying to build.

I am going to talk about one system in particular. That is a character recognition system

which was made by Andres Perez-Uribe. That is a character recognition system that Andres

Perez-Uribe made to recognize characters and learn from mistakes made in the recognition.

1.4.1 Backpropagation with momentum

The system I found out to be the mose likemine is from a neural networks tutorial made by

Andres Perez-Uribe in september 1993. That system uses the backpropagation algorithm with

momentum to recognize numerical characters.

It gets as an input a 5x7 matrix of 0ťs and 1ťs. And then the network goes through the learning

stage of the process. The networks performance is measured by calculating the outputs and the

desired ones. The learning algorithm modifies the weight vectors accordingly to have the errors

as low as possible. When the error goes under a certain threshold the learning is considered to

be done and the system can be used to recognize the numbers. (Perez-Uribe 2002)

Advantages of my system over the Backpropagation with momentum system

Although the my system and the character recognition system that Andres Perez made arenŠt

trying to do the same thing(one is recognizing numerical characters, other is recognizing hiero-

glyphs) they can be compared.

I would say the major advantages of my system are as follows:

• My system will be able to recognize more than one character at a time.

• My system takes as an input an image instead of the user inputting all the data.

1.4.2 Visual Character Recognition using Artificial Neural Networks

Shashank Araokar wrote a paper on how to recognize visual characters using artificial neural

networks. That paper describes in some detail the steps that are needed to be taken when trying

to build a system that is supposed to recognize visual characters with “noise".

1.5. Project Overview Chapter 1. Introduction

He starts of by giving an example of an image digitization by projecting a letter onto a 6x8 grid.

Then he goes on to explain a type of learning mechanism. After that he explains the network

architecture. The network architecture consists of Candidate Scorre, Ideal Weight-Model Score

and Recognition Quoitent. After that he talks a little about Performance issues. (Araokar n.d.)

1.5 Project Overview

The remaining of the document is structured as follows.

Chapter 1 provides the project description, project objectives, the importance of my project and

my contribution to the project. Also It gives motivation for this work and a brief introduction

to some related work.

Chapter 2 gives background information. Chapter 3 gives information about the system design,

the architecture used and what kind the inputs and the outputs are in the system.

Chapter 4 gives information about the implementation of the system, also gives information

about the technologies used in this project and also gives information about the time complexity

of the system and the issues I landed in when implementing the system.

Chapter 5 gives information about the evaluation process of the system. In Chapter 6 you can

read about how I can further this project any more and if I fulfilled all the objectives of the

program and also whether or not this project is important.

Chapter 2

Background Readings

2.1 The HORUS Project

The HORUS project is a collaboration project between Dr. Nicola Whitehead from the Uni-

versity of Akureyri, Nick Capanni and Stuart Watt both from the School of Computing at the

Robert Gordon University in Aberdeen, Scotland.

The problem as it is today is that to transcribe hieroglyphs you have to input all of the glyphs

into a complex word processor and because there are over 4500 known glyphs thereof almost 800

that are known as common glyphs so it is a long and tedious process.

Hieroglyphs may both be drawn from left to right and top to bottom. So it is one of the problems

to identify each of the glyphs in the image. There is most of the time a “divider" which is a

whole line of white between the glyphs.

What HORUS strives to succeed is to make this process as automatic as possible.The best solu-

tion would of course be if the potential user would be able to throw into a system an image of

glyphs and the system would crunct it down and output the transcription of the glyphs.

Potential users of the system might be for starters Egyptiologists but a further application might

be used by tourists when travelling through Egypt and taking images of temples, walls or other

incriptions. (Whitehead 2006)

5

2.2. Neural Networks Chapter 2. Background Readings

2.2 Neural Networks

2.2.1 Neurons

A neuron consists of a certain number of inputs each of which has a certain “weight” assigned to it.

The weights are simply an indication of how “important” that particular input is to the neuron.

The “net” value of the neuron is then calculated. The net value is only a summed weight, which

means that all the input neurons multiplied by their weights are summed together and if the net

value goes over a certain threshold then the neuron fires(outputs 1) else it does nothing(outputs

0). The output is then fed to all the neurons that the neuron is connected to.(Generation5 2007b)

2.2.2 Learning

There exists a lot of options for neural networks to learn, for example the Kohonen, Delta and

Back-Propagation learning algorithms. All of those go for the same end result, that is the neural

network is always supposed to be “smarter” than in the previous run.(Generation5 2007b)

Most learning methods can be categorized in to two ways of learning, supervised and unsu-

pervised. Supervised learning(for example the back-propagation) require a “teacher” to tell the

neural network what the output of the net when presented with some input should be. The

learning methods then convert all of the weights between the neurons. This process then loops

until the network is able to recognize the input correctly. Unsupervised rules do not require a

“teacher” because they just produce their output which is then further evaluated.(Generation5

2007b)

I am going to work with supervised learning in the back-propagation algorithm in this project.

2.2.3 Architecture

There are many types of architectures in neural networks(for example simple boolean net-

works(perceptrons) or self-organizing networks(Kohonen)). There is though one standard ar-

chitecture.(Generation5 2007b)

All networks consist of several “layers” of neurons. (Rao 1995) In the image above you can see a

2.3. Bitmap File Structure Chapter 2. Background Readings

Figure 2.1: A Neural Network Structure with 3 Layers

neural network with 3 layers of neurons. The input layer takes the input and feeds that into the

hidden layer which does all of the computations on the neurons. Then the hidden layer feeds

the information into each of the output neurons and the output neuron that has the highest

activation then either “fires”(outputs 1) or doesn’t “fire”(outputs 0).(Generation5 2007b)

2.3 Bitmap File Structure

A .bmp file consists of 3 “elements”:

• Bitmap file header (Size = 15 bytes)

• Bitmap info header (Size = 40 bytes)

• Pixel Colors

(Hetzl 1998)

Sometimes there is a RGB table between the bitmap info header and the pixel color. But in 24

bit bitmap(which is the one I am using in this project) there isn’t any RGB table.

2.3. Bitmap File Structure Chapter 2. Background Readings

2.3.1 Bitmap File Header

start size name stdvalue purpose
1 2 bfType 19778 must always be set to ’BM’ to declare

that this is a .bmp-file.
3 4 bfSize ?? specifies the size of the file in bytes
7 2 bfReserved1 0 must always be set to zero.
9 2 bfReserved2 0 must always be set to zero.
11 4 bfOffBits 1078 specifies the offset from the beginning

of the file to the bitmap data.

Table 2.1: Bitmap File Header(Hetzl 1998)

As you can see in this table the Bitmap File Header is 40 bytes large and contains some informa-

tion that I have had to work with in this project. For example the bfSize and the bfOffBits values.

2.3.2 Bitmap Info Header

start size name stdvalue purpose
15 4 biSize 40 specifies the size of the BITMAPINFOHEADER

structure, in bytes.
19 4 biWidth 100 specifies the width of the image, in pixels.
23 4 biHeight 100 specifies the height of the image, in pixels.
27 2 biPlanes 1 specifies the number of planes of the target device,

must be set to zero.
29 2 biBitCount 8 specifies the number of bits per pixel.
31 4 biCompression 0 Specifies the type of compression, usually set to zero

(no compression).
35 4 biSizeImage 0 specifies the size of the image data, in bytes. If there

is no compression, it is valid to set this member to zero.
39 4 biXPelsPerMeter 0 specifies the the horizontal pixels per meter on the

designated targer device, usually set to zero.
43 4 biYPelsPerMeter 0 specifies the the vertical pixels per meter on the

designated targer device, usually set to zero.
47 4 biClrUsed 0 specifies the number of colors used in the bitmap, if set

to zero the number of colors is calculated using the
biBitCount member.

51 4 biClrImportant 0 specifies the number of color that are ’important’ for
the bitmap, if set to zero, all colors are important.

Table 2.2: Bitmap Info Header(Hetzl 1998)

2.4. Summary Chapter 2. Background Readings

In the bitmap info header I used the height, width and biBitCount in my system.

2.3.3 Pixel Colors

The color table is not present in the 24 bit bitmap because then each pixel is just presented with

24 bits of RGB colors.(DigiCamSoft 2007)

For example:

• FF FF FF = Full White or Full Light

• 00 00 00 = Full Black or No Light

2.4 Summary

This chapter talked about the 3 biggest parts I had to read up on and also gave a short intro-

duction to each of them.

Chapter 3

System Design

The design part has changed a lot since i began to implement the system. I am going to show

you the original design of the system and then go on in the next part to show you how I changed

the design.

I can divide the overall task of the project into 5 smaller tasks so it will be clearer which steps

need to be taken to fulfill the requirements of the project.

10

Chapter 3. System Design

Figure 3.1: Data Flow Diagram - Original Full System

3.1. Acquire Images Chapter 3. System Design

3.1 Acquire Images

Figure 3.2: Data Flow Diagram - Acquire Images

This step has to take in the image input and return that image as an array to the next step.

3.1.1 Input Image

This function takes the image in from the user. Either through a command line argument or

through some sort of a user interface.

Output: It sends the image through to the PreProcessing utility.

3.1.2 Preprocessing

This function lays down the ground work for the Hex Reader utility. It takes the input from

the previous step and reads the size of the image from the header of the file and creates a 2-

3.1. Acquire Images Chapter 3. System Design

Dimensional array for the Hex Reader utility.

Output: It doesnŠt output anything it only makes it sure the Hex Reader utility can go straight

to work.

3.1.3 Hex Reader

This function reads the hexadecimal color coding in from the file and stores all the values in the

array created by the PreProcessing utility.

Output: A 2-dimensional array of all the color codes of the image. It outputs to the next step

which is the Make Black/White step.

3.1.4 Example

Figure 3.3: Example Hieroglyph

This is a sample picture and what I need to do in the next step is to read the hex code from

the file. This particular file has hex code like the following:

These are the first lines of the hex code of the previous image. What I need to do in this step

is to take all the color coding of the image and send that on to the next step.

3.2. Make Black-White Chapter 3. System Design

Figure 3.4: Example Hex Code

3.2 Make Black-White

Figure 3.5: Data Flow Diagram - Make Black-White

This step of the system has to change the color codes into black or white codes. And return

a black/white code array to the next step.

3.2.1 Color -> Black/White Converter

This utility scans through the entire code and changes the color values to only black or white

color values. It chooses to change the values that are closer to white into white and the same

3.2. Make Black-White Chapter 3. System Design

thing for black.

Output: An array of Black/White hexadecimal values. It outputs to the next step which is the

Identify Glyph step.

3.2.2 Example

A line of color hexadecimal codes:

FF D8 FF E0 00 10 4A 46 49 46 00 01 01 00 00

The line after it has gone through the Color -> Black/White Converter:

FF FF FF 00 00 00 FF FF FF 00 00 00 00 00 00

3.3. Identify Glyph Chapter 3. System Design

3.3 Identify Glyph

Figure 3.6: Data Flow Diagram - Identify Glyph

This part of the system has to identify an individual glyph and return it in as good a shape

as it can.

3.3. Identify Glyph Chapter 3. System Design

3.3.1 DividerFinder

This function gets as an input an array of black/white hexadecimal values. It has to scan through

the whole array and find lines that only contain whole white lines. It will then look above and

under the line if it has more than a single white line. If it has more than one white line it will

cut out the other lines. It will also save the position of all the white lines.

Output: Array of Black/White hexadecimal values. Location of the glyph dividers(white lines).

3.3.2 DownCutter

This function starts of with counting how many white lines there are(i.e. how many glyphs there

are). It then calculates the size between the white lines. It then creates arrays(nr. of glyphs) of

the size of the glyph. And then copies black/white values into the arrays.

Output: Recursively outputs the arrays that were created in the step.

3.3.3 White Space Cutter

This function scans through the code and cuts out all whole lines at the left and right sides of

the glyphs.

Outputs: An array with individual glyphs and no white space on sides.

3.3.4 Resizer

This function resizes the arrays so it can fit onto the grid that is the default in the neural net-

work.

Outputs: An array with individual glyphs, no white space and at the correct size for the neural

network to recognize. Outputs to the Recognize Glyph step.

3.4. Recognize Glyph Chapter 3. System Design

3.4 Recognize Glyph

Figure 3.7: Data Flow Diagram - Recognize Glyph

This is the part where I modify the Backpropagation with momentum system. Some of the

steps that I have to take to modify that system to fit my needs are the following:

• Enlarge the grid so it can fit a full size glyph.

• Make a training file where I input the training set of the algorithm. The system will enlarge

the training set as it learns how to identify more and more things by user input.

• Change the number of inputs and outputs.

There are a lot of other modifications that I have to take so the system will fit my needs that I

havenŠt identified yet.

This step returns the name of the glyph that was recognized.

If the neural net doesn’t recognize the glyph, the user will have to choose the glyph from a

template of glyphs.

3.5. Output Chapter 3. System Design

3.5 Output

Figure 3.8: Data Flow Diagram - Output

This is where the user gets back the name or image of the glyphs he gave as an input in the

first step.

3.5.1 Print to console

This step only prints out the name of the glyph that was taken in from the neural network.

3.5.2 Draw Images

This function draws the image taken from a template of all the 29 glyphs of the recognized glyph.

3.6 Input and Output

The system as it is today is divided into 3 parts.

• The image processing part.

3.7. Summary Chapter 3. System Design

• The neural network part.

• Test train file creator.

3.6.1 Image Processing

The image processing part takes in one image at a time with one glyph in it. It assumes that

the glyph has been “traced”(that is filled in by the user with black) and it outputs back to the

user a glyph with now whitespace and in perfect black-white “coloring”.

3.6.2 Neural Network

The neural network takes in the test.dat and training.dat from the “Test train file creators.The

image should have been sent from the image processing part and then the user should have

resized it to a 40x40 image. It outputs the “odds” of the glyph to be one of the glyph the

network has been tought.

3.6.3 Test train file creator

The part that creates the test and train files takes as a input an array of filenames that it is

supposed to transform into test or training sets. It outputs back to the user “training.dat” and

“test.dat” which hold all of the glyphs transformed.

3.7 Summary

This chapter told what the original system design was. Gave a detailed description of all the

aspects of the system. But the design was changed a lot when the implementation phase began.

It also gave a description of the input and output of the system.

Chapter 4

System Implementation

4.1 Technologies

When working with this project I was using the C-Programming language. I was also using the

back-propagation neural network training algorithm.

4.1.1 C

Brief history

C was created by Dennis Ritchie at the Bell Telephone Laboratories in 1972 it was created to

build the UNIX operating system. C was intended to be useful.

Because C was so flexible and a powerful language it was pretty quickly spread around a lot

and because of that American National Standards Institute (ANSI) decided to make a standard

which became known as ANSI Standard C. C was named C because its predecessor was named

B. (Jones & Aitken 2002)

Why use C?

• C is a powerful and flexible language. What you can accomplish with C is limited only by

your imagination. The language itself places no constraints on you. C is used for projects as

diverse as operating systems, word processors, graphics, spreadsheets, and even compilers

21

4.1. Technologies Chapter 4. System Implementation

for other languages.

• C is a popular language preferred by professional programmers. As a result, a wide variety

of C compilers and helpful accessories are available.

• C is a portable language. Portable means that a C program written for one computer

system (an IBM PC, for example) can be compiled and run on another system (a DEC

VAX system, perhaps) with little or no modification. Portability is enhanced by the ANSI

standard for C, the set of rules for C compilers.

• C is a language of few words, containing only a handful of terms, called keywords, which

serve as the base on which the language’s functionality is built. You might think that a

language with more keywords (sometimes called reserved words) would be more powerful.

This isn’t true. As you program with C, you will find that it can be programmed to do

any task.

• C is modular. C code can (and should) be written in routines called functions. These

functions can be reused in other applications or programs. By passing pieces of information

to the functions, you can create useful, reusable code.

(Jones & Aitken 2002)

4.1.2 Feed-Forward Back-Propagation Neural Network

The feedforward backpropagation network is the most widely spread neural network training al-

gorithm now. It does not have feedback questions but errors are backpropagated during training.

Errors in the output determine measures of hidden layer output errors, which are used as a basis

for adjustment of connection weights between the input and hidden layers. Adjusting the two

sets of weights between the pairs of layers and recalculating the outputs is an iterative process

that is carried on until the errors fall below a tolerance level. Learning rate parameters scale the

adjustments to weights. A momentum parameter can also be used in scaling the adjustments

from a previous iteration and adding to the adjustments in the current iteration.(Rao 1995)

4.1. Technologies Chapter 4. System Implementation

Mapping

The feedforward backpropagation network maps the input vectors to output vectors. Pairs of

input and output vectors are chosen to train the network first. Once training is completed, the

weights are set and the network can be used to find outputs for new inputs. The dimension of

the input vector determines the number of neurons in the input layer, and the number of neurons

in the output layer is determined by the dimension of the outputs. If there are k neurons in

the input layer and m neurons in the output layer, then this network can make a mapping from

k-dimensional space to an m-dimensional space. Of course, what that mapping is depends on

what pair of patterns or vectors are used as exemplars to train the network, which determine

the network weights. Once trained, the network gives you the image of a new input vector under

this mapping. Knowing what mapping you want the feedforward backpropagation network to

be trained for implies the dimensions of the input space and the output space, so that you can

determine the numbers of neurons to have in the input and output layers.(Rao 1995)

Training

The feedforward backpropagation network undergoes supervised training, with a finite number

of pattern pairs consisting of an input pattern and a desired or target output pattern. An input

pattern is presented at the input layer. The neurons here pass the pattern activations to the

next layer neurons, which are in a hidden layer. The outputs of the hidden layer are obtained

using a threshold function with the activations determined by the weights and the inputs. These

hidden layer outputs become inputs to the output neurons, which process the inputs using a

threshold function. The final output of the network is determined by the activations from the

output layer.(Rao 1995)

Why use backpropagation?

Backpropagation neural network is a very good training algorithm. It is also good that it isn’t

really hard to implement and that it produces good results most often. Also I decided on using

the backpropagation because it is so widely used and therefore a lot of resources available for

that but not for example the Kohonen network.

4.1. Technologies Chapter 4. System Implementation

Notation & Equations Used

The backpropagation uses a lot of mathematics to derive all the weight changes in the system.

I am going to give a brief explanation about the equations and notation used and also where in

my(Andres’s) system they are used.

M1 = Interface between the input and the hidden layer

M2 = Interface between the hidden and the output layer

x[i] = Output of the ith input neuron

y[i] = Output of the ith hidden neuron

z[i] = Output of the ith output neuron

P = Desired output pattern

m = Number of input neurons

βh = Learning rate

∆ = Change in a parameter

e′js = Error in output at the output layer

t′is = Error in output at the hidden layer

α = Momentum

yj = f((ΣixiM1[i][j])) (4.1)

Output of jth hidden layer neuron - function answerFromNet

zj = f((ΣiyiM2[i][j])) (4.2)

Output of jth output layer neuron - function answerFromNet

desiredvalue− computedvalue = Pi − zi (4.3)

ith component of vector of output differences - function betaErrorOutput

ei = (Pi − zi) (4.4)

4.2. Implementation Issues Chapter 4. System Implementation

ith component of output error at the output layer - function betaErrorOutput

ti = yi(1− y1)(ΣjM2[i][j]ej) (4.5)

ith component of output error at the hidden layer - function betaHiddenOutput

∆M2[i][j](t) = βyiej + α∆M2[i][j](t− 1)] (4.6)

Adjustment for weight between ith neuron in hidden layer and jth output neuron - function backpropagation

∆M1[i][j](t) = βxitj + α∆M1[i][j](t− 1) (4.7)

Adjustment for weight between ith neuron in input layer and jth hidden neuron - function backpropagation

f(x) =
1

1 + e−x
(4.8)

Sigmoid Function

(Rao 1995)

4.2 Implementation Issues

There were a lot of issues I landed on when implementing the system.

• Maximum Array Size

• Delimiter Problem

• Image Noise

• Resizing

4.2.1 Maximum Array Size

In the original system design I was hoping that I would be able to keep the image in the system

at all times. I was going to keep all the color codes in an array but soon I found out that when

4.2. Implementation Issues Chapter 4. System Implementation

I tried to do that the arrays didn’t give the same values at all times. So I read up on arrays in

C and found out that C sometimes a threshold of 64 KB on arrays and that it wasn’t advised

to have arrays bigger than that.(Jones & Aitken 2002)

4.2.2 Delimiter Problem

When working with the bitmaps I found out that sometimes there were some extra 00 bytes at

the end of each line in the image. I had a lot of problem trying to find out why those problems

were and it wasn’t until I was reading about image file formats trying to find out how the com-

pression in jpeg’s images was that I found out that those bytes are called junk bytes and they

are added when each line in the system isn’t dividible by 4. So I added to my system a “junk

byte” finder. I added this equation to my system and found out that it worked.

4− ((pixelPerColumn ∗ 3)%4) = junkbytes (4.9)

4.2.3 Image Noise

When I was working throughout this project I took a lot of images of glyphs that I was going to

feed through my system. But almost all the time I found out that the images were too dark to

be able to feed through the image processing part and get something that made sense out of it.

I tried out a lot of different cameras and stamp colors but at the end I decided on concentrating

on other thins and decided that I wanted the user to “trace” the glyph with black color so that

problem would be out of the history.

4.2.4 Resizing

This was one of the biggest problems I landed in because I had images that were in many

different sizes and I wanted all of them to fit onto a 40x40 grid. If a person wants that procedure

to work well it is a really hard to implement that. So I decided that I wanted the user to feed

the image to some image processing tool and resize the image onto a 40x40 grid preferrably with

the nearest neighbor technique.

4.3. The System Chapter 4. System Implementation

4.3 The System

Figure 4.1: Data Flow Diagram - Whole Complete System

This is a flow chart of the whole system. The user throws all of the images he wants to

recognize into the image processing part. Then he resizes all of the images onto a 40x40 grid.

Then he runs the training pattern creator which creates both the test.dat and training.dat. All

of the glyphs the user wants to recognize are in the test.dat file after he modifies the training

pattern creator accordingly. But in the training.dat all of the files used for training reside. Then

the user needs to run the neural network part of the system and that prints out what glyph is

in what image.

4.3. The System Chapter 4. System Implementation

4.3.1 Image Processing

Manual Operations #1

The user has to “trace” the image so the recognition part can go more smoothly, i.e. the user

has to color the glyph in the image black.

Make Black-White

I have got 2 versions of the black-white converter. One of them uses a threshold method that

searches the darkest spot in the image while the other one assumes the user has “traced” the

glyph with black color, because it “whitens” all the other pixels that aren’t black. Currently I

am working on the later one because the first one wasn’t working as well as I had hoped for.

When driving the image through the neural network it is really important to know that the

image consists of only the glyph but not a big black “blob” because then the neural net gets

confused. So I went with the tracing version of this function. That function works perfectly.

In the figures below you can see the difference when faced with color images in the 2 different

procedures I implemented.

(a) Before Black-
White Conversion

(b) After Black-
White Conversion

Figure 4.2: Black-White Conversion Traced Images

White Space Cutters

My white space cutters were in the final version exactly as the ones I had designed in the

beginning. They start off by searching through the entire file looking for white lines(vertical)

and then the image is sent off to the next function which is the downCutterHorizontal which

4.3. The System Chapter 4. System Implementation

(a) Before Black-
White Conversion

(b) After Black-
White Conversion

Figure 4.3: Black-White Conversion Untraced Images

takes out all of the lines that are all white. Originally I was working with images that had a

lot of images aligned vertically so the function was a bit different then than it is now because I

decided that I was going to work with only one glyph at a time in this stage of the system.

Then I went off to cut all the white columns out. That procedure was similar than to the first

one. That is first I look at all the columns in the image and check if there are some that are

all white, if there are I mark them. Then I send the image and the marked columns into the

downCutterVertical function which prints all of the color codes(that aren’t marked) back into a

file.

(a) Before White
Space Cutting

(b) After Vertical White
Space Cutting

(c) After All
White Space
Cutting

Figure 4.4: Applying the White Space Cutters

Manual Operations #2

Now the user has to resize the image manually. He can for example open up the image in

Photoshop and resize the image there or use some other image manipulation tool. But the user

has to watch out for what algorithm he uses. The best one too use at this stage is the nearest

4.3. The System Chapter 4. System Implementation

neighbor algorithm.

4.3.2 Neural Network

As you can see in the figure 4.5 image the neural network is built up of various parts.

Functions Main Purpose
main() The main function is the driver of the whole system.
preprocessor() The preprocessor function is the function that creates all the arrays needed.
initializer() The initializer function is the function that gives all the arrays default values.
training() The training function trains the network by calling the backpropagation and

the answerFromNet functions.
test() The test function is the recognizing part of the system
answerFromNet() The answerFromNet function checks too see the output activations when presented

with a pattern.
backpropagation() The backpropagation function adjusts the weights of the network.
sigm(x) The sigm function is the sigmoid function in code.
betaErrorOutput() betaErrorOutput calculates the output error at the output layer.
betaErrorHidden() betaErrorHidden calculates the output error at the hidden layer.
error() The error function checks to see the overall error of the net.
errorMeasure() The errorMeasure calculates error for each pattern of the network.

Table 4.1: Neural Network Architecture

4.3.3 Test & train file creator

The test & train file creator takes in as arguments an array both of train & test images to convert

to test.dat & train.dat.

It has 4 vital objects:

• char *trainPattFilenames[47]

• char *testPattFilenames[47]

• void convertAndPrint(int nr);

• void convertTestAndPrint(int nr);

Those items are the biggest ones in the file creator system. The trainPattFilenames contains all

of the images that the user wants to train with.

4.3. The System Chapter 4. System Implementation

F
ig

ur
e

4.
5:

D
at

a
F
lo

w
D

ia
gr

am
-

N
eu

ra
lN

et
w

or
k

4.4. Summary Chapter 4. System Implementation

The testPattFilenames contain all of the images that the user wants to test with after the

system has trained with the patterns from the previous array. Of course the user should train

with “variations” of the patterns he is testing with.

The convertAndPrint takes in one image at a time from the trainPattFilenames array and

converts that to the train.dat file. It takes all of the pixel codes in and converts them to either

0 or 1.

The convertTestAndPrint takes in one image at a time from the testPattFilenames array and

converts that to the test.dat file. It takes all of the pixel codes in and converts them to either 0

or 1.

At the beginning of the file the number of training or test patterns is printed and there is also

printed an additional -1 at the end of each glyph. Also before the color codings of a image the

number(in the array) of the glyph is printed.

4.4 Summary

In this chapter I have given a thorough description of the implementation of the system like it

is today. I started of by explaining briefly the major technologies I have been using throughout

this project(C and Backpropagation). Then I talked about the major issues I have landed in in

this project. Then I gave a description about the system and why I changed from the original

design plans.

Chapter 5

Evaluation

I am going to test the neural network to see how it can handle incomplete or “bad” data. It is

vital to see how the neural network recognizes various patterns because if it does badly the net

might need some retuning(i.e. change in parameters) and etc. . .

Since there is a limit of how big an array can be in C then the evaluation can’t be done properly

until that aspect in the system has been changed. So the neural network has to learn with

maximum of 7 patterns.

To be able to let the neural network learn enough of each pattern I decided to limit the number

of different patterns by 5 because the maximum amount of patterns there can be in the training

file is 30 so I may at maximum have 6 patterns of each glyph.

The glyphs I am using in this experiment are the following:

• God

• Lion

• Scarab

• Vulture

• Red Flower

33

5.1. Testing Chapter 5. Evaluation

I have got 6 instances of each pattern and then I feed another instance of each of those patterns

into the test.dat file for the neural network to recognize.

5.1 Testing

5.1.1 Experiment #1

Parameter Settings:

Epsilon(Maximum Mean Squared Error) = 0.001

beta(learning rate) = 0.05

alpha(momentum) = 0.1

Number of test patterns = 30

Number of train patterns = 5

I ran this through the neural network and got this result.

Number of patterns:5

Number of Glyph:0 Number of Glyph:1 Number of Glyph:2
Output activations : Output activations : Output activations :
z[0] = 0.993970 z[0] = 0.984573 z[0] = 0.966921
z[1] = 0.001356 z[1] = 0.001223 z[1] = 0.002405
z[2] = 0.030588 z[2] = 0.029213 z[2] = 0.001555
z[3] = 0.004305 z[3] = 0.007750 z[3] = 0.008794
z[4] = 0.010111 z[4] = 0.009906 z[4] = 0.020329

Number of Glyph:3 Number of Glyph:4
Output activations : Output activations :
z[0] = 0.975136 z[0] = 0.993970
z[1] = 0.000280 z[1] = 0.001356
z[2] = 0.006607 z[2] = 0.030588
z[3] = 0.028601 z[3] = 0.004305
z[4] = 0.007874 z[4] = 0.010111

Table 5.1: Experiment # 1 - Output Activations

5.1. Testing Chapter 5. Evaluation

5.1.2 Experiment #2

Parameter Settings:

Epsilon(Maximum Mean Squared Error) = 0.001

beta(learning rate) = 0.01

alpha(momentum) = 0.01

Number of test patterns = 25

Number of train patterns = 10

Number of patterns:10

Number of Glyph:0 Number of Glyph:0 Number of Glyph:1 Number of Glyph:1
Output activations : Output activations : Output activations : Output activations :
z[0] = 0.967878 z[0] = 0.976634 z[0] = 0.961378 z[0] = 0.963795
z[1] = 0.002802 z[1] = 0.008815 z[1] = 0.003475 z[1] = 0.002044
z[2] = 0.020483 z[2] = 0.021797 z[2] = 0.001340 z[2] = 0.010535
z[3] = 0.005207 z[3] = 0.010731 z[3] = 0.013620 z[3] = 0.019611
z[4] = 0.021415 z[4] = 0.026502 z[4] = 0.017066 z[4] = 0.012237

Number of Glyph:2 Number of Glyph:2 Number of Glyph:3 Number of Glyph:3
Output activations : Output activations : Output activations : Output activations :
z[0] = 0.967311 z[0] = 0.013619 z[0] = 0.026418 z[0] = 0.002288
z[1] = 0.002071 z[1] = 0.963674 z[1] = 0.975261 z[1] = 0.994421
z[2] = 0.009370 z[2] = 0.006133 z[2] = 0.000117 z[2] = 0.001989
z[3] = 0.020297 z[3] = 0.004257 z[3] = 0.007425 z[3] = 0.006747
z[4] = 0.019959 z[4] = 0.018826 z[4] = 0.023870 z[4] = 0.002565

Number of Glyph:4 Number of Glyph:4
Output activations : Output activations :
z[0] = 0.013688 z[0] = 0.003970
z[1] = 0.971023 z[1] = 0.968554
z[2] = 0.007569 z[2] = 0.015578
z[3] = 0.016969 z[3] = 0.009412
z[4] = 0.024083 z[4] = 0.024479

Table 5.2: Experiment # 2 - Output Activations

5.2. Results Chapter 5. Evaluation

5.2 Results

As you can see all the patterns classify as pattern 0 or 1 which is the God or Lion pattern.

So there is a big error in the neural network somewhere but that seems to be an error that is

locateable because the backpropagation algorithm is quitting the learning to soon.

5.3 Summary

This chapter described the evaluation I did on the system. It turned out not to produce good

results. That is only because there is an error in the backpropagation algorithm.

Chapter 6

Conclusions

6.1 Objectives Reflection

The objectives in this project were the following from the beginning:

1. Take in an image with some number of glyphs in it.

2. Change it to black-white.

3. Find individual glyphs in the image.

4. Cut all the whitespace from the individual glyphs.

5. Resize the image.

6. Feed the image into a neural network which recognizes the glyph.

7. Output the name of each of the glyphs to the user again.

I have fulfilled some of those objectives fully but some only partially and even some that I haven’t

started working on yet.

I finished the first task partially. Partially because I went with the way of taking only one glyph

in at a time but that is fairly easy to change again. I finished the making black-white fully and

even in 2 different ways because the first one which was purely manual didn’t work exactly as I

37

6.2. Further Work Chapter 6. Conclusions

Functionality What is left to do:
Black-White I have to fix the black-white converter. So it can convert

appropriately images that haven’t been traced.
IdentifyGlyph Implement the identifyGlyph part so it can identify multiple

glyphs in one image.
Resizer Implement the resizer function. Most likely with the nearest neighbour

algorithm

Table 6.1: Current System - What is left to do

had hoped for. So I went with the other way but that one works perfectly.

I haven’t got the find individual glyphs part in the current system. The problem was that I

landed in the delimiter problem and I didn’t find out how to come by that problem until it was

too late to set that functionality back in. So that part isn’t completed in the current system.

I have fully finished the white space cutting. That works as good as I had hoped for and I can

say it works perfectly.

I didn’t start the resizing functionality because of time constraints. I just made the assumption

that the user manually resized the image.

I have partially finished the neural network part. The neural network accepts images but the

network needs some tuning because it does a terrible job of recognizing the images. So the neural

network need some tuning before I can say that that part has finished.

Like the system is today then it goes through the neural network and prints out which image

in the array it is. It doesn’t output the number it justs outputs an index in the array with the

filenames in.

6.2 Further Work

There is a lot left to do in this project. The biggest things left to do are the following:

I have also thought of a lot of things to further this project too fulfill objectives that weren’t

in this project. Among those things are the following:

• When the outputs of the neural network fall below a certain threshold then the user is

presented with a lot of ways to come by that problem. For example to lighten the picture

6.3. Importance and Contribution Chapter 6. Conclusions

with a function, erase “noise” or too dark spots with a function, draw a box around a glyph

to identify exactly where the glyph is positioned in the image. The user should also be

able to see all of the images(per each stage in the image processing part) in some sort of

GUI so he can see where the system went wrong and correct that part.

• I have also thought of some methods so the system can reside on a server so a user can

access the program through a server-client approach through a web browser. It is possible

to access a C program through a clients web browser when using ASP scripts and some

other technologies as well.

But the main priority right now is finishing the objectives stated in the beginning. That is that

the user is able to input an image with a lot of glyphs aligned vertically and get as output the

names of the glyphs.

To do that I have to finish the resizer, black-white, identifyGlyph and recognizeGlyph functions.

6.3 Importance and Contribution

What I did in this project isn’t important to the HORUS project as it is. It has to be fully done

so the project can be a factor in the HORUS project. The stage that they are in today needs

that the glyphs can be recognized so the project can be published.

6.4 My Work

What I did in this project to make the system like it is today:

• Read a lot on neural networks.

• Found out what the main parts of the network do.

• Found out how to tune the network so it functions better.

• Learnt how to program in C.

• Wrote up the whole system like it is today.

6.5. Personal Reflections Chapter 6. Conclusions

• Wrote up a lot of functionality that didn’t end up in the final system because of errors I

had problems in coming through(like the delimiter problem).

• Learnt how to write reports in Latex.

• Wrote the interrim report.

• Wrote the final dissertation.

• Held a presentation.

• Had meetings with the supervisor.

• Came by endless amounts of problems.

• Made a user manual for the system. Can see it in Appendix C

6.5 Personal Reflections

Working on this project has made me realize how much work implementing and designing a

system from scratch can be. It has been a good and satisfying experience.

Working on this project has made me more capable of doing the following:

• Writing reports.

• Organizing myself.

• Organizing my work.

• Designing a system.

• Implementing a system based on designs.

• Coming by problems.

• Avoiding problems.

• Presenting my work.

6.5. Personal Reflections Chapter 6. Conclusions

• Working with other people to fulfill the project’s objectives(Nicola Whitehead)

• Finding resources.

• Implementing big systems in C.

• Working with neural networks.

• Expressing myself in English.

• Writing reports in Latex.

• Working long hours with high concentration.

When I first decided to take this project I wanted to build a big system preferrably with some

kind of AI technique. So I decided on taking this project. I also had Nik as a supervisor in

my Group Project(2nd year) and I liked the way she worked. After working on this system and

endless amounts of printouts read I found out that Neural Networks are an interesting sector to

maybe work in one day. I had hoped to find this project fun to work on but it exceeded those

expectations.

When I was working on this project I always found it more fun when I got better at the skills I

was working on. Especially when implementing in C I found it so much fun when I found out

new ways to do things and better ways to work with pointers and memory locations. Also when

I was working with the neural network I always found it fun when I found out what each part

of the network did and how it was calculated.

The overall conclusion of this project is that I found this a fun and interesting project and the

main technologies(C and backpropagation) interesting subjects to maybe work on in the future.

Bibliography

Araokar, S. (n.d.), ‘Visual character recognition using artificial neural networks’. [Online; ac-

cessed 3-April-2007].

URL: http: // arxiv. org/ ftp/ cs/ papers/ 0505/ 0505016. pdf

Chhabra, T. (2006), ‘Back-propagation neural net’. [Online; accessed 3-April-2007].

URL: http: // www. codeproject. com/ cpp/ BP. asp

DigiCamSoft (2007), ‘Bmp file format’. [Online; accessed 3-April-2007].

URL: http: // www. digicamsoft. com/ bmp/ bmp. html

Generation5 (2007a), ‘Back-propagation for the uninitiated’. [Online; accessed 3-April-2007].

URL: http: // library. thinkquest. org/ 18242/ bp. shtml

Generation5 (2007b), ‘Introduction to neural networks’. [Online; accessed 3-April-2007].

URL: http: // library. thinkquest. org/ 18242/ nnintro. shtml

Generation5 (2007c), ‘Multilayer feedforward network and the backpropagation algorithm’. [On-

line; accessed 3-April-2007].

URL: http: // library. thinkquest. org/ 18242/ nn_ bp. shtml

Generation5 (2007d), ‘Perceptrons’. [Online; accessed 3-April-2007].

URL: http: // library. thinkquest. org/ 18242/ perceptron. shtml

Heaton, J. (n.d.), ‘Introduction to neural networks with java’. [Online; accessed 3-April-2007].

URL: http: // www. heatonresearch. com/ articles/ series/ 1/

42

BIBLIOGRAPHY BIBLIOGRAPHY

Hetzl, S. (1998), ‘The .bmp file format’. [Online; accessed 3-April-2007].

URL: http: // www. fortunecity. com/ skyscraper/ windows/ 364/ bmpffrmt. html

Jones, B. L. & Aitken, P. (2002), Sams Teach Yourself C in 21 Days, sixth edn, Sams.

Kröse, B. & van der Smagt, P. (1996a), ‘An introduction to neural networks’. [Online; accessed

3-April-2007].

URL: http: // www. avaye. com/ files/ articles/ nnintro/ nn_ intro. pdf

Kröse, B. & van der Smagt, P. (1996b), ‘An introduction to neural networks’. [Online; accessed

3-April-2007].

URL: http: // www. avaye. com/ files/ articles/ nnintro/ nn_ intro. pdf

McCollum, P. (2004), ‘An introduction to back-propagation neural networks’. [Online; accessed

3-April-2007].

URL: http: // www. seattlerobotics. org/ encoder/ nov98/ neural. html

McCollum, P. (n.d.), ‘An introduction to back-propagation neural networks’. [Online; accessed

3-April-2007].

URL: http: // www. seattlerobotics. org/ encoder/ nov98/ neural. html

Perez-Uribe, A. (2002), ‘Neural networks tutorial’. [Online; accessed 3-April-2007].

URL: http: // lslwww. epfl. ch/ ~anperez/ NN_ tutorial/ NNdemo_ example. html

Rao, V. B. (1995), C++ Neural Networks and Fuzzy Logic, M&T Books, IDG Books Worldwide,

Inc.

Silverman, D. C. (n.d.), ‘Tutorial on artificial neural networks’. [Online; accessed 3-April-2007].

URL: http: // argentumsolutions. com/ tutorials/ neural_ tutorialpg1. html

Whitehead, N. (2006), ‘Niksvik - horus project’. [Online; accessed 3-April-2007].

URL: http: // notendur. unak. is/ not/ nicolaw/ horus. html

Whitehead, N., Chan, T., Gagunashvili, N. & Yuan, T. (2007), ‘Final year project description

2006 2007’. Description of the project made by Dr. Nicola Whitehead.

URL: As a word document

BIBLIOGRAPHY BIBLIOGRAPHY

Wikipedia (2007), ‘Windows and os/2 bitmap — wikipedia, the free encyclopedia’. [Online;

accessed 3-April-2007].

URL: http: // en. wikipedia. org/ w/ index. php? title= Windows_ and_ OS/ 2_

bitmap&oldid= 119364180

Appendix A

Code Listing

A.1 trainingPatternCreator.c

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 #define NUMTRAIN 25 // Number of training samples

5 #define NUMTEST 10 // Number of test samples

6 #define instancesPerPattern 5 // instances per each

7 pattern in the training samples

8 #define instancesPerPatterTest 2 // instances per each

9 pattern in the test samples

10 #define filenameTrain "training.dat" // filename for

11 the training samples

12 #define filenameTest "test.dat" // filename for the

13 test samples

14 #define headerSize 54 // size of the header

15

16 void convertAndPrint(int nr);

17 void convertTestAndPrint(int nr);

45

A.1. trainingPatternCreator.c Chapter A. Code Listing

18

19 char *trainPattFilenames[47] = {

20 "BitmapsToFeedToNeura

21 lNet40x40/God1.bmp",

22 "BitmapsToFeedToNeura

23 lNet40x40/God2.bmp",

24 "BitmapsToFeedToNeura

25 lNet40x40/God3.bmp",

26 "BitmapsToFeedToNeura

27 lNet40x40/God4.bmp",

28 "BitmapsToFeedToNeura

29 lNet40x40/God.bmp",

30 "BitmapsToFeedToNeura

31 lNet40x40/Lion1.bmp",

32 "BitmapsToFeedToNeura

33 lNet40x40/Lion2.bmp",

34 "BitmapsToFeedToNeura

35 lNet40x40/Lion3.bmp",

36 "BitmapsToFeedToNeura

37 lNet40x40/Lion4.bmp",

38 "BitmapsToFeedToNeura

39 lNet40x40/Lion.bmp",

40 "BitmapsToFeedToNeura

41 lNet40x40/Red

42 Flower1.bmp",

43 "BitmapsToFeedToNeura

44 lNet40x40/Red

45 Flower2.bmp",

46 "BitmapsToFeedToNeura

47 lNet40x40/Red

A.1. trainingPatternCreator.c Chapter A. Code Listing

48 Flower3.bmp",

49 "BitmapsToFeedToNeura

50 lNet40x40/Red

51 Flower4.bmp",

52 "BitmapsToFeedToNeura

53 lNet40x40/Red Flower.

54 bmp",

55 "BitmapsToFeedToNeura

56 lNet40x40/Scarab1.

57 bmp",

58 "BitmapsToFeedToNeura

59 lNet40x40/Scarab2.

60 bmp",

61 "BitmapsToFeedToNeura

62 lNet40x40/Scarab3.

63 bmp",

64 "BitmapsToFeedToNeura

65 lNet40x40/Scarab4.

66 bmp",

67 "BitmapsToFeedToNeura

68 lNet40x40/Scarab.

69 bmp",

70 "BitmapsToFeedToNeura

71 lNet40x40/Vulture1.

72 bmp",

73 "BitmapsToFeedToNeura

74 lNet40x40/Vulture2.

75 bmp",

76 "BitmapsToFeedToNeura

77 lNet40x40/Vulture3.

A.1. trainingPatternCreator.c Chapter A. Code Listing

78 bmp",

79 "BitmapsToFeedToNeura

80 lNet40x40/Vulture4.

81 bmp",

82 "BitmapsToFeedToNeura

83 lNet40x40/Vulture.

84 bmp",

85 };

86

87 char *testPattFilenames[47] = {

88 "BitmapsToFeedToNeural

89 Net40x40/God6.bmp",

90 "BitmapsToFeedToNeural

91 Net40x40/God5.bmp",

92 "BitmapsToFeedToNeural

93 Net40x40/Lion6.bmp",

94 "BitmapsToFeedToNeural

95 Net40x40/Lion5.bmp",

96 "BitmapsToFeedToNeural

97 Net40x40/Red Flower6.

98 bmp",

99 "BitmapsToFeedToNeural

100 Net40x40/Red Flower5.

101 bmp",

102 "BitmapsToFeedToNeural

103 Net40x40/Scarab6.bmp",

104 "BitmapsToFeedToNeural

105 Net40x40/Scarab5.bmp",

106 "BitmapsToFeedToNeural

107 Net40x40/Vulture6.

A.1. trainingPatternCreator.c Chapter A. Code Listing

108 bmp",

109 "BitmapsToFeedToNeural

110 Net40x40/Vulture5.

111 bmp"

112 };

113

114 FILE *fileTrainPatterns;

115 FILE *fileImages;

116 FILE *fileTestPatterns;

117

118 /*

119 * This function creates a file called training.dat

120 which holds all of the pixel values for each of the

121 * training patterns held in the

122 BitmapsToFeedToNeuralNet40x40 directory.

123 * It also creates a file called test.data which holds

124 all of the pixel values for the glyphs being tested

125 */

126 void main()

127 {

128 fileTrainPatterns = fopen(filenameTrain,"wb");

129 /* Print to the file the number of training glyphs

130 there are in the file */

131 putc(NUMTRAIN,fileTrainPatterns);

132 for (int var = 0; var < NUMTRAIN; ++var)

133 {

134 convertAndPrint(var);

135 }

136 fclose(fileTrainPatterns);

137 printf("\n\n\n");

A.1. trainingPatternCreator.c Chapter A. Code Listing

138 fileTestPatterns = fopen(filenameTest,"wb");

139 putc(NUMTEST,fileTestPatterns);

140 for (int var = 0; var < NUMTEST; ++var)

141 {

142 convertTestAndPrint(var);

143 }

144 fclose(fileTestPatterns);

145 }

146

147 void convertTestAndPrint(int nr)

148 {

149 int var, var2, byte1, byte2, byte3;

150 printf("CONVERTING:%s --> %s\n", testPattFilenames[

151 nr], filenameTrain);

152 fileImages = fopen(trainPattFilenames[nr],"rb");

153

154 /* Throw the header away */

155 for (var = 0; var < headerSize; ++var)

156 {

157 getc(fileImages);

158 }

159

160 /* Print to the file what glyph the training

161 pattern is */

162 int nrOf = nr/2+1;

163 putc(nrOf,fileTestPatterns);

164

165 /* For each pixel in the image */

166 for (var = 0; var < 1600; ++var)

167 {

A.1. trainingPatternCreator.c Chapter A. Code Listing

168 byte1 = getc(fileImages);

169 byte2 = getc(fileImages);

170 byte3 = getc(fileImages);

171 if (byte1 == 255 && byte2 == 255 && byte3 ==

172 255)

173 {

174 putc(1,fileTestPatterns);

175 }

176 else if (byte1 == 0 && byte2 == 0 && byte3 == 0)

177 {

178 putc(0,fileTestPatterns);

179 }

180 else

181 {

182 // MAJOR ERROR

183 printf("TERMINAL ERROR #4 SYSTEM WILL EXIT

184 NOW");

185 exit(0);

186 }

187 }

188

189 /* Print delimiter between glyphs */

190 putc(-1,fileTestPatterns);

191 fclose(fileImages);

192 }

193

194 void convertAndPrint(int nr)

195 {

196 int var, var2, byte1, byte2, byte3;

197 printf("CONVERTING:%s --> %s\n", trainPattFilenames[

A.1. trainingPatternCreator.c Chapter A. Code Listing

198 nr], filenameTrain);

199 fileImages = fopen(trainPattFilenames[nr],"rb");

200

201 /* Throw the header away */

202 for (var = 0; var < headerSize; ++var)

203 {

204 getc(fileImages);

205 }

206

207 /* Print to the file what glyph the training

208 pattern is */

209 if (nr < instancesPerPattern)

210 { // GOD

211 putc(0,fileTrainPatterns);

212 }

213 else if (nr < instancesPerPattern*2)

214 { // LION

215 putc(1,fileTrainPatterns);

216 }

217 else if (nr < instancesPerPattern*3)

218 { // RED FLOWER

219 putc(2,fileTrainPatterns);

220 }

221 else if (nr < instancesPerPattern*4)

222 { // SCARAB

223 putc(3,fileTrainPatterns);

224 }

225 else if (nr < instancesPerPattern*5)

226 { // VULTURE

227 putc(4,fileTrainPatterns);

A.1. trainingPatternCreator.c Chapter A. Code Listing

228 }

229

230 /* For each pixel in the image */

231 for (var = 0; var < 1600; ++var)

232 {

233 byte1 = getc(fileImages);

234 byte2 = getc(fileImages);

235 byte3 = getc(fileImages);

236 if (byte1 == 255 && byte2 == 255 && byte3 ==

237 255)

238 {

239 putc(1,fileTrainPatterns);

240 }

241 else if (byte1 == 0 && byte2 == 0 && byte3 == 0)

242 {

243 putc(0,fileTrainPatterns);

244 }

245 else

246 {

247 // MAJOR ERROR

248 printf("TERMINAL ERROR #4 SYSTEM WILL EXIT

249 NOW");

250 exit(0);

251 }

252 }

253

254 /* Print delimiter between glyphs */

255 putc(-1,fileTrainPatterns);

256 fclose(fileImages);

257 }

A.2. imageProcessing.c Chapter A. Code Listing

A.2 imageProcessing.c

1 /*

2 * This file is made to be able to make up a lot of

3 dummy data

4 * to throw into the neural network.

5 * This system makes it black-white and cuts the white

6 space out.

7 * Then I will throw this into photoshop to resize the

8 image.

9 * I did this to have something to fall back to if

10 planA falls to pieces.

11 */

12

13 #include <stdio.h>

14 #include <stdlib.h>

15 #include <math.h>

16 #include "prototypes.h"

17

18 char filenameArray[15][31] = {

19 "Bitmaps/God.bmp",

20 "Bitmaps/GodTra.bmp",

21 "Bitmaps/God2.bmp",

22 "Bitmaps/Lion.bmp",

23 "Bitmaps/Lion1.bmp",

24 "Bitmaps/Lion2.bmp",

25 "Bitmaps/Red Flower.

26 bmp","Bitmaps/Red

A.2. imageProcessing.c Chapter A. Code Listing

27 Flower1.bmp",

28 "Bitmaps/Red Flower2.

29 bmp",

30 "Bitmaps/Scarab.bmp",

31 "Bitmaps/Scarab1.bmp",

32 "Bitmaps/Scarab2.bmp",

33 "Bitmaps/Vulture.bmp",

34 "Bitmaps/Vulture1.bmp",

35 "Bitmaps/Vulture2.

36 bmp"

37 };

38

39 char filenameBlackWhiteArray[15][41] = {

40 "BitmapsBlack

41 White/God.

42 bmp",

43 "BitmapsBlack

44 White/GodTra.

45 bmp",

46 "BitmapsBlack

47 White/God2.

48 bmp",

49 "BitmapsBlack

50 White/Lion.

51 bmp",

52 "BitmapsBlack

53 White/Lion1.

54 bmp",

55 "BitmapsBlack

56 White/Lion2.

A.2. imageProcessing.c Chapter A. Code Listing

57 bmp",

58 "BitmapsBlack

59 White/Red

60 Flower.bmp",

61 "BitmapsBlack

62 White/Red

63 Flower1.bmp",

64 "BitmapsBlack

65 White/Red

66 Flower2.bmp",

67 "BitmapsBlack

68 White/Scarab.

69 bmp",

70 "BitmapsBlack

71 White/Scarab1

72 .bmp",

73 "BitmapsBlack

74 White/Scarab2

75 .bmp",

76 "BitmapsBlack

77 White/Vulture

78 .bmp",

79 "BitmapsBlack

80 White/Vulture

81 1.bmp",

82 "BitmapsBlack

83 White/Vulture

84 2.bmp"

85 };

86

A.2. imageProcessing.c Chapter A. Code Listing

87 char filenameWithoutWhite1Array[15][44] = {

88 "BitmapsWithoutWhite1/God.bmp",

89 "BitmapsWithoutWhite1/GodTra.bmp",

90 "BitmapsWithoutWhite1/God2.bmp",

91 "BitmapsWithoutWhite1/Lion.bmp",

92 "BitmapsWithoutWhite1/Lion1.bmp",

93 "BitmapsWithoutWhite1/Lion2.bmp",

94 "BitmapsWithoutWhite1/Red Flower.bmp",

95 "BitmapsWithoutWhite1/Red Flower1.bmp",

96 "BitmapsWithoutWhite1/Red Flower2.bmp",

97 "BitmapsWithoutWhite1/Scarab.bmp",

98 "BitmapsWithoutWhite1/Scarab1.bmp",

99 "BitmapsWithoutWhite1/Scarab2.bmp",

100 "BitmapsWithoutWhite1/Vulture.bmp",

101 "BitmapsWithoutWhite1/Vulture1.bmp",

102 "BitmapsWithoutWhite1/Vulture2.bmp"

103 };

104

105 char filenameWithoutWhite2Array[15][44] = {

106 "BitmapsWithoutWhite2/God.bmp",

107 "BitmapsWithoutWhite2/GodTra.bmp",

108 "BitmapsWithoutWhite2/God2.bmp",

109 "BitmapsWithoutWhite2/Lion.bmp",

110 "BitmapsWithoutWhite2/Lion1.bmp",

111 "BitmapsWithoutWhite2/Lion2.bmp",

112 "BitmapsWithoutWhite2/Red Flower.bmp",

113 "BitmapsWithoutWhite2/Red Flower1.bmp",

114 "BitmapsWithoutWhite2/Red Flower2.bmp",

115 "BitmapsWithoutWhite2/Scarab.bmp",

116 "BitmapsWithoutWhite2/Scarab1.bmp",

A.2. imageProcessing.c Chapter A. Code Listing

117 "BitmapsWithoutWhite2/Scarab2.bmp",

118 "BitmapsWithoutWhite2/Vulture.bmp",

119 "BitmapsWithoutWhite2/Vulture1.bmp",

120 "BitmapsWithoutWhite2/Vulture2.bmp"

121 };

122

123 int rgbValue[3], widthValues[3], heightValues[3],

124 nrOfColorCodes;

125 int filesToCutDownVertically[120], nrOfGlyphs = 0;

126

127 FILE *fileToThreshold, *fileColor, *fileBlackWhite,

128 *fileToProcessWhite, *fileWithoutWhite;

129 int *dividersAtLines, *dividersAtColumns;

130 int byteSizeNeeded;

131

132 struct image

133 {

134 int header[54];

135 int headerBackup[54];

136 int width;

137 int height;

138 double threshold;

139 double threshold2;

140 };

141

142 struct image inputImage;

143

144 void dividerFinderHorizontal(int nr)

145 {

146 // PRE PROCESSING OPERATIONS BEGIN

A.2. imageProcessing.c Chapter A. Code Listing

147 if (dividersAtColumns != NULL)

148 {

149 /* If pointer referenced to a memory location

150 free the pointer up */

151 free((void *) dividersAtColumns);

152 }

153 fileToProcessWhite = fopen(

154 filenameWithoutWhite1Array[nr],

155 "rb");

156 byteSizeNeeded = inputImage.width*sizeof(int);

157 dividersAtColumns = (int *)malloc(byteSizeNeeded);

158 if (dividersAtColumns == NULL)

159 {

160 /* If allocation unsuccessful, print message

161 and exit. */

162 printf("TERMINAL ERROR #1 SYSTEM WILL EXIT

163 NOW!\n");

164 exit(0);

165 }

166 memset(dividersAtColumns,-1,byteSizeNeeded);

167 int wholeColumnWhite = inputImage.height*765;

168 int var, var2;

169 // PRE PROCESSING OPERATIONS END

170

171 /* Throw the header away */

172 for (var = 0; var < headerSize; ++var)

173 {

174 getc(fileToProcessWhite);

175 }

176

A.2. imageProcessing.c Chapter A. Code Listing

177 /* calculate the number of junk bytes */

178 int nrOfJunkBytes = 4-((inputImage.width*3)%4);

179 if (nrOfJunkBytes == 4)

180 {

181 nrOfJunkBytes = 0;

182 }

183

184 /* for each line in the image do */

185 for (var = 0; var < inputImage.height; ++var)

186 {

187 /* for each column in the image look for black

188 spots */

189 for (var2 = 0; var2 < inputImage.width; ++var2)

190 {

191 int byte1 = getc(fileToProcessWhite);

192 int byte2 = getc(fileToProcessWhite);

193 int byte3 = getc(fileToProcessWhite);

194 if (byte1 == 0)

195 { // PixelBlack

196 dividersAtColumns[var2] = 1;

197 }

198 }

199 /* Take the junk bytes out */

200 for (var2 = 0; var2 < nrOfJunkBytes; ++var2)

201 {

202 getc(fileToProcessWhite);

203 }

204 }

205

206

A.2. imageProcessing.c Chapter A. Code Listing

207 // POST PROCESSING OPERATIONS BEGIN

208 fclose(fileToProcessWhite);

209 // POST PROCESSING OPERATIONS END

210

211 /* Uncomment for loop to see where the horizontal

212 white space in the image is */

213 /* for (var = 0; var < inputImage.width; ++var) {

214 printf("dividersAtColumns[%i]:%i\n", var,

215 dividersAtColumns[var]);

216 }*/

217 }

218

219 void dividerFinderVertical(int nr)

220 {

221 // PRE PROCESSING OPERATIONS BEGIN

222 if (dividersAtLines != NULL)

223 {

224 /* If freeing of memory unsuccessfull, print

225 message and exit. */

226 printf("TERMINAL ERROR #2 SYSTEM WILL EXIT

227 NOW!\n");

228 exit(0);

229 }

230 fileToProcessWhite = fopen(filenameBlackWhiteArray[

231 nr],"rb");

232 byteSizeNeeded = inputImage.height*sizeof(int);

233 dividersAtLines = (int *)malloc(byteSizeNeeded);

234 if (dividersAtLines == NULL)

235 {

236 /* If allocation unsuccessful, print message

A.2. imageProcessing.c Chapter A. Code Listing

237 and exit. */

238 printf("TERMINAL ERROR #1 SYSTEM WILL EXIT

239 NOW!\n");

240 exit(0);

241 }

242 int wholeLineWhite = inputImage.width*765;

243 // PRE PROCESSING OPERATIONS END

244

245 /*

246 * Throw the header away

247 */

248 for (int var = 0; var < headerSize; ++var)

249 {

250 getc(fileToProcessWhite);

251 }

252

253 /* calculate the number of junk bytes */

254 int nrOfJunkBytes = 4-((inputImage.width*3)%4);

255 if (nrOfJunkBytes == 4)

256 {

257 nrOfJunkBytes = 0;

258 }

259

260 /*

261 * For each line in the image do:

262 */

263 for (int var = 0; var < inputImage.height; ++var)

264 {

265 int sum = 0;

266 /*

A.2. imageProcessing.c Chapter A. Code Listing

267 * For each column in the image do:

268 */

269 for (int var2 = 0; var2 < inputImage.width; ++

270 var2)

271 {

272 int byte1 = getc(fileToProcessWhite);

273 int byte2 = getc(fileToProcessWhite);

274 int byte3 = getc(fileToProcessWhite);

275 sum += byte1;

276 sum += byte2;

277 sum += byte3;

278 }

279 if (sum == wholeLineWhite)

280 {

281 dividersAtLines[var] = -1;

282 }

283 else

284 {

285 dividersAtLines[var] = 1;

286 }

287 for (int var2 = 0; var2 < nrOfJunkBytes; ++var2)

288 {

289 getc(fileToProcessWhite);

290 }

291 }

292

293 // POST PROCESSING OPERATIONS BEGIN

294 fclose(fileToProcessWhite);

295 // POST PROCESSING OPERATIONS END

296

A.2. imageProcessing.c Chapter A. Code Listing

297 /* Uncomment for loop to see where the vertical

298 white space in the image is */

299 /* for (int var = 0; var < inputImage.height; ++

300 var) {

301 printf("dividersAtLines[%i]:%i\n", var,

302 dividersAtLines[var]);

303 }*/

304 }

305

306 void downCutterHorizontal(int nr)

307 {

308 // PRE PROCESSING OPERATIONS BEGIN

309 fileToProcessWhite = fopen(

310 filenameWithoutWhite1Array[nr],

311 "rb");

312 fileWithoutWhite = fopen(filenameWithoutWhite2Array[

313 nr],"wb");

314 int var, var2, var3;

315 // PRE PROCESSING OPERATIONS END

316

317 printf(" ---> %s\n", filenameWithoutWhite2Array[

318 nr]);

319

320 /* Save the header of the file */

321 for (var = 0; var < headerSize; ++var)

322 {

323 inputImage.header[var] = getc(

324 fileToProcessWhite);

325 }

326

A.2. imageProcessing.c Chapter A. Code Listing

327 /* Count nr of white columns */

328 int nrOfWhiteColumns = 0;

329 for (var = 0; var < inputImage.width; ++var)

330 {

331 if (dividersAtColumns[var] == -1)

332 {

333 nrOfWhiteColumns++;

334 }

335 }

336 /* Change the header */

337 changeWidthHeight(nrOfWhiteColumns,-1,-1);

338

339 /* Print the new header to the file */

340 for (var = 0; var < headerSize; ++var)

341 {

342 putc(inputImage.header[var],fileWithoutWhite);

343 }

344

345 int newWidth = inputImage.width - nrOfWhiteColumns;

346 /* Calculate the number of "junk bytes"

347 * 4-((pixelsPerColumn*3)%4) = nr of junk bytes

348 */

349 int nrOfJunkBytes = 4-((newWidth*3)%4);

350 if (nrOfJunkBytes == 4)

351 {

352 nrOfJunkBytes = 0;

353 }

354 int nrOfJunkBytesToTake = 4-((inputImage.width*3)%4)

355 ;

356 if (nrOfJunkBytesToTake == 4)

A.2. imageProcessing.c Chapter A. Code Listing

357 {

358 nrOfJunkBytesToTake = 0;

359 }

360

361 /* Print to the file the columns that aren’t white

362 space.*/

363 /* for each line */

364 for (var = 0; var < inputImage.height; ++var)

365 {

366 /* for each column */

367 for (var2 = 0; var2 < inputImage.width; ++var2)

368 {

369 /* If pixel not in a white space column

370 then print that pixel to a file */

371 if (dividersAtColumns[var2] == 1)

372 {

373 putc(getc(fileToProcessWhite),

374 fileWithoutWhite);

375 putc(getc(fileToProcessWhite),

376 fileWithoutWhite);

377 putc(getc(fileToProcessWhite),

378 fileWithoutWhite);

379 }

380 /* If part of a white space column throw

381 the pixel away */

382 else

383 {

384 getc(fileToProcessWhite);

385 getc(fileToProcessWhite);

386 getc(fileToProcessWhite);

A.2. imageProcessing.c Chapter A. Code Listing

387 }

388 }

389 for (var2 = 0; var2 < nrOfJunkBytesToTake; ++

390 var2)

391 {

392 getc(fileToProcessWhite);

393 }

394 for (var2 = 0; var2 < nrOfJunkBytes; ++var2)

395 {

396 putc(0,fileWithoutWhite);

397 }

398 }

399

400 inputImage.width = newWidth;

401

402 // POST PROCESSING OPERATIONS BEGIN

403 fclose(fileToProcessWhite);

404 fclose(fileWithoutWhite);

405 free((void *)dividersAtColumns);

406 // POST PROCESSING OPERATIONS END

407 }

408

409 void downCutterVertical(int nr)

410 {

411 // PRE PROCESSING OPERATIONS BEGIN

412 fileWithoutWhite = fopen(filenameWithoutWhite1Array[

413 nr], "wb");

414 fileToProcessWhite = fopen(filenameBlackWhiteArray[

415 nr], "rb");

416 int var, var2;

A.2. imageProcessing.c Chapter A. Code Listing

417 // PRE PROCESSING OPERATIONS END

418

419 printf(" ---> %s\n", filenameWithoutWhite1Array[nr]

420);

421

422 /*

423 * Now I have to take out the header.

424 * change the header

425 * putc header

426 * getc putc all of the columns that are 1

427 */

428

429 /* Save the header of the file */

430 for (var = 0; var < headerSize; ++var)

431 {

432 inputImage.header[var] = getc(

433 fileToProcessWhite);

434 }

435 /* Count nr of white lines */

436 int nrOfWhiteLines = 0;

437 for (var = 0; var < inputImage.height; ++var)

438 {

439 if (dividersAtLines[var] == -1)

440 {

441 nrOfWhiteLines++;

442 }

443 }

444 /* change the header */

445 changeWidthHeight(nrOfWhiteLines,-1,1);

446

A.2. imageProcessing.c Chapter A. Code Listing

447 /* Calculate the number of "junk bytes"

448 * 4-((pixelsPerColumn*3)%4) = nr of junk bytes

449 */

450 int nrOfJunkBytes = 4-((inputImage.width*3)%4);

451 if (nrOfJunkBytes == 4)

452 {

453 nrOfJunkBytes = 0;

454 }

455

456 /* Put the new header in to the new file */

457 for (var = 0; var < headerSize; ++var)

458 {

459 putc(inputImage.header[var],fileWithoutWhite);

460 }

461

462 /* Put the "filtered" columns in */

463 /* For each of the lines in the image */

464 for (var = 0; var < inputImage.height; ++var)

465 {

466 /* For all of the columns in the image either

467 */

468 for (var2 = 0; var2 < inputImage.width; ++var2)

469 {

470 /* putc them if they are not whitespace */

471 if (dividersAtLines[var] == 1)

472 {

473 putc(getc(fileToProcessWhite),

474 fileWithoutWhite);

475 putc(getc(fileToProcessWhite),

476 fileWithoutWhite);

A.2. imageProcessing.c Chapter A. Code Listing

477 putc(getc(fileToProcessWhite),

478 fileWithoutWhite);

479 }

480 /* or throw them away if they are

481 whitespace */

482 else

483 {

484 getc(fileToProcessWhite);

485 getc(fileToProcessWhite);

486 getc(fileToProcessWhite);

487 }

488 }

489 for (var2 = 0; var2 < nrOfJunkBytes; ++var2)

490 {

491 getc(fileToProcessWhite);

492 }

493 if (dividersAtLines[var] == 1)

494 {

495 for (var2 = 0; var2 < nrOfJunkBytes; ++var2)

496 {

497 putc(0,fileWithoutWhite);

498 }

499 }

500 }

501 inputImage.height -= nrOfWhiteLines;

502

503 // POST PROCESSING OPERATIONS BEGIN

504 free((void *)dividersAtLines);

505 fclose(fileToProcessWhite);

506 fclose(fileWithoutWhite);

A.2. imageProcessing.c Chapter A. Code Listing

507 // POST PROCESSING OPERATIONS END

508 }

509

510 void identifyGlyph(int nr)

511 {

512 dividerFinderVertical(nr);

513 downCutterVertical(nr);

514 dividerFinderHorizontal(nr);

515 downCutterHorizontal(nr);

516 }

517

518 int calculatingHeightAndWidth(int arrayToConvert[])

519 {

520 int total = 0;

521 int individualValues[6];

522

523 individualValues[5] = arrayToConvert[0] % 16;

524 individualValues[4] = (arrayToConvert[0] - (

525 arrayToConvert[0] % 16)) / 16;

526 individualValues[2] = arrayToConvert[1] % 16;

527 individualValues[3] = (arrayToConvert[1] - (

528 arrayToConvert[1] % 16)) / 16;

529 individualValues[0] = arrayToConvert[2] % 16;

530 individualValues[1] = (arrayToConvert[2] - (

531 arrayToConvert[2] % 16)) / 16;

532

533 for (int k = 0; k < 6; ++k)

534 {

535 int powerFunc = pow(16, k);

536 total += individualValues[k] * powerFunc;

A.2. imageProcessing.c Chapter A. Code Listing

537 }

538 return total;

539 }

540

541 void resetHeader()

542 {

543 for (int var = 0; var < headerSize; ++var)

544 {

545 inputImage.header[var] = inputImage.

546 headerBackup[var];

547 }

548 }

549

550 void makeBlackWhite(int nr)

551 {

552 // PRE PROCESSING OPERATIONS BEGIN

553 fileColor = fopen(filenameArray[nr],"rb");

554 if (fileColor == NULL)

555 {

556 // If file open wasn’t successfull print error

557 & exit

558 printf("TERMINAL ERROR #3 SYSTEM WILL EXIT

559 NOW!\n");

560 exit(0);

561 }

562 fileBlackWhite = fopen(filenameBlackWhiteArray[nr],

563 "wb");

564 fileToThreshold = fopen(filenameArray[nr], "rb");

565 double averageWholePicture = 0;

566 // PRE PROCESSING OPERATIONS END

A.2. imageProcessing.c Chapter A. Code Listing

567

568 printf(" ---> %s\n", filenameBlackWhiteArray[nr]);

569

570 /*

571 * Start by reading the header into a header array

572 * and then print that out straight to the output

573 file.

574 * - This is done to read all the necessary values

575 from the header of the file.(i.e. width&height)

576 */

577 for (int stillHeader = 0; stillHeader < headerSize;

578 ++stillHeader)

579 {

580 int dataFromFile = getc(fileColor); // This

581 just gets the next integter

582 and saves it in a integer

583 variable.

584 inputImage.header[stillHeader] = dataFromFile;

585 inputImage.headerBackup[stillHeader] = dataFromF

586 ile;

587 putc(dataFromFile,fileBlackWhite);

588

589 switch (stillHeader)

590 {

591 case 18:

592 widthValues[2] = dataFromFile;

593 break;

594 case 19:

595 widthValues[1] = dataFromFile;

596 break;

A.2. imageProcessing.c Chapter A. Code Listing

597 case 20:

598 widthValues[0] = dataFromFile;

599 break;

600 case 22:

601 heightValues[2] = dataFromFile;

602 break;

603 case 23:

604 heightValues[1] = dataFromFile;

605 break;

606 case 24:

607 heightValues[0] = dataFromFile;

608 break;

609 }

610 }

611

612 inputImage.width = calculatingHeightAndWidth(

613 widthValues);

614 inputImage.height = calculatingHeightAndWidth(

615 heightValues);

616 /* calculate the number of junk bytes */

617 int nrOfJunkBytes = 4-((inputImage.width*3)%4);

618 if (nrOfJunkBytes == 4)

619 {

620 nrOfJunkBytes = 0;

621 }

622 nrOfColorCodes = inputImage.width*inputImage.height;

623

624 for (int var = 0; var < nrOfColorCodes; var++)

625 {

626 int value1 = getc(fileToThreshold);

A.2. imageProcessing.c Chapter A. Code Listing

627 int value2 = getc(fileToThreshold);

628 int value3 = getc(fileToThreshold);

629 if (var % inputImage.width == 0 &&

630 nrOfJunkBytes != 0 && var != 0)

631 {

632 for (int var2 = 0; var2 < nrOfJunkBytes; ++

633 var2)

634 {

635 getc(fileToThreshold);

636 }

637 }

638 double value = (value1+value2+value3)/3;

639 averageWholePicture += value;

640 if (value > inputImage.threshold)

641 {

642 inputImage.threshold = value;

643 }

644 }

645

646 inputImage.threshold2 = averageWholePicture/(

647 inputImage.

648 height*inputImage.width);

649

650 /* Take in all the color codes and convert them to

651 actual black white values */

652 for (int variable = 0; variable < nrOfColorCodes;

653 variable++)

654 {

655 if (variable % inputImage.width == 0 &&

656 nrOfJunkBytes != 0 && variable != 0)

A.2. imageProcessing.c Chapter A. Code Listing

657 {

658 for (int var2 = 0; var2 < nrOfJunkBytes; ++

659 var2)

660 {

661 int byte1 = getc(fileColor);

662 putc(0,fileBlackWhite);

663 }

664 }

665 rgbValue[0] = getc(fileColor);

666 rgbValue[1] = getc(fileColor);

667 rgbValue[2] = getc(fileColor);

668

669 if (variable % inputImage.width == 0 &&

670 nrOfJunkBytes != 0)

671 {

672 for (int var2 = 0; var2 < nrOfJunkBytes; ++

673 var2)

674 {

675 getc(fileToThreshold);

676 }

677 }

678

679 //int LightOrDark = pixelLightOrDark(rgbValue,

680 inputImage.threshold/2.3);

681 int LightOrDark = pixelLightOrDark(rgbValue,

682 inputImage.threshold2/1.2);

683 // TOO MUCH LIGHT !

684 if (LightOrDark == 0)

685 {

686 rgbValue[0] = 0;

A.2. imageProcessing.c Chapter A. Code Listing

687 rgbValue[1] = 0;

688 rgbValue[2] = 0;

689 }

690 else if (LightOrDark == 1)

691 {

692 rgbValue[0] = 255;

693 rgbValue[1] = 255;

694 rgbValue[2] = 255;

695 }

696 putc(rgbValue[0],fileBlackWhite);

697 putc(rgbValue[1],fileBlackWhite);

698 putc(rgbValue[2],fileBlackWhite);

699 }

700 fclose(fileColor);

701 fclose(fileBlackWhite);

702 fclose(fileToThreshold);

703 }

704

705 int pixelLightOrDark(int pixelData[], double threshold)

706 {

707 /*

708 * This change in this function is only to "whiten"

709 out all the pixels that aren’t black from the

710 tracing

711 */

712 if (pixelData[0] == 0 && pixelData[1] == 0 &&

713 pixelData[2] == 0)

714 {

715 return 0;

716 }

A.2. imageProcessing.c Chapter A. Code Listing

717 return 1;

718 /* UNCOMMENT THIS ONE IF YOU ARE NOT USING THE

719 TRACING METHOD */

720 /* int meanValue = (pixelData[0] + pixelData[1] +

721 pixelData[2])/3;

722 if(meanValue < threshold){

723 return 0;

724 }

725 return 1;*/

726 }

727

728 void changeWidthHeight(int nrOfColumns, int

729 modifyOrChange, int

730 widthOrHeight)

731 {

732 int param;

733 if (modifyOrChange == -1)

734 {

735 if (widthOrHeight == -1)

736 { // WIDTH

737 param = inputImage.width - nrOfColumns;

738 }

739 else if (widthOrHeight == 1)

740 { // HEIGHT

741 param = inputImage.height - nrOfColumns;

742 }

743 }

744 else

745 {

746 if (widthOrHeight == -1)

A.2. imageProcessing.c Chapter A. Code Listing

747 { // WIDTH

748 param = inputImage.width - nrOfColumns;

749 }

750 else if (widthOrHeight == 1)

751 { // HEIGHT

752 param = inputImage.height - nrOfColumns;

753 }

754 }

755 int individualValues[6];

756

757 int powTwo = pow(16,2);

758 int powThree = pow(16,3);

759 int powFour = pow(16,4);

760 int powFive = pow(16,5);

761

762 individualValues[0] = param / powFive;

763 individualValues[1] = (param-individualValues[0]

764 *powFive) / powFour;

765 individualValues[2] = (param-individualValues[1]

766 *powFour) / powThree;

767 individualValues[3] = (param-individualValues[2]

768 *powThree) / powTwo;

769 individualValues[4] = (param-individualValues[3]

770 *powTwo) / 16;

771 individualValues[5] = param % 16;

772

773 int firstValue = individualValues[0]*16 +

774 individualValues[1];

775 int secondValue = individualValues[2]*16 +

776 individualValues[3];

A.2. imageProcessing.c Chapter A. Code Listing

777 int thirdValue = individualValues[4]*16 +

778 individualValues[5];

779

780 if (widthOrHeight == -1)

781 { // WIDTH

782 inputImage.header[18] = thirdValue;

783 inputImage.header[19] = secondValue;

784 inputImage.header[20] = firstValue;

785 inputImage.header[21] = 0;

786 }

787 else if (widthOrHeight == 1)

788 { // HEIGHT

789 inputImage.header[22] = thirdValue;

790 inputImage.header[23] = secondValue;

791 inputImage.header[24] = firstValue;

792 inputImage.header[25] = 0;

793 }

794 }

795

796 void main()

797 {

798 int var = 0;

799 printf("%s\n", filenameArray[var]);

800 makeBlackWhite(var);

801 identifyGlyph(var);

802

803 } // END OF main()

A.3. neuralNetwork.c Chapter A. Code Listing

A.3 neuralNetwork.c

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <math.h>

4 #include "neuralNetworkDefines.h"

5

6 // Weights between input neurons & hidden neurons

7 float m1[IN][HIDDEN];

8 // Weights between hidden neurons & output neurons

9 float m2[HIDDEN][OUT];

10 // Delta between input neurons & output neurons

11 float deltaM1[IN][HIDDEN];

12 // Delta between hidden neurons & output neurons

13 float deltaM2[HIDDEN][OUT];

14 // Stores the input from the user

15 float x[IN];

16 // Stores the hidden activations

17 float y[HIDDEN];

18 // Stores the output activations to print out in the

19 end

20 float z[OUT];

21

22 float errorHidden[HIDDEN];

23 float errorOutput[OUT];

24 int patr[NUMTRAIN];

25 float ecm[NUMTRAIN];

26 float betaH=0.01; /* learning rate */

27 float alpha=0.01; /* momentum */

28 long int itr;

A.3. neuralNetwork.c Chapter A. Code Listing

29 int inputFromUser[IN];

30

31 /*

32 * CALLS TO: NONE

33 * INPUT: NONE

34 * OUTPUT: Resets the m1,m2,deltaM1,deltaM2,patr,

35 inputFromUser matrices

36 */

37 void initializer()

38 {

39 int i,j;

40 int ch;

41 int num;

42

43 /*

44 * Assign Random Weights to the m1 and m2 array

45 * "It is possible to start with randomly chosen

46 values for the weights

47 * and to let the weights be adjusted appropriately

48 as the network is run through successive

49 iterations.

50 * This would make it easier also.

51 * For example, under supervised training, if the

52 error between the desired and computed output is

53 used

54 * as a criterion in adjusting weights, then one

55 may as well set the initial weights to zero and

56 let

57 * the training process take care of the rest."

58 * (file:///E:/Artificial%20Intelligence/C++

A.3. neuralNetwork.c Chapter A. Code Listing

59 _Neural_Networks_and_Fuzzy_Logic/ch05/093-096.

60 html#Heading16)

61 * Reset the deltaM1 and deltaM2 array

62 */

63 for (i=0;i<IN;i++)

64 for (j=0;j<HIDDEN;j++)

65 {

66 m1[i][j] = -0.5 + (float) rand()/(double)

67 RAND_MAX;

68 deltaM1[i][j] = 0;

69 }

70 for (i=0;i<HIDDEN;i++)

71 for (j=0;j<OUT;j++)

72 {

73 m2[i][j] = -0.5 + (float) rand()/(double)

74 RAND_MAX;

75 deltaM2[i][j] = 0;

76 }

77

78 /*

79 * Reset the patr array

80 */

81 for (i=0;i<NUMTRAIN;i++)

82 patr[i] = 0;

83

84 /*

85 * Reset the inputFromUser array

86 */

87 for (i=0;i<IN;i++)

88 inputFromUser[i]=0;

A.3. neuralNetwork.c Chapter A. Code Listing

89 }

90

91 /*

92 * This is the training session

93 * Drives the training of the system by calling the

94 answerFromNet and the backpropagation.

95 * CALLS TO: answerFromNet -> Recursively calls 3 times

96 * backpropagation -> Recursively calls 3

97 times

98 *

99 * INPUT: NONE

100 * OUTPUT: Modifies the patr matrix.

101 *

102 * HAVE TO WORK ON THIS FUNCTION SOME MORE !

103 */

104 void training()

105 {

106 int i,l,num;

107 long int j;

108 int t;

109 float p;

110 int ch;

111 i=0;

112 j=0;

113 num=0;

114 do

115 {

116 do

117 {

118 /*

A.3. neuralNetwork.c Chapter A. Code Listing

119 * select a random training pattern:

120 * i = (int)(NUMTRAIN*rnd), where 0<rnd<1

121 */

122 i = (int)(NUMTRAIN*(float) rand() /

123 RAND_MAX);

124 }

125 while (patr[i]);

126

127 /*

128 * It is taking a pattern in 3 times in a row

129 * And throwing that into the backpropagation

130 algorithm

131 * to modify the weights.

132 */

133 for (int rep=0;rep<3;rep++)

134 {

135 j++;

136 answerFromNet(trainingPatterns[i]);

137 backpropagation(i);

138 }

139

140 /*

141 * Prints out every 102 argument with j

142 */

143 if (!(j%102))

144 printf("\n%ld",j);

145 error();

146 l = 1;

147 for (t=0;t<NUMTRAIN;t++)

148 {

A.3. neuralNetwork.c Chapter A. Code Listing

149 patr[t] = ecm[t] < EPSILON;

150 l = l && (patr[t]);

151 }

152 }

153 while (!l);

154

155 printf("\n\nEnd of training\n");

156 }

157

158 /*

159 * This function takes in a pattern to calculate and

160 check what the values

161 * are in for each of the patterns.

162 * What it does:

163 * Takes in a pattern

164 * Stores that pattern in the x matrix

165 * Runs that pattern first through the input-hidden

166 layers. -> x-y

167 * Sends y to the sigmoid function

168 * Then runs the sigmoid-ed values to the hidden-output

169 layers. -> y-z

170 * Sends z to the sigmoid function

171 *

172 * CALLS TO: sigm function

173 * INPUT: A pattern to calculate the errors in.

174 * OUTPUT: Modifies the x and the y matrix

175 */

176 void answerFromNet(int patternToAnswer[])

177 {

178 int i,j;

A.3. neuralNetwork.c Chapter A. Code Listing

179 float totin;

180

181 for (i=0;i<IN;i++)

182 x[i] = (float)patternToAnswer[i];

183

184 for (j=0;j<HIDDEN;j++)

185 {

186 totin = 0;

187 for (i=0;i<IN;i++)

188 {

189 /*

190 * Sum all of the inputs multiplied by the

191 weights

192 * between the input and hidden layers.

193 * Save that in the totin variable.

194 */

195 totin = totin + x[i]*m1[i][j];

196 }

197 /*

198 * And then put that into the sigmoid function.

199 * And store that in the y array.

200 */

201 y[j] = sigm(totin);

202 }

203

204 for (j=0;j<OUT;j++)

205 {

206 totin = 0;

207 for (i=0;i<HIDDEN;i++)

208 /*

A.3. neuralNetwork.c Chapter A. Code Listing

209 * Sum all of the inputs multiplied by the

210 weights

211 * between the hidden and the output layers.

212 * Save that in the totin variable.

213 */

214 totin = totin + y[i]*m2[i][j];

215 /*

216 * And then put that into the sigmoid function.

217 * And store that in the z array.

218 */

219 z[j] = sigm(totin);

220 }

221 }

222

223 /*

224 * ith component of output error at the output layer

225 * CALLS TO: NONE

226 * INPUT: integer concernig which component to

227 calculate

228 * OUTPUT: Modifies the errorOutput matrix with the

229 errors in that output.

230 */

231 void betaErrorOutput(int i)

232 {

233 int j;

234 /*

235 * Reset the errorOutput array

236 */

237 for (j=0;j<OUT;j++)

238 errorOutput[j] = 0;

A.3. neuralNetwork.c Chapter A. Code Listing

239

240 /*

241 * Calculates the error for the Output layer by

242 calculating

243 * realOutput - desiredOutput

244 */

245 for (j=0;j<OUT;j++)

246 errorOutput[j] = z[j] - (float)p[i][j];

247 }

248

249 /*

250 * ith component of output error at the hidden layer

251 * CALLS TO: NONE

252 * INPUT: NONE

253 * OUTPUT: Modifies the errorHidden matrix with the

254 erros in that hidden

255 */

256 void betaErrorHidden()

257 {

258 int i,j;

259 /*

260 * Reset the errorHidden array

261 */

262 for (i=0;i<HIDDEN;i++)

263 errorHidden[i] = 0;

264

265 /*

266 * Calculates the error for the Hidden layer by

267 calculating

268 */

A.3. neuralNetwork.c Chapter A. Code Listing

269 for (i=0;i<HIDDEN;i++)

270 for (j=0;j<OUT;j++)

271 errorHidden[i] = errorHidden[i] + m2[i][j]

272 *z[j]*(1-z[j])*errorOutput[

273 j];

274 }

275

276 /*

277 * This is the training algorithm.

278 * It is adjusting the weights between the input and

279 hidden layers

280 * and the hidden and the output layers.

281 * CALLS TO: betaErrorOutput(k)

282 * betaErrorHidden()

283 * INPUT: integer concerning which component to learn

284 * OUTPUT: modifies the weight matrices

285 */

286 void backpropagation(int k)

287 {

288 int i,j;

289 float temp;

290

291 betaErrorOutput(k);

292 betaErrorHidden();

293

294 /*

295 * Adjustment for weight between ith neuron in

296 hidden layer and jth output neuron

297 * With momentum

298 */

A.3. neuralNetwork.c Chapter A. Code Listing

299 for (i=0;i<HIDDEN;i++)

300 for (j=0;j<OUT;j++)

301 {

302 temp = -betaH*y[i]*z[j]*(1-z[j])

303 *errorOutput[j];

304 m2[i][j] = m2[i][j] + temp + alpha*deltaM2[

305 i][j];

306 deltaM2[i][j] = temp;

307 }

308

309 /*

310 * Adjustment for weight between ith input neuron

311 and jth neuron in hidden layer

312 * With momentum

313 */

314 for (i=0;i<IN;i++)

315 for (j=0;j<HIDDEN;j++)

316 {

317 temp = -betaH*x[i]*y[j]*(1-y[j])

318 *errorHidden[j];

319 m1[i][j] = m1[i][j] + temp + alpha*deltaM1[

320 i][j];

321 deltaM1[i][j] = temp;

322 }

323 }

324

325 /*

326 * This function throws all of the training patterns

327 into the answerFromNet function

328 * and calculates the error for all of them.

A.3. neuralNetwork.c Chapter A. Code Listing

329 * CALLS TO: errorMeasure with p(GLOBAL), z(GLOBAL) and

330 the OUT variable.

331 * INPUT: NONE

332 * OUTPUT: Modifes the ecm matrix with values from the

333 errorMeasure for all of the training patterns.

334 */

335 void error()

336 {

337 for (int i=0;i<NUMTRAIN;i++)

338 {

339 answerFromNet(trainingPatterns[i]);

340 ecm[i]=errorMeasure(p[i],z,OUT);

341 }

342 }

343

344 /*

345 * CALLS TO: NONE

346 * INPUT: pParameter which is the desiredOutputPattern

347 * zParameter which is the outputs of neurons in

348 the output layer

349 * OUT variable

350 * OUTPUT: e which is the appropriate error.

351 */

352 float errorMeasure(int pParameter[],float zParameter[],

353 int nrOfOutputsParameter)

354 {

355 int i;

356 float e=0;

357

358 for (i=0;i<nrOfOutputsParameter;i++)

A.3. neuralNetwork.c Chapter A. Code Listing

359 e = e + ((float)pParameter[i] - zParameter[i])*(

360 pParameter[i] - zParameter[i]);

361 e = 0.5 * e;

362 return e;

363 }

364

365 /*

366 * This function takes a pattern in from the test.dat

367 file and runs that through

368 * the answerFromNet to try and recognize the pattern.

369 * CALLS TO: answerFromNet

370 * INPUT: A pattern from the test.dat file

371 * OUTPUT: A print out with all the values in the z

372 matrix.

373 */

374 void test()

375 {

376 int i,j, numberOfPatts, nrOfGlyph;

377 FILE *test = fopen("test.dat","rb");

378

379 printf("Number of patterns:%i\n", numberOfPatts =

380 getc(test));

381

382 for (int var = 0; var < numberOfPatts; ++var)

383 {

384 printf("Number of Glyph:%i\n", nrOfGlyph = getc(

385 test));

386 for (i=0;i<IN;i++)

387 {

388 inputFromUser[i] = getc(test);

A.3. neuralNetwork.c Chapter A. Code Listing

389 }

390 printf("\n\n Output activations :\n");

391 answerFromNet(inputFromUser);

392 for (i=0;i<OUT;i++)

393 printf("z[%d] = %f\n",i,z[i]);

394

395 /* TAKE OUT THE DELIMITER */

396 int del = getc(test);

397 if (del != 255)

398 {

399 printf("MAJOR ERROR:%i", del);

400 }

401 }

402 }

403

404 /*

405 * This function handles all the train pattern

406 creations.

407 */

408 void preprocessor(void)

409 {

410 FILE *training = fopen("training.dat","rb");

411 if (training == NULL)

412 { // trainingPatternCreator hasn’t been run

413 printf("TERMINAL ERROR #4 SYSTEM WILL EXIT NOW

414 !");

415 exit(0);

416 }

417 int numtrains = getc(training);

418 if (numtrains != NUMTRAIN)

A.3. neuralNetwork.c Chapter A. Code Listing

419 { // The code hasn’t been modified correctly

420 printf("TERMINAL ERROR #5 SYSTEM WILL EXIT NOW

421 !");

422 exit(0);

423 }

424 int nrOfGlyph, var, var2, var3;

425

426 for (var = 0; var < NUMTRAIN; ++var)

427 {

428 nrOfGlyph = getc(training);

429 p[var][nrOfGlyph] = 1;

430 for (var2 = 0; var2 < IN; ++var2)

431 {

432 trainingPatterns[var][var2] = getc(training)

433 ;

434 if (trainingPatterns[var][var2] != 0 &&

435 trainingPatterns[var][var2] != 1)

436 {

437 printf("%i\n", trainingPatterns[var][

438 var2]);

439 printf("TERMINAL ERROR #6 SYSTEM WILL

440 EXIT NOW !\n");

441 exit(0);

442 }

443 }

444 /* Delimiter */

445 if (getc(training) != 255)

446 {

447 // MAJOR ERROR EXIT

448 printf("TERMINAL ERROR #6 SYSTEM WILL EXIT

A.4. prototypes.h Chapter A. Code Listing

449 NOW !");

450 exit(0);

451 }

452 }

453 }

454

455 /*

456 * main method

457 * CALLS TO: preprocessor()

458 * initializer()

459 * training()

460 * test()

461 * INPUT: Arguments

462 * OUTPUT:Runs the whole system

463 */

464 void main(int argc,char *argv[])

465 {

466 preprocessor();

467 initializer();

468 training();

469 test();

470 } // END OF MAIN()

A.4 prototypes.h

1 void identifyGlyph(int nr);

2 void makeBlackWhite(int nr);

3 void resetHeader(void);

4 void changeWidthHeight(int nrOfColumns, int

A.5. neuralNetworkDefines.h Chapter A. Code Listing

5 modifyOrChange, int

6 widthOrHeight);

7 void dividerFinderVertical(int nr);

8 void downCutterVertical(int nr);

9 void dividerFinderHorizontal(int nr);

10 void downCutterHorizontal(int nr);

11

12 #define headerSize 54 /* number of bytes in the

13 header */

14

A.5 neuralNetworkDefines.h

1 #define sigm(x) 1/(1 + exp(-(double)x))

2 #define dxsigm(y) (float)(y)*(1.0-y))

3 #define IN 1600 /* number if inputs */

4 #define HIDDEN 800 /* number of hidden units */

5 #define OUT 5 /* number of outputs */

6 #define EPSILON 0.001 /* maximum Mean Square Error

7 to stop training */

8 #define NUMTRAIN 25 /* number of training patterns

9 */

10 #define LINES 40 /* number of lines in the

11 input from the user */

12 #define COLUMNS 40 /* number of columns in the

13 input from the user */

14

15 void initializer();

16 void training();

A.5. neuralNetworkDefines.h Chapter A. Code Listing

17 void answerFromNet(int afer[]);

18 float errorMeasure(int x[],float y[],int SIZE);

19 void backpropagation(int k);

20 void error();

21 void preprocessor(void);

22

23 /* training patterns */

24 int trainingPatterns[NUMTRAIN][IN];

25

26 /* desired outputs */

27 int p[NUMTRAIN][OUT];

Appendix B

Project Plan

B.1 View of Project

These are the major tasks that have to be taken.

B.2 Reading

Since I am a student in computer science that hasnŠt taken any course on either C-Programming,

Machine Learning nor Artificial Intelligence I had to read up on all of those things.

I had to read something about all of those tasks:

• C-Programming

• Neural Networks

• Harvard Reference System

• Character Recognition System

• Backpropagation Algorithm

99

B.3. Design Chapter B. Project Plan

B.3 Design

I had to try and find some good ways to do the programming phase of this system easier. Also

I tried to divide the task into 5 smaller tasks and tried to find ways to implement those steps in

code.

B.4 Programming

I had to program the whole thing that was designed. Come by unforseen problems and work

this system out so it functioned correctly.

B.5 Deliverables

These are things that I had to deliver.

• Interim Report

• Final Year Dissertation

• Presentation

• Demonstration

B.5. Deliverables Chapter B. Project Plan

F
ig

ur
e

B
.1

:
T

im
el

in
e

of
th

e
pr

oj
ec

t
-

G
an

tt
C

ha
rt

Appendix C

User Manual

This is a user manual for the glyph recognition system.

C.1 How do I recognize ?

To recognize a glyph from an image you have to follow these steps:

Have the directories as it is on the CD somewhere on your personal computer.

Trace your image with black color.

Have your image saved as follows “Bitmaps/filename.bmp”.

The image has to be in 24-bit bitmap file format.

Then you have to change the imageProcessing.c file.

Change the filenameArray so the first index of the array contains your filename. In this format

“Bitmaps/filename.bmp".

Change the filenameBlackWhiteArray so the first index of the array contains your filename. In

this format “BitmapsBlackWhite/filename.bmp"

Change the filenameWithoutWhiteArray1 so the first index of the array contains your filename.

In this format “BitmapsWithoutWhite1/filename.bmp"

Change the filenameWithoutWhiteArray2 so the first index of the array contains your filename.

In this format BitmapsWithoutWhite2/filename.bmp

Run the imageProcessing system.

102

C.2. Errors Chapter C. User Manual

Then you should see in the filenameWithoutWhiteArray2 folder an image without whitespace

and black-white.

You have to resize the image preferrably with the nearest neighbor algorithm. And save the

resized image in the format “BitmapsToFeedToNeuralNet40x40/filename.bmp".

Then you have to change the trainingPatternCreator.c file.

Change the NUMTEST to 1 if you have 1 test sample.(I am assuming you are only working with

the God, Lion, Scarab, Red Flower or Vulture glyphs because of simplicity for the user).

Then you have to change the testPattFilenames array to consist only of your image. In this

format “BitmapsToFeedToNeuralNet40x40/filename.bmp”

Then you have to run the trainingPatternCreator.

Then you have to run the neuralNetwork.

C.2 Errors

You may sometimes experience errors. Here is a complete list of errors you might experience.

C.2.1 TERMINAL ERROR #1

If you experience this error then you haven’t got enough memory to run this program. I suggest

you free up some memory, by for example closing some applications.

C.2.2 TERMINAL ERROR #2

If you experience this problem then there is some problem with your memory. I suggest you

take a look at your memory chips or your operating system is playing some tricks on you.

C.2.3 TERMINAL ERROR #3

The filename you input into the array is unproperly formatted. I suggest you take a better look

at the instructions.

C.2. Errors Chapter C. User Manual

C.2.4 TERMINAL ERROR #4

If you experience this error then you haven’t got the training.dat file on the correct spot. I

suggest you read the instructions better.

C.2.5 TERMINAL ERROR #5

If you experience this error you haven’t changed the code correctly.

I suggest you read the instructions better.

C.2.6 TERMINAL ERROR #6

If you experience this error then the code is bugged. I suggest you send an e-mail to jonorri333@gmail.com

and complain about this. But there is absolutely nothing you can do about this error.

Appendix D

Input-Output

(a) God (b) Lion (c) Red Flower (d) Scarab (e) Vulture

Figure D.1: Color Images

(a) God (b) Lion (c) Red Flower (d) Scarab (e) Vulture

Figure D.2: Black-White Images

You can see how the neural network recognizes the images above in the next chapter(Sample

Run).

105

Chapter D. Input-Output

(a) God (b) Lion (c) Red
Flower

(d) Scarab (e) Vulture

Figure D.3: No White-Space Images

(a) God (b) Lion (c) Red Flower (d) Scarab (e) Vulture

Figure D.4: Images After Resizing

Appendix E

Sample Run

102

204

306

408

510

612

714

816

918

1020

1122

1224

End of training

Number of patterns:5

Number of Glyph:0

Output activations :

107

Chapter E. Sample Run

z[0] = 0.972659

z[1] = 0.010870

z[2] = 0.012608

z[3] = 0.022152

z[4] = 0.020225

Number of Glyph:1

Output activations :

z[0] = 0.978165

z[1] = 0.004634

z[2] = 0.024988

z[3] = 0.001209

z[4] = 0.026680

Number of Glyph:2

Output activations :

z[0] = 0.963924

z[1] = 0.005914

z[2] = 0.010420

z[3] = 0.008939

z[4] = 0.010761

Number of Glyph:3

Output activations :

z[0] = 0.969534

z[1] = 0.007210

z[2] = 0.000637

Chapter E. Sample Run

z[3] = 0.003261

z[4] = 0.029097

Number of Glyph:4

Output activations :

z[0] = 0.000956

z[1] = 0.971745

z[2] = 0.010013

z[3] = 0.016399

z[4] = 0.024716

Appendix F

The System I Modified - bkProp.c

1 /***

2 *****

3 ; Backpropagation with momentum

4 *

5 ; by Andres Perez-Uribe

6 *

7 ; Universidad del Valle, Cali, Colombia

8 *

9 ; sep/93

10 *

11 ;

12 *

13 ; Email : aperez@lslsun.epfl.ch

14 *

15 ; Logic Systems Laboratory

16 *

17 ; Swiss Federal Institute of Technology-

18 Lausanne *

19 ; http://lslwww.epfl.ch/∼aperez/

110

Chapter F. The System I Modified - bkProp.c

20 *

21 ;***

22 *****

23

24 References :

25 - G. Hinton, "How neural networks learn from

26 experience",

27 Scientific American, sep 1992.

28 - P. Werbos, "The Roots of Backpropagation: From

29 ordered derivatives

30 to Neural Neworks and Political Forecasting",

31 John Wiley and Sons,

32 New York, 1994

33

34 Compile : gcc -o Bkprop Bkprop.c -lm

35 Run : see example at the end of the C code.

36

37 There is no guarantee that the code will do what

38 you

39 expect or that it is error free. It is simply meant

40 to provide a useful way to experiment with the

41 Backpropagation learning algorithm.

42

43 Last Update Oct 7/99...thanks to Stephane Pouyet <

44 pouyet@nist.gov>

45 */

46

47 #include <stdio.h>

48 #include <stdlib.h>

49 #include <math.h>

Chapter F. The System I Modified - bkProp.c

50

51 #define sigm(x) 1/(1 + exp(-(double)x))

52 #define dxsigm(y) (float)(y)*(1.0-y))

53 #define IN 35 /* number if inputs */

54 #define HIDDEN 5 /* number of hidden units */

55 #define OUT 10 /* number of outputs */

56 #define EPSILON 0.005 /* maximum Mean Square Error

57 to stop training */

58 #define NUMTRAIN 18 /* number of training patterns

59 */

60

61 float inhiddw[IN][HIDDEN];

62 float hidoutw[HIDDEN][OUT];

63 float deltaihw[IN][HIDDEN];

64 float deltahow[HIDDEN][OUT];

65 float x[IN];

66 float y[HIDDEN];

67 float z[OUT];

68

69 /* training patterns */

70 int actafer[NUMTRAIN][IN] = { { 0,1,1,1,1,1,0,

71 1,0,0,0,0,0,1,

72 1,0,0,0,0,0,1,

73 1,0,0,0,0,0,1,

74 0,1,1,1,1,1,0 },

75

76 { 0,0,0,0,0,0,0,

77 0,1,0,0,0,0,1,

78 1,1,1,1,1,1,1,

79 0,0,0,0,0,0,1,

Chapter F. The System I Modified - bkProp.c

80 0,0,0,0,0,0,0 },

81

82 { 0,1,0,0,0,0,1,

83 1,0,0,0,0,1,1,

84 1,0,0,0,1,0,1,

85 1,0,0,1,0,0,1,

86 0,1,1,0,0,0,1 },

87

88 { 1,0,0,0,0,1,0,

89 1,0,0,0,0,0,1,

90 1,0,0,1,0,0,1,

91 1,1,1,0,1,0,1,

92 1,0,0,0,1,1,0 },

93

94 { 0,0,0,1,1,0,0,

95 0,0,1,0,1,0,0,

96 0,1,0,0,1,0,0,

97 1,1,1,1,1,1,1,

98 0,0,0,0,1,0,0 },

99

100 { 1,1,1,0,0,1,0,

101 1,0,1,0,0,0,1,

102 1,0,1,0,0,0,1,

103 1,0,1,0,0,0,1,

104 1,0,0,1,1,1,0 },

105

106 { 0,0,1,1,1,1,0,

107 0,1,0,1,0,0,1,

108 1,0,0,1,0,0,1,

109 1,0,0,1,0,0,1,

Chapter F. The System I Modified - bkProp.c

110 0,0,0,0,1,1,0 },

111

112 { 1,0,0,0,0,0,0,

113 1,0,0,0,0,0,0,

114 1,0,0,1,1,1,1,

115 1,0,1,0,0,0,0,

116 1,1,0,0,0,0,0 },

117

118 { 0,1,1,0,1,1,0,

119 1,0,0,1,0,0,1,

120 1,0,0,1,0,0,1,

121 1,0,0,1,0,0,1,

122 0,1,1,0,1,1,0 },

123

124 { 0,1,1,0,0,0,0,

125 1,0,0,1,0,0,1,

126 1,0,0,1,0,0,1,

127 1,0,0,1,0,1,0,

128 0,1,1,1,1,0,0 },

129

130 { 1,1,1,1,0,0,0, /* 4

131 */

132 0,0,0,1,0,0,0,

133 0,0,0,1,0,0,0,

134 0,0,0,1,0,0,0,

135 1,1,1,1,1,1,1 },

136

137 { 1,1,1,1,0,1,0, /* 5

138 */

139 1,0,0,1,0,0,1,

Chapter F. The System I Modified - bkProp.c

140 1,0,0,1,0,0,1,

141 1,0,0,1,0,0,1,

142 1,0,0,0,1,1,0 },

143

144 { 1,0,0,0,0,0,0, /*

145 7 */

146 1,0,0,0,0,0,0,

147 1,0,0,1,0,0,0,

148 1,1,1,1,1,1,1,

149 0,0,0,1,0,0,0 },

150

151 { 0,1,0,0,0,1,0, /*

152 3 */

153 1,0,0,0,0,0,1,

154 1,0,0,1,0,0,1,

155 1,0,1,0,1,0,1,

156 0,1,1,0,1,1,0 },

157

158 { 1,0,0,0,0,1,1, /* 2

159 */

160 1,0,0,0,1,0,1,

161 1,0,0,1,0,0,1,

162 1,0,1,0,0,0,1,

163 1,1,0,0,0,0,1 },

164

165 { 1,1,1,1,0,0,0, /* 4

166 abierto */

167 0,0,0,1,0,0,0,

168 0,0,0,1,0,0,0,

169 1,1,1,1,1,1,1,

Chapter F. The System I Modified - bkProp.c

170 0,0,0,1,0,0,0 },

171

172 { 0,0,0,1,1,1,0, /* 0

173 */

174 0,1,1,0,0,0,1,

175 1,0,0,0,0,0,1,

176 1,0,0,0,0,1,0,

177 1,1,1,1,1,0,0 },

178

179 { 0,1,1,0,0,0,1, /*

180 9 */

181 1,0,0,1,0,0,1,

182 1,0,0,1,0,0,1,

183 1,0,0,1,0,0,1,

184 0,1,1,1,1,1,1 } };

185

186

187 /* desired outputs */

188 int desout[NUMTRAIN][OUT] = { { 1,0,0,0,0,0,0,0,0,0 },

189 { 0,1,0,0,0,0,0,0,0,0 },

190 { 0,0,1,0,0,0,0,0,0,0 },

191 { 0,0,0,1,0,0,0,0,0,0 },

192 { 0,0,0,0,1,0,0,0,0,0 },

193 { 0,0,0,0,0,1,0,0,0,0 },

194 { 0,0,0,0,0,0,1,0,0,0 },

195 { 0,0,0,0,0,0,0,1,0,0 },

196 { 0,0,0,0,0,0,0,0,1,0 },

197 { 0,0,0,0,0,0,0,0,0,1 },

198 { 0,0,0,0,1,0,0,0,0,0 },

199 { 0,0,0,0,0,1,0,0,0,0 },

Chapter F. The System I Modified - bkProp.c

200 { 0,0,0,0,0,0,0,1,0,0 },

201 { 0,0,0,1,0,0,0,0,0,0 },

202 { 0,0,1,0,0,0,0,0,0,0 },

203 { 0,0,0,0,1,0,0,0,0,0 },

204 { 1,0,0,0,0,0,0,0,0,0 },

205 { 0,0,0,0,0,0,0,0,0,1 }

206 };

207

208

209 float ehid[HIDDEN];

210 float eout[OUT];

211 int patr[NUMTRAIN];

212 float ecm[NUMTRAIN];

213 float delta=0.5; /* learning rate */

214 float alfa=0.1; /* momentum */

215 long int itr;

216 int matrizin[35];

217

218 int init();

219 void training();

220 void netanswer(int afer[]);

221 float ec(int x[],float y[],int SIZE);

222 void backprop(int k);

223 void error();

224

225 int init()

226 {

227 int i,j;

228 int ch;

229 int num;

Chapter F. The System I Modified - bkProp.c

230

231 srand48(time(0));

232 for (i=0;i<IN;i++)

233 for (j=0;j<HIDDEN;j++)

234 {

235 inhiddw[i][j] = -0.5 + (float) drand48();

236 deltaihw[i][j] = 0;

237 }

238

239 for (i=0;i<HIDDEN;i++)

240 for (j=0;j<OUT;j++)

241 {

242 hidoutw[i][j] = -0.5 + (float) drand48();

243 deltahow[i][j] = 0;

244 }

245

246 for (i=0;i<NUMTRAIN;i++)

247 patr[i] = 0;

248

249 for (i=0;i<35;i++)

250 matrizin[i]=0;

251 return 1;

252 }

253

254 void training()

255 {

256 int i,l,num;

257 long int j;

258 int t,rep;

259 float p;

Chapter F. The System I Modified - bkProp.c

260 int ch;

261

262 i=0;

263 j=0;

264 num=0;

265 do

266 {

267 do

268 {

269

270 /* select a random training pattern: i = (in

271 t)(

272 NUM

273 TRA

274 IN*

275 rnd

276),

277 whe

278 re

279 0<

280 rnd

281 <1

282 */

283 i = (int)(NUMTRAIN*(float) rand() /

284 RAND_MAX);

285 }

286 while (patr[i]);

287 for (rep=0;rep<3;rep++)

288 {

289 j++;

Chapter F. The System I Modified - bkProp.c

290 netanswer(actafer[i]);

291 backprop(i);

292 }

293 if (!(j%102)) /*showerr();*/

294 printf("\n%ld",j);

295 error();

296 l = 1;

297 for (t=0;t<NUMTRAIN;t++)

298 {

299 patr[t] = ecm[t] < EPSILON;

300 l = l && (patr[t]);

301 }

302 }

303 while (!l /* && !kbhit() */);

304

305 printf("\n\n End of training\n");

306

307 }

308

309 void netanswer(int afer[])

310 {

311 int i,j;

312 float totin;

313

314 for (i=0;i<IN;i++)

315 x[i] = (float)afer[i];

316

317 for (j=0;j<HIDDEN;j++)

318 {

319 totin = 0;

Chapter F. The System I Modified - bkProp.c

320 for (i=0;i<IN;i++)

321 totin = totin + x[i]*inhiddw[i][j];

322 y[j] = sigm(totin);

323 }

324

325 for (j=0;j<OUT;j++)

326 {

327 totin = 0;

328 for (i=0;i<HIDDEN;i++)

329 totin = totin + y[i]*hidoutw[i][j];

330 z[j] = sigm(totin);

331 }

332 }

333

334 float ec(int a[],float b[],int SIZE) /* Error measure

335 */

336 {

337 int i;

338 float e=0;

339

340 for (i=0;i<SIZE;i++)

341 e = e + ((float)a[i] - b[i])*(a[i] - b[i]);

342 e = 0.5 * e;

343 return e;

344 }

345

346 void betaout(int i) /* error out */

347 {

348 int j;

349 for (j=0;j<OUT;j++)

Chapter F. The System I Modified - bkProp.c

350 eout[j] = 0;

351

352 for (j=0;j<OUT;j++)

353 eout[j] = z[j] - (float)desout[i][j];

354 }

355

356 void betahid() /* error hidden */

357 {

358 int i,j;

359 for (i=0;i<HIDDEN;i++)

360 ehid[i] = 0;

361

362 for (i=0;i<HIDDEN;i++)

363 for (j=0;j<OUT;j++)

364 ehid[i] = ehid[i] + hidoutw[i][j]*z[j]*(1-z[

365 j])*eout[j];

366 }

367

368 void backprop(int k)

369 {

370 int i,j;

371 float temp;

372

373 betaout(k);

374 betahid();

375

376 for (i=0;i<HIDDEN;i++)

377 for (j=0;j<OUT;j++)

378 {

379 temp = -delta*y[i]*z[j]*(1-z[j])*eout[j];

Chapter F. The System I Modified - bkProp.c

380 hidoutw[i][j] = hidoutw[i][j] + temp +

381 alfa*deltahow[i][j];

382 deltahow[i][j] = temp;

383 }

384

385 for (i=0;i<IN;i++)

386 for (j=0;j<HIDDEN;j++)

387 {

388 temp = -delta*x[i]*y[j]*(1-y[j])*ehid[j];

389 inhiddw[i][j] = inhiddw[i][j] + temp +

390 alfa*deltaihw[i][j];

391 deltaihw[i][j] = temp;

392 }

393 }

394 void error()

395 {

396 int i;

397

398 for (i=0;i<NUMTRAIN;i++)

399 {

400 netanswer(actafer[i]);

401 ecm[i]=ec(desout[i],z,OUT);

402 }

403 }

404

405 void test()

406 {

407 int i,j;

408

409 for (;;)

Chapter F. The System I Modified - bkProp.c

410 {

411 printf("- Test -\n\n[");

412 for (i=0;i<7;i++)

413 {

414 for (j=0;j<5;j++)

415 scanf("%d",&matrizin[j*7+i]);

416 printf("\n");

417 }

418 printf("]\n\n Output activations :\n");

419 netanswer(matrizin);

420 for (i=0;i<OUT;i++)

421 printf("\nz[%d] = %f",i,z[i]);

422 }

423 }

424

425 void main(int argc,char *argv[])

426 {

427 int read;

428

429 init();

430 training();

431 test();

432 }

433

434 /*

435 Example :

436

437 gcc -o Bkprop Bkprop.c -lm

438

439 % ./Bkprop

Chapter F. The System I Modified - bkProp.c

440

441 102

442 204

443 306

444 408

445 510

446 612

447 714

448 816

449 918

450 1020

451 1122

452 1224

453 1326

454 1428

455 1530

456 1632

457 1734

458 1836

459 1938

460 2040

461 2142

462 2244

463 2346

464 2448

465 2550

466 2652

467 2754

468 2856

469 2958

Chapter F. The System I Modified - bkProp.c

470 3060

471 3162

472 3264

473 3366

474 3468

475 3570

476 3672

477 3774

478 3876

479 3978

480 4080

481

482 End of training

483 - Test -

484

485 [0 0 1 0 0

486

487 0 0 1 0 0

488

489 0 0 1 0 0

490

491 0 0 0 0 0 <-------- a ’1’

492 with some noise

493

494 0 0 1 0 0

495

496 0 0 1 0 0

497

498 0 1 1 1 0

499

Chapter F. The System I Modified - bkProp.c

500]

501

502 Output activations :

503

504 z[0] = 0.073368

505 z[1] = 0.606160 <------- the

506 highest activation

507 z[2] = 0.101022

508 z[3] = 0.017971

509 z[4] = 0.101509

510 z[5] = 0.000393

511 z[6] = 0.014482

512 z[7] = 0.212412

513 z[8] = 0.003177

514 z[9] = 0.006917- Test -

515

516 */

517

518

519

520

