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Abstract

If K is a field of characteristic 2, then the Pfister forms over K have a certain
connection with the groups HJ ™ (K). We will introduce a natural generalization of
these Pfister forms to forms of degree p over fields of characteristic p, and see whether
these generalizations have a similar connection with the groups H)*'(K). It turns
out that this is not the case and we provide a counterexample at the end. There
remains the question whether our interpretation of “similar connection” is wrong
or whether our generalization of Pfister forms is not the right one to find such a
connection. Then there remains the possibility that there is no such generalization.

Also, since H?(K) relates to the central simple algebras [a,b)x, we will do some
calculations of the reduced norm of [a,b) k.

Utdrattur

Ef K er kroppur med kennitélu 2, pa hafa Pfister formin yfir K dkvedna tengingu
vid grapurnar Hyt(K). Vid munum innleida natttrlega utvikkun 4 pessum Pfister
formum 1 form af graou p yfir kroppa med kennitolu p, og sja hvort pessar utvikkanir
hafa svipada tengingu vid grapurnar H;‘“(K ). Svo reynist ekki vera og vid setjum
fram motdaemi 1 lok ritgerdarinnar. Enn er p6 6svarad hvort okkar tilkun & ,svipaori
tengingu” er réng eda hvort okkar ttvikkun & Pfister formum er ekki s rétta til ad
finna slika tengingu. Sidan er eftir s& moguleiki ad engin slik Gtvikkun sé til.

Par sem Hz(K ) tengjast midlaegu einféldu algebrunum [a,b)x munum vid einnig
framkvaema nokkra utreikninga 4 smackkada normi [a, b)k-.
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1 Introduction

1.1 Pfister forms

In the study of quadratic forms over a field K, certain forms, the Pfister forms, play
a special role. An n-fold Pfister form is a particular kind of quadratic form in 2"
variables over K. If the characteristic of K does not equal 2 then an n-fold Pfister
form with variables ., . can be described as a sum Zil _oaftceearal
where a; € K*. These Pfister forms relate to, amongst other things, Galois co-

homology.

In the case that the characteristic of K does equal 2, an (n + 1)-fold Pfister form
can be described as a direct sum @il _____ c—obl'---bi[1,a], where a € K, b; € K*,
and [1,a] is the form mapping (z,y) € K x K to 2% + xy + ay®. Note that [1,a]
can also be described as the norm form N, : K[r| — K, where 7 is the image of X
in K[X]/(X? — X —a). In this case Pfister forms have a relation with the groups
HYH(K), which we will try to generalize to arbitrary positive characteristic.

In what follows K is always a field of characteristic p > 0. For a € K we let 7 be
the image of X in K[X]/(X? — X — a) and denote by N, the norm K|[r] — K. For
bi,...,b, € K* we then define the generalized Pfister form [[a,by,...D,)) as

p—1

@ bil"'binNa
Note that [[a, by, ...b,)) is a form of degree p in p"*! variables.
n+1
1.2 The groups H) " (K)

To define the groups H'*'(K) we use differential forms over K. One can define the
space Q% of 1-fold differential forms by considering the free K-module generated by
the symbols dx, with z € K, and dividing out the submodule generated by elements
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of the form dz, d(xy + z2) — dxy — dxg and d(x122) — x1dxe — 2adzy, with 2z € F,
and 71,29 € K. One can then define the space (2} of n-fold differential forms over
K by taking the n-fold wedge product of Q.. We also define Q% to be K. Given
these spaces of differential forms we have a K-linear map d : Q0% — Q’;(“, called the
exterior derivative, that satisfies the following conditions: d(z) = dz for any = € K,
d>=0and d(a A B) =daA B+ (=1)*(aAdb)if ais a k-form and 3 is an m-form.

So we let Q2% be the space of n-fold differential forms over K. Then there is
a well-defined Artin-Schreier operator o : Q% — Q% /dQ0% ' mapping the form
xcf—ll A oo A %2 g0 the class of the form (2f — x)dxill AEERWAN dmin" (cf. [Mi], §1).

n

The group H}*'(K) is defined as the cokernel of this operator. We shall denote by

I%/\"-/\dx—" the class of 292 A ... A = in 7K.
1 Tn 1 o v

Kato has done much work on these groups, for instance in [Ka|. Also, in [Iz] Izhboldin
interprets the groups Hg“(K) as the p-part of the Galois cohomology of K. The
groups Hg“(K) can then serve as substitutes for certain Galois cohomology groups.



2 A problem

We have the following theorem, proven in [AB]:

Theorem: Let a € K and by,...,b, € K* be given. Let E be the set of all
e =(e1,...,6,) with 0 < &q,...,6, < p—1and write 0 = (0,...,0) € E. Then
[a% A A %] =0 in H}*'(K) if and only if the form

Z bi' - bgnxp Qyp’1 —ay? (2.1)

e€FE

of degree p in the p" + 1 variables (z.).cr and y has a nontrivial K-rational zero. [J

To see how this relates to [[a, by, ...b,)) we calculate N,(z + y7) for x,y € K. This
is equal to the determinant

z 0 0 0 ay r 0 0 vy y 0
Yy 0 0 y
. = T|: : . |tay
z 0 0 Yy T - 0
0 0 . 0
= 1z’ | =yl Y . + ay”
0 0 T 0 0 Y

= 2 —ayP 4+ ay?

So N,(z + y7) = 2P — zy?~* + ay®, and more specifically N,(z) = 2?, which means
that the form (2.1) can be written as

N0 B No() + Na(wg — ym)

e€E 40



2 A problem

We see that this form is a subform of the form [[a,by,...b,)), since written with
variables, [[a, b1, ...b,)) is

Z bil - bZ"Na(xg,O +xo 4T+ + $§7p_17_p—1)

e€E

If the subform is isotropic (and equivalently [a% ARERWA %ﬁ] = 0) then, of course,
the original form [[a, by, ...b,)) is also isotropic (a form being isotropic means that
it has a nontrivial zero). The question is whether the converse holds. In [Ka| Kato
proves that this is true when p = 2. In this essay we will see whether this holds for
arbitrary p or not.

2.1 The case n =0

We start by considering the case n = 0. Then we just have N,(zq — y7) and
No(zo+ 217+ -+ xp 1777 1). Now if N,(xg+ 217+ -+ 2, 177"") has a nontrivial
zero, then K [7] is not a field, which means that X? — X — a is reducible. But then,
if we let s be a root of X? — X — a, we see that s+ 1,...,s 4+ p — 1 are also roots,
so X? — X — a factors linearly over K(s). So if f is a factor of X? — X — a that has
degree k, 0 < k < p, then the coefficient of X*~1in fis —ks — (uy + - -+ + uy), with
{uy,...,ux} € {0,1,...,p— 1} C K, so we get that s € K. But then we have that
Ny(s — 1) =" —s—a=0. This proves our conjecture in the case n = 0.

The next thing to consider is the case n = 1. In this case we have a connection with
central simple algebras.



3 The case n =1 and central
simple algebras

We recall that a K-algebra A is said to be simple if it has no two-sided ideals
other than 0 and A. Furthermore A is said to be central if its center equals K.
Central simple algebras have many interesting attributes, especially the reduced
norm function, which we will do some calculations of in this chapter. For more on
central simple algebras we refer to [Ja] or [GS].

3.1 The central simple algebra [a,b)x

Elements a € K and b € K* determine a central simple algebra [a,b)x of degree p
over K. As a K-algebra it is generated by two elements x and y with the defining
relations 2 — x = a, y» = b and yx = (z + 1)y. Note that L = K|xz] is isomorphic
to K[r] and is a commutative K-algebra. It is in fact a cyclic étale over K, a
generator p of the Galois group being determined by = — x + 1 (we recall that a
cyclic étale is a cyclic Galois extension of K if it is a field, otherwise it is isomorphic
to K[X]/(X?)). Using L and p the algebra [a,b)x can be described as the direct
sum L& Ly @ -+ ® LyP~!, where y? = b and yw = p(w)y for every w € L.

These cyclic p-algebras relate to our problem in the case n = 1 since the group
H2(K) is isomorphic to Br,(K), the subgroup of elements of order 1 or p in the
Brauer group of K (a group of certain equivalance classes of central simple algebras
over K, cf. [Ja] or |GS]), where the elements [a%] of H2(K) correspond to the
classes of the cyclic p-algebras [a, b)x over K [Kal|. So instead of our initial question
we could ask whether [[a,b)) being isotropic is equivalent to [a,b)x not being a
division algebra. An effective tool for deciding whether a central simple algebra A
over K is a division algebra or not is the reduced norm Ny : A — K on A. Ny
being isotropic is equivalent to A not being a division algebra. We will show one
way to compute the reduced norm, but for more detail we refer to [GS].

Let N, : L — K be the norm form on L. In the case p = 2 the reduced norm on
la,b) i is given by [[a, b)) = N, @ bN,, corresponding to the decomposition [a, b)x =
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L& Ly. This shows that our conjecture is true in this case. One can ask whether for
arbitrary p the reduced norm on [a, b)f is given by [[a, b)) = N,®bN,®- - - S IN,,
corresponding to the decomposition [a,b)x = L& Ly @ ---® LyP~!. If this was true
it would solve our problem in the case n = 1.

One way to compute the reduced norm on [a,b)k is as follows: Choose a field
extension K’ of K such that [a,b)x = K' ® [a,b) k splits. Choose an isomorphism
[a,b)k = M,(K') of K'-algebras, where M,(K') is the algebra of p x p matrices
over K’. Then the composition of the reduced norm on [a,b)x and the inclusion
K — K’ equals the composition of the inclusion [a,b)x — [a,b) g, the isomorphism
la,b) g = M,(K’) and the determinant M,(K') — K.

We can, for example, let K/ = K(«), with « a root of t» —t — a. We then get
an isomorphism [a,b)xr = M,(K’) by mapping = to the diagonal matrix X with
diagonal elements a, a4+ 1,...,a+ p+ 1 and by mapping y to the transpose

01 0 --- 07
00 1
Y=1: 1 0
0 0 0 1
b 0 0 0|

of the companion matrix of the polynomial ¥ — b. In this case, L' = K'(z) cor-
responds to the subalgebra D’ of diagonal matrices in M,(K’) and the norm form
N, : L' — K’ corresponds to the restriction of the determinant. As det(Y) = b, it
follows that the question of whether the reduced norm on [a, b) is given by [[a, b))
means whether in general

det(Dy + DY + -+ + D, ;YP™1)
= det(Dy) + det(D;) det(Y) + - - - + det(D,_1) det(Y)? !
det(Dg) + bdet(Dy) + - -+ + P~ det(D,_;)

for any diagonal matrices Dy, D1, ..., Dp_;.

In the case p = 3 easy computations show that the determinant of the matrix
D(uy, ug, uz) + D(vy,v2,v3)Y + D(wy, wo, w3)Y?

equals

2
Utz + buivgus + b wiwows — b(ugv3we + usv1w3 + UzVaWH )

Here we have denoted by D(x1, 2y, x3) the diagonal matrix with diagonal elements
x1, %2, x3. We see that in the case p = 3, the reduced norm on [a, ) is not given
by N, ® bN, @ b*N, = [[a,b)). To get a specific example over K, we look at the
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reduced norm of the element 2 + y + y? in [a,b)x. Then we have u; = o uy =
(a+1)2,u3 = (. — 1)? and v;, w; = 1, so we get

o*(a+1)%(a—1)?+b+b" = b(a® + (a+1)° + (a — 1))
= (@ —a)l+b+b—bla*+a’+2a+1+a*—2a+1)
= a®+b+b"—2b
= a®—b+ b

However (N, ® bN, @ V>N, )(2? + y + y*) = a® + b + b2

This does not give a negative answer to our original question, since [[a,b)) being
isotropic could still be equivalent to N, ), being isotropic, even if they are not the
same. To further investigate on this let’s try to find a more explicit formula for the
reduced norm of [a, b)  in some special cases. By o we denote the automorphism of
K’ over K mapping « to o + 1. Recall that

01 0 -+ 07
a 0 .- 0 )

0 o(a) --- 0 00
X =1 ) ' . and Y =|[. : - 0
0 0 o o i(a) 00 -+ 0 1
b0 -~ 0 0]

We see that our map [a,b)g = L@ Ly @ --- & LyP~" — M,(K’) is given by

ro 4Ty 4+ rpoyP !

1
D I A T 2
bo(r ) o) o(h) e o)
b () b0 () (1) |
: . Up_2(7J1)
[ 607 M) borT(rh) e bot M) o7 (rg)

where r — 1’ denotes the K-linear map L — K’ mapping z to a. The reduced norm
of rg + iy + -+ + 7, 1yP~ " is the determinant of this matrix.
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3.2 Subform of the reduced norm

First let’s use (3.1) to see that the form (2.1) is a subform of the reduced norm, or
more specifically that it is the reduced norm of 7o + riy + - - + rp,_1y?~ 1, with ry =

s —txr and s,t,7rq,..

.,mp—1 € K. To do that we have to show that the determinant

of ) )
s —ta sl T9 Tp—1
brp-1 s—tla+1) ry Tp—2
brp_s brp—1 s —tla+2)
) . -
e bry brp-1 s—tla+p—1)

is s 4 br + -+ by — stP~! — at?. To do that we use the following formula,
proven in A.7 of [GS]:

Proposition: Let A be a commutative ring of characteristic p and let D be a deri-
vation on A (i.e. D(ed) = D(c)d + ¢D(d) for ¢,d € A). For any element ¢ € A
denote by M. : A — A the multiplication by c¢. Then

(Mc+ D)P = M? + DP + Mpp-1(e (3.2)

for every c € A. O

Now we let A = K(to,...,t,—1,v)[y], where y¥ = b and t,...,t,_1,v are variables,
and let ¢ =t +t1y+- - +t,-19""'. Now, looking at A as a vector space with basis
Ly,...,yP L, let D be the linear operator on A mapping y* — iy’ and let S be the
linear operator given by S = M. —vD. Tt is trivial to check that vD is a derivation
on A, so using the formula (3.2) and the identities D’ = D and D?~!(c) = ¢ — ty,
we get that

Sp = Mf — Upr + Mvp—le—l(c)
- MCP — Up_l(’UD) + 'Up_lMc — Mvpflto
e Up*lS + Mcpfvp_lto

Now ¢ — vP~ttg € K(to,...,tp-1,v), so we get that S is a zero of the polynomial
TP —vP™IT — (P — 0P~ y) I, where I is the identity operator. Now if X? —oP~1X —
(P — vP~ty) is reducible, let ¢ be a zero of it. Then ¢+ v,...,q + (p — 1)v are
also zeros and using the same kind of argument we used to prove our conjecture in
the case n = 0, we get that ¢ € K(ty,...,t,—1,v). But considering the equation
q° — vP7 g — (P — vP71ty) = 0 we first see that ¢ would have to be integral, i.e. in
Klto,...,ty—1,v]. Then, by considering powers of ¢; in ¢, we see that this is actually
impossible. Firstly, ¢ would have to have some term with a power of t;, or else
the bt} term of ¢® wouldn’t cancel out. Now if any terms of ¢ had a power of ¢;
greater than 1, then the corresponding terms of ¢” wouldn’t cancel out. So ¢ must
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have terms with #; to the power of 1. But then the corresponding terms of v?~lq
wouldn’t cancel out, so this is in fact impossible.

So XP—vP~t X —(cP —vP~ 1)) is irreducible and it is therefore the minimal polynomial
of S. Then by Cayley-Hamilton it is also the characteristic polynomial of S, so the
determinant of S is ¢® — vP~1ty. Now letting

v=1t,tg =85 —ta, by =7r1,...,tp_1 =Tp_1

we get that the determinant of (the transpose of) our original matrix is s? + br] +

40Pty — stPT! — at?, which is what we wanted to show.

3.3 Reduced norm of rkyk + rpy™

Now let’s consider the special case ryy* + 7,y™, where 0 < k < m < p — 1.
Then (3.1) gives us a matrix (¢;;), ¢,j € {0,1,...,p — 1}, which has ¢;; = 0,
unless j —i = k or m (mod p). Using the Leibniz formula for the determinant,
det(A) =3 g sgn(o) [T'2; aio@), we know that the determinant is a sum of terms
that are multiples of p entries of the matrix, one from each row and column. Now
let’s see which of these terms can be nonzero. Such a term is the multiple of p
entries ¢; ; such that j —i = k or m (mod p). Now if we have d pairs (7, j) such that
j — 1 =k, and then p — d pairs such that j — i = m, then adding all these up gives

dk+(p—d)m = (jo—io) + -+ (Jp-1 — ip-1)
dk —dm = (jo+ -+]p_1)—(z'o+-~+z',,_1)
dlk—m) = (0—|—1+ 4+p—-1)—0+1+---+p—1)
d(k—m) =

So we can only have d = 0 or d = p, so the only terms of the determinant that can be
nonzero are rk ap’k’l(rfﬂ)bop’k(r;) cboPT () = Rl o oPT(r) = BEN,(ry)
and b1l - 0P 1( ') = b"Ny(ry,). We also see that both Correspondmg permuta-
tions have sign +, so the reduced norm of rpy* + 7,y™ is b* N, (1) + 0™ N, (rp). So,
although the forms N4, and [[a,b)) are not the same, they agree on elements of
this special type.
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3.4 Reduced norm when p =3

Now let’s look at the special case p = 3. Using (3.1) we see that our map is then
given by
r! s t
r+sy+ty e | bo(t) o) o(s)
bo?(s') ba*(t') o*(r')
The determinant of this matrix is easily seen to be

r'o(r)a?(r') + bs'o(s))o?(s") + b* o (t) o (1)
— br'o(s)o?(t') — bs'a(t)o*(r') — bt'o(r)o*(s)
= No(r) +bN,(s) + >N, (t) — bTrgr i (r'o(s")o? (1))

Computations of Try//x(r'o(s')o?(t')) show that, writing r = ro 4+ rz + rea?, s =
So + 812 + 5972, t = tg + tiz + tex? with coefficients in K, the reduced norm of
r + sy + ty? is given by:

No(1) + bNy(s) + V>N, (t)
+ bTosotQ + bToSltl - b’f‘oSth + b?”oSgto + bT()SQtl - bToSth
+ lesotl + b?”lsotg + lesltO — br132t0 + abr182t2 + bT‘QSOtO
— b’f’gSotl — b’I“QSQtQ + bTQSth + abr2$1t2 — b’I“QSQtO + Clb’l“gSztl

(3.3)

10



4 Solution attempts for n =1 and
p=3

Let’s try to solve the main problem posed in Chapter 2 in the case p = 3. Then

T az ay
No(z+yr+27%) = |y 2+2 y+az
z Y T+ z

= 23+ 22%2 — ) + 12+ ay — ay2® + a2

By definition, the form [[a, b)) is therefore given by

3 2 2 2 3 2 2.3
Ty + 21520 — ToYy + Tozy + ayy — ayozy + a’zy
b(a® + 942 2 2 3 2 2.3

+ b(x] + 22721 — myi + x12] + ay) — ayy 2] +azy)

+ b5 4 22520 — Toys + 1023 + ays — aypzs + a’z))

The subform (2.1), however is given by

) — woys — ayy + bat + b*a;

4.1 First attempt

In the previous chapter we showed that Ny, 7# [[a,b)) by noting that the two
forms did not agree on the element x? + y + y?. Our first attempt at solving the
problem is inspired by this example. So we assume that zyp = x; = x5 = 1, other
variables = 0, is a zero of [[a,b)). Then we get the equation a® + b+ b*> = 0. Now
if we let K = Ky(t), where K; is some field of characteristic 3, and let a = -2

P
b= %, then this equation is satisfied. The isotropy of the form (2.1) then gives
the following functional equation

2t 2t*
f3— foh? — o 1h?’—l— oa 1ff’+4t4(t2—|— Dgs=0

11
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where h, fo, f1,92 € K. 1If we could show that this functional equation has no
solution we would disprove our conjecture. However, after some speculations we see
that a? + b+ b? = 0 would indeed mean that the form (2.1) was isotropic, since

(a+0)>—(a+b)(=1—=b)%—a(—1—0b)>+b(1l+a)+b*(-1)>
:a3+b3—a—2ab—ab2 b—20"—b"+a+ab’+b+a’b— b
=a*(1+0b) + a(—2b — b* 4 b°)

:a3(1+b)+ab(1+2l)+b2)

= a*(1+b) + ab(1 + b)*

=a(l+b)(a®>+b+b*) =0

And by letting fo =2t(t + 1), h = —1, fi = (t + 1)?, go = —1, we get a solution to
the functional equation. While this is a result in its own right, it does not solve our
initial problem.

4.2 The connection with central simple algebras

Now let’s look at the connection with central simple algebras. We can play around
with the formula (3.3), and for instance we get that

Na(T> + ng + b2t8 + szSOtQ
is the reduced norm of r + soy + toy? with r = 79 + r2 + re2? and so,to € K. Let
Sg = 0rg, tg = ery. Then we get

No(r) + (b6 + b*e® + bée)rs
Let ¢ =1 and get

No(r) + (b(8* + 9) + b*)rs
Now let 6 = —1. Then we get
No(r) + (b(—=2) +0*)r3 = No(r) + (b + b*)r

This means that the reduced norm of r—r2y+r2y2 is N,(r)+(b+0*)rs. In particular,
the reduced norm of 2 —y + 4% is a® + b+ b?, which gives an easier way to see that
if a? + b+ b? = 0, then [a b} = 0. Furthermore this considerably widens the range
of zeros that [[a, b>) can have to give the same result. Now any nontrivial zero that
has y1, 21, Y2, 220 = 0 and zg = x1 = x5 will give [a—} = 0.

We also have that if 0 < i < j < 2 and u,v € L then the reduced norm of uy® + vy’

equals b'N,(u) + v/ N,(v), so any nontrivial zero of [[a,b)) that has x;,y;, z; = 0 for
some i € {0, 1,2} will give [a%] = 0.

12
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4.3 Solving the problem

The connection with central simple algebras is interesting in its own right; however,
our next serious approach at solving our problem is similar to the first one, except
instead of letting zg = 1, we let 2y = r, where r is a variable. This gives the equation

ra’ +b+ b =0

We can solve the equation for a and b and write both as functions of ¢ and r. Let
t =b/a, b= at. Then we get
ria® + at + a’t* = 0
This gives a = tQi—tTg, and then b = 1522%3’ with indeterminate r and t. So now we let
K be the rational function field Ky(r,t), where Ky is some field of characteristic 3,
2 . . ..

and we let a = tgi—ig and b = tiﬁ This gives a counterexample to the original
question, since now [[a, b)) is isotropic, but the form (2.1) is not. To see that there
are no fo, f1, f2, h € K, not all 0, such that

2t? . 4t
(124 r3)2

o
h? +

3
=0
2+ 2+ f2

fo — foh? —
we assume on the contrary that this is the case. Using a common denominator we
may assume that foy, fi, fo, h are all polynomials in r and ¢ and that they have no
common factor. Tt then follows at once that fo = (£ + r3)gy with go € Ko[r,t]. We
then get the equation

2t 22
he + L4t +r)gs =0

3 2
— R
Jo = Jol™ = s s

From this equation we see that h can’t be divisible by t? + 7, because that would
imply that f;, and then fy also, would be divisible by 2 + 3. But that would
contradict our assumption of no common factor. Now multiplying the equation by

t we get
tf3 —tfoh? — 2t° h3 + 2t P4ttt +1r%)gs =0
L I R S 9=

Writing 2t? = 2(¢* + 1) — 21 we get

2r3 2t3
X

tf3 —tfoh? — 2h°
fo = tfo T et TEre

fRrar(® +r¥g =0

This can be written as

tfe —tfoh® + h® + (rh+tf1)* + 45> +r3)gs =0

t2+,r3

13



4 Solution attempts forn =1 and p = 3

It follows that rh + tf; is divisible by 2 4 r3. But then m%(rh +tf1)? is integral
and divisible by (2 +73)%. Tt then follows that ¢ f3 —t foh?+ h3 is divisible by ¢? 4 r3.
We do know that h is not divisible by t? + 3. We now work modulo #> + 73, i.e. in

the field Ko(r)(y), where v = v/—r3. We denote by £ the class of —f—}f in this field.

Then the fact that ¢ f3 —t foh*+h? is divisible by #2473 means that v¢* —~v¢—1 =0,
ie & —¢= %, ie & —¢= —T%'y. Writing £ = ¢ + 0y, with ¢ and 7 in Ky(r), this

means that —r*n® —n = —% ie. 7% + rn = 1. Of course n # 0. Writing w = %

we can rewrite this equation as w® — r3w? — % = 0. Tt follows that w must lie in

Ky[r], and in fact be divisible by r% say w = r’w,. For w, we then get the equation

w3 —rws — 1 =0. But this is easily seen to be impossible.

14
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