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Abstract

The main theme of this thesis are disc functionals in complex analysis, that
is real valued functions from a set of analytic discs in a given manifold. The
fundamental example is the Poisson disc functional of a given upper semi-
continuous function, whose properties have been well studied in the last two
decades. The main result proves that its envelope, which is a function on the
manifold, is equal to the largest plurisubharmonic function dominated by the
given function.

Our main goal is to generalize the theory of disc functionals and specifically
the Poisson functional to the theory of quasiplurisubharmonic functions. We
shall see how that case sheds new light on the connection between different
disc functionals and the theory of disc functionals.

We start by studying the Poisson disc functional and we prove that its
envelope is plurisubharmonic when the function in question is the difference of
an upper semicontinuous function and a plurisubharmonic function. This leads
us to the theory of quasiplurisubharmonic functions, or w-plurisubharmonic
functions, because this result is equivalent to the corresponding problem for
w-plurisubharmonic functions when the current w has a global potential. The
main work is then to generalize this result for those w which do not have a

global potential.



Agrip (in Icelandic)

Meginstef pessarar ritgerdar er skifufelli { tvinnfallagreiningu. Pad eru raungild
foll & mengi af skifum i gefinni tvinnvidattu. Mikilveegasta deemio um slikt felli
er Poisson-skifufellid fyrir gefid fall sem er hélfsamfellt ad ofan. Kiginleikar
Poisson-fellisins hafa verid vel rannsakadir undanfarna tvo aratugi og helsta
nidurstadan segir ad hjupur pess, sem er fall 4 vidattunni, sé jafn steersta
fjolundirpyda fallinu sem er yfirgnaeft af gefna fallinu.

Markmidid er ad alheefa freedin um skifufelli, og sérstaklega Poisson skifu-
fellio, fyrir halffjolundirpyo f6ll. Pad hefur i for med sér ad haegt er ad tengja
saman Olik skifufelli og baeta pannig heildarmyndina sem vid hofum af skifu-
fellum.

Vid byrjum 4 ad skoda Poisson skifufellid og sanna ad hjupur bess er fjol-
undirpyour pegar fallid sem er gefid er mismunur tveggja falla, annars vegar
falls sem er halfsamfellt ad ofan og hins vegar falls sem er fjolundirpytt. Pessi
nidurstada visar veginn ad halffjélundirpydu follunum, pvi han er jafngild til-
svarandi nidurstodu fyrir halffjolundirpyd f6ll, eda w-fjdlundirpyo foll eins og
pau eru lika kolluo, i pvi tilviki pegar straumurinn w hefur vidfemt maetti.
Adalvinnan liggur svo { pvi ad alhaefa pessa nidurstéou fyrir pau tilvik par sem

straumurinn w hefur ekki vidfemt meetti.
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Introduction

1.1 Introduction

The importance of analytic discs in complex analysis of several variables is
undeniable. They play a crucial role when studying pseudoconvexity [24],
Kobayashi metrics [22], CR-manifolds |2, Chapter VIII] and characterizing
solutions of the Dirichlet problem for plurisubharmonic functions [1,3]. In
some sense, analytic discs are to complex analysis what line segments are to
real analysis. To emphasize this connection consider the following problem.
Given a real valued function ¢ on an open subset X C R"™ we wish to find the

largest convex function dominated by ¢. It is not hard to show that
sup{u(z); u convex,u < g} = int{ap((1) + (1 - a)p(i(0)}, (L)

where the infimum is taken over all line segments [ : [0, 1] — X such that there
is an a € [0,1] with z = (1) + (1 — «) 1(0).

Lets clarify this a bit, since the methods we use in several complex variables
are somewhat similar. In figure we see how the graph of the expression
in the right hand side of has its endpoints on the graph of ¢. By the
definition of convexity, the graph of u must lie below this line segment. This
fact justifies that the left hand side of is less than or equal to the right



X

) T >

Figure 1.1: Visualization of the problem for one real dimension

hand side.
To prove the equality it suffices to show that the right hand side in (1.1))

is not greater than ¢ and that it defines a convex function. Then it is in the
family on the left hand side and we have an equality.

The corresponding problem for pluripotential theory in several complex
variables involves finding the largest plurisubharmonic function dominated by
a function ¢ on an open set X C C". Poletsky [32H34] and Bu and Schacher-
mayer [5| showed independently that when the function ¢ is upper semicon-

tinuous then

sup{u(z);u € PSH(X),u < ¢} = inf {/Tapofda;f € Ax, f(0) = 3:} (1.2)

Here, Ay is the family of all closed analytic discs in X, that is analytic func-
tions from a neighbourhood of the closed unit disc into X, and o is the arc
length measure on the unit circle T = {t € C; |¢| = 1} normalized to 1.
Formulas of this form are referred to as disc formulas, more specifically we
call mappings from Ax to RU{oco, —oco} a disc functional, and the integral on
the right hand side of is called the Poisson disc functional. The envelope
of a disc functional at a point z is then given by the infimum over all discs

sending zero to x.



The goal of this thesis is to give a comprehensive overview of disc formulas
in complex analysis and extend the theory of them to quasiplurisubharmonic
functions.

In Chapter [3] we consider disc formulas for plurisubharmonic functions.
Larusson and Sigurdsson [25,[26], and Rosay [35] extended Poletsky’s result
to the case when X is a complex manifold, and Edigarian [10] showed that
the function ¢ can be plurisuperharmonic. We will extend these results, as
shown in [30], and prove that ¢ can in fact be the difference of an upper
semicontinuous function and a plurisubharmonic function (Section [3.2)). This
will enable us to combine the Poisson disc functional in with another
disc formula for the Riesz disc functional (Section [3.4). This turns out to be a
special case of the results for quasiplurisubharmonic functions presented later
on. Recently Drnovsek and Forstneri¢ [8] extended Poletsky’s result to locally
irreducible complex spaces.

Recently [4,/11,/13-15] the classical pluripotential theory has been gener-
alized to compact manifolds, for example to study Monge-Ampére equations
and construct specific metrics. This is the theory of quasiplurisubharmonic
function and in Chapter [4 we will consider disc formulas for them. These func-
tions are also called w-plurisubharmonic functions. Although it is common to
consider w to be a smooth, closed and positive current on a Kéhler manifold,
it suffices for our work to assume w = w7 — wo is the difference of two closed,
positive (1, 1)-currents on a complex manifold X. We will describe the result
here informally, for precise definitions see Sections [2.2] and [4.1]

In the case of w-plurisubharmonic functions we first see how to formulate
the problem correctly by defining the pullback f*w of w by an analytic disc f.
Its Riesz potential R+, then enables us to incorporate w into the Poisson disc

functional. We will prove in two steps that if ¢ = @1 — g is the difference

1

1o (X) and a plurisubharmonic

of an wi-upper semicontinuous function ¢q in L

function g, then for every z € X \ sing(w),

sup{u(z);u € PSH(X,w),u < ¢}

= inf{— Ry, (0) —i—/Tcpo fdo; f € Ax, f(0) =z} (1.3)



This result was first introduced by the author in [29] and then generalized to

the above form in [30].

1.2 Outline

In Chapter 2 we give the necessary background in pluripotential theory (Section
, it includes upper semicontinuity, subharmonic functions, and plurisubhar-
monic functions. It also includes the pluripotential theory of quasiplurisub-
harmonic functions and their basic properties (Section , many of whom
correspond to similar properties of plurisubharmonic functions. Section [2.3
introduces disc functionals and envelopes of disc functionals, and studies their
general properties.

In Chapter [3] we study the Poletsky disc functional of a given function ¢.
We use a method of Bu and Schachermayer (Section to prove that its
envelope is plurisubharmonic when looking at sets in C" and ¢ is an upper
semicontinuous function. In Section we generalize this by showing that
@ can in fact be the difference of an upper semicontinuous function ¢; and
a plurisubharmonic function ¢s. This is done by using convolution but it
requires some preciseness because we have to look at the sum of functions
which can take the values —oo and +00. We see in Section how this result
can be extended to every complex manifold by using a theorem of Larusson
and Sigurdsson |26, Theorem 1.2]. This is a general theorem they used to
extend Poletsky’s results to manifolds, but the theorem states that the problem
on manifolds can be reduced to domains of holomorphy in C". Finally in
Section [3:4] we show how the function p9 enables us to unify the Poisson disc
functional and the Riesz functional, which is another disc functional studied
by Poletsky [33134], Larusson and Sigurdsson [25,26] and Edigarian [10].

Chapter [ starts by motivating the theory of disc functionals for quasi-
plurisubharmonic functions [£.1] and there we define the generalization of the
Poisson disc functional for w-plurisubharmonic functions. The first step in
proving equality is in Section where we look at the case when the
current w has a global potential. To prove the equality in this case we use

the results from Chapter [3] In Section 1.3 we see how the general case can be



reduced to sets with global potentials. This is done by presenting a general
theorem which states that an envelope of a disc functional is quasiplurisubhar-
monic if it satisfies the following conditions. The disc functional has two mild
continuity properties and the corresponding envelope on manifolds with global

potentials is quasiplurisubharmonic.






Background

Harmonic functions, that is twice differentiable functions in the kernel of the
Laplacian, A = Z;‘:l %, are of great importance in potential theory in n
real-variables. In R? thej theory of harmonic functions is closely related to
complex analysis in one complex variable, since the real and imaginary part of
a holomorphic function are harmonic. It is therefore easy to see that harmonic
functions satisfy the maximum principle, Liouville’s theorem and the mean
value theorem. Subharmonic functions are upper semicontinuous function (see
Definition u such that Au > 0. They play a big role in potential theory
and examples of them are given by log|f| and |f|*, where f is holomorphic.
The main reason for using subharmonic functions is that they are a lot more
flexible than harmonic functions. For example, the maximum of two subhar-
monic functions is subharmonic. This flexibility is clearly noticeable when we
are searching for solutions of the Dirichlet problem, that is a harmonic function
on a domain 2 with given boundary values. But the Perron method |16, Chap-

ter 2.6] gives a solution by using subharmonic functions,

sup{v(z); v subharmonic on Q and limsupv(y) < ¢(t) for t € 00},
y—t

where the boundary values are given by the function ¢ and the boundary

satisfies certain regularity conditions.



For more information about potential theory in real variables we refer the
reader to the books of Hayman and Kennedy [16], Hormander [18], and Kellogg
[20].

This theory does not work equally well in several complex variables due
to the fact that the property of being subharmonic is then not invariant un-
der biholomorphic mappings. The reason is that the class of subharmonic
functions is too large in several complex variables. This fact motivates the
theory of plurisubharmonic functions and pluripotential theory. The follow-
ing section will give most of the necessary background for our purposes on
plurisubharmonic functions and in Section we will develop similar results

for quasiplurisubharmonic functions.

2.1 Plurisubharmonic functions

2.1.1 Semicontinuity

Although there is a difference between subharmonic functions and plurisub-
harmonic functions, they satisfy the same continuity property, that is upper

semicontinuity.
Definition 2.1.1 A functions ¢ : X — [—00,+00[ defined on a topological

space X is called upper semicontinuous if

limsup ¢(y) = ¢(z), for every z € X. (2.1)

Yy—x

Here lim sup is defined as

limsup p(y) = ;i_r{(l)(sup{QO(y); y € B(z,¢)}),

Yy—x

when X is a metric space, but for a general topological space

lim sup p(y) = inf{sup{¢(y);y € U}; U a non-empty open neighbourhood of z}.

Yy—x

It is easy to see using the definition, that a function ¢ is upper semicontinuous

if and only if ¢~!([—o0,a[) is open for every a € R.



Roughly speaking, an upper semicontinuous function can “jump up”’ at
some points but it can’t “jump down“. For example, the characteristic function
of a closed set is upper semicontinuous.

A function ¢ such that —¢ is upper semicontinuous is called lower semi-
continuous. Again, it is easy to verify that a function is continuous if and only

if it is both lower semicontinuous and upper semicontinuous.

Proposition 2.1.2 If ¢ is an upper semicontinuous function on a compact

set K, then there exists x € K such that p(z) = supy ¢ < +00.

Proof: The sets ¢~ ([—o0, a]), for a € R, give an open covering of K which has
a finite subcovering since K is compact and hence is supy ¢ < +00. Assume
p(x) < supg ¢ for every x € K, then there is a sequence z; of points in
K such that ¢(z;) /7 supg ¢ and p(x1) < @(x2) < ... < supg¢. The
sets ¢ 1([—00, p(z;)[) then give a covering of K which does not have a finite

subcovering, which is a contradiction. (Il

Definition 2.1.3 Let Y C X be a nonempty set and ¢ : Y — [—00, +00] a
function which is locally bounded around each point in the closure of Y, Y.

Then we define the upper semicontinuous reqularization p* of ¢ by

¢*(z) = limsup ¢(y).
Yoy—x
The function ¢* is upper semicontinuous on Y, ¢ < ¢* on Y, and it is the
smallest upper semicontinuous function which is larger than ¢, i.e. if ¢ is an

upper semicontinuous function such that ¢ < @ < ¢*, then ¢ = ¢*.

An important fact about upper semicontinuous function is that they can be
approximated by continuous function from above and the limit of a decreasing
sequence of upper semicontinuous function is upper semicontinuous. We there-
fore state the following propositions, for the proofs of them see [21, Lemma
2.3.2 and Proposition 2.3.3].

Proposition 2.1.4 Let X be a manifold and ¢,,a € A a family of upper

semicontinuous functions on X. Then ¢ = inf,ca o IS upper semicontinuous



and furthermore there is a countable subset A" C A such that ¢ = infyecar pq.

Proposition 2.1.5 If ¢ : X — [—00, 400 is an upper semicontinuous func-
tion on a compact metric space X then there exists a sequence ¢; of continuous

functions on X such that for every x € X,

lim ;(z) \ p(z).

Jj—00
2.1.2 Plurisubharmonic functions

This section will contain the most important properties of plurisubharmonic
function we need for our studies of disc functionals. These results will be mostly
stated without proofs since they can be considered classical. For a more de-
tailed survey of pluripotential theory see Klimek [21]. For a more general study
of complex analysis of several variables see Krantz [24] and Hérmander [17] .
For complex analysis on manifolds see Fritzsche and Grauert [12], Demailly |7]
and Huybrechts [19].

Recall that a real valued function h on U, where U is an open subset of
C, is harmonic if Au = 0, or equivalently 90u = 0, where 9 and 0 are the
differential operators

0= ;Zdz, 0= ;Zdz.

Let D,(a) denote the open disc in C with center a and radius r. We let

denote p the surface measure on the boundary of D,(a) and the Lebesgue

measure will be denoted by A.

Proposition 2.1.6 The following is equivalent for a continuous function h on

an open set U C C.

(i) h is harmonic.

(ii) If D,(a) C U then



(iii) If D,(a) C U then

1
M) = Spra /D D)

Definition 2.1.7 An upper semicontinuous function u on an open set U C
C is subharmonic if it satisfies the following condition: For every relatively
compact open subset G C U and for every continuous function h on G which

is harmonic on G
ulog < hloc implies u < honG.

From Proposition [2.1.6| we get three equivalent characterizations of subhar-

monicity.

Proposition 2.1.8 The following is equivalent for an upper semicontinuous

function uw on an open set U C C.

(i) w is subharmonic.

(ii)) If D,(a) C U then

(iii) If Dy(a) C U then

1
o) < 5 /D PRCEe!

The following formula, which is known as the Riesz representation formula
|18} eq. (3.1.8)’], will play a important role both in Chapter |3| and Chapter .
If u is a subharmonic function on the unit disc D and continuous on its closure
D =DUT then

1
u(a) = 27T/Dlog

— lal?
Au(a:)d)\+/ 1~ [al u(zx) do(x). (2.2)

T |z —al?

a—x
1—ax

11



In particular, when a = 0,

u(0) = ;T/DlogMAu(a;)d)\—i—/Eu(x) do(x). (2.3)

Definition 2.1.9 An upper semicontinuous function u on an open set X C C"
is plurisubharmonic if it is subharmonic along every complex line, that is for

every a,b € C", the function
z +— u(a+ bz)

is subharmonic on {z € C;a + bz € X}. We let PSH(X) denote the family
of plurisubharmonic functions on X which are not identically —oo on any
connected component of X.

A function u such that —u is plurisubharmonic is called plurisuperharmonic.

Proposition 2.1.10 Assume X and Y are open sets in C" and C™ respec-
tively, and f : X — Y is a holomorphic mapping. If u € PSH(Y) then
uo f € PSH(X).

This implies that plurisubharmonicity is invariant under biholomorphic
mappings and that we can define plurisubharmonic functions on complex man-

ifolds as follows.

Definition 2.1.11 Let X be a complex manifold. An upper semicontinuous
function u on X is plurisubharmonic if the function uo®! is plurisubharmonic
on ®(U) for every local coordinates ® : U — C", U C X.

Proposition 2.1.12 The following are equivalent for an upper semicontinuous

function u on a complex manifold X .
(1) w is in PSH(X).
(ii)) wo f is subharmonic on D for every f € Ax.
(i)
u(f0) < [ o fdo

T
for every f € Ax.

12



Here, as mentioned before, Ax is the set of all closed analytic discs in X and

o is the arc length measure on the unit circle T normalized to 1.

Proof: Property (ii) follows from (i) by Proposition . If u satisfies (ii)
then in particular z — u(®~!(a + bz)) is subharmonic for every a,b € C" and
every local coordinates @, that is u is plurisubharmonic. We have therefore
established that (i) and (ii) are equivalent. Finally, it is clear from Proposition
[2.1.8 that (i) and (iii) are equivalent. O

Since we will be working with discs and disc functionals, then condition
(iii) in the proposition above will be most useful to us. It is generally referred

to as the subaverage property of plurisubharmonic functions.

Plurisubharmonicity can also be defined using differential operators, similar
to the definition of harmonic functions using the Laplacian.

We let d and d° denote the real differential operators

d=0+0 and d° =1i(0—0),

where g "
0= Z %dzj and 0= ——dz;. (2.4)
g=1 " =1
Hence, in C we have dd°u = AudV where dV is the standard area form.

If a plurisubharmonic function u is not identically —oo, that is u € PSH(X),
then w is in L{. .(X) and does therefore define a distribution. The (1, 1)-current
ddu is then also well defined on X.

We can then characterize plurisubharmonicity using the differential oper-
ator dd® = 2i00. This in particular shows that plurisubharmonicity is a local

property.

Proposition 2.1.13 If u € PSH(X) then dd°u > 0 in a weak sense.
Conversely, if u is a locally integrable function on X such that dd“u > 0 in
a weak sense, then there is a plurisubharmonic function 4 on X which is equal

to u almost everywhere.

For the proof we refer the reader to |21, Theorem 2.9.11].

13



Note that dd“u > 0 is equivalent to the Levi form of u being positive, that

18

n
> g 20
——Wjwg =
7 )
1 aZjaZk

for every w € C". For more information about positive currents and positive
forms see |21, Chapter 3.2] and |7, Chapter III.1].

2.2  Quasiplurisubharmonic functions

Plurisubharmonic functions satisfy the maximum principle. This implies that
any plurisubharmonic function on a compact complex manifold, for example
the complex projective space P”, is constant. This fact motivates the defini-
tion and studying of quasiplurisubharmonic functions. Recall that a plurisub-
harmonic function u satisfies dd“u > 0 in a weak sense. Quasiplurisubharmonic
functions on the other hand are such that dd“u > —w, where w is a closed (1, 1)-
current. That is w + ddu is a positive (1, 1)-current, and usually the family of
such currents on a given manifold is large, in particular if the manifold is Kéah-
ler and w is a Kéahler form. But the main application of quasiplurisubharmonic
functions is for studying metrics on Kéhler manifolds [11}/14,23]. They have
also been used to define and study the relative extremal functions |13|, global
extremal functions [4,|13] and the Green functions [6] on compact manifolds.
Furthermore, quasiplurisubharmonic functions have been used to study the
projective hull in P™ [15], which is analogous to the polynomial hull in C™. It
is therefore reasonable to wonder if the disc formula for quasiplurisubharmonic
functions presented in Chapter [4] can be used to characterize the projective
hull, similar to the characterization of the polynomial hull given by Poletsky’s
formula (see Section [£.4).

For a detailed survey of quasiplurisubharmonic functions on compact Kéh-
ler manifolds see [13].

This section will contain the necessary definition and properties of quasi-
plurisubharmonic functions we will need in Chapter[dl First a few words about
notation. We assume X is a complex manifold of dimension n, Ax will then be

the family of all closed analytic discs in X, that is, all holomorphic mappings

14



from a neighbourhood of the closed unit disc D into X. The boundary of the
unit disc D will be denoted by T and o will be the arc length measure on T
normalized to 1. Furthermore, D, = {z € C;|z| < r} will be the disc centered

at zero with radius 7.

We start by noting that if w is a closed, positive (1, 1)-current on a manifold
X, that is a continuous linear functional acting on (n — 1,n — 1)-forms, then
locally we have a potential for w. This means that for every point x there is
a neighbourhood U of z and a plurisubharmonic function ¢ : U — R U {—o0}
such that dd®yp = w. This allows us to work with things locally in a similar
fashion as in the classical case, w = 0. We will furthermore see that when
there is a global potential, that is, when 1 can be defined on all of X, then
most of the questions about w-plurisubharmonic functions turn into questions

involving plurisubharmonic functions.

Proposition 2.2.1 Let X be a complex manifold with the second de Rham
cohomology H?(X) = 0, and the Dolbeault cohomology H%V)(X) = 0. Then
every closed positive (1,1)-current w has a global plurisubharmonic potential
Y X = RU{—o0}, such that dd“y) = w.

Proof: Since w is a positive current it is real, and from the fact H*(X) = 0 it
follows that there is a real current 7 such that dn = w. Now write n = n*04n%!

where n'0 ¢ A o(X,C) and %t e Aj1(X,C). Note that n%1 = nl0 since n

0,2

is real. We see, by counting degrees, that On%! = w%? = 0. Then since

HOD(X) =0, there is a distribution z on X such that du = n°!. Hence
n=0u+ou=f+ op.
If we set ¢» = (u — 1) /21, then
w=dn=d0f+ou) = (0+09)(0f + du) = 90(u — 1) = dd+).

Finally, by modifying 1) on a negligible set we may assume it is plurisubhar-

monic function since w is positive. [l

15



If we apply this locally to a coordinate system biholomorphic to a polydisc

and use the Poincaré lemma we get the following.

Corollary 2.2.2 For a closed, positive (1, 1)-current w there is locally a pluri-

subharmonic potential 1) such that dd®y) = w.

Note that the difference of two potentials for w is a pluriharmonic function,
thus C'*°. This implies that if 1) and ¢’ are two local potentials of w defined
on sets U and U’ respectively, then for z € UNU’, ¢(x) = —oco if and only if
' (z) = —o0o. We therefore make the following definition.

Definition 2.2.3 The singular set sing(w) of w is defined as the union of all
=1 ({—o0}) for all local potentials v of w.

In the following we assume w = w; — wy, where w; and wsy are closed,
positive (1, 1)-currents. We have plurisubharmonic local potentials ¥; and 1

for wy and ws, respectively, and we write the potential for w as

Y1(x) — o) if ¢ sing(wy) N sing(wa)
VI =Y timsup () ~aly) i @ € sing(en) Nsing ()
and the singular set of w is defined as sing(w) = sing(w;) U sing(wa).

The reason for the restriction to w = w; — w9, which is the difference of
two positive, closed (1, 1)-currents, is the following. Our methods rely on the
existence of local potentials which are well defined plurisubharmonic functions,
not only distributions, for we need to apply Riesz representation theorem to
this potential composed with an analytic disc. With w = w; —ws we can work
with the local potentials of wi and wy separately, and they are are given by

plurisubharmonic functions.

Definition 2.2.4 A function u : X — [—o0,+0o0] is called w-upper semicon-

tinuous if for every a € sing(w),

limsup  u(z) = u(a)
X\sing(w)3dz—a
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and for each local potential 1 of w, defined on an open subset U of X, u+ 1 is
upper semicontinuous on U \ sing(w) and locally bounded above around each

point of sing(w).

This is equivalent to saying that lim supg,ge (72— w(2) = u(a) for every a

in sing(w) and that u + 9 extends as

limsup (u+v)(z), for a € sing(w)
sing(w)Zz—a
to an upper semicontinuous function on U with values in R U {—oo0}. This
extension will be denoted by (u + ). Note that (u + )T is not the upper
semicontinuous regularization (u + v)* of the function u + 1, but just a way
to define the sum on sing(w) where possibly one of the terms is equal to +o00
and the other might be —oo.

Note that the question whether (u+ )" is upper semicontinuous does not
depend at all on the values of u at sing(w). The reason for the conditions on u
at sing(w) is to ensure that u is Borel measurable and to uniquely determine
the function from its values outside of sing(w).

It is easy to see that u is Borel measurable from the fact that v = (u +
) — 1 is the difference of two Borel measurable functions on X \ sing(w)
and that u restricted to the Borel set sing(w) is the increasing limit of upper

semicontinuous functions. Hence it is Borel measurable.

Definition 2.2.5 An w-upper semicontinuous function u : X — [—o0, +00] is
called w-plurisubharmonic if (u+ ) is plurisubharmonic on U for every local
potential ¢ of w defined on an open subset U of X. We let PSH (X, w) denote
the set of all w-plurisubharmonic functions on X which are not identically —oo

on any connected component of X.

Similarly we could say that w is in PSH(X,w) if it is w-upper semicontin-
uous and dd‘u > —w in a weak sense. Conversely, if u is a locally integrable
function on X such that dd°u > —w then there is a function @ € PSH(X,w)

such that & = v almost everywhere.
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The most important example of w-plurisubharmonic functions is when X =
P" and w is the Fubini-Study Kéhler form. It turns out [13| Example 2.2] that

these functions are in 1-to-1 correspondence with the Lelong class
1
L={uePSH(C");u< ilog(l +|2)? + ¢},

which is used in classical potential theory to define the global extremal function
[21, Chapter 5] and to characterize the polynomial hull of a set. It should be
noted that the global extremal function has a disc formula [27,28,31], but this
formula is of different nature from those studied here. In particular there is
no easy way to derive the formulas for the global extremal function from our

formulas, as we do for the relative extremal function in Section [4.4]

It turns out that size of the PSH (X, w) is independent of the representative
of the cohomology class of w, and when we look at another representative from
the cohomology class then all we do is translate the set of w-plurisubharmonic

functions.

Proposition 2.2.6 Assume both w and W' are the difference of two positive,
closed (1, 1)-currents. If the current w —w’ has a global potential x = x1 — X2 :
X — [—o0,+0o¢|, where x1 and x2 are plurisubharmonic functions, then for
every u' € PSH(X,«w') the function u defined by u(x) = u'(x) — x(x) for
x ¢ sing(w') U sing(w) extends to a unique function in PSH(X,w) and the
map PSH(X,w') = PSH(X,w), v +— u is bijective.

Proof: Let ¢ = ¢} — ¢} be a local potential of w’. The functions ¥ = ] + x1
and 1y = ¥}, + x2 are well defined as the sums of plurisubharmonic functions.
Then ¢ = 1)1 — 1), extended over sing(w) as before, is a local potential of w
since w = w’ + ddx.

Take v’ € PSH(X,w') and define a function u on X by

(u' + ) (z) — () for z € X \ sing(w)
u(z) = limsup (v + ) (y) —¥(y) for z € sing(w)
sing(w)Fy—x

This definition is independent of v’ since any other local potential of w’ dif-

18



fers from v’ by a continuous pluriharmonic function which cancels out in the
definition of u, due to the definition of 1.

Then v+ = (v’ +¢') on X \ sing(w) where the sum is well defined, since
neither u nor ¢ are +oo there. The right hand side is upper semicontinuous
so u + 1) is upper semicontinuous on X \ sing(w). But (v 4 ¢')' is upper
semicontinuous on X so the extension (u+1) also satisfies (u+v)1 = (v/+3')T
and is therefore plurisubharmonic since v’ € PSH(X,w’). This shows that
u € PSH(X,w).

This map from PSH(X,w') to PSH(X,w) is injective because u = u' — x
almost everywhere and the extension over sing(w) U sing(w’) is unique.

By changing the roles of w and w’ we get an injection in the opposite
direction which maps v € PSH(X,w) to a function v' € PSH(X,w) defined
as v = v+ x outside of sing(w)Using(w’). These maps are clearly the inverses
of each other because if we apply the composition of them to the function
u' € PSH(X,w') we get an w-upper semicontinuous function which satisfies
(u' = x) + x = v outside of sing(w) U sing(w’). Since this function is equal to
u' almost everywhere they are the same, which shows that the composition is

the identity map. O

Proposition 2.2.7 If ¢: X — [—o00, +00] is an w-upper semicontinuous func-
tion we define F,, , = {u € PSH(X,w);u < ¢}. If F, , # () then sup F,, €
PSH(X,w), and consequently sup F, , € Fu .

Proof: Assume %) is a local potential of w defined on U C X. For u € F , the
function (u+1)' is a plurisubharmonic function on U which satisfies (u+1)t <
(¢ +9)T. The supremum of the family {(u + ¥)\;u € F,,} € PSH(U)

therefore defines a plurisubharmonic function on U,

Fy(x) = (sup{(u + ¢) (2);u € Fuo})*,

with Fyy < (¢ + ). We want to emphasize the difference between 1 and .
The extension of the function u+1) over sing(w), where the sum is possibly not
defined, is denoted by (u+1)T but * is used to denote the upper semicontinuous

regularization of a function.

19



Since the difference of two local potentials is a continuous function, the
function (sup{(u +1);u € F, ,})* — 1 is independent of ¥. This means that

S=F,—1, onU\sing(w),

extended over sing(w) using lim sup, is a well-defined function on X.
Clearly S is w-plurisubharmonic since (S + )" = F,, which is plurisubhar-

monic, and S satisfies
supFu o+ < Fy=5S+v <+, onU)\sing(w).
This implies
sup Fup < S < ¢, (2.5)
on U \ sing(w). The latter inequality holds also on sing(w) because of the
definition of S at sing(w) and the w-upper semicontinuity of .
Furthermore, if u € F,, , and a € sing(w), then

u(a) = limsup u(x) < limsup[sup Fy, ,(z)] < limsup S(z) = S(a).

Tr—a r—a Tr—a

Taking supremum over u then shows that the first inequality in above
holds also on sing(w), that is sup F,, < S. But S € F,, by the latter
inequality and therefore S < sup F, . This shows that supF,, = S €
PSH(X,w). O

Proposition 2.2.8 If u,v € PSH(X,w) then max{u,v} € PSH(X,w).

Proof: For any local potential ¢ we know that
max{u,v} + ¥ = max{u + ¢, v + ¢}

is upper semicontinuous outside of sing(w) and locally bounded above around
each point of sing(w). Therefore, the extension (max{u,v} + )" is equal to
max{(u 4+ ), (v + )T} which is plurisubharmonic, hence max{u,v} is w-

plurisubharmonic. [l
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Our approach in Chapter [4] depends on the fact that we can we define the
pullback of currents by holomorphic maps. This we can do in two very different
cases, first if the map is a submersion and secondly if it is an analytic disc not
lying in sing(w).

If ®:Y — X is a submersion and w is a current on X then we can define

the inverse image ®*w of w by its action on forms,
(P*w, 7) = (w, Dur) (2.6)

where ®,7 is the direct image of the form 7. For more details see Demailly |7,
2.C.2 Ch. I.|. We use this pullback in Section to move the problem from
the manifold X to a manifold where ®*w has a global potential, see Lemma
43T

If f is an analytic disc then it is important for us to be able to define the

pullback of w by a f to include w in the disc functional.

Definition 2.2.9 For f € Ax such that f(0) ¢ sing(w) we define the pullback
of w by f, denoted f*w, with

dd“(¢ o f),

where 1 is any local potential of w. Since the difference of two local potentials
is pluriharmonic, this definition is independent of the choice of 1, and it gives
a definition of f*w on all of D.

Note that ¢ o f is not identically +oo since f(0) ¢ sing(w).

If w = w1 — ws, then we could as well define the positive currents f*w; and
f*wo, using 1 and 1o respectively, and then define f*w = f*w; — f*wo. This
gives the same result since ¥ o f =11 o f — 1) o f almost everywhere.

It is also possible to look at f*w as a real measure on D, and we let R+,

be its Riesz potential,

Rf*w(z):/DGD(z, ) d(f*w), (2.7)
where Gp is the Green function for the unit disc, Gp(z, w) = 5 log |‘1Z:zwm|\'
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Since f is a closed analytic disc not lying in sing(w) it follows that f*w is a
Radon measure in a neighbourhood of the unit disc, therefore with finite mass
on D and not identically Foo.

It is important to note that if we have a local potential 1 defined in a
neighbourhood of f(D), then the Riesz representation formula gives

B(F(0)) = Rpeu(0) + /T o fdo. (2.8)

Similar to plurisubharmonic functions, see Proposition [2.1.12] quasiplurisub-

harmonicity can be characterized by analytic discs.

Proposition 2.2.10 The following are equivalent for a function u on X.
(i) wisin PSH(X,w).

(ii) w is w-upper semicontinuous and f*u is f*w-subharmonic on D for all

f € Ax such that f(D) ¢ sing(w).

(iii) wo f + Ry« is subharmonic on D for every f € Ax such that f(DD) ¢
sing(w).

Proof: Assume u € PSH(X,w), take f € Ay, h(D) ¢ sing(w), and a € D. Let
¥ be a local potential for w defined in a neighbourhood U of f(a). Note that
(u+1p)Tof = (wo f+1of), that is, the extension of (u+1))o f over sing(f*w)
is the same as the extension of u + ¢ over sing(w) pulled back by f, for both
functions are subharmonic and equal almost everywhere, thus the same. Since
(u+ ) € PSH(U) and (u+ ) o f = (uo f+ 1o f)! is subharmonic in a
neighbourhood of a we see that u o f is f*w-subharmonic.

Assume now that (ii) holds and let ¢ € PSH(U) be a local potential for
w. Then (u+ )" is upper semicontinuous, and (ii) implies that (u+ 1) o f is
subharmonic on D for every f € Ay. Hence (u+ )T € PSH(U) and we have
(i).

It is clear that (ii) and (iii) are equivalent since Ry, is a global potential
for f*w on D. O
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From the Definition we see that w-plurisubharmonicity, like plurisub-
harmonicity, is a local property. Therefore it is sufficient in condition (ii) and

(iii) to look at discs f € Ay where U is a neighbourhood of a given point.

2.3 Holomorphic discs, disc functionals and envelopes

If H is a disc functional defined for discs f € Ax, with f(D) ¢ sing(w), then
we define the envelope of H, denoted EH, on X \ sing(w) by

EH(x) = inf{H(f); f € Ax, f(0) = z}.
We then extend E'H to a function on X by

EH(x)= limsup FH(y), for x € sing(w), (2.9)
sing(w)Zy—
in accordance with Definition of w-upper semicontinuous functions.
If ®:Y — X is a holomorphic function and H a disc functional on Ax,
then we can define the pullback ®*H of H by ®*H(f) = H(®o f), for f € Ay.
Every disc f € Ay gives a push-forward ® o f € Ax and it is easy to see that

®*EH < E®*H, (2.10)

where ®*FEH = EH o ® is the pullback of EH. We have an equality in
if every disc f € Ax has a lifting f € Ay, f=®o f.

The most important example of a disc functional in the classical theory
when w = 0, is the Poisson disc functional H, which is defined by f
fT po fdo, where ¢ is a locally integrable function on X. When we study the

Poisson disc functional in Chapter [3| we will need the following.

Lemma 2.3.1 Let ¢ be an upper semicontinuous function on a complex man-
ifold X and F € (D, x Y, X), where r > 1 and Y is a complex manifold, then
y — H,(F(-,y)) is upper semicontinuous. Furthermore, if ¢ is plurisubhar-

monic then this function is also plurisubharmonic.

Proof: Fix a point zg € Y and a compact neighbourhood V' of zg. The function
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@ o F' is upper semicontinuous and therefore bounded above on T x V so by

Fatou’s lemma

limsup H,(F(-,z)) < /Tlirnsupgo(F(t,x))do(t)

T—T0 T—T0

_ /T P(F(t,z0))do(t) = Hu(F(-0)),

which shows that the function is upper semicontinuous.

Assume ¢ is plurisubharmonic and let h € Ay. Then

/T Ho(F(-,h(s))) do(s) = /T /T o(F(t,h(s))) do(t) do(s)
- / / o(F(t,h(s))) do(s) do(t)
TJT

/T S(F(t, h(0))) do ()
= H(F(- h(0)),

v

because for fixed ¢, the function s — @(F(t, h(s))) is subharmonic. O
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Disc formulas for

plurisubharmonic functions

Let ¢ be a function on a complex manifold X with values in [—oo, +00]. The

Poisson disc functional for ¢, denoted Hy, is defined as

Hw(f)Z/TsOOfdm

for f € Ax, where Ax is the set of all closed analytic discs in X. The envelope
of H, is then the function FH, : X — [—00, +00], given by

EH,(z) = inf{H,(f); f € Ax, f(0) = z}.
Now, if u is a plurisubharmonic function on X that satisfies u < ¢, then

by the subaverage property of plurisubharmonic functions (property (iii) in

Proposition [2.1.12)) we see that for f € Ax with f(0) = x, we have

u(fL‘)S/Tuofdo’g/qrgpofdcr:H@(f).

If we take the supremum on the left hand side over all u € PSH(X) such that
u < ¢, and infimum on the right hand side over all f € Ax with f(0) = z, we
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get the fundamental inequality

sup{u(z);u € PSH(X),u < o} <inf{H,(f); f € Ax, f(0) =x}.  (3.1)
The goal is to show that this is actually an equality,

sup{u(z);u € PSH(X),u < ¢} = inf{H,(f); f € Ax, f(0) =z}.  (3.2)

That is done by showing that the function on the right hand side, EH,, is
in the family on the left hand side. Then FH, is obviously not greater than
the left hand side and we have an equality. The hard part is to prove the
plurisubharmonicity of EH,, or equivalently that it satisfies the subaverage
property. It is easier to see that EH, < ¢, because if f, € Ax is the constant
disc which maps everything to x € X then

PHy(a) < Hylf) = | pla) dott) = pla). (33)
We will also refer to equation (3.2]) by using its shorter form
sup F, = EH,,

where F, = {u € PSH(X);u < ¢} denotes the family of plurisubharmonic

functions we are looking at.

We start by looking at the case when ¢ is upper semicontinuous (Sec-
tion . It turns out that it is enough to prove equality for contin-
uous functions, because if ¢; is a decreasing sequence of continuous func-
tions converging to ¢ then we have the limits lim; . FH,, = EH, and
lim; oo sup Fy, = sup F,. Furthermore, if equation holds for the ¢;’s
then sup F,;, = FH,, which ensures sup F, = FH,. Proving the result for
continuous ¢’s uses the approach introduced by Bu and Schachermayer in [5].
Their motivation comes from probability theory, more specifically analytic mar-

tingales and Hardy martingales on Banach spaces. By using their method we
get a very coherent proof of (3.2)), see Theorem

In Section [3:2] we extend this result to functions ¢ which are of the form

26



p = @1 — 2, where ¢ is upper semicontinuous and g is plurisubharmonic.
This is done by using the result from Section [3.1]and approximating ¢ by using
convolution. This is an extension of a result proved by Edigarian in [10].

For simplicity we assume in Section [3.I] and Section [3.2] that X is an open
subset of C™. But these results can be extended to any complex manifold by
using the method developed by Larusson and Sigurdsson [25,26] and Rosay [35].
This is done in Section [3.3] This method proves the subaverage property of
EH, on any complex manifold by showing how a “large enough” part of X can
be embedded into C™ where previous results can be applied.

Finally, in Section [3.4] we see how the Poisson disc functional and the Riesz

disc functional can be combined into a single disc formula.

3.1 Upper semicontinuous ¢’s on subsets of C”

In the following we assume X is an open subset of C" and ¢ is a function on
X such that F, # 0.

We will first prove equation in the case when ¢ is continuous. The case
when ¢ is upper semicontinuous then follows from this by taking a decreasing

sequence of continuous functions tending to .

We start by showing that sup F, is plurisubharmonic. Although this result
follows from the plurisubharmonicity of EFH,, it is worth a proof of its own

because it is not directly connected to analytic discs and disc functionals.

Lemma 3.1.1 If ¢ is an upper semicontinuous function such that F, # 0,

then sup F, is plurisubharmonic.

Proof: Since sup F, < ¢ and ¢ is upper semicontinuous, then the upper

semicontinuous regularization

lim sup sup F,(y) = (sup F,)*(z),

Yy—x

which is a plurisubharmonic function by |21, Theorem 2.9.14], satisfies the
inequality (sup Fy,)* < ¢. This implies (sup F,)* € F,. Then (sup Fy,)* <
sup F, and we have an equality (sup F,)* = sup Fo,. O
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The following lemma plays the main role in proving (3.2]) in the case we

when ¢ is continuous.

Lemma 3.1.2 For a closed arc A C T, there exists a sequence of functions

{pm}m, analytic in a neighbourhood of D and such that
* pn(0) =0.
e (D) C D.

o lim,, oo () =0 for every x € D\ A.

weakly

om — 0(A)o + (1 — a(A))do,
where we define oy, = (pm)«0 as the pushforward of o by pp,.

This is equivalent to
[ £ommdo o) [ fdo+(1-ataso),
T T

for any continuous function f on D.

Proof: For every m let A,, C T be an open neighbourhood of A in T such
that A,,+1 C Ay and N A, = A, and let C,,, = A, \ A. Then define the
continuous functions hy, : T — [—m, 0] which take the value 0 on A and —m
on T\ A,,, and are interpolated linearly between these values on C,,. Using
the Poisson kernel we can extend h,, to a function which is continuous on D
and harmonic on . The harmonicity of h,, implies that its maximum value,
0, is only taken on A. Since A,,+1 C A, and by the definition of Ay, on T we
see that

hy >

ho > —-hs>....

1
3

N |

This implies 0 > mhy > h,, on D \ A, in particular lim,, o by, = —00 on
D\ A.
For convenience let @ = 0(A) and o, = 0(A;,). Then by the mean value

property of harmonic functions we see that
“i(1 — @) < i (0) = / hon dor < —mm(1 — ).
T
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Now let h,, be the harmonic conjugate of h,, that takes the value 0 at 0,
and define the functions g, = exp(h, +zﬁm) The function gy, is holomorphic
on D and with boundary values almost everywhere on T. It is therefore clear
that

° e—(l—a)m < gm(o) — e—(l—am)m

I

e < |gm| <1 onD,

’gm| =1on Av

lgm| =€ on T\ A,

lim,, 00 gm = 0 on D\ A.

To show that g, (0) = ac+ (1 —a)dp let f be a continuously differentiable
function on D. This ensures that the Fourier series of f converges uniformly.
We may assume f is differentiable since differentiable functions are dense in
the set of continuous functions on D.

Then
/fogmda—>a(A)/decH—(l—a(A))f(O)

T

for every continuous function f on D. Now note that

/fogmdaz/fogmda+ fogmda—i—/ fogmdo. (3.4)
T A Cm T\ Am

The second term tends to 0 and the third term tends to (1—a)f(0) as m — oo.
We therefore wish to show that the first term tends to « [; f do.

Write f on T as a Fourier series

2

- 1 L
f(z) = Z anx", where a,, = Py feMye " at (3.5)

n=—00 0

Note that since g, (A) C T this Fourier series is well-defined for the com-

position f o g,, on A.

29



Since the real and imaginary part of g,, are harmonic, |g,| < 1 on Cy,,

and |g,| =e ™ on T \ A,,, we see that for n > 1

| [ gindol = s~ | ghda
A T\A

< exp(=(1 — am)mn) + o(T\ Am)llgillT\a,, + 0 (Cm)llgm o

< exp(—(1 = am)mn) + (1 — am)e”"" + 0(Crm) —— 0,

where we used the fact that T\ A= (T \ A,,) UC,, and o(Cy,) — 0.

Since h,, = 0 on A, then g,” = ¢ on A and we see that for negative

powers we have the same result as above, that is for n > 1,

’/g;bnda‘ = ’/ gfnda‘ — 0.

We then conclude using the Fourier series (3.5]) that

fogmdo = a /gﬁzdazao/da+ a /g%da
Jfomir= 3 m ], RANP YL

n=-—00 n=—00,n#0
1 2 ”
— apx = a— fe)dt=o(A) | fdo,
m—o00 21 0 T

which shows along with (3.4]) that g,,(c) tends weakly to ao + (1 — a)dp.

Since h,, is continuous on D and |gm| = ehm there is an 7, < 1 such that

if we define ¢, () = gm(rmz) then

1 1
|gm‘ ——< |Qm‘ < ’gm| + —, on T.
m m

Then it follows from Lebesgue theorem that [ A 4, do — a0 as m — 00, since

fogm— fogmn — 0 almost everywhere on T.

The functions gy, are holomorphic on Dy, . and they satisfy all the prop-
erties desired from p,, except they do not map 0 to 0 since e ™ < ¢,,(0) =
gm(0) < emommE,

To fix this we use automorphisms of D of the form z — fqum(o) . These
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maps tend uniformly on D to the identity map because ¢,,(0) — 0 and

z — qm(0) 2¢m (0)

— —z
1- Qm(o)z 1- Qm(o)
We therefore define the closed analytic discs py, as

2) — Qm(z)_qﬂz(o)
P = ()

Again by the uniform convergence of the automorphisms we see that the p,,’s

satisfy pp, (o) welly, o + (1 —a)dp. O

Theorem 3.1.3 If X is a domain in C™ and ¢ is a continuous function on X
such that F, # (), then
EH, = sup F,.

Proof: We already know that FH, < ¢ by and that sup F, < FH,
by . It is therefore enough to show that EH, is plurisubharmonic, be-
cause then FH, € F, and we have an equality. We will therefore show that
FEH, is upper semicontinuous and that it satisfies the subaverage property of
plurisubharmonic functions.

Beginning with the upper semicontinuity, fix zo € X and let 8 > EH(zo).
Let f € Ax be such that f(0) = z9 and H,(f) < 8. By the continuity of ¢
there is a neighbourhood U of 0 in C™ such that

Ho(f() +2) = /Tmf(t) +a)do(t) < B, forzel.

This implies EH, < 8 on xg + U, by the definition of the envelope. This
shows that E'H, is upper semicontinuous. We now turn our attention to the
subaverage property of EH,, that is in order to prove plurisubharmonicity of
FE H we need to show that

EH,(20) < /T EH, (20 + yot) do (t), (3.6)
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for every yg € C" such that zo + yoD C X. To prove 1) for fixed yp, it
suffices to show that for every € > 0 and for every continuous function u such
that EH, < u, there exists a disc g € Ax, g(0) = x¢ such that

Hy(g) < /Tu(xg + yot) do(t) + €. (3.7)

To clarify this better, since FH, is upper semicontinuous there is a se-

quence {u;} of continuous functions such that u; \, EH,, which implies

/ Uj (zo + yot) do(t) \y / EHSO(JZO + yot) do (t).
T T

Then there is a function u;,, and if (3.7) is valid there is a disc g (depending

on uj, ), such that

EH¢(QZ0) < HS@(Q) §/uj0(xo+y0t) do(t)+¢ S/EHw(xo-i-yot) do(t) + 2e.
T T

Since € was arbitrary we have shown that EH, satisfies the subaverage prop-
erty. Our goal is therefore to construct the disc g in (3.7)).

For every tg € T there is a disc f € Ax with f(0) = 0 such that
H(p(f() + x0 + yoto) < u(:E() + yoto) + €.

By the continuity of ¢ and uw we can assume there is a closed arc A C T

containing tg as an inner point such that

lo(zo + yot + f(s)) — o(zo + yoto + f(s))] <&, forte A seD,

and
lu(zo + yot) — u(xo + yoto)| < &, forte A.
By the compactness of T we can find finitely many arcs A, ..., Ag, points
x1,..., T with x; € A;, and closed analytic discs f1, ..., fi, such that the A;’s
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only intersect at the endpoints, U;A; = T and f;(0) = 0, and such that

Hy(f5(-) + 2o + yotj) < ulzo + yot;) + ¢, (3.8)
p(z0 + yot + fi(5)) — (o +yotj + fi(s))| <e, forte Aj,seD, (3.9)
lu(zo + yot) — u(zo + yotj)| < e, fort € A;. (3.10)

Furthermore, let § > 0 be such that for every j = 1,...,k we have
$0+y0t—|—fj(8)+$ cX
and

lo(zo + yot + fi(s)) — p(xo + yot + fi(s) +2)| <e, (3.11)

for every z € C", |z| < §,t € A; and s € D.

Now shrink the closed arcs A; such that they become disjoint and such
that

sup oo +yot + Y fi(t))] - o(T\UjAj) < e (3.12)
(t,tl,...,tk)ETxDﬁé j
and
/ u(zg + yot) do(t) < / u(zo + yot) do(t) + ¢ (3.13)
UjAj T

Foreach j =1,...,klet B; be a closed set in D containing 0 and Uf:Ll#J-Al.
Then by Lemma there is for every 5 = 1,...,k a sequence of analytic
functions {pp, ;}m such that

P (0) =0 (3.14)
|fiopm;(t)] < %, for t € B; (3.15)
Pm (D) C D (3.16)
P (0) 22y 5(A)o + (1 — o(A;))do. (3.17)

The last point implies there is for every j a number m; such that
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/A ©(xo + yotj + [ © Pm; (1)) do(t)

J

< a(a)) [ plan+mty + F(O)do(®) + 5. (313)

To simplify notation we let p; = py,, ;. Then we define the closed analytic disc
g € Ax by

k
g(t) = o +yot + Y _ f 0p;(t).
j=1
This is a well defined disc in Ax because of (3.15) and (3.16)), and with center

zo by (3.14).

To conclude the proof

k
Holo) = [ (w0t mt+ 3 150m,0)) dott)

=1
k

S/A go(mo—i-yot—i-ij opj(t)) do(t) + ¢, by ,
U4 j=1
k k

= (/ gp(xo Fyot+ from®+ S Opj(t)) da(t)> te
=1 \7A j=1,j#
k

< Z </A @(mo + yot + fi opl(t)> do(t) + U(Al)€> + ¢, by and ,
1=1 l
k

< Z (/A go(xo + yot; + fi opl(t)) do(t) + O'(Al)€> + 2¢, by (3.9),
1=1 l
k

<3~ (o) [ oo+ ot + i) dott) + £) +3 by (BT,
=1
k

<> (U(Al)u(xo + yot1) + U(Al)5> + e, by (B.8),
=1
k

< Z (/ u(wo + yot) do(t) + O'(Al)6> + 5e, by (3.10),
=1 \7A

< / u(xo + yot) do(t) + Te, by (3.13).
T
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Now we turn our attention to the case when the function ¢ is upper semi-

continuous. We will approximate it from above to extend the previous theorem.

Lemma 3.1.4 Assume ¢ is an upper semicontinuous function and {¢;}; are
continuous functions such that p; ~\ . Then EH,, \ EH,.

Proof: It is clear that E'H, is monotone with respect to ¢. That is if ¢ < @
then FH, < EHg, because H,(f) < Hz(f) for every f € Ax. This shows
that EH,, is a decreasing sequence of function such that EH, < FH,,. Then
there is a limit lim;_, EH, > EH,.
Fix z € X and let 8 > EH,(x). Then there is a disc f € Ax such that
f(0) =2 and
Hy(f) < B.

By the Lebesgue monotone convergence theorem we see that H,, (f) \ Hy(f),
therefore there is a jo such that H, (f) < B for j > jo. This implies
limj oo EHy, (z) < EHy(x), that is

lim FH, () = EH,(z).

j—o0
U

Lemma 3.1.5 Assume ¢ is an upper semicontinuous function such that F, #
0 and assume {p;};en, are continuous functions such that ¢; ~\, ¢. Then
sup .7-'% N\ sup Fo,.

Proof: The functions sup F,; form a decreasing sequence of plurisubharmonic
functions which do not converge to —oo since F, # () and sup F, < sup Fop;-

There is therefore a plurisubharmonic limit S such that
Fo<S5=1 Fo.
sup F, < ; lim sup Fo,

It is clear that S < ¢ since S < ¢; for every j, and then S € F, which implies
the opposite inequality S < sup F,. We then have an equality S = sup F,. [
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Now we can use Lemma Lemma and Theorem to prove
equation (3.2 in the case when ¢ is upper semicontinuous.

Theorem 3.1.6 If X is a domain in C™ and ¢ is an upper semicontinuous
function on X such that F, # (), then

EH, = sup F,.

If F, =0 then EH, = —00

Proof: Let {¢;}; be continuous functions such that ¢; \, ¢. Then
EH,; =supFy,

by Theorem The left hand side tends to EH,, by Lemma [3.1.4] which is
then a plurisubharmonic function. If sup F, # () then the right hand side
tends to sup F, by Lemma [3.1.5 These limits must be the same, hence
EH, = sup F,. If sup F, is empty then FH, = —o0 since —oo is the only

plurisubharmonic function dominated by ¢. O

3.2 More general ¢©’s on subsets of C”

In the following we will look at the case when ¢ = 1 — o is the difference
of an upper semicontinuous function ¢ and a plurisubharmonic function s.
The main tool we will use to proof equality in this case is convolution
and we therefore still assume X is an open subset of C™. Later this result
will be generalized to any complex manifold using the Reduction Theorem by
Larusson and Sigurdsson (see Theorem .

As mentioned in Chapter || Edigarian [10] proved this for plurisuperhar-
monic functions ¢ = —ps. Our method resembles his approach.

The first problem we run into when ¢ = @1 — o is that the value of ¢
is not well-defined when ¢1(z) = —oo and p2(x) = —oo. Since we intend

the envelope FH, to be upper semicontinuous then it is reasonable to define
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¢ : X — [—00,00] in the following way

- p1(w) — pa(z) if po(x) # —o0

p(r) = limsup  ¢1(y) — @2(y) if pa(x) = —oo0.
go;l(foo)ﬁy%z

(3.19)

This definition of the function ¢ should be viewed alongside Lemma [3.2.3]
which states roughly that it suffices to look at discs not lying entirely in
o ({—oc}).

Note that ¢ is an L] function and that the Poisson functional satisfies
H,=H, — H,,, when H,, (f) # —oo or Hy,(f) # —oo.

We will now prove that the envelope EH, is plurisubharmonic by showing
that

%i_l% FH,, = EH,, (3.20)

where g is a family of smooth functions defined by convolution which approx-
imate ¢. Note that the functions EH,; are plurisubharmonic by Theorem
0.1.60l

Let p: C™ — R be a non-negative C'*° radial function with support in the
unit ball B in C" and such that fB pdX =1, where X is the Lebesgue measure
in C". For an open set X C C" we let X5 ={z € X;d(z,X¢) >0} and if x is
in Ll (X) we define the convolution x;(z) = [ x(@ — 6y)p(y) dA(y) which is
a C* function on Xjs. It is well known that if x € PSH(X) then xs > x and
X6 N\ X as 0 N\ 0.

The following lemma is the first part in proving the limit . It mimics
the work of Edigarian |10] and uses his ingenious change of variables y — ty

to ensure that the disc g we seek is centered at f(0).

Lemma 3.2.1 Assume X C C" is open and ¢ = 1 — @2 a function on X
defined as in (3.19). If f € Ax, then there exists g € Ax such that f(0) = g(0)
and Hy(g) < Hy,(f), and consequently EH,|x, < EH,,

Proof: Since 7 is upper semicontinuous and s is plurisubharmonic the func-

tion (t,y) — @(f(t) — dy) is integrable on T x B. By using the change of
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variables y — ty where ¢ € T and that p is radial we see that
Ho) = [ [ elr)=dwot) ixw) dot

_ / / — Sty)ply) dA(y) do(t)
- /B(/Tcp(f(t)éty) da(t))p(y) dA(y)-

From measure theory we know that for every measurable function we can find
a point where the function is less than or equal to its integral with respect to a
probability measure. Applying this to the function y — [ o(f(t) — dty) do(t)
and the measure pd\ we can find yo € B such that

Hey(f) > /T (1) — btyo) do(t) = Hy(g),

if g € Ax is defined by g(t) = f(t) — dtyo. It is clear that g(0) = f(0). By
taking the infimum over f, we see that EH,, > FH,|x;. O

Note that FH,|x, is the restriction of the function EH,, to X5, but not the
envelope of the functional H, restricted to Ax,. There is a subtle difference
between these two, and in general they are different because Ax, C Ax. Note

also that the function FH,; is only defined on X because the convolution ¢
is defined on Xj.

Lemma 3.2.2 If ¢ = p1 — g as above, then for every f € Ax there is a limit
lims_,o Hy, (f) < Hy(f) and it follows that for every z € X,

lim BH,, (z) = EH, ().

Proof: Let f € Ax, 8> Hy(f), and & be such that f(D) € X5,, and assume
o0 f # —o0. Since o is plurisubharmonic we know that s 5 > @2 on X; for
all § < dg, so

Hoy () = Hop s () = Hon o (/) < /T LS erdo(t) ~ Hon(f).
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The upper semicontinuity of ¢; implies that the integrand on the right hand
side is bounded from above on T and also that it decreases to ¢1(f(t)) when
0 — 0. It follows from Lebesgue’s monotone convergence theorem that the
integral tends to [r¢1 0 fdo = Hy, (f) when & — 0, that is the right side
tends to Hy,(f) < 5. We can therefore find d; < dg such that

/ sup @10 fdo—Hy,(f) <p, forevery ¢ < dy.
T B(f(t),6)

However, if @9 o f = —o0, then by monotone convergence
Tl = [ [ o= axe o)

< / sup pdo(t) = / sup (01— p2) do(t)
T B(f(t),0) T B(f(t),8)\p5 ' (—c0)

— [ limsup (p1(y) — p2(y)) do(t) = Hy(f).
00 T y—f(t)
To prove that lims_,g EH,;(x) = EHy(x), let € > 0 and assume f € Ay,
f(0) = @, is such that H,(f) < EH,(x) 4 . Then there is a § such that

FEH,,(x) < Hy(f) < EHy(x) + €

This along with the fact that EH,(x) < EH,,(x) by Lemma [3.2.2] shows that
lims_o EH,5 = EH,,. O

Now that we have established we see that we can in fact completely
avoid the troublesome set ¢, 1(—0), that is we do not have to consider discs
which lie in this set. Note though that the discs might intersect it, but that

intersection will always be of measure zero with respect to the measure o on

T.

Lemma 3.2.3 Ifp = @1 —s as before, f € Ax, f(D) C ¢, (—00), ande > 0,
then there is a disc g € Ax such that g(D) ¢ ¢y (—00) and H,(g) < Hu(f)+e
Proof: By Lemma we can find 0 > 0 such that Hy,(f) < Hy(f)+¢. Let
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B= {y e B;{o(f(t) - oty);t € D} ¢ <p2_1(—oo)}, then B\ B is a zero set and
as in the proof of Lemma there is yg € B such that

/T (1) — btyo) do(t / / — bty)p(y) dA(y) do(t) = Hoy (/).

We define g € Ax by g(t) = f(t) — 6tyo. Then H,(g) < H,(f) +e. O

Theorem 3.2.4 Assume ¢ = @1 — @9 is the difference of an upper semicon-
tinuous function ¢, and a plurisubharmonic function 2 on a domain X in C™.
If F, # 0 then

EH, = sup F,.

Proof: We start by showing that the envelope FH,, is upper semicontinuous.
Since s is continuous then EH,; is plurisubharmonic by Theorem in
particular it is upper semicontinuous and does not take the value 4occ.

Now, assume z € X and let § > 0 be so small that x € Xs5. By the
fact that EH,; < +o0o and EH,|x; < EH,, we see that EH, is finite. For
B > EHy(x), there is by Lemma [3.2.2)a § > 0 such that EH,(x) < 8. Since
FEH,; is upper semicontinuous there is a neighbourhood V' C X; of x where
EH,; < 3. By Lemma , EH, < 3 onV, which shows that EH, is upper
semicontinuous.

Now we show that EH, satisfies the subaverage property. Fix a point
r € X, an analytic disc h € Ax, h(0) = x and find dy such that h(D) C Xs,.
Note that the function EH,,; is plurisubharmonic by Theorem since g
is continuous. Then Lemma @ and the plurisubharmonicity of EH,; gives
that for every § < o,

EH,(z) < EH,,(z) < / EH,, o hdo.
T

When § — 0, Lebesgue’s theorem along with Lemma implies that FH,(z) <
Jw EH, o hdo.

Since EH,(x) < Hy(x) = ¢(x), where Hy(x) is the functional H, evalu-
ated at the constant disc t — x, we see that FH, < sup F,. Also, if u € F,
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and f € Ax, then

u(f(0)) < /

T

UOfdagfﬂ‘(pofda—Hw(f).

Taking supremum over u € F, and infimum over f € Ax we get the opposite

inequality, sup F, < EH,, and therefore an equality. [l

3.3 Generalization to manifolds

We will now extend the result from the previous section to a complex manifold
X. This is done by using a theorem of Larusson and Sigurdsson which is
stated below. This theorem does not work specifically with the Poisson disc
functional H,, because it can be applied to any disc functional which satisfies
some conditions, most notably that the corresponding disc function for discs

in a domain of holomorphy in C™ should have a plurisubharmonic envelope.

Theorem 3.3.1 (Larusson and Sigurdsson, |26, Theorem 1.2]) A disc func-
tional H on a complex manifold X has a plurisubharmonic envelope if it sat-

isfies the following three conditions.

(i) The envelope E®*H is plurisubharmonic for every holomorphic submer-
sion ® from a domain of holomorphy in affine space into X, where the
pull-back ®*H is defined as ®*H(f) = H(® o f) for a closed disc f in
the domain of ®.

(ii) There is an open cover of X by subsets U with a pluripolar subset Z C U
such that for every h € Ay with h(D) ¢ Z, the function w — H(h(w))

is dominated by an integrable function on T.

(iii) If h € Ax, w € T, and € > 0, then w has a neighbourhood U in C such
that for every sufficiently small closed arc J in T containing w there is a
holomorphic map F : D, x U — X, r > 1, such that F(0,-) = h|y and

1
/H(F(,t)) do(t) < EH(h(w)) + €, (3.21)
a(J) )y
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where the integral on the left hand side is the lower integral, i.e. the
supremum of the integrals of all integrable Borel functions dominated by

the integrand.

To clarify these condition, the goal is to show that ' H satisfies the subav-
erage property

EH(h(0)) < / EHohdo, forhc Ax.
T

If we look at the integrand, then for every point ¢ € T there is a disc f € Ax,
f£(0) = h(t) such that H(f) is arbitrary close to EH (h(t)). Condition (iii) tells
us that for a small arc on T we can have a holomorphic family of discs F'(s, )
such that each disc is close to the envelope EH (h(t)). This can be viewed as
a weak upper semicontinuity of the disc functional H.

We can then cover T with these arcs, but to be able to embed a neighbour-
hood of the graph of the F’s and h into C" then these arcs need to be disjoint.
After shrinking the arcs to make them disjoint, condition (ii) ensures that the
integral over the complement of the arcs is bounded.

When this neighbourhood has been embedded into CV then condition (i)

ensures that there is a disc § in CV such that
d*H(j) < / E®*H o hdo +e,
T

where I is a lifting of h to CV. The disc g = ® o § € Ax then shows that EH

satisfies the subaverage property.

Theorem 3.3.2 Assume X is a connected complex manifold and ¢ = p1 — @9
is the difference of an upper semicontinuous function @1 and a plurisubhar-

monic function py. If F, =# () then
sup F, = EH,.
If F, = 0 then EH, = —oo0.
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Proof: We have to show that H, satisfies the three conditions in Theorem
3.3.1L Condition (i) follows from Theorem and condition (ii) if we take
U=X and Z = ¢ 1 ({+00}). Then H,(h(w)) = p(h(w)) which is integrable
since h(0) ¢ Z.

To verify condition (iii), let h € Ax, w € T and § > EHy,(h(w)). Then
there is a disc f € Ax, f(0) = h(w) such that H,(f) < 8. Now look at the
graph {(¢, f(t))} of f in C x X and let 7 denote the projection from C x X
to X. In the proof of |25, Lemma 2.3|, Larusson and Sigurdsson show that
by restricting the graph to a disc D,, r > 1, there is a bijection ® from a
neighbourhood of the graph into D"*! such that ®(¢t, f(t)) = (¢,0). In order

to clarify the notation we write 0 for the zero vector in C™.

If we define p = pomo®~1, then Hy(f) = Hz((+,0)), where (-,0) represents
the analytic disc ¢ — (¢,0,...,0). The function ¢ is defined on an open subset
of C"*! which enables us to smooth it using convolution as in the first part of

this section.

By Lemma there is a ¢ €]0, 1] such that Hg,((-,0)) < . Since Ps
is continuous, the function x — Hg,((-,0) + z) is continuous. Then there is a
neighbourhood U of 0 in DY 4, such that Hgz((-,0) +2) < 8 for 2 € U. Let
J C T be a closed arc such that h(J) C U, where h(t) = ®(0, h(t)). With the
same argument as in the proof of Lemma we can find yg € B ¢ C*H!
such that,

8 >~ | Ha((0)+h) dott
= J/ (// (s,0) + h( )—(5sy) do(s) da(t))p(y) dA(y)
> J//g?: (5,0) + h(t) — dsyo) do(s)do(t).
We define the function F' € (D, x U, X) by
F(s,t) =m0 ® ((5,0) + ®(0, h(t)) — dsyo)
and the set U = h=!(x(®~1(1))).
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Then @((s,0) + h(t) — dsyo) = p(F(s,t), and we conclude that

1 1
o> | et ndo st = s [ ) st

which shows that the Poisson disc functional H, has a plurisubharmonic en-
velope EH,, on every complex manifold.

If F, # () then this implies EH,, < sup F,,, that is EH, = sup F,, because
of inequality .

However, if F, = () then the function which is identically —oo is the only
plurisubharmonic function which is dominated by . We have showed that
the envelope E'H,, is plurisubharmonic and that is satisfies EH, < ¢ by .
This implies FH, = —o0. (I

3.4 Merging the Riesz and the Poisson functionals

Let X be an n-dimensional complex manifold, v a plurisubharmonic function
on X and ¢ = @1 — 9, the difference of an upper semicontinuous function
1 and a plurisubharmonic function @9, as before. We define the Riesz disc

functional for v and ¢ by

Hﬁp(f):217r/ﬂ)10g|'|A(U0f)+/T<pOde, for f € Ax.  (3.22)

The original Riesz functional studied by Poletsky [33}34], Larusson and
Sigurdsson [25,26], and Edigarian [10] is the case when ¢ = 0. Their result
states that the envelope EHEO is plurisubharmonic and equal to the largest
non-positive plurisubharmonic function with a Levi form which is no smaller
than the Levi form L(v) =377, _; D0 of p, ie.

BZ]' 0z

sup{u(x);u € PSH(X), L(u) > L(v),u <0}
:inf{;ﬁ/ﬂ)log\~|A(vof);fEAx,f(0):x}.

We will use here the same approach as these authors, but the more general

results for the Poisson disc functional in Section will enable us to prove
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this results for aforementioned ¢ = ¢ — @s.

The Riesz disc functional is closely connected to the Poisson disc functional
through the Riesz representation formula (2.3). Fix z € X and let f € Ax be
such that f(0) = z, then

wa(f):217r/Dlog|-]A(vof)+/T<pofda (3.23)

:v(f(O))/TvofdaJr/Tgoofda:v(x)JrH¢v(f). (3.24)

From this we see that EHE@ =v+ EH,_,. Since ¢ — v is the difference of an
upper semicontinuous function and a plurisubharmonic function then EH,_,
is plurisubharmonic, and then EHE@ is also plurisubharmonic since it is the

sum of two plurisubharmonic functions.

Furthermore, since EH,_, is plurisubharmonic then
L(EH[,) = L(v) + L(EH,—y) > L(v), (3.25)

and if we look at the constant disc f, which sends everything to x € X then
we see that
EH (x) < Hy,(f2) = 0+ ¢(x). (3.26)

It is therefore clear that EHfso € {ue PSH(X); L(u) > L(v),u < p}.

Now, if we assume f € Ax, f(0) = z and that u is a plurisubharmonic
function such that £(u) > L(v) and u < ¢ then by applying the Riesz repre-
sentation formula (2.3]) to the subharmonic function u o f we see that

uw) = [1og]-1aGwo )+ [wofdo
g/Dlogl-lA(vofH/T(pode
:wa(f).

By taking the supremum over u on the left hand side and the infimum over f

on the right hand side we see that
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sup{u(z);u € PSH(X), L(u) > L(v),u < ¢}
. 1
Slnf{%/ﬂ)log\-]A(vof)—l—/qrcpofda;feflx,f(o):x}.

Since EHf@ is in the family on the left hand side this is actually an equality.
We have thus proved the following result which combines the disc formulas
for the Poisson disc functional and the original Riesz functional into a single

formula.

Theorem 3.4.1 Assume X is a connected complex manifold, v is a plurisub-
harmonic function on X and ¢ = 1 — g is the difference of an upper semi-
continuous function 1 and a plurisubharmonic function y. Then Ewa is

plurisubharmonic and

sup{u(x);u is plurisubharmonic, L(u) > L(v),u < ¢}
1
—int {5 [1og|-|A@wef)+ [ pofdoif € Ax.f(0) = x},
27 D T
This result is closely connected to the disc formula for w-plurisubharmonic
functions given in Theorem [.1.1] More specifically, this is the special case

when the current w = —ddv has a global potential, which is studied in Section
4.2
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Disc formulas for
quasiplurisubharmonic

functions

4.1 Introduction

In this chapter we turn our attention to w-plurisubharmonic functions. We

wish to give a disc formula for the function sup F, ,, where
Fup={u € PSH(X,w); u < p}.

We assume X is a complex manifold and w = w; — wy is the difference of
two closed and positive (1, 1)-currents. The reason we look at currents on this
form is that our methods rely on the currents having a local potential which
is a function and not only a distribution. When w = w; — wy then w; and
wy both have plurisubharmonic local potentials 1; and 19 by Corollary [2.2.2]
Then @ = 11 — )9 is a local potential of w.

The Poisson disc functional H, from before is obviously not appropriate
for this task since it fails to take into account the current w. The remedy is to

look at the pullback of w by an analytic disc. If f is an analytic disc we can
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define a closed (1,1)-current f*w on D, which is locally given as dd®(¢ o f), see

Definition [2.2.9, We can also look at f*w as a Radon measure on D.

Furthermore, we let R+, be the Riesz potential of f*w,

Rpule) = [ Gol)dlf) (4.1)

|z—wl|

where Gp is the Green function for the unit disc, Gp(z,w) = 5= log Tl

Assume ¢ = @1 — @9 is the difference of an wi-upper semicontinuous func-
tion ¢ and a plurisubharmonic function ¢2. We define ¢ at points where
both 1 and o take the value —oo by taking limit superior, identical to def-
inition (3.19). Fix € X and let u be an w-plurisubharmonic function on
X such that v < ¢ and f € Ax a closed analytic disc such that f(0) = =
and f(D) ¢ sing(w). Then wo f is an f*w-subharmonic function on D, by
Proposition and since the Riesz potential Ry« is a global potential for
f*w on D we have, by the subaverage property of uo f + Ry, that

u(£(0)) + Rpe(0) < /

uofda—l—/Rf*wda.
T T

Since Ry+, = 0 on T and u < ¢, we conclude that

u(x) < =Ry, (0) + / po fdo. (4.2)
T
The right hand side is independent of u so we define the disc functional
H,,: Ax — [—00, +00]

by
Hoolf) = ~Rpral0)+ [ oo fdo (4.3)

if f(D) ¢ sing(w), and by Hy, ,(f) = 400 if f(D) C sing(w).

By taking supremum on the left hand side over all u € PSH(X,w), u < ¢,
and infimum on the right hand side over all f € Ax such that f(0) = z we get
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the inequality
sup Fu,o < EH, . (4.4)

The following theorem, which is our main result, shows that this is actually

an equality.

Theorem 4.1.1 Let X be a connected complex manifold, w = w; — wy be
the difference of two closed positive (1,1)-currents on X, ¢ = @1 — @2 be
the difference of an wi-upper semicontinuous function ¢y in L} (X) and a
plurisubharmonic function y2, and assume that F,, , is non-empty. Then the

function sup F, , is w-plurisubharmonic and for every x € X \ sing(w),

sup{u(z);u € PSH(X,w),u < ¢}

—inf{~Ry-u(0) + [ o fdoif € Ax. f(0) = ).
T
If 7, is empty, then the right hand side is —oo for every x € X.

We prove this theorem in Section for the case when w; and wy have
global potentials. For simplicity we also assume there that @9 = 0. The proof
uses the result from Theorem [3.2.4]

In Section [£.3] we prove the general case of the theorem by reducing the
problem to the case of global potentials. This is done by using an w-Reduction
Theorem similar to the Reduction Theorem of Larusson and Sigurdsson, (The-
orem . This is done first for ¢ = 0, but the general case follows from

calculations similar to those for the Riesz disc functional in Section [B.4]

4.2 The case of a global potential

Here we assume w = w; — we has a global potential ¥ = ¥ — 2 on X, where
11 and 1o are global potentials of wi and wo respectively. Furthermore, we
assume @ = ; is an wi-upper semicontinuous function, i.e. g2 = 0.

If 7o # 0, then we know that function sup F,, ,, is w-plurisubharmonic by
Proposition To prove Theorem it is therefore enough to show that
EH, , € F,,,, then obviously EH,, , < sup F, , and we have an equality.
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First note that if ¢ sing(w) and f, € Ax is the constant disc which maps
everything to z, then f*w = 0 and H,, , = 0+ [ ¢(x) do = ¢(z), which shows
that EH, , < .

Our goal is therefore to show that E'H, , is w-plurisubharmonic. Since
w has a global potential we can use this potential to connect the w-Poisson

functional H,, ., to the classical Poisson functional H,,.

Lemma 4.2.1 If f € Ax and 1) = 11 — )9 is a potential for w in a neighbour-
hood of f(D) then

Hoo(f) +9(f(0)) = Hpyu(f)-

Proof: By the linearity of R+, as a function of w and the Riesz representation

for 41 o f and 19 o f we get

Hool£)+9(0) = ~Rpu(@)+ [ o fdo+0(/0)
— Rp(0) + /T o0 fdo +1b1(F(0)) — ol £(0))
- _Rf*w(o)+/T<pofda+Rf*w(0)+/E(w1 — ) o fdo
= [erin—va)o fio = Hopu(1).

O

Proof of Theorem when w; and w;y have global potentials and @3 = 0
Proof: By Lemma for x € X \ sing(w),
EH,  (x)+¢(x) = inf{H, o(f) + ¥(x); f € Ax, f(0) = 2} = EHy ().

Since p+1 = (p+1)1)—1)g is the difference of an upper semicontinuous function
and a plurisubharmonic function, then Theorem shows that EH, ., is

plurisubharmonic, that is K H,, , is w-plurisubharmonic (Il
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4.3 Reduction to global potentials

Here we see how a local potential for w can be constructed on a set, big enough
to prove the w-plurisubharmonicity of EH. The methods used are in principle
similar to those in the proof the Reduction Theorem for plurisubharmonic
functions (Theorem . The main role is played be Lemma which
shows the existence of these local potentials. Theorem then shows how
the w-plurisubharmonicity of EH can be reduced to the case when the current
has a global potential.

It should be pointed out that Theorem [4.3.3|does not work specifically with
the Poisson functional but a general disc functional H. We will however apply
the results here to the Poisson functional from Section so it is of no harm
to think of it in the role of H.

If ® : Y — X is a submersion, the currents ®*w; and ®*wy are well-
defined on Y by . The core in showing the w-plurisubharmonicity of EH
is the following lemma. It produces a local potential of the currents ®*w;
and ®*ws in a neighbourhood of the graphs of the discs from condition (iii) in
Theorem [£.3.3] below. Its functionality and proof are similar to those of the
Meyer-Vietoris sequence |37, Theorem 3, Chapter 11]).

Lemma 4.3.1 Let X be a complex manifold and & a positive closed (1,1)-
current on C? x X. Assume h € (D,,X), r > 1 and for j = 1,...,m assume
Jj C T are disjoint arcs and U; C D, are pairwise disjoint open discs containing
J;j. Furthermore, assume there are functions F; € (Ds x U;, X), s > 1, for
j=1,...,m, such that F;(0,w) = h(w), w € Uj.

If Ky = {(w,0,h(w);w € D} and K; = {(w, z, Fj(z,w);z € D,w € J;}
then there is an open neighbourhood of K = UL (K; where @ has a global
potential ).

Proof: For convenience we let Uy = D, and Fy(z,w) = h(z). As before 0
will denote the zero vector in C". The graphs of the F}’s are biholomorphic
to polydiscs, hence Stein. By slightly shrinking the U;’s and s we can, just
as in the proof of Theorem 1.2 in [26], use Siu’s Theorem |36] and the proof
of [25, Lemma 2.3], define biholomorphisms ®; from the polydisc U; x D*?
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onto a neighbourhood of the K; such that
Pj(w,z,0) = (w, z, Fj(z,w)), w e Uj,z € Dy, (4.5)
for j=1,...,m and
D4(w,0,0) = (w,0, h(w)), w € Up. (4.6)

Furthermore, we may assume the functions are continuous on the closure of
i n+1
Uj x D™

For j =1,...,m let U] and U} be open discs concentric to U; such that
Jj cc Ul ccU; cc Uy,
and B; a neighbourhood of ®; (ﬁ]’ x {(0,0)}) defined by
Bj = ®;(U; x Dj;j“)
for 6; > 0 small enough so that
B; C ®o(Uy x DI,

and

BN Ky =1, when k # j and k > 1.
This is possible since ®;(U; x {(0,0)}) C ®o(Upx D) and ®,(U; x{(0,0)})N
Kpy=0ifk+#jand k> 1.

The compact sets @(Up \ Uj x {(0,0)}) and ®; (Uij” x Dy x {0}) are disjoint
by and 1) and likewise @0(@ x {(0,0)}) CC B,. So thereisane; >0
such that

Do(Up \ Uj x DY) N ®;(UJ x Dy x DZ) =0

and
q)o(U], X D?J—H) - Bj.

Let e = min{e1,..., &} and define the sets Vy = ®o(Uy x D2 and
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Vi = <I>j(U]’.’ x Dg X D?J)

Furthermore, since the graphs of the Fj’s, ®,;(U; x Dy x {0}), are disjoint
for j > 1 we may assume V; N'V;, = 0, and similarly that B; N By = () when
j# kand j, k> 1.

What this technical construction has achieved is ensuring that the inter-
section Vp N Vj is contained in Bj, while still letting all the sets V; and B; be
biholomorphic to polydiscs. Then both V' = (JiL, V; and B = |Jj_, B; are
disjoint unions of polydiscs.

By Corollary there are local potentials 1; of @ on each of the sets
®;(U; x D) =1,...,m. Define n’ = d“¢y on VyU B and " on V U B by
n" = dp; on V; U Bj, this is well defined because the V; U B;’s are pairwise
disjoint and V; U B; C ®;(U; x D). Since dn/ —dn” = & —& = 0 on B there
is a distribution p on B satisfying du =n' —n".

Let x1,x2 be a partition of unity subordinate to the covering {Vp, V'} of
Vo U V. Then

)= { n' —d(xip) on Vo
n" +d(xep) onV
is well defined on Vo UV with dn = ©.

If we repeat the topological construction above for Vj,...,V,, instead of
®;(U; x D) we can define sets V{,..., V), and B],..., B, biholomorphic
to polydiscs such that VJ C V;, B; C B; and

VonVjCB; CcVonVj,

and both the BY’s and the Vs are pairwise disjoint. Now let V' = Jj_, V.

Let v’ be a real distribution defined on Vj satisfying d¢’ = n' — dy1p
and let ¥” be a real distribution defined on V satisfying d“¢” = n" — dxapu.
Then d°(¢' — ") = n' — 0" — d(xip + x2i) = 0. Therefore, on each of the
connected sets B we have 1 —1)" = ¢;, for some constant c;. Consequently
the distribution 1 is well defined on Vj UV’ by

o= e on Vj
— ¢N + Cj on ‘/j/
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since Vj NV’ C B’ and the V}’s are disjoint. It is clear that dd“y = dn = &

and since w is positive we may assume 1 is a plurisubharmonic function. [0

We now turn our attention back to the w-plurisubharmonicity of the en-
velope FH. We start by showing that it is w-upper semicontinuous, but this
is done separately because it needs weaker assumptions than those needed in
Theorem [4.3.3] where we show that EH is w-plurisubharmonic.

Lemma 4.3.2 Let X be an n-dimensional complex manifold, H a disc func-
tional on Ax, and w = w; — wy the difference of two positive, closed (1,1)-
currents on X. The envelope EH is w-upper semicontinuous if E®*H is ®*w-
upper semicontinuous for every submersion ® from a set biholomorphic to an

(n + 1)-dimensional polydisc into X .

Proof: To show that EH + 1 does not take the value +00 at z € X \ sing(w),

let U be a coordinate polydisc in X centered at x and v a local potential of w

on U C X. Then by ,
EH (z)+¢(z) = EH(®(0,2))+¢(®(0,2))) < EQ*H((0,z))+1(2(0,2)) < 400,

where ® : D x U — U is the projection.

Let 8 > EFH(x)+v(x) and g € Ax such that g(0) = z and H(g)+¢(z) < 8.
By a now familiar argument in from the proof of |25, Lemma 2.3], there is a
biholomorphism ¥ from a neighbourhood of the graph {(w, g(w)); w € D} into
D1 s > 1 such that ¥(w, g(w)) = (w,0). If ® is the projection C x X — X
then ®*yp = 1) o ® is a local potential of ®*w on C x U. Now, if § € Acxx is
the lifting w — (w, g(w)) of g then

E®H((0,2)) + ¢(2((0,z)) < " H(g) + »(2((0,2))) = H(g) + ¢(z) < B

By assumption there is a neighbourhood Wy x W € C x U of (0, z) such that
for (z0,2) € Wo x W,

E®"H((20, 2)) + $(2((20, 2))) < 5.
Then by EH(z) = ®*FEH((20,2)) < E®*H((20,%)), which implies
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EH(z) + ¢(z) < 8 for z € W. This shows that EH + v is upper semi-
continuous outside of sing(w) and by (2.9), the definition of EH at sing(w),
we have shown that FH is w-upper semicontinuous. [l

The following theorem shows that an envelope EH is w-plurisubharmonic
if it satisfies the following conditions. These conditions are very similar to
those posed upon the envelope in Theorem when w = 0.

Theorem 4.3.3 (w-Reduction Theorem): Let X be a complex manifold, H a
disc functional on Ax and w = wi — wy the difference of two positive, closed
(1,1)-currents on X. The envelope EH is w-plurisubharmonic if it satisfies the

following.

(i) E®*H is ®*w-plurisubharmonic for every holomorphic submersion ®

from a complex manifold where ®*w has a global potential.

(ii) There is an open cover of X by subsets U, with w-pluripolar subsets
Z C U and local potentials 1) on U, ¥~*({—o00}) C Z, such that for
every h € Ay with h(D) ¢ Z, the function t — (H(h(t)) + 1/)(h(lt)))Jf is

dominated by an integrable function on T.

(iii) If h € Ax, h(0) ¢ sing(w), to € T\ h~!(sing(w)) and & > 0, then tq has a
neighbourhood U in C and there is a local potential 1 in a neighbourhood
of h(U) such that for all sufficiently small arcs J in T containing to there
is a holomorphic map F : D, x U — X, r > 1, such that F(0,-) = hly

and

1

O-(J)/J (H(F(,t)) +’¢(F(O,t))) do’(t) < (EH+1/))(h(t0)) +e.

Proof: By Proposition |2.2.10| we need to show that EH oh is h*w-subharmonic
for every h € Ax, h(D) ¢ sing(w) and that FH is w-upper semicontinuous.
The w-upper semicontinuity of EH follows from Lemma so we turn
our attention to the subaverage property. We assume 1 = 11 — 99 is a local
potential of w defined on an open set U. As with plurisubharmonicity, w-

plurisubharmonicity is a local property so it is enough to prove the subaverage
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property for h € Ay, h(0) ¢ sing(w). Our goal is therefore to show that
EH(h(0)) 4 1 (h(0)) < /(EH oh+1oh)do. (4.7)
T

This is automatically satisfied if EH (h(0)) = —oo, and since EH is w-upper
semicontinuous it can only take the value +o00 on sing(w). We may therefore
assume EH(h(0)) is finite. It is sufficient to show that for every ¢ > 0 and
every continuous function v : U — R with v > (EH +1), there exists g € Ay
such that ¢(0) = h(0) and

H(g) + v(h(0)) < /vohda—i—a. (4.8)
T

Then by definition of the envelope, EH (h(0)) + ¥(h(0)) < [pv o hdo + ¢ for

every v and ¢, and (4.7]) follows.

Let > 1 such that h is holomorphic on D,.. In the proof of Theorem 1.2
in |26|, Larusson and Sigurdsson show that a function satisfying the subaverage
property for all holomorphic discs in X not lying in a pluripolar set Z is
plurisubharmonic not only on X \ Z but on X. We may therefore assume that
h(D) ¢ Z.

Since h(0) ¢ sing(w), we have ¢y 0 h(0) # —oo and 12 0 h(0) # —oo. Then,
by the subaverage property of the subharmonic functions 11 o h and 50 h, the
set h~!(sing(w)) is of measure zero with respect to the arc length measure o
on T. The set h(T) \ sing(w) is therefore dense in h(T) and by a compactness
argument along with property (iii) we can find a finite number of closed arcs
Ji,...,Jm in T, each contained in an open disc U; centered on T \ sing(w) and
holomorphic maps F; : Ds x U; — X, s €]1,r[ such that F}(0,-) = h|y, and,

using the continuity of v, such that

/,. (H(Fj(~, £)) + W (F(0, t))) do(t) < /J vohdo + ZU(Jj). (4.9)

We can shrink the discs U; such that they are relatively compact in D, and

have mutually disjoint closure. Furthermore, by the continuity of v we may
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assume

/ lvohldo < & (4.10)
T\U; J; 4

and by condition (ii) we may assume

/ H(h(w)) + 9 (h(w)) do(w) < (4.11)
T\U; J;

=] ™

Our submersion ® will be the projection C? x X — X. The manifold in
C? x X where ®*w has a global potential will be a neighbourhood of the union
of the graphs of h,
Ko = {(w, 0, h(w));w € D},

and the graphs of the F}’s,
KJ = {(w,z,Fj(z,w));w € Jj,Z S D}

By applying Lemma to both wy and we there is neighbourhood V' of
K = UT:OKJ' with potentials U1 of ®*w; and ¥y of ®*ws. Then ¥ = ¥y — U5 is
a potential of ®*w. The ®*w-plurisubharmonicity of E®*H given by condition

(i) ensures that

E®*H(h(0)) + ®*1(h(0)) < /T(ECD*H oh+®*oh)l do, (4.12)

where & is the lifting w — (w,0, h(w)) of h to V c C? x X.

We know that ®*EH (h(0)) < E®*H(h(0)) by inequality and since
®*EH (h(0)) = EH(h(0)) # —oo0 there is a disc § € Ay such that §(0) = h(0)
and

*H(§) < E®*H(h(0)) + Z. (4.13)
Let g = ® o g be the projection of § to X, then g(0) = h(0) and H(g) =
®*H(g). By the definition of h then the local potential ®*¢ of ®*w satisfies
®*tp(h) = 1p(h). This along with inequalities and above implies
that

H(g) + ¥(h(0)) < /T(Efb*HofH—@Z;oh) do + Z (4.14)

o7



For every j =1,...,m and w € J; we have
E®*H(h(w)) < ®*H((w,, Fj(-,w))) = H(F;(-,w)),

because 2 > (w, 2, Fj(z,w)) is a disc in K with center h(w).

This means, by (4.9)),

/(E(I)*H(fz)—i—woh)dag/ vohdo + Sa(Jj). (4.15)
J . 4

However if w € T\ U;J; then
B H(h(w)) < 8 H(h(w)) = H(h(w)),

where h(w) and h(w) on the right hand side are the constant discs at h(w)
and h(w). This means, by (4.11)), that

/ (E®*H(h) + 1o h)do < (4.16)
T\Uij

N

Then, first by combining inequality (4.14) with (4.15)) and (4.16)), and then
by (4.10), we see that

mm+wwm</ vuwfdwm+€+€g/mh+a
Ui, 4 474 J;

This shows that the disc g satisfies (4.9) and we are done. O

Proof of Theorem when o3 =0

Proof: Finally we can prove Theorem m when o = 0 by showing that H,, ,
satisfies the three condition in Theorem [£.3.3]

Condition (i) in follows from the proof in Section If h € Ax
and 1 is a local potential as in Theorem then condition (ii) follows
from the fact that H(h(t)) + ©(h(t)) = (p(h(t)) + Y1(h(t))) — 2(h(t)) is
the difference of an upper semicontinuous function and a plurisubharmonic

function. The first term is bounded above on T and the second one is integrable
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since h(D) ¢ sing(w).

Let h € Ax, ¢ > 0 and {9 € T\ h~'(sing(w)) be as in condition (iii)
and 1 a local potential for w in a neighbourhood V’ of x = h(tp). Let g >
EH, ,(x) + 9(x) + . Then there is a disc f € Ax such that f(0) = «
and H, (f) +¢(x) < B —¢/2. By the proof of |25, Lemma 2.3| there is a
neighbourhood V of z in X, r > 1 and a holomorphic map F : D, x V — X
such that F(-,z) = f on D, and F(0,z) = z on V. Define U = h~4(V'NV)
and F : D, x U — X by F(s,t) = F(s, h(t)). Then by ,

(Ho o (F(-, 1) + 1/1(F(0,7f)))T = /T(cp + )T o F(s,t)do(s). (4.17)

Since the integrand is upper semicontinuous on D, x U, then (4.17) is an
upper semicontinuous function of ¢ on U by Lemma [2.3.1} That allows us, by

shrinking U, to assume that
(Huorp (F (-, £)) + 0(E(0,4))" < Hoop (F(-10)) + $(F (0, 10)) + 5
for t € U. Then by the definition of f = F(-, o)
(Hoo(F(- 1) + %(F(0,0))" < EH, o(2) + ¥(z) +¢, fortel.

Condition (iii) is then satisfied for all arcs J in TNU. O

We now finish the proof of our main theorem by showing how the function
2 can be integrated into w and then previous results apply. So, subtracting
the function ¢y from ¢; can be thought of as just shifting the class PSH (X, w)
by —dd‘ps.

End of proof of Theorem [4.1.1

Proof: We define the current w’ = w — dd°ps and use the bijection, u'
u' — ¢y = u between PSH(X,w') and PSH(X,w) from Proposition [2.2.6]
Since the positive part of w and w’ is the same, it is equivalent for (1 to
be wi-upper semicontinuous and wj-upper semicontinuous. Then Theorem
for the case when ¢ = 0 can be applied to w’ and ¢q, and for every
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z ¢ sing(w') = sing(w) C o5 ' (—00) we infer

sup{u(z);u € PSH(X,w),u < o1 — p2}
= sup{u'(z) — pa(2);u’ € PSH(X,w'),u' — 2 < o1 — g2}
= sup{u/(z);u’ € PSH(X,w'),u' < o1} — pa(x)

= inf{—Ry-(0) + /Tcm ofdo;f e Ax, f(0) =z} — pa2(x)
= inf{—Rp+u(0) + R+ddep, (0) — pa(z) + /T p10 fdo; f € Ax, f(0) = x}
— inf{—Rpu(0) + /T (1 — @2) o fdos f € Ax, £(0) = o}.

The last equality follows from the Riesz representation (2.8]) applied to the
plurisubharmonic function @o, which gives @o(z) = R prdgeq, (0) + [1 20 f do.

We also used the fact that Ry« is linear in w.

To finish the proof we need to show that the equality

sup{u(z);u € PSH(X,w),u < p1 — @a}

— it {~Ry-o(0)+ [ (01~ ) fdoif € Ax. f0) =} (418)

holds also on ¢, ' (—00) \ sing(w).

The right hand side of is w-upper semicontinuous by Lemma m,
and it is equal to the function FH,y , — ¢2 on X \sing(w’). Now assume 1) is
a local potential of w, then —ps + ) is a local potential for w’. The functions
(EHy p, — 02+ ¢)" and (EH,, + )7 are then two upper semicontinuous
functions which are equal almost everywhere, thus the same. Furthermore,
since FH,y o,
This shows that EH, . is in the family {u € PSH(X,w),u < ¢}, and since
sup{u € PSH(X,w);u < ¢} < EH, , by we have an equality not only
on X \ sing(w’) but on X \ sing(w), i.e. holds on X \ sing(w). O

is w’-plurisubharmonic we see that EH,, ,, is w-plurisubharmonic.
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4.4 Relative extremal function

One of the most fruitful applications of the Poisson disc formula (3.2) is for
the relative extremal function. The relative extremal function ug for a Borel
set £ C X is defined as

ug(x) = sup{u(z);u € PSH(X),u <0,ulp < —1}.

In our notation this corresponds to having ¢ = —x g, where yg is the charac-
teristic function of the set E. If E is open then —xg is upper semicontinuous
and Theorem [3.1.6] applies,

ug(z) = {—o(f H(E)NT); f € Ax, f(0) = z}.

It follows from this, see |25, Theorem 7.4], that for a compact set K and a

point p in C" the following is equivalent
(i) pis in the polynomial hull of K.

(ii) There is an open ball B containing K and p, such that for every neigh-
bourhood U of K and every € > 0 there is a disc f € Ap with f(0) =p

and

o(T\ f1(U)) <e.

Another application of is due to Wold [38]. Duval and Sibony [9]
proved a characterization of the polynomial hull by using the presence of certain
currents. In [38] Wold gives a very interesting proof of their result using the

Poisson disc formula.

It will be interesting to see if the disc formulas for the quasiplurisubhar-
monic functions presented here will give similar applications in the future as
those of Poletsky’s formula.

To start with we can look at the relative extremal function for quasi-

plurisubharmonic function, ug . It is defined analogously to ug, that is
upw(r) = sup{u(z);u € PSH(X,w),u <0,ulp < —1}.

61



If F is open then ¢ = —x g is upper semicontinuous. Moreover ¢ is wi-upper
semicontinuous, because if 11 is a local potential of w; then the sum —y g+ 11
of two upper semicontinuous function is upper semicontinuous. Then using
Theorem [£.1.1] we get the following

upw(r) = inf{—R,(0) — a(ffl(E) NT); f € Ax, f(0) = z}.
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Index of Notation

D,(a)

D, = D,(0)
D= D,

T = 0D

o

A

X

Ax
PSH(X)

w
PSH(X,w)
(0

sing(w)

ffw=dd(1p o f) (locally)

open disc in C with center a and radius r

unit disc

unit circle

arc length measure on T normalized to 1
Lebesgue measure

open subset of C" or a complex manifold
set of closed analytic discs in X, that is
analytic functions from a neighbourhood
of D into X

set of plurisubharmonic functions on X
which are not identically —oo

closed (1, 1)-current, either positive or the
difference of two closed positive currents
set of w-plurisubharmonic functions on X
which are not identically —oo

local potential of w, ddy = w

singular set of w, union of all 1)~!(—o0)
pullback of f by w
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zZ—w

Gp(z,w) = %log\l_zw
Ry-(2) = Jp Gp(z,) d(f*w)
H&D(f) = fT‘Pode'

H,, = fT po fdo — Ry, (0)
Fup

Fo=Foe

P

0

XE

Green function for the unit disc
Riesz potential of f*w

Poisson disc functional
w-Poisson disc functional

u € PSH(X,w) such that u < ¢
u € PSH(X) such that u < ¢
complex projective space

zero vector in C"

characteristic function of a set E
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