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Abstract

In this thesis a modeling framework to aid Icelandic pension funds in their asset
allocation decisions is introduced. The framework is based on stochastic programming
and asset liability management methodologies, where emphasis is placed on the
uncertainty in the liabilities of the pension funds as well as the current Icelandic
regulatory and supervisory environment.

The modeling framework is based on three interacting components: modeling the
underlying stochastic variables; a scenario generator; and a stochastic programming
model which is formulated as a multistage recourse problem in discrete state space
and is solved with a scenario-based technique. Computational experiments presented
in this thesis are carried out for a hypothetical pension fund, where market valued
liabilities and premiums are used and the current capital controls are not accounted
for.

The credibility of the model is analyzed in terms of in-sample stability and
analysis on spurious changes in the optimized asset allocation. This vital attribute
has received little attention in similar studies. The model performance is measured by
comparison with partly dynamic fixed-mix investment strategies in terms of stronger
actuarial position at the horizon. In addition, analysis of the most influential con-
straints is carried out with sensitivity analysis.

The weakest component of the framework proved to be the scenario generator
which was unable to generate a sufficient number of scenarios for satisfactory in-
sample stability. In terms of performance and credibility, the model outperformed the
partly dynamic fixed-mix benchmarks, in terms of stronger actuarial position at the
horizon with no drastic changes in the optimal asset allocation. The most influential
constraint is maximum allowed purchases in each year. Finally, comparison based on
actuarial position, where liabilities and premiums are valued with fixed 3.5 percent
interest rate, suggests that the interest rate risk is underestimated in the actuarial
valuation methods currently used by the Icelandic Financial Supervisory Authority.
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List of Notation

Stages (time periods) are denoted by an index t with an initial stage denoted by t = 0

and and a final stage (the horizon) denoted by T . All stages considered are periods
of one year, which is the time span from the time t− 1 to time t.

Individual assets are denoted with an index j. The number of individual assets
is denoted with J . To ease the notation a little, is j also used to denote a stochastic
variable. The distinction is however clear in context.

Asset classes are denoted by an index q. This is done to clearly separate asset
classes from assets. The reason is that one asset class, foreign stocks, is composed of
four stock indices.

In addition we have the frequently used notation

Sets

T : Set of times from the present to the horizon, T = {1, 2, . . . , t, . . . , T}.
J : Set of stochastic variables, J = {1, 2, . . . , j, . . . , J}.
N : Set of simulated paths, N = {1, 2, . . . , n, . . . , N}.
S: Set of scenarios, S = {1, 2, . . . , s, . . . , S}.
Q: Set of asset classes, Q = {1, 2, . . . , q, . . . , Q}.

Stochastic variables

ξj: Stochastic variable j.
ξjt : Stochastic process coherent with stochastic variable j,
ξ̃j : Simulated paths of stochastic variable j, ξ̂jn = {ξ̃j1, . . . , ξ̃jN}
ξ̃jn(t): Value of the nth simulated path of stochastic variable j at stage t.

The scenario tree

B: Branching structure, B = {b1, . . . , bt, . . . , bT}.
C(t,s): Cluster at stage t in scenario s.
C

(t,s)
o : The center of a cluster C(t,s)(its position)

ps: Unconditional probability that scenario s occurs.
π(t,s): Inflation in cluster C(t,s).
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r
(t,s)
usd : Exchange rate returns in cluster C(t,s).
π(t,s): Inflation in cluster C(t,s).
spot(t,s): One year real yields in cluster C(t,s).
gm2,m1 : A m2-to-m1 real yield spread. (m2 > m1).
qm2,m1 : A m2-to-m1 nominal yield spread. (m2 > m1).
y

(t,s)
r (m): Real yield for maturity m in C(t,s).
y

(t,s)
n (m): Nominal yield for maturity m in C(t,s).

The Optimization Model

Decision variables
ht,j: Holdings in asset j at stage t, where ht,j ≥ 0.
pt,j: Purchase in asset j at a stage t, where pt,j ≥ 0.
st,j: Sales in asset j at a stage t, where st,j ≥ 0.
Ztarget: Penalty variable for funding ratios which do not reach the
pre-specified target funding ratio at the horizon.
Zmin: Penalty variable for funding ratios which fall below the pre-specified
minimum ratio.
Wt: Wealth of the pension fund at stage t.
Stochastic variables
R

(t,s)
t,j : Return on asset j at stage t in scenario s.

L̃i: Present value of future liabilities of the pension fund at stage time t.
Ĩi: Present value of premiums of the pension fund at stage time t.
Parameters
h0
j : Initial holdings in asset j.
cj: Transaction cost for asset j.
lj: Lower bound (as a percentage of wealth) for holdings in asset j.
uj: Upper bound (as a percentage of wealth) for holdings in asset j
lq: Lower bound (as a percentage of wealth) for holdings in asset class q.
uq: Upper bound (as a percentage of wealth) for holdings in asset class q.
up: Upper limit (as a percentage of wealth) for purchase.
FRtarget: Funding ratio of the pension fund at decision time t.
FRmin: Funding ratio of the pension fund at decision time t.
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Chapter 1. Introduction

In a world where financial markets have become seemingly increasingly complicated
and more volatile, the need for professional financial management is becoming vital
for a standard of living. As a result of a rise in life expectancy, pension funds
are essential to ensure decent retirement years. From that perspective, individuals
rely on pension fund managers to responsibly invest their contributions and they
expect fair pension payments in return when they retire. Faced with the fact that
financial crises have occurred fairly frequently the necessity for responsible allocation
decisions made by pension fund managers are greater than ever. These decisions
are made with respect to portfolio management theory as well as market experience.
Rapid developments have taken place in the field of portfolio management and a
vast number of sophisticated tools have emerged to aid managers in their decisions.
Moreover, growing awareness of the importance of transparency, trust and fiduciary
responsibility in portfolio management have led to a change in the attitude of pension
funds managers toward their responsibilities.

Maginn et al. (2007) define portfolio management as a process which applies
to all types of portfolio investments. They suggest that the process is based on an
integrated set of steps undertaken in a consistent manner to create and maintain
appropriate combinations of investment assets. The steps are

1. The planing step
2. Identifying and specifying the investors objectives and constraints
3. Creating investment policy statements
4. Forming Capital Market Expectations
5. Creating the Strategic Asset Allocation

Briefly stated, the planing step is governed by the specifications of investor, market
and economic related input factors which are incorporated into the investor’s ob-
jectives and constraints. The investment policy statement serves as a document for
all investment decision making, which includes for example performance measures
and guidelines for rebalancing. In the Capital market expectations step, long term
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forecasts of risk and return measures are established. These forecasts serve as bench-
marks for the strategic asset allocation decision (SAA) which is the final step. SAA
lists the percentage of wealth invested in each asset class (portfolio policy) and is
integrated with long term capital market expectations.

By itself, SAA can be defined as a process1 with certain well-defined steps, the
objective of which is to define the portfolio policy. Another type of asset allocations
is tactical asset allocation (TAA), which deals with short term adjustments of the
portfolio policy. For example, a pension fund’s SAA might state that it is coherent
with the fund’s objective and risk aversion to hold 60% of its wealth in domestic
government bonds. If at any time, the actual proportions held in this asset class
drifts away, say to 55%, it is referred to as a tactical decision. The portfolio policy is
often stated both in terms of SAA and TAA. In such a format, SAA are expressed as
the target holdings in each asset class whereas TAA define the tolerance of deviation
from the SAA. This gives the pension fund manager the flexibility of adjusting the
portfolio according to his beliefs while staying within the limits of the portfolio policy.

Defining portfolio management as a process emphasizes the fact that it requires
constant consideration and revision through feedback. The process is centered around
the the investment policy statement (IPS), and the necessity for feedback and main-
tenance are vital features of the process. The IPS serves as the governing document
for all investment decision making. Icelandic pension funds are bound by law2 to
create and accompany the IPS which is kept at the forefront in the event of a dispute
between the fund and its members.

1.1 The Asset liability management framework

In recent years, Icelandic pension fund managers have shifted the focus from return
objectives, such as reaching a pre-specified average return over a few years, to in-
tegrated asset and liability objectives, such as minimizing the risk of reduction in
pension payments (Ó. Ö. Jónsson and E.D. Jónsson, personal interview, June 24,
2011). Such objectives generally concentrate on the asset-liability ratio, also known
as the funding ratio. This shift in focus results in different risk measures. Before,
the main risk factor was the uncertainty or the volatility of asset returns, as apposed
to liability risk measures. The latter being a result of the integrated asset liability
objectives. This growing awareness of the interplay between assets and liabilities is

1The definition of SAA varies in the litereture. One can either think of SAA as an individual
process inherent in portfolio management or as the result of the portfolio management process itself.

2Article 20 of Act 129/1997. www.althingi.is
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more consistent with the fundamental purpose of the pension system, which is to
provide pension and disability payments to retirees as well compensation to spouses
and children.

Consider the following example which further illustrates the necessity for an
integrated view of assets and liabilities, in terms of interest rate risk. Suppose that a
pension fund portfolio of assets has a duration of eight years and the fund is faced with
future liabilities with duration of twenty five years. If yields decrease by one percent,
then the asset portfolio increases by roughly eight percent and the liabilities increase
by twenty five percent3. A Focus on return objectives, where only the asset side is
considered, results in overconfidence since the asset-liability ratio has decreased.

The pension fund investment policy must take into account the interplay between
the asset and the liability sides and this has given rise to the asset liability framework.
In this framework, more emphasis is paid to balancing the asset and liability sides
which results in increased awareness of other risk factors. Asset liability management
studies are not only relevant for pension fund applications, but also for a wide range
of applications where one is faced with future liabilities, e.g. insurance companies.

1.1.1 Modeling techniques

In general, all pension funds reinvest their collected premiums and pay old age
pensions as well as compensation. However each, pension fund is unique. Apart
from the different types of pension funds each fund is a reflection of its members.
The age composition of the pension fund members’ has a great impact on the fund.
Young members typically prefer more aggressive investment strategies and have a
higher risk tolerance, whereas members closer to retirement are more concerned
with risk of reduction in pension payments and generally prefer more conservative
investment strategy. Also each pension fund is subject to preferences, beliefs and
investment guidelines imposed by the fund’s manager and its board of directors.
Moreover the ability to predict future liabilities is subject to the age compositions
of the fund’s member. Such predictions are essential in asset liability management.
This variability between pension funds requires a custom-designed model for each
fund, where objectives and risk preferences can be modeled in sufficient detail.

A number of modeling methods and techniques have been suggested in the asset
liability management literature. Frequently used methods in pension fund applica-
tions are simulation and optimization under uncertainty. A fundamental difference

3Based on the first term taylor expansion, (∆Price)/Price = −∆(yield) · duration.
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is that in simulation, the portfolio policy is an input, which corresponds to static
decision making. In optimization under uncertainty, the portfolio policy is the result,
and the method allows for dynamic decision making. In addition Klein Haneveld,
W.K., Streutker, M.H., van der Vlerk, M.H (2010) argue that optimization under
uncertainty provides suitable and flexible framework in terms of incorporating nu-
merous restrictions.

A study by Fabozzi, F.J. and Focardi, S.M. and Jonas, C.L. (2005) on 28 pension
funds in four countries reveals that two thirds of the participating funds used opti-
mization but many funds still prefer simulation over optimization, the main reason
being that optimization models are time consuming and hard to implement.

1.1.2 Optimization under uncertainty

Optimization addresses the problem of finding a decision, often is subject to some
constraints, that minimizes (or maximizes) a function. Using matrix notation, this is
represented mathematically as

min
x

f(x)

subject to
gi(x) = 0 , i = 1, . . . , n

hj(x) ≤ 0 , j = n+ 1, . . . ,m

(1.1.1)

where x, f(x) are referred to as decision variable(s) and the objective function and
gi(x), hj(x) are constraints. In general, optimization models are classified according
to the nature of the objective function and constraints. For example, when the
objective function and all constraints are linear, problem (1.1.1) is referred to as a
linear optimization problem.

The problem of optimal decision-making in face of uncertainty is referred to as
optimization under uncertainty. Optimization problems that include uncertainty have
been applied in many fields, such as production planning, transportation, scheduling
and finance to name a few. Uncertainty governs for instance the availability of raw
materials in production planning, the demand for goods or the return of assets. In
such problems, the objective function and/or constraints are represented as functions
of stochastic variable(s), either discrete or continuous. Over the years a number
of modeling philosophies and approaches have been suggested to cope with the
complexity of such optimization problems. Three main methods are schematically
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laid out in figure (1.1).

Figure 1.1. Taxonomy of methods for optimization under uncertainty.

The main methods differ on how the uncertainty is modeled. A sensible discussion
of the different aspects of each method requires detailed formulations as well as
numerous definitions and concepts, especially in the case of fuzzy programming.
Instead the interested reader is referred to a comprehensive discussion and extensive
survey presented by Sahinidis (2004). It is worth mentioning that publications in the
literature governed by fuzzy programming for financial applications are scarce. The
choice is therefore mostly between dynamic and stochastic programming.

In this thesis, the stochastic programming method is used for the following two
main reasons. Asset liability management applications for pension funds presented in
the literature are highly concentrated on stochastic programming4, e.g. see surveys
in Sodhi (2005); Ziemba & Mulvey (1998) or Zenios & Ziemba (2007). In addition a
class of stochastic programming models can be reformulated into a large scale linear
optimization problem. This is highly desirable since linear optimization problems are
well studied and powerful solution methods exists.

4A number of applications presented in the literature are titled dynamic stochastic programming.
This is to emphasize that stochastic programming in general is dynamic, rather than dynamic
programming is being used, which might be misleading.
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1.2 Motivation

The collapse of the financial markets in late 2008 left many Icelandic pension funds
severely underfunded in terms of their actuarial position5. Many funds are running a
high deficit and only two funds out of 24 showed a positive actuarial position at the
end of year 2010 (Financial Supervisory Authority, 2011). This has forced Icelandic
pension funds to reduce accrued pension rights. In late 2011 the fund Stapi was
forced to make a staggering six percent reduction in accrued pension rights from
contributions prior to 2010,6 and in the same year, a two point five percent reduction
was made by the fund Almenni lífeyrissjóðurinn7.

A study by Frank J. Fabozzi & Jonas (2005) revealed that 90% of the private-
sector defined-benefit pension plans in the UK and US were underfunded. The reason
mostly bad modeling or the absence of modeling, together with difficult conditions
in the financial markets. Although one cannot assume that this was the case for all
the Icelandic pension funds and the current crisis, this issue is worth investigating
further.

Tower Perrin-Tillinghast constructed an asset liability management system using
a stochastic programming model to aid its pension plan clients, described in Mulvey
et al. (2000). In the same paper, savings of USD 450 to USD 1,000 million in
opportunity costs in US WEST’s pension plan was reported. Another example of
successful application in asset liability management using stochastic programming is
the Russell-Yasuda Kasai model. It was designed for Japanese insurance company
and savings of USD 79 million was reported during the models first two years in
use (Carino et al. , 1994). Although such large scale successes are rarely reported
in academic papers, this increases the confidence that such modeling systems could
prove very useful.

1.3 Problem description

Pension fund managers are concerned with the issue of forming an investment strategy
which benefits the funds. More precisely, how should a pension fund allocate its
wealth among the different asset classes such that the risk of reduction in pension
payments is minimized?

5Discussed in more detail in section [2.2]
6The funds news report: http://www.stapi.is/is/news/rettindi-laekka-um-6-/
7Specification was conditional on actuarial position at the end of year 2010 and are laid out in

(Almenni lífeyrissjóðurinn, 2010)
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The focus of this thesis is to introduce an alternative modeling framework based
on stochastic programming. Its purpose is to aid a pension fund manager their asset
allocation decisions. The model is based on asset liability management methodology,
which is ideal for pension funds and on stochastic programming which is adjusted to
the environment in which Icelandic pension funds operate. In addition, emphasis is
placed on taking the current regulatory and supervisory constraints into account to
make the model as realistic as possible.

Several models, based on asset liability management studies from a stochastic
programming point of view, are available in the literature. However each model has
to be custom designed according to the pension funds at hand. Specifications in terms
of objectives and risk aversion of the fund, as well as the regulatory framework, must
be incorporated into each model.

Little attention has been paid to the quality of asset allocation decisions suggested
by the models in the literature. This aspect will be investigated in this thesis by
analyzing the stability of the solution, as well as the effects of individual model
parameters on the solution. Furthermore, an important question which has not
received much attention in the literature is whether the resulting asset allocation
decisions are realistic. In this thesis credibility of the asset allocations will be analyzed
in terms of spurious asset allocation switching between time periods. This is essential
if the model is to be used in practice. The performance of the model introduced in this
thesis is measured by comparison with partly dynamic fixed-mix investment strategies
in terms of stronger actuarial position at the horizon. The term fixed-mix applies
to constant portfolio rebalancing to maintain fixed holdings in each asset class. The
strategies are partly dynamic in the sense that although holdings in each asset class
are fixed, no additional restrictions are placed on holdings in individual assets.

1.4 Thesis structure

The model introduced in this thesis is based on the following three interacting
components:

1. Modeling the underlying stochastic variables
2. Scenario generation
3. A multistage optimization model

Each part is covered in detail in separate chapters, along with a brief description
of the Icelandic pension system. The interplay between the three parts is shown in
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figure 1.2, where references to relevant chapters are shown in brackets.

Figure 1.2. Interplay between the components of the multistage stochastic program-
ming framework.
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Chapter 2. The Icelandic pension
system

The present day pension system in Iceland dates back to the general wage settlement
of the spring of 1969, a result of negotiations between the State, labour unions and
the Federation of Icelandic Employers. In the beginning of 1970 the labor unions
traded a wage increase for the setting up of a fully funded mandatory occupational
pension fund which is the dominant feature of today’s Icelandic pension system. The
occupational pension funds became general in 1970, then mandatory by law for wage
earners in 1974 and were extended to the self employed in 1980. A Law was adopted
in 1991 on the annual accounts and auditing of pension funds (V. Árnason, 2010).
This gave the Bank Inspectorate of the Central Bank of Iceland some supervisory
role over the pension funds. A comprehensive reform took place in 1997 and 1998
which resulted in the current Pension act, Mandatory Guarantee of Pension Rights
and the Operations of Pension Funds. This adoption proved difficult, in fact the
work on legislation framework on pension funds had started in 1976 (Guðmundsson,
2001). The reform affected the mandatory occupational pension funds as well as
introduction of tax incentives for voluntary individual pension savings. Since then,
minor changes in the pension fund legislation have been imposed.

The current Icelandic pension system is based on three pillars. The First pillar
is the Icelandic Social Security, generally referred to as the public pension system.
It is a tax financed pension scheme which aims to secure each individual minimum
pension payments which are reduced in relation to other income. It provides an
old age pension along with survivor’s and disability pension. The public pension
is divided into a basic pension and supplementary pension, both are paid from the
age of 67. The Second pillar is a mandatory occupational pension scheme. It is
mandatory by law1 to pay at least 12% of all wages and salaries from the age of 16,
which is split between a 4% contribution from the employee and a 8% contribution

1Article 2 of Act 129/1997
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from the employer. According to Icelandic Law2 pension funds must pay a minimum
coverage of 56% of monthly wages for 40 years of work. Occupational pension schemes
are managed by private, fully funded, pension funds governed jointly by unions and
employers and provide lifelong retirement and disability pension as well as pension to
children and spouses. The majority of pension funds in the Second pillar are based
on a defined contribution scheme without guarantee by the Treasury and Municipal
Authorities. However, a few funds are based on defined benefit schemes with an
employer guarantee. The Second pillar is the dominant feature of the Icelandic
pension system. The funds are monitored by the Icelandic Financial Supervisory
Authority3. The Third pillar forms a voluntary individual pension saving scheme
with tax incentives. The maximum deduction by the employee is 4% and in wage
settlements employers have agreed to contribute 2% to these voluntary pensions if
the employee matches the amount with at least the same percentage, making the
maximum total contribution of 6%. The voluntary pension savings are in most cases a
defined contribution pension scheme with individual accounts, where pension savings
have to be paid in equal payments over of at least seven years from the age of 60
(Jónsdóttir, 2007). At the end of year 2010 the voluntary pension saving scheme
accounted for 15.5% of the whole pension system (Financial Supervisory Authority,
2010).

2.1 Recent developments

The Icelandic pension system has grown dramatically in the past 20 to 30 years. At
end of year 2010 net assets amounted to roughly ISK 2,021 billion compared to ISK
522 billion at the end of 2000. The pension funds’ net assets as a share of gross
domestic product (GDP) were 123.91% compared to 83.97% in 2001 and 11.6% in
1986. The growth is largely due to the advantageous age composition of the Icelandic
nation and relative young age of the system, which results in positive cash flow in the
system. Furthermore, indexation gave pension funds unusually good returns in the
early years of the system. The pension system is dominated by a few large pension
funds. At the end of year 2010, the three largest pension funds accounted for 47.2%
of the pension system assets and the assets of the ten largest pension funds accounted
for 80.1% of the whole pension system, (Financial Supervisory Authority, 2011). The
Pension funds’ real return, accounted for inflation, was 2.65% at the end of year 2010
compared with 0.34% at the end of year 2009. Figure 2.1 shows the yearly real return

2Article 4 of Act 129/1997
3www.fme.is
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from 2000.

Figure 2.1. Yearly real return from end of year 2000 to end of year 2010. Source:
The Icelandic Financial Supervisory Autority, www.fme.is

In the spring of 2008, pension funds managers realized that difficulties in the Icelandic
economy were severe, particularly when the Currency Market collapsed in the spring.
The fear became a reality when the Icelandic commercial banks fell in October of the
same year. The pension funds, which had invested heavily in the Icelandic Financial
sector, lost their shares in the three banks and had to depreciate much of the bank’s
bonds. The collapse was not only tied to the financial sector, the entire domestic
stock market plunged. The value of domestic stocks in pension fund portfolios were
estimated at nearly ISK 24 billion at end of year 2008, compared to ISK 141 billion
in September of the same year. Similarly the Icelandic bond market took a big
downswing, particularly corporate bonds. Corporate bonds accounted for ISK 144
billion in pension funds portfolios in late December 2008, compared to ISK 189 billion
in September. In 2008 the Icelandic krona fell by 80.24% and the average inflation
was 16.34% (Óskarsdóttir, 2011). This led to a negative real increase of 22% of the
pension funds’ net assets in 2008 as shown in figure 2.1.

Since the collapse, foreign exchange transactions have been subjected to capital
controls, requested by the International Monetary Fund (IMF). Therefore new foreign
investments are not allowed, and pension funds can only reinvest their wealth which
was present before the controls. Together with the collapse of the domestic stock
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market, investment opportunities are limited. Therefore pension funds increased
their shares in government and housing bonds as well as deposits relative to previous
years as shown in figure 2.2.

Figure 2.2. Historical asset allocation of Icelandic pension fund with the following
legend. (�) Deposits, (�) domestic fixed income securities, (�) domestic
variable income securities, (�) foreign variable income securities and
(�) other asset classes. Source: The Icelandic Financial Supervisory
Authority, www.fme.is

According to a study conducted by the Organisation for Economic Co-operation and
Development (OECD) on pension funds’ assets as a share of GDP, Iceland’s pension
system is large in comparison to the OECD nations at the end of year 2010 as shown
in figure 2.3.

It is evident that many challenges await the Icelandic pension system in the near
future. The liberation of the capital controls are in motion (Central Bank of Iceland,
2011), and the Icelandic stock market is just a fraction of its previous size. Until it
regain some of its former size, investment opportunities are limited. On the liability
side, changes in the age composition of the Icelandic nation and a possible increase
in disability pension payments will affect the funds’ financial position. This requires
that the funds invest their wealth responsibly to be able to cover future liability
payments.
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Figure 2.3. Assets as a share of GDP in % (fifteen highest ratios) at the end of year
2010. Source: OECD Global Pension Statistics, www.oecd.org

2.2 Actuarial position

In July each year Icelandic pension funds conduct an actuarial survey within the
Mutual Insurance Division of the pension funds, as requested by the Icelandic Finan-
cial Supervisory Authority. The actuarial survey is pursuant to the principal feature
(article 24) of Act 129/1997 on the Mandatory Guarantee of Pension Rights and the
Operations of Pension Funds, which took effect on 1 July 1998.

Pension funds liabilities are pension payments to retirees, disability pensions as
well as compensations to spouses and children in case of the passing of a fund member.
Premiums are paid contributions by fund members as mandated by law. Pension
fund liabilities consist of accrued liabilities and future liabilities. Accrued liabilities
are based promised on pension payments on already paid premiums. Future liabilities
are estimated present values of liabilities which correspond to premium payments in
the future. The estimates are based according to the articles of association of each
pension fund and are based on members who contributed to the fund in the previous
year. Future premiums are estimated present value of future contributions from active
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pension fund members. Figure 2.4 shows the structure of the total actuarial position4

which is used as an indicator to measure the funds’ ability to meet its liabilities.

Figure 2.4. The structure of the total actuarial position. Source: (Baldvinsson, 2004,
p. 53)

Accrued position is thus calculated as the difference between assets and liabilities,
and future position is calculated as estimated present value of future premiums less
estimated present value of future liabilities. The total actuarial position is based on
the sum of assets and future premiums less accrued and future liabilities (Financial
Supervisory Authority, 2010). Table 2.1 shows the accrued position, future position
and total actuarial position for ten largest pension funds as well as for the Icelandic
pension system at the end of year 2010. In all cases, the accrued and total actuarial
position is negative.

4The provisions of the 39th Article of Act 129/1997 about actuarial position only take into
account total actuarial position
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Table 2.1. Accrued position, future position and total actuarial position for the ten
largest pension funds and the Icelandic pension system at the end of
year 2010. All figures in ISK thousand. Source: (Financial Supervisory
Authority, 2011)

Pension fund Accrued Future Total actuarial
position postion position (in ISK)

Lífeyrissjóður starfsmanna ríkisins -324,654 -73,159 -397,813
Lífeyrissjóður verslunarmanna -7,924 -12,009 -19,933
Gildi lífeyrissjóður -25,929 -10,366 -36,295
Stapi lífeyrissjóður -17,917 -6,242 -24,159
Sameinaði lífeyrissjóðurinn -11,097 787 -10,310
Almenni lífeyrissjóðurinn -6,868 1,406 -5,462
Frjálsi lífeyrissjóðurinn -4,275 472 -3,803
Stafir lífeyrissjóður -16,733 4,558 -12,175
Söfnunarsjóður lífeyrisréttinda -1,709 -1,571 -3,280
Festa lífeyrissjóður -6,507 -3,184 -9,697
Icelandic pension system -524,171 -127,465 -651,637

The total actuarial position (in %) is the ratio between total assets less total liabilities
divided by total liabilities. Total assets are the sum of assets and future premiums and
total liabilities are the sum of accrued and future liabilities. If the ratio is positive then
the net assets at each time are sufficient to cover already promised liability payments
which indicate strong actuarial position. According to article 39 of Act 129/1997, all
pension funds without a guarantee, showing deficit of 10% or higher in a single year
or a deficit higher than 5% for five consecutive years, must amend their Articles of
Association in order to achieve a satisfactory actuarial position. In late December
2008, a transitional provision was added which uthorized pension funds to run a
deficit up to 15% based on actual valuation for the year 2008, without making changes
to the Articles of Association of the fund (Financial Supervisory Authority, 2009).
Historical actuarial position for all pension funds without an employer guarantee is
shown in table 2.2 from the year 2005 to 2009.

Table 2.2. Historical actuarial position, for all pension funds without guarantee, from
end of year 2005 to end of year 2010. Source: Icelandic Financial
Supervisory Authority (fme.is).

2005 2006 2007 2008 2009 2010
Positive 22 25 22 3 3 2
Deficit between 0,1% - 5% 12 8 4 7 3 8
Deficit between 5,1% -10% 3 2 3 7 6 10
Deficit between 10,1% - 15% 1 0 0 8 13 4
Deficit in excess of 15% - - - 4 3 0
Total: 38 35 29 29 28 24
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The effects of the financial crisis on the actuarial position is evident. Prior to the
crisis the majority of funds had a positive actuarial position, but after the crisis many
funds showed a high deficit. Almost all funds with a guarantee from the Treasury
and Municipal Authorities show a high deficit at the end of 2010. The highest deficit
amounts to a staggering 99.3% which is however guaranteed (Financial Supervisory
Authority, 2011).
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Chapter 3. The Stochastic
programming approach

The Committee on Stochastic Programming (COSP) (2011) describes, stochastic
programming as a framework for modeling optimization problems that involve uncer-
tainty. Stochastic programming models allow for progressive revelation of information
in time and multiple decision stages, where each decision is adapted to the available
information (Kouwenberg & Vorst, 1998). It is a general framework for modeling
optimization problems that involve uncertainty. Several different methods for formu-
lation exists for stochastic problems.

First explanations on the important concepts of stochastic programming is given.
Stages correspond to the time periods when decisions are made and the horizon refers
to the number of stages. It is assumed that at any stage, finitely many states of the
system exist, and the states are described by (multidimensional) state variables. In
stochastic programming the state variables are affected by uncertainty. Given the
initial state of the system, the overall objective is to maximize (or minimize) some
objective function of an immediate return for all stages and states, (Kall & Wallace,
1994).

Stochastic programming systems can be categorized, based on how information is
reveled through time, (Yu et al. , 2003). In an anticipative formulation, also referred
to as a static model, the decision does not depend in any way on future observations of
the environment. In an Adaptive formulation, information related to the uncertainty
becomes partially available before the decision making, so optimization takes place in
a learning environment. The recourse formulation combines the former two models
in a common mathematical framework, which seeks a policy that not only anticipates
future observations but also takes into account temporarily available information to
make recourse decisions.

For financial application, the recourse formulation is the most relevant. For exam-
ple a portfolio manager considers both future movements of stock prices (anticipation)
as well as the rebalancing of the portfolio as prices change (adaptation).
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3.1 General multistage recourse formulation

In this thesis we consider a stochastic programming problem in the form of a multi-
stage recourse problem in discrete stage and state space, following (Dupačová, 1999;
Kall & Wallace, 1994; Shapiro et al. , 2009).

Suppose there are T ≥ 2 discrete stages and that the uncertainty is expressed
by the (multidimensional) random variable ξ1, . . . , ξT , which is revealed gradually
over time during the T stages. The decision process x1, . . . , xT is adapted to the
revelations of the random variables and has the form

decision  realization  · · · decision realization
(x1) (ξ2) (xT ) (ξT )

The sequence ξt, for t = 1, . . . , T is viewed as a stochastic process1. Let ξbtc :=

(ξ1, . . . , ξt) denote the history of the process up to time t. At the first stage, the
state of the system is known and the outcome of the decision completely depends
on the future realizations of the underlying stochastic process. Thereafter, for each
realization of the history ξbtc up to time t, a recourse decision is made which is only
allowed to be a function of the observed realizations (xbt−1c, ξbtc). In other words, the
recourse decisions depend on the current state of the system as determined by previous
decisions (xbt−1c) and by the information (ξbtc) available up to time t but not future
observations. This adaption to the available information is the basic requirement for
nonanticipativity, which will be discussed further later on.

The generic form of a T stage stochastic programming model can be written in
nested formulation as

min
x1∈X1

f1(x1) + E
[

inf
x2∈X2(x1,ξ2)

f2(x2, ξ2) + E
[
· · ·+ E

[
inf

xT∈XT (xT−1,ξT )
fT (xT , ξT )

]]]
(3.1.1)

where E is the expectation operator, the function f1 : Rn1 → R and the set X1 ⊂ Rnt

are deterministic, xt ∈ Rnt , t = 1, . . . , T are decision variables and ft : Rn1×Rm1 → R
are continuous functions for t = 2, . . . , T . For a linear multistage stochastic program
we have

ft(xt, ξt) := cTt xt t = 2, . . . , T

X1 := {x1 : A1x1 = b1, x1 ≥ 0}
Xt(xt−1, ξt) := {xt : B1xt−1 + Atxt = bt, xt ≥ 0} t = 2, . . . , T

1A stochastic variable that evolves in time is known as a stochastic process
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where ξ1 := (c1, A1, b1) is known and ξt := (ct, Bt, At, bt) ∈ Rmt , t = 2, . . . , T are data
vectors or matrixes, whose elements are random.

The problem can be reformulated to (3.1.2), if the decision variables at time t are
a function of the (data) process up to time t, xt = xt(ξ

btc) , t = 1, . . . , T

min
x1,x2,...,xT

E
[
f1(x1) + f2(xt(ξ

b2c), ξ2) + · · ·+ fT (xT (ξbT c), ξT )
]

Subject to x1 ∈ X1, xt(ξ
btc) ∈ Xt(xt−1(ξbt−1c), ξt), t = 2, . . . , T.

(3.1.2)

This formulation is often used in the stochastic programming literature. However
unless the data process, ξ1, . . . , ξT , has a finite number of realizations, formulation
(3.1.2) leads to an infinite dimensional optimization problem (Shapiro et al. , 2009).

In the case of discrete stages and a discrete states, one assumes that the proba-
bility distribution of ξ is a discrete and is concentrated at a finite number of points.
In such a case, the stochastic process is conveniently represented as a scenario tree.

3.2 Scenario based recourse formulation

For a discrete time state a scenario based formulation is a standard solution tech-
nique. An alternative approach is to assume a continuous time stage, which leads
to distribution-based solution techniques. In scenario based stochastic programming
one assumes that the finite number of realizations of the stochastic process, ξ1, . . . , ξT ,
is concentrated on a finite number of points, denoted ξ1, . . . , ξ,S.

This allows for a derivation of a deterministic equivalent formulation on the form

min
x1,...,xT

S∑
s=1

ps [f1(xs1) + f2(xs2) + f3(xs3) + · · ·+ fT (xsT )]

s.t A1x1 = b1

Bs
2x1 + As2x

s
2 = b2

Bs
3x2 + As3x

s
3 = b3

. . . . . . ...
Bs
TxT−1 + AsTx

s
T = bT

(3.2.1)

l ≤ xst ≤ u t = 1, . . . , T s = 1, . . . , S

where ps denotes the probability of scenario s. In problem (3.2.1) all parts of the
decision vector are allowed to depend on all parts of the random data. However, as
previously discussed, decision xt made in stage t, should only be allowed to depend
on the data known up to stage t, i.e. ξbtc. To correct for this, nonanticipativity
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constraints on the form

x
bic
t = x

blc
t , for all i and l where ξbic,s = ξblc,s, t = 1, . . . , T (3.2.2)

are included. Problem (3.2.1) together with the nonanticipativity constraints (3.2.2)
are equivalent to the original formulation (3.1.1).

The term scenario tree might seem somewhat mysterious at this point, but this
will be described in detail in the next chapter.

3.3 The asset liability model

The asset liability management model is formulated as an linear multistage stochastic
problem. We assume that at the beginning (t = 0) the asset allocation for the
next years is already determined. That is the asset portfolio is not optimized at
the beginning of the study. Most of the constraints are standard in asset liability
management studies and the notation follows (Hilli et al. , 2007) for most parts.

Before the model is presented three sets must be defined. Let J denote a set
of assets where and T denote the set of discrete stages when decisions are made.
However sometimes it is more relevant to express the constraints in terms of asset
classes rather than individual assets. To that end let, Q denote the set of asset classes
considered. The model will be introduced in terms of constraints and a objective
function.

3.3.1 Constraints

Inventory constraints

Inventory constraints describe holdings, purchases and sales of each asset over time.
The inventory constraint at stage t > 0 are

ht,j = ht−1,j(1 +Rt,j) + pt,j − st,j, j ∈ J , t > 0

where Rt,j denotes (random) return on asset j in stage t and ht,j, pt,j, st,j are decision
variables, which describe the holdings, purchases and sales in asset j at stage t

respectively. The initial holdings in each asset are denoted by h0
j and are assumed to

be known.
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Budget constraints

Budget constraints describe the cash inflow (revenues) and cash outflow (expenses)
of the pension fund and ensure that the cash inflow never exceed the cash outflow.
At stage t = 0 (precent) the budget constraints are∑

j∈J

(1 + cq)p0,j =
∑
j∈J

(1− cq)s0,j

and at stage t > 0 ∑
j∈J

(1 + cj)pt,j + Lt =
∑
j∈J

(1− cj)st,j + It

where cj denotes the transaction cost for purchase and sales of asset class j, Lt
denotes the liability payments to pensioners and It denotes the premiums paid by
the pension fund’s members. The transaction costs are assumed to be equal for
purchase and sales.

Portfolio constraints

Upper and lower limits of holdings in various asset classes for Icelandic pension funds
are bound both by law and by the funds’ investment policy. Those limits are expressed
as a proportion of the total wealth of the pension fund

lq
∑
j∈J

ht,j ≤ ht,q ≤ uq
∑
j∈J

ht,j, q ∈ Q, t ∈ T

where the parameters lq and uq denote the upper and lower bounds for different asset
classes, and are assumed to be constant. Similar constraints are placed on holdings
in foreign investments. To prevent spurious asset switching, the maximum amount
allowed for purchase, as a percentage of the wealth, is introduced in stage t

pt,j ≤ up
J∑
j=1

ht,j, j ∈ J , t ∈ T

where the constant up denotes the maximum holdings (percentage). The wealth at
time t is given by

Wt = Wt−1 +
∑
j∈J

(1 +Rj,t)ht,j−1, j ∈ J , t ∈ T

where W0 is the funds initial wealth.
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Nonanticipativity constraints

Nonanticipativity constraints ensure that groups of scenarios2 with identical values
of the uncertain parameters in stage t must yield the same decision up to that period.
Let xbsct denote a decision variable in scenario s from the precent (t = 0) up to stage
t. The nonanticipativity constraints can be expressed mathematically as

h
bsc
t,j = h

bs′c
t,j , p

bsc
t,j = p

bs′c
t,j , s

bsc
t,j = s

bs′c
t,j

for scenarios s and s′ inheriting an identical past up to stage t.

3.3.2 Objective function
The objective of the pension fund is to obtain a pre-specified target funding ratio at
the end of the horizon. The funding ratio3 is denoted by FRt and given by

FRt =
Wt − Ĩt
L̃t

− 1 (3.3.1)

where L̃t and Ĩt denote present value of future liability and premiums respectively. To
model the pension fund risk aversion, two penalty functions are introduced. First the
objective is penalized for a funding ratio which falls below a pre-specified minimum,
denoted FRmin. Secondly the objective is penalized for a funding which does note
reach the target, FRtarget at the horizon. Both penalty functions consists of a constant
multiplied with the first downward moment of the funding ratio. The two penalty
constraints are obtained by rewriting equation (3.3.1) and introducing two positive
decision variables, Ztarget and Zmin, i.e.

(WT + ĨT ) ≥ (1 + FRtarget)L̃T − Ztarget
T , Ztarget

T ≥ 0

(WT + ĨT ) ≥ (1 + FRmin)L̃T − Zmin
T , Zmin

T ≥ 0.

If the funding ratio falls below the minimum or does not reach the target at the
horizon, Ztarget and Zmin become positive. Since the deterministic equivalent formu-
lation is based on a number of scenarios the expected funding ratio is maximized and
penalized of the expected downside moments (times a constant) of the funding ratio.

2Scenarios are defined in chapter [4].
3The term funding ratio is similar to the total actuarial position (in %). However, the term

funding ratio is used in this thesis to emphasize that they differ in terms of valuation of future
liabilities and premiums. This will be discussed in detail in chapter 5.
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The the objective function becomes

max E

[(
WT + ĨT

L̃T
− 1

)
− λ1

(
Ztarget
T

L̃T

)
− λ2

T∑
t=1

(
Zmin
t

L̃t

)]

where λ1 and λ2 are the respective penalty constants. The two penalty components
are strictly positive and are therefore subtracted from the expected funding ratio at
the horizon. Similar penalty functions could be presented in terms of target wealth
and or deviation from a specified target wealth.

An alternative way to model the risk aversion is to use chance constraints. Such
constraints state that the funding ratio should at all times be higher than a pre-
specified minimum value with high probability,

P
{

(Wt + Ĩt) ≥ (1 + FRmin)L̃t

}
≥ α.

Chance constraints have a more intuitive appeal than penalty constraints. Moreover
the reliability constant, α, is easier to determine than the penalty constants λ1 and λ2.
However change constraints are computationally much more inefficient and complex.
When included in the model, one has two options: Firstly one can make distributional
assumptions to reformulate the chance constraints. However, few distributions will
lead to convex and well behaved constraints. In the case of the normal distribution,
the variance-covariance matrix for the different assets has to be estimated, which a
non-trivial task. The second option is to reformulate the chance constraints into a
mixed-integer or integrated change constraints, which need special algorithms and
are generally harder to solve. This approach is described in detail in (Dert, 1995;
Drijver, 2005; Klein Haneveld et al. , 2010).
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Chapter 4. Scenario tree generation

In this chapter important aspects of scenario tree generation are discussed and the
scenario generation method used in this thesis introduced. The resulting scenario
tree is used as input to the scenario based multistage recourse formulation of the
stochastic programming model.

Before reviewing the scenario tree generation methods in the literature let’s
address two important concepts, a scenario fan and a scenario tree which are shown
in figure (4.1).

Figure 4.1. Schematic representation of a scenario tree and a scenario fan.

A scenario tree consists of clusters1 (marked with circles) and branches linking the
clusters together (marked as black/red lines). The rightmost cluster represents the
present and is referred to as the root cluster, whereas the leftmost clusters represent
the horizon and are referred to as the leaf clusters. A scenario is defined as a route
from the root cluster to one of the leaf clusters. Each cluster has a one-to one

1Also known as nodes
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relation to certain stage t and certain scenario s, denoted by (t, s). In a scenario fan,
all clusters at stage t are connected to one cluster at stage t − 1 and one cluster at
stage t+ 1. In a scenario tree, bt−1 clusters at time t are connected to one cluster at
time t − 1 and branch of to bt+1 clusters at stage t + 1. For example in figure 4.1,
a pair of clusters at stage two are connected to one cluster at stage one and each
cluster at stage two branches off to three clusters at stage three.

It is commonly understood that a scenario fan is only suitable in two-stage
scenario based stochastic problems. A Two-stage problem might seem misleading
since the scenario fan in figure 4.1 is represented by four stages. However the
dependancies between clusters at stage two, three and four are the same. Therefore
the scenario fan is argued to only adequately represent two stages, one and four in the
figure (Sutiene & Pranevicius, 2007). In the case of a multistage scenario based on
stochastic programming, a scenario tree is needed to represent the relation between
clusters for all stages. The necessary notation for scenario trees is introduced in
section 4.3.1.

The rest of this chapter is organized as follows. In section 4.1 the vast number of
scenario generation methods in the literature is briefly introduced and discussed. In
section 4.3 the scenario generator used in this thesis is explained in detail.

4.1 Literature survey

Scenario tree generation is not an easy task and a numerous methods have been
suggested in the literature. The methods reviewed in this thesis can be classified
into roughly four classes: sampling methods; statistical methods; methods based
on probability or approximation theory and; other methods. In addition, a closely
related subject of scenario reduction methods is briefly introduced.

4.1.1 Sampling methods

Various sampling methods can be used to construct the scenario tree. The simplest
method is to sample randomly from historical data, known in the financial litera-
ture as bootstrapping. Although easy to implement, it is seldom used in practical
application due to its limitations. The main limitation of bootstrapping is that it
is unable to generate samples different from those that already have occurred in the
past. Therefore using bootstrapping to generate scenarios assumes that historical
data is representative of the future and only identical observations can be resampled.
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This means, for example, that more extreme values than observed from historical
data are not available.

To overcome the drawbacks of bootstrapping, (Kouwenberg, 2001) suggests ran-
dom sampling and adjusted random sampling methods. The resulting scenario trees
are used to solve an asset liability management model for a Dutch pension fund, where
a vector autoregressive time series model (VAR) was used to estimate the stochastic
parameters in the model. A random sampling method is based on sampling from
the error distribution of the estimated VAR model. An adjusted random sampling
method is based on antithetic sampling in order to fit every odd moment of the
underlying distribution of the stochastic parameters by assuming an even number of
clusters in the scenario tree. This method is based on one of the scenario generating
methods considered in (Carino et al. , 1994) where the mean and the variance of
the underlying distribution are fitted with an adjusted random sampling scheme.
Backtesting, with rolling horizon simulation, revealed that random sampling can
lead to extensive asset mix and spurious profits while the adjusted random sampling
method led to less asset mixing and more stable solutions.

Dupačová et al. (2000) proposed a sequential sampling algorithm. This sampling
method is an iterative algorithm which is part of a framework that uses a scenario tree
nodal partition matrix, conditional sampling, stochastic programming generator and
a solver. The scenario tree is modified through an update of the nodal partition matrix
in each iteration and the stochastic programmin model solved. Another variation of
a sampling algorithm discussed is based on the expected value of perfect information
(EVPI). For further discussion see Dempster (1998); Dempster & Thompson (1999)
and Heitsch & Römisch (2009) as well as their references.

Various Monte Carlo (MC) and Quasi Monte Carlo (QMC) sampling schemes
have been considered in the literature. QMC methods have very good and well
documented convergence properties and are therefore well suited for scenario gen-
eration. QMC schemes that epi-converge to the original problem are presented in
(Pennanen, 2005, 2009). MC based methods are presented in Chiralaksanakul (2003);
Chiralaksanakul & Morton (2004).

4.1.2 Statistical methods

Moment matching

Arguably the most commonly used scenario tree generation method was initially
introduced by Kouwenberg & Vorst (1998). The idea is to estimate the first two
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moments of the underlying distribution in the scenario tree. This is obtained by
solving small systems of the scenario tree recursively. The method was generalized
by Høyland, K. and Wallace, S.W. (2001) and is known as the moment matching
method. The moments and co-movements of the unknown distributions are matched
with historical data or values pre-specified by the user. The matching is obtained
by solving a non-linear optimization problem which penalizes deviation from the
desired moments. The authors approximate the first four moments of the underlying
distributions and the correlation between the assets. The resulting scenario tree is
obtained by solving sequential non-linear optimization problems or by solving one
large non-linear optimization problem. The computing time grows hand in hand
with the size of the scenario tree and quickly becomes large when dealing with
realistic problems. To overcome this problem, a somewhat successful attempt to
decrease the solution times, by introducing a heuristic algorithm, was introduced in
Høyland, K. and Kaut, M. and Wallace, S.W. (2003). Another suggestion, using
parallel implementation, was proposed by Beraldi et al. (2010).

The main drawback to this method is that convergence to the optimal solution
is not guaranteed. This means that the method may diverge, resulting in a spurious
scenario tree. In addition, increasing the number of scenarios will not lead to a
better match of the observed and desired moments. Another drawback, pointed
out by Hochreiter & Pflug (2007), is that matching the first four moments of a
distribution can result in many different distributions which have only the first four
moments in common. For example, uniform and normal distribution may have the
same four moments but have very different characteristics. Underlying distributions
for financial data indicate unimodal features. Ji et al. (2005) point out that if only
the first four moments are used to estimate the scenario tree, the resulting distribution
may have a multimodal feature which is not representative of financial data. They
argue therefore that descriptive features such as unimodality must be included in
the moment matching procedure. This is achieved with partition of the distribution
space of the stochastic parameters and imposing additional constraints in the moment
matching optimization.

In financial applications, scenario trees should be free of arbitrage opportunities2.
Klaassen (2002) demonstrates that the moment matching method does not strictly
prevent arbitrage opportunities. To prevent arbitrage opportunities, two additional
non-linear optimization problems must be solved at each node of the scenario tree to
detect and prevent arbitrage. Those two non-linear optimization problems can also be
added as constraints to the main moment matching model. Ji et al. (2005) modified

2Arbitrage free scenario tree is discussed further in subsection 4.3.4
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the moment matching method to prevent arbitrage opportunities by solving a linear
optimization during every iteration of the sequential version of the moment matching
method. The additional constraints mentioned above will increase the already high
computing times.

In addition to the random sampling and adjusted random sampling methods,
discussed previously, Kouwenberg (2001) also construct a scenario tree with the
moment matching method. The performance, of those three methods, on the solution
of the asset liability management model for the Dutch pension fund are analyzed.
Kouwenberg reports that the moment matching method slightly outperformed the
adjusted random sampling technique. A fixed-mix strategy was used as a benchmark
for comparison. On the positive side the solution of the asset liability management
model that used the moment matching scenario generation method was the only one
whish strictly outperformed the fixed-mix benchmark.

Clustering

Another method proposed by Dupačová et al. (2000) is a multi-level clustering
method. In general clustering methods consist of two phases, the simulation phase
and the clustering phase. In the simulation phase, many different paths are simulated
from the underlying time series model, where each simulated path represents one
possible evolution of the future. All the simulated paths are generally referred to as
a scenario fan. In the second phase the scenario fan is molded into a scenario tree by
bundling together similar scenario paths into clusters at different points in time. Usu-
ally the clustering method assumes that some time series models have been estimated
beforehand. Simulated paths which are nearest to a cluster by some distance measure
are assigned to each cluster. A similar approach is proposed by Gulpinar et al. (2004)
where a randomized clustering algorithm is used in the clustering phase. Two methods
are proposed for the simulation phase, parallel simulation and sequential simulation.
In the parallel simulation, all paths are simulated before clustering begins whereas in
the sequential simulation, the simulation phase and clustering phase are performed
alternately until the whole scenario tree is completed. In more detail, a large number
of paths are simulated and then bundled into so called first stage clusters. Then the
simulation is initialized at each first stage cluster and new scenario fans are simulated
which are then bundled together into second stage clusters. This is repeated until
the scenario tree is completed. The difference between the two methods is that
parallel simulation requires storage of large number of simulated paths whereas in
sequential simulation only scenarios from the relevant clusters are stored at each
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time. Furthermore the parallel method will produce a wider clustering structure as
opposed to a more homogenous one when sequential simulation is used. A wider
clustering scheme corresponds to more extreme values of each stochastic variable and
is desirable in risk management such as in asset liability management applications.
Gulpinar et al. (2004) also uses a moment matching scenario tree generation method
employing both sequential and overall optimization where the first four conditional
moments and correlation are matched with historical data or pre-specified values.
The overall optimization is argued to be superior to the sequential method because
there is a risk that the sequential method might produce a sub-optimal scenario trees.
The final method considered in their paper is a hybrid approach which combines the
simulation and optimization approaches. The random variables are obtained with
simulation and clustering methods. They are then substituted for decision variables in
a optimization problem. Overall or sequential optimization can either be used in the
hybrid approach. All six variations of the three methods were used to solve a mean-
variance optimization model. The computing times required to generate the same
scenario tree were compared. The overall optimization in the hybrid and moment
matching methods required much more computing time compared to the simulation
and clustering method. However backtesting indicated that no perceptible gains are
obtained using the overall optimization variant of the moment matching method,
over the much faster heuristics of sequential optimization, simulation and hybrid
simulation/optimization methods.

Sutienė, K. Makackas, D and Pranevivcius, H. (2010) introduce a similar clus-
tering method based on K-means clustering algorithm is a which well documented
algorithm to perform clustering. The K-means clustering algorithm is modified to
cope with multi dimensional scenario paths. The method is based on earlier research
by (Pranevicius & Šutiene, 2007). In-sample stability tests for a small asset liability
management problem, proposed by (Kaut & Wallace, 2003)3, are performed with
promising results.

4.1.3 Probabilistic methods

Probabilistic methods approach scenario generation from an approximation point of
view. The difference between the true optimal value of the underlying problem and
the solution obtained by solving the stochastic optimization, using a scenario tree
should be as small as possible. This difference is known as the the approximation er-

3Stability is discussed in subsection 4.2.1
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ror. Pflug (2001) suggests that the scenario tree should be constructed by minimizing
the approximation error. The approximation error is impossible to calculate directly
for realistic problems because it requires the true optimal value. However an upper
bound for the approximation error is obtained by solving non-linear optimization
problem. Hochreiter & Pflug (2007) apply the method to a simple stochastic asset
allocation optimization problem. As a robust check convergence of the objective
value is shown. However, as in the moment matching method no formal proof or
convergence guarantee is available. This is a major drawback since the method may
diverge.

Pennanen & Koivu (2002) introduce a discretization method that weakly con-
verges to the original stochastic process as the number of branches in the scenario
tree increases. The method is based on techniques of numerical integration and uses
a low-discrepancy sequence in sample tree construction to reduce the approximation
error. This method is used in asset liability management for a Finnish pension fund
in Hilli et al. (2007).

4.1.4 Other methods

Recently, Mitra & Ji (2010) proposed a new scenario generating technique based on
Gaussian Mixture Hidden Markov Model. In each stage of the hidden Markov model,
observations are represented by a Gaussian mixture probability density function
which is composed of a weighted sum of univariate Gaussians. For financial data
it is natural to classify the state of the economy into three phases, growth, recession
and a transitional state. These phases are used in the hidden markov model and
transaction probabilities are assigned to each phase. This method captures impor-
tant reversion properties like autoregression, conditional heteroscedasticity, cyclic
behaviour and jumps. Numerical experiments are presented and although that this
method seems promising no proper research on stochastic programming problems has
been conducted. The impact on the solution of the stochastic programming model
and stability has not been carried out.

In recent years copulas have been popular in the financial literature. Scenario
generation using coupulas are presented in Sutiene & Pranevicius (2007) and Kaut
& Wallace (2011). However those methods will not be discussed in this thesis.
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4.1.5 Scenario reduction

The above mentioned scenario generation methods often lead to extremely large
scenario trees. Scenario reduction techniques aim at reducing the size of the existing
scenario tree while maintaining the important properties of the tree. The methods use
either forward or backward reduction. In forward, reduction one starts by reducing
scenarios, from the root cluster of the tree and works down to the leaf clusters.
In backwards reduction, one starts from the leaf clusters and works back to the root
cluster. Dupačová et al. (2003) and Heitsch & Römisch (2003) approache the subject
form the theoretical point of view, using probability measures. A method described
in Growe-Kuska et al. (2003) is based on reducing the scenario fan by bundling
together similar scenarios into a scenario tree. Algorithms for forward and backward
scenario tree reduction are presented and the method used to construct a scenario
tree for a power management application.

4.2 Minimal requirements

4.2.1 Stability and bias

Surprisingly little attention had been paid to the practical evaluation of the scenario
generation methods until 2003. What are the minimal requirements for reliable
scenario tree? Kaut & Wallace (2003) addressed this issue from a practical point
of view. They argue that there are at least two minimal requirements that have to
be considered before the scenario tree is used in practical applications, namely bias
and stability. They redirected the discussion to whether the scenario tree will lead
to a good decision. Two stability concepts are presented, in-sample stability and
out-of-sample stability. In-sample stability implies that the solution of the stochastic
model should not depend too much on the scenario tree itself. If several different
scenario trees are generated with the same method and the stochastic optimization is
solved, then the value of the objective function should not change dramatically. In the
absence of in-sample stability, the scenario generation method needs improvements.
Out-of-sample stability is much harder to examine, because one has to be able
to evaluate the true objective function. One method to evaluate out-of-sample
stability is to perform backtesting with simulation methods such as Monte Carlo.
However, the authors argue that in most practical applications one will have either
both stabilities or none. In-sample stability tests should therefore be sufficient to
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detect instability, and out-of-sample tests should be considered whenever possible.
The second requirement, bias, is the difference between the true solution of the
optimization problem and the one obtained by solving the stochastic problem with
a scenario tree. Kaut & Wallace (2003) suggest that one should construct a huge
reference scenario tree and then solve the stochastic optimization model. Then one
can compare the solution obtained when the reference tree is used to the solution
given by the original scenario tree. If both solutions are similar one can be more
confident that the scenario tree constructed by the scenario generation method is
free of bias. In their paper, stability and bias tests are performed for a simple one-
period asset allocation optimization problem. The scenario tree method used was
the moment matching method. The results show that the method is both stable and
unbiased.

As opposed to practical evaluation methods, several papers address the issue of
stability from theoretical grounds. The reader is referred to the following papers and
the references within, Heitsch et al. (2007) and Heitsch & Römisch (2009).

4.2.2 Arbitrage free scenario trees

For financial applications such as asset liability management, it is essential that the
scenario tree is free of arbitrage. Arbitrage is defined as a financial strategy that has
zero payout and strictly positive probability of profit. In the absence of arbitrage
free scenario tree the optimization routine will most certainly take advantage of the
arbitrage opportunities. This will lead to spurious profits and overconfident solutions.
Klaassen (2002) addresses the issue of arbitrage-free scenario trees and proposes that
arbitrage tests should be incorporated into the scenario generation process. Klaassen
introduces two non-linear optimization problems which can be solved to detect if
a scenario tree is free of arbitrage. The optimization problems are solved at each
discrete time after clusters have been formed.

4.3 The scenario generator

The method proposed in this thesis is a extended version of the modified multi stage
K-means clustering method presented by (Sutienė, K. Makackas, D and Pranevivcius,
H., 2010, hereafter: SMP). The reasons this method is preferred over the wide range
of methods available are as follows.
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1. In-sample stability results for a small asset liability management model pre-
sented in their paper are promising.

2. The method is able to cope with multidimensional variables and is based on
the K-means algorithms, which is well studied.

3. The computation time needed to construct a realistic scenario tree seems fairly
moderate and much smaller for than e.g. moment matching scenario generation
method.

However this method, has some drawbacks, e.g. no arbitrage test where presented in
SMP. In an attempt to avoid confusion the original K-means algorithm will be referred
to as the K-means, also the modified version introduced by SMP will be referred to
as the modified K-means method. In addition the method used in this thesis will
be referred to as a extended K-means method since it features improvements on the
modified K-means method.

4.3.1 Notations for scenario trees

The (time series) models, introduced in chapter 5, are used to simulate a finite number
of paths, which form a scenario fan. The extended K-means clustering method is used
to convert the scenario fan into a scenario tree4. At this point lets assume that a
time series model readily available to construct a scenario fan.

To distinguish between the simulated paths and the resulting scenario tree further
notation has to be introduced. Let N denote the number of paths simulated for each
stochastic variable. All the stochastic variables considered will have the same number
of simulated paths and a further distinction between the variables is unnecessary.
Let S denote the set of scenarios in the scenario tree. Recall that one scenario is
a route from the root cluster of the scenario tree to one of the leaf clusters. Here
J is used to denote the set of stochastic variables considered, such as the price of a
stock or interest rates. Simulated paths related to stochastic variable j are denoted
by ξ̃j = {ξ̃j1, . . . , ξ̃jn, . . . ξ̃jN} and the value of the n-th path at stage t of stochastic
variable j is denoted by ξ̃jn(t).

In addition to the stages used, a scenario tree is defined by a branching structure,
B = {b1, . . . , bt, . . . , bT}. The branching structure defines how many branches lead
from each cluster in each stage. Let Ĉ(t,s) denote a cluster present in stage t and
scenario s in the scenario tree. Each cluster corresponds to a J-dimensional vector of

4Recall that scenario fans are only suitable two two stage scenario based stochastic programming.
The multistage scenario based recourse stochastic programming model thus requires a scenario tree.
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the values of all stochastic variables. The number of clusters at stage t is determined
by the branching structure.

Figure 4.2 gives a schematic representation of the process of generating a scenario
tree from a scenario fan. The scenario fan consists of nine simulated paths, ξ̃j =

{ξ̃j1, . . . , ξ̃j9}, for stochastic variable j, shown in panel (a). The resulting scenario
tree, shown in panel (b), has three stages T = {1, 2, 3} and branching structure,
B = {1, 3, 2}. This branching structure results in six scenarios, S = {1, . . . , 6}.

Figure 4.2. Schematic representation of a three stage scenario fan, composed of nine
simulated paths, and a resulting scenario tree with branching structure
B = {1, 3, 2}.

In the next three sections the foundations for the scenario generation method used
in this thesis is presented.

4.3.2 K-means

The K-means clustering algorithm is a method for partitioning observations into a
pre-specified number of clusters, in which each observation belongs to the cluster
with the nearest mean. Here the observations are the values of simulated stochastic
variables at certain stages.

Let C(t,s)
o denote the center of cluster C(t,s) (its position) and letCo denote a vector

of all the clusters centers, Co = (C
(t,s)
o , C

(t,s)
o , . . . , C

(t,s)
o ). The K-means algorithm
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attempts to solve the following global optimization problem

arg min
C0

k̄t∑
k=1

∑
ξ̃j(t)∈C(t,s)

||ξ̂j(t)−Co||22, (4.3.1)

where || · ||22 denotes the squared Euclidean distance, defined as

||ξ̃j(t)−Co||22 =
N∑
n=1

(ξ̃jn(t)− C(t,s)
o )2.

The K-means algorithms is a two step procedure, an assignment step and an update
step. In the beginning, clusters centers are randomly chosen and then the two steps
are performed alternately in an iterative manner. In the assignment step, each
observation is assigned to its nearest cluster center,

C(t,s)
o =

{
ξ̂j(t) : ||ξ̂j(t)− C(t,s)

o ||2 ≤ ||ξ̂j(t)− C(t,s′)
o ||2 For all (t, s′) = 1, . . . , s′

}
(4.3.2)

Then each cluster center is evaluated as the mean of all observations assigned to it,

C(t,s)
o =

1∣∣∣C(t,s)
o

∣∣∣
∑

ξ̂j(t)∈C(t,s)
o

ξ̂j(t), for all clusters. (4.3.3)

A global minimum is reached when no observations are assigned to new clusters in an
iteration. As a safety stopping criteria only finite number of iterations are allowed.
Pseudo code (1) summarizes the K-means algorithm.

Pseudo Code 1 K-means
1: Set itrmax

2: Assign initial cluster centers randomly
3: while tol>tolmin and itr < itrmax do
4: Assignment step: Assign a observation to its nearest cluster according to (4.3.2)
5: Update step: Update each cluster center according to (4.3.3)
6: itr = itr + 1
7: end while
8: Store the clusters centers C0 (the solution)

Here tolmin denotes the allowed number of observations to be assigned to new clusters
at each iteration and itrmax denotes the maximum numbers of iterations allowed.
Convergence to a global minimum is not guarantied. Therefore the algorithm is
sometimes started a few times and the best solution is chosen. The solution consists
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of the vector Co along with a vector of cluster indices.

4.3.3 Modified K-mean clustering

Multiple scenario paths are simulated and form a scenario fan. The scenario fan
is then converted into a scenario tree where similar simulated paths are bundled
into clusters at each decision time. As a result multiple clustering tasks have to be
performed to generate the tree. Secondly, probabilities have to be assigned to each
cluster to indicate the conditional probability of arriving at cluster a cluster at stage
t from a cluster at stage t− 1 in the same sceneario.

During the first stage all simulated paths for a stochastic variables are assigned
to a cluster according to the branching structure. This is called first stage clustering.
After all paths have been assigned to a cluster, the second stage clustering can begin.
All the paths which were assigned to the same cluster at the first stage are collected
and bundled, independently of the other paths who were assigned to other clusters
in the first stage, into clusters at the second stage. This forms the first task of the
second stage clustering. In the second clustering task in the second stage, paths who
were assigned to the same cluster in the first stage are collected and bundled into
clusters. This continues until all clusters in the second stage have been formed. Thus,
in the second stage the number of clustering tasks is equal to the number of clusters
at the first stage. Illustrative example on the evolution of the modified K-means
method can be found in Appendix I.

This requires the knowledge of which paths where assigned to which cluster at
each stage before the clustering can begin. As a result, a numbering scheme that
keeps track of which paths where assigned to which cluster in each stage is required.
SMP introduce one such numbering system. However, the numbering system is not
very intuitive and therefore a new numbering system will be introduced in this thesis.

Probability Assignment
Another modificaiton that has to be made to the K-means method is the assignment
of probabilities to each cluster. At stage t a finite number of paths have been assigned
to each cluster. The conditional probability of arriving at a certain cluster at stage
t from a cluster at stage t − 1 of the same scenario is simply the number of paths
assigned to the cluster at stage t divided by all the paths present in the cluster at stage
t − 1. In other words, the conditional probabilities depend on the number of paths
assigned to a cluster as a fraction of all paths which belongs to the same cluster at
stage t. This ensures that the conditional probabilities sum to one in each clustering

38



task. The probability of a scenario s is the product of all conditional probabilities
related to that scenario in all stages.

Other distance measures
Instead of the squared Euclidean distance used in equation (4.3.1) alternative distant
measures might be used. For example the one-norm, two-norm or the maximum norm.
However the Euclidean distance is well suited since it affects the center positions of
each clusters are strongly affected by extreme values. This will result in a wider
scenario tree (with same branching structure B) than if other distance measures are
used.

4.3.4 Extended K-means clustering

As discussed earlier the modified K-means scenario generation method has a few
drawbacks. This extended version attempts to overcome the most important ones.

The cluster matrix
As previously stated, numbering system has to be introduced to keep track of which
simulated paths are assigned to which clusters at at all decision times. The numbering
system proposed in this thesis is similar to the one presented in (Dupačová et al. ,
2000). To keep track of all cluster in each stage and each scenario s, a cluster matrix
M is used, where each row corresponds to one path and each column represents each
stage. The cluster matrix is a N×(T +1) matrix and each cluster is assigned a index,
which is used to label every that it inherits. When each sub clustering takes place
one needs to extract the values of each path that has the same number (same parent
cluster) in the previous column of the cluster matrix before sub clustering can begin.

Detecting arbitrage opportunities in the scenario tree
It is vital that the resulting scenario trees are free of arbitrage, but the modified K-
means method does not directly prevent arbitrage opportunities. As a result arbitrage
tests were implemented as a part of the extended K-means method. Before the
arbitrage tests are present some notation presented in chapter 3 will be reviewed.
Let Wt denote the pension funds wealth at stage t. Let ht,j denote the proportion
of the wealth allocated to asset j at stage t. Let Rs

t,j denote the return on asset j
which is reveled between stages t− 1 and t in scenario s. Here the index s is added
tho emphasize the different returns are present in different scenarios.

The definition and formulation of arbitrage follow (Klaassen, 2002), which dis-
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tinguish between two types of arbitrage. Arbitrage of the first type is defined as
follows. If there exists a zero investment portfolio that has non-negative payoffs in
all scenarios and strictly positive payoffs in at least one state then arbitrage exists.
Arbitrage of the first type in stage t can be expressed as

a)
∑
j∈J

ht,j = 0

b)
∑
j∈J

ht,jR
s
t,j ≥ 0 for all s ∈ S

c)
∑
j∈J

ht,jR
s
t,j > 0 for at least one s ∈ S

Where a) represent the zero investment, b) represents non-negative payoff at all states
of the world and c) represents strictly positive payoff in at least on state of the world.

Arbitrage of the second type occurs if there exists an asset allocation ht,1, . . . , ht,J
that has non-negative payoffs in all scenarios at time t while providing an immediate
positive cash flow to the investor. Arbitrage of the second type can be expressed as

d)
∑
j∈J

ht,j < 0

e)
∑
j∈J

ht,j(1 +Rs
t,j) ≥ 0 for all s ∈ S

Where d) and e) represent the immediate positive cash flow and non-negative payoff
in all states of the world respectively.

The two types of arbitrage have to be tested separately. We will follow (Klaassen,
2002), and construct two linear optimization models that have to be solved at every
stage t, after all clusters have been formed. To detect arbitrage of the first type, the
following linear optimization is solved

max
ht,1,...,ht,J

∑
s∈S

∑
j∈J

ht,jR
s
t,j

subject to:
∑
j∈J

ht,j = 0∑
j∈J

ht,jR
s
t,j ≥ 0 for all s ∈ S.

(4.3.4)

If the solution yields a positive objective function then there exist arbitrage of the
first type. To detect arbitrage of the second type the following linear optimization
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model is solved,

min
ht,1,...,ht,J

∑
j∈J

ht,j

subject to: e)
∑
j∈J

ht,j(1 +Rs
t,j) ≥ 0 for all s ∈ S

(4.3.5)

If the objective value at the optimum is negative, then there exists arbitrage of the
second type. If either arbitrage of the first or the second type is detected in the
scenario tree then the extended K-mean method is restarted. Since both (4.3.4) and
(4.3.5) are linear optimization problems they can be solved efficiently. Here the CVX

package for Matlab introduced by Grant & Boyd (2008, 2011) was used.

4.4 Summary

This chapter is devoted on scenario generation. Numerous methods in the literature
were reviewed and discussed. After introducing the necessary notation for scenario
generation, the statistical K-means algorithm was discussed along with the modified
K-means method method introduced by SMP. Lastly, the clustering method used in
this thesis was introduced as an extended version of the modified K-means clustering,
which includes arbitrage tests and a cluster matrix to keep track of the numbering
system. The following pseudo code summarizes the extended K-means clustering
method.

Pseudo Code 2 Extended K-means clustering
1: Set B, T and itrmax

2: Initialize the cluster matrix, M
3: for every stage t ∈ T do
4: for every cluster do
5: Get each observation from its parent cluster (ready for clustering)
6: Clustering: Call K-means (pseudo code 1)
7: Update cluster matrix, M
8: Calculate probabilities π(Ck) and ps
9: end for
10: Store cluster centers and probability estimates
11: Test for arbitrage of the first type by solving optimization (4.3.4)
12: Test for arbitrage of the second type by solving optimization (4.3.5)
13: end for

41



Chapter 5. Modeling stochastic
variables

In this chapter models for the underlying stochastic variables are introduced. The
chapter is broken down into three sections according to the nature of the variables.
In section 5.1 models for stochastic variables related to the state of the economy in
scenario s at stage t are introduced. The state of the economy is assumed to be
determined by the nominal and real yield curves, inflation and exchange returns.

In section 5.2 valuation of future liabilities and future premiums is discussed and
in section 5.3, methods and models to simulate asset returns are introduced.

5.1 Economic variables

5.1.1 Inflation

Due to the small size of the Icelandic economy, inflation is assumed to be determined
by the outside world, that is inflation is assumed to be exogen.

The model proposed in this thesis is a random walk with stochastic trend used
to model the logarithm of the Consumer Price Index (CPI). The model is presented
on state space form and is used to simulate CPI paths, which are clustered according
to the extended K-means method. After clustering, yearly inflation is calculated in
each clusters according the dependencies between the cluster, which is defined by the
branching structure, B.

Linear Gaussian state space models
State-space models are a popular and widely used methodology in time series analysis.
Linear Gaussian state space models can be expressed in their general form as
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(1.1) yt = Ztαt + εt, εt ∼ N(0, Ht)

(1.2) αt+1 = ct + Ttαt +Rtηt, ηt ∼ N(0, Qt)

α1 ∼ N(a1, P1), t = 1, . . . , n

where yt is the observed time series, εt is the measurement error, αt is the unobserved
state sequence, ηt is the state disturbance, and the matrixes Zt, Tt, Rt define the
model. Equations (1.1) and (1.2) are referred to as observation equation and state
equation respectively. The state equation governs the time evolution of the state
variable while the observation equation provides the link between the data yt and
the state αt, (Tsay, 2005). The state, αt, is unobservable and the aim is to infer
properties of the state given a certain model and a time series yt, t = 1 . . . T .

In its state-space form the logarithm of the consumer price index at stage t is
assumed to be given by

log(CPIt) = µt

µt = µt−1 + βt−1 + υ, υ ∼ N(0, σ2
υ)

βt = βt−1 + ξ, ξ ∼ N(0, σ2
ξ )

(5.1.1)

Here µt and βt denote the state level and state trend respectively, where the trend in
consumer price index (βt) followes pure random walk.

Estimation
Gaussian state-space models are estimated with maximum likelihood procedure where
Kalman filter provides an efficient way to evaluate the likelihood function. The
Kalman filter is an algorithm used to update the knowledge of the state variable
recursively when new data points become available. That is, the Kalman filter
recovers the state variable (here µt and βt) given the information available at time t,
ybtc. Derivation of the Kalman filter is outside the scope of this thesis and to keep
the discussion focused, the interested reader is refered to any advanced textbooks on
time series analysis or state space analysis, e.g. (Tsay, 2005).

The data used to estimate (5.1.1) consists of monthly values of the Icelandic
Consumer Price Index from May 1988 to November 2011 (283 data points)1. The
estimated parameters are displayed in table 5.1.

1Statistic Iceland, http://www.statice.is/
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Table 5.1. Estimated parameters for (5.1.1). Note that here the present state variables
are indexed with a zero rather than T which might be misleading since
they are estimated using the entire data series. This is however more
convenient notation since the zero represents the beginning of the asset
liability management study.

µ̂0 β̂0, σ̂2
υ σ̂2

ξ

5.952 1.522 · 10−3 3.940 · 10−2 1.355 · 10−4

The model is used to simulate inflation scenarios. To incorporate the modelers beliefs
about future inflation (optional) restrictions on maximum and minimum allowed
inflation are introduced on the form

πmin ≤ π(t,s) ≤ πmax

where π(t,s) denotes simulated inflation at stage t in scenario s. For example the
modeler might think that inflation could not exceed πmax. Similar restrictions can
be imposed directly to the simulated consumer price index scenarios, although such
restrictions are harder to estimate. The restrictions are assumed to be constant for
all stages. However, stage dependent restrictions could easily be incorporated. For
example restrictions on maximum allowed inflation in at stage one, πmax,1 could be
imposed while inflation at other stages is unrestricted.

5.1.2 Exchange rate returns

It is assumed that all foreign assets of the pension fund are assumed to be listed in
the US dollar2 to avoid modeling multiple currencies. Return of a denominated asset
due to change in the value of the dollar, at stage t in scenario s, is

r
(t,s)
usd = π(t,s) − π̄ +N

(
0, σ2

usd

)
(5.1.2)

where π̄ denotes mean inflation and π(t,s) denotes the inflation at stage t in scenario s.
This simple model assumes that when inflation is above average the exchange return
is expected to be higher.

The average inflation is estimated using the same data as model (5.1.1) and is
ˆ̄π = 5.284%. The variance is harder to estimate and is set equal to σ̂usd = 12%.

2All proxies are thus listed in the US dollars.
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5.1.3 Yield curves

Yield curve describes the relation between the cost of borrowing and time to maturity,
also known as term structure of interest rates. Market yield curves exhibit various
shapes, upward or downward sloping and humps. Several hypotheses have been
introduced in the economic and financial literature as to what determines the shapes
of the curves. Three most common term structure theories are the pure expectations
theory, the market segmentation theory and liquidity preference theory. In short
(Hull, 2009) explains the tree theories as follows: The pure expectations theory argues
that the forward interest rate corresponding to certain future period is equal to the
expected future zero interest rate for that period. The market segmentation theory
stats that there is no relationship between short-, medium-, and long-term interest
rates. All rates are determined by supply and demand on its market, for example
short-term interest rates are determined by the short-term bond market. According
to this theory, major investors such as pension funds invest in bonds of a certain
bond marked and do not readily switch from one maturity to another. The liquidity
theory argues that forward rates should always be higher than expected future zero
rates. This implies that investors should get a premium for holding long-term bonds.

In early asset liability management studies, a vector autoregressive model (VAR)
was a popular approach for modeling yields and other economic variables, for example
in (Kouwenberg & Vorst, 1998), (Gondzio & Kouwenberg, 2001) and (Koivu et al. ,
2005). Using VAR model, bond yields are simulated by randomly drawing from the
error distribution. Drijver (2005) pointed out that when scenarios are simulated
using a VAR model, scenarios with unusually low or even negative yields might
occur. Negative yields imply that investors are willing to purchase fixed income
securities at a higher price than the redemption and coupon payments they will
receive. To overcome this problem Drijver estimated the whole yield curve with
a parametric model using nonlinear optimization. To model the dynamics of the
curve and to simulate scenarios, parallel shifts in the yield curve were allowed and
fixed income securities are then priced using the yield curve in each scenario. Other
similar parametric approaches to simulate yield curve scenarios are suggested in the
asset liability management literature. Rasmussen & Poulsen (2007) and Einarsson
(2007) use the well known Nelson-Siegel model to estimate the yield curve. A first
order VAR model was estimated for the level, slope and curvature parameters of the
Nelson-Siegel model and then scenarios were simulated. In each cluster, different
values for the parameters are present which define the whole yield curve.

Parametric approaches are, however, not suitable for modeling the Icelandic yield
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curves because few bonds are listed in the Icelandic bond market3. Therefore a
alternative yield curve model is introduced in this thesis.

The Real yield curve

The method proposed in this thesis to model the real yield curve can be broken down
into two main steps. In the first step, one year real yield, which determine the level
of the real yield curve, is modeled and a large number of paths are simulated. The
simulated paths are bundled into a scenario tree using the extended K-mean method,
after which one year real yields are present in each cluster of the scenario tree. In
the second step, the spot yields are used to simulate the whole real yield curve, one
for each cluster.

Step one: The level
The one year real yield, hereafter referred to as the spot yield and denoted by spott, is
modeled by the well known Cox–Ingersoll– Ross (CIR) short term interest rate model,
introduced by (Cox et al. , 1985). The model is able to capture some fundamental
features of short term yields such as mean reversion. The spot yield is assumed to
be a solution of the following stochastic differential equation (SDE)

d(spott) = κ(γ − spott)dt+ ς
√
spott dBt (5.1.3)

where κ, γ and ς is the speed, level and volatility respectively and Bt denotes a
univariate Wiener process4 which captures the market risk dynamics. The drift part
κ(γ − spott) ensures mean reversion of the spot yield towards a long run average
γ, with speed of adjustment governed by the parameters κ. The stochastic part
σ
√
spott avoids negative yields. That is, when the spot yields are low, the stochastic

part becomes low and the drift part dominates, which drives the spot yield upwards.
The spot yield is not directly observable and has to be estimated by the observed

market real yield curve. The level (γ) and volatility (ς) parameters are estimated
with data provided by Arion Bank. The rate of reversion parameter (κ) is however
estimated based on daily three month REIBOR rates. The parameter estimates are
shown in table 5.2 below.

3See for example, www.bonds.is
4Also known as brownian motion. As before to keep the discussion focused the Wiener process

is not further discussed. The unfamiliar reader is referred to any textbook on stochastic calculus,
e.g. Cvitanic, J. and Zapatero, F. (2004)
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Table 5.2. Estimates for CIR spot yield model (5.1.3), based on data provided by
Arion Bank and three month REIBOR rates.

κ̂ γ̂ ς̂

0.9500 0.0161 0.0684

As before (optional) restrictions are introduced as

spotmin ≤ spott ≤ spotmax

on the simulated spot yields to incorporate the modelers beliefs on the future devel-
opment in sport yields.

Step two: The curve
As discussed before, the CIR spot yield model is used to simulate spot rate realizations
which are then bundled into a scenario tree using the extended K-means method. In
the previous discussion, the spot rates were denoted as spott to emphasize the spot
yields dynamics in time. However, after the generation of a scenario tree the spot rates
are hereafter denoted as spot(t,s). This is done to distinguish between simulated spot
yield paths and the resulting spot yields present in the scenario tree after clustering.

Given the level of the real yield curve in all clusters the whole real yield curve is
simulated. Let y(t,s)

r (m) denote the real yield curve in cluster C(t,s) for maturity m.
The derivation of the real yield curve includes two sub steps. Firstly, real yields for
maturities {5, 10, 15, 20, 25} are simulated and secondly the curve is estimated with
spline interpolation.

Let’s start by explaining the simulation of five year real yields. The five year yield
is broken into two parts, the real spot yield and a five-to-one year real yield spread,

y(t,s)
r (5) = spot(t,s)

t + g5,1

where g5,1 denotes the real yield spread. It is assumed that the real yield curve is
upwards sloping in each cluster. Therefore the spread is assumed to follow a gamma
distribution with scale and shape parameters a and b respectively. This ensures that
the resulting curve is always upwards sloping since the gamma distribution takes
only positive values. The real yields in each cluster at maturity {10, 15, 20, 25} are
generated with the same method. To be more specific, the real yield at maturity m2

is broken into the real yield at maturity m1 plus a m2-to-m1 year spread,

y(t,s)
r (m2) = y(t,s)

r (m1) + gm2,m1 , m2 > m1
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Note that the spread distributions are not indexed according to a cluster. The reason
is that same same scale and shape parameters are used for each kind of spread
distribution in all clusters. For clarification, a schematic illustration of the method
is laid out in figure 5.1.

Figure 5.1. Structure of the real yield curve simulation method, where (•) denotes
spot yield and (�) denotes real yields y(t,s)(m), m = {5, 10, 15, 20}.

Note that although real yields for maturity of 25 years is not included in the figure,
but are nevertheless used. After maturity of 25 years the real curve is assumed to be
flat.

The parameters are determined, based on trial and error with Arion Banks’
average real yield curve as a reference. The resulting parameters values as well as the
mean (a/b) and variance (a/b2) for each spread distribution are displayed in table
5.3.

Table 5.3. The shape and the scale parameters of the gamma spread distributions as
well as the mean and the variance.

Distribution â b̂ Mean (%) Variance (%)
g5,1 25 333.3 0.750 2.25 · 10−4

g10,5 35 500.0 0.700 1.40 · 10−4

g15,10 20 500.0 0.400 8.00 · 10−5

g20,15 30 10000.0 0.300 3.00 · 10−5

g25,20 45 10000.0 0.045 4.50 · 10−7
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The decrease in the mean and the variance of the spreads corresponds to flattening
of the yield curve at longer maturities.

The whole yield curve is then derived (sub-step two) with spline interpolation
where coefficients of a piecewise polynomial, which intersects all simulated real yields,
are estimated. To keep the discussion focused, the spline interpolation method is not
further discussed in this thesis but the reader is referred to any textbook on numerical
analysis, e.g. Bradie (2006).

Eight simulated real yield curves are shown in figure 5.2 as well as the average
real yield curve provided by Arion Bank.

Figure 5.2. Eight simulated real yield curves (dashed lines) and Arion Banks average
real yield curve (solid line). Simulated yields, y

(t,s)
r (m) for m =

{5, 10, . . . , 25} as well as spot yields are dented by ( ).

In general, the parameters of the spread distributions can be functions of the
stage, a(t), b(t). This could prove useful to model an increasing in uncertainty as
times goes by.

The Nominal yield curve

The real and nominal yield curve are connected by break-even inflation. The nominal
yield curve is generated using a similar method as for the real yield curve. Let y(t,s)

n (m)
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denote the nominal yield for maturity m in cluster C(t,s). Unlike the real yield curve,
we are only interested in part of the nominal yield curve. Namely the part between
maturities of five and ten years. The reason for this will be discussed in section 5.3.3.
Similar graphical demonstration is laid out in figure 5.3 for the generation of the
nominal yield curve.

Figure 5.3. Structure of the nominal yield curve (solid line), the real yield curve
(dashed line) and their relation.

Here q5 denotes the five year real and nominal yield spread and q10,5 denotes the
ten-to-five year nominal yield spread. The five year real and nominal yield spread
depends on inflation. To incorporate this relation the scale parameter of q5 gamma
distribution is a function of inflation. The scale and shape parameters for the nominal
spread distributions are given in table 5.4.

Table 5.4. The scale, shape parameters as well as the mean and variance of the real-
nominal spread distribution (q5) and the ten-to-five year nominal yield
spread distribution (q10,5).

Distribution â b̂ Mean (%) Variance (%)
q5 90 + 100π(t,s) 1400 − −
q10,5 80 5000 1.60 3.20 · 10−4
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5.1.4 Summary

Scenario generation for economic variables is based on simulation of inflation and real
spot yield paths, which are bundled into a scenario tree with the extended K-means
method. In each cluster, the real and nominal yield curves along with exchange rate
returns are modeled according to the dependencies represented in figure 5.4 and the
models introduced in this chapter.

Figure 5.4. Dependencies between all models for the economic variables.

The dependencies ensure that in each cluster all economic variables are in line with
economic theory. For example, the nominal and real yield curves are bounded by
inflation which ensures that the curves do not intersect or drift unreasonably far
apart.

5.2 Liabilities and premiums

A pension fund’s total liabilities consist of accrued and future liabilites. Efficiently
modeling future liabilities and premiums is an essential part of asset liability man-
agement. Both liabilities and premiums are affected by number of factors. The most
influential risk factors for Icelandic pension funds are interest rate risk, inflation risk
and mortality disability probabilities (Baldvinsson, 2004).
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5.2.1 Risk factors

Interest rate risk
In the current regulatory framework5 liabilities are valued with 3.5% fixed interest
rate, whereas in many countries liabilities are valued using market interest rates
(make-to-market) at each time. When fixed rates are used for valuation, it results
in present value of future liabilities and premiums which is independent of market
movements in interest rates.

Consider the following example based one (Kaupþing, 2006). Suppose a pension
fund asset portfolio consists of single zero-yield coupon bond with maturity of ten
years, a total of ISK 100. The pension fund faces a single liability payment in 25
years which amounts a total to of ISK 167.5. When a 3.5% interest rate is used
for valuation, the present value of the fund’s asset and liability are both ISK 70.9
and the funding ratio is 0%. This implies that the fund’s asset is sufficient to meet
the future liability payment. Now suppose that a 2.5% interest is used for valuation
then the present values of the fund’s asset and liability are ISK 78.1 and ISK 90.3
respectively. This results in a funding ratio of -13.5% which implies that the fund’s
asset is insufficient to meet the future liability payment. Figure 5.5 shows the funding
ratio when interest rates ranging from 1% to 6% are used for valuation.

Figure 5.5. Pension fund actuarial position, measured with the funding ratio, valued
for real interest rates ranging from 1% to 6%.

5More precisely principal feature (article 24) of Act 129/1997 on the Mandatory Guarantee of
Pension Rights and the Operations of Pension Funds
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This example clearly illustrates the interest rate risk facing the pension fund. Due to
the pension systems relatively young age, future liability streams have high maturity
making the liabilities more sensitive to movements in interest rates.

Suggestions on changing to market valuation of liabilities and premiums to ac-
commodate the interest rate risk have grown in recent years. One such suggestion is
put forward by (Valdimar & Möller, 2010).

Inflation risk
Inflation is another factor that has considerable impact on pension funds actuarial
position. Liabilities and premiums are indexed-linked, due to valuation of 3.5% real
interest rate. However only a proportion of the fund’s assets is index-linked, namely
real bonds. At the end of year 2010 roughly 60% of the wealth of Icelandic pension
funds was allocated in bonds, which mainly consists of index-linked housing bonds. A
pension fund with 85% of its bond portfolio allocated in domestic index-linked bonds
makes for roughly half of total asset portfolio index-linked. This results in imbalance
where high inflation results in a less favorable actuarial position.

Mortality and disability probabilities
The valuation of future liabilities and premiums is subject to assumptions on mor-
tality and disability probabilities. Pension funds are obligated to provide payments
until passing of the pensioners. Therefore an increase in longevity results in increased
liabilities. The same holds for disability payments and their effects on future liabili-
ties.

Life expectancy has risen steadily by about one percent since the 1960’s in Europe
and North America and on average, each additional year of life adds approximately
3-4% to the value of UK pension liabilities, (Loeys et al. , 2007). The importance
of good estimates on future life expectancies and disability probabilities are vital for
good estimates of future liabilities and premiums. A study by Thompson (2006) of
FTSE100 companies revealed that assumptions about mortality rates were overly
optimistic and that realistic longevity assumptions would more than double the
aggregate deficit from GBP 46 billion to GBP 100 billion.

A number of studies on methods to forecast future mortality and disability rates
are presened in the literature, e.g. Mitchell (2011) or Brockett et al. (2010) as well
as references therein.

In this thesis future liabilities and future premiums are provided by Arion Bank,
based on estimation methods used in the Bank’s analysis. To account for the interest
rate risk, market valuation is used in this thesis.
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5.3 Modeling asset returns

It is assumed that the pension fund can invest its wealth in five assets classes: cash
and deposits; domestic and foreign stocks: real and nominal bonds. These asset
classes account for roughly 99% of the average portfolio of Icelandic pension funds at
the end of year 2010, (Financial Supervisory Authority, 2011). The other one percent
includes domestic corporate bonds, foreign bonds and alternative investments.

5.3.1 Return on cash and deposits

Icelandic pension funds invest small amounts of their wealth in cash and deposits6,
merely for liquidity reasons. However since the collapse of the Icelandic financial
industry, the amounts held in cash has risen dramatically. The main reason is the
lack of investment opportunities, due to the plunge in the Icelandic stock market and
the current capital controls.

However cash is considered as one of the asset classes the pension fund can invest
in. The returns for holdings in cash, in scenario s at stage t is approximated by the
geometric average of one year real yields, or mathematically

R
(t,s)
cash =

√
(1 + spot(t,s))(1 + spot(t−1,s))− 1 (5.3.1)

5.3.2 Stock returns

Stock returns exhibit some fundamental features, for example heavy tails, skewness
and volatility clustering (Brooks, Chris, 2008) which have to be accounted for in
modeling. Although such effects are clearly visible in high frequency (daily or intra-
daily) data of stock returns, empirical research indicates that volatility clustering
is also present in long data series with lower (monthly) frequency (Jacobsen &
Dannenburg, 2003). The generalize autoregressive conditional heteroskedasticity, or
the GARCH model was developed independently by (Bollerslev, 1986) and (Taylor,
1987) and is widely used in empirical studies. The model allows the conditional
variance to be dependet upon previous own lags and is able to capture volatility
clustering. The model is an empirical success and vast variations of the model have
been introduced.

6Hereafter referred to as cash
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In recent years, much effort has been devoted to extend the univariate GARCH
model to multivariate one. The main issue regarding multivariate models is that
the number of parameters that have to be estimated grows fast. Therefore many
extensions are based on assumptions that limit the number of parameters that have to
be estimated. The most widely recognized multivariate GARCH models are BEKK,
Vector GARCH and the constant conditional correlation (CCC) GARCH and their
extensions (Bauwens et al. , 2006; Francq & Zakoian, 2010).

The model suggested in this thesis is a dynamic conditional correlation multivari-
ate GARCH, introduced by (Engle, 2002; Engle & Sheppard, 2001). The main reason
for this are that the model is first of all in discrete time rather than continuous, which
we prefer; the intuitive extension of the univariate GARCH model; the model’s ability
to capture volatility clustering and dynamic correlation between stock returns. It can
be efficiently estimated by a two step procedure which is described in detail later. In
addition numerous studies suggest that the DCC-GARCH model performs well (and
sometimes better) compared to other multivariate GARCH models (Yilmaz, 2010).

DCC-GARCH

Let rt denote a vector of filtered zero-mean return series of L asset and Ht denote
the covariance matrix. In its basic form the DCC-GARCH model assumes that rt ∼
N(0, Ht). Assuming normality is often considered too restrictive for stock returns.
Various further extension on the model have been suggested in the literature to
allow among other things asymmetric distributions, see e.g. (Cappiello et al. , 2006;
Hafner & Franses, 2003). Orskaug (2009) reports that DCC-GARCH with skewed-t
distributed error term performs better normal and students-t than in terms of various
marginal goodness of fit mesures.

However the assumption on normally distributed error term is only considered
in this thesis in which case the following factorization of the covariance matrix is
assumed

Ht ≡ DtEtDt

=


σ1t 0 . . . 0

0 σ2t . . . 0
...

... . . . ...
0 0 . . . σLt




1 ρ12t . . . ρ1Lt

ρ21t 1 . . . ρ2Lt

...
... . . . ...

ρ1Lt ρ2Lt . . . 1



σ1t 0 . . . 0

0 σ2t . . . 0
...

... . . . ...
0 0 . . . σLt


where Et denotes the time varying correlation matrix and Dt is L × L diagonal
matrix of time varying standard deviation. The ith standard deviation, σit, follows a
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univariate GARCH(1,1) model:

σ2
it = ωi + αir

2
it−1 + βihit−1

The correlation structure is (DCC(1,1) part)

Et = Q?−1QtQ
?−1

and the proposed dynamic correlation structure is

Qt = (1− dccp − dccq)Q̄+ dccp(εtε′t) + dccqQt−1

where dccp and dccq are the dynamic correlation parametres.

Estimation

The DCC(1,1)-GARCH(1,1) model is estimated with two step quasi likelihood esti-
mation following (Engle & Sheppard, 2001). The parameter vector is split in two,
θdcc-garch = {θgarch, θdcc} where elements of θgarch correspond to the parameters of
univariate GARCH and the elements in θdcc correspond to the dynamic conditional
correlation parameters. In the first step univariate GARCH model is estimated for
each asset using its filtered zero-mean return series, rt7. Assuming normal distribution
the quasi-loglikelihood function for the first stage is simply the sum of the log-
likelihoods of univariate GARCH

QLL1(θgarch|rt) = −1

2

L∑
l=1

(
T log(2π) +

T∑
t=1

(
log(σ2

lt) +
r2
lt

σ2
lt

))

where L and T are the number of assets and observations respectively. The resulting
residuals, εt, from the first stage are standardized by εt = D−1

t rt and used to estimate
the conditional correlation parameters. The resulting second stage quasi-loglikelihood
function is:

QLL2(θdcc|θgarch, rt) = −1

2

T∑
t=1

(k log(2π) + 2 log |Dt|+ log |Et|+ ε′tR
−1
t εt).

Note that the correlation matrix, Et, has to be inverted in each iteration, in the
second stage, and therefore has to be positive definite. For further information such
as a proof of positive definiteness and consistency of the estimators, the reader is

7Note that other filtration methods can be used on the return series, such as ARMA filtration.
However analysis indicate that such filtration is not needed.
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referred to (Engle & Sheppard, 2001).

Data
It is assumed that the pension fund invests in diversified stock indices rather than
individual stocks. The proxy for the available stocks are five Morgan Stanley (MSCI)
indices, MSCI Nordic, World, Europe, North America and Far East. The data
consists of monthly returns from 30 November 1981 to 30 November 2011, a total
of 361 data points and is shown in figure 5.6. Since the collapse of the financial
industry in late 2008, the Icelandic stock market is merely a fraction of its former
size. Therefore the MSCI Nordic index is used as a proxy for the Icelandic stock
market. The other four MSCI indices are used to approximate the selection of foreign
stocks available for the pension fund.

Figure 5.6. Historical prices of the five MSCI stock indices from 30 November 1981
to 30 November 2011. The starting values have been scaled to a value of
100 for comparison. Source: www.mscibarra.com

Historical return, volatility and correlation estimates are presented in tables 5.5 and
5.6. The parameter estimates are given in table 5.7
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Table 5.5. Historical average returns and volatility of five MSCI indices based on
monthly returns from 30 November 1981 to 30 November 2011. Yearly
returns are estimated, by assuming normality, as µyear = 12µmonthly and
σyearly =

√
12σmonthly. All values are reported as percentages (%).

MSCI Monthly Monthly Yearly Yearly
indexes return volatility return volatility
Nordic 1.09 6.63 13.12 22.97
World 0.68 4.47 8.12 15.48
Europe 0.76 5.15 9.16 17.83
North America 0.73 4.52 8.82 15.65
Far East 0.57 6.24 6.89 21.60

Table 5.6. Historical estimated correlations, from 30 November 1981 to 30 November
2011

Nordic World Europe North America Far East
Nordic 1.000 0.797 0.840 0.680 0.513
World 0.797 1.000 0.893 0.881 0.745
Europe 0.840 0.893 1.000 0.748 0.561

North America 0.680 0.881 0.748 1.000 0.435
Far East 0.513 0.745 0.561 0.435 1.000

Table 5.7. Estimated parameters and standard errors (in brackets) in the DCC(1,1)-
GARCH(1,1)model for five MSCI world indices based on historical prices
from 30 November 1981 to 30 November 2011 using ccgarch package for the
statistical software R (www.r-project.org/) (Nakatani, 2009).

GARCH(1,1) ω̂i α̂i β̂i
Nordic 1.07 · 10−3 0.144 0.620

(6.42 · 10−4) (7.99 · 10−2) (4.25 · 10−2)
World 1.05 · 10−4 0.101 0.853

(7.76 · 10−2) (1.12 · 10−4) (4.93 · 10−2)
Europe 1.02 · 10−4 0.090 0.878

(1.95 · 10−1) (5.84 · 10−2) (2.07 · 10−4)
North America 5.32 · 10−5 0.116 0.868

(7.47 · 10−5) (9.39 · 10−2) (6.50 · 10−2)
Far east 4.07 · 10−4 0.166 0.736

(5.50 · 10−2) (3.67 · 10−5) (9.60 · 10−2)
DCC(1,1) p̂ q̂

0.085 0.913
(0.169) (0.225)
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The DCC-GARCH model is used to simulate paths of the five MSCI stock indices,
which are clustered by the extended K-means method. The MSCI Nordic index is
used as a proxy for the Icelandic stock market and its return is only based on stock
price movement. The total return of the other four indices, which correspond to
foreign stocks, are based on returns from the change in stock prices and of from the
prices and the exchange returns obtained by (5.1.2).

5.3.3 Bond returns

Icelandic pension funds have mostly invested in real (indexed linked) domestic hous-
ing and government bonds. However in recent years Icelandic pension funds have
increased their shares in nominal bonds as well (Ó. Ö, Jónsson and E.D, Jónsson,
personal interview, November 11, 2010).

It is assumed that the pension fund can invest in one nominal bond portfolio
and one real bond portfolio. The portfolios are assumed to have constant maturity,
thus rebalanced every year, with maturities of eight and ten years of nominal and
real bonds respectively. The returns of the two portfolios are estimated using the log
linear relation between holding-period returns and yield for coupon bonds, described
in Campbell et al. (1997), and implemented in (Hoevenaars et al. , 2008), (Möller,
2006) and (Campbell et al. , 2001). The estimated gross logarithmic returns on
nominal and real bond coupon portfolios, in stages t in scenario s is

log
(
R(t,s)
r

)
=

1

4
log(y(t,s)

r (8))−D(8,t)
r

(
log(y(t,s)

r (7))− log(y(t−1,s))
r (8))

)
log
(
R(t,s)
nom

)
=

1

4
log(y(t,s)

n )(10)−D(10,t)
nom

(
y(t,s)
n (9)− log(y(t−1,s)

n (10))
)

+ log(π(t,s))

where Ds,t
r and Ds,t

nom denotes duration of the real and nominal duration at stage t in
scenario s respectively. The durations are which is approximated by

Ds,t
r =

1− (1 + ys,tr (8))−8

1− (1 + ys,tr (8))−1
, D(t,s)

nom =
1− (1 + ys,tn (10))−10

1− (1 + Y s,t
n (10))−1

Here the nominal and real yields for each maturity are given by the nominal and real
yield curves present in each cluster.

The modeling system for the underlying stochastic variables is schematically
summarized in a flowchart, presented in figure 5.7.
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Chapter 6. Numerical results

In this chapter the asset liability management model1 introduced in 3 is solved using
the extended K-means scenario generation method described in chapter 4. The
study is based on a hypothetical pension fund, where streams of future liabilities
and premiums, provided by Arion Bank, are used. Given these estimated payments
we are interested in optimizing the asset allocation for the next three years to achieve
the maximum expected funding ratio at the horizon.

The chapter is organized as follows section 6.1 describes technical implementation
of the stochastic optimization framework. In section 6.2 the setup of the study, such as
parameter values are given. Section 6.3 describes computational experiments, which
include in-sample stability analysis, comparison with fix-mix benchmark strategies
and lastly sensitivity diagnostics.

6.1 Implementation

The models for the underlying stochastic variables, the economic variables and asset
returns, from chapter 5, were written in MATLAB2 and R. The models are used to
simulate a fixed number of paths which were then fed into the extended K-means
scenario tree generator (coded in MATLAB). In addition to the paths, the scenario
tree generator takes as input the timescale and the branching structure of the scenario
tree. The scenarios can be visually examined and restriction parameters adjusted
until the scenario tree is satisfactory. Due to the nonanticipativity constraints, which
are different among different scenario trees, the asset liability management model file
is generated by a MATLAB program, in AMPL3 format. The model and the scenario
tree are then parsed by the AMPL program and the output fed to the MOSEK4 solver.
The solution details and statistics are imported back into MATLAB for visualization

1A summary of the model is presented in Appendix II.
2www.mathworks.com
3www.ampl.com
4www.mosek.com
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and further analysis.

6.2 Model setup

The first of December 2010 was chosen as the beginning (t = 0) in the experiments
with a horizon of three years was set. Every year decisions on portfolio rebalancing are
made, which correspond to a yearly meeting of the pension fund board of directors.
The horizon varies among the ALM studies in the literature, but is usually three
to ten years. Table 6.1 presents the stages, the branching structure and number of
scenarios of six published ALM studies.

Table 6.1. Scenario tree structure in six published asset liability management studies
for pension funds.

Author(s) Stages Branching-structure Scenarios
Kouwenberg (2001) {1, 2, 3, 4, 5} {10, 6, 6, 4, 4} 5,760
Hilli et al. (2007) {1, 3, 6} {25, 10, 10} 2,500
Geyer & Ziemba (2008) {1, 2, 4, 6, 10} {100, 5, 5, 2, 2} 10,000
Drijver (2005) {1, 2, 3, 4} {6, 6, 5, 5} 900
Dupacová & Polivka (2004) {1, 2, 3} {20, 8, 5}/{10, 8, 8} 800/640
Klein Haneveld et al. (2010) {1, 2, 3} {10, 10, 10} 1,000

The branching structure for the precent study was set equal to BS = {15, 15, 2}, which
corresponds to {15, 225, 450} clusters in each stage, and a total of 450 scenarios. The
total number of scenarios is considerably less than published studies.

Five major asset classes were considered in the study and the proportion of the
wealth held in each asset class at time at the beginning (t = 0) was

Q = {cash, domestic stocks, foreign stocks, real bonds, nominal bonds}
= {4.6%, 6%, 21%, 47.9%, 20.5%}

where the pension fund’s initial wealth is W0 = 19150 thousand ISK. The fund is
interested in the asset allocation that maximizes the funding ratio at the horizon.
For comparison, a target wealth benchmark is constructed, based on the cash inflow
from premiums and cash outflow from paid pension and a yearly return of 3.5 precent.
The target wealth at each time from the beginnig to the horizon is

W target = {19150, 19790, 22527, 25242}

62



thousand ISK.
In table 6.2 a summary of the scenario tree structure, restrictions and model

parameters which were used in the study, is given. The values for the penalty
parameters, λ1 and λ2 are somewhat arbitrarily chosen. Penalties in the objective are
four times higher (λ2/λ1 = 4) for a funding ratio which falls below a minimum of -5%,
compared to a funding ratio that does not achieve the pension fund’s target of 8.5%
at the horizon. Values for the portfolio parameters are based on Icelandic regulations
and a upper bound of 20% on the maximum amount available for purchase, as a
percentage of the wealth at each time, is set to prevent spurious asset switching over
the next three years.

Table 6.2. Scenario tree structure, restriction and model parameters.

BS = {15,15,2} S = {1,. . . 450}
Tree structure I = {1,2,3} N = {1,. . . 10,000}

T = {1,2,3} J = {1,. . . 8}
Restriction πmax = 10.0 spotmin

t = 1.0%
parameters πmin = 1.0% spotmax

t = 3.2%
λ1 = 2.0 lcash = 1.0%
λ2 = 8.0 ucash = 5.0%

Model and F target = 8.5% lbond = 50.0%
constraint Fmin = -5.0% ubond = 90.0%
parameters c2 . . . c6 = 1.0% lstock = 90.0%

c7, c8 = 0.2% ustock = 50.0%
up = 20.0% uforeign = 50.0%

Summary of the asset liability model is presented in Appendix II. A sensitivity
analysis is presented in section 6.3.3 to analyze the effects of the parameters’ values
on the objective value and the optimal asset allocation.

6.3 Computational experiments

The ALM model and scenario tree structure results in 64,414 constraints and 47,940
decision variables for the 450 scenarios. The optimization problem is linear and
AMPL/MOESK solves the model in less than ten seconds on 2.26 GHz Intel Core
2 Duo, with 2GB memory. A breakdown of the total computation time is given in
table 6.3.
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Table 6.3. Breakdown of the computational time (in seconds)

Time to simulate paths 283.4
Clustering time 55.32
Solution time 9.44
Total time 348.16

The optimized expected asset allocation (the solution) is presented in table 6.4 where
the expectation is calculated as E[·] =

∑
s∈S p

s(·), where ps is the probability of
scenario s. For comparison the target wealth benchmark is included.

Table 6.4. Optimized expected asset allocation, funding ratio and wealth.

Q t=0 t=1 t=2 t=3
E[%Cash] 4.57 4.93 4.96 1.31
E[%Dom. Stocks] 6.00 9.52 7.03 9.5
E[%Foreign stocks] 21.00 7.96 19.33 27.90
E[%Real bonds] 47.90 48.26 42.26 38.47
E[%Nominal bonds] 20.53 29.34 26.42 22.81
E[%FR] 2.65 7.08 8.67
E[W] 19105 19525 22385 25238
Wtarget N/A 19774 22072 24368

The target wealth benchmark is reached in the second year and the expected wealth
exceeds the benchmark in the third year. The expected funding ratio at the horizon
is 8.67% which is 0.17% above the target funding ratio. The expected asset allocation
can be visualized in figure 6.8 which shows the proportion held in each asset class, as
a percentage of the wealth.

The solution for the first year indicates an increase in the proportion of nominal
bonds and domestic stocks at the cost of a reduction in foreign stocks. For years two
and three a steady increase in foreign stocks is favored while cash, nominal and real
bonds decrease.5

In figure 6.2, the expected funding ratio at the horizon is plotted against the
penalty components for various paris of the penalty parameters, (λ1, λ2), in an
efficient frontier setting.

5In later analysis, it is referred to as the solution.
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Figure 6.1. Optimized asset allocation with the following legend. (�) Cash, (�)
domestic stocks, (�) foreign stocks, (�) real bonds and (�) nominal
bonds.

Figure 6.2. The efficient frontier for various pairs of the penalty parameters, (λ1, λ2).
The black edged, red square corresponds to the solution.
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From the efficient frontier it is apparent that an increase in the penalty parameters
drives the expected funding ratio at the horizon upwards. Figure 6.3 shows the
expected asset allocation for most extreme values of the penalty parameters. In the
absence of penalty functions (λ1 = λ2 = 0) the holding in nominal bonds are further
increased in favor of a decrease in other asset classes in the third year. On the other
end, when (λ1 → ∞ and λ2 → ∞), holdings in real bonds are substantially higher
in favor of holdings in nominal bonds for all years. Moreover holdings in foreign
stocks are considerably lower in favor of domestic stocks in year one. The expected
asset allocation for the other cases (λ1 = 1/2, λ2 = 4) and (λ1 = 8, λ2 = 32) falls
in-between the two extremes.

Figure 6.3. Expected asset allocation for extreme pairs of penalty parameters, (λ1, λ2)
with the following legend. (�) Cash, (�) domestic stocks, (�) foreign
stocks, (�) real bonds and (�) nominal bonds.
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6.3.1 In-sample stability

To examine in-sample stability, the stochastic programming model is solved with
scenario trees with an increasing number of scenarios. The scenario generation
method is unable to produce a scenario tree with more than 600 scenarios. The
main reason is the limited ability of the K-means method to generate trees with
many scenarios, the reason being that all paths simulated before clustering. This is
a major drawback since stability analysis in the literature is conducted on a much
larger number of scenarios. The objective value, as a function of the total number
of scenarios, is shown in figure (6.4) for branching structures BS = {15, i, 2} for
i = 2, . . . , 20. The red circle corresponds to the solution.

Figure 6.4. The objective value for branching structures BS = {15, i, 2} where i =
2, . . . , 20. The solution is denoted by (�)

It is evident that fluctuation in the objective decreases as the number of scenarios
increases, but considerable fluctuations are still present for 400 to 600 scenarios.
Therefore we were unable to conclude that the objective has reached has stabilized
properly. This is not surprising in the light of the low number of scenarios. This
indicates that the scenario generation method needs improvements. This is confirmed
when the components of the objective function are analyzed. Figure 6.5 shows the
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fluctuations in the expected funding ratio at the horizon (panel a) along with the
risk aversion components (panel b and c). Note that the fluctuations in the risk
components include the risk parameters λ1 and λ2.

Figure 6.5. Stability analysis on the three components of the objective value for
branching structures BS = {15, i, 2} ,where i = 2, . . . , 20.

It is, however, worth noting that no general accepted tolerance on fluctuation in
the objective value exists for in-stability tests in the literature. This can lead to
controversial in-sample stability conclusions. For example, fluctuations can be very
large for a small number of scenarios and decrease as the number of scenarios increase
but with unsatisfactory variance. This might create the illusion of stability while
the still existent fluctuation fora larger number of scenarios might have considerable
impact on the stability of the objective. This is, of course subject to the modeler’s
judgement.

Given the fluctuations in the objective value, it is interesting to examine the
variation in the expected funding ratio at the horizon when the same branching
structure is used to solve the optimization model. Seven different scenario trees were
generated, all with branching structure BS = {15, 15, 2} the model is subsequently
solved. The expected funding ratio at the horizon is plotted as a function of the
risk aversion components in figure 6.6. For comparison, seven scenario trees with
branching structure BS = {15, 7, 2} are also shown. It is clear that when the number
of scenarios is increased, the variability in the expected funding ratio at the horizon
becomes smaller. However considerable variability still is present for the {15, 15, 2}
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branching structure. This further suggests that stability has not been reached.
The expected wealth, for the {15,15,2} branching structure, is compared to the

target wealth benchmark in figure (6.7).

Figure 6.6. Variability in the expected funding ratio, as a function of the risk aversion
components, for BS = {15, 7, 2} (N) and BS = {15, 15, 2} (�). The
solution is marked by red square with black edges.

In the first year, the target wealth is not reached in all cases, which indicates that the
expected wealth does not yield a 3.5% real increase in the first year. However, in the
third year the target is reached in all cases, with a difference of 580.21 thousand
ISK between the highest and lowest expected wealth. This further strengthens
the suspicion of non-acceptable fluctuations in the solutions, and we conclude that
stability is not attained.
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Figure 6.7. Evolution of the expected wealth for seven scenario trees with BS =
{15, 15, 2} denoted by ( ) and the target wealth denoted by (N). The
solution is denoted by (�).

It is interesting to examine the difference between the expected asset allocation
obtained by the six other scenario trees with BS = {15, 15, 2}, shown in figure 6.8.
Surprisingly little attention has been paid to this in the literature despite its impor-
tance. The reason for the importance is that one might be able to obtain objective
values with little variation but large variation in the expected asset allocation. In
such cases, no sensible asset allocation decisions, with respect to the model, can be
made.
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Figure 6.8. Expected asset allocation for the other six scenario trees, all with
branching structure BS = {15, 15, 2}, with the following legend. (�)
Cash, (�) domestic stocks, (�) foreign stocks, (�) real bonds and (�)
nominal bonds

Compared to the solution, the expected asset allocation all follow mainly the same
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decreasing pattern in foreign stocks in the first year and then an increase in years
two and three in favor of a decrease and increase in other asset classes respectively.
Furthermore no dramatic changes are apparent.

6.3.2 Fixed-mix comparison

The performance of the multistage stochastic model is compared to three partly
dynamic fixed-mix strategies. Fixed-mix strategies are simple investment decision
rules where the asset portfolio is rebalanced to maintain fixed asset proportions.
While such strategies are by no means realistic investment decision rules for pension
funds, they are often for comparisons. The strategies are partly dynamic in the
sense that the proportion of the wealth held in cash, stocks and bonds is fixed, but
the proportion of the wealth invested in each sub class may vary. For clarification,
the amount held in stocks is fixed but no restriction is made on the ratio between
domestic and foreign stocks. The same holds for bonds and the ratio between real
and nominal bonds. Three fixed-mix benchmark strategies are selected conservative,
moderate and aggressive, with difference based on the proportion of the wealth held
in bonds at each time. Ten scenario trees with branching structure BS = {15, 15, 2}
were used and the expected funding ratio at the horizon, as a function of the risk
aversion components, is shown in figure 6.9 for all the strategies.

The asset liability management model outperforms the three benchmarks in
terms of a higher funding ratio at the horizon for given value for the risk aversion
components. Moreover no benchmark clearly outperforms the other. However, on
average the conservative benchmark performs best, and the aggressive benchmark
worst.
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Figure 6.9. Performance of the mulistage stochastic model compared to three bench-
mark partly dynamic fixed-mix strategies, (%cash, % stocks, % bonds).

6.3.3 Sensitivity analysis

In this section the effects of altering parameters values in the asset liability manage-
ment model, on the objective value and the asset allocation are analyzed. Due to the
variation in the objective between data sets with the same tree structure, as shown
in figures 6.6 and 6.9, only sensitivity analysis on the model and portfolio constraint
parameters is conducted.

Figure 6.10 illustrates the effect, of altering the values of F target, Fmin, up, λ1 and
λ2 by ±50%, on the expected funding ratio at the horizon. Lower values for the
penalty parameters, λ1 and λ2, results in a lower funding ratio at the horizon. The
reason for this is that lower values lead to smaller penalty for a funding ratio which
falls below the minimum in each scenario and also for a funding ratio at the horizon
which does not reach the target funding ratio at the horizon. This effect is reversed
when the penalty parameter values are increased. Although the change in the funding

73



ratio, due to changes in λ1 and λ2, at the horizon is not extreme6, the values must be
carefully estimated by the modeler. Furthermore the penalty parameter for a funding
ratio which does not reach the target at the horizon, λ2 has a greater effect on the
expected funding ratio. Similar effects are revealed when the maximum amount for
purchase, as a percentage of the wealth at each time (up), is altered. When lowered,
which corresponds to more rigorous constraints on asset switch, the expected funding
ratio at the horizon is lower. This is reversed when the maximum amount is increased.
This underlines the necessity of constraints on asset switching, when they are absent,
a to spurious funding ratio at the horizon and an overconfident solution may be
obtained. The value, on up, should reflect the pension funds manager’s will to change
the short term investment policy. The effects of a smaller minimum funding ratio,
Fmin, allowed without penalty in each scenario is a lower expected funding ratio at
the horizon while an increase will lead to a higher expected funding ratio. Lastly, the
effects of a higher target funding ratio has no effect on the expected funding ratio
at the horizon which indicates that the stochastic programming model is unable to
drive the expected funding ratio at the horizon further upwards in the presence of a
more ambitious target.

Figure 6.10. The effects, of altering the model parameters, on the expected funding
ratio at the horizon.

6A maximum absolute difference of 0.27% in the funding ratio at the horizon.
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The effects on the expected funding ratio at the horizon is not the only thing one
needs to consider. We are also interested in analyzing the effects on the expected asset
allocation when the values are altered. The effects, of altering values of the penalty
parameters, on the expected asset allocation are presented in figure 6.11. When
compared to figure (6.8), the expected asset allocation does not change dramatically.
A decrease in foreign stocks is observed instead of an increase in nominal bonds in
the first year and a increase in foreign stocks in the latter two years. In the case of
λ2 the effects are clearer in the third year.

Figure 6.11. The effects, of altering values on penalty parameters, on the expected
asset allocation, with the following legend. (�) Cash, (�) domestic
stocks, (�) foreign stocks, (�) real bonds and (�) nominal bonds.

The effect of the other parameters on the expected asset allocation are displayed
in figure 6.12. When compared to figure 6.8, only the values on the maximum
allowed amount for purchase result in drastic changes in year three. This further
strengthens the necessity for carefully chosen values for up. Furthermore this weakens
the confidence in the optimal solution. However the drastic change appears when the
maximum amount is set to 10% which might considered too conservative.
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Figure 6.12. The effects, of altering values on F target, Fmin, up, on the expected asset
allocation with the following legend. (�) Cash, (�) domestic stocks, (�)
foreign stocks, (�) real bonds and (�) nominal bonds.
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6.3.4 Fixed interest rate valuation

Computational experiments have been carried out using market valued liabilities and
premiums. However, the Icelandic Financial Supervisory Authority (FME) base their
monitoring on the total actuarial position (in %), where a fixed 3.5% interest rates are
used to value liabilities, premiums and bonds. Icelandic pension funds which show
poor actuarial position must reduce accrued pension rights to remedy the situation.

Under this supervisory framework, interest rate risk is not accounted for. To
investigate the affects interest rate risk on the pension fund’s asset allocation deci-
sions, the asset liability management model was solved with resect to fixed interest
rates. As previously discussed, the best performance in terms of the highest expected
funding ratio at the horizon, was obtained when extremely high values for the penalty
parameters were used. Therefore, the case where (λ1 → ∞, λ2 → ∞) is included
in the comparison. Figure 6.13 shows the resulting expected asset as well as the
optimized expected wealth and expected funding ratio at the horizon, where panel
(a) refers to the penalty values (2, 8) and panel (b) refers to the extreme values
(∞,∞).

Figure 6.13. Optimized asset allocation as a result of fixed valued (at 3.5%) liabilities
and premiums. Panel (a) corresponds to penalty parameters (2,8),
whereas panel (b) corresponds to the extreme case (∞,∞). E[WT ]
figures in thousand ISK. (�) Cash, (�) domestic stocks, (�) foreign
stocks, (�) real bonds and (�) nominal bonds.

77



Compared to the solutions presented earlier, no tremendous change in terms of the
optimized asset allocations takes place in the first two stages but in the third stage
nominal bonds are favored at the cost of reduction in real bonds.

On the other hand, the funding ratio at the horizon are significantly higher.
A staggering difference of 20.49% for penalty parameters (2, 8) and 29.61% in the
extreme case, (∞,∞), is revealed. This raises concern on the credibility of the current
risk measure used by the FME, especially since lower expected wealths were obtained
in both cases when fixed rates were used. Therefore the significant increase in the
funding ratio cannot be justified in terms of extensive growth in the pension funds
wealth. The results indicates that future liabilities are underestimated in terms of
interest rate risk. This underestimation leads to overconfidence in the pension fund’s
ability to meat their future liabilities, which have serious consequences for future
retirees.

However, two important things are worth mentioning. The significantly higher
expected funding ratios obtained at the horizon when fixed valuation is used could
have neutralized the penalty functions. This might affect the resulting asset allo-
cations. Secondly, in this comparison bonds were valued using the real yield curve
in each scenarios whereas bond are currently valued with fixed interest rates. This
affects the expected wealth at the horizon.
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Chapter 7. Conclusions and future
work

7.1 Conclusions

The extended K-means scenario generation method proved to be the weakest link in
the modeling framework. Due to its limited ability to generate large scenario trees,
in-sample stability analysis indicates that the objective value does not reach satis-
factory stability when number of scenarios is increased to the maximum capability
of the scenario generator. Although fluctuations in the objective decreased when
the number of scenarios was increased, they still have considerable impact on the
solution. Furthermore, the objective value also varied for different scenario trees
(different data) with the same structure, although this variability is greatly reduced
when the number of the scenarios is increased from 240 to 450.

The instability can result from one of two reasons. Either the scenario generator
is unable to achieve satisfactory in-sample stability performance, or the limitations on
the size of the scenario trees plays a major role. In the latter case, possible stability
could be obtained if the scenario generation method could produce a tree with a
considerably larger number of scenarios. However, it is difficult to favor one reason
over the other at this stage.

Despite the relatively small number of scenarios, the computational experiments
proposed revealed important results. They showed that the optimized asset alloca-
tions outperformed the three partly dynamic fixed-mix investment strategies. The
basis for the comparison was the funding ratio at the horizon which measures the
ability of the fund to meet future pension payments (liabilities). The three fixed-mix
strategies used for comparison served as a benchmark for conservative, moderate
and aggressive investment strategies, in respect to the amount held in domestic
government bonds.

Analysis of the credibility of the optimized asset allocation suggests that no
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spurious allocation changes occur between stages. This attribute is essential if asset
allocation decisions are to be made with regard to the optimal asset allocation
suggested by the model. In the absence of this property, the confidence in the
optimized asset allocations is severely weakened. However, given its importance,
surprisingly little attention has been to paid to such diagnostics in the literature.

From a modeling point of view, the best performance in terms of the highest
funding ratio was obtained when extremely high values for the penalty parameters
were used. The high values correspond to low tolerance of violation of the pension
fund risk aversion. The risk aversion of the fund was modeled with two penalty
functions, one penalizing for low funding ratios and the other for funding ratios
that do not reach a pre-specified target at the horizon. In addition, sensitivity
diagnostics revealed that the most important constraint in the optimization model
was the maximum amount allowed on purchases. This was measured by altering the
parameter and examining the resulting change in the expected funding ratio at the
horizon. This underlines the necessity of a carefully chosen value for the parameter. In
theory, the value should reflect the tolerance and the will of the pension fund manager
to change the investment strategy. A more conservative tolerance for change results
in more rigorous constraints.

A Comparison between market-valued liabilities and premiums as opposed to
valuation using fixed interest rates was made. This comparison revealed that when
fixed interest rates are used, an overconfident funding ratio at the horizon is obtained.
The fixed valued funding ratio differs from the one currently used by the Icelandic
Financial Supervisory Authority. The difference is that bonds are currently valued
at fixed interest whereas market-valued bonds were used. However the results sug-
gest that current risk measures severely underestimate interest rate risk. Although
that pension fund managers are aware of interest rate risk, the current supervisory
framework is based on the funding ratio obtained when liabilities, premiums and
bonds are valued at fixed interest rates. This might cause an imbalance since pension
funds are required to reduce pension payments to current pensioners if the funding
ratio falls below -10% in one year or -5% in five consecutive years. As a result of an
overestimated funding ratio, current pension payments are not reduced as much as
they should be. This might suggest that current pensioners are receiving too high
pension payments as a result of bad risk measures.

Finally, it is worth emphasizing that the conclusions are based on the fact that
market liquidity is readily available. Therefore it is assumed that the pension fund
can at all times alter its allocation in all asset classes.
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7.2 Future work

Despite the extensions made to the modified K-means scenario generation method,
future work and further modifications are required. One suggestion is to break
the method into two phases: a simulation phase and a clustering phase. The two
phases are then executed in an alternating manner. In the first stage all paths
are simulated from the root cluster and then bundled into cluster according to the
branching structure, as before. At the second stage, the time series models are reset
in accordance with each cluster and thereafter paths are simulated from each cluster
one cluster at a time. After the paths have been simulated from the first cluster in
the second stage, the paths are immediately bundled into clusters which form the first
part of the third stage clustering. This is then done for all clusters which completes
the clustering in the third stage. The alternating procedure is then repeated until the
horizon. This enables the scenario generation algorithm to construct scenario trees
of unlimited size. In addition to modifications, a comparison with other scenario
generation methods in the literature in terms of computational efficiency and stability
would be most interesting.

If improvements on in-sample stability can be obtained, a more detailed sensitivity
analysis could be performed. This would be beneficial for analyzing the effects
of altering the values of estimated parameters in the models for the underlying
stochastic variables, on the optimal expected funding ratio at the horizon. For
example, analysis on the real yield curve model which plays a major role in the
study could be performed.

Further research on possible underestimation of interest rate risk on the current
actuarial position valuation used by the Icelandic Financial Supervisory Authority
is required. Modifications to model the current valuation method can be made by
incorporate fixed rate valued bonds.

A systematic comparison between the scenario based recourse formulation of
stochastic programs and dynamic programming methods needs to be undertaken.
Little attention has been paid to such a comparison in the literature and therefore
there is room for such a study.
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Appendix I

An example of the evolution of the modified K-means method is given in figure 7.1
for construction of a scenario tree with branching structure B = {1, 4, 2, 2} and four
stages, T = {0, 2, 4, 8}. In panel (a) a simulated one dimensional scenario fan with
N = 50 individual paths is shown. In panel (b) the result of the first stage clustering
is shown, where the clusters are marked with red circles. Panel (c) and (d) show the
result of the second and third stage clustering.

Figure 7.1. Evolution of the modified K-means clustering method.

In figure 7.2 the resulting scenario tree is represented, where the red branches denote
the connection between each cluster and its sub custers.
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Figure 7.2. Scenario tree representation.
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Appendix II

Summary of the asset liability model introduced in chapter 3.

Parameters:

h0
j : Known initial holdings in asset j in stage t = 0.
Rt,j : Return of asset j in stage t.
cq : Transaction cost for asset class q.
Lt: Liability at time t.
It: Premium at time t.
L̃t: Present value of future liability payments in stage t.
Ĩt: Present value of future premiums in stage t.
lq : Lower bound for holdings in asset class q.
uq : Upper bound for holdings in asset class q.
up : Upper bound for purchase.

Decision variables

ht,j : Holdings in asset j in stage t.
pt,j : Purchase in asset j in stage t.
st,j : Sales in asset j in stage t.
Wt : Wealth in stage t.
Ztarget
T : Penalty for deficit on the funding ratio at the horizon.

Zmin
t : Penalty for funding ratio below the minimum in stage t.
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max
h,p,s,W,Z

E

[(
WT,s + ĨT,s

L̃T,s
− 1

)
− λ1

(
Ztarget
T,s

L̃T,s

)
− λ2

T∑
t=1

(
Zmin
t,s

L̃t,s

)]
subject to

ht,j = ht−1,j(1 +Rt,j) + pt,j − sti,j∑
j∈J

(1 + cq)p0,j =
∑
j∈J

(1− cq)s0,j

∑
j∈J

(1 + cq)pt,j + Lt =
∑
j∈J

(1− cq)st,j + It

lj
∑
j∈J

ht,j ≤ ht,j ≤ uj
∑
j∈J

ht,j

pt,j ≤ up
∑
j∈J

ht,j

Wt = Wt−1 +
∑
j∈J

(1 +Rj,t)ht,j−1

(WT + ĨT ) ≥ (1 + FRtarget)L̃T − Ztarget
T

(Wt + Ĩt) ≥ (1 + FRmin)L̃t − Zmin
t

h
bsc
t,j = h

bs′c
t,j , p

bsc
t,j = p

bs′c
t,j , s

bsc
t,j = s

bs′c
t,j

hj0 ≥ 0, ht,j ≥ 0, , pt,j ≥ 0, , st,j ≥ 0, Ztarget
T ≥ 0, Zmin

T ≥ 0

for j ∈ J , {0, t, T} ∈ T , q ∈ Q and s = s′
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