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Abstract

If K is a �eld of characteristic 2, then the P�ster forms over K have a certain
connection with the groups Hn+1

2 (K). We will introduce a natural generalization of
these P�ster forms to forms of degree p over �elds of characteristic p, and see whether
these generalizations have a similar connection with the groups Hn+1

p (K). It turns
out that this is not the case and we provide a counterexample at the end. There
remains the question whether our interpretation of �similar connection� is wrong
or whether our generalization of P�ster forms is not the right one to �nd such a
connection. Then there remains the possibility that there is no such generalization.

Also, since H2
p (K) relates to the central simple algebras [a, b)K , we will do some

calculations of the reduced norm of [a, b)K .

Útdráttur

Ef K er kroppur með kennitölu 2, þá hafa P�ster formin y�r K ákveðna tengingu
við grúpurnar Hn+1

2 (K). Við munum innleiða náttúrlega útvíkkun á þessum P�ster
formum í form af gráðu p y�r kroppa með kennitölu p, og sjá hvort þessar útvíkkanir
hafa svipaða tengingu við grúpurnar Hn+1

p (K). Svo reynist ekki vera og við setjum
fram mótdæmi í lok ritgerðarinnar. Enn er þó ósvarað hvort okkar túlkun á �svipaðri
tengingu� er röng eða hvort okkar útvíkkun á P�ster formum er ekki sú rétta til að
�nna slíka tengingu. Síðan er eftir sá möguleiki að engin slík útvíkkun sé til.

Þar sem H2
p (K) tengjast miðlægu einföldu algebrunum [a, b)K munum við einnig

framkvæma nokkra útreikninga á smækkaða normi [a, b)K .
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1 Introduction

1.1 P�ster forms

In the study of quadratic forms over a �eld K, certain forms, the P�ster forms, play
a special role. An n-fold P�ster form is a particular kind of quadratic form in 2n

variables over K. If the characteristic of K does not equal 2 then an n-fold P�ster
form with variables xε1,...,εn can be described as a sum

∑1
ε1,...,εn=0 a

ε1
1 · · · aεnn x2ε1,...,εn ,

where ai ∈ K∗. These P�ster forms relate to, amongst other things, Galois co-
homology.

In the case that the characteristic of K does equal 2, an (n + 1)-fold P�ster form
can be described as a direct sum

⊕1
ε1,...,εn=0 b

ε1
1 · · · bεnn [1, a], where a ∈ K, bi ∈ K∗,

and [1, a] is the form mapping (x, y) ∈ K × K to x2 + xy + ay2. Note that [1, a]
can also be described as the norm form Na : K[τ ]→ K, where τ is the image of X
in K[X]/(X2 − X − a). In this case P�ster forms have a relation with the groups
Hn+1

2 (K), which we will try to generalize to arbitrary positive characteristic.

In what follows K is always a �eld of characteristic p > 0. For a ∈ K we let τ be
the image of X in K[X]/(Xp −X − a) and denote by Na the norm K[τ ]→ K. For
b1, . . . , bn ∈ K∗ we then de�ne the generalized P�ster form [[a, b1, . . . bn〉〉 as

p−1⊕
ε1,...,εn=0

bε11 · · · bεnn Na

Note that [[a, b1, . . . bn〉〉 is a form of degree p in pn+1 variables.

1.2 The groups Hn+1
p (K)

To de�ne the groups Hn+1
p (K) we use di�erential forms over K. One can de�ne the

space Ω1
K of 1-fold di�erential forms by considering the free K-module generated by

the symbols dx, with x ∈ K, and dividing out the submodule generated by elements

1



1 Introduction

of the form dz, d(x1 + x2) − dx1 − dx2 and d(x1x2) − x1dx2 − x2dx1, with z ∈ Fp
and x1, x2 ∈ K. One can then de�ne the space Ωn

K of n-fold di�erential forms over
K by taking the n-fold wedge product of Ω1

K . We also de�ne Ω0
K to be K. Given

these spaces of di�erential forms we have a K-linear map d : Ωn
K → Ωn+1

K , called the
exterior derivative, that satis�es the following conditions: d(x) = dx for any x ∈ K,
d2 = 0 and d(α ∧ β) = dα ∧ β + (−1)k(α ∧ dβ) if α is a k-form and β is an m-form.

So we let Ωn
K be the space of n-fold di�erential forms over K. Then there is

a well-de�ned Artin-Schreier operator ℘ : Ωn
K → Ωn

K/dΩn−1
K mapping the form

xdx1
x1
∧ · · · ∧ dxn

xn
to the class of the form (xp − x)dx1

x1
∧ · · · ∧ dxn

xn
(cf. [Mi], �1).

The group Hn+1
p (K) is de�ned as the cokernel of this operator. We shall denote by[

xdx1
x1
∧ · · · ∧ dxn

xn

]
the class of xdx1

x1
∧ · · · ∧ dxn

xn
in Hn+1

p (K).

Kato has done much work on these groups, for instance in [Ka]. Also, in [Iz] Izhboldin
interprets the groups Hn+1

p (K) as the p-part of the Galois cohomology of K. The
groups Hn+1

p (K) can then serve as substitutes for certain Galois cohomology groups.

2



2 A problem

We have the following theorem, proven in [AB]:

Theorem: Let a ∈ K and b1, . . . , bn ∈ K∗ be given. Let E be the set of all
ε = (ε1, . . . , εn) with 0 ≤ ε1, . . . , εn ≤ p − 1 and write 0 = (0, . . . , 0) ∈ E. Then[
adb1
b1
∧ · · · ∧ dbn

bn

]
= 0 in Hn+1

p (K) if and only if the form∑
ε∈E

bε11 · · · bεnn xpε − x0yp−1 − ayp (2.1)

of degree p in the pn + 1 variables (xε)ε∈E and y has a nontrivial K-rational zero. �

To see how this relates to [[a, b1, . . . bn〉〉 we calculate Na(x+ yτ) for x, y ∈ K. This
is equal to the determinant

∣∣∣∣∣∣∣∣∣∣∣∣∣

x 0 0 · · · 0 ay
y x 0 · · · 0 y
0 y x · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · x 0
0 0 0 · · · y x

∣∣∣∣∣∣∣∣∣∣∣∣∣
= x

∣∣∣∣∣∣∣∣∣∣∣

x 0 · · · 0 y

y x
. . . 0 0

...
...

. . .
...

...
0 0 · · · x 0
0 0 · · · y x

∣∣∣∣∣∣∣∣∣∣∣
+ ay

∣∣∣∣∣∣∣∣∣∣∣

y x · · · 0 0

0 y
. . . 0 0

...
...

. . .
...

...
0 0 · · · y x
0 0 · · · 0 y

∣∣∣∣∣∣∣∣∣∣∣
= x2

∣∣∣∣∣∣∣∣∣
x 0 · · · 0
y x · · · 0
...

...
. . .

...
0 0 · · · x

∣∣∣∣∣∣∣∣∣− xy
∣∣∣∣∣∣∣∣∣
y x · · · 0
0 y · · · 0
...

...
. . .

...
0 0 · · · y

∣∣∣∣∣∣∣∣∣+ ayp

= xp − xyp−1 + ayp

So Na(x + yτ) = xp − xyp−1 + ayp, and more speci�cally Na(x) = xp, which means
that the form (2.1) can be written as∑

ε∈E,ε 6=0

bε11 · · · bεnn Na(xε) +Na(x0 − yτ)

3



2 A problem

We see that this form is a subform of the form [[a, b1, . . . bn〉〉, since written with
variables, [[a, b1, . . . bn〉〉 is∑

ε∈E

bε11 · · · bεnn Na(xε,0 + xε,1τ + · · ·+ xε,p−1τ
p−1)

If the subform is isotropic (and equivalently
[
adb1
b1
∧ · · · ∧ dbn

bn

]
= 0) then, of course,

the original form [[a, b1, . . . bn〉〉 is also isotropic (a form being isotropic means that
it has a nontrivial zero). The question is whether the converse holds. In [Ka] Kato
proves that this is true when p = 2. In this essay we will see whether this holds for
arbitrary p or not.

2.1 The case n = 0

We start by considering the case n = 0. Then we just have Na(x0 − yτ) and
Na(x0 +x1τ + · · ·+xp−1τ

p−1). Now if Na(x0 +x1τ + · · ·+xp−1τ
p−1) has a nontrivial

zero, then K[τ ] is not a �eld, which means that Xp −X − a is reducible. But then,
if we let s be a root of Xp −X − a, we see that s + 1, . . . , s + p− 1 are also roots,
so Xp−X − a factors linearly over K(s). So if f is a factor of Xp−X − a that has
degree k, 0 < k < p, then the coe�cient of Xk−1 in f is −ks− (u1 + · · ·+ uk), with
{u1, . . . , uk} ⊂ {0, 1, . . . , p− 1} ⊆ K, so we get that s ∈ K. But then we have that
Na(s− τ) = sp − s− a = 0. This proves our conjecture in the case n = 0.

The next thing to consider is the case n = 1. In this case we have a connection with
central simple algebras.

4



3 The case n = 1 and central
simple algebras

We recall that a K-algebra A is said to be simple if it has no two-sided ideals
other than 0 and A. Furthermore A is said to be central if its center equals K.
Central simple algebras have many interesting attributes, especially the reduced
norm function, which we will do some calculations of in this chapter. For more on
central simple algebras we refer to [Ja] or [GS].

3.1 The central simple algebra [a, b)K

Elements a ∈ K and b ∈ K∗ determine a central simple algebra [a, b)K of degree p
over K. As a K-algebra it is generated by two elements x and y with the de�ning
relations xp − x = a, yp = b and yx = (x + 1)y. Note that L = K[x] is isomorphic
to K[τ ] and is a commutative K-algebra. It is in fact a cyclic étale over K, a
generator ρ of the Galois group being determined by x 7→ x + 1 (we recall that a
cyclic étale is a cyclic Galois extension of K if it is a �eld, otherwise it is isomorphic
to K[X]/(Xp)). Using L and ρ the algebra [a, b)K can be described as the direct
sum L⊕ Ly ⊕ · · · ⊕ Lyp−1, where yp = b and yw = ρ(w)y for every w ∈ L.

These cyclic p-algebras relate to our problem in the case n = 1 since the group
H2
p (K) is isomorphic to Brp(K), the subgroup of elements of order 1 or p in the

Brauer group of K (a group of certain equivalance classes of central simple algebras
over K, cf. [Ja] or [GS]), where the elements

[
adb
b

]
of H2

p (K) correspond to the
classes of the cyclic p-algebras [a, b)K over K [Ka]. So instead of our initial question
we could ask whether [[a, b〉〉 being isotropic is equivalent to [a, b)K not being a
division algebra. An e�ective tool for deciding whether a central simple algebra A
over K is a division algebra or not is the reduced norm NA : A → K on A. NA

being isotropic is equivalent to A not being a division algebra. We will show one
way to compute the reduced norm, but for more detail we refer to [GS].

Let Na : L → K be the norm form on L. In the case p = 2 the reduced norm on
[a, b)K is given by [[a, b〉〉 = Na⊕ bNa, corresponding to the decomposition [a, b)K =

5



3 The case n = 1 and central simple algebras

L⊕Ly. This shows that our conjecture is true in this case. One can ask whether for
arbitrary p the reduced norm on [a, b)K is given by [[a, b〉〉 = Na⊕bNa⊕· · ·⊕bp−1Na,
corresponding to the decomposition [a, b)K = L⊕Ly⊕ · · · ⊕Lyp−1. If this was true
it would solve our problem in the case n = 1.

One way to compute the reduced norm on [a, b)K is as follows: Choose a �eld
extension K ′ of K such that [a, b)K′ = K ′⊗K [a, b)K splits. Choose an isomorphism
[a, b)K′ ∼= Mp(K

′) of K ′-algebras, where Mp(K
′) is the algebra of p × p matrices

over K ′. Then the composition of the reduced norm on [a, b)K and the inclusion
K → K ′ equals the composition of the inclusion [a, b)K → [a, b)K′ , the isomorphism
[a, b)K′ ∼= Mp(K

′) and the determinant Mp(K
′)→ K ′.

We can, for example, let K ′ = K(α), with α a root of tp − t − a. We then get
an isomorphism [a, b)K′ ∼= Mp(K

′) by mapping x to the diagonal matrix X with
diagonal elements α, α + 1, . . . , α + p+ 1 and by mapping y to the transpose

Y =


0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . . . . . 0

0 0 · · · 0 1
b 0 · · · 0 0


of the companion matrix of the polynomial tp − b. In this case, L′ = K ′(x) cor-
responds to the subalgebra D′ of diagonal matrices in Mp(K

′) and the norm form
Na : L′ → K ′ corresponds to the restriction of the determinant. As det(Y ) = b, it
follows that the question of whether the reduced norm on [a, b)K is given by [[a, b〉〉
means whether in general

det(D0 +D1Y + · · ·+Dp−1Y
p−1)

= det(D0) + det(D1) det(Y ) + · · ·+ det(Dp−1) det(Y )p−1

= det(D0) + b det(D1) + · · ·+ bp−1 det(Dp−1)

for any diagonal matrices D0, D1, . . . , Dp−1.

In the case p = 3 easy computations show that the determinant of the matrix

D(u1, u2, u3) +D(v1, v2, v3)Y +D(w1, w2, w3)Y
2

equals
u1u2u3 + bv1v2v3 + b2w1w2w3 − b(u1v3w2 + u2v1w3 + u3v2w1)

Here we have denoted by D(x1, x2, x3) the diagonal matrix with diagonal elements
x1, x2, x3. We see that in the case p = 3, the reduced norm on [a, b)K is not given
by Na ⊕ bNa ⊕ b2Na = [[a, b〉〉. To get a speci�c example over K, we look at the

6



3 The case n = 1 and central simple algebras

reduced norm of the element x2 + y + y2 in [a, b)K . Then we have u1 = α2, u2 =
(α + 1)2, u3 = (α− 1)2 and vi, wi = 1, so we get

α2(α + 1)2(α− 1)2 + b+ b2 − b(α2 + (α + 1)2 + (α− 1)2)

= (α3 − α)2 + b+ b2 − b(α2 + α2 + 2α + 1 + α2 − 2α + 1)

= a2 + b+ b2 − 2b

= a2 − b+ b2

However (Na ⊕ bNa ⊕ b2Na)(x
2 + y + y2) = a2 + b+ b2.

This does not give a negative answer to our original question, since [[a, b〉〉 being
isotropic could still be equivalent to N[a,b)K being isotropic, even if they are not the
same. To further investigate on this let's try to �nd a more explicit formula for the
reduced norm of [a, b)K in some special cases. By σ we denote the automorphism of
K ′ over K mapping α to α + 1. Recall that

X =


α 0 · · · 0
0 σ(α) · · · 0
...

...
. . .

...
0 0 · · · σp−1(α)

 and Y =


0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . . . . . 0

0 0 · · · 0 1
b 0 · · · 0 0



We see that our map [a, b)K = L⊕ Ly ⊕ · · · ⊕ Lyp−1 →Mp(K
′) is given by

r0 + r1y + · · ·+ rp−1y
p−1

↓
r′0 r′1 r′2 · · · r′p−1

bσ(r′p−1) σ(r′0) σ(r′1) · · · σ(r′p−2)

bσ2(r′p−2) bσ2(r′p−1) σ2(r′0)
. . .

...
...

...
. . . . . . σp−2(r′1)

bσp−1(r′1) bσp−1(r′2) · · · bσp−1(r′p−1) σp−1(r′0)


(3.1)

where r 7→ r′ denotes the K-linear map L→ K ′ mapping x to α. The reduced norm
of r0 + r1y + · · ·+ rp−1y

p−1 is the determinant of this matrix.

7



3 The case n = 1 and central simple algebras

3.2 Subform of the reduced norm

First let's use (3.1) to see that the form (2.1) is a subform of the reduced norm, or
more speci�cally that it is the reduced norm of r0 + r1y + · · ·+ rp−1y

p−1, with r0 =
s− tx and s, t, r1, . . . , rp−1 ∈ K. To do that we have to show that the determinant
of 

s− tα r1 r2 · · · rp−1
brp−1 s− t(α + 1) r1 · · · rp−2

brp−2 brp−1 s− t(α + 2)
. . .

...
...

...
. . . . . . r1

br1 br2 · · · brp−1 s− t(α + p− 1)


is sp + brp1 + · · · + bp−1rpp−1 − stp−1 − atp. To do that we use the following formula,
proven in A.7 of [GS]:

Proposition: Let A be a commutative ring of characteristic p and let D be a deri-
vation on A (i.e. D(cd) = D(c)d + cD(d) for c, d ∈ A). For any element c ∈ A
denote by Mc : A→ A the multiplication by c. Then

(Mc +D)p = Mp
c +Dp +MDp−1(c) (3.2)

for every c ∈ A. �

Now we let A = K(t0, . . . , tp−1, v)[y], where yp = b and t0, . . . , tp−1, v are variables,
and let c = t0 + t1y+ · · ·+ tp−1y

p−1. Now, looking at A as a vector space with basis
1, y, . . . , yp−1, let D be the linear operator on A mapping yi 7→ iyi and let S be the
linear operator given by S = Mc − vD. It is trivial to check that vD is a derivation
on A, so using the formula (3.2) and the identities Dp = D and Dp−1(c) = c − t0,
we get that

Sp = Mp
c − vpDp +Mvp−1Dp−1(c)

= Mcp − vp−1(vD) + vp−1Mc −Mvp−1t0

= vp−1S +Mcp−vp−1t0

Now cp − vp−1t0 ∈ K(t0, . . . , tp−1, v), so we get that S is a zero of the polynomial
T p− vp−1T − (cp− vp−1t0)I, where I is the identity operator. Now if Xp− vp−1X −
(cp − vp−1t0) is reducible, let q be a zero of it. Then q + v, . . . , q + (p − 1)v are
also zeros and using the same kind of argument we used to prove our conjecture in
the case n = 0, we get that q ∈ K(t0, . . . , tp−1, v). But considering the equation
qp − vp−1q − (cp − vp−1t0) = 0 we �rst see that q would have to be integral, i.e. in
K[t0, . . . , tp−1, v]. Then, by considering powers of t1 in q, we see that this is actually
impossible. Firstly, q would have to have some term with a power of t1, or else
the btp1 term of cp wouldn't cancel out. Now if any terms of q had a power of t1
greater than 1, then the corresponding terms of qp wouldn't cancel out. So q must

8



3 The case n = 1 and central simple algebras

have terms with t1 to the power of 1. But then the corresponding terms of vp−1q
wouldn't cancel out, so this is in fact impossible.

SoXp−vp−1X−(cp−vp−1t0) is irreducible and it is therefore the minimal polynomial
of S. Then by Cayley-Hamilton it is also the characteristic polynomial of S, so the
determinant of S is cp − vp−1t0. Now letting

v = t, t0 = s− tα, t1 = r1, . . . , tp−1 = rp−1

we get that the determinant of (the transpose of) our original matrix is sp + brp1 +
· · ·+ bp−1rpp−1 − stp−1 − atp, which is what we wanted to show.

3.3 Reduced norm of rky
k + rmy

m

Now let's consider the special case rkyk + rmy
m, where 0 ≤ k < m ≤ p − 1.

Then (3.1) gives us a matrix (ci,j), i, j ∈ {0, 1, . . . , p − 1}, which has ci,j = 0,
unless j − i ≡ k or m (mod p). Using the Leibniz formula for the determinant,
det(A) =

∑
σ∈Sn

sgn(σ)
∏n

i=1 ai,σ(i), we know that the determinant is a sum of terms
that are multiples of p entries of the matrix, one from each row and column. Now
let's see which of these terms can be nonzero. Such a term is the multiple of p
entries ci,j such that j− i ≡ k or m (mod p). Now if we have d pairs (i, j) such that
j − i ≡ k, and then p− d pairs such that j − i ≡ m, then adding all these up gives

dk + (p− d)m ≡ (j0 − i0) + · · ·+ (jp−1 − ip−1)
dk − dm ≡ (j0 + · · ·+ jp−1)− (i0 + · · ·+ ip−1)

d(k −m) ≡ (0 + 1 + · · ·+ p− 1)− (0 + 1 + · · ·+ p− 1)

d(k −m) ≡ 0

So we can only have d = 0 or d = p, so the only terms of the determinant that can be
nonzero are r′k · · · σp−k−1(r′k)bσp−k(r′k) · · · bσp−1(r′k) = bkr′k · · ·σp−1(r′k) = bkNa(rk)
and bmr′m · · ·σp−1(r′m) = bmNa(rm). We also see that both corresponding permuta-
tions have sign +, so the reduced norm of rkyk + rmy

m is bkNa(rk) + bmNa(rm). So,
although the forms N[a,b)K and [[a, b〉〉 are not the same, they agree on elements of
this special type.

9



3 The case n = 1 and central simple algebras

3.4 Reduced norm when p = 3

Now let's look at the special case p = 3. Using (3.1) we see that our map is then
given by

r + sy + ty2 7→

 r′ s′ t′

bσ(t′) σ(r′) σ(s′)
bσ2(s′) bσ2(t′) σ2(r′)


The determinant of this matrix is easily seen to be

r′σ(r′)σ2(r′) + bs′σ(s′)σ2(s′) + b2t′σ(t′)σ2(t′)

− br′σ(s′)σ2(t′)− bs′σ(t′)σ2(r′)− bt′σ(r′)σ2(s′)

= Na(r) + bNa(s) + b2Na(t)− bTrK′/K(r′σ(s′)σ2(t′))

Computations of TrK′/K(r′σ(s′)σ2(t′)) show that, writing r = r0 + r1x + r2x
2, s =

s0 + s1x + s2x
2, t = t0 + t1x + t2x

2 with coe�cients in K, the reduced norm of
r + sy + ty2 is given by:

Na(r) + bNa(s) + b2Na(t)
+ br0s0t2 + br0s1t1 − br0s1t2 + br0s2t0 + br0s2t1 − br0s2t2
+ br1s0t1 + br1s0t2 + br1s1t0 − br1s2t0 + abr1s2t2 + br2s0t0
− br2s0t1 − br2s0t2 + br2s1t0 + abr2s1t2 − br2s2t0 + abr2s2t1

(3.3)

10



4 Solution attempts for n = 1 and
p = 3

Let's try to solve the main problem posed in Chapter 2 in the case p = 3. Then

Na(x+ yτ + zτ 2) =

∣∣∣∣∣∣
x az ay
y x+ z y + az
z y x+ z

∣∣∣∣∣∣
= x3 + 2x2z − xy2 + xz2 + ay3 − ayz2 + a2z3

By de�nition, the form [[a, b〉〉 is therefore given by

x30 + 2x20z0 − x0y20 + x0z
2
0 + ay30 − ay0z20 + a2z30

+ b(x31 + 2x21z1 − x1y21 + x1z
2
1 + ay31 − ay1z21 + a2z31)

+ b2(x32 + 2x22z2 − x2y22 + x2z
2
2 + ay32 − ay2z22 + a2z32)

The subform (2.1), however is given by

x30 − x0y20 − ay30 + bx31 + b2x32

4.1 First attempt

In the previous chapter we showed that N[a,b)K 6= [[a, b〉〉 by noting that the two
forms did not agree on the element x2 + y + y2. Our �rst attempt at solving the
problem is inspired by this example. So we assume that z0 = x1 = x2 = 1, other
variables = 0, is a zero of [[a, b〉〉. Then we get the equation a2 + b + b2 = 0. Now
if we let K = K0(t), where K0 is some �eld of characteristic 3, and let a = 2t

t2+1
,

b = 2t2

t2+1
, then this equation is satis�ed. The isotropy of the form (2.1) then gives

the following functional equation

f 3
0 − f0h2 −

2t

t2 + 1
h3 +

2t2

t2 + 1
f 3
1 + 4t4(t2 + 1)g32 = 0

11



4 Solution attempts for n = 1 and p = 3

where h, f0, f1, g2 ∈ K. If we could show that this functional equation has no
solution we would disprove our conjecture. However, after some speculations we see
that a2 + b+ b2 = 0 would indeed mean that the form (2.1) was isotropic, since

(a+ b)3 − (a+ b)(−1− b)2 − a(−1− b)3 + b(1 + a)3 + b2(−1)3

= a3 + b3 − a− 2ab− ab2 − b− 2b2 − b3 + a+ ab3 + b+ a3b− b2

= a3(1 + b) + a(−2b− b2 + b3)

= a3(1 + b) + ab(1 + 2b+ b2)

= a3(1 + b) + ab(1 + b)2

= a(1 + b)(a2 + b+ b2) = 0

And by letting f0 = 2t(t + 1), h = −1, f1 = (t + 1)2, g2 = −1, we get a solution to
the functional equation. While this is a result in its own right, it does not solve our
initial problem.

4.2 The connection with central simple algebras

Now let's look at the connection with central simple algebras. We can play around
with the formula (3.3), and for instance we get that

Na(r) + bs30 + b2t30 + br2s0t0

is the reduced norm of r + s0y + t0y
2 with r = r0 + r1x + r2x

2 and s0, t0 ∈ K. Let
s0 = δr2, t0 = εr2. Then we get

Na(r) + (bδ3 + b2ε3 + bδε)r32

Let ε = 1 and get
Na(r) + (b(δ3 + δ) + b2)r32

Now let δ = −1. Then we get

Na(r) + (b(−2) + b2)r32 = Na(r) + (b+ b2)r32

This means that the reduced norm of r−r2y+r2y
2 is Na(r)+(b+b2)r32. In particular,

the reduced norm of x2− y+ y2 is a2 + b+ b2, which gives an easier way to see that
if a2 + b + b2 = 0, then

[
adb
b

]
= 0. Furthermore this considerably widens the range

of zeros that [[a, b〉〉 can have to give the same result. Now any nontrivial zero that
has y1, z1, y2, z2 = 0 and z0 = x1 = x2 will give

[
adb
b

]
= 0.

We also have that if 0 ≤ i < j ≤ 2 and u, v ∈ L then the reduced norm of uyi + vyj

equals biNa(u) + bjNa(v), so any nontrivial zero of [[a, b〉〉 that has xi, yi, zi = 0 for
some i ∈ {0, 1, 2} will give

[
adb
b

]
= 0.
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4 Solution attempts for n = 1 and p = 3

4.3 Solving the problem

The connection with central simple algebras is interesting in its own right; however,
our next serious approach at solving our problem is similar to the �rst one, except
instead of letting z0 = 1, we let z0 = r, where r is a variable. This gives the equation

r3a2 + b+ b2 = 0

We can solve the equation for a and b and write both as functions of t and r. Let
t = b/a, b = at. Then we get

r3a2 + at+ a2t2 = 0

This gives a = 2t
t2+r3

, and then b = 2t2

t2+r3
, with indeterminate r and t. So now we let

K be the rational function �eld K0(r, t), where K0 is some �eld of characteristic 3,
and we let a = 2t

t2+r3
and b = 2t2

t2+r3
. This gives a counterexample to the original

question, since now [[a, b〉〉 is isotropic, but the form (2.1) is not. To see that there
are no f0, f1, f2, h ∈ K, not all 0, such that

f 3
0 − f0h2 −

2t

t2 + r3
h3 +

2t2

t2 + r3
f 3
1 +

4t4

(t2 + r3)2
f 3
2 = 0

we assume on the contrary that this is the case. Using a common denominator we
may assume that f0, f1, f2, h are all polynomials in r and t and that they have no
common factor. It then follows at once that f2 = (t2 + r3)g2 with g2 ∈ K0[r, t]. We
then get the equation

f 3
0 − f0h2 −

2t

t2 + r3
h3 +

2t2

t2 + r3
f 3
1 + 4t4(t2 + r3)g32 = 0

From this equation we see that h can't be divisible by t2 + r3, because that would
imply that f1, and then f0 also, would be divisible by t2 + r3. But that would
contradict our assumption of no common factor. Now multiplying the equation by
t we get

tf 3
0 − tf0h2 −

2t2

t2 + r3
h3 +

2t3

t2 + r3
f 3
1 + 4t5(t2 + r3)g32 = 0

Writing 2t2 = 2(t2 + r3)− 2r3 we get

tf 3
0 − tf0h2 − 2h3 +

2r3

t2 + r3
h3 +

2t3

t2 + r3
f 3
1 + 4t5(t2 + r3)g32 = 0

This can be written as

tf 3
0 − tf0h2 + h3 +

2

t2 + r3
(rh+ tf1)

3 + 4t5(t2 + r3)g32 = 0

13



4 Solution attempts for n = 1 and p = 3

It follows that rh + tf1 is divisible by t2 + r3. But then 2
t2+r3

(rh + tf1)
3 is integral

and divisible by (t2 +r3)2. It then follows that tf 3
0 − tf0h2 +h3 is divisible by t2 +r3.

We do know that h is not divisible by t2 + r3. We now work modulo t2 + r3, i.e. in
the �eld K0(r)(γ), where γ =

√
−r3. We denote by ξ the class of −f0

h
in this �eld.

Then the fact that tf 3
0 −tf0h2+h3 is divisible by t2+r3 means that γξ3−γξ−1 = 0,

i.e. ξ3 − ξ = 1
γ
, i.e. ξ3 − ξ = − 1

r3
γ. Writing ξ = ζ + ηγ, with ζ and η in K0(r), this

means that −r3η3 − η = − 1
r3
, i.e. r6η3 + r3η = 1. Of course η 6= 0. Writing ω = 1

η

we can rewrite this equation as ω3 − r3ω2 − r6 = 0. It follows that ω must lie in
K0[r], and in fact be divisible by r2, say ω = r2ω2. For ω2 we then get the equation
ω3
2 − rω2

2 − 1 = 0. But this is easily seen to be impossible.
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