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Abstract

We investigate the coupling between a quantized electromagnetic field in a cavity res-
onator and a Coulomb interacting electronic system in a nanostructure in an external mag-
netic field. We use a nonperturbative approach with a stepwise introduction of complexity
to the description of the system and a corresponding stepwise truncation of the ensuing
many-body spaces. We are able to explicitly take into account effects caused by the geom-
etry of the electronic system and the polarization of the electromagnetic field, including
both the full interaction between electrons and photons and Coulomb interaction between
electrons. Our numerical results demonstrate that the two-level system approximation and
the Jaynes-Cummings model remain valid in the weak electron-photon coupling regime,
while the quadratic vector potential in the diamagnetic part of the charge current leads to
significant correction to the energy spectrum in the strong coupling regime. Investigation
of numerical convergence shows that convergence with respect to the number of electron
eigenstates is slow, requiring a large basis of many-electron eigenstates to be included in
the model.

Útdráttur

Við rannsökum tengsl milli skammtaðs rafsegulsviðs í hermuholrúmi og Coulomb víxl-
verkandi rafeindakerfis í ytra segulsviði á nanóskala. Við notum aðferð sem byggist ekki á
truflunarreikningi þar sem Fock rými er stækkað skref fyrir skref við lýsingu á kerfinu og
samsvarandi niðurskurður skref fyrir skref er gerður á margra-einda rúminu. Fullt tillit er
tekið til lögunar rafeindakerfisins og skautunar rafsegulsviðsins. Líkanið inniheldur bæði
fulla víxlverkun rafeinda og ljóseinda og Coulomb víxlverkunar milli rafeinda. Tölulegar
niðurstöður sýna að nálgun með tvístiga kerfi og Jaynes-Cummings líkani gilda fyrir veik
rafeinda-ljóseinda tengsl en annars stigs liðurinn fyrir vigurmætti rafsegulsviðsins hefur
mikil áhrif fyrir sterk tengsli. Rannsóknir á tölulegri samleitni sýna að samleitni með
tilliti til fjölda rafeinda eiginástanda er hæg og því þarf stóran grunn af margra rafeinda
eiginástöndum í líkaninu.
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1. Introduction

In the last decade there has been increasing interest in systems capable of generating quan-
tized fields containing a preset number of photons. Manipulation of the state of scalable
light-matter coupled quantum systems is one of the key issues for their implementation for
optomechanical systems [1, 2] or quantum information processing devices [3, 4]. How-
ever, searching for a clear evidence of light-matter coupling nonlinearity is still a chal-
lenge. To this end, one has to reach a strong light-matter coupling regime for optically
driven systems in high quality micro-cavities [5, 6], and demonstrate its single-photon
characteristics [7, 8]. Flexible experimental design of circuit quantum electrodynamics
offers a great potential for practical device applications to explore strong light-matter
coupling at microwave frequencies [9–13].

Recently, utilization of the giant dipole moments of intersubband transitions in quan-
tum wells [14, 15] has enabled researchers to reach the ultrastrong light-matter cou-
pling regime [16–18]. In this regime, simple models such as the Jaynes-Cummings (JC)
model are not applicable and the coupling mechanism has to be explored beyond the
JC-model [19–21]. Despite the above mentioned experiments, a study of the coupling
between electrons and cavity photons with a specified nanostructure geometry in a per-
pendicular magnetic field is still lacking.

In this thesis, we investigate the interplay of the dynamics of correlated electrons in a
nanostructure to the quantum field of a rectangular cavity resonator subject to an external
magnetic field. By performing numerical computations we demonstrate how the electron-
photon coupling influences an electronic system embedded in a quantized photon field.
We use a nonperturbative approach to a many-body model, including the full interaction
between electrons and photons. A two level system (TLS) approximation and the JC-
model will be examined in both the weak and the strong coupling regimes as well as the
effects of the diamagnetic part of the charge current in the electron-photon interaction
term, which the JC-model lacks. A large part of the material and results presented in this
thesis was published in [22]. However, in this thesis we take a more in-depth view and
take the comparison of the different models further.

This thesis is split into 7 chapters, the first of which is this introduction. In chapter 2 I
introduce the details of the nanostructure and its single electron Hamiltonian. The most
important result in that chapter will be the single electron eigenfunctions and energies
which will be used extensively later on as a basis for the many-body calculations. In

1



1. Introduction

chapter 3 I introduce the second quantization formalism which is necessary to describe
exactly a many particle system which includes the mutual Coulomb interaction between
the electrons. In chapter 4 I outline the theory needed to explain the electron-photon cou-
pling between electrons in the nanostructure with the photon field of a micro-cavity. The
electron-photon coupling will be treated both exactly as well with the much simpler TLS-
and JC-models. Results and analysis of the numerical results are presented in chapter
5 and the issue of numerical convergence is addressed in chapter 6. Finally, concluding
remarks are presented in chapter 7.

Throughout this thesis, MKL units will be used exclusively. I will differentiate operators
in Hilbert and Fock space with the use of a calligraphic font for Fock space operators. As
an example, A is an operator in Hilbert space, while A is its Fock space equivalent. The
only exception to this is the density operator ρ, which is always a Fock space operator.
Two and three dimensional vectors are denoted by a boldfaced character such as r. Com-
plex conjugate of a complex number or function is denoted by a superscript asterisk. For
example the complex conjugate of a complex valued function ψ(r) is written as ψ∗(r).

2



2. Single electron system

2.1. The Hamiltonian of the central system

The system under investigation is a two-dimensional electronic nanostructure exposed to
a quantized electromagnetic field of a cavity resonator and a static (classical) external
magnetic field at a low temperature. The electronic nanostructure is assumed to be fabri-
cated by split-gate configuration in the y-direction, forming a parabolic confinement with
the characteristic frequency Ω0 on top of a semiconductor heterostructure. The ends of
the nanostructure in the x-direction at x = ±Lx/2 are etched, forming a hard-wall con-
finement of length Lx. Thereby, a closed electronic narrow constriction is created in the
2D electron gas. The external classical magnetic field is given by B = Bẑ with a vec-
tor potential A. Hence, the Hamiltonian of the nano-structure can be expressed in first
quantization as

H0 =
1

2m
(p + qA)2 +

1

2
mΩ2

0y
2 , (2.1)

where m is the effective mass of the electron, −q its charge and p the canonical momen-
tum operator. As can seen from the Hamiltonian above, the spin degree of freedom is ne-
glected. This means we are technically not considering electrons, rather spin-less fermions
with identical charge to an electron. However, throughout this thesis I will refer to the con-
sidered particles as electrons. Although neglecting spin can be somewhat justified due to
the low electron spin g-factor in GaAs, the spin can still cause energy degeneracy and
allow symmetric electron states (as long as the spin part is anti-symmetric). However,
our numerical procedure of Hilbert/Fock space truncations is still work in progress and
we believe including spin at this point would distract us from the main objective of this
thesis.

To find the eigenstates (|ψi〉) ofH0 and their corresponding energies (Ei) we need to solve
the time-independent Schrödinger equation

H0|ψi〉 = Ei|ψi〉 (2.2)

subject to the boundary conditions

ψi(±Lx/2, y) = 0

ψi(x,±∞) = 0 . (2.3)

3



2. Single electron system

Choosing the Landau gauge so A = (−By, 0, 0) and expanding the first term on the r.h.s.
in (2.1), we get

H0 =
1

2m
p2
x +

1

2m
p2
y +

1

2
mΩ2

wy
2 + iωcypx , (2.4)

where ωc = qB
m

and Ωw =
√
ω2
c + Ω2

0. The above Hamiltonian is an infinite square well
in the x-direction, a harmonic oscillator in the y-direction with an additional mixing term
iωcypx. This term couples the x- and y-directions, which means we can not use separation
of variables to solve Eq. (2.2) for the given finite quantum wire and have to resort to
numerical techniques.

It it useful to be able to put a potential well or hill anywhere we want on the quantum
wire. With a linear combination of gaussian potentials it is possible to make all kind of
structures. The most general 2D gaussian potential is of the form

VG = AG exp
(
−β2

x(x− xo)2 − β2
y(y − y0)2

)
, (2.5)

where r0 = (x0, y0) is the center of the potential, βx and βy control the range of the
potential and AG is some constant with the unit of energy.

2.2. Matrix elements

Solutions to (2.2) are not separable in x and y, but we can still solve it using a complete
orthonormal basis. As a basis I choose {|n,m〉} ≡ {|φn〉 ⊗ |ϕm〉} where |φn〉 are eigen-
functions to the infinite square well and |ϕm〉 to the harmonic oscillator. In coordinate
representation

〈x|φn〉 =


√

2
Lx

cos
(
nπ
Lx
x
)

if n = 1, 3, 5, ...√
2
Lx

sin
(
nπ
Lx
x
)

if n = 2, 4, 6, ...
(2.6)

and

〈y|ϕm〉 =
e
− y2

2a2w√
2m
√
πm!aw

Hm(y/aw), m = 0, 1, 2, ... (2.7)

where aw =
√

~
mΩw

is the characteristic length of the system and Hm are Hermite poly-
nomials.

We can now calculate the matrix elements 〈n,m|H0|n′,m′〉;

〈n,m|H0|n′,m′〉 = δn,n′δm,m′

{
n2π2~2

2mL2
x

+ ~Ωc(m+ 1/2)

}
+ iωc~

aw
Lx
Inn

′

x Imm
′

y

= δn,n′δm,m′~Ωc

{
a2
w

L2
x

n2π2

2
+m+ 1/2

}
+ iωc~

aw
Lx
Inn

′

x Imm
′

y , (2.8)
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2.3. Bijection

where

Inn
′

x ≡ 〈φn|Lx∂x|φn′〉 =

{
0, if (n+ n′ + 1) is odd
−4nn′

n2−n′2 (−1)(n+n′+1)/2, otherwise
(2.9)

and

Imm
′

y ≡ 〈φm|y/aw|φm′〉 =

√
m′ + 1

2
δm,m′+1 +

√
m′

2
δm,m′−1 . (2.10)

For a gaussian potential of the form (2.5), the matrix element is

VG〈φn|e−β
2
x(x−x0)2|φn′〉〈ϕm|e−β

2
y(y−y0)2|ϕm′〉 = VGG

nn′

x Gmm′

y . (2.11)

Analytical solution of the x integral in (2.11) requires the use of the scaled complex valued
error function which is not implemented in Fortran. No stable third party implementation
of it was found (excluding the NAG numerical library which is commercial) so it will be
evaluated numerically using Gauss quadrature. The y integral can be done analytically
and the result is

Gmm′

y =
e
− α2yξ

2
0

α2y+1

(
2α2
yξ0

α2
y+1

)m+m′

√
2m+m′πm!m′!

m∑
k=0

m′∑
`=0

Qk`

(
m

k

)(
m′

`

)
(α2

y + 1)k+`−1/2

(α2
yξ0)k+`

×
( −α2

y

α2
y + 1

)(`+k)/2

Γ

(
k + `+ 1

2

)
2F1

(
−k,−`; 1− k − `

2
;
α2
y + 1

2α2
y

)
, (2.12)

where

αy = βyaw, ξ0 =
y0

aw
6= 0, αy 6= 0, Qk` =

{
0, if k + ` is odd
1, otherwise

(2.13)

where 2F1 is the hyper-geometric function. If αy = 0 then Gmm′
y = δmm′ and if ξ0 = 0

then

Gmm′

y (ξ0 = 0) = Qmm′
2m+m′

√
2m+m′πm!m′!

(
α2
y + 1

)−(m+m′+1)/2
(−α2

y)
(m+m′)/2

×Γ

(
m+m′ + 1

2

)
2F1

(
−m,−m′; 1−m−m′

2
;
α2
y + 1

2α2
y

)
. (2.14)

For detailed calculations of (2.9), (2.10), (2.12) and (2.14) see appendix A.

2.3. Bijection

At the moment we need two parameters (quantum numbers) to uniquely determine a func-
tion in the basis (n and m). We want to be able to label the functions with one parameter
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2. Single electron system

0 20 40 60 80 100 120
j

0

20

40

60

80

100

120

i

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ln
(|(
H

0
) i
j
|+

1)

Figure 2.1: Plot of ln(|(H0)ij |+ 1) for m = 6 and n = 20. The reason for the log plot is that the
diagonal elements are much larger than the off diagonal ones. As we can see from the figure, the
matrix consists of (Ny +1)× (Ny +1) = 7× 7 blocks, each block being Nx×Nx = 20× 20.
Within each of the blocks m and m′ are constant but n and n′ are varied.

only. We therefore need a bijection Γ : (n,m) → i. In order to choose this bijection we
need to decide the range of values n and m can take (truncate the basis). Let’s denote the
maximum value n and m can take as Nx and Ny which sets the total number of functions
as Nxy = (Ny + 1)Nx. A simple choice of Γ is then

i = Γ(n,m) = n+mNx , (2.15)

where n ∈ [1, Nx] and m ∈ [0, Ny]. With this choice of bijection the matrix of H0 will
consist of (Ny + 1)2 blocks, one for each pair (m,m′) and each block will have N2

x

elements or N2
x(Ny + 1)2 = N2

xy total elements (see Fig. 2.1). To calculate ni and mi

from i I use

ni = [(i− 1) mod Nx] + 1 (2.16)

mi = floor
(
i− 1

Nx

)
. (2.17)

For example if we have i = 10 and Nx = 7 we have ni = [9 mod 7] + 1 = 2 + 1 = 3
and mi = floor

(
9
7

)
= 1.
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2.4. Diagonalization

2.4. Diagonalization

After calculating all the matrix elements ofH0 we can find it’s eigenvaluesEi and the cor-
responding eigenvectors |ψi〉. The eigenvalues are numbered in ascending order (starting
with one). For the eigenvectors we have

|ψi〉 =

Nxy∑
j=1

Uij(|φnj〉 ⊗ |ϕmj〉) =


c

(i)
1

c
(i)
2
...

c
(i)
Nxy

 , H0|ψi〉 = Ei|ψi〉 . (2.18)

Where U is some unitary transformation that is calculated in the diagonalizaton process.
The eigenvalues Ei correspond to allowed energies of the system and |ψi〉 are the corre-
sponding eigenvectors. The wave function of the state with energy Ei can be calculated
using

ψi(r) = 〈r|ψi〉 =

Nxy∑
j=1

Uijφnj(x)ϕmj(y) . (2.19)

The only approximations we have made is the finite value of Nx and Ny. The results
become exact in the limit Nx, Ny →∞. Typical used values are Nx = 120 and Ny = 30.
The reason for the higher value of Nx is the particular values for the length of the wire
and its y-confinement. Also, the functions in the x-direction are sines and cosines, which
are numerically much easier to work with than high order Hermite polynomials.
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3. Many-electrons calculations

3.1. Formalism

To describe quantum states with a variable amount of particles I use the second quan-
tization formulation of quantum mechanics. I specify a state in Fock space using greek
indices such as |µ〉 and a state in Hilbert space using latin indices such as |ψi〉, where
µ, i ∈ N+. If the |ψi〉 form a complete and orthonormal basis of the Hilbert space we are
working in, then in the occupation number basis, a state in Fock space is defined as (see
Ref. [23, 4-24])

|µ〉 = |nµ1 , nµ2 , nµ3 , · · · , nµ∞〉 , (3.1)

which means that nµ1 particles are in state |ψ1〉, nµ2 in state |ψ2〉 etc. For fermions we have
nµi = 0 or nµi = 1. For example

|0, 1, 1, 0, 1, 0, 0, ...〉 = |ψ2〉 ⊗ |ψ3〉 ⊗ |ψ5〉 . (3.2)

We have
∞∑
i=1

nµi = Nµ , (3.3)

where Nµ is the number of particles in state |µ〉.

When doing calculations, the Fock space needs to be truncated by putting∞ → Nses in
(3.1), where Nses is a finite positive integer. This means we are using a finite number of
single electron states to construct the Fock space. The corresponding number of many
electron states (denoted Nmes) is

(
Nses
Ne

)
where Ne is the number of electrons. This rapid

growth ofNmes with increasingNe orNses greatly limits the number of electrons we can do
calculations with because the matrix of the many electron Hamiltonian has the dimension
Nmes × Nmes. A reasonable value at the moment for Nmes is about 5000. An example of
the rapid growth of Nmes can bee seen in table 3.1.

We have defined the quantum states in second quantization formalism and now we define
the operators that act on them. The fermionic creation (d†k) and destruction (dk) operators

9



3. Many-electrons calculations

Table 3.1: Nmes for some values of Ne and Nses

Ne \ Nses 8 16 24 32 40 48

2 28 120 276 496 780 1128
3 56 560 2024 4960 9880 17296
4 70 1820 10626 35960 91390 194580

are defined by their action on a state in Fock space.

d†kdk| · · ·nk · · · 〉 = nk| · · ·nk · · · 〉 (3.4)

dk| · · ·nk · · · 〉 =

{
(−1)γk | · · · 0 · · · 〉, if nk = 1

0, if nk = 0
(3.5)

d†k| · · ·nk · · · 〉 =

{
0, if nk = 1

(−1)γk | · · · 1 · · · 〉, if nk = 0
, (3.6)

where

γk =
k−1∑
i=1

ni . (3.7)

It is straightforward to show that these operators satisfy the fermionic anti-commutation
relations

{di, dj} = {d†i , d†j} = 0, {di, d†j} = δij . (3.8)

A one-particle operator in second quantization (denoted by A) can be represented using
its first quantization variant (denoted by A) using

A ≡
∫

dr ψ†Aψ =
∑
i,j

〈ψi|A|ψj〉d†idj , (3.9)

where
ψ ≡

∑
i

ψi(r)di, ψ
† ≡

∑
i

ψ∗i (r)d
†
i (3.10)

are fermionic field operators, with di the annihilation- and d†i the creation operator for an
electron in the single-electron state |i〉 corresponding to the eigenfunction ψi(r). The |i〉
need not be eigenfunctions of the single electron Hamiltonian. It is sufficient that they
form an orthonormal basis with the correct boundary conditions. However, this choice
simplifies calculations and is therefore an obvious one.

Two-particle Fock space operators are defined as

V ≡ 1

2

∑
ijrs

〈ij|V |rs〉d†id†jdsdr . (3.11)
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3.2. Observables in second quantization

The matrix elements of a two-particle operator are thus expanded in the basis of the SESs
involving the integration with respect to the observing location r

〈ij|V |rs〉 =

∫
dr ψ∗i (r)Ijr(r)ψs(r) (3.12)

and the integration with respect to the source location r′

Ijr(r) =

∫
dr′ψ∗j (r

′)V (r, r′)ψr(r
′) , (3.13)

where V (r, r′) is the two body interaction potential.

3.2. Observables in second quantization

Like in first quantization, an observable is a self adjoint operator. Expectation values of
an observable A can be computed using

〈A〉 = Tr {ρA} (3.14)

where ρ is the matrix representation of the density operator of the system. Both ρ and A
can be time dependent so even in a time dependent system, calculating expectation values
is straightforward if the matrix of the density operator ρ is known.

An example of an interesting observables is the charge density 〈Q〉(r, t) can be calculated
using

Q ≡ −qψ†ψ = −q
∑
ij

ψ∗i (r)ψj(r)d
†
idj , (3.15)

so

〈Q〉(r, t) = Tr {ρQ} =
∑
µν

∑
ij

ψ∗i (r)ψj(r)ρµν〈µ|d†idj|ν〉 . (3.16)

The current density j(r, t) for an electron with charge −q is defined in first quantization
as (see Ref. [24, 236-244])

j = − q

2m
{Ψ∗(πΨ) + (πΨ∗)Ψ} , (3.17)
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3. Many-electrons calculations

where Ψ(r, t) is the single electron wave function. The second quantization equivalent
expression is

j = − q

2m

{
ψ†(πψ) + (πψ†)ψ

}
(3.18)

= −qawΩw

∑
ab

Re
(−iψ∗a(r)aw∂xψb(r)− ωc

Ωw
ψ∗a(r)

y
aw
ψb(r)

−iψ∗i (r)aw∂yψj(r)

)
d†idj (3.19)

≡ −qawΩw

∑
ij

Re(jij)d
†
idj , (3.20)

which gives

〈j〉(r, t) = awΩw

∑
µνij

Re(jij)ρµν〈µ|d̂†idj|ν〉 . (3.21)

Finally, the expectation value of the energy of the system with the Hamiltonian H can be
calculated using

〈E〉 = Tr {ρH} . (3.22)

For a static Hamiltonian, 〈E〉 is of course a constant of motion.

3.3. Many electron Hamiltonian

For more than one electron, we must take into account the Coulomb interaction between
them. We can write the many electron Hamiltonian of the system as

He ≡ H0
e +HC , (3.23)

where HC contains only the contribution from the Coulomb interaction. The purpose of
the subscript e is to make a distinction between the electronic part of the Hamiltonian
and the photon part, which will be introduced in section 4. Using the formalism in 3.1 we
obtain

H0
e =

∑
i,j

〈i|H0|j〉d†idj =
∑
i

Eid
†
idi, (3.24)

where H0 is the central system Hamiltonian in first quantization. As for the Coulomb
interaction term we have

HC =
1

2

∑
ijrs

〈ij|VC |rs〉d†id†jdsdr , (3.25)
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3.3. Many electron Hamiltonian

where VC is the Coulomb potential given by

VC(r, r′) =
q2/4πε

|r− r′|+ η
. (3.26)

The purpose of η in (3.26) is to prevent the singularity where r = r′. In taking the limit
η → 0+,HC is nevertheless well defined (for derivation see appendix B).

Plugging (3.26) into (3.25) we get

〈ij|VC |rs〉 =

∫
ψ∗i (r)Ijr(r)ψs(r) dr . (3.27)

where

Ijr(r) =

∫
ψ∗j (r

′)
q2/4πε

|r− r′|+ η
ψr(r

′) dr′ . (3.28)

In appendix B I show that the transformation

Ijr(r)→ Ĩjr(r) ≡
∫ {

ψ∗j (r
′)− ψ∗j (r)

} q2/4πε

|r− r′|+ η
{ψr(r′)− ψr(r)} dr′ (3.29)

leaves HC unchanged, but rids of us of the convergence problems we had with Ijr(r).
Even though the limit η → 0+ is well defined in (3.29), we still have to keep η > 0 for
numerical reasons. However, we can have η much smaller than if we used (3.28) directly.

The matrix elements of ofHe can now be calculated using

〈µ|He|ν〉 =
∑
i

Eid
†
idiδµν +

1

2

∑
ijrs

〈ij|VC |rs〉〈µ|d†id†jdsdr|ν〉 , (3.30)

where Ei is the energy of the SES i, associated to the eigenfunction ψi(r). Now that we
have an expression for the matrix elements ofHe in the {|µ〉} basis we can diagonalize it
and find its eigenstates |µ) and energies Ẽµ. In the diagonalization process we obtain an
unitary transformation V which satisfies

|µ) =
Nmes∑
ν=1

Vµν |ν〉. (3.31)

This unitary transformation will be used extensively because it is much more efficient to
perform calculations in the {|µ〉} basis and perform a unitary transformation to {|µ)},
rather than explicitly calculating and storing the many electron wave functions. For ex-
ample if we want to compute a matrix representation of an operator A in the {|µ)} basis,
we can use

(µ|A|ν) = 〈µ|V†AV|ν〉 . (3.32)

Most of the time it will be clear from context how many electrons the state |µ) contains.
However, where needed I denote the µ-th Coulomb interacting eigenstates containing
Ne electrons as |µ)Ne . For example, the first excited eigenstate containing 3 electrons is
denoted as |2)3. For one electron we of course have |µ〉 = |µ)1.
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4. Inclusion of a quantized EM field

In this section I will explain the theory needed to describe the dynamics of a system where
the nanostructure described in section 2 has been placed inside a photon cavity. The cavity
modes of the electromagnetic field can be treated as the population of a field oscillator
with different Fock states (states with certain number of photons). All calculations are
exact, that is I solve the many electron/photon Schrödinger equation explicitly. I will then
introduce the much simpler JC-model as well as more refined TLS models and see how
they compare with the exact solution.

4.1. Quantized electromagnetic field in a cavity

Suppose the electronic nanostructure described in section 2 is placed in a rectangular cav-
ity forming an electromagnetic oscillator with hard-wall boundaries at −ac/2 < x, y <
ac/2 and −dc/2 < z < dc/2 with cavity volume Vc = a2

cdc. The proposed electromag-
netic oscillator is a single planar rectangular cavity, in which the electronic nanostructure
is oriented in the z = 0 plane with the center at (x, y) = (0, 0). In the following, we
will consider only transverse electric (TE) modes (Ez = 0), where the electric field E is
perpendicular to the direction of propagation. The cavity supplies a monochromatic wave
stabilized in the TE011 mode with longitudinally polarized electric field along x-direction,
or in the TE101 mode with transversely polarized electric field along y-direction. In the
Coulomb gauge, the vector potential of the electromagnetic field takes the form [25, 282-
286]

AEM = AEM

(
êx
êy

)
(a+ a†)

cos
(

2πx
ac

)
cos
(

2πy
ac

) cos

(
2πz

dc

)
, (4.1)

with the upper component denoting the TE011 mode and the lower one representing the
TE101 mode. The a and a† are bosonic annihilation and creation operators respectively
and êx,y are cartesian unit vectors.
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4. Inclusion of a quantized EM field

The allowed energy of mode TEmnp is given by

~ωmnp = ~c

√(
mπ

ac

)2

+

(
nπ

ac

)2

+

(
pπ

dc

)2

, (4.2)

so for the polarizations given in (4.1) we have

~ω101 = ~ω011 ≡ ~ωp = ~c

√
π2

a2
c

+
π2

d2
c

, (4.3)

where ωp is the angular frequency of the photon field. We want ~ωp to be on the same
order of magnitude as characteristic energies of the system or about 1 meV. Assuming
ac ' dc, (4.3) gives ac, dc ∼ 10−3 m, which is in the microwave region and much larger
than the length of a typical quantum wire. We can use this fact to simplify equation (4.1)
by approximating the vector potential by it’s value at the cavity’s center, giving

AEM ' AEM

(
êx
êy

)
(a+ a†) . (4.4)

The strength of the photon-electron coupling is characterized by AEM but it is convenient
to define Ec ≡ qAEMΩwaw with the unit of energy and rewrite (4.4) as

AEM '
Ec

qΩwaw

(
êx
êy

)
(a+ a†) . (4.5)

4.2. The Hamiltonian

With the addition of an external EM field we can write the total Hamiltonian of the system
as

H = H0
e ⊗ 1EM +HC ⊗ 1EM + 1e ⊗HEM +He-EM , (4.6)

where H0
e is the Hamiltonian of the central system, HC is the Coulomb interaction term,

HEM is the free field photon term and He-EM contains the electron-photon interaction.
The operators 1e and 1EM are the unit operators in the electron and photon Fock space
respectively. Most of the time they will be omitted as it should be clear which part of
Fock space we are working in.

Let’s look closer at the central system and electron-photon interaction terms. Assuming
the photon field to have a vector potential AEM we have (ignoring the parabolic confine-
ment in the y-direction)

Hs +He-EM =
1

2m

∑
ij

〈ψi|(p + qA + qAEM)2|ψj〉d†idj . (4.7)
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4.2. The Hamiltonian

Defining π ≡ p + qA, (4.7) becomes

1

2m

∑
ij

〈ψi|(π + qAEM)2|ψj〉d†idj (4.8)

=
∑
ij

〈ψi|
π2

2m
+

q

2m
(π ·AEM + AEM · π) +

q2

2m
A2

EM|ψj〉d†idj (4.9)

= Hs +H(1)
e-EM +H(2)

e-EM , (4.10)

where I have defined

H(1)
e-EM ≡

∑
ij

〈ψi|
q

2m
(π ·AEM + AEM · π) |ψj〉d†idj (4.11)

H(2)
e-EM ≡

∑
ij

〈ψi|
q2

2m
A2

EM|ψj〉d†idj , (4.12)

or, equivalently, but perhaps more intuitive

H(1)
e-EM = −

∫
j ·AEM dr (4.13)

H(2)
e-EM = − q

2m

∫
Q |AEM|2 dr, (4.14)

which gives He-EM = H(1)
e-EM +H(2)

e-EM. The above expressions are greatly simplified when
the approximation in (4.5) is utilized because then we can pull AEM in front of the integral
sign. Plugging the approximation for AEM in (4.5) into (4.11) and (4.12) we obtain

H(1)
e-EM ' Ec(a+ a†)

∑
ij

gijd
†
idj . (4.15)

where gij is the dimensionless coupling between the electrons and the cavity mode defined
by

gij =
aw
2~

∫
dr [ψ∗i (r) {(ê · π)ψj(r)} + {(ê · π)ψi(r)}∗ ψj(r)] , (4.16)

with ê ·π = exπx + eyπy. For detailed calculations of gij see appendix A.4. As for H(2)
e-EM

we have

H(2)
e-EM '

q2

2m
A2

EM

∑
ij

〈ψi|ψj〉d†idj =
q2A2

EM

2m

∑
j

d†jdj

=
E2
c

~Ωw

(a+ a†)(a+ a†)N e

=
E2
c

~Ωw

[(
a†a+

1

2

)
+

1

2

(
a†a† + aa

)]
N e , (4.17)
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4. Inclusion of a quantized EM field

where N e is the number operator in the electron Fock space. An interesting aspect of
H(2)

e-EM is that it contains no dependence on the photon polarization or geometry of the
system. Putting everything together we obtain

He-EM = Ec

∑
i,j

d†idj gij
(
a+ a†

)
+

E2
c

~Ωw

Ne

[(
a†a+

1

2

)
+

1

2

(
a†a† + aa

)]
, (4.18)

The first and the second terms in (4.18) contribute, respectively, to the linear and nonlinear
optical excitation energy spectra, which will be explored later.

A convenient basis for doing calculation is {|µ)⊗ |M〉} ≡ {|µ̆〉}, where |µ) are eigen-
states of the Hamiltonian of the central system including the Coulomb interaction and
|M〉 are eigenstates of the photon number operator with eigenvalue M . To obtain the ma-
trix elements of the total Hamiltonian, including the photon field and e-EM interaction
we need to calculate 〈µ;M |H|ν;N〉. For the central system plus Coulomb interaction we
have

〈µ;M |He ⊗ 1EM|ν;N〉 = (µ|He|ν)〈M |1EM|N〉 = ẼµδµνδMN , (4.19)

where Ẽµ is the energy of the purely electronic state |µ). For the free field photon Hamil-
tonian we have

〈µ;M |1e ⊗HEM|ν;N〉 = (µ|1e|ν)〈M |~ωpa†a|N〉 = N~ωpδµνδMN . (4.20)

For the first e-EM interaction term we have

〈µ;M |H(1)
e-EM|ν;N〉 = Ec

∑
ij

gij(µ|d†idj|ν)〈M |a+ a†|N〉

= EcGµν
(√

NδM,N−1 +
√
N + 1δM,N+1

)
, (4.21)

where I have defined

Gµν ≡
∑
ij

gij(µ|d†idj|ν) =
∑
ij

gij〈µ|V†d†idjV|ν〉 , (4.22)

which we will refer to as the dimensionless geometric coupling (DGC) between states |µ)
and |ν). As for the second term we have

〈µ;M |H(2)
e-EM|ν;N〉 =

E2
c

~Ωw

(µ|N e|ν)〈M |(a†a+
1

2
) +

1

2
(aa+ a†a†)|N〉

=
E2
c

~Ωw

Nµδµν

[
(N +

1

2
)δMN +

1

2

√
N(N − 1)δM,N−2

+
1

2

√
(N + 1)(N + 2)δM,N+2

]
(4.23)
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Finally, the matrix elements of the total Hamiltonian 〈µ;M |H|ν;N〉, are obtained by
adding (4.19)-(4.23) together.

The final step is diagonalizing H and obtaining the allowed energies Ĕµ and the corre-
sponding eigenstates |µ̆) which are related to |µ̆〉 by the unitary transformation

|µ̆) =
∑
ν

Wµν |ν̆〉 , (4.24)

which is obtained in the diagonalization process.

4.3. The Jaynes-Cummings model

To describe the interaction between matter and the photons of a quantized electromagnetic
field, the Jaynes-Cummings (JC) model is often applied [26]. The JC-model describes the
interaction between a two-level system (TLS) and a single field mode. It is a fundamental
model in quantum optics and quantum information science [27]. For a TLS with energy
level spacing ∆, coupled with strength EJC to a resonator with photon energy ~ωp, the
JC-model is valid when both the detuning δ = |~ωp − ∆| is sufficiently small and the
light-matter coupling strength is much smaller than the photon energy (EJC � ~ωp).
There can also be no selection rules preventing transitions between the two chosen states.
The dynamics can then be obtained by the JC-model [28] and the energy spectrum can be
solved exactly if the rotating wave approximation (RWA) is applied [29].

The JC Hamiltonian in the second quantized form can be written as

HJC =
1

2
∆ijσz + ~ωpa†a+ EJC (σ+ + σ−)

(
a+ a†

)
, (4.25)

where ∆ij = Ej − Ei denotes the energy difference between the electron states |i〉 and
|j〉 which have been chosen as the relevant (active) states for the TLS approximation. The
ladder operators appropriate for a two-level approximation σ± are defined by their action
on the active states;

σ+|i〉 = |j〉, σ−|j〉 = |i〉, σ+|j〉 = σ−|i〉 = 0 . (4.26)

If we put |i〉 =

(
1
0

)
and |j〉 =

(
0
1

)
we get σ± = 1

2
(σx ± iσy), where σx,y,z are the Pauli

matrices. Note that the energies of states |i〉 and j〉 are shifted to make them symmetric
around the zero energy and it is assumed that Ej > Ei

The counter-rotating terms σ+a
† and σ−a in (4.25) are often omitted by taking the RWA

to get an exactly solvable model. However, for our comparison we will keep the counter
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4. Inclusion of a quantized EM field

rotating terms and solve (4.25) numerically using the Fock space basis {|k〉⊗M〉}, where
k ∈ {i, j}. This procedure is very straightforward and only the results will be included in
this thesis. Comparison of the JC-model with and without the counter rotating terms has
been investigated [30–32], however it should be reexamined and compared with a system
where realistic effects are included, such as those stemming from the non-trivial geometry
of the nanostructure and an external magnetic-field.

4.4. Comparison of JC-model with exact model

4.4.1. Single electron and no magnetic field

For one electron, zero magnetic field and assuming a TLS description is applicable (choose
|i〉 and |j〉 as active states), we have according to (4.15);

H(1)
e-EM = Ec(a+ a†)(gijd

†
idj + gjid

†
jdi) . (4.27)

Here we have used that gij = 0 if i = j (see appendix A.4). Now, computing the matrix
elements we get

H(1)
e-EM = Ec(a+ a†)

(
gij|i〉〈j|〈i|d†idj|j〉+ g∗ij|j〉〈i|〈j|d†jdi|i〉

)
= Ec(a+ a†)

(
gij|i〉〈j|+ g∗ij|j〉〈i|

)
= Ec(a+ a†)

(
0 gij
g∗ij 0

)
(4.28)

According to equation (A.28), gij is purely imaginary for B = 0 so gij = −g∗ij . If we
assume Im (gij) is positive (being negative would only change the direction of the EM
field by 180◦ so it has no effect on any observables in a closed system) then gij = i |gij|
and

H(1)
e-EM = Ec(a+ a†) |gij|

(
0 −i
i 0

)
= |gij| Ec(a+ a†)σy (4.29)

The electronic part of the Hamiltonian is simply a σz matrix multiplied by some constant.
The rest of the Hamiltonian (free field and A2 term) are trivial in the electronic Fock
space (simply an unity operator), so we can perform a rotation in the “spin“ Hilbert space
around the z axis without changing observables and get

H(1)
e-EM = |gij| Ec(a+ a†)σx = |gij| Ec(a+ a†)

(
σ+ + σ−

)
. (4.30)

This is simply the interaction term in the JC-Hamiltonian in Eq. (4.25) with EJC = |gij| Ec.
Note that this result is only exact for one electron and B = 0. For B 6= 0, gij remains
traceless but individual elements on the diagonal need not be zero. However, the JC-
model does include some of the effects on the magnetic field since it does affect the
single electron energy spectrum.
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4.4. Comparison of JC-model with exact model

Using the same TLS approximation as above, we get for the A2 term;

H(2)
e-EM =

E2
c

~Ωw

(
(a†a+

1

2
) +

1

2
(a†a† + aa)

)
⊗ 1e, (4.31)

where 1e is a 2x2 unit matrix. One might be temped to say that we can ignore the H(2)
e-EM

term for small Ec since it is second order in Ec. However, if we apply first order perturba-
tion theory to H(1)

e-EM, we get zero contribution and the lowest order order contribution is
of order E2

c . On the other hand, the first order contribution from H(2)
e-EM is non-zero. This

means that the leading order contribution is of order E2
c for both terms and the question

on whether or not we can ignore the H(2)
e-EM for small Ec will depend on the magnitude of

|gij| and δ.

Looking at the equation for gij in (A.28) we see that it is very sparse for no magnetic
field and a small magnetic field does not change that drastically. This means it is easy to
find two single electron active states with large coupling while there is minimal coupling
with other electronic states. The JC-model can then be a very good approximation as long
there is no energy level crossing/anti-crossing between active states and inactive states.
As we will see later, things become more complicated for many electron states because
of the Coulomb interaction.

4.4.2. Many electrons and non-zero magnetic field

Last section we saw that the JC-model can be a good approximation for a single electron
and no magnetic field. It will be interesting to see if the same applies to many electron
states including magnetic field and Coulomb interaction. Let’s begin by applying nonde-
generate second order perturbation theory to theH(1)

e-EM term in Eq. (4.12) ,

Ĕ
(1),(2)
α,M =

∑
(ν,N) 6=(α,M)

∣∣∣(α|〈M |H(1)
e-EM|N〉|ν)

∣∣∣2
(Eα − Eν) + ~ωp(M −N)

, (4.32)

where the super- and subscripts in Ĕ(1),(2)
α,M refer to that it it is the second order correction to

energy due to theH(1)
e-EM term of state |α)⊗ |M〉. Since some of these states are seperated

in energy by a small value δ, we have to impose the restraint Ec � |δ| in order for our
nondegenerate perturbation description to be valid. If this condition is not satisfied, we
would have to resort to perturbation theory for denegerate or almost degenerate states.

We have

(α|〈M |H(1)
e-EM|N〉|ν) = EcGαν

(√
MδN,M−1 +

√
M + 1δN,M+1

)
, (4.33)
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so ∣∣∣(α|〈M |H(1)
e-EM|N〉|ν)

∣∣∣2 = E2
c |Gαν |2 (MδN,M−1 + (M + 1)δN,M+1) . (4.34)

We then get

Ĕ
(1),(2)
α,M = E2

c

∑
ν 6=α
|Gαν |2

(
M

∆να + ~ωp
+

M + 1

∆να − ~ωp

)
= E2

c

∑
ν 6=α
|Gαν |2

∆να(2M + 1) + ~ωp
∆2
να − ~2ω2

p

, (4.35)

where ∆να ≡ Eα − Eν . Now put ~ωp = |∆αβ| + δ where |δ| � |∆αβ|. In other words,
the frequency of the photon field is on resonance between the electronic states |α) and |β)
with detuning δ. We then obtain

Ĕ
(1),(2)
α,M = E2

c

∑
ν 6=α
|Gαν |2

|∆αβ| −∆αν(2M + 1) + δ

∆2
αν −∆2

αβ − 2 |∆αβ| δ − δ2

' E2
c

∑
ν 6=α
|Gαν |2

|∆αβ| −∆αν(2M + 1) + δ

∆2
αν −∆2

αβ − 2 |∆αβ| δ
. (4.36)

It is tempting to ignore δ in the numerator in Eq. (4.36) since |δ| � |∆αβ| but we can run
into trouble when M = 0 and |∆αβ| = ∆αβ . This only applies to the ground state in the
two level approximation, that is the state |α)⊗ |0〉 if Eα < Eβ or |β)⊗ |0〉 if Eα > Eβ . I
will treat this special case later. For now let’s assume we can ignore the δ in the numerator
in Eq. (4.36). Since δ is small, we expect the term when ν = β in the sum in Eq. (4.36) to
dominate. So

Ĕ
(1),(2)
α,M ' E2

c |Gαβ|2
|∆αβ| −∆αβ(2M + 1)

−2 |∆αβ| δ
=

{
− |Gαβ|2 E

2
c

δ
(M + 1) if α > β

|Gαβ|2 E
2
c

δ
M if α < β

(4.37)

We can choose |δ| as small as we want as long as |δ| � Ec, making the validity of (4.37)
dependent on the relationship of δ and Ec. In addition |Gαβ| must not be zero.

Now let’s go back to the ground state when M = 0 and assume α < β such that the
ground state in the TLS approximation is |α) ⊗ |0〉. The term in the sum in (4.36) when
ν = β is then −E2

c |Gαβ|2 /(2 |∆αβ|) which is much smaller than the terms in (4.37). This
means that the second order contribution in Ec is much smaller for the TLS ground state
than for for other states and therefore we expect the ground state to be flat as a function
of Ec for small Ec.

Performing similar calculations for the first order correction to theH(2)
e-EM term gives

Ĕ
(2),(1)
α,M =

E2
c

~ΩW

Nα(M + 1/2) , (4.38)
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4.4. Comparison of JC-model with exact model

where Nα is the number of electrons in the state |α). Condition for ignoring the A2 term
in a TLS approximation is then according to Eqs. (4.37) and (4.38) roughly

|Gαβ|2 ~Ωw

Neδ
≡ λ� 1 . (4.39)

Note that in deriving the above condition, we have used that Ec � |δ| � ∆αβ . Also note
that the condition is not valid for the TLS ground state. All we can say about the ground
state without performing numerical calculations is that it is insensitive to Ec compared
with excited states for small Ec.

We have seen that under the right circumstances we can use a TLS approximation and
ignore the A2 term for many electron states. A natural question is then whether or not we
can still use the JC-model. Assuming we can use the states |α) and |β) where Eα < Eβ
as a basis and ignore the rest of the electron Hilbert space as well as the A2 term of the
interaction Hamiltonian, the matrix representation ofH(1)

e-EM can be written as

Ec
(
Gαα Gαβ
G∗αβ Gββ

)
(a+ a†) ≡ EcGJC(a+ a†) . (4.40)

This can only be the interaction part of a JC-like Hamiltonian if the diagonal of GJC is
close to zero. A condition for using the JC-model can then be written as

|Gαβ| � max (|Gαα| , |Gββ|) . (4.41)

If the above condition is satisfied, we can approximate GJC as a linear combination of σx
and σy matrices so we can perform a similar rotation about the ”spin” z-axis as we did for
the single electron case in section 4.4.1 and obtain the JC Hamiltonian

HJC =
1

2
∆αβσz + ~ωpa†a+ EJC(σ+ + σ−)(a+ a†) (4.42)

where

EJC = |Gαβ| Ec . (4.43)

It’s easy to check that for one electron and no magnetic field, Eq. (4.43) reduces to our
previous result in Eq. (4.25).
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5. Results

In this section I will present results from numerical calculations. I will begin with results
from the electron part of the total Hamiltonian, ignoring the quantized photon field. Next
I present the results of the full e-EM model and investigate how the results compare with
TLS approximations where the diamagnetic term is omitted. In choosing the range of
parameters in which calculations are performed, I rely on results from convergence tests,
which are presented in chapter 6.

In all calculations we used a magnetic field strength of B = 0.1 T, parabolic confinement
strength ~Ω0 = 1.0meV, quantum wire length Lx = 300nm, relative permittivity of GaAs
εr = 12.4 and effective mass of an electron in GaAs m = 0.067me, where me is the
free electron mass. All lengths are given in units of aw, which for the previous mentioned
values of B, Ω0 and m, is about 33.5 nm.

5.1. Electron part

Before we go into the main results of the electron-photon system, it’s useful to list some
information about the electron eigenstates |µ) between which the photon frequency will
be on resonance. Figures 5.1, 5.2 and 5.3 show the charge density of the 6 lowest elec-
tronic eigenstates for 1, 2 and 3 electrons. Figure 5.4 shows the absolute value of the
dimensionless geometric coupling (DGC) between the lowest 6 states for x and y polar-
ization. This information will be important when we compare the exact model to a TLS
approximation where the condition in (4.39) must be satisfied. Finally, the energies of the
6 lowest states are listed in table 5.1. These energies are needed tune to photon frequency
to be on resonance between two chosen states. Note that all the results listed in figures 5.1-
5.4 and table 5.1 are for an plain quantum wire. By plain, I mean that the single electron
Hamiltonian in (2.1) is used without adding any gaussian potential wells/hills.
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Figure 5.1: Charge density (scaled by -q) of the lowest 6 Coulomb interacting one electron
eigenstates. By comparison with equations (2.6)-(2.7) we can see that the six charge densi-
ties correspond roughly to the basis states φ1(x)ϕ1(y), φ2(x)ϕ1(y), φ3(x)ϕ1(y), φ4(x)ϕ1(y),
φ1(x)ϕ2(y) and φ2(x)ϕ2(y). By roughly I mean that due to the non-zero magnetic field, n and
m are not good quantum numbers.
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Figure 5.2: Charge density (scaled by -q) of the lowest 6 Coulomb interacting two electron eigen-
states.
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Figure 5.3: Charge density (scaled by -q) of the lowest 6 Coulomb interacting three electron eigen-
states.
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Figure 5.4: DGC strength between the 6 lowest Coulomb interacting eigenstates for both polar-
izations and 1, 2 and 3 electrons. In other words, it’s a color-map plot of the matrix |G|, whose
matrix elements are |Gµν |. From the plot we see that for x-polarization, the states most strongly
coupled to the ground state are |2)1, |2)2, |2)3 and |3)3. For y-polarization, the state |5) is most
strongly coupled for one, two and three electrons.
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Table 5.1: Energies of the 6 lowest states |µ) for one, two and three electrons. The energy is in
units of meV.

Ne \ µ 1 2 3 4 5 6

1 0.568 0.751 1.055 1.477 1.585 1.765
2 2.215 2.726 2.857 3.183 3.230 3.330
3 5.615 6.246 6.252 6.394 6.624 6.645

5.2. Full Model

5.2.1. Energy Spectra

Figures 5.5-5.7 show energy spectra as a function of the coupling strength Ec for both
x and y-polarization and 1 − 3 electrons. In all of these figures, the two active states
have strong DGC (large |Gαβ|). Notice how the upper part of the spectra are much more
crowded when there is more than one electron. This is most likely the cause of the slow
convergence for more than one electron which is covered in section 6.

It’s interesting to compare the results in figures 5.5-5.7 for when the active states have
small DGC which is shown in figures 5.8-5.9 for one and two electrons. For the one elec-
tron strong DGC case in Fig. 5.5, the x-polarization spectrum is relatively smooth, that is
there are few abrupt changes or rapid oscillation. However, for the weak DGC case shown
in figure 5.8, the spectrum is very chaotic (even after considering the different scales on
the Ec axis), exhibiting rapid oscillations and far more crossings/anti-crossings. This is not
the case for y-polarization since both spectra (weak and strong DGC) show similar be-
havior for one electron. This is most likely due to the simple parabolic confinement in the
y-direction. From Fig. 5.9 we can see that the x-polarization spectrum is much smoother
for two electrons so it seems the Coulomb interaction suppresses the rapid oscillations
observed for one electron.

Figures 5.10-5.11 show the importance of including the A2 term which is typically omit-
ted in a TLS approximation. In figure 5.10 we can see the comparison of results with
and without the A2 term of the e-EM interaction Hamiltonian. As can be seen from the
figure, omitting the A2 term does give accurate results for small Ec. We should now con-
sider the condition for ignoring the A2 term for small Ec which we derived in Eq. (4.39).
For the two cases shown in figure 5.10, we have λ = 46.6 � 1 for the x-polarization
and λ = 48.7 � 1 for the y-polarization, which is in agreement with our observation
that the A2 term can be omitted for small Ec. Now consider the energy spectra in figure
5.11 where the active states have weak DGC, with λ ' 10−25 for the x-polarization and
λ ' 4 · 10−30 for the y-polarization. We can see that omitting the A2 term there is a much
worse approximation and is completely unreasonable for the case of y-polarization.
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Figure 5.5: Energy spectra for one electron and both x (left) and y (right) polarization. The lowest
64 states are plotted in both cases. For the x-polarization, the system is on resonance between
the states |1)1 and |2)1 with a DGC strength of |G12| = 0.290 and ~ωp = 0.185 meV. For
y-polarization, the system is on resonance between the states |1)1 and |5)1 with |G15| = 0.701
and ~ωp = 1.03 meV. The color coding is used later on to identify states when plotting charge
densities in figures 5.12 and 5.13.
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Figure 5.6: Energy spectra for two electrons and both x (left) and y (right) polarization. The lowest
64 states are plotted in both cases. For the x-polarization, the system is on resonance between
the states |1)2 and |2)2 with a DGC strength of |G12| = 0.648 and ~ωp = 0.516 meV. For
y-polarization, the system is on resonance between the states |1)2 and |5)2 with |G15| = 0.987
and ~ωp = 1.025 meV.
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Figure 5.7: Energy spectra for three electrons and both x (left) and y (right) polarization. The
lowest 64 states are plotted in both cases. For the x-polarization, the system is on resonance
between the states |1)3 and |3)3 with a DGC strength of |G12| = 0.587 and ~ωp = 0.643 meV.
For y-polarization, the system is on resonance between the states |1)3 and |5)3 with a DGC
strength of |G15| = 1.168 and ~ωp = 1.020 meV.
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Figure 5.8: Energy spectra for one electron and both x (left) and y (right) polarization. The lowest
64 states are plotted in both cases. The system is on resonance between the weakly coupled
states |1)1 and |3)1 with a DGC strength of |G13| ∼ 10−16 and ~ωp = 0.492 for both polariza-
tions. The spectrum is very chaotic for the x-polarization, while the one for the y-polarization
is relatively smooth.
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Figure 5.9: Energy spectra for two electrons and both x (left) and y (right) polarization. The
lowest 64 states are plotted in both cases. The system is on resonance between the weakly
coupled states |1)2 and |3)2 with a DGC strength of |G13| ∼ 10−13 and ~ωp = 0.648 for both
polarizations. Note how smooth the x-polarization spectrum is compared with the one electron
case in Fig. 5.8.
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Figure 5.10: Energy spectra for one electron and x-polarization (left) and two electrons and y-
polarization (right). The A2 term in the e-EM interaction Hamiltonian is both included (blue)
and omitted (red). For the x-polarization, the system is on resonance between the states |1)1 and
|2)1 with a DGC strength of |G12| = 0.290 and ~ωp = 0.185 meV. For the y-polarization, the
system is on resonance between the states |1)2 and |5)2 with a DGC strength of |G15| = 0.987
and ~ωp = 1.025 meV. As can be seen from the figure, omitting the A2 term does give accurate
results for small Ec, while for large Ec the energy spectrum takes a steep dive downwards. This
dive also takes place in the two electron case (right panel), however it can’t be seen in the
chosen range of Ec. There is no physical significance in these dives since the results are highly
divergent in those areas as can be seen in Fig. 6.7.
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Figure 5.11: Energy spectra for two electrons and x-polarization (left) and one electron and y-
polarization (right). The A2 term in the e-EM interaction Hamiltonian is both included (blue)
and omitted (red). For the x-polarization, the system is on resonance between the weakly cou-
pled states |1)2 and |3)2 with a DGC strength of |G12| =∼ 10−13 and ~ωp = 0.648 meV. For
the y-polarization, the system is on resonance between the weakly coupled states |1)1 and |3)1
with a DGC strength of |G13| ∼ 10−13 and ~ωp = 0.492 meV. Omitting the A2 term for the
case of y-polarization gives very bad results for the majority of the energy curves, even for very
small Ec. As for the x-polarization, we can see that for many of the energy curves, omitting the
A2 term gives satisfactory results. However, the discrepancy is large for some states, especially
for the states |3)⊗ |0〉 and |0)⊗ |1〉, the states in which we are most interested in because those
states will play a role in the TLS approximation later on.
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5.2.2. Charge Density

It is easy to be overwhelmed with data when plotting charge densities since there are is
infinite number of Ec values to choose from and a lot of eigenstates. I will try to choose
the most interesting and relevant values. We are mostly interested in the active states and
the most interesting areas are around energy crossings and anti-crossings.

To quickly reference eigenstates, the notation |α)|M〉(Ec) is used (depending on the con-
text, I will sometimes omit the (Ec) part). It should be understood as the state we find by
starting out at Ec = 0 and tracing the relevant energy spectrum curve to the right until
we reach the desired Ec value. In case of an energy crossing, the smoother (differentiable)
curve should be followed. For example, see the purple curve on the right panel in Fig. 5.5.
For Ec = 0, it is the state |1)|1). However, for Ec > 0, I will still refer to the state |1)|1〉 as
the one belonging to the purple curve even though it is no longer an eigenstate. From this
discussion it should be clear that when looking at charge density plots, the corresponding
energy spectrum from section 5.2.1 should be viewed alongside it.

Figures 5.12 and 5.13 show one electron charge densities for x- and y-polarization re-
spectively. From the figures we see that the only area where charge densities changes by
a visible amount is near energy anti-crossings. This is well illustrated in the second and
third row of Fig. 5.12 where the charge density of the states |2)|0〉 (orange), |1)|1〉 (gray)
mix due to their anti-crossing at Ec = 0. Their charge density remains the same when Ec
is tuned up until |1)|1〉 (gray) has another anti-crossing at Ec ' 0.35. This is also apparent
in the fourth row of Fig. 5.13 where the state |1)|1〉 (purple) has multiple energy crossings
in the range Ec ∈ [0.2, 0.6] meV (see Fig. 5.5) but there is no visible change in the charge
density. Another example is the ground state for both polarizations (top row), which have
no anti-crossings and the charge density show no visible change.

Charge densities for two or more electrons are omitted in this thesis. The reason is that we
need to calculate the charge density in the {|µ)⊗ |M〉} basis which means that instead
of calculating the simple inner product 〈µ|d†idj|ν〉 in Eq. (3.16), we need to calculate
(µ|d†idj|ν) = 〈µ|Vd†idjV|ν〉. This inner product is performed inside a very deeply nested
do loop which makes calculating the many electron charge densities computationally un-
feasible without drastically reducing the basis size or using some algorithm to select the
most important part of ρ and omitting the rest. It is also possible to calculate all possible
values of (µ|d†idj|ν) beforehand, which results in an array with N2

mesT × N2
ses elements.

For the typical values NmesT = 200 and Nses = 50 this results in a ∼ 1.5GB array which
is certainly manageable.
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Figure 5.12: Electron charge densities (scaled by −e) for one electron and x-polarization. The
system is on resonance between the states |1)1 and |2)1 with a DGC strength of |G12| = 0.290
and ~ωp = 0.185 meV. To identify the states, see the color coding on the left panel of Fig.
5.5 and the corresponding color marks on the y−axis above. Counting from top to bottom, the
plotted states are |1)|0〉 (blue), |2)|0〉 (orange), |1)|1〉 (gray), |2)|1〉 (purple) and |3)|0〉 (green).
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Figure 5.13: Electron charge densities (scaled by −e) for one electron and y-polarization. The
system is on resonance between the states |1)1 and |5)1 with a DGC strength of |G15| = 0.701
and ~ωp = 1.03 meV. To identify the states, see the color coding on the right panel of Fig.
5.5 and the corresponding color marks on the y−axis above. Counting from top to bottom, the
plotted states are |1)|0〉 (blue), |4)|0〉 (orange), |5)|0〉 (gray), |1)|1〉 (purple) and |6)|0〉 (green).

38



5.3. TLS approximations

5.3. TLS approximations

In this section I present results from three different TLS models of varying complexity and
compare with results from the exact model. The least complicated one is the JC-model,
in which the only input parameters are the energies of the two active states, their DGC
strength |Gαβ| and the e-EM coupling Ec. The other two models which I test are similar to
the full model. The difference is that I only use the two active states for the {|µ)⊗ |M〉}
basis, instead of the full NmesT ' 200 states I use for the full model. Additionally, for one
of these two models, I don’t include the diamagnetic A2 term.

The first thing we need to do in order to investigate the validity of a TLS approximation
is to find promising active states to use for the TLS model. As has been covered earlier in
this thesis, the active states need to have a strong DGC |Gαβ| and be isolated from other
energy levels. For x-polarization, we can see from Fig. 5.5 that states |1)1 and |2)1 look
very promising. This choice gives λ ' 46.6� 1 so we can expect the TLS approximation
to be valid, which is confirmed in Fig. 5.14, which shows the x-polarization many-body
energy spectra as a function of the electron-photon coupling strength for the different
models. As expected, the JC results almost coincide with our TLS results not including
the A2 term. The difference (not visible in Fig. 5.14) between the two curves is due to
effects of the external magnetic field.

When the A2 term is included, the energy spectrum manifests a blue-shift. A weaker red
shift correction is observed when the higher MBSs are involved in the electron-photon
coupling. In the weak coupling regime Ec < 0.1~ω ' 0.02 meV, the JC-model is ap-
proximately valid. When the coupling strength is increased to Ec ' ~ω ' 0.2 meV, the
ground state energy calculated by the TLS model is still valid. However, the energy of the
excited states becomes inaccurate, indicating that the simplified TLS model is no longer
a good approximation in the strong coupling regime even though the diamagnetic vector
potential A2 is included. When the coupling strength Ec is increased, both the JC- model
and the TLS without the A2 term predict a decreasing ground state, however by including
the A2 term within the TLS model the energy increases, in better agreement with our full
numerical calculation.
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Figure 5.14: Comparison of the many-body energy spectra versus the coupling strength Ec for the
case of one electron and x-polarization. The energy spectra’s are obtained by the TLS model
with (blue) and without (green) the A2 term and the JC-model (red-dashed). The TLS model
results are compared with the full numerical calculation results for the lowest active levels
|1)⊗|0〉, |2)⊗|0〉, and |1)⊗|1〉 (purple). Other parameters are the same as for the x-polarization
in Fig. 5.5.
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For y-polarization and one electron, we have to choose the states |1)1 and |5)1 since
|5)1 is the only energetically low state which has a large DGC strength with the one
electron ground state |1)1. This choice gives λ ' 48.7 � 1 so we can expect the TLS
approximation to be valid. However, there is clearly an anti-crossing at Ec ' 0.15 between
the states |5)|0〉 and |4)|0〉 (see right panel of Fig. 5.5) so we expect the TLS to fail
at around Ec ' 0.15. This is exactly what we see in Fig. 5.15, where we compare the
many-body energy spectra as a function of the electron-photon coupling strength Ec for
y-polarization. The Figure displays energy spectra calculated using the four models. As
with the x-polarization, the energy spectrum obtained by the JC-model almost coincides
with the TLS result without the A2 term. The difference (not visible in Fig. 5.15) is again
due to effects of the external magnetic field.

When the A2 term is included, the energy spectrum is blue-shifted in the strong coupling
regime. When the higher MBSs are involved in the electron-photon coupling (full model)
there is good agreement with the TLS including the A2 term until inactive states (not
included in the two-level approximation) start to have influence, such as the energy anti-
crossing at Ec ' 0.17 meV shown in Fig. 5.15. Note that the energy crossing at Ec '
0.13 meV between the states |6)|0〉 and |1)|1〉 has no visible effect on the active states. In
the weak coupling regime Ec < 0.1~ω ' 0.1 meV, the JC-model is approximately valid.
Also note that for y-polarization, results are only shown up to Ec/~ωp ' 0.2 while for x-
polarization I go up to Ec/~ωp ' 1. This is because there are no inactive states getting in
the way for x-polarization and thus we can allow ourselves to take the TLS approximation
further in Ec.

Figures 5.16 and 5.17 show the same comparison for the case of two electrons. Our choice
of active states (|1)2 and |2)2 for x-polarization and |1)2 and |5)2 for y-polarization) gives
λ ' 41.7� 1 for x polarization and λ ' 48.7 for the y-polarization so we can expect the
TLS approximation to be valid again. As can be seen from the two figures, the behavior is
very similar to the one electron case. Both the results of the JC-model and the TLS without
A2 term show red shift w.r.t the full model while the TLS with A2 term result show a less
drastic blueshift. As before, all the TLS results fail around energy anti-crossings.

Finally, Fig. 5.18 shows a TLS comparison when the active states are weakly coupled
and condition 4.39 is not satisfied. What is surprising is that the TLS without the A2

term is actually more accurate than the one which includes it. The reason for this is is
probably that the error originating from neglecting the remainder of the electron Hilbert
space partly cancels the error due to the missing A2 term.
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Figure 5.15: Comparison of the many-body energy spectra versus the coupling strength Ec for
the case of one electron and y-polarization. These energy states are obtained by TLS model
including the A2 term (blue), not including the A2 term (green) and the JC-model (red-dashed).
The TLS model results are compared with the full numerical calculation for the compared
lowest active levels |1)|0〉, |5)|0〉 and |1)|1〉 (purple) as well as inactive levels (gray). Other
parameters are the same as for the y-polarization in Fig. 5.5. The inset shows the validity of the
JC-model in the weak coupling limit.

42



5.3. TLS approximations

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Ec [meV]

2.16

2.24

2.32

2.40

2.48

2.56

2.64

2.72

2.80

2.88

2.96

3.04

3.12

3.20

E
ne

rg
y

[m
eV

]

TLS, including A2 term
TLS, not including A2 term
JC-model
Full model - active states
Full model - other states

0.000 0.015 0.030

2.715

2.730

2.745

Figure 5.16: Comparison of the many-body energy spectra versus the coupling strength Ec for
the case of two electrons and x-polarization. These energy states are obtained by TLS model
including the A2 term (blue), not including the A2 term (green) and the JC-model (red-dashed).
The TLS model results are compared with the full numerical calculation for the compared
lowest active levels |1)2|0〉, |2)2|0〉 and |1)2|1〉 (purple) as well as inactive levels (gray). Other
parameters are the same as for the x-polarization in Fig. 5.6. The inset shows the validity of the
JC-model in the weak coupling limit.
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Figure 5.17: Comparison of the many-body energy spectra versus the coupling strength Ec for
the case of two electrons and y-polarization. These energy states are obtained by TLS model
including the A2 term (blue), not including the A2 term (green) and the JC-model (red-dashed).
The TLS model results are compared with the full numerical calculation for the compared
lowest active levels |1)2|0〉, |5)2|0〉 and |1)2|1〉 (purple) as well as inactive levels (gray). Other
parameters are the same as for the y-polarization in Fig. 5.6. The inset shows the validity of the
JC-model in the weak coupling limit.
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Figure 5.18: Comparison of the many-body energy spectra versus the coupling strength Ec for
the case of two electrons and y-polarization. The system is on resonance between the weakly
coupled states |1)2 and |2)2 with a DGC strength of |G12| = 0.0772, ~ωp = 0.516 meV and
λ = 0.593. These energy states are obtained by TLS model including the A2 term (blue), not
including the A2 term (green) and the JC approximation without magnetic field (red-dashed).
The TLS model results are compared with the full numerical calculation for the compared
lowest active levels |1)2|0〉, |2)2|0〉 and |1)2|1〉 (purple) as well as inactive levels (gray).
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6. Convergence tests

In this section we will investigate how truncation of Fock spaces affect results. I will begin
with convergence calculations for one electron and then proceed with many electrons. To
get an estimate of the numerical error I define the relative error in the energy of state |µ̆)
as

R
(µ)
ij ≡

∣∣∣∣∣E
(µ)
i − E(µ)

j

E
(µ)
i

∣∣∣∣∣ (6.1)

whereE(µ)
i is the energy of state |µ̆) and i refers to some accuracy parameter. For example

i can beNses,NmesT orNEM. Typically, j is the highest value of the changing parameter that
can be used to get results in reasonable time and we vary i to see if the results converge.
While I vary the parameters i and j, all other accuracy parameters are kept constant. I also
define the maximum error of the N lowest states as

Rmax
ij ≡ max

ν∈[1,N ]
R

(ν)
ij . (6.2)

The value we choose for N depends on what we intend to use the states for once we are
calculating them. For calculating electron transport using the generalized master equation,
64 states are typically used so that is the value I will use [33].

Now that we have a way of approximating the relative error in energy we have to come
up with some maximum acceptable error. Ideally we would want at least 16 correct digits,
which is the number of digits in double precision floats. However, that would require a
basis size beyond what we can handle. I will therefore consider results to have converged
when the relative error of the lowest 64 states is less than 10−3 and less than 10−4 for the
ground state.

Note that in all convergence calculations I use B = 0.1 T, ~Ω0 = 1.0 meV, δ = 0.01∆αβ

and Lx = 300 nm, where |α) and |β) are the active electron states. The choice of these
two states depends on both polarization and electron number. The range of Ec in which
convergence tests are performed is 0 ≤ Ec ≤ 2~ωp. The grid which the single electron
eigenfunctions are saved on and are used for gaussian integration in the Coulomb integral
in (3.27) is 160x120.
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6. Convergence tests

6.1. One electron

For one electron we only need to investigate convergence with respect to two variables.
They are the number of electron states NmesT (which is equal to Nses for one electron) and
the maximum number of photons NEM. From figures 6.1 and 6.2 we see that convergence
with respect to Nses is much slower than for NEM. We can also see that the results for
NEM = 15 and Nses = 200 are acceptable for Ec < ~ωp for both x and y polarization.
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(a) Resonance between the one electron states |1)1 and |2)1 giving ~ωp = 0.185 meV. The results are
acceptable for NmesT = 200 (blue) in the whole range of Ec considered here.
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(b) Resonance between the one electron states |1)1 and |5)1 giving ~ωp = 1.03 meV. The results are
acceptable for NmesT = 200 (green) up to Ec ' ~ωp. It’s worth noting that the maximum error is up to 5
orders of magnitude higher than the ground state error which is much more than for x-polarization. This
indicates that the error rises much faster than for x-polarization when one goes upwards in the energy
spectrum. This most likely due to the high amount of energy crossings and anti-crossings for high energy
which can be seen on the right panel of Fig. 5.5.

Figure 6.1: Convergence calculations with respect to NmesT for x-polarization (a) and y-
polarization (b). For this run we have a = 100, b = 150, c = 200 and d = 250 (see equations
6.1 and 6.2 for definition). The maximum number of photons is kept constant at NEM = 20.
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6.2. More than one electron

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Ec [meV]

10−14

10−12

10−10

10−8

10−6

10−4

10−2

R
el

at
iv

e
er

ro
r

R
(1)
ad

R
(1)
bd

R
(1)
cd

Rmax
ad

Rmax
bd

Rmax
cd

(a) Resonance between the one electron states |1)1 and |2)1 giving ~ωp = 0.185 meV. The results are
acceptable for NEM = 15 (blue) in the whole range of Ec considered here.
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(b) Resonance between the one electron states |1)1 and |5)1 giving ~ωp = 1.03 meV. The results are
acceptable for NEM = 15 (blue) in the whole range of Ec considered here.

Figure 6.2: Convergence calculations with respect toNEM for x-polarization (a) and y-polarization
(b). For this run we have a = 10, b = 15, c = 20 and d = 25 (see equations 6.1 and 6.2 for
definition). The electron state number is kept constant at NmesT = 200. We can see that for
NEM = 20, the results are acceptable for the whole range of Ec considered.

6.2. More than one electron

For more than one electron we need to investigate convergence with respect to more vari-
ables. In addition toNmesT andNEM we haveNses and the size of the grid we use to perform
the Coulomb integral in (3.27). These two accuracy parameters don’t enter directly into
the truncation of the e-EM basis so we don’t expect the error to increase much with higher
coupling but we still need to obtain some bounds on the error.

Figure 6.3 shows convergence with respect to NmesT which we can see, is much slower for
two electrons than one. ForNmesT = 200 we can get acceptable results up to Ec/~ωp ' 0.5
for x-polarization and Ec/~ωp ' 0.25 for y-polarization. The convergence with respect to
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(a) Resonance between the two electron states |1) and |2) giving ~ωp = 0.516 meV. The results are accept-
able for NmesT = 200 (green) up to Ec ' ~ωp/2.

0.0 0.5 1.0 1.5 2.0
Ec [meV]

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

R
el

at
iv

e
er

ro
r

R
(1)
ad

R
(1)
bd

R
(1)
cd

Rmax
ad

Rmax
bd

Rmax
cd

(b) Resonance between the two electron states |1) and |5) giving ~ωp = 1.025 meV. The results are accept-
able for NmesT = 200 The results are acceptable for NmesT = 200 (green) up to Ec ' ~ωp/4.

Figure 6.3: Convergence calculations for two electrons with respect to NmesT for x-polarization
(a) and y-polarization (b). For this run we have a = 100, b = 150, c = 200 and d = 250 (see
equations 6.1 and 6.2 for definition). Other accuracy parameters are Nses = 50 and NEM = 20.

NEM was found to be almost identical with the one electron result in 6.1 so we conclude
that we can safely put NEM = 20 and not worry about it since the error due to truncation
of the electron Fock space is much greater. Fig. 6.4 shows convergence with respect to
Nses and the grid size for y-polarization, which is considerably faster than for NmesT. At
this point it is clear that the truncation of the electron Fock space is the main cause of
numerical error so in the remainder of this section I will concentrate on convergence with
respect to NmesT and ignore other accuracy parameters.

Figure 6.5 shows convergence calculations with respect to NmesT for three electrons. We
can see that the convergence is a bit slower than for two electrons. For NmesT = 200,
NEM = 20 and Nses = 30, we can get acceptable results up to Ec/~ωp = 0.4 for x-
polarization and Ec/~ωp = 0.2 for y-polarization. I expect this trend of slower conver-
gence with increasing electrons number to continue. However, I will not continue conver-
gence calculations beyond three electrons in this thesis.
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6.2. More than one electron
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(a) For this run we have a = 30, b = 40, c = 50 and d = 60 (see equations 6.1 and 6.2 for definition). The
results are acceptable for Nses = 50 (green) up to Ec ' ~ωp.
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(b) For this run, a is a 80x60 grid, b is 160x120 and c is 220x160 (see equations 6.1 and 6.2 for definition).
From the data we can see that a 80x60 grid is sufficient to get acceptable accuracy. However, I will use
the 160x120 grid in calculations since it requires minimal additional computation time.

Figure 6.4: Convergence calculations for two electrons with respect to Nses (a) and grid size (b).
In both cases, y-polarization is used and we have resonance between the two electron states
|1) and |5) giving ~ωp = 1.025 meV. The corresponding results for x-polarization are almost
identical and will be omitted.

So far we have concentrated on a system that is on resonance, that is the quantized EM
field frequency matches an energy gap between two states |µ) and |ν) with relatively
strong DGC (large |Gαβ|). To see if convergence differs for a system off resonance I per-
formed convergence calculations for a two electron system which is off resonance (see
Fig. 6.6). By comparison with Fig. 6.3 we see that the convergence with respect to NmesT

is considerably faster for a system that is off resonance, especially for y-polarization.

To conclude this section, I will show that the A2 term has a drastic effect on convergence.
Figure 6.7 shows convergence calculations with respect to NmesT without the A2 term. As
can be seen from the figure, the results blow up at around Ec ' 0.75~ωp ' 0.4 meV.
Comparing the results with Fig. 6.3a, in which the A2 term is included. We can see that
the convergence is much better in the latter mentioned figure.
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6. Convergence tests
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(a) Resonance between the three electron states |1) and |3) giving ~ωp = 0.643 meV. The results are
acceptable for NmesT = 200 (green) up to Ec ' 0.4~ωp.
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(b) Resonance between the three electron states |1) and |5) giving ~ωp = 1.02 meV. The results are accept-
able for NmesT = 200 (green) up to Ec ' 0.2~ωp.

Figure 6.5: Convergence calculations for three electrons with respect to NmesT for x-polarization
(b) and y-polarization (b). For this run we have a = 100, b = 150, c = 200 and d = 250 (see
equations 6.1 and 6.2 for definition). Other accuracy parameters are Nses = 30 and NEM = 20.
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6.2. More than one electron
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(a) Results are acceptable for NmesT = 200 (green) up to Ec ' 0.65~ωp.
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(b) Results are acceptable for NmesT = 200 (green) up to Ec ' 0.65~ωp.

Figure 6.6: Convergence calculations for two electrons with respect toNmesT for x-polarization (b)
and y-polarization (b). The system is off resonance with ~ωp = 0.4 meV for both polarizations.
For this run we have a = 100, b = 150, c = 200 and d = 250 (see equations 6.1 and 6.2 for
definition). Other accuracy parameters are Nses = 50 and NEM = 20.
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Figure 6.7: Convergence calculations with respect to NmesT for x-polarization, ignoring the A2

term in the e-EM interaction Hamiltonian. The system is on resonance between the two electron
states |1)2 and |2)2 giving ~ωp = 0.516. For this run we have a = 100, b = 150, c = 200 and
d = 250 (see equations 6.1 and 6.2 for definition). The results start to blow up at around
Ec ' 0.4. At around Ec ' 0.7, the error is a 1000 times larger than the calculated value of the
energy.
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7. Conclusion

We have performed a numerical calculation of a microscopic model describing a hybrid
structure consisting of an electronic nanostructure embedded in a cavity resonator. We
have demonstrated strong coupling features of Coulomb interacting electrons and photons
in an external magnetic field. The two-dimensional electron gas in the nanostructure is
parabolically confined in the y-direction and hard-wall confined in the x direction that is
embedded in a rectangular photon cavity with a TE-mode electromagnetic field that may
be either x- or y-polarized.

We have established that the diamagnetic A2 term in the e-EM interaction Hamiltonian
provides a blue-shift correction to the energy spectrum. However, including higher many-
body states beyond a two-level approximation results in a smaller red-shift correction.
This implies that the two lowest levels become more stable when the higher energy levels
are included in the electron-photon coupled system. When the A2 term is not included
in calculations, energy spectra take a steep dive downwards in energy when the e-EM
coupling strength is comparable in magnitude to the photon energy. This behavior has no
physical significance since the results are highly divergent in this strong coupling regime
without the diamagnetic A2 term. Including the A2 term eliminates this behavior and
drastically improves numerical convergence.

A widely employed two-level system approximation has been reexamined comparing to
results of our full numerical calculation model for one and two electrons. Our numerical
results demonstrate that the two-level system approximation and the Jaynes-Cummings
model remain valid in the weak electron-photon coupling regime. However qualitative
difference of the energy spectrum between the TLS models and the full numerical calcu-
lation is found for strong e-EM coupling. The TLS approximations all fail around energy
anti-crossings, while fairing much better around energy crossings. From these results, it
is apparent that QED modeling of a circuit element on the nanoscale in the ultrastrong
coupling regime requires approximations beyond the JC-model or more general two level
models.

Two level systems such as the JC-model include no direct information about the electron
charge distribution of the system. However, with our model, we were able to calculate
electron charge densities for the lower eigenstates. We observed that the charge density
of the ground state changes by a very small amount, even in the ulta strong coupling
regime when the e-EM coupling strength is double that of the cavity photon energy. When
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7. Conclusion

the e-EM coupling strength is tuned up, charge densities of excited states only change
considerably around energy anti-crossings. When the the charge density does change, it
does so rapidly in a small interval of e-EM coupling and does not change considerably
again until the next anti-crossing.

In summary, we have presented a model adequate for accurate numerical calculation for
the electron-photon coupled energy spectrum that is essential and was utilized to explore
time-dependent transport of electrons through a photon cavity [33].
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A. Detailed calculations of matrix
elements

A.1. Evaluating Inn
′

x

We need to evaluate Inn′
x for 4 cases.

• Both n and n′ even (Ieex ).

• Both n and n′ odd (Ioox ).

• n even and n′ odd (Ieox ).

• n odd and n′ even (Ioex ).

I will start with Ieex and work my way down.

Ieex = 2
n′π

Lx

Lx/2∫
−Lx/2

sin

(
nπ

Lx
x

)
cos

(
n′π

Lx
x

)
dx = 0 (A.1)

because cos(ax) sin(bx) is an odd function, which also means that

Ioox = −2
n′π

Lx

Lx/2∫
−Lx/2

cos

(
nπ

Lx
x

)
sin

(
n′π

Lx
x

)
dx = 0 . (A.2)

Now the even-odd case.

Ieox = −2
n′π

Lx

Lx/2∫
−Lx/2

sin

(
nπ

Lx
x

)
sin

(
n′π

Lx
x

)
dx . (A.3)
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A. Detailed calculations of matrix elements

Put z = x/Lx and note that sin(ax) sin(bx) is an even function so we can change the
integration limits

Ieox = −4n′π

1/2∫
0

sin(nπz) sin(n′πz) dz

= 2n′π

1/2∫
0

[cos((n+ n′)πz)− cos((n− n′)πz)] dz (A.4)

where I’ve used that sin(a) sin(b) = −1
2

[cos(a+ b)− cos(a− b)]. Performing the inte-
gration in (A.4) we obtain

Ieox = 2n′
[

sin((n+ n′)π/2)

n+ n′
− sin((n− n′)π/2)

n− n′
]
. (A.5)

This can be simplified to

Ieox =
−4nn′

n2 − n′2 (−1)(n+n′+1)/2 (A.6)

Now the odd-even case.

Ioex = 2
n′π

Lx

Lx/2∫
−Lx/2

cos

(
nπ

Lx
x

)
cos

(
n′π

Lx
x

)
dx . (A.7)

Put z = x/Lx and note that cos(ax) cos(bx) is an even function so we can change the
integration limits

Ioex = 4n′π

1/2∫
0

cos(nπz) cos(n′πz) dz

= 2n′π

1/2∫
0

[cos((n+ n′)πz) + cos((n− n′)πz)] dz (A.8)

where I’ve used that cos(a) cos(b) = 1
2

[cos(a+ b) + cos(a− b)]. Performing the integra-
tion in (A.8) we obtain

Ioex = 2n′
[

sin((n+ n′)π/2)

n+ n′
+

sin((n− n′)π/2)

n− n′
]
. (A.9)

This can be simplified to

Ioex =
−4nn′

n2 − n′2 (−1)(n+n′+1)/2 (A.10)

which is the same result we got in (A.6).
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A.2. Evaluating Imm′
y

A.2. Evaluating Imm′
y

The Imm′
y integral is a bit easier to evaluate than Inn′

x .

Imm
′

y =
1

aw

∞∫
−∞

ϕm(y)yϕm′(y) dy (A.11)

=
1√

2m
√
πm!

1√
2m′√πm′!

∞∫
−∞

e−z
2

zHm(z)Hm′(z) dz (A.12)

We now use the recursion relation

zHm(z) =
1

2
Hn+1(z) + nHn−1(z) (A.13)

and (A.12) becomes

1√
2m
√
πm!

1√
2m′√πm′!

∞∫
−∞

e−z
2

Hm′

{
1

2
Hm+1(z) +mHm−1(z)

}
dz (A.14)

=

√
m′ + 1

2
δm,m′+1 +

√
m′

2
δm,m′−1 (A.15)

A.3. Evaluating Gmm′
y

Gmm′

y =
1√

2m+m′πm!m′!

∞∫
−∞

Hm(ξ)Hm′(ξ)e−ξ
2

e−α
2
y(ξ−ξ0)2 dξ . (A.16)

We fill the square in (A.16) and shift the integration variable by ξ0 which has no effect on
the limits and get

Gmm′

y =
e
− α2yξ

2
0

α2y+1

√
2m+m′πm!m′!

∞∫
−∞

Hm(ξ + ξ0)Hm′(ξ + ξ0)e−(α2
y+1)ξ2 dξ (A.17)
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A. Detailed calculations of matrix elements

Now use that

Hn(x+ y) =
n∑
k=0

(
n

k

)
Hk(x)(2y)(n−k) (A.18)

and (A.18) becomes

e
− α2yξ

2
0

α2y+1

(
2α2
yξ0

α2
y+1

)m+m′

√
2m+m′πm!m′!

m∑
k=0

m′∑
`=0

(
m

k

)(
m′

`

)(
α2
y + 1

2α2
yξ0

)k+`

×
∞∫

−∞

Hm(ξ)Hm′(ξ)e
−2

(√
α2y+1

2

)2

ξ2

dξ (A.19)

Finally we use [34, eq. 7.374.5], which states

∞∫
−∞

Hm(ξ)Hn(ξ)e−2a2ξ2 dξ = 2(m+n−1)/2a−m−n−1(1− 2a2)(m+n)/2

×Γ

(
m+ n+ 1

2

)
2F1

(
−n,−m;

1−m− n
2

;
a2

2a2 − 1

)
. (A.20)

If we use (A.19) and (A.20) with a =

√
α2
y+1

2
we get (2.12). This result does not work if

ξ0 = 0 so for that case we need to go back to (A.16) and put ξ0 = 0 and get

Gmm′

y (ξ = 0) =
1√

2m+m′πm!m′!

∞∫
−∞

Hm(ξ)Hm′(ξ)e
−2(

√
α2y+1

2
)ξ2

dξ . (A.21)

We again use (A.20) in (A.21) and get (2.14).

A.4. Evaluating gij

Our starting point is Eq. (4.16);

gij = 〈ψi|g|ψj〉 ≡ 〈ψi|
q

2m
(π ·AEM + AEM · π) |ψj〉 (A.22)

Because AEM was approximated as constant on the wire we have [AEM,π] ' 0, so

gij ' 〈ψi|
q

m
(AEM · π) |ψj〉 . (A.23)
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A.4. Evaluating gij

Plugging in πx = px + qAx = −i~∂x − qBy and πy = py + qAy = −i~∂y we obtain

gij '
qAEM

m
〈ψi|ex(−i~∂x − qBy) + ey(−i~∂y)|ψj〉

= Ec
[
−iex

aw
Lx
〈ψi|Lx∂x|ψj〉 − iey〈ψi|aw∂y|ψj〉

−ex
ωc
Ωw

〈ψi|y/aw|ψj〉
]
. (A.24)

I will solve this integral in the original one electron basis {|mi, ni〉} defined in 2.2. Then
I transform the results into the {|ψi〉} basis using the unitary transform U defined in 2.18.
This means we need to evaluate

〈mi, ni|g|mj, nj〉 = Ec〈ni,mi|
{
−iex

aw
Lx

(Lx∂x)− iey(aw∂y)

−ex
ωc
Ωw

(y/aw)

}
|mj, nj〉 (A.25)

= Ec
{
−iex

aw
Lx
〈ni|Lx∂x|nj〉δmi,mj − iey〈mi|aw∂y|mj〉δni,nj

−ex
ωc
Ωw

〈mi|
y

aw
|mj〉δni,nj

}
. (A.26)

where 〈ni|Lx∂x|nj〉 and 〈mi| yaw |mj〉 we have already been calculated in A.1 and A.2.
Using the recursion relation for Hermite functions (eigenfunctions of the Harmonic oscil-
lator) we calculate the remaining integral

〈mi|aw∂y|mj〉 = 〈mi|
(√

mj

2
|mj − 1〉 −

√
mj + 1

2
|mj + 1〉

)

=

√
mj

2
δmi,mj+1 −

√
mj + 1

2
δmi,mj+1 . (A.27)

Putting everything together we obtain

〈mi, ni|g|mj, nj〉 = Ec
{
−ex

ωc
Ωw

[√
mj + 1

2
δmi,mj+1 +

√
mj

2
δmi,mj−1

]
δni,nj

−iex
aw
Lx
Ixninjδmi,mj − iey

[
−
√
mj + 1

2
δmi,mj+1 +

√
mj

2
δmi,mj−1

]
δni,nj

}
. (A.28)

Finally, we obtain gij by applying the unitary transformation

gij = 〈ψi|g|ψj〉 = 〈mi, ni|U †gU |mj, nj〉 (A.29)

The gij matrix elements can also be calculated directly from (A.24) using numerical in-
tegration. In order to do that the derivatives of ψi(r) with respect to x and y need to be
calculated and saved. This method is less accurate but is good for comparison.
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B. Convergence of Coulomb matrix
elements

I begin by rewriting Ijr using

ψ∗j (r
′)ψr(r

′) =
{
ψ∗j (r

′)− ψ∗j (r)
}
{ψr(r′)− ψr(r)} (B.1)

+ ψ∗j (r
′)ψr(r) + ψ∗j (r)ψr(r

′)− ψ∗j (r)ψr(r) , (B.2)

so

4πε

q2
Irj(r) =

∫ {
ψ∗j (r

′)− ψ∗j (r)
}
{ψr(r′)− ψr(r)}

|r− r′|+ η
dr′

+

∫
ψ∗j (r

′)ψr(r) + ψ∗j (r)ψr(r
′)

|r− r′|+ η
dr′

−ψ∗j (r)ψr(r)
∫

1

|r′ − r|+ η
dr′ (B.3)

The three integrals on the r.h.s. in (B.3) I will denote as Ĩrj , I(2)
rj and I(3)

rj counting from
left to right. It should be noted that technically I(2)

rj is infinite for η = 0 and I(3)
rj is infinite

for all η because the area of integration is infinite. We could take the limit of infinitely
large integration area and zero η but for clarity it will be suppressed. In the end we will
see that Hamiltonian matrix elements arising from the I(2)

rj and I(3)
rj terms are zero and

independent of η and the size of the integration area.

Let’s start with I(3)
rj . Define

A(η) ≡
∫

1

|r′ − r|+ η
dr′ . (B.4)

Note that A(η) is independent of r since the integration area is large (but not yet infinite)
and r is simply a shift in the integration variable. The contribution of I(3)

rj to the Coulomb
interaction HamiltonianHC is

H(3)
C =

∑
ijrs

〈i|I(3)
rs |s〉d†id†jdsdr (B.5)

=− q2

4πε
A(η)

∑
ijrs

(∫
ψ∗i (r)ψ

∗
j (r)ψs(r)ψr(r) dr

)
d†id
†
jdsdr (B.6)
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B. Convergence of Coulomb matrix elements

Note that if we swap ds and dr in (B.6) we get a factor of−1 due to the anti-commutation
relations of the fermionic operators. However, swapping s and r in the integral has no
effect. We can therefore see that (B.6) must be zero (independent of η and the integration
domain).

It is a bit more involved to show that the contribution to the Coulomb Hamiltonian from
I(2)
rj is zero. Let’s start by noting that

HC =
1

2

∑
ijrs

〈ij|VC |rs〉d†id†jdsdr = −1

2

∑
ijrs

〈ij|VC |rs〉d†jd†idsdr , (B.7)

where I’ve used the anti-commutation relation didj = −djdi. The i and j are only dummy
variables being summed over so we can interchange them and get

−1

2

∑
ijrs

〈ij|VC |rs〉d†jd†idsdr = −1

2

∑
ijrs

〈ji|VC |rs〉d†id†jdsdr . (B.8)

We can take this further by doing the same trick again with r and s and finally swapping
i and j back to obtain∑

ijrs

〈ij|VC |rs〉d†id†jdsdr =−
∑
ijrs

〈ji|VC |rs〉d†id†jdsdr (B.9)

=−
∑
ijrs

〈ij|VC |sr〉d†id†jdsdr (B.10)

= +
∑
ijrs

〈ji|VC |sr〉d†id†jdsdr (B.11)

This allows us to rewrite the Coulomb Hamiltonian as

HC =
1

8

∑
ijrs

{〈ij|VC |rs〉 − 〈ji|VC |rs〉 − 〈ij|VC |sr〉+ 〈ji|VC |sr〉} d†id†jdsdr (B.12)

The above is written for the total Coulomb interaction HamiltonianHC but it is also valid
for the part of the Hamiltonian arising from the I(2)

rj term. This means we can write

H(2)
C ≡

1

2

∑
ijrs

〈i|I(2)
rj |s〉d†id†jdsdr

=
1

8

∑
ijrs

{
〈i|I(2)

jr |s〉 − 〈j|I(2)
ir |s〉 − 〈i|I(2)

js |r〉+ 〈j|I(2)
is |r〉

}
d†id
†
jdsdr (B.13)

Now all we have to do is show that the quantity in the curly brackets in eq. (B.13) is zero
for all i, j, r, s. Let’s begin by defining

Fr(r, η) ≡
∫

ψr(r
′)

|r′ − r|+ η
dr′ . (B.14)
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We then have

4πε

q2
I(2)
rj = ψr(r)F

∗
j (r, η) + ψ∗j (r)Fr(r, η) , (B.15)

so

〈i|I(2)
jr |s〉 − 〈j|I(2)

ir |s〉 − 〈i|I(2)
js |r〉+ 〈j|I(2)

is |r〉 =∫ {
ψ∗i
[
ψrF

∗
j + ψ∗jFr

]
ψs − ψ∗j [ψrF

∗
i + ψ∗i Fr]ψs

− ψ∗i
[
ψsF

∗
j + ψ∗jFs

]
ψr + ψ∗j [ψsF

∗
i + ψ∗i Fs]ψr

}
dr . (B.16)

Note that I have omitted the variables r and η for easier reading. Looking at the 8 terms in
eq. (B.16) we see that they all cancel out. We have therefore shown that H(2)

C = 0. Com-
bined with our previous result thatH(3)

C = 0 we can write the total Coulomb Hamiltonian
as

HC =
1

2

∑
ijrs

〈i|Ĩjr|s〉d†id†jdsdr . (B.17)
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