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Ágrip

Tilgangur þessa verkefnis er að útbúa líkan sem getur framkvæmt �óðagreiningu.
Hönnun líkansins er höguð þannig að ge�n rétt gögn mun það geta framkvæmt slíka
greiningu fyrir allar ár. Fjórar ár á Íslandi eru til skoðunnar í þessu verkefni.

Tvenns konar líkön eru útbúin fyrir árnar til skoðunnar. Annars vegar, svokallað
block maxima líkan (BM), sem notast við árleg hágildi vatnsrennslis, og hins ve-
gar, svokallað þröskuldslíkan (TM), sem notast við vatnsrennslisgildi sem fara y�r
ákveðinn þröskuld. Mismunandi aðferðir við val á þröskuldi eru vandlega skoðaðar.
Almenna hágildisdrei�ngin er notuð í block maxima líkaninu og almenna Pareto
drei�ngin er notuð í þröskuldslíkaninu.

Almenna hágildisdrei�ngin hefur þrjá stika, þ.e. staðsetningarstika, skölunarstika og
lögunarstika. Almenna Pareto drei�ngin hefur tvo stika, þ.e. skölunarstika og lögu-
narstika. Lögunarstikar þessarra drei�nga segja til um hverning halar drei�nganna
haga sér og eru því sérstaklega til skoðunar í þessu verkefni.

Bayesískar tölfræðiaðferðir og Monte Carlo hermun eru notaðar við líkanagerðina.
Athugað er sérstaklega hvernig þrenns konar mismunandi val á fyrirframdrei�ngum
lögunarstikanna hefur áhrif á �óðagreiningunna.

Einnig er óvissan í úteiknuðum vatnsrennslisgildum sérstaklega skoðuð. Vatnsrennslis-
gildin eru reiknuð út frá vatnshæðum með svokölluðum rennslislyklum. Rennslis-
lyklar lýsa vörpun vatnshæðar y�r í vatnsrennsli og þessari vörpun fylgir óvissa.
Líkanið tekur tillit til þessarar óvissu í �óðagreiningunni. Niðurstöður sýna að þessi
viðbætta óvissa rennslisyklanna hefur þau áhrif að heildaróvssa 100 ára atburða
eykst um allt að 15%.

Abstract

The purpose of this project is to build a model which can conduct �ood analysis
on any river, given the proper data. This is done using extreme value theory with
Bayesian statistics and a Markov chain Monte Carlo (MCMC) simulations for pos-
terior inference. Two types of extreme value models are constructed, namely a block
maxima model and a threshold model. The block maxima model uses annual max-
imum values of discharge for �ood analysis while a threshold model uses discharge
values exceeding a certain threshold. Methods for choosing an appropriate threshold
value for the threshold model are investigated. The data used in the block maxima
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model are �tted to the generalized extreme value (GEV) distribution and the data
used in the threshold model are �tted to the generalized Pareto (GP) distribution.
The three parameter GEV distribution and the two parameter GP distribution both
have a shape parameter ξ, controlling the shape of the tail of the distributions. A
negative shape parameter leads to a bounded upper tail leading to an upper limit on
extremes. For a non-negative shape parameter the tails of the distributions becomes
unbounded and they grow thicker as ξ increases leading to a higher probability of
large values. Using the Bayesian methodology it is explored whether constraining
the shape parameter, using prior knowledge, is bene�ciary and if it is statistically
acceptable.

The goal is to try and understand the behavior of a river and predict the magnitude
of water discharge likely to arise for a particular time span. This magnitude of
discharge is visually described in return level plots. The uncertainty in the return
level plots is often quite large. The uncertainty in an extreme value analysis is of
major importance. One source of uncertainty is due to sampling. There is another
source of uncertainty taken into account in the thesis. Namely, the uncertainties
in the discharge values. The discharge is found by transformation from water level
using a discharge rating curve. Whether the discharge rating curve uncertainty has
a signi�cant e�ect on the over all uncertainty in return level plots or not, is studied.

The parameters of the GEV and GP distributions are evaluated through the Bayesian
approach. Posterior densities are compared for the two di�erent types of models
(GEV and GP) using three di�erent cases of prior distributions with and without a
discharge rating curve uncertainty. This comparison is done for four rivers in Ice-
land. The research showed that the added discharge rating curve uncertainty has
the e�ect of increasing the over all uncertainty in a 100-year event for up to 15%.
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1. Introduction

1.1. Motivation

Extreme events such as �oods are, as the name implies, extreme; departures from
a norm or something unexpected. Extreme value theory is intriguing for many
reasons, if not only to shed light on these unexpected events. It is the purpose most
extreme value analysis to try to predict these departures from the norm, i.e. to try
to predict them so precautions can be made. When using these theories to predict
future events, the result of an analysis has often a high level of associated uncertainty.
Its understandable as the time length of predictions is often greater than the time
length of the data used for the analysis. The analysis uses discharge time series to
predict future �oods. However, due to high cost of discharge measurements, the
discharge values are rarely measured but usually transformed from measured water
levels using so called discharge rating curves (DRC). A DRC is a curve expressing
discharge as a function of water level. There is a degree of uncertainty associated
with the transformation from water level to discharge which e�ects the overall �ood
analysis uncertainty. In this thesis the in�uence of the DRC uncertainty on the over
all uncertainty in the analysis is investigated. The discharge rating curve uncertainty
is merged with the sampling uncertainty using a Bayesian Markov chain Monte Carlo
simulation. Furthermore, by using the framework of Bayesian statistics, it will be
investigated what e�ect a priori knowledge will have on the results of the �ood
analysis by restraining the parameters in the proposed distributions used in the
analysis.

Quantifying uncertainty in extreme analysis is of great importance. Underestimation
can have catastrophic consequences since structures such as bridges and roads are
designed to withstand �oods of magnitudes estimated by extreme analysis.

1.2. Literature review

In this thesis a model that performs �ood analysis was constructed using Bayesian
statistics and extreme value theory. The most popular models used for extreme
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1. Introduction

value analysis is the block maxima model and the threshold model. This thesis
studies both of these models using the generalized extreme value distribution (GEV)
in the block maxima model and the generalized Pareto (GP) distribution in the
threshold model. The Bayesian framework is especially useful when implementing
prior knowledge in statistical analysis and, three di�erent cases of prior knowledge
were examined in each of the models.

The data used for the analysis was daily discharge values. The discharge is calculated
from measured values of water levels, using discharge rating curves. The discharge
rating curves express discharge as a function of water level and in this thesis, the
uncertainty in this water level to discharge transformation is especially examined
and merged with the over-all uncertainty from the �ood analysis.

Many academics have studied extreme value theory and used it in for real life pre-
dictions of all sorts of phenomena. In the last couple of decades the use of Bayesian
modeling has grown in popularity. One of the main advantages in Bayesian mod-
eling is using prior knowledge which can be especially useful when working with
extremes.

Smith (1985) studied the generalized exrteme value distribution using maximum
likelihood methods. The tail behavior of the GEV distribution was investigated
closely and e�ects the shape parameter ξ has on it. He concluded that when the
shape parameter is below -1, the the maximum likelihood estimators are unlikely to
be obtainable.

Makkonen (2006) studied plotting positions of extreme values on return level plots.
He concluded that the best formula to use, was the Weibull formula.

Reis Jr. and Stedinger (2005) explored Bayesian Markov Chain Monte Carlo meth-
ods for evaluating posterior distributions of �ood quantiles, �ood risk, and parame-
ters of both the log-normal and the Log-Pearson Type 3 distributions.

Karim and Chowdhury (1995) compared four distributions used in �ood frequency
analysis in Bangladesh. The distributions being compared were: the GEV distri-
bution, the log-normal distribution, Gumbel distribution and log-Pearson type 3
distribution. They came to the conclusion that the GEV distribution was more
suitable for �ood frequency analysis than any of the other three distributions.

Øverleir and Reitan (2009) examined the joint impact of sample variability and rat-
ing curve imprecision, using likelihood-based methods.They assumed that the dis-
charge rating curve followed the standard power-law model and the annual maximum
discharges values followed the generalized extreme value distribution.

Davison and Smith (1990) used the generalized Pareto distribution (GP) to model
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river �ow peaks over threshold (POT). They studied methods for selecting an ap-
propriate threshold value to use with the GP distribution and also methods for
de-clustering the POTs in order to eliminate the correlation between peaks.

Van Montfort and Witter (1986) used the generalized Pareto distribution to model
extremes in stream �ows and rainfall series.

Coles and Tawn (1996) used Bayesian methods for modeling extreme rainfall series.
They illustrated how expert knowledge regarding the data being analyzed can en-
hance the estimates of extremal behavior. They used Markov chain Monte Carlo
methods to model 100-year return levels for daily rainfall, relying on the knowledge
of an expert hydrologist, for choosing prior distributions for the GEV parameters.
They concluded that, if reliable information concerning the extremes of a process is
available, then the arguments in favour of Bayesinan analysis are compelling.

Smith and Naylor (1987) did a study comparing maximum likelihood and Bayesian
estimators, for the three parameter Weibull distribution. The study was an extreme
analysis on �ber strength, and they came to the conclusions that there are practical
advantages to the Bayesian approach.

Parent and Bernier (2003) used Bayesian methods to model peaks over threshold
(POT), using semi-conjugate informative priors, for �ood analysis. They showed
that prior expertise can signi�cantly reduce uncertainty in �ood analysis.

Coles and Pericchi (2003) used Bayesian methods and MCMC algorithm to model
extreme rainfall in Venezuela.

Hrafnkelsson et al. (2012) used Bayesian methods to improve the estimates of dis-
charge rating curves by extending the standard power-law with B-spline functions.

1.3. Introduction

Human kind has always been trying to understand the random behavior of nature
and prepare for its destructive aspects. Now a days there are several ways of pre-
dicting the behavior of the elements. The use of extreme value theory to predict
extreme events is fairly new. It was in the 1950's when engineers �rst started to
use this methodology for the modeling of physical phenomenon to determine design
criteria. Since then its role has grown enormously in the process of risk analysis,
from determining physical risk of natural events to determining the intangible risk
of stock market crash (Reiss and Thomas (2007)).
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Extreme value analysis is an increasingly popular way of determining the premise
of which a structure should be designed. Floods in rivers can be highly destructive,
damaging infrastructure which can lead to economical and human loss. Therefor,
the ability to be able to predict the behavior of a river can be of substantial value.
Knowing the frequency a �ood of a particular size will occur is a major factor when
designing a bridge or a road. A design will have to account for the possible extreme
events it is subjected to, but within a certain economical frame established through
cost-bene�t analysis.

This work examines daily discharge values of four rivers in Iceland. The length of the
data sets for the rivers ranges from 37 to 57 years. It also uses paired sets of water
level and discharge to construct discharge rating curves which describe the discharge
as a function of water level. The rating curves are di�erent for each river and possess
some uncertainty within them. All the daily discharge values used in the analysis
come from a rating curve transformation of water level. To be able to assess the
uncertainty in the discharge time series for a particular river, the discharge rating
curve is constructed and analyzed. Within the Bayesian framework, the objective
is to perform �ood analysis taking into account both the uncertainty of the rating
curves and the uncertainty due to sampling variability.

Traditionally the rating curve uncertainty is not taken into account when a �ood
analysis is performed. However, Øverleir and Reitan (2009) did so using likelihood-
based methods. The uncertainty of rating curves usually gets greater, the higher the
water level. One of the objectives of this study is to investigate whether rating curve
uncertainty has considerable e�ect on the overall uncertainty of the �ood analysis.

Two types of models were constructed for the �ood analysis for each river. First,
the annual maximum values were investigated and the generalized extreme value
(GEV) distribution �tted to those values. Second, the values exceeding a certain
threshold were �tted to the generalized Pareto (GP) distribution. In both cases,
the parameters in the distributions were examined and it was investigated how the
posterior distributions are a�ected by di�erent types of prior distributions selected
for those parameters. A Markov Chain Monte Carlo (MCMC) simulation was used
to produce samples from the posterior distributions for the parameters, both in the
GEV and the GP distribution.

The generalized extreme value distribution combines the work of three pioneers
in extreme value analysis, Waloddi Weibull, Maurice Frechet, and Emil Gumbel.
Each of them published articles describing models for extreme behavior. Frechet,
in 1927, devised a limiting distribution for a sequence of maxima. The Weibull
distribution, published in 1951, was originally developed to address problems for
minima arising in material sciences but due to its �exibility it is widely used in many
other areas. The Gumbel distribution, �rst published in 1958, has been widely used
in extreme analysis. Gumbel applied it in various problems such as annual �oods.

4



1.3. Introduction

The Generalized Extreme Value (GEV) distribution is a family of limit distributions
combining the Gumbel, Weibull, and Frechet distributions. The GEV distribution
was independently proposed by Jenkinson (1955) and von Mises (1954).

The types of tail behaviors that arise from these distribution are di�erent from
each other. Understanding of the tail behavior of distributions is very important
in extreme value analysis. The three distributions do all have di�erent types of
tail behavior. In the case of maxima both tails of the Gumbel distribution are
unbounded, while the Weibull distribution has an upper bound and the Frechet dis-
tribution has a lower bound. The GEV distribution has three parameters; a location
parameter denoted by µ, a scale parameter denoted by σ, and a shape parameter
denoted by ξ, which controls the tail behavior of the distribution. The value of the
shape parameter in the GEV distribution determines which of the underlying three
distributions it follows. Namely, ξ = 0 corresponds to the unbounded Gumbel dis-
tribution, ξ > 0 corresponds to the lower bounded Frechet distribution, and ξ < 0
corresponds to the upper bounded Weibull distribution. By combining the Gumbel,
Weibull, and Frechet distributions in the GEV distribution, all possible tail behav-
iors of the underlying distributions are possible, making the GEV distribution much
more �exibility than any one of its individual parts.

The method of modeling peaks over threshold (POT) has been used as an alternative
to modeling annual maxima in �ood frequency analysis. The peaks over threshold
are modeled using the generalized Pareto (GP) distribution. It was Pickands, in
1975, that �rst introduced the idea of using the generalized Pareto distribution to
model POTs and it has since been used in a variety of extreme value applications.
Davison and Smith, in 1990, used the GP distribution to model river-�ow POTs.
Van Montfort and Witter (1985) also applied the GP distribution to model POTs
of stream �ows and rainfall series.

Bayesian extreme value analysis has been used in the past to predict natural phe-
nomena, with good results. Coles & Tawn (1996) used a MCMC method to perform
an extreme analysis on rainfall data. They used prior information concerning the
extremes for choosing prior distributions for the GEV parameters. They concluded
that, if reliable information is available, then using historical data and expert knowl-
edge for choosing prior distributions can enhance the estimates of extremal behavior.
Smith & Naylor (1987) compared maximum likelihood estimators to Bayesian esti-
mators for the three parameter Weibull distribution and concluded that there are
practical advantages to using the Bayesian approach.

The main purpose of this thesis is to extend Bayesian methods for �ood analysis.
The main novelty involves taking uncertainty in �ood values rising from uncertainty
in discharge rating curves into account. This is done for both annual �ood analysis
and peak over threshold analysis. The e�ect of three di�erent prior distributions
for the shape parameter is also investigated. Two of these prior distributions only
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allow negative values of the shape parameter. These various model choices are
compared through an application to data from four rivers in Iceland. The objective
is to construct a model which is capable of analyzing the extremes in any river.
The extremes will be modeled with the GEV and GP distributions and it will be
investigated whether it is feasible to constrain the parameters of the distributions
using prior distributions.
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2. Methods

2.1. Extreme value analysis

The purpose of extreme value analysis is to determine the statistical behavior of
extreme values. For a sequence of independent random values X1, ..., Xn having
a common distribution function, F, the focus is on the statistical behavior of Mn,
where

Mn = max{X1, ..., Xn}
.

The Xi can represent, e.g., hourly measured wind speed or daily mean values of rain
fall, but in this study the Xi represents average daily values of water discharge in
rivers.

In Coles (2001) the theories and methods used in extreme value analysis are well
documented. In theory the distribution of Mn can be derived exactly for all values
of n,

Pr{Mn ≤ z} =Pr{X1 ≤ z, ..., Xn ≤ z}
=Pr{X1 ≤ z} × · · · × Pr{Xn ≤ z}
=(Pr{X1 ≤ z})n

=F n(z)

However, this approach is inadequate in practice since the distribution, F , is un-
known and even if one were to use some techniques to estimate F from observed
data the smallest discrepancies in the estimate of F would lead to substantial dis-
crepancies for F n.

An alternative approach is to accept the fact that F is unknown and model F n

directly. Proceeding by examining the behavior of F n as n → ∞ is not enough in
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itself as for all z < z+, where z+ is the upper limit of F , F n(z) → 0 as n → ∞,
so that the distribution of Mn degenerates to a point mass on z+. To �nd a limit
distribution for maxima, the maximum variable, Mn, needs to be transformed such
that the limit distribution of the new variable is a non-degenerate one. Because of
this problem it is necessary to perform the following linear re-normalization of the
variable Mn,

M∗
n =

Mn − bn
an

for sequences of constants {an > 0} and {bn}.

It is therefore necessary to �nd a limit distributions forM∗
n, with appropriate choices

of {an} and {bn}, rather than Mn. This re-normalization of the maximum values
was introduced by Fisher and Tippett (1928). Following up on their work, Gnedenko
(1943), obtained three types of non-degenerated distributions for the re-normalized
maximum, M∗

n: The Frechet, Weibull and Gumbel distributions.

Jenkinson (1955) and von Mises (1954) independently proposed the generalized ex-
treme value distribution (GEV), which includes the three limit distributions distin-
guished by Gnedenko.

Theorem 3.1.1 in Stuart Coles' book An Introduction to Statisctial Modeling of
Extreme Values (2001) states the following,

Theorem 2.1.1 If there exist sequences of constants {an > 0} and {bn} such that

Pr{(Mn − bn)/an ≤ z} → G(z) as n → ∞

for a non-degenerate distribution function G, then G is a member of the Generalized
extreme value, GEV, family

G(z) = exp

{
−

[
1 + ξ

(
z − µ

σ

)]−1/ξ}
(2.1)

de�ned on {z : 1 + ξ(z − µ)/σ > 0}, where −∞ < µ < ∞, σ > 0 and −∞ < ξ < ∞
�
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The theorem suggests using the GEV family when modeling maxima of long se-
quences. The apparent problem of �nding the normalizing constants is easily solved
through the following reasoning,

Pr{(Mn − bn)/an ≤ z} ≈ G(z),

for large enough n is equivalent to

Pr{Mn ≤ z} ≈G{(z − bn)/an}
=G∗(z),

where G∗ is another member of the GEV family. Therefore, if the theorem enables
approximation of the distribution of M∗

n by a member of the GEV family for large
n, the distribution of Mn itself can also be approximated by a di�erent member
of the same family. Since the parameters of the distribution have to be estimated
regardless, it is irrelevant in practice that the parameters of the distribution of G
are di�erent from those of G∗.

2.2. Block maxima model: The generalized

extreme value distribution

A block maxima model is constructed in the following way; data series are gathered
and the series are viewed as a combination of many blocks. For each of these blocks
a maximum or minimum value is obtained, depending on whether the objective is to
look at high or low extremes. These values are then �tted to the GEV distribution.
The block period is selected for each particular project. There is a clear trade-
o� between bias and variance when considering the block size used in the model.
For a block size too small it is likely that the approximation by the limit model
in Theorem 2.1.1 is not suitable. On the other hand, a block size too big is likely
to result in insu�cient amount data for the model, resulting in a large estimation
variance. A popular pragmatic way of selecting the size of the blocks is to use
annual extremes. That approach has been selected for the scope of this study, i.e.
the annual maximum value is used for the purpose of �ood frequency analysis.

It is unrealistic to assume that all the daily discharge values have a common distri-
bution function. For example, the water discharge levels are likely to change with
seasons. That, strictly speaking, is not in accordance with the assumption that the
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values share a common distribution function as stated in Section 2.1. However, it
would not be bene�ciary to try to take this into account in the modeling by having
smaller block sizes, to account for di�erent seasons. That would result in maximum
values from one season being signi�cantly di�erent from another leading to results
that would likely be inaccurate. By having a block size of one year it is very plausi-
ble that individual block maxima have a shared common distribution even though
the daily discharge values do not.

For a particular river, water discharge time series span m years, and are denoted as
{Q}. The GEV distribution is �tted to {QM}, the corresponding annual maximum
water discharge levels, using Bayesian statistics.

The GEV distribution is composed of three parameters; a location parameter, µ,
a scale parameter, σ, and shape parameter, ξ. The shape parameter is of great
interest when it comes to �ood analysis as it relates to the thickness of the tail in
the distribution. If the shape parameter is negative the tail will be bounded and
therefore also the extreme values. If the shape parameter is greater than or equal to
zero the tail will be unbounded. With an unbounded tail a random variable can take
on any possible extreme value. With larger positive shape parameter, the upper tail
of the probability density function (pdf) becomes thicker, and so the possibility of
a large extreme event becomes greater. This is demonstrated in Figure 2.1. The
top �gures show the pdf of the GEV distribution and the bottom �gures display the
return level plots calculated from those distributions. A return level plot shows the
return period against the return level. The return level is the discharge level that
is expected to be exceeded, on average, once every T years. The return period is
the amount of time, T , expected to wait for the exceedance of a particular return
level. Figure 2.1 shows that when the shape parameter is negative (left panel), the
pdf has an upper limit and hence the return period plot converges to an asymptote
as return time increases. When the shape parameter is equal to zero (middle panel)
the pdf is no longer limited and the return period plot is linearly increasing for an
increasing logarithmic return time. With positive shape parameter (right panel) the
tail of the pdf is thicker resulting in exponential increase in the return levels with
increasing return time.

Smith (1985) studied the behavior of the GEV distribution in detail with regards to
the shape parameter and obtained that when ξ > −0.5 the maximum likelihood es-
timators have asymptotic properties while loosing those properties when ξ < −0.5.
In extreme value modeling, the interval that the shape parameter takes place on is,
almost without exception between, −0.5 and 1. The case where ξ ≤ −0.5 corre-
sponds to a distribution with a very short bounded upper tail and it rarely happens
in extreme value modeling.
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Figure 2.1: Probability density function and Return plots for di�erent values of the shape
parameter

2.2.1. Return level plots for the block maxima model

According to Coles (2001), estimates of extreme quantiles of the GEV distribution
are obtained by inverting Equation (2.1),

zp =

{
µ− σ

ξ
[1− {− log(1− p)}−ξ] for ξ ̸= 0,

µ− σ log{− log(1− p)} for ξ = 0,
(2.2)

where zp is the (1 − p) quantile, i.e., G(zp) = 1 − p. This means that the value
zp is exceeded by the annual maximum in any particular year with probability p.
Therefore, zp is the return level associated with the return period 1/p since the level
zp is expected to be exceeded on average once every 1/p years.

When looking at long return periods, plotting them on logarithmic scale becomes
useful. By de�ning yp = − log(1− p) = − log(1− 1/T ) it becomes possible to write
Equation (2.2) in the form:

zp =

{
µ− σ

ξ
[1− y−ξ

p ] for ξ ̸= 0,
µ− σ log yp for ξ = 0,

(2.3)

If zp is plotted against yp on logarithmic scale the plot is linear in the case when
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ξ = 0. If ξ < 0, the plot is convex with asymptotic limit as p → 0 at µ − σ/ξ. If
ξ > 0, the plot is concave and has no �nite bound. This behavior of the return level
plot on logarithmic scale with regards to di�erent values of the shape parameter (ξ)
is shown in Figure 2.1

Return level plots are convenient for both model presentation and validation. In
this case, they show the expected size of �oods for a particular time period. Thus,
the value of return level corresponding to particular return period expresses the
expected size of a maximum �ood that would happen once on average, during that
period.

2.2.2. Model validation

Plotting position for the empirical data

Based on Makkonen (2006), the Weibull plotting position formula was chosen to �t
the empirical data to the return level plots. The annual maximum discharge levels,
{QM}, are ranked in increasing order of magnitude, {QM,S}, from the smallest QM,S

(i=1)

to the largest QM,S
(i=m). The Weibull formula states the following,

P(i) = 1− 1/T(i) =
i

m+ 1
,

where P(i) is the estimated probability of QM being less than QM,S
(i) and T(i) is the

estimated return period. Rearranging gives the return period for each of the annual
maximum values

T(i) =
1

1− P(i)

=
1

1− i
m+1

.

Plotting the sorted annual maximum values QM,S
(i) as a function of return time T(i)

on the return period plot, makes it possible to visually observe the validity of the
proposed model. The annual maximum - return time pairs that are plotted on the
return period plot are

(
T(i), Q

M,S
(i)

)
, i=1,...,m.
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Probability plot

The probability plot consists of the empirical distribution function of the annual
maximum values versus the distribution function of the estimated model. The an-
nual maximum discharge levels are ranked in increasing order of magnitude from the
smallest QM,S

(i=1) to the largest QM,S
(i=m). The method, for constructing a probability

plot, is discussed in detail in Coles (2001).

The empirical distribution function evaluated at QM,S
(i) is,

G̃(QM,S
(i) ) =

i

m+ 1
.

The empirical distribution function is compared to the GEV distribution function
with the model based estimates for the GEV parameters. The GEV distribution
function from Equation (2.1) with the parameter estimates from the block maxima
model is,

Ĝ(QM,S
(i) ) = exp

{
−
[
1 + ξ̂

(
QM,S

(i) − µ̂

σ̂

)]−1/ξ̂}
.

If the GEV model provides a good �t to the data, the empirical distribution function
and the GEV distribution functions should be similar, that is, for each i = 1, ...,m,

G̃(QM,S
(i) ) ≈ Ĝ(QM,S

(i) ).

The probability plot consists of the points

(
G̃(QM,S

(i) ), Ĝ(QM,S
(i) )

)
, i=1,...,m.

If the model provides a good �t to the data, the points should lie close to the unit
diagonal. A substantial departure from the unit diagonal suggests that the GEV
model is inadequate for the data.
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Quantile plot

The focus of extreme value analysis is the investigation of extremes. The probability
plot's main weakness is that both the G̃(QM,S

(i) ) and Ĝ(QM,S
(i) ) are bound to approach

1 as Q(i) increases. Therefore it is a major weakness of the probability plot that it
does provide the least information in the region of most interest, i.e. the region of
the largest values. A quantile plot is another way of visually showing the accuracy
of the proposed model, avoiding the problem of crowding the largest values close
to 1. The method, for constructing a quantile plot, is discussed in detail in Coles
(2001). The quantile plot consists of the points

(
Ĝ−1(i/(m+ 1)), QM,S

(i)

)
, i=1,...,m.

where

Ĝ−1

(
i

m+ 1

)
= µ̂− σ̂

ξ̂

[
1−

{
− log

(
i

m+ 1

)}−ξ̂]
, if ξ̂ ̸= 0

and

Ĝ−1

(
i

m+ 1

)
= µ̂− σ̂ log

{
− log

(
i

m+ 1

)}
, if ξ̂ = 0.

The quantile plot should be close to linear for a suitable model. Departures from
linearity indicates that the model does not adequately �t the data.

Bayesian p-value - Anderson-Darling test

Using the Anderson-Darling test to �nd a Bayesian p-value for the use of model
checking, is discussed in Gelman et al. (2003). The Anderson-Darling test statistics
is given by

A2 = −n− S

where

14



2.2. Block maxima model: The generalized extreme value distribution

S =
m∑
i=1

2i− 1

m

[
logF (QM,S

(i) ) + log(1− F (QM,S
(m+1−i)))

]

and QM,S is again a vector containing the annual maximum values ranked in order
of magnitude. F is the cumulative density function for the GEV distribution, with
parameters θl = (µl, σl, ξl), where l = 1, 2, 3, .., L. At this point, L = 40,000 sets
of samples of GEV parameters have been simulated. For the l-th set of simulated
GEV parameters the value of A2 is calculated and denoted by A2

l .

This process is repeated, but instead of using the annual maximum values, QM ,
a random sample of extremes from the GEV distribution, is generated, for each
set of GEV parameters. The number of random values generated from each set of
parameters is the same as the number of annual maximum values, m, and will, just
as the annual maximum values, be ranked in order of magnitude. These replicated
annual maximum values, denoted as yrepl , are used to calculate a value for A2

l,rep

which is then compared to the value of A2
l .

A vector I, having the length L is constructed. The vector is �lled with either
the values 0 or 1, depending on the A2

l vs. A2
l,rep comparison. The values of I are

determined with the following formula

Il = IA2(yrepl ,θl)≥A2(QM ,θl)

i.e. if the simulated value A2
l,rep is larger or equal to the observed value A2

l , then the
corresponding value of I becomes equal to 1, but 0 otherwise.

The Bayesian p-value is then found with the following equation

p̂B =
1

L

L∑
l=1

Il.

If the Bayesian p-value is very high or very low, i.e., smaller than 0.01 or larger than
0.99, it is a clear indication that the model does not �t the data accurately. If the
Bayesian p-value lies between 0.05 and 0.95 it indicates that the model �ts the data
reasonably well.
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2. Methods

2.3. Threshold Model: The generalized Pareto

distribution

The obvious disadvantage of using the annual block maxima model is the obligation
of using one extreme value from each year. That can have the e�ect of missing out
on extreme data to use in the model if there are more than one extremes for any of
the inspected years. It can also have the undesirable e�ect of using data that are
not to be thought of as extremes. Within the inspected years there might have been
some years with no suitable extreme events but the block maxima model would use
data from those years regardless. For these reasons another well known approach to
model the extremes was tried; threshold models.

Threshold models di�er from block maxima models. Instead of specifying periods
and analyzing maximum values within them, the threshold models are based on
values which exceed a particular threshold. Thus, there may be many extreme
values used from a single year and none from other years.

By looking only at the values that exceed the threshold and subtracting the threshold
value, the transformed data set consists of positive extreme values. An appropriate
model for data of this type is the generalized Pareto (GP) distribution, which is
closely related to the GEV distribution. It has two parameters instead of three but
the two distributions share the same shape parameter.

2.3.1. Theory

The alternative to the generalized extreme value distribution, where excesses over
high threshold can be modeled by the generalized Pareto distribution, was intro-
duced by Pickands in 1975 .

Theorem 4.1 in Stuart Coles' book An Introduction to Statisctial Modeling of Ex-
treme Values states the following.

Theorem 2.3.1 Let X1, X2, ... be a sequence of independent random variables with
common distribution function F , and let

Mn = max{X1, ..., Xn}.

Denote an arbitrary term in the Xi sequence by X, and suppose that F satis�es
Theorem (2.1.1), so that for large n,

Pr{Mn ≤ z} ≈ G(z),
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2.3. Threshold Model: The generalized Pareto distribution

where

G(z) = exp

{
−

[
1 + ξ

(
z − µ

σ

)]−1/ξ}
for some µ, σ > 0 and ξ. Then, for large enough u, the distribution function of
Y = (X − u), conditional on X > u, is approximately

H(y) = 1−
(
1 +

ξy

σ̃

)−1/ξ

(2.4)

de�ned on {y : y > 0 and (1 + ξy/σ̃) > 0}, where

σ̃ = σ + ξ(u− µ). (2.5)

�

The family of distributions de�ned by Equation (2.4) is called the generalized Pareto
distribution (GP), with parameters σ̃ and ξ. Theorem (2.3.1) implies that, if block
maxima extracted from a particular data set follow the GEV distribution then
threshold excesses extracted from that same data set would follow the GP dis-
tribution. The two distributions would have the same shape parameter, ξ and the
relationship between the threshold, u, the scale parameter of the GP distribution,
σ̃, and the parameters of the GEV distribution, µ, σ, and ξ would be in accordance
to Equation (2.5).

Justi�cation of the generalized Pareto model

Let X have a distribution function F . By the assumption of Theorem (2.1.1) for
large enough n,

F n(z) ≈ exp

{
−

[
1 + ξ

(
z − µ

σ

)]−1/ξ}
for some parameters µ, σ > 0 and ξ. Hence,

n logF (z) ≈ −
[
1 + ξ

(
z − µ

σ

)]−1/ξ

.

But for large values of z, a Taylor expansion implies that

logF (z) ≈ −{1− F (z)}.
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Combining two previous equations and rearranging, gives

1− F (u) ≈ 1

n

[
1 + ξ

(
u− µ

σ

)]−1/ξ

for large u. Similarly, for y > 0,

1− F (u+ y) ≈ 1

n

[
1 + ξ

(
u+ y − µ

σ

)]−1/ξ

.

Hence,

Pr{X > u+ y|X > u} ≈ n−1[1 + ξ(u+ y − µ)/σ]−1/ξ

n−1[1 + ξ(u− µ)/σ]−1/ξ

=

[
1 + ξ(u+ y − µ)/σ

1 + ξ(u− µ)/σ

]−1/ξ

=

[
1 +

ξy

σ̃

]−1/ξ

, (2.6)

where
σ̃ = σ + ξ(u− µ),

as required.

2.3.2. Return level plots for the threshold model

The return level plot shows the return period against the return level. The return
level is the discharge level that is expected to be exceeded, on average, once every
T years. The return period is the amount of time, T , expected to wait for the ex-
ceedance of a particular return level. Construction of return level plots for threshold
models is explained in Coles (2001).

From Equation (2.4) it can be derived that the following holds for an extreme vari-
able X and a threshold u,

Pr{X > x|X > u} =

[
1 + ξ

(
x− u

σ̃

)]−1/ξ

.

It follows that
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2.3. Threshold Model: The generalized Pareto distribution

Pr{X > x} = ζu

[
1 + ξ

(
x− u

σ̃

)]−1/ξ

,

where ζu = Pr{X > u} is the crossing rate, i.e., the probability of an individual
observation exceeding the threshold u. Hence, the level xm that is exceeded on
average once every m observations is the solution to

ζu

[
1 + ξ

(
xm − u

σ̃

)]−1/ξ

=
1

m
.

By using the equation above it is easy to derive the m-observation return level.
However, determining the N-year return level is of more interest. For ny observations
per year, m = N × ny, and the N -year return level, zN , is determined with,

zN =

{
u+ σ̃

ξ
[(Nnyζu)

ξ − 1] for ξ ̸= 0,
u+ σ̃ log(Nnyζu) for ξ = 0.

(2.7)

The crossing rate, ζu is equal to the sample proportion of points exceeding u, i.e.,

ζu =
k

n

where k is the number of values exceeding u and n is the total number of observa-
tions.

2.3.3. Model validation

Plotting position for the empirical data

The Weibull plotting position formula is used to �t the empirical data to the return
level plots. The peaks over threshold (POTs), denoted by QP , are ranked in increas-
ing order of magnitude in a vector denoted as QP,S. The values of QP,S are ranked
from the smallest QP,S

(i=1) to the largest Q
P,S
(i=n), where n is the total number of POTs.

Unlike the block maxima model, the number of POTs are not necessarily the same
as the number of years inspected. It is therefore necessary to account for that in the
plotting position formula by using the crossing rate, ζu. Using the Weibull plotting
position formula it is possible to include the crossing rate in the calculation
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2. Methods

P(i) = 1− 1

T(i) × ζu
=

i

n+ 1

where P(i) is the estimated probability of QP being less than QP,S
(i) and T(i) is the

estimated return period. Rearranging gives the return period for each of the POTs

T(i) =
1

(1− P(i))ζu
=

n+ 1

(1 + n− i)ζu
.

Plot of the empirical data versus the return period using the plotting position de-
scribed above is very useful in visually evaluating the �t of the proposed model to
the data.

Probability plot

As in the case of the block maxima model, the probability plot for the threshold
model compares the empirical distribution function to the distribution function of
the estimated model. The method, for constructing a probability plot, is discussed
in detail in Coles (2001). The peaks over threshold are ranked in increasing order
of magnitude from the smallest QP,S

(i=1) to the largest QP,S
(i=N).

The empirical distribution function evaluated at QP,S
(i) is,

G̃(QP,S
(i) ) =

i

n+ 1

for i = 1, 2, 3, .., n.

The empirical distribution function is compared to the GP distribution function with
the model based estimates for the GP parameters. The GP distribution function
from Equation (2.4) with the parameter estimates from the threshold model is,

Ĝ(QP,S
(i) ) = 1−

(
1 +

ξ̂QP,S
(i)

ˆ̃σ

)−1/ξ̂

.

If the GP model gives a good �t to the data then the empirical and the GP distri-

20



2.3. Threshold Model: The generalized Pareto distribution

bution functions should be similar, that is, for each i,

G̃(QP,S
(i) ) ≈ Ĝ(QP,S

(i) )

The probability plot consists of the points

(
G̃(QP,S

(i) ), Ĝ(QP,S
(i) )

)
, i=1,...,n.

If the model provides a good �t to the data, the points should lie close to the unit
diagonal. A substantial departure from the unit diagonal suggests that the GP
model is inadequate for the data.

Quantile plot

The method, for constructing a quantile plot, is discussed in detail in Coles (2001).
By rearranging Equation (2.7) and acknowledging that Nnyζu = 1/p, a quantile
function of the GP distribution is constructed. As before, the POTs are ranked in
increasing order of magnitude from the smallest QP,S

(i=1) to the largest QP,S
(i=n). The

empirical data are compared to the quantile function of the estimated model which
is based on the model based estimates of the GP parameters. The quantile function
of the GP distribution is given by

Ĥ−1(p) =

{
u+ σ̂

ξ̂
[p−ξ̂ − 1] for ξ ̸= 0,

u+ σ log(p−1) for ξ = 0.
(2.8)

The empirical cumulative density function is as before

P(i) =
i

n+ 1

So the quantile plot consists of the pairs

(
Ĥ−1(i/(n+ 1)), QP,S

(i)

)
, , i=1,...,n.

The quantile plot should be close to linear for a suitable model. Departures from
linearity indicates that the model does not adequately �t the data.
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3. Model

3.1. Data

The data used in this thesis come from the Icelandic Meteorological O�ce (IMO).
The IMO runs a water level measuring system which collects water level data con-
tinuously from rivers in Iceland. These water level measurements are converted to
discharge by the use of discharge rating curves (DRC). The DRC express the dis-
charge as a function of water level. However, the uncertainty in the DRC has not
been taken into consideration in the water level to discharge conversion, therefore
the data are daily point estimates of water discharge levels.

Discharge rating curves are constructed by �tting a curve through points of measured
water levels against measured discharge at a location where downstream hydraulic
control assures a stable, sensitive, and monotonic relationship between water level
and discharge (Mosley and McKerchar, 1993; ISO, 1983). The DRC are used to
estimate discharge due to high cost of discharge measurements. Water level mea-
surements are, however, relatively inexpensive and and well suited for automation.

The data sets are from four rivers in Iceland, namely, Sanda in Thistilfjordur, Olfusa
by Selfoss, Hvita by Kljafoss and Svarta in Skagafjordur. For the purpose of this
analysis, pairs of water level and discharge data were used to construct a discharge
rating curve. The discharge rating curves were used to estimate the uncertainty in
the discharge time series. The water discharge time series and the water level and
discharge pairs for the four rivers can be seen in Figure 3.1.

For Sanda in Thistilfjordur, a total of 11 water level and discharge pairs were avail-
able, spanning a water level range from 1.2 m to 2.3 m. The discharge time series
span a time period of 43 years, from 1965 to 2008.

For Olfusa by Selfoss, a total of 43 water level and discharge pairs were available,
spanning a water level range from 1.7 m to 5.3 m. The discharge time series span a
time period of 57 years, from 1950 to 2007.

For Hvita by Kljafoss, a total of 38 water level and discharge pairs were available,
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Figure 3.1: Top row: Water discharge time series. Bottom row: Water level and discharge
pairs. First panels from the left: Olfusa. Second panels from the left: Hvita. Third
panels from the left: Sanda. Fourth panels from the left: Svarta

spanning a water level range from 1.1 m to 3.5 m. The discharge time series span a
time period of 57 years, from 1951 to 2008.

For Svarta in Skagafjordur, a total of 36 water level and discharge pairs were avail-
able, spanning a water level range from 1.2 m to 1.9 m. The discharge time series
span a time period of 36 years, from 1962 to 1998.

The paired water level and discharge data are used to construct a B-spline discharge
rating curve which will be used to estimate the uncertainty in the discharge time
series used for the �ood analysis.

The data sets used in the �ood analysis are daily series of water discharge from
four rivers in Iceland. The model is set up to analyze extremes in any river given
this type of data. Flood analysis based on the model does not only provide point
estimates of various quantities but it also takes into account the uncertainty in
the underlying discharges and the uncertainty in the extreme analysis. This is
accomplished by using Bayesian approach and Markov chain Monte Carlo (MCMC)
algorithms. In particular, Gibbs samplers were used to construct the Markov chains
in this study. The methods for constructing a Gibbs sampler are explained in detail
in Gelman et al. (2003).

In this section, Bayesian inference for discharge rating curves and extreme value
distributions is viewed. Then a new method for �ood analysis is introduced. This
method takes into account uncertainty in the extreme discharge values and the un-
certainty in the parameters of the extreme value distributions. The uncertainty in
the extreme discharge values is evaluated through the uncertainty in the correspond-
ing discharge rating curves which can be accessed with the Bayesian approach. The
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3.2. B-spline discharge rating curves

uncertainty in the parameters of the extreme value distributions stems from the un-
certainty in the extreme discharge values and the usual uncertainty due to sampling,
and is also accessed with the Bayesian approach.

3.2. B-spline discharge rating curves

The standard power-law methodology is traditionally used to model discharge rating
curves. In, Hrafnkelsson et al. (2012), by using the Bayesian approach, the estimates
of the rating curves were successfully improved with the use of B-spline extension to
the standard power-law. The method, proposed by Hrafnkelsson, for constructing
discharge rating curves with added B-splines, are used in this study. The �rst part
of the method involves estimating the uncertainty in the water discharge data. This
uncertainty comes from the fact that the water discharge levels are not measured
but transformed from measured water levels. It is assumed that the water level
is measured without uncertainty. The water level at each river is measured using
devices that keep track of the water level at a �ne time scale. These water levels
are then transformed to water discharge by using discharge rating curves. The
uncertainty in this transformation, and its e�ect on the �ood analysis, is kept track
of.

The most commonly used discharge rating curve is the standard power-law (Lambie
(1978); Mosley and McKerchar (1993) ). The standard power law relates the water
level to the water discharge with the following equation

q = a(w − c)b

where q is the water discharge, w is the water level, a is a positive scaling parameter,
b is a positive shape parameter, and c is the water level when the discharge is
zero. These parameters are estimated using pairs of water level and water discharge
measurements. Since the pairs are expensive to collect, they are observed as often
as resources allow and the timing of the measurements is chosen in order to get the
widest range of both water level and water discharge.

For some rivers the standard power-law does not su�ciently represent the e�ect that
a change in water level has on water discharge. Hrafnkelsson et al. (2012) showed
how B-splines can be used to extend the standard power-law. The following is a
model transforming water level to water discharge using the sum of the standard
power law and a B-splines function,
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3. Model

qi = a(wi − c)b +

Lk∑
l=1

λlBli + ϵi

where ϵi is a mean zero measurement error and

Bli = Bl((wi − wlow)/r), l = 1, ..., Lk, i = 1, ..., n

where n is the number of observations for a given site, and (wi, qi) denotes the i-th
pair of observation. The terms Bl(z) are cubic B-splines kernels which have support
on the interval [0, 1]. Also, r = wupp −wlow, where wupp and wlow are the upper and
lower points of the interval in�uenced by the B-spline. The B-spline parameters in
λ = (λ1, ..., λL) are unknown and Lk is the number of B-spline kernels. The number
of B-spline kernels was chosen to be 9. See further details on the construction of the
B-spline rating curves in Hrafnkelsson et al. (2012).

MCMC algorithm is used to construct the B-spline rating curves. There are 4
chains, each having 10,000 iterations after the burn-in period. Thus, matrices of
the size of 4 × 10,000, for the parameters a, b, and c, emerge for a set of water
level/discharge pairs. And matrices of the size 4×10,000 for the B-spline parameters,
representing 4 × 10,000 iterations for each of the B-spline parameters. Therefor,
there are a total number of 40,000 di�erent B-spline rating curves for each set of
water-level/discharge pairs which represent the imprecision in the water-level to
water-discharge transformation.

3.3. The block maxima model

The objective is to perform �ood analysis using the data available while taking into
account the uncertainty in the estimated discharge rating curves. This is accom-
plished using the Bayesian approach. The �rst task is to evaluate the uncertainty in
the water discharge time series. These discharge levels are calculated with the use
of discharge rating curves. The original water levels, that the discharge is calculated
from, were not available but the discharge rating curves used for the transformation
were. The water discharge time series are only point estimates and those estimates
are the median value of a transformation from water levels using discharge rating
curves with a range of uncertainty that should, at the correct stage, be taken into
account.

The annual maximum levels of water discharge were collected. Figure 3.2 shows a
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3.3. The block maxima model

water discharge time series with the annual maximum values marked speci�cally.
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Figure 3.2: Water discharge time series with annual maximum values

The next goal was to estimate the uncertainty in the annual maximum water dis-
charge levels. This was done through the B-spline discharge rating curves. At this
point a MCMC analysis had already been performed on the B-spline rating curve
based on the water-level/water-discharge pairs. A total of 40,000 di�erent rating
curves were sampled, all describing the relationship between water level and water
discharge. A B-spline discharge rating curve is shown in Figure 3.3. The central
curve is the median posterior of the discharge rating curve. The other two curves
give a marginal 95% posterior interval and represent the uncertainty in the discharge
rating curve.

After collecting the annual maximum point estimates for the water discharge it is
possible to �t each and every one of them to the median value of a discharge rating
curve, and the corresponding water levels associated with the water discharge levels
are found. The water levels found by using the water discharge point estimates and
the median of a rating curve, are then converted to water discharge again. This
time, a set of L = 40,000 discharge levels are sampled for each of the water levels
using a Gibbs sampler. The L discharge values, corresponding to each water level,
represent the uncertainty in the point estimates originally used in the model, with
the original values being the median values of each set. Figure 3.4 show the same B-
spline rating curve as in Figure 3.3 but with the 2.5%, 50% and 97.5% percentiles of
the calculated annual maximum water discharge levels. Figure 3.5 shows the water
discharge time series with the same calculated percentiles for the annual maximum
values.
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Figure 3.3: B-spline Discharge Rating curve with 95% con�dence interval
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Figure 3.4: Discharge rating curve with �tted annual maximum values and their 95%
con�dence interval

For a given river, each annual maximum value is represented once in each vector
of maximum values which corresponds to one sample of the discharge rating curve.
Also, a single maximum value in one vector is related to a another maximum value
in the same vector by the fact that they are all created by the same discharge rating
curve. Therefore, there are 40,000 vectors of annual maximum values which will
be �tted with the Generalized Extreme Value distribution in a Bayesian computing
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Figure 3.5: Water discharge time series with 95% con�dence interval for extreme values

scheme.

3.3.1. Sampling distribution

The following sampling distribution is assumed for the annual maximum values,
namely the Generalized Extreme Value distribution, which is given by

p(yi|µ, σ, ξ) =
1

σ

[
1 + ξ

(yi − µ

σ

)]−( 1
ξ
)−1

× exp
{
−

[
1 + ξ

(yi − µ

σ

)]− 1
ξ
}

(3.1)

= GEV(yi|µ, σ, ξ)

Where yi is a set of extreme values generated with the B-spline rating curve, µ is a
location parameter, σ is a scale parameter, and ξ is a shape parameter.

3.3.2. Prior distribution of µ, σ and ξ

Prior distributions provide the region of values for the parameters and corresponding
prior probabilities. The prior distributions can have a substantial e�ect on the
posterior distributions, both the region of values and the probabilities. For example,
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the region of values of the posterior distribution cannot be outside the region of
values of the prior distribution. If a noninformative prior distribution is chosen for
the parameters, the posterior density will converge toward the maximum likelihood
function of those parameters. But an informative prior distributions can have a
great e�ect on how the posterior distribution of those parameters will look like. By
choosing informative prior for one or more of the parameters, certain limits can
be set the posterior density. For example, a prior distribution containing negative
values only, will force the corresponding posterior samples to be negative. Thus
the task of choosing an informative prior has to be done with great care, as it can
in�uence the result of the statistical model.

For the scale parameter, σ, a noninformative prior is chosen, allowing the posterior
to take any desired value and to be mainly determined by the data.

The prior distribution for the location parameter, µ, is a noninformative prior. It
is a normal distribution which centers around zero and has a very large variance.
Because of its large variance, will not constrain the posterior in any way and is
therefore very non-informative.

For the shape parameter, ξ, three di�erent cases are examined, and the e�ect of these
di�erent prior distributions is compared. In the �rst case, the prior distribution is
non-informative. It is a normal distribution which centers around zero and has
a large variance, making it highly non-informative. The second and third case
constrain the shape parameter to negative values. That results in the tail of the
GEV distribution to be bounded, i.e., it has an upper limit and so do the extreme
values. The reasoning for allowing this constraint is that, it is reasonable to assume
that water discharge can not be in�nitely great.

The prior distributions chosen for the µ and σ parameters are as follows:

p(µ) =N(µ|ηµ = 0, τ 2µ = 1000000) (3.2)

p(σ) =Inv−χ2(ν0 = 10−12, s20 = 1) (3.3)

The three di�erent prior distribution for the ξ parameter are given below.

The normal prior density is given by

p(ξ) =N(ξ|µξ = 0, σ2
ξ = 1000) (3.4)

This normal distribution is an noninformative prior. It has a large variance and
does not restrict the ξ parameter.
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Figure 3.6: Normal prior density for ξ with µ = 0 and σ2 = 1000

The negative gamma prior density is given by

p(ξ) =Neg-Gamma(ξ|α, β) (3.5)

=
βα

Γ(α)
ξα−1eβξ, ξ < 0 (3.6)

where α > 0 and β > 0.

With p(ξ) = Neg-Gamma(ξ|1, 5) as a prior distribution, the ξ parameter is con-
strained to negative values only. That has the e�ect that the upper tail of the
posterior distribution will be bounded and thus there will be an upper limit on the
size of �oods.

Majority of the mass of the distribution is close to the y-axis as is shown in Figure
3.7. The purpose of that, is to investigate wether the restriction would lead to better
results for data sets that were prone to positive values of the shape parameter, than
to use a negative uniform prior distribution, as is done in Case 3.

The negative beta prior density is given by

p(ξ) =Neg-Beta(ξ|a, b) (3.7)

=
Γ(a+ b)

Γ(a)Γ(b)
(−ξ)a−1(1 + ξ)b−1, −1 ≤ ξ ≤ 0 (3.8)

where a > 0 and b > 0

31



3. Model
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Figure 3.7: Negative gamma prior density with α = 1 and β = 5

With p(ξ) = Neg-Beta(ξ|1, 1) as a prior distribution, the ξ parameter is constricted
to negative values only. The prior is a uniform distribution evenly distributed along
the interval [−1, 0]. As is discussed in Section 2.2, the interval of possible values that
the shape parameter can take is approximately [−0.5, 1]. Values below -0.5 rarely
occur in extreme value analysis and hence the negative beta prior distribution elim-
inates all positive values of the posterior distribution, resulting in a bounded upper
tail distribution, without further e�ects on the shape of the posterior distribution
within the negative region. The prior distribution is shown in Figure 3.8.

3.3.3. Posterior distribution of µ, σ and ξ

The posterior distribution of θ = (µ, σ, ξ) is not based on a single vector of n
independent observations of extreme discharge but on L vectors of length n sampled
through the uncertainty in the discharge rating curve, which re�ect the uncertainty
in the observed discharge. Denote the k-th vector by yk and yk = (y1k, y2k, ..., ynk).
Since each of the L vectors is equally likely to be drawn, they should have an equal
in�uence on the posterior density of θ. Thus the posterior density of θ is a mixture
of the posterior densities corresponding the each of the vectors of length n, each
with weight L−1.

The form of the posterior density of θ is given by
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Figure 3.8: Negative beta prior density with a = 1 and b = 1

p(θ|y) =
L∑

k=1

p(θ|k, yk)p(k) · L−1 (3.9)

=
L∑

k=1

p(θ|yk) · L−1 (3.10)

=
L∑

k=1

p(θ)p(yk|θ)
p(yk)

· L−1 (3.11)

=L−1p(θ)
L∑

k=1

p(yk|θ)
p(yk)

(3.12)

where y is the collection of all the yk vectors and each vector yk has a number of n
elements.

More speci�cally, using µ, σ, and ξ instead of θ, the posterior density of µ, σ, and
ξ is given by
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p(µ, σ, ξ|y) ∝ p(µ)p(σ)p(ξ)
{ L∑

k=1

p(yk|µ, σ, ξ)
p(yk)

}
∝ p(µ)p(σ)p(ξ)

{
L∑

k=1

nk∏
i=1

[
GEV(yik|µ, σ, ξ)∫ ∫ ∫
GP(yik|µ, σ, ξ)dµdσdξ

]}

A general sampling scheme based on the Gibbs sampler should be as follows. Sample
k from 1,2,...,L with equal probability L−1 and obtain corresponding yk. Given k,
sample θ = (σ, ξ) from

p(µ, σ, ξ|yk) =
p(µ, σ, ξ)p(yk|µ, σ, ξ)

p(yk)
∝ p(µ, σ, ξ)p(yk|µ, σ, ξ)

The Gibbs sampler is applied for this simulation, i.e., samples are drawn from the
following conditional distributions,

p(µ|σ, ξ, yk) ∝ p(µ)×
n∏

i=1

GEV(yik|µ, σ, ξ)

p(σ|µ, ξ, yk) ∝ p(σ)×
n∏

i=1

GEV(yik|µ, σ, ξ)

p(ξ|µ, σ, yk) ∝ p(ξ)×
n∏

i=1

GEV(yik|µ, σ, ξ)

However, since L is large and the weight of each p(µ, σ, ξ|yk) is the same in p(θ|y),
then µ, σ and ξ are only sampled once for each yk. The construction of a Gibbs
sampler is explained in details in Gelman et al. (2003).

The Gibbs sampler uses Metropolis and Metropolis Hastings algorithms to sample
from the posterior distributions of the GEV parameters. These algorithms are adap-
tations of a random walk that uses an acceptance/rejection rule to converge to the
speci�ed target distributions (Gelman et al. (2003)). A Metropolis step is used to
sample from the posterior distribution for µ. A Metropolis Hastings step with a
gamma proposal density is used to sample from the posterior distribution of σ. The
simulation for the posterior distribution of the ξ parameter depends on what type
of prior distribution was used for the parameter. For a normal prior distribution,
a Metropolis step is used to sample from the posterior distribution. A Metropolis
Hastings step with gamma and beta proposal densities are used when sampling from
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3.4. The threshold model

the posterior distribution in the cases when the prior distribution is the negative
gamma distribution and the negative beta distribution, respectively. The parameters
of the proposal distributions are �ne tuned in order to get the acceptance rate of the
simulations approximately equal to 44%, form optimal convergence (Gelman et al.
(2003)).

Since there are 40,000 sets of annual maximum values, 40,000 samples from the
posterior distributions are generated.

3.4. The threshold model

It is more complicated to gather data to use in the threshold model than it is for the
block maxima model when the uncertainty in the discharge rating curve is taken into
account. The objective is to �nd all data above a certain threshold, u. The values
that exceeded the threshold, u, were found and the threshold value subtracted from
the them. These threshold excesses are called peaks over threshold (POT). The
POTs were �tted to a GP distribution using the Bayesian approach for inference for
the parameters. The original point estimates of water discharge were examined to
�nd this data. Just as in the block maxima model, the uncertainty of the discharge
estimates is taken into consideration. The vectors of uncertainty for the discharge
come as a result of the uncertainty in the discharge rating curves (DRC), projecting
water levels to water discharge.

Figure 3.9 shows the water discharge time series along with the threshold value
displaying the point estimates that will be used as extreme values in the model.
The �gure also displays the calculated uncertainty interval. Note that there are
point estimates being used as extremes that are below the threshold value. These
values are marked as red in Figure 3.9. This is due to the uncertainty in the discharge
values. 40,000 sets of parameters have been sampled for the DRC which are used to
estimate the uncertainty in the discharge values. A number of them will overlap the
threshold value, i.e., for point estimates of discharge close to the threshold value,
the vector representing the discharge will consist of values both over and under the
chosen threshold. In those instances only the values that exceed the threshold, u,
were used. For that reason the e�ective number of POTs is introduced. It is the
true value of the number of POTs used in the model. Thus, for example, if the
median of a extreme value is exactly the same as the threshold value, then 50% of
the values in the discharge vector will be below the threshold and 50% will be above
it. Only the values that exceed the threshold are used in the model. This particular
POT would therefore only be used in 50% of the iterations in the Gibbs sampler
and would count as a half e�ective POT.
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Water discharge time series
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Figure 3.9: Time series of water discharge with threshold and a comb

In Figure 3.10 the peaks over threshold and the uncertainty in each peak are plotted
as a function of water level. There are 40,000 values representing each POT but
only the values exceeding the threshold will be used in the threshold model in the
corresponding iterations in MCMC scheme. Therefore, in the MCMC algorithm that
follows, the number of peaks over threshold will vary in each iteration depending on
the set of parameters used for the DRC in that iteration.
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Figure 3.10: Discharge rating curve with �tted POT values
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3.4. The threshold model

3.4.1. De-clustering the POTs

One of the problems with the threshold model is identifying extreme events. It is
realistic to think of the water discharge time series as being auto-correlated, hence
an extreme event is likely followed by another big event. This is the case for most
natural phenomena, as is evident in day-to-day life, e.g., an extremely hot day is
likely to be followed by another. Similarly, big �oods are not necessarily limited
to one day but are more likely to last for some period of time. Therefore, it is
not su�cient to take all values above a threshold as some of the values are likely
to belong to the same event. Therefore the peaks over threshold were de-clustered
(Davison and Smith (1990)). With the purpose of removing undesired correlation
between peaks, water discharge levels are grouped into clusters where each cluster
is regarded as a single event. The largest value in each cluster is then used in the
model.

A variable, referred to as the comb, is used to describe the methodology when de-
clustering the data. If, for example, the value of the comb was set equal to 1, then
for a new extreme event to take place there would have to be at least 1 discharge
value in between peaks where the discharge was less than the threshold value. For
a comb = 0 there is no de-clustering. In broader terms: for a comb value equal to
C, two clusters/events will have to be separated with at least C consecutive days
between peaks where the discharge is less than the threshold value. After the peaks
were sorted to clusters, only the largest discharge value per cluster was used in the
threshold model. Figure 3.11 illustrates the de-clustering of POTs with 4 di�erent
comb values.

Figure 3.12 shows how the number of POTs changes with respect to threshold value,
for di�erent comb values.

3.4.2. Choosing a threshold

Choosing an appropriate threshold value is very important in extreme analysis. The
objective is to gather appropriate data to model the tail behavior of the underlying
distribution, i.e. explore the extremes. Too small threshold value would result in
too many POTs which should not be regarded as extremes, skewing the result of the
�ood analysis. A too high of a threshold value would leave to many extreme values
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Figure 3.11: De-clustering data for 4 di�erent values of the comb. Each cluster is displayed
as a certain color and the maximum value of each cluster marked with a circle.
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Figure 3.12: The e�ect of the comb on the number of POTs for the river Olfusa. Displaying
curves showing the number of POTs w.r.t. threshold for comb values: 0, 1, 2, 3, 4 and
5 with appropriate curves being blue, green, red, cyan, magenta and black, respectively.

out of the analysis, increasing the sampling uncertainty. Extreme values that could
have helped in understanding the tail behavior would be left out and therefore the
results will not be as accurate as they could have been. In the quest of �nding the
best threshold value a few guidelines, discussed below, were adopted.
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3.4. The threshold model

Mean residual life plot (MRLP)

The mean residual life plot for threshold selection was examined in details by
Davison and Smith (1990). Since then, it has been a popular method for selecting
a threshold. According to the extreme analysis theory: If Y has a GP distribution,
the following holds

E(Y ) =
σt

1− ξ

where σt and ξ are the parameters of the GP distribution with threshold t. Therefore,
if X is a time series and u0 is a threshold value,

E(X − u0|X > u0) =
σu0

1− ξ

where σu0 is the scale parameter of the GP distribution corresponding to the thresh-
old value u0. Since (X − u0) conditional on X > u0 follows the GP distribution
every threshold value larger than u0 has to have the same a�ect, i.e., the conditional
excess over threshold value follows the GP distribution. Therefore if u > u0:

E(X − u|X > u) =
σu

1− ξ

However, there is a clear relationship between scale parameters with di�erent thresh-
old values,

E(X − u|X > u) =
σu0 + ξ(u− u0)

1− ξ
(3.13)

that is, the mean of the residual life with respect to the threshold, u. So if u0 is the
smallest possible threshold value that leads to a GP distribution for the peaks over
threshold (POT), then the expected value of the POT is linear with respect to u,
for all u larger than u0. That is shown in Equation (3.13) since the shape parameter
(ξ) is, in theory, constant for all u > u0

Based on the theory explained above, a mean residual life plot (MRLP) was devel-
oped. A MRLP is constructed in the following way: let u be any threshold value
less than xmax, where xmax is the largest observation. Let x(i) denote the i-th largest
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value out of nu largest values, where nu is the number of peaks over threshold for a
given u.

{(
u,

1

nu

nu∑
i=1

(y(i) − u)
)
: u < ymax

}
(3.14)

A threshold value is determined by looking at the MRLP and �nding the smallest
value where the plot becomes linear with respect to u.

An example of MRLP is shown in Figure 3.13.
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Figure 3.13: Mean Residual Life plot (MRLP) along with a line illustrating the linear
relationship between mean residual life and u. An appropriate threshold value according
to this MRLP could be u ≈ 3.5

Parameter estimates

Another way of determining an appropriate threshold value is observing the behavior
of the scale- and shape parameters of the GP distribution with increasing threshold
value. This approach was also discussed in detail by Davison and Smith (1990). The
theory states that for all threshold values larger than the smallest possible threshold
value, u0, there is a strong relationship between the GP parameters. i.e. for all
u > u0 the shape parameter (ξ) remains the same and the relationship between the
scale parameters, σu and σu0 are as follows:
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σu = σu0 + ξ(u− u0)

De�ne σ∗ as

σ∗ ≡ σu0 − ξu0 = σu − ξu.

The new scale parameter, σ∗, is a function of σu0 , ξ and u0 and should thus be con-
stant for all threshold values, u, that are larger than the smallest possible threshold
value, u0.

Using this information it is possible to observe whether the parameters, σ∗ and
ξ change with increasing threshold value, u. When the smallest desired threshold
value, has been reached, u0, these two parameters should be constant for all larger
values of the threshold. In theory, the ideal threshold value is u0. All values below
would skew the result of the �ood analysis, because too many values are being used
in the analysis. A too high of a threshold value would leave to many extreme values
out of the analysis, increasing the sampling uncertainty. This method of choosing a
threshold is shown in Figure 3.14.
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Figure 3.14: σ∗ and ξ along with their 95% con�dence interval as a function of threshold
value

Figure 3.14 shows both the σ∗ parameter and the ξ parameter as a function of
threshold value along with 95% con�dence interval of the parameter estimates. From
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Figure 3.14, using the left panel, relying on σ∗, it would be concluded that a rea-
sonable value for the smallest desired threshold is approximately u0 = 750. From
the right panel of the �gure, relying on ξ, it would be concluded that the smallest
desired threshold is approximately u0 = 500. These values are approximately the
lowest threshold value where a single value for the parameters �ts inside the 95%
con�dence interval for all u > u0. In theory these two threshold values should be
the same. From this it would be concluded that the threshold value should not be
chosen below u0 = 750, which is the lowest threshold value to be applicable in both
methods.

General methods

Along with the methods described above in �nding an appropriate threshold value,
a couple of "rules of thumb" were used.

Firstly, a threshold was chosen so that the number of peaks over threshold will be
in the range of 1− 2.5 times the number of years of data available. The Generalized
extreme value distribution is the foundation of the Generalized Pareto distribution
and the GEV distribution is based on sorting the data into blocks, which could be
regarded as independent, and picking the maximum value of that block. A time
span of one year is an obvious block size when looking at data which depend on an
annual cycle. Thus, it seems a reasonable constraint to limit the number of POTs
w.r.t. number of years of data as described above. If the number of POTs is greater
than 2.5 times the number of years it is likely that some of the them should not be
regarded as extremes.

Secondly, a special consideration is given to the threshold value that produce a
number of POTs that is exactly the same as the number of years inspected. This
method has been used at the Icelandic Meteorological O�ce as a rule of thumb.
It has proved a successful and simple way of determining a threshold value. This
method of determining the threshold will be referred to as the �xed frequency method
(FFM).

With the �xed frequency method a threshold is chosen so the number of point es-
timates of discharge that are above the threshold, after de-clustering, are equal to
the number of years of data used in the analysis. However, some of the simulated
discharge values (corresponding to a given day) will have a point estimate of dis-
charge below the threshold and only some of the simulated values will be above the
threshold. Similarly, some of the discharge values used in the model will be such
that the point estimate is just barely above the threshold and thus the portion of
their uncertainty vector that falls below the threshold will not be used in the model.
This has the e�ect that, on average, the e�ective number of POTs used for a par-
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ticular river will be the same as the number of discharge point estimates above the
threshold.

The method of choosing a threshold by using the mean residual life plot, the pa-
rameter estimates, and having the number of POTs in the range of 1−2.5 times the
number of years, is from now on referred to as the diagnostic based method (DBM).

3.4.3. Sampling distribution

When modeling POTs, water discharge series over a fairly long period is needed. A
suitable threshold is determined, denoted u, and all the values of the series which
exceed u are found. Then the threshold value, u, is subtracted from these discharge
value. Next the POTs are de-clustered using a comb value equal to 5 and the new
de-clustered series �tted with the generalized Pareto distribution. This new series
will be denoted by yi, i = 1, 2, ..., nu. The cumulative density function (cdf) for the
GP distribution is

H(y) = 1−
(
1 +

ξy

σ̃

)− 1
ξ

(3.15)

de�ned on y : y > 0 and (1 + ξy/σ̃) > 0 , where

σ̃ = σ + ξ(u− µ)

Therefore the sampling distribution of yi is

p(yi|σ̃, ξ) =
ξ

σ̃

[
1 +

ξyi
σ̃

]−(1+ 1
ξ

)
(3.16)

for i = 1, 2, ..., nu, where y = xi − u and y > 0, where xi is the corresponding
discharge value.

3.4.4. Prior distribution

The same reasoning as in the block maxima model is applied when choosing prior
distributions for the parameters of the GP distribution. There are only two parame-
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ters to emulate in the GP distribution as apposed to three in the GEV distribution,
but the two are closely related to the comparable ones in the GEV distribution.

For the scale parameter, σ̃, a non-informative prior distribution was chosen, allowing
the posterior to take any desired value. The prior distribution for the scale parameter
is:

p(σ̃) = Inv-χ2(ν0 = 10−12, s20 = 1) (3.17)

For the shape parameter, ξ, as in the case of the block maxima model, three di�erent
prior distribution were examined. The �rst one is non-informative, a normal dis-
tribution with the mean equal to zero and a large variance, allowing the parameter
to take all possible values. In the second and third cases the prior distribution is
constrained to negative values only.

The three di�erent cases for the prior distribution for the ξ parameter are given
below.

The Case 1 normal prior density is given by

p(ξ) =N(ξ|µξ = 0, σ2
ξ = 1000000) (3.18)

The Case 2 negative gamma prior density is given by

p(ξ) =Neg-Gamma(ξ|αξ = 1, βξ = 5) (3.19)

with p(ξ) = Neg-Gamma(ξ|1, 5) as a prior distribution, the ξ parameter is con-
stricted to negative values only. Majority of the mass of the distribution is close to
the y-axis as is shown in Figure 3.7

The Case 3 negative beta prior density is given by

p(ξ) =Neg-Beta(ξ|αξ = 1, βξ = 1) (3.20)

With p(ξ) = Neg-Beta(ξ|1, 1) as a prior distribution, the ξ parameter is constricted
to negative values only. The prior is a uniform distribution evenly distributed on
the interval [−1, 0]. The prior distribution is shown in Figure 3.8
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3.4.5. Posterior distribution of σ and ξ from the generalized
Pareto distribution

The posterior distribution of θ = (σ̂, ξ) is not based on a single vector of n inde-
pendent observations of extreme discharge but on L vectors of length nk, where
k = 1, ..., L. The vectors are sampled through the uncertainty in the discharge rat-
ing curve, which re�ect the uncertainty in the observed discharge. Denote the k-th
vector by yk and yk = (y1k, y2k, ..., ynkk). Since each of the L vectors is equally likely
to be drawn, they should be an equal in�uence on the posterior density of θ. Thus
the posterior density of θ is a mixture of the posterior densities corresponding the
each of the vectors of length n, each with weight L−1.

The form of the posterior density of θ is given by

p(θ|y) =
L∑

k=1

p(θ|k, yk)p(k) · L−1 (3.21)

=
L∑

k=1

p(θ|yk) · L−1 (3.22)

=
L∑

k=1

p(θ)p(yk|θ)
p(yk)

· L−1 (3.23)

=L−1p(θ)
L∑

k=1

p(yk|θ)
p(yk)

(3.24)

where y is the collection of all the yk vectors and each vector yk has a number of nk

elements.

More speci�cally, using σ̃ and ξ instead of θ, the posterior density of σ̃ and ξ is given
by

p(σ̃, ξ|y) ∝ p(σ̃)p(ξ)
{ L∑

k=1

p(yk|σ̃, ξ)
p(yk)

}
∝ p(σ̃)p(ξ)

{
L∑

k=1

nk∏
i=1

[
GP(yik|σ̃, ξ)∫ ∫
GP(yik|σ̃, ξ)dσ̃dξ

]}

A general sampling scheme based on the Gibbs sampler should be as follows. Sample
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k from 1, 2, ..., L with equal probability L−1 and obtain corresponding yk. Given k,
sample θ = (σ̃, ξ) from

p(σ̃, ξ|yk) =
p(σ̃, ξ)p(yk|σ̃, ξ)

p(yk)
∝ p(σ̃, ξ)p(yk|σ̃, ξ)

The Gibbs sampler is applied for this simulation, i.e., samples are drawn from the
following conditional distributions,

p(σ̃|ξ, yk) ∝ p(σ̃)×
nk∏
i=1

GP(yik|σ̃, ξ)

p(ξ|σ̃, yk) ∝ p(ξ)×
nk∏
i=1

GP(yik|σ̃, ξ)

However, since L is large and the weight of each p(σ̃, ξ|yk) is the same in p(θ|y), then
σ̃ and ξ are only sampled once for each yk. The construction of a Gibbs sampler is
explained in details in Gelman et al. (2003).

The Gibbs sampler uses Metropolis and Metropolis Hastings algorithms to sample
from the posterior distributions of the GP parameters. These algorithms are adap-
tations of a random walk that uses an acceptance/rejection rule to converge to the
speci�ed target distributions (Gelman et al. (2003)). The posterior distribution for
σ̃ is simulated using Metropolis Hastings step with the proposal density being a
gamma distribution. The simulation for the posterior distribution of the ξ param-
eter depends on what type of prior distribution was used for the parameter. For
a normal prior distribution, a Metropolis step is used to sample from the posterior
distribution. Metropolis Hastings steps with a gamma and a beta proposal densities
were used when sampling from the posterior distributions in the cases when the
prior distributions are the negative gamma distribution and the negative beta dis-
tribution, respectively. The parameters of the proposal distributions are �ne tuned
in order to get the acceptance rate of the simulations approximately equal to 44%,
to obtain optimal convergence (Gelman et al. (2003)).

Since there are 40,000 sets of POTs, 40,000 values are generated for the posterior
distributions of the GP parameters. By doing this the uncertainty in the discharge
rating curve and the sampling uncertainty have been merged into the MCMC algo-
rithm for Bayesian inference for the GP parameters.
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In this section, the previously outlined methods are used for �ood analysis on four
rivers in Iceland. The rivers are Sanda in Thistilfjordur, Olfusa by Selfoss, Hvita
by Kljafoss and Svarta in Skagafjordur. Two di�erent types of models were used
for the �ood analysis: the block maxima model and the threshold model. These
models are described in detail in Sections 3.3 and 3.4, respectively. The block
maxima model uses the generalized extreme value distribution (GEV) and �ts the
distribution with the annual maximum values for each river. The threshold model
uses peaks over threshold (POTs), i.e. the excess of discharge values over a pre-
determined threshold value, and �ts the generalized Pareto distribution (GP) to the
POTs. Two methods were used when determining the threshold value, namely the
diagnostic based method (DBM) and the �xed frequency method (FFM). These two
methods of choosing a threshold value are described in Section 3.4.2. For each river,
the choice of threshold value, using the diagnostic based method, is explained using
the graphs introduced in Section 3.4.2. Thus, three di�erent models are used in the
�ood analysis, one block maxima model and two threshold models.

In theory, the three parameter GEV distribution and the two parameter GP distri-
bution share the same parameter, namely the shape parameter, ξ. This parameter
controls the tail behavior of the distributions and is of major importance when per-
forming extreme value analysis. Within the Bayesian framework, three di�erent kind
of prior distributions are chosen for the shape parameter, two of which restrains the
resulting posterior parameter and alters the �nal results of the �ood analysis. The
e�ect of restraining the shape parameters is investigated and compared to no re-
striction at all. The Bayesian methods of sampling from the posterior distributions
for the block maxima model and the threshold model are described in Sections 3.3.3
and 3.4.5, respectively.

Furthermore, the e�ect of using discharge rating curves, to model the uncertainty
in the extreme values, is investigated. Speci�cally, B-spline discharge rating curves
when transforming measured water level into water discharge and the associated
uncertainty.

The results are presented through �gures and tables with a di�erent set of �gures
and tables for every case of prior distribution for the shape parameter. The �gures
displayed in this section come from models where the uncertainty in the discharge
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rating curve are merged together with the sampling uncertainty in the GEV or
GP distribution parameters. Further details on the �ood analysis can be found
in appendices A, B, C, and D. That includes probability plots, quantile plots and
density plots for all cases of prior distributions. The prior and posterior densities
of all the parameters in the GEV and GP distributions are also displayed for all
cases. Also, MCMC chains of all posterior parameters, and the prior and posterior
distributions of the GEV and GP parameters when a discharge rating curve is not
taken into account in the extreme analysis.

Table 4.1 shows a list of abbreviations regarding, �gures and tables in the Result
section. Every �gure and table in the section is marked with some of these abbre-
viations and that explains which river the data belongs to and what kind of models
were used to generate the results. For example, the text (V064 BM w/DRC) Case 2
in the caption of a �gure or a table, indicates that the data displayed comes from the
river Olfusa (V064), a block maxima model was used (BM) with a neg-gamma prior
distribution for the shape parameter (Case 2), and the uncertainty in the discharge
rating curve was taken into account in the calculations (w/DRC).
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Table 4.1: Abbreviations used to explain the origin of the data used to generate
�gures and tables

V064: The river Olfusa: 64 is the number of the gauging station
measuring the data

V066: The river Hvita vid Kljafoss: 66 is the number of the
gauging station measuring the data

V026: The river Sanda in Thistilfjordur: 26 is the number of
the gauging station measuring the data

V010: The river Svarta in Skagafjordur: 10 is the number of
the gauging station measuring the data

Case 1: The shape parameter, ξ, was sampled using a normal
prior distribution

Case 2: The shape parameter, ξ, was sampled using a neg-
gamma prior distribution

Case 3: The shape parameter, ξ, was sampled using a neg-beta
prior distribution

BM: A block maxima model
TM DBM: A threshold model using the diagnostic based method

for determining the threshold value
TM FFM: A threshold model using the �xed frequency method for

determining the threshold value
w/DRC: A discharge rating curve uncertainty was taken into ac-

count in the calculations
w/o DRC: A discharge rating curve uncertainty was not taken into

account in the calculations

4.1. Results for Olfusa

The discharge time series for Olfusa spans 57 years, from September 1950 to Septem-
ber 2007. The daily point estimates of water discharge are shown in Figure 4.1.

The relationship between water level and water discharge is found by applying the
B-spline discharge rating curve, as discussed in Section 3.2, on the paired water level
and water discharge data for the river. The B-spline discharge rating curve is shown
in Figure 4.1.
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Figure 4.1: V064: Left panel: Water discharge time series. Right panel: B-spline Dis-
charge Rating curve

4.1.1. Block maxima model

The annual maximum values used for the Block Maxima model are shown in Figure
4.2. It shows the discharge time series for the river with each annual maximum value
visually highlighted with a star symbol. These values are point estimates of water
discharge. The B-spline discharge rating curve (DRC) was applied to the annual
maximum values to obtain the uncertainty in the estimates. Figure 4.3 shows how
the discharge rating curve is used to estimate the uncertainty in the annual maximum
values. In Figure 4.3 the highlighted annual maximum values from Figure 4.2 are
�tted to the discharge rating curve and from that point it becomes manageable to
estimate the uncertainty in the point estimate. This process is described in detail
in section 3.3. Figure 4.3 shows the same water discharge time series as Figure 4.2
but also includes the 95% uncertainty interval for the annual maximum values.

The maximum annual values are �tted to the Generalized Extreme Value (GEV)
distribution using a Markov Chain Monte Carlo scheme. The GEV distribution has
three parameters, i.e., a location parameter µ, a scale parameter σ, and a shape
paramter, ξ. The shape parameter is of special interest in our research and how it
is e�ected by three di�erent prior distributions. The three di�erent cases of prior
distributions for the ξ parameter in the GEV distribution are explained in detail
in Section 3.3.2. The e�ect of the B-spline discharge rating curve on the �ood
analysis was also investigated. The construction of the B-spline discharge rating
curve is discussed in Section 3.2 and the merging of the B-spline DRC with the
GEV distribution, for the block maxima model, and the GP distribution, for the
treshold model, is discussed in Sections 3.3 and 3.4, respectively.

The ways of checking the validation of the models are discussed in 2.2.2. Discussions
on the development of the probability plots and the quantile plots can be found in
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Figure 4.2: V064: Water discharge time series with annual maximum values
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Figure 4.3: V064: Left panel: Water discharge time series with 95% posterior interval
for extreme values. Right panel: B-spline discharge rating curve with �tted annual
maximum values and their 95% posterior interval

Section 2.2.2. The return level plots and the plotting position of the empirical data
on that plot, are discussed in Sections 2.2.1 and 2.2.2, respectively. The methods
for conducting the Anderson-Darling test used to check the validity of the models
are discussed in Section 2.2.2.
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Figure 4.4: (V064 BM w/DRC): Prior and posterior distributions for the shape parameter
(ξ) in the GEV distribution for all three cases of prior distributions. Case 1: left panels,
Case 2: middle panels, Case 3: right panels.
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Figure 4.5: (V064 BM w/DRC): Return level plots for the block maxima model for all
three cases of prior distributions. Case 1: left panel, Case 2: middle panel, Case 3: right
panel.

Comparison between the three di�erent cases of prior distribution for ξ

Figure 4.4 shows the prior distributions of ξ and their corresponding posterior dis-
tributions for all cases. Majority of the posterior distribution in Case 1 is positive
and so constraining the posterior to only negative values has great in�uence on the
results. Figure 4.5 show the return level plots for all three cases of prior distribu-
tions. Constraining the prior to negative values only, lowers the return levels and
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4.1. Results for Olfusa

Table 4.2: V064 BM: 100-year return levels of discharge (m3/sec) for all three cases
of prior distributions, calculated with and without a DRC

Block Extrema
With DRC Without DRC

Percentiles Normal Neg-Gamma Neg-Beta Normal Neg-Gamma Neg-Beta
2.5% 1581 1524 1521 1582 1529 1525
25% 1768 1632 1628 1772 1631 1628
50% 1927 1697 1693 1930 1695 1692
75% 2163 1772 1767 2148 1766 1765
97.5% 2980 1935 1935 2909 1926 1926
95% conf. int. 1399 410 414 1327 397 401
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Figure 4.6: (V064 BM) Comparison of the 95% posterior interval of the 100-year
return level of discharge, between the three cases of prior distributions, with DRC
uncertainty (blue) and without DRC uncertainty (red).

makes the con�dence interval narrower. This constriction has the e�ect that the
data does not �t the model, as well as in Case 1.

Table 4.2 shows the 2.5%, 25%, 50%, 75%, and 97.5% percentiles of the 100-year
return level for all three cases of prior distributions for the shape parameter, ξ.
Figure 4.6 shows the 95% posterior interval of the 100-year return level for all three
cases of prior distributions for the shape parameter, ξ, and the 2.5%, 50%, and
97.5% percentiles. The 95% posterior interval of the 100-year return level represents
the uncertainty in the return level. Figure 4.6, shows how the uncertainty interval
becomes smaller as the ξ value is restricted to negative value only.
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Constraining the posterior density of ξ, to negative values only, by using negative
prior distributions has a signi�cant in�uence on the outcome of the posterior distri-
butions and thus the resulting return levels. In the case where the prior distribution
for the shape parameter is a normal distribution, the posterior distribution has more
tendency to be positive than negative, having a mean value of 0.10 (see Table A.2).
Constraining the priors has similar e�ects on the posteriors as eliminating the pos-
itive portion of the Case 1 posterior density. The negative part of the posterior
density using the non-informative normal prior is similar to the posterior distri-
butions resulting from the constraining priors. Since a higher value of ξ leads to
thicker tail of the GEV distribution and hence larger return values, eliminating the
positive portion of the ξ values reduces the return levels and the range for their 95%
posterior intervals for high return periods. This reduction in the posterior densities
of ξ , has the e�ect that the models in Cases 2 and 3, using the negative priors, do
not �t the data as well as the model in Case 1.

Thus, constraining the ξ parameter to negative values only, has the e�ect that the
median value of the 100-year return level becomes lower for both the negative gamma
prior distribution (12% lower) and the negative beta prior distribution (13% lower).
Furthermore, the uncertainty interval for the constraining prior distributions shrinks
to approximately 26% of the uncertainty interval for the non-informative normal
prior distribution.

Since majority of the posterior density when using the non-informative normal prior
distribution, was positive, the median value of the 100-year return level is greater
than the 97.5 percentiles for the 100-year return levels for the restricting prior dis-
tributions.

The e�ect of discharge rating curve uncertainty

The e�ect of merging the discharge rating curve uncertainty with the sampling
uncertainty from the MCMC scheme has minor e�ect on the median value of the
100-year return levels and moderate e�ect on the 95% posterior intervals. This is
shown in Table 4.2 and Figure 4.6. There is a change in the over all uncertainty
for the 100-year return level, when adding the discharge rating curve uncertainty to
the calculations. In Case 1, where the prior distribution is a normal distribution,
the 95% posterior interval increases approximately 11%, when DRC uncertainty is
taken into account. In Case 2, where the prior distribution is a negative gamma
distribution, the 95% posterior interval increases approximately 3%, when DRC
uncertainty is taken into account. In Case 3, where the prior distribution is a
negative beta distribution, the 95% posterior interval increases approximately 1.5%,
when DRC uncertainty is taken into account.
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4.1.2. Threshold model

The �rst thing to do when using the threshold model is to choose the value of the
threshold. A comb value of 5 was chosen in the threshold model for this river. As
described in the Section 3.4.2, there are a few guidelines to be used when doing so.
Figure 4.7 shows a mean residual life plot (MRLP) (green solid graph) (see Section
3.4.2) and it also shows how the number of peaks over threshold (POT) vary with
respect to threshold value (blue solid graph). Furthermore, in the �gure, the two
vertical blue lines mark the interval where the number of POTs are, on one hand,
equal to the number of years investigated in the data set (the right blue vertical
line) and, on the other hand, where the number of POTs are equal to the number
of years inspected times 2.5 (the left blue vertical line). One way to determine a
threshold value is by looking at the MRLP and �nding the smallest value where the
plot becomes linear with respect to threshold.
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Figure 4.7: V064: Mean residual life plot and number of POTs as a function of threshold
value

Figure 4.8, shows how the parameters of the ξ and σ∗ change with respect to thresh-
old value. As explained in Section 3.4.2, these two parameters should be constant
for all values of threshold, larger than the smallest desired threshold value. In the-
ory that is the ideal threshold value. All values below would skew the result of the
�ood analysis, due to too many values being used in the analysis. All threshold
values above would leave to many extreme values out of the analysis, increasing the
sampling uncertainty. The middle graphs in the �gures are the median values of ξ
and σ∗, w.r.t. threshold. The outer graphs represent the 95% con�dence interval of
the ξ and σ∗ values. The aim is to �nd the lowest value of threshold, ulow where the
a single value of ξ and σ∗, is inside the con�dence interval, for all values of threshold,
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larger than ulow. As is shown in Figure 4.8, the lowest threshold value where the
same value of the parameters is inside the 95% con�dence interval is not the same
when looking at the two parameters. For σ∗, a threshold value of approximately 700
will produce a parameter inside for the 95% con�dence interval of the above thresh-
old values. For ξ, a threshold value of approximately 350 will produce a parameter
inside for the 95% con�dence interval of the above threshold values.
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Figure 4.8: V064: Threshold approximation using the parameters σ∗ and ξ

What can be inferred from these �gures is a lower limit of ulow = 700. This lower
limit comes from the estimation of the σ∗ parameter w.r.t. threshold. The mean
residual life plot suggests a threshold pick of approximately u = 1000 which would
result in too few POTs and consequently a too large of a sample variance. Another
guideline for choosing a threshold, was to choose it so the number of POTs in the
range of 1− 2.5 times the number of years. The threshold chosen for this river was
u = 820. That threshold value produces approximately 90 POTs, when using a comb
value of 5, and it could be argued that the mean residual life plot is approximately
linear for all higher threshold values.

Two di�erent values for the threshold were used in the �ood analysis. That is,
one analysis using a threshold value of u = 820. And another analysis using the
threshold value which produces as many POTs as there are years in the data set.
That threshold value is u = 862. These two di�erent methods for choosing the
threshold will be referred to as the diagnostic based method (DBM) and the �xed
frequency method (FFM), respectively.

When the threshold value has been chosen the B-spline rating curve was applied on
the POTs to estimate the uncertainty in the extreme values. There after the comb
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was used to further eliminate undesired values. The comb is used to minimize the
correlation between extreme values used in the model. Some of the extreme values
used in the model are possibly generated from point estimates of water discharge
that are lower than the chosen threshold. As described in section 3.4, only values
above the threshold will be used in the model so for point estimates close to the
threshold value, the uncertainty vector describing the extreme value can be as large
as having 40,000 elements used in the model or as small as having only 1 element.

4.1.3. Threshold model using diagnostic based methods
(DBM) for determining the threshold value

The threshold model analysis of the data for Olfusa was continued using a threshold
value of u = 820. In Figure 4.9 the POTs have been processed by the B-spline
discharge rating curve to evaluate the uncertainty in the extreme values. In Figure
4.9 the POTs and their 95% posterior interval are shown with the water discharge
time series along with the threshold value. As before, for some of the POTs, the full
40,000 set uncertainty vector will not be used in the analysis since there are values
within those vectors that are below the threshold value. That has the e�ect that the
number of POTs used to generate the posterior distributions for the GP parameter
can vary from one iteration to the next.
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Figure 4.9: V064: Left panel: Water discharge time series with 95% posterior interval for
extreme values. Right panel: Discharge rating curve with �tted POT values

Comparison between the three di�erent cases of prior distribution for ξ

Figure 4.10 shows the prior distributions of ξ and their corresponding posterior
distributions for all cases. Majority of the posterior distribution in Case 1 is positive
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Figure 4.10: (V064 TM DBM w/DRC): Prior and posterior distributions for the shape
parameter (ξ) in the GP distribution for all three cases of prior distributions. Case 1:
left panels, Case 2: middle panels, Case 3: right panels.
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Figure 4.11: (V064 TM DBM w/DRC): Return level plots for the threshold model for
all three cases of prior distributions. Case 1: left panel, Case 2: middle panel, Case 3:
right panel.

and so constraining the posterior to only negative values has great in�uence on
the results. Figure 4.11 show the return level plots for all three cases of prior
distributions. Constraining the prior to negative values only, lowers the return
levels and makes the con�dence interval narrower. This constriction has the e�ect
that the data does not �t the model, as well as in Case 1.

Table 4.3 shows the 2.5%, 25%, 50%, 75%, and 97.5% percentiles of the 100-year
return level for all three cases of prior distributions for the shape parameter, ξ.
Figure 4.12 shows the 95% posterior interval of the 100-year return level for all
three cases of prior distributions for the shape parameter, ξ, and the 2.5%, 50%, and
97.5% percentiles. The 95% posterior interval of the 100-year return level represents
the uncertainty in the return level. Figure 4.12, shows how the uncertainty interval
becomes smaller as the ξ value is restricted to negative value only.
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4.1. Results for Olfusa

Table 4.3: V064 TM DBM: 100-year return levels of discharge (m3/sec), for all
three cases of prior distributions, calculated with and without a DRC

Threshold model with threshold, u = 820
With DRC Without DRC

Percentiles Normal Neg-Gamma Neg-Beta Normal Neg-Gamma Neg-Beta
2.5% 1578 1544 1542 1594 1571 1566
25% 1750 1665 1655 1751 1689 1675
50% 1903 1744 1732 1889 1765 1748
75% 2147 1835 1823 2100 1852 1834
97.5% 3145 2047 2042 2960 2055 2035
95% conf. int. 1568 503 500 1366 483 469
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Figure 4.12: (V064 TM DBM) Comparison of the 95% posterior interval of the 100-
year return level of discharge, between the three cases of prior distributions, with DRC
uncertainty (blue) and without DRC uncertainty (red).

Constraining the posterior density of ξ, to negative values only, by using negative
prior distributions has a signi�cant in�uence on the outcome of the posterior distri-
butions and thus the resulting return levels. In the case where the prior distribution
for the shape parameter is a normal distribution, the posterior distribution has more
tendency to be positive than negative, having a mean value of 0.06 (see Table A.3).
Constraining the priors has similar e�ects on the posteriors as eliminating the pos-
itive portion of Case 1 posterior density. The negative part of the posterior density
using the non-informative normal prior is similar to the posterior distributions re-
sulting from the constraining priors. Since a higher value of ξ leads to thicker tail
of the GP distribution and hence larger return values, eliminating the positive por-
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4. Results and discussions

tion of the ξ values reduces the return levels and the range for their 95% posterior
intervals for high return periods. This reduction in the posterior densities of ξ , has
the e�ect that the models in Cases 2 and 3, using the negative priors, do not �t the
data as well as the model in Case 1.

Thus, constraining the ξ parameter to negative values only, has the e�ect that the
median value of the 100-year return level becomes lower for both cases of negative
prior distributions for ξ. In the both case where the prior distribution is the negative
the median value becomes approximately 10% lower. Furthermore, the uncertainty
in Cases 2 and 3, where the priors are negative only, shrinks to approximately 30%
of the uncertainty for Case 1, where the prior is non-informative.

The e�ect of discharge rating curve uncertainty

The e�ect of merging the discharge rating curve uncertainty with the sampling
uncertainty from the MCMC scheme has minor e�ect on the median value of the
100-year return level. This is shown in Table 4.3 and Figure 4.12. There is a
minor change in the over all uncertainty for the 100-year return level, when adding
the discharge rating curve uncertainty to the calculations. In the Case 1, where
the prior distribution is a normal distribution, the 95% posterior interval increases
approximately 3%, when DRC uncertainty is taken into account. In the Case 2,
where the prior distribution is a negative gamma distribution, the 95% posterior
interval increases approximately 5%, when DRC uncertainty is taken into account.
In the Case 3, where the prior distribution is a negative beta distribution, the 95%
posterior interval increases approximately 7%, when DRC uncertainty is taken into
account.

4.1.4. Threshold Model using the �xed frequency method
(FFM) for determining the threshold value

With the �xed frequency method (FFM) a threshold is chosen so the number of point
estimates of discharge that are above the threshold, after de-clustering, are equal to
the number of years of data used in the analysis. For Olfusa, that leads to a threshold
value of u = 862 with the total number of point estimates of discharge, greater than
the threshold value, equal to 57. Figure 4.13 shows the B-spline discharge rating
curve as well as the extreme values used in the analysis and their 95% uncertainty
interval. Figure 4.13 shows the discharge time series of Olfusa along with the 95%
discharge uncertainty vectors used in the model.
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Figure 4.13: (V064 FFM): Right panel: Water discharge time series with 95% posterior
interval for extreme values. Left panel: B-spline Discharge rating curve with �tted POT
values
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Figure 4.14: (V064 TM FFM w/DRC): Prior and posterior distributions for the shape
parameter (ξ) in the GP distribution for all three cases of prior distributions. Case 1:
left panels, Case 2: middle panels, Case 3: right panels.

Figure 4.14 shows the prior distributions of ξ and their corresponding posterior
distributions for all cases. Majority of the posterior distribution in Case 1 is positive
and so constraining the posterior to only negative values has great in�uence on
the results. Figure 4.15 show the return level plots for all three cases of prior
distributions. Constraining the prior to negative values only, lowers the return
levels and makes the con�dence interval narrower. This constriction has the e�ect
that the data does not �t the model, as well as in Case 1.
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Figure 4.15: (V064 TM FFM w/DRC): Return level plots for the threshold model for all
three cases of prior distributions. Case 1: left panel, Case 2: middle panel, Case 3: right
panel.

Table 4.4: V064 TM FFM: 100-year return levels of discharge (m3/sec), for all three
cases of prior distributions, calculated with and without a DRC

Threshold model with threshold, u = 862
With DRC Without DRC

Percentiles Normal Neg-Gamma Neg-Beta Normal Neg-Gamma Neg-Beta
2.5% 1581 1545 1540 1601 1550 1547
25% 1762 1660 1650 1791 1661 1652
50% 1928 1736 1725 1978 1733 1722
75% 2204 1827 1811 2283 1815 1803
97.5% 3474 2048 2026 3653 2007 1994
95% conf. int. 1893 503 487 2052 457 447

Table 4.4 shows the 2.5%, 25%, 50%, 75%, and 97.5% percentiles of the 100-year
return level for all three cases of prior distributions for the shape parameter, ξ.
Figure 4.16 shows the 95% posterior interval of the 100-year return level for all
three cases of prior distributions for the shape parameter, ξ, and the 2.5%, 50%, and
97.5% percentiles. The 95% posterior interval of the 100-year return level represents
the uncertainty in the return level. Figure 4.16, shows how the uncertainty interval
becomes smaller as the ξ value is restricted to negative value only.

Constraining the posterior density of ξ, to negative values only, by using negative
prior distributions has a signi�cant in�uence on the outcome of the posterior distri-
butions and thus the resulting return levels. In the case where the prior distribution
for the shape parameter is a normal distribution, the posterior distribution has more
tendency to be positive than negative, having a mean value of 0.09 (see Table A.4).
Constraining the priors has similar e�ects on the posteriors as eliminating the pos-
itive portion of the Case 1 posterior density. The negative part of the posterior
density using the non-informative normal prior is similar to the posterior distribu-
tions resulting from the constraining priors. Since a higher value of ξ leads to thicker
tail of the GP distribution and hence larger return values, eliminating the positive
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Figure 4.16: (V064 TM FFM) Comparison of the 95% posterior interval of the 100-
year return level of discharge, between the three cases of prior distributions, with DRC
uncertainty (blue) and without DRC uncertainty (red).

portion of the ξ values reduces the return levels and the range for their 95% posterior
intervals for high return periods. This reduction in the posterior densities of ξ , has
the e�ect that the models in Cases 2 and 3, using the negative priors, do not �t the
data as well as the model in Case 1.

Thus, constraining the ξ parameter to negative values only, has the e�ect that the
median value of the 100-year return level becomes signi�cantly lower for both cases
of negative prior distributions for ξ. In the both case where the prior distribution
is the negative the median value becomes approximately 12% lower. Furthermore,
the uncertainty in Cases 2 and 3, where the priors are negative only, shrinks to
approximately 24% of the uncertainty for Case 1, where the prior is non-informative.

The e�ect of discharge rating curve uncertainty

The e�ect of merging the discharge rating curve uncertainty with the sampling
uncertainty from the MCMC scheme has minor e�ect on the median value of the
100-year return level. This is shown in Table 4.4 and Figure 4.16. There is a change
in the over all uncertainty for the 100-year return level, when adding the discharge
rating curve uncertainty to the calculations. In Case 1, where the prior distribution
is a normal distribution, the 95% posterior interval, surprisingly, decreases approx-
imately 8%, when DRC uncertainty is taken into account. In Case 2, where the
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4. Results and discussions

prior distribution is a negative gamma distribution, the 95% posterior interval in-
creases approximately 8%, when DRC uncertainty is taken into account. In Case
3, where the prior distribution is a negative beta distribution, the 95% posterior
interval increases approximately 9%, when DRC uncertainty is taken into account.

4.1.5. Comparison between models

The models being compared are the block maxima model using the annual maximum
values and two threshold models, one with the threshold value u = 820, found by
using the diagnostic based method (DBM threshold model) and another one with a
threshold value of u = 862, found by the �xed frequency method (FFM threshold
model).

It can be argued that the extreme values used in the FFM threshold model are
superior to those used in the block maxima model since they are not constricted to
having one and only one extreme value per year, like the annual values used in the
latter model. The argument is, that if the de-clustering of the POTs is successful
and there is no correlation between the extremes, than the quality of the POTs
gathered by using the FFM are at least, equal to that of the block maxima model.
For that reason the comparison below will be between the block maxima model and
the FFM threshold model, on one hand, and between the FFM threshold model and
the DBM threshold model, on the other hand.
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Figure 4.17: (V064) Comparison of the 95% posterior interval of the 100-year return
level of discharge, between the three di�erent models, with DRC uncertainty (blue) and
without DRC uncertainty (red).
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Block maxima model vs. FFM threshold model

Tables 4.2 and 4.4 show the percentiles for the 100-year return levels for the block
maxima model and the FFM threshold model, respectively. Figure 4.17 shows the
95% posterior interval of the 100-year return level for the block maxima model and
the FFM threshold model. Tables A.2 and A.4 show the percentiles of the posterior
distributions for the GEV parameters for the Block maxima model and the GP
parameters for the FFM Threshold model, respectively. The FFM threshold model
uses approximately the same amount of extreme values as the block maxima model
but the extremes used in the FFM threshold model are larger than those used in
the block maxima model.

Looking at the 100-year return levels in Case 1 where the prior distribution for
ξ is non-informative, the lower percentiles, 2.5%, 25%, and 50%, are very similar
for both models. The higher percentiles, 75% and 97.5%, are larger for the FFM
threshold model, hence the posterior interval is larger. The posterior densities for
the Case 1 prior distributions for the block maxima model and the FFM threshold
model are shown in Figure A.1 and Figure A.19, respectively.

The posterior density for the shape parameter, ξ, is wider in the FFM threshold
model than in the block maxima model. The range of the 95% posterior interval for
the parameter in the block maxima model is [−0.09, 0.33] but [−0.18, 0.48] for the
FFM threshold model. The upper percentiles in the return level plots are particulary
sensitive to high values of ξ which explains why the upper percentiles for the 100-
year return levels are higher for the FFM threshold model than the block maxima
model.

Cases 2 and 3 where the prior distribution for ξ is a negative gamma distribution
and a negative beta distribution, respectively, do not �t the block maxima model
well. A better �t comes when using the FFM threshold model. The median and the
upper percentiles for the 100 year return level are larger in the FFM threshold model
and provide a better �t for the extreme values used. The posterior interval for the
return levels are too narrow in the block maxima model and the largest extremes
deviate from the model.

DBM threshold model vs. FFM threshold model

Tables 4.3 and 4.4 show the percentiles for the 100-year return levels for the DBM
threshold model and the FFM threshold model, respectively. Figure 4.17 shows the
95% posterior interval of the 100-year return level for the DBM threshold model and
the FFM threshold model. Tables A.3 and A.4 show the percentiles of the posterior
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4. Results and discussions

distributions for the GP parameters for the DBM threshold model and the FFM
threshold model, respectively.

By lowering the threshold from 862 to 820 the e�ective number of POTs increase
from 53.85 to 64.95. Looking at the Case 1 prior distribution, these added extreme
data have the e�ect of lowering the upper values of the posterior distribution for
ξ. That leads to lower upper percentiles for the return level plot and thus smaller
posterior interval. So, for this river, the added data used in the DBM threshold
model lowered the upper percentiles for the 100 year return level and its posterior
interval got smaller.

There is little di�erence between the two models when looking the results from the
prior distributions in Cases 2 and 3. In both models, the negative gamma prior in
Case 2 seems have the e�ect that the simulated values in the posterior distribution
of ξ higher then for the negative beta prior in Case 3. That leads to higher return
levels.

The Case 2 and Case 3 return levels produced by the FFM threshold model have
narrower posterior intervals but the di�erence is minor. The median values for
the return levels are almost identical for the DBM threshold model and the FFM
threshold model.
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4.2. Results for Hvita

The discharge time series for Hvita spans approximately 57 years, from July 1951 to
September 2008. The daily point estimates of water discharge are shown in Figure
4.18
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Figure 4.18: V066: Left panel: Water discharge time series. Right panel: B-spline
Discharge Rating curve

The relationship between water level and water discharge is found by applying the
B-spline discharge rating curve, as discussed in Section 3.2, on the paired water level
and water discharge data for the river. The B-spline discharge rating curve is shown
in Figure 4.18.

67



4. Results and discussions

4.2.1. Block maxima model

The annual maximum values used for the Block Maxima model are shown in Figure
4.19. It shows the discharge time series for the river with each annual maximum
value visually highlighted with a star symbol. These values are point estimates of
water discharge. The B-spline discharge rating curve was applied on the annual
maximum values to obtain the uncertainty in the estimates. Figure 4.20 shows how
the discharge rating curve is used to estimate the uncertainty in the annual maximum
values. In Figure 4.20 the highlighted annual maximum values from Figure 4.19 are
�tted to the discharge rating curve and from that point it becomes manageable to
estimate the uncertainty in the point estimate. This process is described in detail
in Section 3.3. Figure 4.20 shows the same water discharge time series as Figure
4.19 but also includes the 95% uncertainty interval for the annual maximum values
shown as well.
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Figure 4.19: V066: Water discharge time series with annual maximum values

Comparison between the three di�erent cases of prior distribution for ξ

Figure 4.21 shows the prior distributions of ξ and their corresponding posterior
distributions for all cases. Majority of the posterior distribution in Case 1 is positive
and so constraining the posterior to only negative values has great in�uence on
the results. Figure 4.22 show the return level plots for all three cases of prior
distributions. Constraining the prior to negative values only, lowers the return
levels and makes the con�dence interval narrower. This constriction has the e�ect
that the data does not �t the model, as well as in Case 1.
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Figure 4.20: V066: Left panel: Water discharge time series with 95% posterior interval
for extreme values. Right panel: B-spline discharge rating curve with �tted annual
maximum values and their 95% posterior interval
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Figure 4.21: (V066 BM w/DRC): Prior and posterior distributions for the shape param-
eter (ξ) in the GEV distribution for all three cases of prior distributions. Case 1: left
panels, Case 2: middle panels, Case 3: right panels.

Constraining the shape parameter to only negative values has a signi�cant impact
on the posterior density for that parameter. In the case where the prior distribu-
tion for the shape parameter is a normal distribution, the posterior distribution has
more tendency to be positive than negative, having a mean value of 0.10 (see Table
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Figure 4.22: (V066 BM w/DRC): Return level plots for the block maxima model for all
three cases of prior distributions. Case 1: left panel, Case 2: middle panel, Case 3: right
panel.

Table 4.5: V066 BM: 100-year return levels of discharge (m3/sec), for all three cases of
prior distributions, calculated with and without a DRC

Block Extrema
With DRC Without DRC

Percentiles Normal Neg-Gamma Neg-Beta Normal Neg-Gamma Neg-Beta
2.5% 503 468 465 501 468 466
25% 587 506 504 585 506 505
50% 655 530 529 654 530 529
75% 753 557 555 750 557 556
97.5% 1069 617 616 1065 618 616
95% conf. int. 566 149 151 564 150 150

B.2). Constraining the priors has similar e�ects on the posteriors as eliminating the
positive portion of the Case 1 posterior density. The negative part of the posterior
density using the non-informative normal prior is similar to the posterior distri-
butions resulting from the constraining priors. Since a higher value of ξ leads to
thicker tail of the GEV distribution and hence larger return values, eliminating the
positive portion of the ξ values reduces the return levels and the range for their 95%
posterior intervals for high return periods. This reduction in the posterior densities
of ξ , has the e�ect that the models in Cases 2 and 3, using the negative priors, do
not �t the data as well as the model in Case 1.

Constraining the ξ parameter to negative values only as is done in Cases 2 and 3,
has the e�ect that the median value of the 100-year return level becomes lower (20%
lower for both Case 1 and Case 2). Furthermore, the uncertainty of the 100-year
return level, for the two cases shrinks to approximately 25% of that of Case 1. By
viewing the diagnostic plots in Figures B.4 and B.6, it seems that this reduction in
posterior interval is too much for the data which do not �t the model.

Since majority of the posterior density when using the non-informative normal prior
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Figure 4.23: (V066 BM) Comparison of the 95% posterior interval of the 100-year return
level of discharge, between the three cases of prior distributions, with DRC uncertainty
(blue) and without DRC uncertainty (red).

distribution, was positive, the median value of the 100-year return level is greater
than the 97.5 percentiles for the 100-year return levels for the restricting prior dis-
tributions.

The e�ect of discharge rating curve uncertainty

The e�ect of merging the discharge rating curve uncertainty with the sampling
uncertainty from the MCMC scheme has minor e�ect on the median value of the
100-year return levels and minor e�ect on the 95% posterior intervals. This is shown
in Table 4.5 and Figure 4.23. There is a minor change in the over all uncertainty
for the 100-year return level, when adding the discharge rating curve uncertainty to
the calculations. In Case 1, where the prior distribution is a normal distribution,
the increase of the 95% posterior interval is insigni�cant, i.e. less than 1%. In Case
2 where the prior distribution is a negative gamma distribution the 95% posterior
interval becomes smaller. It is an insigni�cant change i.e. approximately 1% reduc-
tion in the size of the interval. In Case 3 where the prior distribution is a negative
beta distribution the increase of the 95% posterior interval is approximately 2%.
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4.2.2. Threshold model
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Figure 4.24: V066: Mean residual life plot and number of POTs as a function of threshold
value

As is shown in Figure 4.25, the lowest threshold value where the same value of the
parameters is inside the 95% con�dence interval is not the same when looking at
the two parameters. For σ∗, a threshold value of approximately 190 will produce a
parameter inside for the 95% con�dence interval of the above threshold values. For
ξ, a threshold value of approximately 170 will produce a parameter inside for the
95% con�dence interval of the above threshold values.

What can be inferred from Figure 4.25 is a lower limit of ulow = 190. This lower limit
comes from the estimation of the σ∗ parameter w.r.t. threshold. The mean residual
life plot in Figure 4.24, suggests a threshold pick of approximately u = 400 which
would result in too few POTs and consequently a too large of a sample variance.
By disregarding the largest values of threshold, the mean residual life plot seems
to behave linearly on the interval 200 to 400. Another guideline for choosing a
threshold, was to choose it so the number of POTs in the range of 1− 2.5 times the
number of years. The threshold chosen for this river was u = 200. That threshold
value produces approximately 90 POTs, when using a comb value of 5, and it could
be argued that the mean residual life plot is approximately linear for all higher
threshold values.

Two di�erent values for the threshold were used in the �ood analysis. That is,
one analysis using a threshold value of u = 200. And another analysis using the
threshold value which produces as many POTs as there are years in the data set.
That threshold value is u = 213. These two di�erent methods for choosing the
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Figure 4.25: V066: Threshold approximation using the parameters σ∗ and ξ

threshold will be referred to as the diagnostic based method (DBM) and the �xed
frequency method (FFM), respectively.

4.2.3. Threshold model using diagnostic based methods
(DBM) for determining the threshold value

The threshold model analysis of the data for Hvita was constructed using a threshold
value of u = 200. In Figure 4.26 the POTs have been processed by the B-spline
discharge rating curve to evaluate the uncertainty in the extreme values. In Figure
4.26 the POTs and their 95% posterior interval are shown with the water discharge
time series along with the threshold value.

Comparison between the three di�erent cases of prior distribution for ξ

Figure 4.27 shows the prior distributions of ξ and their corresponding posterior
distributions for all cases. Majority of the posterior distribution in Case 1 is positive
and so constraining the posterior to only negative values has great in�uence on
the results. Figure 4.28 show the return level plots for all three cases of prior
distributions. Constraining the prior to negative values only, lowers the return levels
and makes the con�dence interval narrower. This constriction has the e�ect that
the data does not �t the model, as well as in Case 1. Figure 4.29, shows how the
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Figure 4.26: V066: Left panel: Water discharge time series with 95% posterior interval
for extreme values. Right panel: Discharge rating curve with �tted POT values
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Figure 4.27: (V066 TM DBM w/DRC): Prior and posterior distributions for the shape
parameter (ξ) in the GP distribution for all three cases of prior distributions. Case 1:
left panels, Case 2: middle panels, Case 3: right panels.

uncertainty interval becomes smaller as the ξ value is restricted to negative value
only.

In the case where the prior distribution for the shape parameter is a normal distri-
bution, the posterior distribution has more tendency to be positive than negative,
having a mean value of 0.22 (see Table B.3). Constraining the priors has similar
e�ects on the posteriors as eliminating the positive portion of Case 1 posterior den-
sity. The negative part of the posterior density using the non-informative normal
prior is similar to the posterior distributions resulting from the constraining priors.
Since a higher value of ξ leads to thicker tail of the GP distribution and hence larger
return values, eliminating the positive portion of the ξ values reduces the return

74



4.2. Results for Hvita

10
0

10
1

10
2

10
3

0

1000

2000

3000

4000

5000

6000

R
et

ur
n 

Le
ve

l, 
D

is
ch

ar
ge

, q
 [m

3 /s
ec

]

Return Period [Years]

GP Return Plot. u = 200

10
0

10
1

10
2

10
3

200

300

400

500

600

700

800

900

R
et

ur
n 

Le
ve

l, 
D

is
ch

ar
ge

, q
 [m

3 /s
ec

]

Return Period [Years]

GP Return Plot. u = 200

10
0

10
1

10
2

10
3

200

300

400

500

600

700

800

900

R
et

ur
n 

Le
ve

l, 
D

is
ch

ar
ge

, q
 [m

3 /s
ec

]

Return Period [Years]

GP Return Plot. u = 200

Figure 4.28: (V066 TM DBM w/DRC): Return level plots for the threshold model for
all three cases of prior distributions. Case 1: left panel, Case 2: middle panel, Case 3:
right panel.

Table 4.6: V066 TM DBM: 100-year return levels of discharge (m3/sec), for all three
cases of prior distributions, calculated with and without a DRC

Threshold model with threshold, u = 200
With DRC Without DRC

Percentiles Normal Neg-Gamma Neg-Beta Normal Neg-Gamma Neg-Beta
2.5% 507 468 466 503 473 472
25% 604 509 507 587 513 511
50% 699 534 532 668 538 536
75% 851 563 561 794 566 564
97.5% 1497 631 627 1299 631 628
95% conf. int. 990 163 161 797 158 156

levels and the range for their 95% posterior intervals for high return periods. This
reduction in the posterior densities of ξ , has the e�ect that the models in Cases 2
and 3, using the negative priors, do not �t the data as well as the model in Case 1.

Thus, constraining the ξ parameter to negative values only, has the e�ect that the
median value of the 100-year return level becomes lower for both cases of negative
prior distributions for ξ. In the both case where the prior distribution is the negative
the median value becomes approximately 26% lower. Furthermore, the uncertainty
in Cases 2 and 3, where the priors are negative only, shrinks to approximately 40%
of the uncertainty for Case 1, where the prior is non-informative.

The e�ect of discharge rating curve uncertainty

The e�ect of the discharge rating curve uncertainty on the 100-year return levels
are shown in Table 4.6 and Figure 4.29. By merging the discharge rating curve
uncertainty with the sampling uncertainty from the MCMC scheme, the median
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Figure 4.29: (V066 TM DBM) Comparison of the 95% posterior interval of the 100-
year return level of discharge, between the three cases of prior distributions, with DRC
uncertainty (blue) and without DRC uncertainty (red).

value of Case 1, where the ξ parameter is unrestrained, becomes approximately 5%
larger. For Case 2 and Case 3, where the prior distribution for ξ is a negative gamma
distribution, the median value becomes slightly lower, when the DRC uncertainty is
taken into account.

The over all uncertainty in the 100-year return level increases when adding the
discharge rating curve uncertainty to the calculations. In Case 1, where the prior
distribution is a normal distribution the increase of the 95% posterior interval is
approximately 24%. In Case 2, where the prior distribution is a negative gamma
distribution the increase of the 95% posterior interval is approximately 3%. In Case
3, where the prior distribution is a negative beta distribution the increase of the
95% posterior interval is approximately 4%.

4.2.4. Threshold Model using the �xed frequency method
(FFM) for determining the threshold value

With the �xed frequency method (FFM) a threshold is chosen so the number of point
estimates of discharge that are above the threshold, after de-clustering, are equal to
the number of years of data used in the analysis. For Hvita, that leads to a threshold
value of u = 213 with the total number of point estimates of discharge, greater than
the threshold value, equal to 57. Figure 4.30 shows the B-spline discharge rating
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curve as well as the extreme values used in the analysis and their 95% uncertainty
interval. Figure 4.30 shows the discharge time series of Hvita along with the 95%
discharge uncertainty vectors used in the model.

Water discharge time series

1950 1960 1970 1980 1990 2000 2010
0

100

200

300

400

500

600
Number of POT´s = 72, comb = 5, threshold = 212.56

Year

W
at

er
 d

is
ch

ar
ge

 [m
3 /s

]

1 1.5 2 2.5 3 3.5 4 4.5 5
0

100

200

300

400

500

600

700
B−Spline Discharge Rating Curve with fitted maximum values

Water level [m]

W
at

er
 d

is
ch

ar
ge

 [m
3 ]

Figure 4.30: (V066 FFM): Right panel: Water discharge time series with 95% posterior
interval for extreme values. Left panel: B-spline Discharge rating curve with �tted POT
values
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Figure 4.31: (V066 TM FFM w/DRC): Prior and posterior distributions for the shape
parameter (ξ) in the GP distribution for all three cases of prior distributions. Case 1:
left panels, Case 2: middle panels, Case 3: right panels.

Figure 4.31 shows the prior distributions of ξ and their corresponding posterior
distributions for all cases. Majority of the posterior distribution in Case 1 is positive
and so constraining the posterior to only negative values has great in�uence on
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Figure 4.32: (V066 TM FFM w/DRC): Return level plots for the threshold model for all
three cases of prior distributions. Case 1: left panel, Case 2: middle panel, Case 3: right
panel.

Table 4.7: V066 TM FFM: 100-year return levels of discharge (m3/sec), for all three cases
of prior distributions, calculated with and without a DRC

Threshold model with threshold, u = 213
With DRC Without DRC

Percentiles Normal Neg-Gamma Neg-Beta Normal Neg-Gamma Neg-Beta
2.5% 506 470 470 508 471 471
25% 607 513 511 613 512 510
50% 707 539 537 718 538 535
75% 872 570 567 896 567 564
97.5% 1639 642 637 1718 632 630
95% conf. int. 1133 172 167 1210 161 159

the results. Figure 4.32 show the return level plots for all three cases of prior
distributions. Constraining the prior to negative values only, lowers the return
levels and makes the con�dence interval narrower. This constriction has the e�ect
that the data does not �t the model, as well as in Case 1.

Table 4.7 shows the 2.5%, 25%, 50%, 75%, and 97.5% percentiles of the 100-year
return level for all three cases of prior distributions for the shape parameter, ξ.
Figure 4.33 shows the 95% posterior interval of the 100-year return level for all
three cases of prior distributions for the shape parameter, ξ, and the 2.5%, 50%, and
97.5% percentiles. The 95% posterior interval of the 100-year return level represents
the uncertainty in the return level. Figure 4.33, shows how the uncertainty interval
becomes smaller as the ξ value is restricted to negative value only.

Constraining the posterior density of ξ, to negative values only, by using negative
prior distributions has a signi�cant in�uence on the outcome of the posterior distri-
butions and thus the resulting return levels. In the case where the prior distribution
for the shape parameter is a normal distribution, the posterior distribution has more
tendency to be positive than negative, having a mean value of 0.24 (see Table B.4).
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Figure 4.33: (V066 TM FFM) Comparison of the 95% posterior interval of the 100-
year return level of discharge, between the three cases of prior distributions, with DRC
uncertainty (blue) and without DRC uncertainty (red).

Constraining the priors has similar e�ects on the posteriors as eliminating the pos-
itive portion of the Case 1 posterior density. The negative part of the posterior
density using the non-informative normal prior is similar to the posterior distribu-
tions resulting from the constraining priors. Since a higher value of ξ leads to thicker
tail of the GP distribution and hence larger return values, eliminating the positive
portion of the ξ values reduces the return levels and the range for their 95% posterior
intervals for high return periods. This reduction in the posterior densities of ξ , has
the e�ect that the models in Cases 2 and 3, using the negative priors, do not �t the
data as well as the model in Case 1.

Thus, constraining the ξ parameter to negative values only, has the e�ect that the
median value of the 100-year return level becomes lower for both cases of negative
prior distributions for ξ. In the both case where the prior distribution is the negative
the median value becomes approximately 27% lower. Furthermore, the uncertainty
in Cases 2 and 3, where the priors are negative only, shrinks to approximately 37%
of the uncertainty for Case 1, where the prior is non-informative.

The e�ect of discharge rating curve uncertainty

The e�ect of the discharge rating curve uncertainty on the 100-year return levels
are shown in Table 4.6 and Figure 4.29. By merging the discharge rating curve
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uncertainty with the sampling uncertainty from the MCMC scheme, the median
value of Case 1, where the ξ parameter is unrestrained, becomes approximately 5%
larger. For Case 2 and Case 3, where the prior distribution for ξ is a negative gamma
distribution, the median value becomes slightly lower, when the DRC uncertainty is
taken into account.

The over all uncertainty in the 100-year return level changes when adding the dis-
charge rating curve uncertainty to the calculations. In Case 1, where the prior
distribution is a normal distribution, the 95% posterior interval, surprisingly, de-
creases approximately 6%, when DRC uncertainty is taken into account. In Case
2, where the prior distribution is a negative gamma distribution, the 95% posterior
interval increases approximately 5%, when DRC uncertainty is taken into account.
In Case 3, where the prior distribution is a negative beta distribution, the 95%
posterior interval increases approximately 4%, when DRC uncertainty is taken into
account.

4.2.5. Comparison between models

The models being compared are the block maxima model using the annual maximum
values and two threshold models, one with the threshold value u = 200, found by
using the diagnostic based method (DBM threshold model) and another one with a
threshold value of u = 213, found by the �xed frequency method (FFM threshold
model).

It can be argued that the extreme values used in the FFM threshold model are
superior to those used in the block maxima model since they are not constricted to
having one and only one extreme value per year, like the annual values used in the
latter model. The argument is, that if the de-clustering of the POTs is successful
and there is no correlation between the extremes, than the quality of the POTs
gathered by using the FFM are at least, equal to that of the block maxima model.
For that reason the comparison below will be between the block maxima model and
the FFM threshold model, on one hand, and between the FFM threshold model and
the DBM threshold model, on the other hand.

Block maxima model vs. FFM threshold model

Tables 4.5 and 4.7 show the percentiles for the 100-year return levels for the block
maxima model and the FFM threshold model, respectively. Figure 4.34 shows the
95% posterior interval of the 100-year return level for the block maxima model and
the FFM threshold model. Tables B.2 and B.4 show the percentiles of the posterior
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Figure 4.34: (V066) Comparison of the 95% posterior interval of the 100-year return
level of discharge, between the three di�erent models, with DRC uncertainty (blue) and
without DRC uncertainty (red).

distributions for the GEV parameters for the Block maxima model and the GP
parameters for the FFM Threshold model, respectively. The FFM threshold model
uses approximately the same amount of extreme values as the block maxima model
but the extremes used in the FFM threshold model are larger than those used in
the block maxima model.

Looking at the 100-year return levels in Case 1 where the prior distribution for ξ
is noninformative, the percentiles are considerably larger for the FFM threshold
model than the block maxima model and hence the posterior interval is larger. The
posterior densities for the Case 1 prior distributions for the block maxima model and
the FFM threshold model are shown in Figure B.1 and Figure B.19, respectively.

The posterior density for the shape parameter, ξ, is wider in the FFM threshold
model than in the block maxima model. The range of the 95% posterior interval for
the parameter in the block maxima model is [−0.04, 0.37] but [−0.06, 0.65] for the
FFM threshold model. The upper percentiles in the return level plots are particulary
sensitive to high values of ξ which explains why the upper percentiles for the 100-
year return levels are higher for the FFM threshold model than the block maxima
model.

Cases 2 and 3 where the prior distribution for ξ is a negative gamma distribution
and a negative beta distribution, respectively, do not provide a good �t in neither
models. The constriction for posterior of ξ seems to be to excessive since a vast
majority of its posterior density in Case 1 is positive.
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4. Results and discussions

DBM threshold model vs. FFM threshold model

Tables 4.6 and 4.7 show the percentiles for the 100-year return levels for the DBM
threshold model and the FFM threshold model, respectively. Figure 4.34 shows the
95% posterior interval of the 100-year return level for the DBM threshold model and
the FFM threshold model. Tables B.3 and B.4 show the percentiles of the posterior
distributions for the GP parameters for the DBM threshold model and the FFM
threshold model, respectively.

By lowering the threshold from 213 to 200 the e�ective number of POTs increase
from 62.56 to 75.8. Looking at the Case 1 prior distribution, these added extreme
data have the e�ect of lowering the upper values of the posterior distribution for
ξ. That leads to lower upper percentiles for the return level plot and thus smaller
posterior interval. So, for this river, the added data used in the DBM threshold
model lowered the upper percentiles for the 100 year return level and its posterior
interval got smaller.

There is little di�erence between the two models when looking the results from the
prior distributions in Cases 2 and 3. In both models, the negative gamma prior in
Case 2 seems have the e�ect that the simulated values in the posterior distribution
of ξ are higher then for the negative beta prior in Case 3. That leads to higher
return levels.

The return levels produced by the DBM threshold model have narrower posterior
intervals than the FFM threshold model, but the di�erence is minor. The median
values for the return levels are higher for the FFM threshold model than the DBM
threshold model, but the di�erence is minor.
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4.3. Results for Sanda

4.3. Results for Sanda

The discharge time series for Sanda spans approximately 43 years, from November
1965 to August 2008. The daily point estimates of water discharge are shown in
Figure 4.35 The B-spline discharge rating curve is shown in Figure 4.35.
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Figure 4.35: V026: Left panel: Water discharge time series. Right panel: B-spline
Discharge Rating curve
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4.3.1. Block maxima model

The annual maximum values used for the Block Maxima model are shown in Figure
4.36. Figure 4.37 shows how the discharge rating curve is used to estimate the
uncertainty in the annual maximum values. In Figure 4.37 the highlighted annual
maximum values from Figure 4.36 are �tted to the discharge rating curve. Figure
4.37 shows the same water discharge time series as Figure 4.36 but with the 95%
uncertainty interval for the annual maximum values shown as well.
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Figure 4.36: V026: Water discharge time series with annual maximum values
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Figure 4.37: V026: Left panel: Water discharge time series with 95% posterior interval
for extreme values. Right panel: B-spline discharge rating curve with �tted annual
maximum values and their 95% posterior interval
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Comparison between the three di�erent cases of prior distribution for ξ
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Figure 4.38: (V026 BM w/DRC): Prior and posterior distributions for the shape param-
eter (ξ) in the GEV distribution for all three cases of prior distributions. Case 1: left
panels, Case 2: middle panels, Case 3: right panels.
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Figure 4.39: (V026 BM w/DRC): Return level plots for the block maxima model for all
three cases of prior distributions. Case 1: left panel, Case 2: middle panel, Case 3: right
panel.

Figure 4.38 shows the prior distributions of ξ and their corresponding posterior
distributions for all cases. A big portion of of the posterior distribution in Case 1 is
positive and so constraining the posterior to only negative values has great in�uence
on the results. Figure 4.39 show the return level plots for all three cases of prior
distributions. Constraining the prior to negative values only, lowers the return levels
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4. Results and discussions

Table 4.8: V026 BM: 100-year return levels of discharge (m3/sec), for all three cases of
prior distributions, calculated with and without a DRC

Block Extrema
With DRC Without DRC

Percentiles Normal Neg-Gamma Neg-Beta Normal Neg-Gamma Neg-Beta
2.5% 112 112 111 112 112 111
25% 121 121 119 121 121 119
50% 129 128 125 130 128 125
75% 143 137 133 143 136 133
97.5% 196 155 152 198 154 151
95% conf. int. 85 43 41 86 42 40
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Figure 4.40: (V026 BM) Comparison of the 95% posterior interval of the 100-year return
level of discharge, between the three cases of prior distributions, with DRC uncertainty
(blue) and without DRC uncertainty (red).

and makes the con�dence interval narrower. This constriction has the e�ect that
the data does not �t the model, as well as in Case 1.

Constraining the posterior density of ξ, to negative values only, by using negative
prior distributions has a signi�cant in�uence on the outcome of the posterior distri-
butions and thus the resulting return levels. In the case where the prior distribution
for the shape parameter is a normal distribution, the posterior distribution has more
tendency to be negative than positive, having a median value of −0.10 (see Table
C.2). Constraining the priors has similar e�ects on the posteriors as eliminating the
positive portion of the Case 1 posterior density. The negative part of the posterior
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4.3. Results for Sanda

density using the non-informative normal prior is similar to the posterior distri-
butions resulting from the constraining priors. Since a higher value of ξ leads to
thicker tail of the GEV distribution and hence larger return values, eliminating the
positive portion of the ξ values reduces the return levels and the range for their 95%
posterior intervals for high return periods. Since, the majority of the unrestricted,
Case 1, posterior distribution of ξ is negative, the constriction to negative values
only, as is done in Cases 2 and 3, does not have as drastic e�ect as it would, if the
Case 1 posterior was more positive. Hence the, models in Cases 2 and 3 �t the data
adequately, despite the restriction of ξ.

Constraining the ξ parameter to only negative values has the e�ect that the median
value of the 100-year return level becomes lower for both the negative gamma prior
distribution and the negative beta prior distribution. Furthermore, the uncertainty
in the 100-year return level, for the constraining prior distributions in Cases 2 and
3, shrinks to approximately 45% of the uncertainty for Case 2 where the prior is
non-informative.

The median value of the 100 year return level is lower in Case 3 where the prior
distribution of ξ is negative beta then in Case 2 where the prior distribution is
negative gamma. The reason for that is that the density of the gamma function
is more condensed near the zero value while the beta distribution is uniform. The
resulting posterior density of ξ, for Case 2 is therefor composed of higher values than
the posterior density of ξ, in Case 3, leading to higher return levels.

The e�ect of discharge rating curve uncertainty

The e�ect of merging the discharge rating curve uncertainty with the sampling
uncertainty from the MCMC scheme has minor e�ect on the median value of the
100-year return levels and minor e�ect on the 95% posterior intervals. This is shown
in Table 4.8 and Figure 4.40. The change in the over all uncertainty for the 100-
year return level, is minor, when adding the discharge rating curve uncertainty to
the calculations. In Case 1, the range of the 95% con�dence decreases when taking
the DRC uncertainty into account, but the decrease is insigni�cant. In Case 2, the
uncertainty interval is the same whether or not the DRC uncertainty into account.
In Case 3, the uncertainty interval gets increases when taking the DRC uncertainty
into account, but the increase is insigni�cant.
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4.3.2. Threshold model
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Figure 4.41: V026: Mean residual life plot and number of POTs as a function of threshold
value

As is shown in Figure 4.42, the lowest threshold value where the same value of the
parameters is inside the 95% con�dence interval is not the same when looking at
the two parameters. For σ∗, a threshold value of approximately 24 will produce a
parameter inside for the 95% con�dence interval of the above threshold values. For
ξ, a threshold value of approximately 34 will produce a parameter inside for the 95%
con�dence interval of the above threshold values.

What can be inferred from these �gures is a lower limit of ulow = 34. This lower limit
comes from the estimation of the σ∗ parameter w.r.t. threshold. The mean residual
life plot could suggest a threshold pick of approximately u = 30. That being below
the value of ulow = 34 a higher value for the threshold was chosen. The threshold
chosen for this river was u = 40. That threshold value produces approximately 123
POTs when using a comb value of 5 and it could be argued that the mean residual
life plot, in Figure 4.41, is approximately linear for all higher threshold values.

Two di�erent values for the threshold were used in the �ood analysis. That is, one
analysis using a threshold value of u = 40, and another analysis using the threshold
value which produces as many POTs as there are years in the data set. That
threshold value is u = 59 These two di�erent methods for choosing the threshold
will be referred to as the diagnostic based method (DBM) and the �xed frequency
method (FFM), respectively.
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Figure 4.42: V026: Threshold approximation using the parameters σ∗ and ξ

4.3.3. Threshold Model using diagnostic based methods
(DBM) for determining the threshold value

The threshold model analysis of the data for Sanda was continued using a threshold
value of u = 40. In Figure 4.43 the POTs have been processed by the B-spline
discharge rating curve to evaluate the uncertainty in the extreme values. In Figure
4.43 the POTs and their 95% posterior interval are shown with the water discharge
time series along with the threshold value.
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Figure 4.43: V026: Left panel: Water discharge time series with 95% posterior interval
for extreme values. Right panel: Discharge rating curve with �tted POT values
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Comparison between the three di�erent cases of prior distribution for ξ
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Figure 4.44: (V026 TM DBM w/DRC): Prior and posterior distributions for the shape
parameter (ξ) in the GP distribution for all three cases of prior distributions. Case 1:
left panels, Case 2: middle panels, Case 3: right panels.
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Figure 4.45: (V026 TM DBM w/DRC): Return level plots for the threshold model for
all three cases of prior distributions. Case 1: left panel, Case 2: middle panel, Case 3:
right panel.

Constraining the posterior density of ξ, to negative values only, by using negative
prior distributions has a signi�cant in�uence on the outcome of the posterior distri-
butions and thus the resulting return levels. In the case where the prior distribution
for the shape parameter is a normal distribution, the posterior distribution is more
or less evenly distributed between positive and negative values, having a median
value of −0.01 (see Table C.3). Constraining the priors has similar e�ects on the
posteriors as eliminating the positive portion of Case 1 posterior density. The neg-
ative part of the posterior density using the non-informative normal prior is similar
to the posterior distributions resulting from the constraining priors. Since a higher
value of ξ leads to thicker tail of the GP distribution and hence larger return values,
eliminating the positive portion of the ξ values reduces the return levels and the
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4.3. Results for Sanda

Table 4.9: V026 TM DBM: 100-year return levels of discharge (m3/sec), for all three
cases of prior distributions, calculated with and without a DRC

Threshold model with threshold, u = 40
With DRC Without DRC

Percentiles Normal Neg-Gamma Neg-Beta Normal Neg-Gamma Neg-Beta
2.5% 113 113 112 114 113 112
25% 129 124 122 129 124 121
50% 143 132 129 143 132 129
75% 167 141 139 165 140 137
97.5% 268 160 158 248 157 155
95% conf. int. 155 47 46 134 44 43
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Figure 4.46: (V026 TM DBM) Comparison of the 95% posterior interval of the 100-
year return level of discharge, between the three cases of prior distributions, with DRC
uncertainty (blue) and without DRC uncertainty (red).

range for their 95% posterior intervals for high return periods. This reduction in
the posterior densities of ξ , has the e�ect that the models in Cases 2 and 3, using
the negative priors, do not �t the data as well as the model in Case 1. Even so,
majority of the unrestricted, Case 1, posterior distribution of ξ is negative, and thus
the constriction to negative values only, as is done in Cases 2 and 3, does not have
as drastic e�ect as it would, if the Case 1 posterior was more positive. Hence the,
models in Cases 2 and 3 �t the data adequately, despite the restriction of ξ.

Thus, constraining the ξ parameter to negative values only, has the e�ect that the
median value of the 100-year return level becomes lower for both cases of negative
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4. Results and discussions

prior distributions for ξ. In the both case where the prior distribution is the negative
the median value becomes approximately 10% lower. Furthermore, the uncertainty
in Cases 2 and 3, where the priors are negative only, shrinks to approximately 30%
of the uncertainty for Case 1, where the prior is non-informative.

The e�ect of discharge rating curve uncertainty

The e�ect of merging the discharge rating curve uncertainty with the sampling
uncertainty from the MCMC scheme has minor e�ect on the median value of the
100-year return level. This is shown in Table 4.9 and Figure 4.46. There is a change
in the over all uncertainty for the 100-year return level, when adding the discharge
rating curve uncertainty to the calculations. In Case 1, where the prior distribution is
a normal distribution, the 95% posterior interval increases approximately 15%, when
DRC uncertainty is taken into account. In Case 2, where the prior distribution is
a negative gamma distribution, the 95% posterior interval increases approximately
10%, when DRC uncertainty is taken into account. In Case 3, where the prior
distribution is a negative beta distribution, the 95% posterior interval increases
approximately 7%, when DRC uncertainty is taken into account.

4.3.4. Threshold Model using the �xed frequency method
(FFM) for determining the threshold value

With the rule of thumb (FFM) method a threshold is chosen so the number of point
estimates of discharge that are above the threshold, after de-clustering, are equal
to the number of years of data used in the analysis. For Sanda, that leads to a
threshold value of u = 59 with the total number of point estimates of discharge,
greater than the threshold value, equal to 43.

Comparison between the three di�erent cases of prior distribution for ξ

Figure 4.48 shows the prior distributions of ξ and their corresponding posterior
distributions for all cases. A big portion of of the posterior distribution in Case 1 is
positive and so constraining the posterior to only negative values has great in�uence
on the results. Figure 4.49 show the return level plots for all three cases of prior
distributions. Constraining the prior to negative values only, lowers the return levels
and makes the con�dence interval narrower. This constriction has the e�ect that
the data does not �t the model, as well as in Case 1.
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Figure 4.47: (V026 FFM): Right panel: Water discharge time series with 95% posterior
interval for extreme values. Left panel: B-spline Discharge rating curve with �tted POT
values
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Figure 4.48: (V026 TM FFM w/DRC): Prior and posterior distributions for the shape
parameter (ξ) in the GP distribution for all three cases of prior distributions. Case 1:
left panels, Case 2: middle panels, Case 3: right panels.

Constraining the posterior density of ξ, to negative values only, by using negative
prior distributions has a signi�cant in�uence on the outcome of the posterior distri-
butions and thus the resulting return levels. In the case where the prior distribution
for the shape parameter is a normal distribution, the posterior distribution is more
or less evenly distributed between positive and negative values, having a median
value of −0.16 (see Table C.4). Constraining the priors has similar e�ects on the
posteriors as eliminating the positive portion of the Case 1 posterior density. The
negative part of the posterior density using the non-informative normal prior is sim-
ilar to the posterior distributions resulting from the constraining priors. Since a
higher value of ξ leads to thicker tail of the GP distribution and hence larger return
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Figure 4.49: (V026 TM FFM w/DRC): Return level plots for the threshold model for all
three cases of prior distributions. Case 1: left panel, Case 2: middle panel, Case 3: right
panel.

Table 4.10: V026 TM FFM: 100-year return levels of discharge (m3/sec), for all three
cases of prior distributions, calculated with and without a DRC

Threshold model with threshold, u = 59
With DRC Without DRC

Percentiles Normal Neg-Gamma Neg-Beta Normal Neg-Gamma Neg-Beta
2.5% 112 112 111 112 111 111
25% 120 120 118 120 120 118
50% 127 127 124 128 127 123
75% 141 136 131 141 136 131
97.5% 203 158 153 207 157 152
95% conf. int. 92 46 42 95 46 41

values, eliminating the positive portion of the ξ values reduces the return levels and
the range for their 95% posterior intervals for high return periods. This reduction
in the posterior densities of ξ , has the e�ect that the models in Cases 2 and 3,
using the negative priors, do not �t the data as well as the model in Case 1. Even
so, majority of the unrestricted, Case 1, posterior distribution of ξ is negative, and
thus the constriction to negative values only, as is done in Cases 2 and 3, does not
have as drastic e�ect as it would, if the Case 1 posterior was more positive. Hence
the, models in Cases 2 and 3 �t the data adequately, despite the restriction of ξ.

Constraining the ξ parameter to negative values only, has the e�ect that the me-
dian value of the 100-year return level lowers a little for both cases of negative prior
distributions for ξ. Furthermore, the uncertainty in Cases 2 and 3, where the pri-
ors are negative only, shrinks to approximately 48% and 45%, respectively, of the
uncertainty for Case 1, where the prior is non-informative.
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Figure 4.50: (V026 TM FFM) Comparison of the 95% posterior interval of the 100-
year return level of discharge, between the three cases of prior distributions, with DRC
uncertainty (blue) and without DRC uncertainty (red).

The e�ect of discharge rating curve uncertainty

The e�ect of merging the discharge rating curve uncertainty with the sampling
uncertainty from the MCMC scheme has minor e�ect on the median value of the
100-year return level. This is shown in Table 4.10 and Figure 4.50. There is a change
in the over all uncertainty for the 100-year return level, when adding the discharge
rating curve uncertainty to the calculations. In Case 1, where the prior distribution
is a normal distribution, the 95% posterior interval, surprisingly, decreases approx-
imately 3%, when DRC uncertainty is taken into account. In Case 2, where the
prior distribution is a negative gamma distribution, the 95% posterior interval in-
creases approximately 4%, when DRC uncertainty is taken into account. In Case
3, where the prior distribution is a negative beta distribution, the 95% posterior
interval increases approximately 4%, when DRC uncertainty is taken into account.

4.3.5. Comparison between models

The models being compared are the block maxima model using the annual maximum
values and two threshold models, one with the threshold value u = 40, found by
using the diagnostic based method (DBM threshold model) and another one with
a threshold value of u = 59, found by the �xed frequency method (FFM threshold
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model).

It can be argued that the extreme values used in the FFM threshold model are
superior to those used in the block maxima model since they are not constricted to
having one and only one extreme value per year, like the annual values used in the
latter model. The argument is, that if the de-clustering of the POTs is successful
and there is no correlation between the extremes, than the quality of the POTs
gathered by using the FFM are at least, equal to that of the block maxima model.
For that reason the comparison below will be between the block maxima model and
the FFM threshold model, on one hand, and between the FFM threshold model and
the DBM threshold model, on the other hand.
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Figure 4.51: (V026) Comparison of the 95% posterior interval of the 100-year return
level of discharge, between the three di�erent models, with DRC uncertainty (blue) and
without DRC uncertainty (red).

Block maxima model vs. FFM threshold model

Tables 4.8 and 4.10 show the percentiles for the 100-year return levels for the block
maxima model and the FFM threshold model, respectively. Figure 4.51 shows the
95% posterior interval of the 100-year return level for the block maxima model and
the FFM threshold model. Tables C.2 and C.4 show the percentiles of the posterior
distributions for the GEV parameters for the Block maxima model and the GP
parameters for the FFM Threshold model, respectively. The FFM threshold model
uses approximately the same amount of extreme values as the block maxima model
but the extremes used in the FFM threshold model are larger than those used in
the block maxima model.

Looking at Case 1 where the prior distribution is noninformative, the 100-year return
levels are similar when comparing the block maxima model and the FFM threshold
model. However, the median value from the FFM threshold model is lower than
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that of the block maxima model but the 95% posterior interval is larger. The wider
interval is related to the fact that the interval for the posterior distribution of ξ is
larger in the FFM threshold model than the block maxima model.

The range of the 95% posterior interval for the shape parameter in the block maxima
model is [−0.32, 0.19] but [−0.43, 0.26] for the FFM threshold model. The upper
percentiles in the return level plots are particulary sensitive to high values of ξ which
explains why the upper percentiles for the 100-year return levels are higher for the
FFM threshold model than the block maxima model.

Looking at Case 1 where the prior distribution for ξ is noninformative, the lower
percentiles for the 100-year return level, 2.5%, 25%, and 50%, are very similar
for both models. The higher percentiles, 75% and 97.5%, are larger for the FFM
threshold model, hence the posterior interval is larger.

The posterior densities for the Case 1 prior distributions for the block maxima model
and the FFM threshold model are shown in Figure C.1 and Figure C.19, respectively.

Both models provide a good �t for the data when constraining the posterior dis-
tributions of ξ with the prior distributions in Cases 1 and 2. The main di�erence
between the models is that the posterior interval of the 100-year return level is larger
in the FFM threshold model than the block maxima model. The 97.5% percentiles
are larger for the FFM threshold model even though the median values are smaller.

DBM threshold model vs. FFM threshold model

Tables 4.9 and 4.10 show the percentiles for the 100-year return levels for the DBM
threshold model and the FFM threshold model, respectively. Figure 4.51 shows the
95% posterior interval of the 100-year return level for the DBM threshold model and
the FFM threshold model. Tables C.3 and C.4 show the percentiles of the posterior
distributions for the GP parameters for the DBM threshold model and the FFM
threshold model, respectively.

By lowering the threshold from 58.83 to 40 the e�ective number of POTs increase
from 42.82 to 71.99. Looking at the Case 1 prior distribution, these added extreme
data have the e�ect of increasing the upper values of the posterior distribution for
ξ. That leads to higher percentiles for the return level plot and a larger posterior
interval. So, for this river, the added data used in the DBM threshold model in-
creased the upper percentiles for the 100 year return level and its posterior interval
got larger.

In both models, the negative gamma prior in Case 2 seems have the e�ect that the
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simulated values in the posterior distribution of ξ higher then for the negative beta
prior in Case 3. That leads to slightly higher return levels.

The return levels produced by the FFM threshold model have narrower posterior
intervals than the DBM threshold model but the di�erence is minor. The median
values for the return levels are higher for the DBM threshold model than the FFM
threshold model.
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4.4. Results for Svarta

The discharge time series for Svarta spans 36 years, from September 1962 to August
1998. The daily point estimates of water discharge are shown in Figure 4.52
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Figure 4.52: V010: Left panel: Water discharge time series. Right panel: B-spline
Discharge Rating curve

The relationship between water level and water discharge is found by applying the
B-spline discharge rating curve, as discussed in Section 3.2, on the paired water level
and water discharge data for the river. The B-spline discharge rating curve is shown
in Figure 4.52.
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4.4.1. Block maxima model

The annual maximum values used for the Block Maxima model are shown in Figure
4.53. Figure 4.54 shows how the discharge rating curve is used to estimate the
uncertainty in the annual maximum values. In Figure 4.54 the highlighted annual
maximum values from Figure 4.53 are �tted to the discharge rating curve and from
that point it becomes manageable to estimate the uncertainty in the point estimate.
Figure 4.54 shows the same water discharge time series as Figure 4.53 but with the
95% uncertainty interval for the annual maximum values shown as well.
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Figure 4.53: V010: Water discharge time series with annual maximum values
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Figure 4.54: V010: Left panel: Water discharge time series with 95% posterior interval
for extreme values. Right panel: B-spline discharge rating curve with �tted annual
maximum values and their 95% posterior interval
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Comparison between the three di�erent cases of prior distribution for ξ
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Figure 4.55: (V010 BM w/DRC): Prior and posterior distributions for the shape param-
eter (ξ) in the GEV distribution for all three cases of prior distributions. Case 1: left
panels, Case 2: middle panels, Case 3: right panels.
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Figure 4.56: (V010 BM w/DRC): Return level plots for the block maxima model for all
three cases of prior distributions. Case 1: left panel, Case 2: middle panel, Case 3: right
panel.

Figure 4.55 shows the prior distributions of ξ and their corresponding posterior
distributions for all cases. A big portion of posterior distribution in Case 1 is positive
and therefore constraining the posterior to only negative values has great in�uence
on the results. Figure 4.5 show the return level plots for all three cases of prior
distributions. Constraining the prior to negative values only, lowers the return
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4. Results and discussions

Table 4.11: V010 BM: 100-year return levels of discharge (m3/sec), for all three
cases of prior distributions, calculated with and without a DRC

Block Extrema
With DRC Without DRC

Percentiles Normal Neg-Gamma Neg-Beta Normal Neg-Gamma Neg-Beta
2.5% 97 96 95 98 97 97
25% 108 106 103 108 106 104
50% 120 113 110 120 113 110
75% 139 120 118 139 120 117
97.5% 225 139 136 225 138 134
95% conf. int. 128 42 41 127 40 38
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Figure 4.57: (V010 BM) Comparison of the 95% posterior interval of the 100-year return
level of discharge, between the three cases of prior distributions, with DRC uncertainty
(blue) and without DRC uncertainty (red).

levels and makes the con�dence interval narrower. This constriction has the e�ect
that the data does not �t the model, as well as in Case 1.

Constraining the posterior density of ξ, to negative values only, by using negative
prior distributions has a signi�cant in�uence on the outcome of the posterior distri-
butions and thus the resulting return levels. In the case where the prior distribution
for the shape parameter is a normal distribution, the posterior distribution has more
tendency to be negative than positive, having a median value of −0.04 (see Table
D.2). Constraining the priors has similar e�ects on the posteriors as eliminating the
positive portion of the Case 1 posterior density. The negative part of the posterior
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4.4. Results for Svarta

density using the non-informative normal prior is similar to the posterior distribu-
tions resulting from the constraining priors. Since a higher value of ξ leads to thicker
tail of the GEV distribution and hence larger return values, eliminating the positive
portion of the ξ values reduces the return levels and the range for their 95% posterior
intervals for high return periods. This reduction in the posterior densities of ξ , has
the e�ect that the models in cases 2 and 3, using the negative priors, do not �t the
data as well as the model in Case 1. Even so, majority of the unrestricted, Case 1,
posterior distribution of ξ is negative, and thus the constriction to negative values
only, as is done in cases 2 and 3, does not have as drastic e�ect as it would, if the
Case 1 posterior was more positive. Hence the, models in cases 2 and 3 �t the data
adequately, despite the restriction of ξ.

The median value of the 100-year return level is lower in Case 3, where the prior
distribution of ξ is negative beta then in Case 2, where the prior distribution is
negative gamma. The reason for that is that the density of the gamma function
is more condensed near the zero value while the beta distribution is uniform. The
resulting posterior density of ξ, for Case 2 is therefor composed of higher values than
the posterior density of ξ, in Case 3, leading to higher return levels.

Constraining the ξ parameter to only negative values has the e�ect that the me-
dian value of the 100-year return level becomes approximately 6% lower in Case
2 than Case 1, and approximately 9% lower in Case 3. Due to the negative prior
distributions, the range of the 95% posterior interval for cases 2 and 3 shrinks to
approximately 31% of the range of the posterior interval of Case 1.

The e�ect of discharge rating curve uncertainty

The e�ect of merging the discharge rating curve uncertainty with the sampling
uncertainty from the MCMC scheme has minor e�ect on the median value of the
100-year return levels and moderate e�ect on the 95% posterior intervals. This is
shown in Table 4.11 and Figure 4.57. The change in the over all uncertainty for the
100-year return level, is minor, when adding the discharge rating curve uncertainty
to the calculations. In Case 1, range 95% posterior interval for the 100-year return
level, increases insigni�cantly, or less than 1%. In Case 2, range 95% posterior
interval for the 100-year return level, increases approximately 6%. In Case 3, range
95% posterior interval for the 100-year return level, increases approximately 11%.
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4.4.2. Threshold model
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Figure 4.58: V010: Mean residual life plot and number of POTs as a function of threshold
value

Figure 4.59, shows how the parameters of the ξ and σ∗ change with respect to
threshold value.

As is shown in Figure 4.59, the lowest threshold value where the same value of the
parameters is inside the 95% con�dence interval is approximately the same when
looking at the two parameters. For σ∗, a threshold value of approximately 17 will
produce a parameter inside for the 95% con�dence interval of the above threshold
values. For ξ, a threshold value of approximately 17 will produce a parameter inside
for the 95% con�dence interval of the above threshold values.

What can be inferred from these �gures is a lower limit of ulow = 17. This lower
limit comes from the estimation of both the σ∗ parameter and the ξ parameter w.r.t.
threshold. Disregarding the largest values, the mean residual life plot, in Figure 4.58,
would suggest a threshold pick of approximately u = 20 but that would leave us with
to many POTs. The threshold chosen for this river was u = 40. That threshold value
produces 77 POTs when using a comb value of 5. Disregarding that the linearity
does not hold for the largest threshold values, a threshold choice of u = 40 seems
reasonable. The mean residual life plot, in Figure 4.58, is approximately linear on
the interval 40− 75.

Two di�erent values for the threshold were used in the �ood analysis. That is, one
analysis using a threshold value of u = 40, estimated using the methods described
above. And another analysis using the threshold value which produces as many
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Figure 4.59: V010: Threshold approximation using the parameters σ∗ and ξ

POTs as there are years in the data set. That threshold value is u = 52. These
two di�erent methods for choosing the threshold will be referred to as the diagnostic
based method (DBM) and the �xed frequency method (FFM), respectively.

4.4.3. Threshold Model using diagnostic based methods
(DBM) for determining the threshold value

The threshold model analysis of the data for Svarta was continued using a threshold
value of u = 40. In Figure 4.60 the POTs have been processed by the B-spline
discharge rating curve to evaluate the uncertainty in the extreme values. In Figure
4.60 the POTs and their 95% posterior interval are shown with the water discharge
time series along with the threshold value.

Comparison between the three di�erent cases of prior distribution for ξ

Figure 4.61 shows the prior distributions of ξ and their corresponding posterior
distributions for all cases. A big portion of of the posterior distribution in Case 1 is
positive and so constraining the posterior to only negative values has great in�uence
on the results. Figure 4.62 show the return level plots for all three cases of prior
distributions. Constraining the prior to negative values only, lowers the return levels
and makes the con�dence interval narrower. This constriction has the e�ect that
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Figure 4.60: V010: Left panel: Water discharge time series with 95% posterior interval
for extreme values. Right panel: Discharge rating curve with �tted POT values
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Figure 4.61: (V010 TM DBM w/DRC): Prior and posterior distributions for the shape
parameter (ξ) in the GP distribution for all three cases of prior distributions. Case 1:
left panels, Case 2: middle panels, Case 3: right panels.

the data does not �t the model, as well as in Case 1.

Constraining the posterior density of ξ, to negative values only, by using negative
prior distributions has a signi�cant in�uence on the outcome of the posterior distri-
butions and thus the resulting return levels. In the case where the prior distribution
for the shape parameter is a normal distribution, the posterior distribution has more
tendency to be negative than positive, having a mean value of −0.24 (see Table D.3).
Constraining the priors has similar e�ects on the posteriors as eliminating the pos-
itive portion of Case 1 posterior density. The negative part of the posterior density
using the non-informative normal prior is similar to the posterior distributions re-
sulting from the constraining priors. Since a higher value of ξ leads to thicker tail
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Figure 4.62: (V010 TM DBM w/DRC): Return level plots for the threshold model for
all three cases of prior distributions. Case 1: left panel, Case 2: middle panel, Case 3:
right panel.

Table 4.12: V010 TM DBM: 100-year return levels of discharge (m3/sec), for all
three cases of prior distributions, calculated with and without a DRC

Threshold model with threshold, u = 40
With DRC Without DRC

Percentiles Normal Neg-Gamma Neg-Beta Normal Neg-Gamma Neg-Beta
2.5% 95 96 95 96 97 96
25% 103 105 102 103 105 102
50% 110 112 108 110 112 107
75% 121 121 116 120 121 115
97.5% 161 142 137 161 140 135
95% conf. int. 66 46 42 64 43 39

of the GP distribution and hence larger return values, eliminating the positive por-
tion of the ξ values reduces the return levels and the range for their 95% posterior
intervals for high return periods. This reduction in the posterior densities of ξ , has
the e�ect that the models in Cases 2 and 3, using the negative priors, do not �t the
data as well as the model in Case 1. Even so, majority of the unrestricted, Case 1,
posterior distribution of ξ is negative, and thus the constriction to negative values
only, as is done in Cases 2 and 3, does not have as drastic e�ect as it would, if the
Case 1 posterior was more positive. Hence the, models in Cases 2 and 3 �t the data
adequately, despite the restriction of ξ.

Constraining the ξ parameter to negative values only, has the e�ect that the median
value of the 100-year return level becomes higher in Case 2 compared to Case 1, but
lower in Case 3 compared to Case 1. The reason for this is that the unrestricted
posterior distribution for the ξ parameter in Case 1 is almost all negative and so
is the median value. The Case 2 posterior distribution of ξ is constricted by the
neg-gamma distribution which has the majority of is density close to the y-axis,
leading to a higher median value than Case 1. The Case 3 posterior distribution
of ξ is constricted by the neg-beta distribution which is a uniform distributin with
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Figure 4.63: (V010 TM DBM) Comparison of the 95% posterior interval of the 100-
year return level of discharge, between the three cases of prior distributions, with DRC
uncertainty (blue) and without DRC uncertainty (red).

only negative values. The resulting posterior is essentially the same as the posterior
for Case 1 except without its positive portion. Therefor the posterior median of ξ
is larger for Case 3 than for Case 1. The uncertainties in Cases 2 and 3, where the
priors are negative only, shrink to approximately 66% and 62% of the uncertainty
for Case 1, respectively, where the prior is non-informative.

The e�ect of discharge rating curve uncertainty

The e�ect of merging the discharge rating curve uncertainty with the sampling
uncertainty from the MCMC scheme has minor e�ect on the median value of the
100-year return level. This is shown in Table 4.12 and Figure 4.63. There is a
minor change in the over all uncertainty for the 100-year return level, when adding
the discharge rating curve uncertainty to the calculations. In Case 1, where the
prior distribution is a normal distribution, the 95% posterior interval increases ap-
proximately 2%, when DRC uncertainty is taken into account. In Case 2, where
the prior distribution is a negative gamma distribution, the 95% posterior interval
increases approximately 5%, when DRC uncertainty is taken into account. In Case
3, where the prior distribution is a negative beta distribution, the 95% posterior
interval increases approximately 9%, when DRC uncertainty is taken into account.
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4.4. Results for Svarta

4.4.4. Threshold Model using the �xed frequency method
(FFM) for determining the threshold value

For Svarta,the rule of thumb method (FFM), leads to a threshold value of u = 52
with the total number of point estimates of discharge, greater than the threshold
value, equal to 36.
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Figure 4.64: (V010 FFM): Right panel: Water discharge time series with 95% posterior
interval for extreme values. Left panel: B-spline Discharge rating curve with �tted POT
values
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Figure 4.65: (V010 TM FFM w/DRC): Prior and posterior distributions for the shape
parameter (ξ) in the GP distribution for all three cases of prior distributions. Case 1:
left panels, Case 2: middle panels, Case 3: right panels.
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Figure 4.66: (V010 TM FFM w/DRC): Return level plots for the threshold model for all
three cases of prior distributions. Case 1: left panel, Case 2: middle panel, Case 3: right
panel.

Table 4.13: V010 TM FFM: 100-year return levels of discharge (m3/sec), for all
three cases of prior distributions, calculated with and without a DRC

Threshold model with threshold, u = 52
With DRC Without DRC

Percentiles Normal Neg-Gamma Neg-Beta Normal Neg-Gamma Neg-Beta
2.5% 95 96 95 97 98 97
25% 103 104 102 103 104 102
50% 109 111 106 108 110 106
75% 119 120 113 117 119 113
97.5% 169 142 135 160 142 134
95% conf. int. 74 46 40 63 44 36

Figure 4.65 shows the prior distributions of ξ and their corresponding posterior
distributions for all cases. A big portion of of the posterior distribution in Case 1 is
positive and so constraining the posterior to only negative values has great in�uence
on the results. Figure 4.66 show the return level plots for all three cases of prior
distributions. Constraining the prior to negative values only, lowers the return levels
and makes the con�dence interval narrower. This constriction has the e�ect that
the data does not �t the model, as well as in Case 1.

Constraining the posterior density of ξ, to negative values only, by using negative
prior distributions has a signi�cant in�uence on the outcome of the posterior distri-
butions and thus the resulting return levels. In the case where the prior distribution
for the shape parameter is a normal distribution, the posterior distribution has more
tendency to be positive than negative, having a mean value of −0.24 (see Table D.4).
Constraining the priors has similar e�ects on the posteriors as eliminating the pos-
itive portion of the Case 1 posterior density. The negative part of the posterior
density using the non-informative normal prior is similar to the posterior distribu-
tions resulting from the constraining priors. Since a higher value of ξ leads to thicker
tail of the GP distribution and hence larger return values, eliminating the positive
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Figure 4.67: (V010 TM FFM) Comparison of the 95% posterior interval of the 100-
year return level of discharge, between the three cases of prior distributions, with DRC
uncertainty (blue) and without DRC uncertainty (red).

portion of the ξ values reduces the return levels and the range for their 95% posterior
intervals for high return periods. This reduction in the posterior densities of ξ , has
the e�ect that the models in Cases 2 and 3, using the negative priors, do not �t the
data as well as the model in Case 1. Even so, majority of the unrestricted, Case 1,
posterior distribution of ξ is negative, and thus the constriction to negative values
only, as is done in Cases 2 and 3, does not have as drastic e�ect as it would, if the
Case 1 posterior was more positive. Hence the, models in Cases 2 and 3 �t the data
adequately, despite the restriction of ξ.

Constraining the ξ parameter to negative values only, has the e�ect that the median
value of the 100-year return level becomes higher in Case 2 compared to Case 1, but
lower in Case 3 compared to Case 1. The reason for this is that the unrestricted
posterior distribution for the ξ parameter in Case 1 is almost all negative and so
is the median value. The Case 2 posterior distribution of ξ is constricted by the
neg-gamma distribution which has the majority of is density close to the y-axis,
leading to a higher median value than Case 1. The Case 3 posterior distribution
of ξ is constricted by the neg-beta distribution which is a uniform distributin with
only negative values. The resulting posterior is essentially the same as the posterior
for Case 1 except without its positive portion. Therefor the posterior median of ξ
is larger for Case 3 than for Case 1. The uncertainties in Cases 2 and 3, where the
priors are negative only, shrink to approximately 58% and 52% of the uncertainty
for Case 1, respectively, where the prior is non-informative.
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The e�ect of discharge rating curve uncertainty

The e�ect of merging the discharge rating curve uncertainty with the sampling
uncertainty from the MCMC scheme has minor e�ect on the median value of the
100-year return level. This is shown in Table 4.13 and Figure 4.67. There is a change
in the over all uncertainty for the 100-year return level, when adding the discharge
rating curve uncertainty to the calculations. In Case 1, where the prior distribution is
a normal distribution, the 95% posterior interval increases approximately 17%, when
DRC uncertainty is taken into account. In Case 2, where the prior distribution is
a negative gamma distribution, the 95% posterior interval increases approximately
14%, when DRC uncertainty is taken into account. In Case 3, where the prior
distribution is a negative beta distribution, the 95% posterior interval increases
approximately 11%, when DRC uncertainty is taken into account.

4.4.5. Comparison between models

The models being compared are the block maxima model using the annual maximum
values and two threshold models, one with the threshold value u = 40, found by
using the diagnostic based method (DBM threshold model) and another one with
a threshold value of u = 52, found by the �xed frequency method (FFM threshold
model).

It can be argued that the extreme values used in the FFM threshold model are
superior to those used in the block maxima model since they are not constricted to
having one and only one extreme value per year, like the annual values used in the
latter model. The argument is, that if the de-clustering of the POTs is successful
and there is no correlation between the extremes, than the quality of the POTs
gathered by using the FFM are at least, equal to that of the block maxima model.
For that reason the comparison below will be between the block maxima model and
the FFM threshold model, on one hand, and between the FFM threshold model and
the DBM threshold model, on the other hand.

Block maxima model vs. FFM threshold model

Tables 4.11 and 4.13 show the percentiles for the 100-year return levels for the block
maxima model and the FFM threshold model, respectively. Figure 4.68 shows the
95% posterior interval of the 100-year return level for the block maxima model and
the FFM threshold model. Tables D.2 and D.4 show the percentiles of the posterior
distributions for the GEV parameters for the Block maxima model and the GP

112



4.4. Results for Svarta

60

80

100

120

140

160

180

200

220

Svarta

D
is

ch
ar

ge
 [m

3 /s
ec

]

CASE 1 CASE 2 CASE 3 CASE 1 CASE 2 CASE 3 CASE 1 CASE 2 CASE 3

              Block Maxima                     Threshold model DBM               Threshold model FFM        

Figure 4.68: (V010) Comparison of the 95% posterior interval of the 100-year return
level of discharge, between the three di�erent models, with DRC uncertainty (blue) and
without DRC uncertainty (red).

parameters for the FFM Threshold model, respectively. The FFM threshold model
uses approximately the same amount of extreme values as the block maxima model
but the extremes used in the FFM threshold model are larger than those used in
the block maxima model.

In Case 1 where the prior distribution for ξ is noninformative, the posterior density
of ξ takes higher values in the block maxima model than the FFM threshold model.
Because of this, the return levels are higher for the block maxima model than the
FFM threshold model.

In Cases 2 and 3 where the prior distributions of ξ constrains the posteriors to
negative values only the di�erence in the return levels is small. The return levels
are a bit higher for Case 2 where the ξ prior distribution is the negative gamma
distribution. That is understandable since the Case 1 prior distribution is uniform
but the Case 2 prior has the mass of its density closer to the value 0.

The posterior distributions of ξ has a much larger posterior interval when using the
FFM threshold model compared to using the block maxima model. The range of
the 95% posterior interval of the posterior density of ξ is [−0.61,−0.05] using the
Case 3 FFM threshold model compared to [−0.38,−0.02] when using the Case 3
block maxima model. Despite this di�erence in the shape parameters the posterior
interval of the return levels are very similar. This show how the return levels are
much less sensitive to the changes in the shape parameter if the value of ξ is negative,
compared to positive.
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DBM threshold model vs. FFM threshold model

Tables 4.12 and 4.13 show the percentiles for the 100-year return levels for the DBM
threshold model and the FFM threshold model, respectively. Figure 4.68 shows the
95% posterior interval of the 100-year return level for the DBM threshold model and
the FFM threshold model. Tables D.3 and D.4 show the percentiles of the posterior
distributions for the GP parameters for the DBM threshold model and the FFM
threshold model, respectively.

By lowering the threshold from 52 to 40 the e�ective number of POTs increase
from 37.77 to 76.48. Looking at the Case 1 prior distribution, these added extreme
data have the e�ect of lowering the upper values of the posterior distribution for
ξ. That leads to lower upper percentiles for the return level plot and thus smaller
posterior interval. So, for this river, the added data used in the DBM threshold
model lowered the upper percentiles for the 100 year return level and its posterior
interval got smaller.

There is little di�erence between the two models when looking the results from
Cases 2 and 3. In both models, the negative gamma prior in Case 2 seems have the
e�ect that the simulated values in the posterior distribution of ξ higher then for the
negative beta prior in Case 3. That leads to higher return levels.

In Cases 2 and 3, the return levels produced by the FFM threshold model have
narrower posterior intervals but the di�erence is minor. The median values for
the return levels are almost identical for the DBM threshold model and the FFM
threshold model.
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5. Conclusions and future research

A statistical model was constructed to perform �ood analysis. The validity of this
model was tested on four rivers in Iceland. One of the main novelty of the model
was to combine the uncertainty in the discharge rating curve with the uncertainty in
the �ood analysis. The results show that, in general, this leads to a greater over-all
uncertainty for the �ood analysis. The con�dence interval in the resulting return
level plots become larger when the DRC uncertainty is taken into account. However,
the di�erence is perhaps not as great as could be expected. For the rivers inspected
the increase in the con�dence interval for the 100-year return level is ranging from
0% to 15% depending on the river, and also depending on the model used for the
analysis and which case of prior distribution used.

Three models were used to analyze the discharge data for each river. A block maxima
model, which used annual maximum values of discharge to perform the �ood analysis
and two threshold models which used peaks over threshold (POT) to perform the
analysis. The two threshold models used di�erent threshold values in their analysis.
In one of the threshold models, the diagnostic based method (DBM) was used to
determine the threshold value and the other used the �xed frequency (FFM). These
two methods for choosing the threshold are discussed in detail in Section 3.4.2.

Choosing which of the three models to use in the �ood analysis is not a straight
forward decision. There are advantages using the threshold model with the FFM
threshold choice compared to the block maxima model. The number of extreme data
used is the same in both models but if the de-clustering of the data is adequately
done, the extremes used in the FFM threshold model should be at least, as good as
the ones used in the block maxima model.

Using the diagnostic based method for determining the value of the threshold will
always result in more POTs compared to the FFM method. Whether or not this
increase in number of extremes enhances the results is di�erent between rivers.

In most cases, choosing the DBM threshold model over the other two models would
be recommended because it uses more extreme values in the analysis. We are con-
�dent that the diagnostic based method is superior to the �xed frequency method,
for choosing a threshold, in three of the four rivers inspected. In the analysis for
Olfusa, Hvita and Svarta, the DBM threshold model provided the best �t for the
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data. However in the analysis for Sanda, the threshold value chosen is suspected to
be to low and hence too many values were being regarded as extreme values.

Three di�erent types of prior distributions for ξ were inspected. Case 1 used a
noninformative prior for ξ, allowing the posterior distribution of ξ to take any value,
and hence not constraining the parameter. Cases 2 and 3 used prior distributions for
ξ which only had negative values and thus constraining the posterior of ξ to negative
values only. The constriction in Cases 2 and 3 had a big e�ect on most of the rivers,
compared to Case 1. The general di�erence between the using noninformative prior
in Case 1 and using the informative priors in cases 2 and 3 is that the constrictions
resulting from the informative priors makes the con�dence intervals in the return
period plots become smaller. The low end of the intervals is similar between all
cases, but when the positive values of the posterior density for ξ is eliminated, which
is essentially done when constraining the parameters to negative values, the return
levels decrease accordingly. The restriction bounds the return levels, eliminating the
exponential growth part resulting from the positive part of the ξ density. However,
this comes at the expense of goodness of �t.

This expense is especially evident when looking at the rivers Olfusa and Hvita. For
Olfusa the block maxima model was inadequate for Cases 2 and 3, and for Hvita
these two cases were inadequate in all of the three models. The reason why the
models performed worse in these two rivers than the other two, when constraining
the shape parameter is simple: the change in ξ was to great compared to Case 1
where the shape parameter was unrestricted. For both of these rivers, a majority
of the Case 1 posterior density of ξ was positive and therefore, constraining the
parameter to negative values only was too much of an alteration and the data did
not adequately �t the models. On the other hand, for the rivers Sanda and Svarta,
the models provided a good �t for the data regardless of prior distributions used.
That is because the majority of the Case 1 posterior density of ξ was already negative
so the restraints in Cases 2 and 3 were not as big of shock as it was in the analysis
of Olfusa and Hvita. Therefore it is concluded that this "one size �t all" approach
for determining the prior distribution for ξ is not adequate in all cases.

A more elaborate approach to determine an informative prior distribution for the
shape parameters could be to rely on the prior knowledge of an expert hydrologist.
That approach would have to be examined speci�cally for each river. Through a
general understanding of the discharge behavior of a particular river it is reasonable
to hope that an expert hydrologist could have valuable information about extremal
behavior. However, it is unlikely that prior beliefs could be adequately elicited
directly in terms of the GEV or GP parameters. Therefore, an experts estimates of
the median and 90% quantiles of a 100-year return level could be used to determine
prior distributions for the parameters. This approach has been used in the past by
Coles and Tawn (1996). Their work focused on extreme rainfall data but similar
methods could be implemented in the �ood analysis model.
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Since the posterior distributions for the unrestricted shape parameter, ξ, is highly
positive for some of the rivers inspected, it leads to the conclusion that the underlying
distributions of the extreme values used in the analysis are not the same. It might
therefore be bene�ciary to investigate the underlying reasons for particular �oods
and conduct a �ood analysis based on those reasons, for example, looking separately
at summer and winter �oods.

Using data on more rivers, the model constructed in this thesis, might be used to
gain insight on the extreme behavior of rivers with regards to which type of river it
is, i.e. whether the river is a glacier stream, a direct runo� stream or a springfed
steam. Knowledge gained by such categorization of the rivers might be used for
enhancing the choice of prior distributions used in the model.

5.1. Conclusions summary

• Di�erence between rivers: The results for Olfusa and Hvita are similar to each
other, while the results for Sanda and Svarta are similar to each other. In the
analysis for Olfusa and Hvita, the Case 1 posterior distributions of the shape
parameter is highly positive, suggesting an unbounded tail of the extreme
value distributions. That leads to high return levels and with large uncer-
tainty intervals. In the analysis for Sanda and Svarta, the Case 1 posterior
distributions of the shape parameter is largely negative, suggesting a bounded
tail of the extreme value distributions. The return levels are therefore not as
large as in Olfusa and Hvita and the uncertainty intervals are smaller.

• Di�erence between cases: Constricting the shape parameter to negative values
only, as is done in Cases 2 and 3 lowers the return levels and decreases their
uncertainties. That decrease in uncertainty comes at the expense of model
�t. This is especially evident for the rivers Olfusa and Hvita, since the Case
1 posterior distributions for ξ is largely positive for those rivers. For Sanda
and Svarta, the change between Case 1 on one hand and Cases 2 and 3 on the
other hand, is not as great.

• Di�erence between models: The uncertainties in the return levels are smaller
in the block maxima models than for the threshold models for all the rivers
except for Svarta. The return level uncertainty the DBM threshold model is
smaller than in the FFM threshold model for all the rivers except for Sanda.

• The e�ect of using DRC uncertainty: Using the DRC uncertainty in the calcu-
lations has the e�ect of increasing the over all uncertainty in the return levels
for most of the models. However, in the FFM threshold model, the over all
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5. Conclusions and future research

uncertainty decreases when adding the DRC uncertainty into the calculations
for the rivers, Olfusa, Hvita, and Sanda.
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A. More details on the �ood
analysis for Olfusa

In this appendix, �gures and tables that are relevant to the research but were not
displayed in the main text of the paper, are displayed. That includes probability
plots, quantile plots and density plots for all cases of prior distributions. The prior
and posterior densities of all the parameters in the GEV and GP distributions are
also displayed for all cases. The appendix also includes the sampled Markov chain
Monte Carlo (MCMC) chains, used to construct the posterior distributions for the
parameters of both the generalized extreme value distribution (GEV) and the gen-
eralized Pareto (GP) distribution. The samples are displayed both in �gures, and
in tables as quantiles for all the models with and without the inclusion discharge
rating curve uncertainty. The histogram of the prior and posterior distribution and
the diagnostic plots for the models are shown for all models without the inclusion
of discharge rating curve uncertainty.

Table A.1 shows a list of abbreviations regarding the following �gures and tables.
Every �gure and table in the appendix is marked with some of these abbreviations
and that explains which river the data belongs to and what kind of models were
used to generate the results. For example, the text (V064 BM w/DRC) Case 2 in
the caption of a �gure or a table, indicates that the data displayed comes from the
river Olfusa (V064), a block maxima model was used (BM) with a neg-gamma prior
distribution for the shape parameter (Case 2), and the uncertainty in the discharge
rating curve was taken into account in the calculations (w/DRC).
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A. More details on the �ood analysis for Olfusa

Table A.1: Abbreviations used to explain the origin of the data used to generate
�gures and tables

V064: The river Olfusa: 64 is the number of the gauging station
measuring the data

V066: The river Hvita vid Kljafoss: 66 is the number of the
gauging station measuring the data

V026: The river Sanda i Thistilfjordur: 26 is the number of the
gauging station measuring the data

V010: The river Svarta in Skagafjordur: 10 is the number of
the gauging station measuring the data

Case 1: The shape parameter, ξ, was sampled using a normal
prior distribution

Case 2: The shape parameter, ξ, was sampled using a neg-
gamma prior distribution

Case 3: The shape parameter, ξ, was sampled using a neg-beta
prior distribution

BM: A block maxima model
TM DBM: A threshold model using the diagnostic based method

for determining the threshold value
TM FFM: A threshold model using the �xed frequency method for

determining the threshold value
w/DRC: A discharge rating curve uncertainty was taken into ac-

count in the calculations
w/o DRC: A discharge rating curve uncertainty was not taken into

account in the calculations

A.1. V064: With discharge rating curve

uncertainty

A.1.1. Block maxima model

Block maxima Model - Case 1: A normal prior distribution for the ξ
parameter (BM w/DRC C1)

In Case 1, the prior distribution for ξ was chosen to be a normal distribution with
a large variance, making it non-informative prior. The prior distribution for σ is
a non-informative inv-χ2 distribution and the prior distribution for µ is a normal
distribution with large variance making it non-informative. So, in this case, the
GEV parameters are not constricted in any way by their prior distributions. See
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A.1. V064: With discharge rating curve uncertainty

further details on the prior distributions in Section 3.3.2. The construction of the
posterior distributions of all the parameters is discussed in Section 3.3.3. The prior
and posterior distributions for the GEV parameters are shown in Figure A.1.
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Figure A.1: (V064 BM w/DRC) CASE 1: Prior and posterior distributions for the GEV
parameters

The simulated chains of posterior distributions for the GEV parameters are used
to model the extreme behavior of the river. The simulated chains of the posterior
distributions of the parameters are shown in Figure A.7 and their quantiles are
shown in Table A.2.

Figure A.2 shows the return period plot for Olfusa as well as the quantile plot,
the probability plot and the density plot. The Anderson-Darling p-value and the
diagnostic plots in Figure A.2 are evaluated to check the validity of the model. The
methods used for the model validation are discussed in Section 2.2.2.

The model is a good �t for the data, having an Anderson-Darling p-value of pB =
0.57. Figure A.2 also indicates that the model �ts the data reasonably well. The
annual maximum values on the probability plot all lie close to the unit diagonal and
the values are close to linear on the quantile plot. Plotting the annual maximum
values on the return level plot also seem to indicate that the model �ts the data
well, since all the values are inside the 95% posterior interval of the return levels.
Furthermore, the density plot indicates that the model is a good �t for the data since
the histogram of the annual maximum values �t well inside the GEV probability
density function.
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Figure A.2: (V064 BM w/DRC) CASE 1: Diagnostic plots for the block maxima model

Block Maxima Model - Case 2: A negative gamma prior distribution for the
ξ parameter (BM w/DRC C2)

In Case 2, the prior distribution for ξ was chosen to be a negative gamma distribu-
tion. It contains only negative values having majority of the mass of the distribution
is close to the y-axis. Therefore, in this case, the posterior density of the shape pa-
rameter of the GEV distribution is constricted to negative values only. The prior
and posterior distributions for the GEV parameters are shown in Figure (A.3).

The simulated chains of the posterior distributions of the parameters are shown in
Figure A.8 and their quantiles are shown in Table A.2.

Figure A.4 shows the return period plot for Olfusa as well as the quantile plot, the
probability plot and the density plot. The Anderson-Darling p-value, pB = 0.49,
indicates that the model is a good �t for the data. The probability plot in Figure
A.4 also indicates that the model �ts the data reasonably well. The quantile plot,
however, indicates that the data deviates from the model for the highest extreme
values since it departs from linearity at those values. Similar deviation takes place
when �tting the data to the return period plot. The largest values are inconsistent
with the model. By looking at the histogram of the annual maximum values with
the GEV density, the data seems to �t the model well. For a large majority of the
data, the model seems to be a good �t. However, it does not adequately �t the
behavior of the largest values which raises concerns as those are the values of most
interest.
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Figure A.3: (V064 BM w/DRC) CASE 2: Prior and posterior distributions for the GEV
parameters

Block Maxima Model - Case 3: A negative beta prior distribution for the ξ
parameter (BM w/DRC C3)

In Case 3, the prior distribution for ξ was chosen to be a negative beta distribution.
It is a uniform distribution containing values on the interval [−1; 0] Therefore, in
this case, the posterior density of the shape parameter of the GEV distribution is
constricted to negative values only. The prior and posterior distributions for the
GEV parameters are shown in Figure (A.5).

The simulated chains of the posterior distributions of the parameters are shown in
Figure A.9 and their quantiles are shown in Table A.2.

Figure A.6 shows the return period plot for Olfusa as well as the quantile plot, the
probability plot and the density plot.

The results in this case, using the negative beta prior distribution for the ξ parameter
are similar to the results, in Case 2 where the negative gamma prior distribution
was used. The Anderson-Darling p-value of pB = 0.48 indicates that the model is
a good �t for the data. The probability plot in Figure A.6 also indicates that the
model �ts the data reasonably well. The quantile plot, however, indicates that the
data deviate from the model for the highest extreme values since it departs from
linearity at those values. Similar deviation takes place when �tting the data to the
return period plot. The largest values are inconsistent with the model. By looking
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Figure A.4: (V064 BM w/DRC) CASE 2: Diagnostic plots for the block maxima model
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Figure A.5: (V064 BM w/DRC) CASE 3: Prior and posterior distributions for the GEV
parameters

at the histogram of the annual maximum values with the GEV density, the data
seems to �t the model well. For a large majority of the data, the model seems to
be a good �t. However, it does not adequately �t the behavior of the largest values
which raises concerns since those are the values of most interest.
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Figure A.6: (V064 BM w/DRC) CASE 3: Diagnostic plots for the block maxima model

Block Maxima Model - Figures and tables displaying the posterior
parameters of the GEV distribution

Table A.2: (V064 BM w/DRC): Percentiles for the posterior distributions of the
GEV parameters, sampled using a MCMC iteration scheme, for all three cases of
prior distributions, calculated with DRC uncertainty

Block Extrema with DRC
Percentiles for parameters in the GEV distribution
Normal Neg-Gamma Neg-Beta

µ σ ξ µ σ ξ µ σ ξ
2.5% 798.56 148.46 -0.09 811.50 160.44 -0.14 813.74 160.65 -0.15
25% 835.14 173.12 0.02 850.98 183.85 -0.06 851.23 184.58 -0.07
50% 854.93 187.35 0.10 871.46 197.97 -0.03 871.78 199.36 -0.04
75% 875.49 203.32 0.17 891.84 213.52 -0.01 892.43 215.74 -0.02
97.5% 914.52 238.46 0.33 932.35 248.82 -0.00 932.34 251.83 -0.00
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Figure A.7: (V064 BM w/DRC) Case 1: Markov chain Monte Carlo simulation for the
parameters in the GEV distribution
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Figure A.8: (V064 BM w/DRC) Case 2: Markov chain Monte Carlo simulation for the
parameters in the GEV distribution
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Figure A.9: (V064 BM w/DRC) Case 3: Markov chain Monte Carlo simulation for the
parameters in the GEV distribution

A.1.2. Threshold model using the diagnostic based method
(DBM) for determining the threshold value

Threshold model using diagnostic based methods for choosing a threshold-
Case 1: A normal prior distribution for the ξ parameter (TM DBM w/DRC
C1)

In Case 1, the prior distribution for ξ was chosen to be a normal distribution with
a large variance, making it non-informative prior. The prior distribution for σ̃ is
a non-informative inv-χ2 distribution. So, in this case, the GP parameters are
not constricted in any way by their prior distributions. The prior and posterior
distributions for the GP parameters are shown in Figure A.10.

The model seems to be a good �t for the data, having an Anderson-Darling p-value
of pB = 0.50. The diagnostic plots in Figure A.11 also indicate that the model �ts
the data reasonably well. The annual maximum values on the probability plot all
lie close to the unit diagonal and the points are close to linear on the quantile plot.
Plotting the annual maximum values on the return level plot seem to indicate that
the model �ts the data well. The histogram of the POTs together with the GP
density indicate that the model �ts the POTs well. A big portion of the posterior
density for the shape parameter is positive which has the e�ect that the upper
percentiles for the return level increase exponentially on a logarithmic scale and
thus become very large as return time increases.
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Figure A.10: (V064 TM DBM w/DRC) CASE 1: Prior and posterior distributions for
the GP parameters

Threshold model using diagnostic based methods for choosing a threshold-
Case 2: A negative gamma prior distribution for the ξ parameter (TM
DBM w/DRC C2)

In Case 2, the prior distribution for ξ was chosen to be a negative gamma distribu-
tion. It contains only negative values having majority of the mass of the distribution
is close to the y-axis. The prior distribution for σ̃ is a non-informative inv-χ2 dis-
tribution. Therefore, in this case, the posterior density of the shape parameter of
the GP distribution is constricted to negative values only. The prior and posterior
distributions for the GP parameters are shown in Figure A.12.

The Anderson-Darling p-value of pB = 0.60 indicates that the model is a good �t
for the data. The probability plot in Figure A.13 also indicates that the model �ts
the data reasonably well. By looking at the histogram of the POTs and compare it
to the probability density of the GP function, the model seems to �t the data well.
The quantile plot however indicates that the POTs deviate from the model for the
highest extreme values since it departs from linearity at those values. That does
also seem to be the case when looking at the return level plot. For a large majority
of the data, the model seems to be a good �t. However the largest POTs deviate
from the model which raises concerns as those are the values of most interest.
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Figure A.11: (V064 TM DBM w/DRC) CASE 1: Diagnostic plots for the Threshold
Model
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Figure A.12: (V064 TM DBM w/DRC) CASE 2: Prior and posterior distributions for
the GP parameters
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Figure A.13: (V064 TM DBM w/DRC) CASE 2: Diagnostic plots for the Threshold
Model

Threshold model using diagnostic based methods for choosing a threshold-
Case 3: A negative beta prior distribution for the ξ parameter (TM DBM
w/DRC C3)

In Case 3, the prior distribution for ξ was chosen to be a negative beta distribution.
It is a uniform distribution containing values on the interval [−1; 0] The prior dis-
tribution for σ̃ is a non-informative inv-χ2 distribution. Therefor, in this case, the
posterior density of the shape parameter of the GEV distribution is constricted to
negative values only. The prior and posterior distributions for the GP parameters
are shown in Figure A.14.

The Anderson-Darling p-value of pB = 0.58 indicates that the model is a good �t
for the data. The probability plot in Figure A.15 also indicates that the model �ts
the data reasonably well. By looking at the histogram of the POTs and compare it
to the probability density of the GP function, the model seems to �t the data well.
The quantile plot however indicates that the POTs deviate from the model for the
highest extreme values since it departs from linearity at those values. That is also
the case when looking at the return level plot. For a large majority of the data, the
model seems to be a good �t. However the largest POTs deviate from the model
which raises concerns as those are the values of most interest.
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Figure A.14: (V064 TM DBM w/DRC) CASE 3: Prior and posterior distributions for
the GP parameters

Threshold model using the diagnostic based method (DBM) for
determining the threshold value - Figures and tables displaying the
posterior parameters of the GP distribution
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Figure A.15: (V064 TM DBM w/DRC) CASE 3: Diagnostic plots for the threshold model

Table A.3: (V064 TM DBM w/DRC): Percentiles for the posterior distributions of
the GP parameters, sampled using a MCMC iteration scheme, for all three cases
of prior distributions, calculated with DRC uncertainty

Threshold model with DRC and u = 820
Percentiles for parameters in the GEV distribution

Normal Neg-Gamma Neg-Beta
σ ξ̃ σ ξ̃ σ ξ̃

2.5% 131.96 -0.18 171.50 -0.19 174.47 -0.22
25% 173.58 -0.03 204.78 -0.09 208.96 -0.12
50% 200.18 0.06 226.22 -0.05 231.71 -0.07
75% 229.91 0.16 250.06 -0.02 257.19 -0.03
97.5% 298.03 0.40 304.82 -0.00 317.76 -0.00
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Figure A.16: (V064 TM DBM w/DRC) Case 1: Markov chain Monte Carlo simulation
for the parameters in the GP distribution
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Figure A.17: (V064 TM DBM w/DRC) Case 2: Markov chain Monte Carlo simulation
for the parameters in the GP distribution
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Figure A.18: (V064 TM DBM w/DRC) Case 3: Markov chain Monte Carlo simulation
for the parameters in the GEV distribution

A.1.3. Threshold model using the �xed frequency method
(FFM) for determining the threshold value

Threshold model using the �xed frequency method for choosing a
threshold- Case 1: A normal prior distribution for the ξ parameter (TM
FFM w/DRC C1)

In Case 1, the prior distribution for ξ was chosen to be a normal distribution with
a large variance, making it non-informative prior. The prior distribution for σ̃ is
a non-informative inv-χ2 distribution. So, in this case, the GP parameters are
not constricted in any way by their prior distributions. The prior and posterior
distributions for the GP parameters are shown in Figure A.19.

The model seems to be a good �t for the data, with an Anderson-Darling p-value of
pB = 0.50. The diagnostic plots in Figure A.20 also indicate that the model �ts the
data well. The annual maximum values on the probability plot all lie close to the
unit diagonal and the points are close to linear on the quantile plot. Comparison
between the probability density of the GP distribution and the histogram of the
POTs indicate a good model �t. Plotting the annual maximum values on the return
level plot also seem to indicate that the model �ts the data well.
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Figure A.19: (V064 TM FFM w/DRC) CASE 1: Prior and posterior distributions for the
GP parameters

Threshold model using the �xed frequency method for choosing a
threshold- Case 2: A negative gamma prior distribution for the ξ parameter
(TM FFM w/DRC C2)

In Case 2, the prior distribution for ξ was chosen to be a negative gamma distribu-
tion. It contains only negative values having majority of the mass of the distribution
is close to the y-axis. The prior distribution for σ̃ is a non-informative inv-χ2 dis-
tribution. Therefore, in this case, the posterior density of the shape parameter of
the GP distribution is constricted to negative values only. The prior and posterior
distributions for the GP parameters are shown in Figure A.21.

The Anderson-Darling p-value of pB = 0.36 indicates that the model is a reasonably
good �t for the data. The probability plot in Figure A.22 also indicates that the
model �ts the data reasonably well. Comparison between the probability density of
the GP distribution and the histogram of the POTs indicate a relatively good model
�t. The quantile plot however indicates that the data deviate from the model for the
highest extreme values since the highest values depart from linearity. By looking at
the return level plot the model seems to �t the data reasonably well, even though
the largest values tend to deviate from the median.
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Figure A.20: (V064 TM FFM w/DRC) CASE 1: Diagnostic plots for the threshold model
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Figure A.21: (V064 TM FFM w/DRC) CASE 2: Prior and posterior distributions for the
GP parameters
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Figure A.22: (V064 TM FFM w/DRC) CASE 2: Diagnostic plots for the threshold model

Threshold model using the �xed frequency method for choosing a
threshold- Case 3: A negative beta prior distribution for the ξ parameter
(TM FFM w/DRC C3)

In Case 3, the prior distribution for ξ was chosen to be a negative beta distribution.
It is a uniform distribution containing values on the interval [−1; 0] The prior dis-
tribution for σ̃ is a non-informative inv-χ2 distribution. Therefore, in this case, the
posterior density of the shape parameter of the GEV distribution is constricted to
negative values only. The prior and posterior distributions for the GP parameters
are shown in Figure A.23.

The results from the negative beta prior distribution for the ξ parameter are almost
identical to the results from the negative gamma prior distribution. The Anderson-
Darling p-value, of pB = 0.32, indicates that the model is a reasonably good �t for
the data. The probability plot in Figure A.24 also indicates that the model �ts
the data reasonably well. Comparison between the probability density of the GP
distribution and the histogram of the POTs indicate a relatively good model �t.
The quantile plot however indicates that the data deviate from the model for the
highest extreme values since the highest values depart from linearity. By looking at
the return level plot the model seems to �t the data reasonably well, even though
the largest values tend to deviate from the median.
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Figure A.23: (V064 TM FFM w/DRC) CASE 3: Prior and posterior distributions for the
GP parameters

Threshold model using the �xed frequency method (FFM) for determining
the threshold value - Figures and tables displaying the posterior parameters
of the GP distribution
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Figure A.24: (V064 TM FFM w/DRC) CASE 3: Diagnostic plots for the threshold model

Table A.4: (V064 TM FFM w/DRC): Percentiles for the posterior distributions of
the GP parameters, sampled using a MCMC iteration scheme, for all three cases
of prior distributions, calculated with DRC uncertainty

Threshold model with DRC and u = 862
Percentiles for parameters in the GEV distribution

Normal Neg-Gamma Neg-Beta
σ ξ̃ σ ξ̃ σ ξ̃

2.5% 122.80 -0.18 168.41 -0.20 170.46 -0.24
25% 165.69 -0.01 201.63 -0.10 205.18 -0.12
50% 191.41 0.09 222.82 -0.05 227.97 -0.07
75% 220.20 0.21 247.14 -0.02 254.52 -0.03
97.5% 287.16 0.48 307.85 -0.00 319.42 -0.00
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Figure A.25: (V064 TM FFM w/DRC) Case 1: Markov chain Monte Carlo simulation
for the parameters in the GP distribution

0 2000 4000 6000 8000 10000
100

150

200

250

300

350

400

450

500
σ

Gelman−Rubin stats = 1.0152
Acceptance ratio = 0.4958

MCMC iteration for the GP parameters

0 2000 4000 6000 8000 10000
−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0
ξ

Gelman−Rubin stats = 1.0043
Acceptance ratio = 0.6397

Figure A.26: (V064 TM FFM w/DRC) Case 2: Markov chain Monte Carlo simulation
for the parameters in the GP distribution
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A.2. V064: Without discharge rating curve uncertainty

0 2000 4000 6000 8000 10000
100

150

200

250

300

350

400

450

500
σ

Gelman−Rubin stats = 1.0234
Acceptance ratio = 0.4724

MCMC iteration for the GP parameters

0 2000 4000 6000 8000 10000
−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0
ξ

Gelman−Rubin stats = 1.0044
Acceptance ratio = 0.5968

Figure A.27: (V064 TM FFM w/DRC) Case 3: Markov chain Monte Carlo simulation
for the parameters in the GEV distribution

A.2. V064: Without discharge rating curve

uncertainty

A.2.1. Block maxima model

Table A.5: (V064 BM w/o DRC): Percentiles for the posterior distributions of the
GEV parameters, sampled using a MCMC iteration scheme, for all three cases of
prior distributions, calculated without DRC uncertainty

Block Extrema without DRC
Percentiles for parameters in the GEV distribution
Normal Neg-Gamma Neg-Beta

µ σ ξ µ σ ξ µ σ ξ
2.5% 807.04 150.23 -0.09 813.71 160.96 -0.13 814.91 161.60 -0.14
25% 838.59 172.86 0.03 850.41 183.43 -0.06 850.41 184.52 -0.07
50% 855.53 186.44 0.10 869.12 197.20 -0.03 869.53 199.09 -0.04
75% 872.73 201.63 0.17 887.48 212.27 -0.01 888.85 214.75 -0.02
97.5% 907.14 234.95 0.33 923.64 245.24 -0.00 926.33 249.79 -0.00

143



A. More details on the �ood analysis for Olfusa
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Figure A.28: (V064 BM w/o DRC) Case 1: Markov chain Monte Carlo simulation for
the parameters in the GEV distribution
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Figure A.29: (V064 BM w/o DRC) CASE 1: Prior and posterior distributions for the
GEV parameters
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A.2. V064: Without discharge rating curve uncertainty
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Figure A.30: (V064 BM w/o DRC) CASE 1: Diagnostic plots for the block maxima
model

A.2.2. Threshold model using the diagnostic based method
(DBM) for determining the threshold value

Table A.6: (V064 TM DBM w/o DRC): Percentiles for the posterior distributions of
the GP parameters, sampled using a MCMC iteration scheme, for all three cases
of prior distributions, calculated without DRC uncertainty

Threshold model with DRC and u = 820
Percentiles for parameters in the GEV distribution

Normal Neg-Gamma Neg-Beta
σ ξ̃ σ ξ̃ σ ξ̃

2.5% 150.45 -0.20 182.60 -0.21 184.07 -0.24
25% 190.00 -0.06 215.16 -0.11 217.59 -0.13
50% 214.49 0.02 235.08 -0.06 238.38 -0.07
75% 241.66 0.12 258.05 -0.03 262.95 -0.04
97.5% 302.61 0.34 314.46 -0.00 322.53 -0.00
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A. More details on the �ood analysis for Olfusa
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Figure A.31: (V064 BM w/o DRC) Case 2: Markov chain Monte Carlo simulation for
the parameters in the GEV distribution
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Figure A.32: (V064 BM w/o DRC) CASE 2: Prior and posterior distributions for the
GEV parameters
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A.2. V064: Without discharge rating curve uncertainty
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Figure A.33: (V064 BM w/o DRC) CASE 2: Diagnostic plots for the block maxima
model
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Figure A.34: (V064 BM w/o DRC) Case 3: Markov chain Monte Carlo simulation for
the parameters in the GEV distribution
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Figure A.35: (V064 BM w/o DRC) CASE 3: Prior and posterior distributions for the
GEV parameters
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Figure A.36: (V064 BM w/o DRC) CASE 3: Diagnostic plots for the block maxima
model
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A.2. V064: Without discharge rating curve uncertainty
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Figure A.37: (V064 TM DBM w/o DRC) Case 1: Markov chain Monte Carlo simulation
for the parameters in the GP distribution
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Figure A.38: (V064 TM DBM w/o DRC) CASE 1: Prior and posterior distributions for
the GP parameters
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Figure A.39: (V064 TM DBM w/o DRC) CASE 1: Diagnostic plots for the threshold
model

A.2.3. Threshold Model using the �xed frequency method
(FFM) for determining the threshold value

Table A.7: (V064 TM FFM w/o DRC): Percentiles for the posterior distributions of
the GP parameters, sampled using a MCMC iteration scheme, for all three cases
of prior distributions, calculated without DRC uncertainty

Threshold model without DRC and u = 862
Percentiles for parameters in the GP distribution

Normal Neg-Gamma Neg-Beta
σ ξ̃ σ ξ̃ σ ξ̃

2.5% 118.43 -0.15 165.83 -0.18 166.96 -0.22
25% 154.66 0.02 196.51 -0.09 199.35 -0.11
50% 178.07 0.13 215.10 -0.05 219.81 -0.06
75% 204.92 0.25 237.69 -0.02 243.73 -0.03
97.5% 264.17 0.51 288.96 -0.00 299.56 -0.00
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A.2. V064: Without discharge rating curve uncertainty
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Figure A.40: (V064 TM DBM w/o DRC) Case 2: Markov chain Monte Carlo simulation
for the parameters in the GP distribution
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Figure A.41: (V064 TM DBM w/o DRC) CASE 2: Prior and posterior distributions for
the GP parameters
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Figure A.42: (V064 TM DBM w/o DRC) CASE 2: Diagnostic plots for the threshold
model
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Figure A.43: (V064 TM DBM w/o DRC) Case 3: Markov chain Monte Carlo simulation
for the parameters in the GP distribution
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A.2. V064: Without discharge rating curve uncertainty
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Figure A.44: (V064 TM DBM w/o DRC) CASE 3: Prior and posterior distributions for
the GP parameters
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Figure A.45: (V064 TM DBM w/o DRC) CASE 3: Diagnostic plots for the threshold
model
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Figure A.46: (V064 TM FFM w/o DRC) Case 1: Markov chain Monte Carlo simulation
for the parameters in the GP distribution
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Figure A.47: (V064 TM FFM w/o DRC) CASE 1: Prior and posterior distributions for
the GP parameters
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A.2. V064: Without discharge rating curve uncertainty
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Figure A.48: (V064 TM FFM w/o DRC) CASE 1: Diagnostic plots for the threshold
model
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Figure A.49: (V064 TM FFM w/o DRC) Case 2: Markov chain Monte Carlo simulation
for the parameters in the GP distribution
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Figure A.50: (V064 TM FFM w/o DRC) CASE 2: Prior and posterior distributions for
the GP parameters
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Figure A.51: (V064 TM FFM w/o DRC) CASE 2: Diagnostic plots for the threshold
model
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A.2. V064: Without discharge rating curve uncertainty
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Figure A.52: (V064 TM FFM w/o DRC) Case 3: Markov chain Monte Carlo simulation
for the parameters in the GP distribution
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Figure A.53: (V064 TM FFM w/o DRC) CASE 3: Prior and posterior distributions for
the GP parameters
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A. More details on the �ood analysis for Olfusa
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Figure A.54: (V064 TM FFM w/o DRC) CASE 3: Diagnostic plots for the threshold
model
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B. More details on the �ood
analysis for Hvita

In this appendix, �gures and tables that are relevant to the research but were not
displayed in the main text of the paper, are displayed. That includes probability
plots, quantile plots and density plots for all cases of prior distributions. The prior
and posterior densities of all the parameters in the GEV and GP distributions are
also displayed for all cases. The appendix also includes the sampled Markov chain
Monte Carlo (MCMC) chains, used to construct the posterior distributions for the
parameters of both the generalized extreme value distribution (GEV) and the gen-
eralized Pareto (GP) distribution. The samples are displayed both in �gures, and
in tables as quantiles for all the models with and without the inclusion discharge
rating curve uncertainty. The histogram of the prior and posterior distribution and
the diagnostic plots for the models are shown for all models without the inclusion
of discharge rating curve uncertainty.

Table B.1 shows a list of abbreviations regarding the following �gures and tables.
Every �gure and table in the appendix is marked with some of these abbreviations
and that explains which river the data belongs to and what kind of models were
used to generate the results. For example, the text (V066 BM w/DRC) Case 2 in
the caption of a �gure or a table, indicates that the data displayed comes from the
river Hvita (V066), a block maxima model was used (BM) with a neg-gamma prior
distribution for the shape parameter (Case 2), and the uncertainty in the discharge
rating curve was taken into account in the calculations (w/DRC).
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B. More details on the �ood analysis for Hvita

Table B.1: Abbreviations used to explain the origin of the data used to generate
�gures and tables

V066: The river Hvita vid Kljafoss: 66 is the number of the
gauging station measuring the data

Case 1: The shape parameter, ξ, was sampled using a normal
prior distribution

Case 2: The shape parameter, ξ, was sampled using a neg-
gamma prior distribution

Case 3: The shape parameter, ξ, was sampled using a neg-beta
prior distribution

BM: A block maxima model
TM DBM: A threshold model using the diagnostic based method

for determining the threshold value
TM FFM: A threshold model using the �xed frequency method for

determining the threshold value
w/DRC: A discharge rating curve uncertainty was taken into ac-

count in the calculations
w/o DRC: A discharge rating curve uncertainty was not taken into

account in the calculations

B.1. V066: With discharge rating curve

uncertainty

B.1.1. Block maxima model

Block Maxima Model - Case 1: A normal prior distribution for the ξ
parameter (BM w/DRC C1)

In Case 1, the prior distribution for ξ was chosen to be a normal distribution with
a large variance, making it non-informative prior. The prior distribution for σ is
a non-informative inv-χ2 distribution and the prior distribution for µ is a normal
distribution with large variance making it non-informative. So, in this case, the
GEV parameters are not constricted in any way by their prior distributions. See
further details on the prior distributions in Section 3.3.2. The construction of the
posterior distribution of all the parameters is discussed in Section 3.3.3. The prior
and posterior distributions for the GEV parameters are shown in Figure B.1.

The simulated chains of posterior distributions for the GEV parameters are used
to model the extreme behavior of the river. The simulated chains of the posterior
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B.1. V066: With discharge rating curve uncertainty
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Figure B.1: (V066 BM w/DRC) CASE 1: Prior and posterior distributions for the GEV
parameters

distributions of the parameters are shown in Figure B.7 and their quantiles are
shown in Table B.2.

Figure B.2 shows the return period plot for Hvita as well as the quantile plot,
the probability plot and the density plot. The Anderson-Darling p-value and the
diagnostic plots in Figure B.2 are evaluated to check the validity of the model. The
methods used for the model validation are discussed in Section 2.2.2.

The model is a reasonably good �t for the data, with an Anderson-Darling p-value
of pB = 0.38. Looking at the diagnostic plots in Figure B.2 a minor deviation
from the unit diagonal is shown in the probability plot but despite that it indicates
that the model �ts the data reasonably well. The annual maximum value points
on the quantile plot are close to linear indicating a good �t. Comparison between
the probability density of the GEV distribution and the histogram of the POTs,
indicates a good model �t. Plotting the annual maximum values on the return level
plot also seem to indicate that the model �ts the data well, since all the values are
inside the 95% posterior interval of the return levels.
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B. More details on the �ood analysis for Hvita
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Figure B.2: (V066 BM w/DRC) CASE 1: Diagnostic plots for the block maxima model

Block Maxima Model - Case 2: A negative gamma prior distribution for the
ξ parameter (BM w/DRC C2)

In Case 2, the prior distribution for ξ was chosen to be a negative gamma distribu-
tion. It contains only negative values having majority of the mass of the distribution
is close to the y-axis. Therefore, in this case, the posterior density of the shape pa-
rameter of the GEV distribution is constricted to negative values only. The prior
and posterior distributions for the GEV parameters are shown in Figure (B.3).

The simulated chains of the posterior distributions of the parameters are shown in
Figure B.8 and their quantiles are shown in Table B.2.

Figure B.4 shows the return period plot for Hvita as well as the quantile plot, the
probability plot and the density plot. Figure B.4 shows the diagnostic plots for the
river. The Anderson-Darling p-value, of pB = 0.19, indicates that the model is a
reasonably good �t for the data. The probability plot in Figure B.4 deviates from the
unit diagonal for few of the data points. The quantile plot deviates from linearity
at the largest data point indicating an inadequate �t to the model. Comparison
between the probability density of the GP distribution and the histogram of the
POTs, indicates that the model does not �t the data well as there are more POTs
having values around 200 than the model anticipates. There are also to more POTs
having values around 550 than the model predicts. Furthermore, the data points
deviate from the expected values in the return period plot indicating an inadequate
�t to the model.

162



B.1. V066: With discharge rating curve uncertainty
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Figure B.3: (V066 BM w/DRC) CASE 2: Prior and posterior distributions for the GEV
parameters

Block Maxima Model - Case 3: A negative beta prior distribution for the ξ
parameter (BM w/DRC C3)

In Case 3, the prior distribution for ξ was chosen to be a negative beta distribution.
It is a uniform distribution containing values on the interval [−1; 0] Therefore, in
this case, the posterior density of the shape parameter of the GEV distribution is
constricted to negative values only. The prior and posterior distributions for the
GEV parameters are shown in Figure (B.5).

The simulated chains of the posterior distributions of the parameters are shown in
Figure B.9 and their quantiles are shown in Table B.2.

Figure B.6 shows the return period plot for Hvita as well as the quantile plot, the
probability plot and the density plot.

Figure B.6 shows a diagnostic plots for the river for case 3, when the prior distri-
bution for the ξ parameter is a negative beta distribution. The results are similar
to the results from Case 2. The Anderson-Darling p-value of pB = 0.19 indicates
that the model is a reasonably good �t for the data. The probability plot in Figure
B.6 deviates from the unit diagonal for few of the data points. The quantile plot
deviates from linearity at the largest data point indicating an inadequate �t to the
model. Comparison between the probability density of the GEV distribution and
the histogram of the POTs indicates that the model does not �t the data well as
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B. More details on the �ood analysis for Hvita
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Figure B.4: (V066 BM w/DRC) CASE 2: Diagnostic plots for the block maxima model
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Figure B.5: (V066 BM w/DRC) CASE 3: Prior and posterior distributions for the GEV
parameters

there are more POTs having values around 200 than the model anticipates. There
are also to more POTs having values around 550 than the model predicts. Further-
more, the data points deviate from the expected values in the return period plot
indicating an inadequate �t to the model.
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B.1. V066: With discharge rating curve uncertainty
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Figure B.6: (V066 BM w/DRC) CASE 3: Diagnostic plots for the block maxima model

Block Maxima Model - Figures and tables displaying the posterior
parameters of the GEV distribution

Table B.2: (V066 BM w/DRC): Percentiles for the posterior distributions of the
GEV parameters, sampled using a MCMC iteration scheme, for all three cases of
prior distributions, calculated with DRC uncertainty

Block Extrema with DRC
Percentiles for parameters in the GEV distribution
Normal Neg-Gamma Neg-Beta

µ σ ξ µ σ ξ µ σ ξ
2.5% 197.00 53.28 -0.04 201.62 58.95 -0.11 201.72 58.80 -0.12
25% 208.83 61.72 0.09 214.86 67.17 -0.05 215.17 67.35 -0.06
50% 215.13 66.81 0.15 221.57 72.36 -0.03 221.73 72.67 -0.03
75% 221.65 72.46 0.22 228.47 78.09 -0.01 228.69 78.59 -0.01
97.5% 234.01 84.75 0.37 242.08 91.57 -0.00 242.69 92.45 -0.00
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B. More details on the �ood analysis for Hvita
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Figure B.7: (V066 BM w/DRC) Case 1: Markov chain Monte Carlo simulation for the
parameters in the GEV distribution
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Figure B.8: (V066 BM w/DRC) Case 2: Markov chain Monte Carlo simulation for the
parameters in the GEV distribution
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B.1. V066: With discharge rating curve uncertainty
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Figure B.9: (V066 BM w/DRC) Case 3: Markov chain Monte Carlo simulation for the
parameters in the GEV distribution

B.1.2. Threshold model using the diagnostic based method
(DBM) for determining the threshold value

Threshold model using diagnostic based methods for choosing a threshold-
Case 1: A normal prior distribution for the ξ parameter (TM DBM w/DRC
C1)

In Case 1, the prior distribution for ξ was chosen to be a normal distribution with
a large variance, making it non-informative prior. The prior distribution for σ̃ is
a non-informative inv-χ2 distribution. So, in this case, the GP parameters are
not constricted in any way by their prior distributions. The prior and posterior
distributions for the GP parameters are shown in Figure B.10.

The model seems to be a reasonably good �t for the data, having an Anderson-
Darling p-value of pB = 0.45. The diagnostic plots in Figure B.11 indicates that the
model �ts the data well. The probability plot is close to the unit diagonal for all
the data points. The data points are close to being linear in the quantile plot and
they �t well in the return period plot.
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B. More details on the �ood analysis for Hvita
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Figure B.10: (V066 TM DBM w/DRC) CASE 1: Prior and posterior distributions for
the GP parameters

Threshold model using diagnostic based methods for choosing a threshold-
Case 2: A negative gamma prior distribution for the ξ parameter (TM
DBM w/DRC C2)

In Case 2, the prior distribution for ξ was chosen to be a negative gamma distribu-
tion. It contains only negative values having majority of the mass of the distribution
is close to the y-axis. The prior distribution for σ̃ is a non-informative inv-χ2 dis-
tribution. Therefore, in this case, the posterior density of the shape parameter of
the GP distribution is constricted to negative values only. The prior and posterior
distributions for the GP parameters are shown in Figure B.12.

Figure B.13 shows a diagnostic plots for the model. The Anderson-Darling p-value
of pB = 0.26 indicates that the model is a reasonably good �t for the data. The
probability plot in Figure B.13 deviates from the unit diagonal for few of the data
points. The quantile plot deviates from linearity at the largest data point indicating
an inadequate �t to the model. Furthermore, the data points deviate from the
expected values in the return period plot indicating an inadequate �t to the model.
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B.1. V066: With discharge rating curve uncertainty
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Figure B.11: (V066 TM DBM w/DRC) CASE 1: Diagnostic plots for the Threshold
Model
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Figure B.12: (V066 TM DBM w/DRC) CASE 2: Prior and posterior distributions for
the GP parameters
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B. More details on the �ood analysis for Hvita
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Figure B.13: (V066 TM DBM w/DRC) CASE 2: Diagnostic plots for the Threshold
Model

Threshold model using diagnostic based methods for choosing a threshold-
Case 3: A negative beta prior distribution for the ξ parameter (TM DBM
w/DRC C3)

In Case 3, the prior distribution for ξ was chosen to be a negative beta distribution.
It is a uniform distribution containing values on the interval [−1; 0] The prior dis-
tribution for σ̃ is a non-informative inv-χ2 distribution. Therefor, in this case, the
posterior density of the shape parameter of the GEV distribution is constricted to
negative values only. The prior and posterior distributions for the GP parameters
are shown in Figure B.14.

Figure B.15 shows a diagnostic plots for the model for case 3, when the prior distri-
bution for the ξ parameter is a negative beta distribution. The results are almost
identical to case 2.

The Anderson-Darling p-value of pB = 0.25 indicates that the model is a reasonably
good �t for the data. The probability plot in Figure B.15 deviates from the unit
diagonal for few of the data points. The quantile plot deviates from linearity at
the largest data point indicating an inadequate �t to the model. Furthermore, the
data points deviate from the expected values in the return period plot indicating an
inadequate �t to the model.
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B.1. V066: With discharge rating curve uncertainty
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Figure B.14: (V066 TM DBM w/DRC) CASE 3: Prior and posterior distributions for
the GP parameters

Threshold model using the diagnostic based method (DBM) for
determining the threshold value - Figures and tables displaying the
posterior parameters of the GP distribution
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Figure B.15: (V066 TM DBM w/DRC) CASE 3: Diagnostic plots for the threshold model

Table B.3: (V066 TM DBM w/DRC): Percentiles for the posterior distributions of
the GP parameters, sampled using a MCMC iteration scheme, for all three cases
of prior distributions, calculated with DRC uncertainty

Threshold model with DRC and u = 200
Percentiles for parameters in the GEV distribution

Normal Neg-Gamma Neg-Beta
σ ξ̃ σ ξ̃ σ ξ̃

2.5% 37.67 -0.05 59.38 -0.14 59.74 -0.16
25% 49.23 0.12 69.32 -0.06 70.13 -0.07
50% 56.75 0.22 75.67 -0.03 76.51 -0.04
75% 64.90 0.34 82.76 -0.01 83.91 -0.02
97.5% 83.88 0.58 99.61 -0.00 100.85 -0.00
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B.1. V066: With discharge rating curve uncertainty
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Figure B.16: (V066 TM DBM w/DRC) Case 1: Markov chain Monte Carlo simulation
for the parameters in the GP distribution
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Figure B.17: (V066 TM DBM w/DRC) Case 2: Markov chain Monte Carlo simulation
for the parameters in the GP distribution
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B. More details on the �ood analysis for Hvita
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Figure B.18: (V066 TM DBM w/DRC) Case 3: Markov chain Monte Carlo simulation
for the parameters in the GEV distribution

B.1.3. Threshold model using the �xed frequency method
(FFM) for determining the threshold value

Threshold model using the �xed frequency method for choosing a
threshold- Case 1: A normal prior distribution for the ξ parameter (TM
FFM w/DRC C1)

In Case 1, the prior distribution for ξ was chosen to be a normal distribution with
a large variance, making it non-informative prior. The prior distribution for σ̃ is
a non-informative inv-χ2 distribution. So, in this case, the GP parameters are
not constricted in any way by their prior distributions. The prior and posterior
distributions for the GP parameters are shown in Figure B.19.

The model seems to be a reasonably good �t for the data, with an Anderson-Darling
p-value of pB = 0.46. The diagnostic plots in Figure B.11 indicates that the model
�ts the data well. The probability plot is close to the unit diagonal for all the data
points. Comparison between the probability density of the GP distribution and the
histogram of the POTs indicate a good model �t. The data points are close to being
linear in the quantile plot and they �t well in the return period plot.
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B.1. V066: With discharge rating curve uncertainty
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Figure B.19: (V066 TM FFM w/DRC) CASE 1: Prior and posterior distributions for the
GP parameters

Threshold model using the �xed frequency method for choosing a
threshold- Case 2: A negative gamma prior distribution for the ξ parameter
(TM FFM w/DRC C2)

In Case 2, the prior distribution for ξ was chosen to be a negative gamma distribu-
tion. It contains only negative values having majority of the mass of the distribution
is close to the y-axis. The prior distribution for σ̃ is a non-informative inv-χ2 dis-
tribution. Therefore, in this case, the posterior density of the shape parameter of
the GP distribution is constricted to negative values only. The prior and posterior
distributions for the GP parameters are shown in Figure B.21.

Figure B.13 shows a diagnostic plots for the model. The Anderson-Darling p-value
of pB = 0.09 raises concerns whether the model is adequate in emulating the data.
The probability plot in Figure B.13 deviates from the unit diagonal for some of the
data points. Comparison between the probability density of the GP distribution,
and the histogram of the POTs, raises some doubt about the accuracy of the model
since the number of values for each range represented by the bars in the Figure do
not seem to gradually get fewer with increasing POT values, as would be expected,
but instead there are for example more POTs having values around 550 then there
are POTs with values around 500. The quantile plot deviates from linearity at
the largest data point indicating an inadequate �t to the model. Furthermore, the
data points deviate from the expected values in the return period plot indicating an
inadequate �t to the model.
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Figure B.20: (V066 TM FFM w/DRC) CASE 1: Diagnostic plots for the Threshold
Model
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Figure B.21: (V066 TM FFM w/DRC) CASE 2: Prior and posterior distributions for the
GP parameters
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B.1. V066: With discharge rating curve uncertainty
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Figure B.22: (V066 TM FFM w/DRC) CASE 2: Diagnostic plots for the Threshold
Model

Threshold model using the �xed frequency method for choosing a
threshold- Case 3: A negative beta prior distribution for the ξ parameter
(TM FFM w/DRC C3)

In Case 3, the prior distribution for ξ was chosen to be a negative beta distribution.
It is a uniform distribution containing values on the interval [−1; 0] The prior dis-
tribution for σ̃ is a non-informative inv-χ2 distribution. Therefore, in this case, the
posterior density of the shape parameter of the GEV distribution is constricted to
negative values only. The prior and posterior distributions for the GP parameters
are shown in Figure B.23.

Figure B.15 shows a diagnostic plots for the model for case 3, when the prior distri-
bution for the ξ parameter is a negative beta distribution. The results are almost
identical to case 2.

The Anderson-Darling p-value of pB = 0.09 raises concerns whether the model is
adequate in emulating the data. The probability plot in Figure B.15 deviates from
the unit diagonal for few of the data points. Comparison between the probability
density of the GP distribution and the histogram of the POTs, raises some doubt
about the accuracy of the model since the number of values for each range repre-
sented by the bars in the �gure do not seem to gradually get fewer with increasing
POT values, as would be expected, but instead there are for example more POTs
having values around 550 then there are POTs with values around 500. The quantile
plot deviates from linearity at the largest data point indicating an inadequate �t to
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Figure B.23: (V066 TM FFM w/DRC) CASE 3: Prior and posterior distributions for the
GP parameters

the model. Furthermore, the data points deviate from the expected values in the
return period plot indicating an inadequate �t to the model.

Threshold model using the �xed frequency method (FFM) for determining
the threshold value - Figures and tables displaying the posterior parameters
of the GP distribution
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B.1. V066: With discharge rating curve uncertainty

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Probability Plot GP

Emperical Data

M
od

el

50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

450
Quantile Plot GP

E
m

pe
ric

al
 D

at
a

Model

10
0

10
1

10
2

10
3

200

300

400

500

600

700

800

900

R
et

ur
n 

Le
ve

l, 
D

is
ch

ar
ge

, q
 [m

3 /s
ec

]

Return Period [Years]

GP Return Plot. u = 212.56

0 100 200 300 400 500 600 700 800
0

5

10

15

20

25

30

35

40

z

f(
z)

Density Plot

Figure B.24: (V066 TM FFM w/DRC) CASE 3: Diagnostic plots for the Threshold
Model

Table B.4: (V066 TM FFM w/DRC): Percentiles for the posterior distributions of
the GP parameters, sampled using a MCMC iteration scheme, for all three cases
of prior distributions, calculated with DRC uncertainty

Threshold model with DRC and u = 213
Percentiles for parameters in the GEV distribution

Normal Neg-Gamma Neg-Beta
σ ξ̃ σ ξ̃ σ ξ̃

2.5% 36.73 -0.06 60.33 -0.16 60.52 -0.18
25% 48.94 0.13 70.89 -0.07 71.79 -0.08
50% 56.95 0.24 77.62 -0.04 78.87 -0.05
75% 65.85 0.37 85.31 -0.02 87.10 -0.02
97.5% 86.71 0.65 103.42 -0.00 106.32 -0.00
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B. More details on the �ood analysis for Hvita
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Figure B.25: (V066 TM FFM w/DRC) Case 1: Markov chain Monte Carlo simulation
for the parameters in the GP distribution
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Figure B.26: (V066 TM FFM w/DRC) Case 2: Markov chain Monte Carlo simulation
for the parameters in the GP distribution
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B.2. V066: Without discharge rating curve uncertainty
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Figure B.27: (V066 TM FFM w/DRC) Case 3: Markov chain Monte Carlo simulation
for the parameters in the GEV distribution

B.2. V066: Without discharge rating curve

uncertainty

B.2.1. Block maxima model

Table B.5: (V066 BM w/o DRC): Percentiles for the posterior distributions of the
GEV parameters, sampled using a MCMC iteration scheme, for all three cases of
prior distributions, calculated without DRC uncertainty

Block Extrema without DRC
Percentiles for parameters in the GEV distribution
Normal Neg-Gamma Neg-Beta

µ σ ξ µ σ ξ µ σ ξ
2.5% 197.25 53.38 -0.04 202.20 59.05 -0.11 202.14 59.02 -0.13
25% 208.86 61.64 0.08 214.78 67.25 -0.05 214.92 67.55 -0.06
50% 214.73 66.65 0.15 221.57 72.37 -0.03 221.65 72.95 -0.03
75% 221.07 72.20 0.22 228.51 78.04 -0.01 228.63 78.94 -0.01
97.5% 233.77 84.47 0.37 241.76 90.82 -0.00 242.46 92.10 -0.00
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Figure B.28: (V066 BM w/o DRC) Case 1: Markov chain Monte Carlo simulation for the
parameters in the GEV distribution

−5000 0 5000
0

1

2

3

4
x 10

−4Prior distribution of µ

0 10 20 30
0

1

2

3

4

x 10
−12

Prior distribution of σ

−100 0 100
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014
Prior distribution of ξ

750 800 850 900 950
0

0.005

0.01

0.015

Acceptance ratio = 0.41825

Posterior distribution of µ

150 200 250
0

0.005

0.01

0.015

0.02

Acceptance ratio = 0.44975

Posterior distribution of σ

−0.2 0 0.2 0.4 0.6
0

1

2

3

4

5

Acceptance ratio = 0.46575

Posterior distribution of ξ

100 200 300
0

0.005

0.01

0.015

0.02
Prior distribution of µ

0 10 20 30
0

1

2

3

4

x 10
−12

Prior distribution of σ

−2 0 2
0

0.2

0.4

0.6

0.8
Prior distribution of ξ

180 200 220 240
0

0.01

0.02

0.03

0.04

0.05

Acceptance ratio = 0.42325

Posterior distribution of µ

60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

Acceptance ratio = 0.44053

Posterior distribution of σ

−0.2 0 0.2 0.4
0

1

2

3

4

5

Acceptance ratio = 0.443

Posterior distribution of ξ

Figure B.29: (V066 BM w/o DRC) CASE 1: Prior and posterior distributions for the
GEV parameters
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B.2. V066: Without discharge rating curve uncertainty
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Figure B.30: (V066 BM w/o DRC) CASE 1: Diagnostic plots for the block maxima
model

B.2.2. Threshold model using the diagnostic based method
(DBM) for determining the threshold value

Table B.6: (V066 TM DBM w/o DRC): Percentiles for the posterior distributions of
the GP parameters, sampled using a MCMC iteration scheme, for all three cases
of prior distributions, calculated without DRC uncertainty

Threshold model with DRC and u = 200
Percentiles for parameters in the GEV distribution

Normal Neg-Gamma Neg-Beta
σ ξ̃ σ ξ̃ σ ξ̃

2.5% 42.55 -0.07 61.48 -0.14 62.18 -0.16
25% 54.21 0.07 71.26 -0.06 72.11 -0.08
50% 61.70 0.17 77.17 -0.03 78.56 -0.04
75% 69.95 0.28 84.13 -0.01 85.79 -0.02
97.5% 88.22 0.51 100.06 -0.00 102.27 -0.00
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Figure B.31: (V066 BM w/o DRC) Case 2: Markov chain Monte Carlo simulation for the
parameters in the GEV distribution
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Figure B.32: (V066 BM w/o DRC) CASE 2: Prior and posterior distributions for the
GEV parameters

184



B.2. V066: Without discharge rating curve uncertainty
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Figure B.33: (V066 BM w/o DRC) CASE 2: Diagnostic plots for the block maxima
model
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Figure B.34: (V066 BM w/o DRC) Case 3: Markov chain Monte Carlo simulation for the
parameters in the GEV distribution
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Figure B.35: (V066 BM w/o DRC) CASE 3: Prior and posterior distributions for the
GEV parameters
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Figure B.36: (V066 BM w/o DRC) CASE 3: Diagnostic plots for the block maxima
model
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B.2. V066: Without discharge rating curve uncertainty
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Figure B.37: (V066 TM DBM w/o DRC) Case 1: Markov chain Monte Carlo simulation
for the parameters in the GP distribution
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Figure B.38: (V066 TM DBM w/o DRC) CASE 1: Prior and posterior distributions for
the GP parameters
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Figure B.39: (V066 TM DBM w/o DRC) CASE 1: Diagnostic plots for the threshold
model

B.2.3. Threshold model using the �xed frequency method
(FFM) for determining the threshold value

Table B.7: (V066 TM FFM w/o DRC): Percentiles for the posterior distributions of
the GP parameters, sampled using a MCMC iteration scheme, for all three cases
of prior distributions, calculated without DRC uncertainty

Threshold model without DRC and u = 213
Percentiles for parameters in the GP distribution

Normal Neg-Gamma Neg-Beta
σ ξ̃ σ ξ̃ σ ξ̃

2.5% 34.99 -0.05 59.79 -0.15 60.14 -0.18
25% 47.33 0.14 70.27 -0.07 70.89 -0.08
50% 55.38 0.26 76.90 -0.03 77.75 -0.04
75% 64.51 0.39 84.04 -0.02 85.61 -0.02
97.5% 84.95 0.68 101.09 -0.00 104.36 -0.00
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B.2. V066: Without discharge rating curve uncertainty
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Figure B.40: (V066 TM DBM w/o DRC) Case 2: Markov chain Monte Carlo simulation
for the parameters in the GP distribution
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Figure B.41: (V066 TM DBM w/o DRC) CASE 2: Prior and posterior distributions for
the GP parameters
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B. More details on the �ood analysis for Hvita
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Figure B.42: (V066 TM DBM w/o DRC) CASE 2: Diagnostic plots for the threshold
model
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Figure B.43: (V066 TM DBM w/o DRC) Case 3: Markov chain Monte Carlo simulation
for the parameters in the GP distribution
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B.2. V066: Without discharge rating curve uncertainty
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Figure B.44: (V066 TM DBM w/o DRC) CASE 3: Prior and posterior distributions for
the GP parameters
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Figure B.45: (V066 TM DBM w/o DRC) CASE 3: Diagnostic plots for the threshold
model
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Figure B.46: (V066 TM FFM w/o DRC) Case 1: Markov chain Monte Carlo simulation
for the parameters in the GP distribution
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Figure B.47: (V066 TM FFM w/o DRC) CASE 1: Prior and posterior distributions for
the GP parameters
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B.2. V066: Without discharge rating curve uncertainty
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Figure B.48: (V066 TM FFM w/o DRC) CASE 1: Diagnostic plots for the threshold
model
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Figure B.49: (V066 TM FFM w/o DRC) Case 2: Markov chain Monte Carlo simulation
for the parameters in the GP distribution
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Figure B.50: (V066 TM FFM w/o DRC) CASE 2: Prior and posterior distributions for
the GP parameters
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Figure B.51: (V066 TM FFM w/o DRC) CASE 2: Diagnostic plots for the threshold
model
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B.2. V066: Without discharge rating curve uncertainty
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Figure B.52: (V066 TM FFM w/o DRC) Case 3: Markov chain Monte Carlo simulation
for the parameters in the GP distribution
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Figure B.53: (V066 TM FFM w/o DRC) CASE 3: Prior and posterior distributions for
the GP parameters
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Figure B.54: (V066 TM FFM w/o DRC) CASE 3: Diagnostic plots for the threshold
model
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C. More details on the �ood
analysis for Sanda

In this appendix, �gures and tables that are relevant to the research but were not
displayed in the main text of the paper, are displayed. That includes probability
plots, quantile plots and density plots for all cases of prior distributions. The prior
and posterior densities of all the parameters in the GEV and GP distributions are
also displayed for all cases. The appendix also includes the sampled Markov chain
Monte Carlo (MCMC) chains, used to construct the posterior distributions for the
parameters of both the generalized extreme value distribution (GEV) and the gen-
eralized Pareto (GP) distribution. The samples are displayed both in �gures, and
in tables as quantiles for all the models with and without the inclusion discharge
rating curve uncertainty. The histogram of the prior and posterior distribution and
the diagnostic plots for the models are shown for all models without the inclusion
of discharge rating curve uncertainty.

Table C.1 shows a list of abbreviations regarding the following �gures and tables.
Every �gure and table in the appendix is marked with some of these abbreviations
and that explains which river the data belongs to and what kind of models were
used to generate the results. For example, the text (V026 BM w/DRC) Case 2 in
the caption of a �gure or a table, indicates that the data displayed comes from the
river Sanda (V026), a block maxima model was used (BM) with a neg-gamma prior
distribution for the shape parameter (Case 2), and the uncertainty in the discharge
rating curve was taken into account in the calculations (w/DRC).
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C. More details on the �ood analysis for Sanda

Table C.1: Abbreviations used to explain the origin of the data used to generate
�gures and tables

V026: The river Sanda i Thistilfjordur: 26 is the number of the
gauging station measuring the data

Case 1: The shape parameter, ξ, was sampled using a normal
prior distribution

Case 2: The shape parameter, ξ, was sampled using a neg-
gamma prior distribution

Case 3: The shape parameter, ξ, was sampled using a neg-beta
prior distribution

BM: A block maxima model
TM DBM: A threshold model using the diagnostic based method

for determining the threshold value
TM FFM: A threshold model using the �xed frequency method for

determining the threshold value
w/DRC: A discharge rating curve uncertainty was taken into ac-

count in the calculations
w/o DRC: A discharge rating curve uncertainty was not taken into

account in the calculations

C.1. V026: With discharge rating curve

uncertainty

C.1.1. Block maxima model

Block Maxima Model - Case 1: A normal prior distribution for the ξ
parameter (BM w/DRC C1)

In Case 1, the prior distribution for ξ was chosen to be a normal distribution with
a large variance, making it non-informative prior. The prior distribution for σ is
a non-informative inv-χ2 distribution and the prior distribution for µ is a normal
distribution with large variance making it non-informative. So, in this case, the
GEV parameters are not constricted in any way by their prior distributions. See
further details on the prior distributions in Section 3.3.2. The construction of the
posterior distribution of all the parameters is discussed in Section 3.3.3. The prior
and posterior distributions for the GEV parameters are shown in Figure C.1

The simulated chains of posterior distributions for the GEV parameters are used
to model the extreme behavior of the river. The simulated chains of the posterior
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C.1. V026: With discharge rating curve uncertainty
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Figure C.1: (V026 BM w/DRC) CASE 1: Prior and posterior distributions for the GEV
parameters

distributions of the parameters are shown in Figure C.7 and their quantiles are
shown in Table C.2.

Figure C.2 shows the return period plot for Sanda as well as the quantile plot,
the probability plot and the density plot. The Anderson-Darling p-value and the
diagnostic plots in Figure C.2 are evaluated to check the validity of the model. The
methods used for the model validation are discussed in Section 2.2.2.

The model seems to be a good �t for the data, having an Anderson-Darling p-value
of pB = 0.61. The diagnostic plots in Figure C.2 also indicate that the model �ts
the data well. The annual maximum value points on the probability plot all lie close
to the unit diagonal and the points are close to linear on the quantile plot, which
is both an indication to a good �t. Comparison between the probability density of
the GEV distribution and the histogram of the POTs indicates a good model �t.
Plotting the annual maximum values on the return level plot also seem to indicate
that the model �ts the data well, since all the values are inside the 95% posterior
interval of the return levels.
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Figure C.2: (V026 BM w/DRC) CASE 1: Diagnostic plots for the block maxima model

Block Maxima Model - Case 2: A negative gamma prior distribution for the
ξ parameter (BM w/DRC C2)

In Case 2, the prior distribution for ξ was chosen to be a negative gamma distribu-
tion. It contains only negative values having majority of the mass of the distribution
is close to the y-axis. Therefore, in this case, the posterior density of the shape pa-
rameter of the GEV distribution is constricted to negative values only. The prior
and posterior distributions for the GEV parameters are shown in Figure (C.3).

The simulated chains of the posterior distributions of the parameters are shown in
Figure C.8 and their quantiles are shown in Table C.2.

Figure C.4 shows the return period plot for Sanda as well as the quantile plot, the
probability plot and the density plot. The model seems to be a good �t for the data,
having an Anderson-Darling p-value of pB = 0.63. The diagnostic plots in Figure
C.4 also indicate that the model �ts the data reasonably well. The annual maximum
value points on the probability plot all lie close to the unit diagonal and the points
are close to linear on the quantile plot. Comparison between the probability density
of the GP distribution and the histogram of the POTs indicates a good model �t.
Plotting the annual maximum values on the return level plot also seem to indicate
that the model �ts the data well.
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C.1. V026: With discharge rating curve uncertainty
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Figure C.3: (V026 BM w/DRC) CASE 2: Prior and posterior distributions for the GEV
parameters

Block Maxima Model - Case 3: A negative beta prior distribution for the ξ
parameter (BM w/DRC C3)

In Case 3, the prior distribution for ξ was chosen to be a negative beta distribution.
It is a uniform distribution containing values on the interval [−1; 0] Therefore, in
this case, the posterior density of the shape parameter of the GEV distribution is
constricted to negative values only. The prior and posterior distributions for the
GEV parameters are shown in Figure (C.5).

The simulated chains of the posterior distributions of the parameters are shown in
Figure C.9 and their quantiles are shown in Table C.2.

Figure C.6 shows the return period plot for Sanda as well as the quantile plot, the
probability plot and the density plot.

The model seems to be a good �t for the data, having an Anderson-Darling p-value
of pB = 0.60. The diagnostic plots in Figure C.6 also indicate that the model �ts
the data well. The annual maximum values on the probability plot all lie close
to the unit diagonal and the points are close to linear on the quantile plot, both
indicating a good model �t. Comparison between the probability density of the GEV
distribution and the histogram of the POTs indicates a good model �t. Plotting the
annual maximum values on the return level plot also seem to indicate that the model
�ts the data well, since all the values are inside the 95% posterior interval of the
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Figure C.4: (V026 BM w/DRC) CASE 2: Diagnostic plots for the block maxima model

−5000 0 5000
0

1

2

3

4
x 10

−4Prior distribution of µ

0 10 20 30
0

1

2

3

4

x 10
−12

Prior distribution of σ

−1.5 −1 −0.5 0 0.5
0

0.5

1

1.5
Prior distribution of ξ

800 850 900 950
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Acceptance ratio = 0.427

Posterior distribution of µ

150 200 250
0

0.005

0.01

0.015

0.02

0.025

Acceptance ratio = 0.42325

Posterior distribution of σ

−0.15 −0.1 −0.05 0
0

5

10

15

Acceptance ratio = 0.4575

Posterior distribution of ξ

−5000 0 5000

Prior distribution of µ

0 10 20 30

Prior distribution of σ

−1.5 −1 −0.5 0 0.5

Prior distribution of ξ

50 60 70

Posterior distribution of µ

15 20 25 30

Posterior distribution of σ

−0.4 −0.2 0

Posterior distribution of ξ

Figure C.5: (V026 BM w/DRC) CASE 3: Prior and posterior distributions for the GEV
parameters

return levels.

Block Maxima Model - Figures and tables displaying the posterior
parameters of the GEV distribution
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C.1. V026: With discharge rating curve uncertainty
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Figure C.6: (V026 BM w/DRC) CASE 3: Diagnostic plots for the block maxima model

Table C.2: (V026 BM w/DRC): Percentiles for the posterior distributions of the
GEV parameters, sampled using a MCMC iteration scheme, for all three cases of
prior distributions, calculated with DRC uncertainty

Block Extrema with DRC
Percentiles for parameters in the GEV distribution

Normal Neg-Gamma Neg-Beta
µ σ ξ µ σ ξ µ σ ξ

2.5% 56.67 14.38 -0.32 56.55 14.56 -0.30 56.48 14.79 -0.35
25% 60.38 16.87 -0.18 60.52 16.92 -0.17 60.77 17.24 -0.21
50% 62.42 18.42 -0.10 62.57 18.32 -0.10 62.92 18.74 -0.14
75% 64.48 20.16 -0.01 64.64 19.98 -0.05 65.14 20.54 -0.08
97.5% 68.49 24.16 0.19 68.65 23.70 -0.00 69.37 24.93 -0.01
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Figure C.7: (V026 BM w/DRC) Case 1: Markov chain Monte Carlo simulation for the
parameters in the GEV distribution
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Figure C.8: (V026 BM w/DRC) Case 2: Markov chain Monte Carlo simulation for the
parameters in the GEV distribution
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C.1. V026: With discharge rating curve uncertainty
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Figure C.9: (V026 BM w/DRC) Case 3: Markov chain Monte Carlo simulation for the
parameters in the GEV distribution

C.1.2. Threshold model using the diagnostic based method
(DBM) for determining the threshold value

Threshold model using diagnostic based methods for choosing a threshold-
Case 1: A normal prior distribution for the ξ parameter (TM DBM w/DRC
C1)

In Case 1, the prior distribution for ξ was chosen to be a normal distribution with
a large variance, making it non-informative prior. The prior distribution for σ̃ is
a non-informative inv-χ2 distribution. So, in this case, the GP parameters are
not constricted in any way by their prior distributions. The prior and posterior
distributions for the GP parameters are shown in Figure C.10.

The model seems to be a reasonably good �t for the data, having an Anderson-
Darling p-value of pB = 0.30. The diagnostic plots in Figure C.11 also indicate
that the model �ts the data reasonably well. The annual maximum value points on
the probability plot lie close to the unit diagonal with only minor exceptions. The
points are close to linear on the quantile plot except a slight deviation for the largest
values. Comparison between the probability density of the GP distribution and the
histogram of the POTs indicates a good model �t. Plotting the annual maximum
values on the return level plot also seem to indicate that the model �ts the data
well.
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Figure C.10: (V026 TM DBM w/DRC) CASE 1: Prior and posterior distributions for
the GP parameters

Threshold model using diagnostic based methods for choosing a threshold-
Case 2: A negative gamma prior distribution for the ξ parameter (TM
DBM w/DRC C2)

In Case 2, the prior distribution for ξ was chosen to be a negative gamma distribu-
tion. It contains only negative values having majority of the mass of the distribution
is close to the y-axis. The prior distribution for σ̃ is a non-informative inv-χ2 dis-
tribution. Therefore, in this case, the posterior density of the shape parameter of
the GP distribution is constricted to negative values only. The prior and posterior
distributions for the GP parameters are shown in Figure C.12.

The model seems to be a reasonably good �t for the data, having an Anderson-
Darling p-value of pB = 0.22. The diagnostic plots in Figure C.13 also indicate that
the model �ts the data reasonably well. The annual maximum value points on the
probability plot lie close to the unit diagonal with only minor exceptions. The points
are close to linear on the quantile plot indicating a good �t. Comparison between the
probability density of the GP distribution and the histogram of the POTs indicates
a good model �t. Plotting the annual maximum values on the return level plot also
seem to indicate that the model �ts the data well.
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C.1. V026: With discharge rating curve uncertainty
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Figure C.11: (V026 TM DBM w/DRC) CASE 1: Diagnostic plots for the Threshold
Model
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Figure C.12: (V026 TM DBM w/DRC) CASE 2: Prior and posterior distributions for
the GP parameters
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Figure C.13: (V026 TM DBM w/DRC) CASE 2: Diagnostic plots for the Threshold
Model

Threshold model using diagnostic based methods for choosing a threshold-
Case 3: A negative beta prior distribution for the ξ parameter (TM DBM
w/DRC C3)

In Case 3, the prior distribution for ξ was chosen to be a negative beta distribution.
It is a uniform distribution containing values on the interval [−1; 0] The prior dis-
tribution for σ̃ is a non-informative inv-χ2 distribution. Therefor, in this case, the
posterior density of the shape parameter of the GEV distribution is constricted to
negative values only. The prior and posterior distributions for the GP parameters
are shown in Figure C.14.

The model seems to be a reasonably good �t for the data, having an Anderson-
Darling p-value of pB = 0.18. The diagnostic plots in Figure C.13 also indicate that
the model �ts the data reasonably well. The annual maximum value points on the
probability plot lie close to the unit diagonal with only minor exceptions. The points
are close to linear on the quantile plot indicating a good �t. Comparison between the
probability density of the GP distribution and the histogram of the POTs indicates
a good model �t. Plotting the annual maximum values on the return level plot also
seem to indicate that the model �ts the data well.
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C.1. V026: With discharge rating curve uncertainty
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Figure C.14: (V026 TM DBM w/DRC) CASE 3: Prior and posterior distributions for
the GP parameters

Threshold model using the diagnostic based method (DBM) for
determining the threshold value - Figures and tables displaying the
posterior parameters of the GP distribution
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Figure C.15: (V026 TM DBM w/DRC) CASE 3: Diagnostic plots for the threshold model

Table C.3: (V026 TM DBM w/DRC): Percentiles for the posterior distributions of
the GP parameters, sampled using a MCMC iteration scheme, for all three cases
of prior distributions, calculated with DRC uncertainty

Threshold model with DRC and u = 40
Percentiles for parameters in the GEV distribution

Normal Neg-Gamma Neg-Beta
σ ξ̃ σ ξ̃ σ ξ̃

2.5% 13.89 -0.26 17.10 -0.25 17.42 -0.28
25% 17.77 -0.11 19.89 -0.13 20.42 -0.16
50% 20.23 -0.01 21.68 -0.07 22.34 -0.10
75% 22.81 0.09 23.69 -0.03 24.46 -0.05
97.5% 28.45 0.33 28.48 -0.00 29.44 -0.01
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C.1. V026: With discharge rating curve uncertainty
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Figure C.16: (V026 TM DBM w/DRC) Case 1: Markov chain Monte Carlo simulation
for the parameters in the GP distribution
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Figure C.17: (V026 TM DBM w/DRC) Case 2: Markov chain Monte Carlo simulation
for the parameters in the GP distribution
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C. More details on the �ood analysis for Sanda
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Figure C.18: (V026 TM DBM w/DRC) Case 3: Markov chain Monte Carlo simulation
for the parameters in the GEV distribution

C.1.3. Threshold model using the �xed frequency method
(FFM) for determining the threshold value

Threshold model using the �xed frequency method for choosing a
threshold- Case 1: A normal prior distribution for the ξ parameter (TM
FFM w/DRC C1)

In Case 1, the prior distribution for ξ was chosen to be a normal distribution with
a large variance, making it non-informative prior. The prior distribution for σ̃ is
a non-informative inv-χ2 distribution. So, in this case, the GP parameters are
not constricted in any way by their prior distributions. The prior and posterior
distributions for the GP parameters are shown in Figure C.19.

The model seems to be a good �t for the data, having an Anderson-Darling p-value
of pB = 0.63. The diagnostic plots in Figure C.20 also indicate that the model �ts
the data reasonably well. The annual maximum value points on the probability
plot lie close to the unit diagonal. The points are close to linear on the quantile
plot indicating a good �t. Comparison between the probability density of the GP
distribution and the histogram of the POTs indicate a good model �t. Plotting the
annual maximum values on the return level plot also seem to indicate that the model
�ts the data well.
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C.1. V026: With discharge rating curve uncertainty
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Figure C.19: (V026 TM FFM w/DRC) CASE 1: Prior and posterior distributions for the
GP parameters

Threshold model using the �xed frequency method for choosing a
threshold- Case 2: A negative gamma prior distribution for the ξ parameter
(TM FFM w/DRC C2)

In Case 2, the prior distribution for ξ was chosen to be a negative gamma distribu-
tion. It contains only negative values having majority of the mass of the distribution
is close to the y-axis. The prior distribution for σ̃ is a non-informative inv-χ2 dis-
tribution. Therefore, in this case, the posterior density of the shape parameter of
the GP distribution is constricted to negative values only. The prior and posterior
distributions for the GP parameters are shown in Figure C.21.

The model seems to be a good �t for the data, having an Anderson-Darling p-value
of pB = 0.69. The diagnostic plots in Figure C.22 also indicate that the model �ts
the data reasonably well. The annual maximum value points on the probability
plot lie close to the unit diagonal. The points are close to linear on the quantile
plot indicating a good �t. Comparison between the probability density of the GP
distribution and the histogram of the POTs indicate a good model �t. Plotting the
annual maximum values on the return level plot also seem to indicate that the model
�ts the data well.
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C. More details on the �ood analysis for Sanda
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Figure C.20: (V026 TM FFM w/DRC) CASE 1: Diagnostic plots for the Threshold
Model
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Figure C.21: (V026 TM FFM w/DRC) CASE 2: Prior and posterior distributions for the
GP parameters

214



C.1. V026: With discharge rating curve uncertainty
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Figure C.22: (V026 TM FFM w/DRC) CASE 2: Diagnostic plots for the Threshold
Model

Threshold model using the �xed frequency method for choosing a
threshold- Case 3: A negative beta prior distribution for the ξ parameter
(TM FFM w/DRC C3)

In Case 3, the prior distribution for ξ was chosen to be a negative beta distribution.
It is a uniform distribution containing values on the interval [−1; 0] The prior dis-
tribution for σ̃ is a non-informative inv-χ2 distribution. Therefore, in this case, the
posterior density of the shape parameter of the GEV distribution is constricted to
negative values only. The prior and posterior distributions for the GP parameters
are shown in Figure C.23.

The model seems to be a good �t for the data, having an Anderson-Darling p-value
of pB = 0.65. The diagnostic plots in Figure C.24 also indicate that the model �ts
the data reasonably well. The annual maximum value points on the probability
plot lie close to the unit diagonal. The points are close to linear on the quantile
plot indicating a good �t. Comparison between the probability density of the GP
distribution and the histogram of the POTs indicate a good model �t. Plotting the
annual maximum values on the return level plot also seem to indicate that the model
�ts the data well.
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C. More details on the �ood analysis for Sanda
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Figure C.23: (V026 TM FFM w/DRC) CASE 3: Prior and posterior distributions for the
GP parameters

Threshold model using the �xed frequency method (FFM) for determining
the threshold value - Figures and tables displaying the posterior parameters
of the GP distribution
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C.1. V026: With discharge rating curve uncertainty
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Figure C.24: (V026 TM FFM w/DRC) CASE 3: Diagnostic plots for the threshold model

Table C.4: (V026 TM FFM w/DRC): Percentiles for the posterior distributions of
the GP parameters, sampled using a MCMC iteration scheme, for all three cases
of prior distributions, calculated with DRC uncertainty

Threshold model with DRC and u = 59
Percentiles for parameters in the GEV distribution

Normal Neg-Gamma Neg-Beta
σ ξ̃ σ ξ̃ σ ξ̃

2.5% 13.40 -0.43 14.90 -0.39 15.60 -0.44
25% 18.01 -0.27 18.32 -0.22 19.76 -0.30
50% 21.05 -0.16 20.63 -0.13 22.34 -0.21
75% 24.28 -0.03 23.35 -0.06 25.31 -0.12
97.5% 31.87 0.26 30.33 -0.01 32.06 -0.02
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C. More details on the �ood analysis for Sanda
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Figure C.25: (V026 TM FFM w/DRC) Case 1: Markov chain Monte Carlo simulation
for the parameters in the GP distribution
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Figure C.26: (V026 TM FFM w/DRC) Case 2: Markov chain Monte Carlo simulation
for the parameters in the GP distribution
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C.2. V026: Without discharge rating curve uncertainty
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Figure C.27: (V026 TM FFM w/DRC) Case 3: Markov chain Monte Carlo simulation
for the parameters in the GEV distribution

C.2. V026: Without discharge rating curve

uncertainty

C.2.1. Block maxima model

Table C.5: (V026 BM w/o DRC): Percentiles for the posterior distributions of the
GEV parameters, sampled using a MCMC iteration scheme, for all three cases of
prior distributions, calculated without DRC uncertainty

Block Extrema without DRC
Percentiles for parameters in the GEV distribution

Normal Neg-Gamma Neg-Beta
µ σ ξ µ σ ξ µ σ ξ

2.5% 56.62 14.46 -0.32 56.43 14.65 -0.30 56.79 14.84 -0.34
25% 60.41 16.87 -0.18 60.41 16.90 -0.17 60.80 17.20 -0.21
50% 62.37 18.39 -0.10 62.49 18.32 -0.10 62.87 18.68 -0.14
75% 64.43 20.11 -0.01 64.56 19.94 -0.05 65.03 20.37 -0.08
97.5% 68.35 24.25 0.19 68.65 23.79 -0.01 69.22 24.59 -0.01
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C. More details on the �ood analysis for Sanda
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Figure C.28: (V026 BM w/o DRC) Case 1: Markov chain Monte Carlo simulation for the
parameters in the GEV distribution
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Figure C.29: (V026 BM w/o DRC) CASE 1: Prior and posterior distributions for the
GEV parameters
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C.2. V026: Without discharge rating curve uncertainty
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Figure C.30: (V026 BM w/o DRC) CASE 1: Diagnostic plots for the block maxima
model

C.2.2. Threshold model using the diagnostic based method
(DBM) for determining the threshold value

Table C.6: (V026 TM DBM w/o DRC): Percentiles for the posterior distributions of
the GP parameters, sampled using a MCMC iteration scheme, for all three cases
of prior distributions, calculated without DRC uncertainty

Threshold model with DRC and u = 40
Percentiles for parameters in the GEV distribution

Normal Neg-Gamma Neg-Beta
σ ξ̃ σ ξ̃ σ ξ̃

2.5% 13.85 -0.23 16.65 -0.22 16.83 -0.25
25% 17.28 -0.09 19.07 -0.11 19.54 -0.15
50% 19.22 -0.00 20.58 -0.07 21.16 -0.09
75% 21.37 0.09 22.27 -0.03 23.02 -0.04
97.5% 26.28 0.29 26.26 -0.00 27.32 -0.00
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C. More details on the �ood analysis for Sanda
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Figure C.31: (V026 BM w/o DRC) Case 2: Markov chain Monte Carlo simulation for the
parameters in the GEV distribution
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Figure C.32: (V026 BM w/o DRC) CASE 2: Prior and posterior distributions for the
GEV parameters
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C.2. V026: Without discharge rating curve uncertainty
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Figure C.33: (V026 BM w/o DRC) CASE 2: Diagnostic plots for the block maxima
model
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Figure C.34: (V026 BM w/o DRC) Case 3: Markov chain Monte Carlo simulation for the
parameters in the GEV distribution
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Figure C.35: (V026 BM w/o DRC) CASE 3: Prior and posterior distributions for the
GEV parameters
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Figure C.36: (V026 BM w/o DRC) CASE 3: Diagnostic plots for the block maxima
model
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C.2. V026: Without discharge rating curve uncertainty
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Figure C.37: (V026 TM DBM w/o DRC) Case 1: Markov chain Monte Carlo simulation
for the parameters in the GP distribution
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Figure C.38: (V026 TM DBM w/o DRC) CASE 1: Prior and posterior distributions for
the GP parameters
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Figure C.39: (V026 TM DBM w/o DRC) CASE 1: Diagnostic plots for the threshold
model

C.2.3. Threshold model using the �xed frequency method
(FFM) for determining the threshold value

Table C.7: (V026 TM FFM w/o DRC): Percentiles for the posterior distributions of
the GP parameters, sampled using a MCMC iteration scheme, for all three cases
of prior distributions, calculated without DRC uncertainty

Threshold model without DRC and u = 59
Percentiles for parameters in the GP distribution

Normal Neg-Gamma Neg-Beta
σ ξ̃ σ ξ̃ σ ξ̃

2.5% 12.81 -0.40 14.64 -0.37 15.15 -0.44
25% 17.42 -0.24 18.10 -0.21 18.98 -0.28
50% 20.15 -0.13 20.23 -0.13 21.58 -0.19
75% 23.17 -0.02 22.83 -0.06 24.56 -0.11
97.5% 29.69 0.28 29.03 -0.01 31.56 -0.01
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C.2. V026: Without discharge rating curve uncertainty
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Figure C.40: (V026 TM DBM w/o DRC) Case 2: Markov chain Monte Carlo simulation
for the parameters in the GP distribution
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Figure C.41: (V026 TM DBM w/o DRC) CASE 2: Prior and posterior distributions for
the GP parameters
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Figure C.42: (V026 TM DBM w/o DRC) CASE 2: Diagnostic plots for the threshold
model

0 2000 4000 6000 8000 10000
10

15

20

25

30

35

40
σ

Gelman−Rubin stats = 1.0014
Acceptance ratio = 0.45608

MCMC iteration for the GP parameters

0 2000 4000 6000 8000 10000
−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0
ξ

Gelman−Rubin stats = 1.0008
Acceptance ratio = 0.54623

Figure C.43: (V026 TM DBM w/o DRC) Case 3: Markov chain Monte Carlo simulation
for the parameters in the GP distribution
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C.2. V026: Without discharge rating curve uncertainty
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Figure C.44: (V026 TM DBM w/o DRC) CASE 3: Prior and posterior distributions for
the GP parameters
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Figure C.45: (V026 TM DBM w/o DRC) CASE 3: Diagnostic plots for the threshold
model
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C. More details on the �ood analysis for Sanda
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Figure C.46: (V026 TM FFM w/o DRC) Case 1: Markov chain Monte Carlo simulation
for the parameters in the GP distribution
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Figure C.47: (V026 TM FFM w/o DRC) CASE 1: Prior and posterior distributions for
the GP parameters
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C.2. V026: Without discharge rating curve uncertainty
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Figure C.48: (V026 TM FFM w/o DRC) CASE 1: Diagnostic plots for the threshold
model
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Figure C.49: (V026 TM FFM w/o DRC) Case 2: Markov chain Monte Carlo simulation
for the parameters in the GP distribution
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Figure C.50: (V026 TM FFM w/o DRC) CASE 2: Prior and posterior distributions for
the GP parameters
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Figure C.51: (V026 TM FFM w/o DRC) CASE 2: Diagnostic plots for the threshold
model
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C.2. V026: Without discharge rating curve uncertainty
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Figure C.52: (V026 TM FFM w/o DRC) Case 3: Markov chain Monte Carlo simulation
for the parameters in the GP distribution

0 10 20 30
0

1

2

3

4

x 10
−12

Prior distribution of σ

−1.5 −1 −0.5 0 0.5
0

0.5

1

1.5
Prior distribution of ξ

150 200 250 300 350 400
0

0.002

0.004

0.006

0.008

0.01

0.012
Posterior distribution of σ

−0.4 −0.3 −0.2 −0.1 0
0

2

4

6

8

10
Posterior distribution of ξ

0 10 20 30

Prior distribution of σ̂

−1.5 −1 −0.5 0 0.5

Prior distribution of ξ

10 20 30 40

Posterior distribution of σ̂

−0.5 −0.4 −0.3 −0.2 −0.1 0

Posterior distribution of ξ

Figure C.53: (V026 TM FFM w/o DRC) CASE 3: Prior and posterior distributions for
the GP parameters
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Figure C.54: (V026 TM FFM w/o DRC) CASE 3: Diagnostic plots for the threshold
model
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D. More details on the �ood
analysis for Svarta

In this appendix, �gures and tables that are relevant to the research but were not
displayed in the main text of the paper, are displayed. That includes probability
plots, quantile plots and density plots for all cases of prior distributions. The prior
and posterior densities of all the parameters in the GEV and GP distributions are
also displayed for all cases. The appendix also includes the sampled Markov chain
Monte Carlo (MCMC) chains, used to construct the posterior distributions for the
parameters of both the generalized extreme value distribution (GEV) and the gen-
eralized Pareto (GP) distribution. The samples are displayed both in �gures, and
in tables as quantiles for all the models with and without the inclusion discharge
rating curve uncertainty. The histogram of the prior and posterior distribution and
the diagnostic plots for the models are shown for all models without the inclusion
of discharge rating curve uncertainty.

Table D.1 shows a list of abbreviations regarding the following �gures and tables.
Every �gure and table in the appendix is marked with some of these abbreviations
and that explains which river the data belongs to and what kind of models were
used to generate the results. For example, the text (V010 BM w/DRC) Case 2 in
the caption of a �gure or a table, indicates that the data displayed comes from the
river Svarta (V010), a block maxima model was used (BM) with a neg-gamma prior
distribution for the shape parameter (Case 2), and the uncertainty in the discharge
rating curve was taken into account in the calculations (w/DRC).

235



D. More details on the �ood analysis for Svarta

Table D.1: Abbreviations used to explain the origin of the data used to generate
�gures and tables

V010: The river Svarta in Skagafjordur: 10 is the number of
the gauging station measuring the data

Case 1: The shape parameter, ξ, was sampled using a normal
prior distribution

Case 2: The shape parameter, ξ, was sampled using a neg-
gamma prior distribution

Case 3: The shape parameter, ξ, was sampled using a neg-beta
prior distribution

BM: A block maxima model
TM DBM: A threshold model using the diagnostic based method

for determining the threshold value
TM FFM: A threshold model using the �xed frequency method for

determining the threshold value
w/DRC: A discharge rating curve uncertainty was taken into ac-

count in the calculations
w/o DRC: A discharge rating curve uncertainty was not taken into

account in the calculations

D.1. V010: With discharge rating curve

uncertainty

D.1.1. Block maxima model

Block Maxima Model - Case 1: A normal prior distribution for the ξ
parameter (BM w/DRC C1)

In Case 1, the prior distribution for ξ was chosen to be a normal distribution with
a large variance, making it non-informative prior. The prior distribution for σ is
a non-informative inv-χ2 distribution and the prior distribution for µ is a normal
distribution with large variance making it non-informative. So, in this case, the
GEV parameters are not constricted in any way by their prior distributions. See
further details on the prior distributions in Section 3.3.2. The construction of the
posterior distribution of all the parameters is discussed in Section 3.3.3. The prior
and posterior distributions for the GEV parameters are shown in Figure D.1

The simulated chains of posterior distributions for the GEV parameters are used
to model the extreme behavior of the river. The simulated chains of the posterior
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D.1. V010: With discharge rating curve uncertainty
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Figure D.1: (V010 BM w/DRC) CASE 1: Prior and posterior distributions for the GEV
parameters

distributions of the parameters are shown in Figure D.7 and their quantiles are
shown in Table D.2.

Figure D.2 shows the return period plot for Svarta as well as the quantile plot,
the probability plot and the density plot. The Anderson-Darling p-value and the
diagnostic plots in Figure D.2 are evaluated to check the validity of the model. The
methods used for the model validation are discussed in Section 2.2.2.

The model seems to be a good �t for the data, having an Anderson-Darling p-value
of pB = 0.46. The diagnostic plots in Figure D.2 also indicate that the model �ts
the data reasonably well. The annual maximum value points on the probability plot
all lie close to the unit diagonal and the points are close to linear on the quantile
plot, which is both an indication to a good �t. Comparison between the probability
density of the GEV distribution and the histogram of the POTs, indicates that the
model is a good �t for the data. Plotting the annual maximum values on the return
level plot also seem to indicate that the model �ts the data well, since all the values
are inside the 95% posterior interval of the return levels.
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Figure D.2: (V010 BM w/DRC) CASE 1: Diagnostic plots for the block maxima model

Block Maxima Model - Case 2: A negative gamma prior distribution for the
ξ parameter (BM w/DRC C2)

In Case 2, the prior distribution for ξ was chosen to be a negative gamma distribu-
tion. It contains only negative values having majority of the mass of the distribution
is close to the y-axis. Therefore, in this case, the posterior density of the shape pa-
rameter of the GEV distribution is constricted to negative values only. The prior
and posterior distributions for the GEV parameters are shown in Figure (D.3).

The simulated chains of the posterior distributions of the parameters are shown in
Figure D.8 and their quantiles are shown in Table D.2.

Figure D.4 shows the return period plot for Svarta as well as the quantile plot, the
probability plot and the density plot. The Anderson-Darling p-value of pB = 0.45
indicates that the model is a good �t for the data. The probability plot in Figure D.4
also indicates that the model �ts the data well. The annual maximum value points
are close to linear on the quantile plot indicating a good �t to the model. Comparison
between the probability density of the GP distribution and the histogram of the
POTs indicates that the model could be a good �t for the data. Plotting the annual
maximum values on the return level plot also seem to indicate that the model �ts
the data well.
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Figure D.3: (V010 BM w/DRC) CASE 2: Prior and posterior distributions for the GEV
parameters

Block Maxima Model - Case 3: A negative beta prior distribution for the ξ
parameter (BM w/DRC C3)

In Case 3, the prior distribution for ξ was chosen to be a negative beta distribution.
It is a uniform distribution containing values on the interval [−1; 0] Therefore, in
this case, the posterior density of the shape parameter of the GEV distribution is
constricted to negative values only. The prior and posterior distributions for the
GEV parameters are shown in Figure (D.5).

The simulated chains of the posterior distributions of the parameters are shown in
Figure D.9 and their quantiles are shown in Table D.2.

Figure D.6 shows the return period plot for Svarta as well as the quantile plot, the
probability plot and the density plot.

The Anderson-Darling p-value of pB = 0.43 indicates that the model is a good �t for
the data. The probability plot in Figure D.4 also indicates that the model �ts the
data well. The annual maximum value points are close to linear on the quantile plot
indicating a good �t to the model. Comparison between the probability density of
the GP distribution and the histogram of the POTs indicates that the model could
be a good �t for the data. Plotting the annual maximum values on the return level
plot also seem to indicate that the model �ts the data well.
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Figure D.4: (V010 BM w/DRC) CASE 2: Diagnostic plots for the block maxima model
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Figure D.5: (V010 BM w/DRC) CASE 3: Prior and posterior distributions for the GEV
parameters

Block Maxima Model - Figures and tables displaying the posterior
parameters of the GEV distribution
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Figure D.6: (V010 BM w/DRC) CASE 3: Diagnostic plots for the block maxima model

Table D.2: (V010 BM w/DRC): Percentiles for the posterior distributions of the
GEV parameters, sampled using a MCMC iteration scheme, for all three cases of
prior distributions, calculated with DRC uncertainty

Block Extrema with DRC
Percentiles for parameters in the GEV distribution

Normal Neg-Gamma Neg-Beta
µ σ ξ µ σ ξ µ σ ξ

2.5% 48.83 11.62 -0.34 49.34 12.16 -0.32 49.26 12.42 -0.38
25% 52.31 14.11 -0.15 52.91 14.46 -0.16 53.11 14.84 -0.22
50% 54.18 15.60 -0.04 54.86 15.91 -0.09 55.25 16.43 -0.14
75% 56.12 17.31 0.09 56.83 17.57 -0.04 57.28 18.24 -0.07
97.5% 60.37 21.51 0.34 60.86 21.40 -0.00 61.54 22.64 -0.01
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Figure D.7: (V010 BM w/DRC) Case 1: Markov chain Monte Carlo simulation for the
parameters in the GEV distribution
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Figure D.8: (V010 BM w/DRC) Case 2: Markov chain Monte Carlo simulation for the
parameters in the GEV distribution
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Figure D.9: (V010 BM w/DRC) Case 3: Markov chain Monte Carlo simulation for the
parameters in the GEV distribution

D.1.2. Threshold model using the diagnostic based method
(DBM) for determining the threshold value

Threshold model using diagnostic based methods for choosing a threshold-
Case 1: A normal prior distribution for the ξ parameter (TM DBM w/DRC
C1)

In Case 1, the prior distribution for ξ was chosen to be a normal distribution with
a large variance, making it non-informative prior. The prior distribution for σ̃ is
a non-informative inv-χ2 distribution. So, in this case, the GP parameters are
not constricted in any way by their prior distributions. The prior and posterior
distributions for the GP parameters are shown in Figure D.10.

The model seems to be a good �t for the data, having an Anderson-Darling p-value
of pB = 0.51. The diagnostic plots in Figure D.11 also indicate that the model �ts
the data well. The annual maximum values on the probability plot all lie close to the
unit diagonal and the points are close to linear on the quantile plot. Comparison
between the probability density of the GP distribution and the histogram of the
POTs indicates that the model is a good �t for the data. Plotting the annual
maximum values on the return level plot also seem to indicate that the model �ts
the data well.
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Figure D.10: (V010 TM DBM w/DRC) CASE 1: Prior and posterior distributions for
the GP parameters

Threshold model using diagnostic based methods for choosing a threshold-
Case 2: A negative gamma prior distribution for the ξ parameter (TM
DBM w/DRC C2)

In Case 2, the prior distribution for ξ was chosen to be a negative gamma distribu-
tion. It contains only negative values having majority of the mass of the distribution
is close to the y-axis. The prior distribution for σ̃ is a non-informative inv-χ2 dis-
tribution. Therefore, in this case, the posterior density of the shape parameter of
the GP distribution is constricted to negative values only. The prior and posterior
distributions for the GP parameters are shown in Figure D.12.

The model seems to be a good �t for the data, having an Anderson-Darling p-value
of pB = 0.55. The diagnostic plots in Figure D.13 also indicate that the model �ts
the data well. The annual maximum values on the probability plot all lie close to the
unit diagonal and the points are close to linear on the quantile plot. Comparison
between the probability density of the GP distribution and the histogram of the
POTs indicates that the model is a good �t for the data. Plotting the annual
maximum values on the return level plot also seem to indicate that the model �ts
the data well.
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Figure D.11: (V010 TM DBM w/DRC) CASE 1: Diagnostic plots for the Threshold
Model
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Figure D.12: (V010 TM DBM w/DRC) CASE 2: Prior and posterior distributions for
the GP parameters
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Figure D.13: (V010 TM DBM w/DRC) CASE 2: Diagnostic plots for the Threshold
Model

Threshold model using diagnostic based methods for choosing a threshold-
Case 3: A negative beta prior distribution for the ξ parameter (TM DBM
w/DRC C3)

In Case 3, the prior distribution for ξ was chosen to be a negative beta distribution.
It is a uniform distribution containing values on the interval [−1; 0] The prior dis-
tribution for σ̃ is a non-informative inv-χ2 distribution. Therefor, in this case, the
posterior density of the shape parameter of the GEV distribution is constricted to
negative values only. The prior and posterior distributions for the GP parameters
are shown in Figure D.14.

The model seems to be a good �t for the data, having an Anderson-Darling p-value
of pB = 0.53. The diagnostic plots in Figure D.15 also indicate that the model �ts
the data well. The annual maximum values on the probability plot all lie close to the
unit diagonal and the points are close to linear on the quantile plot. Comparison
between the probability density of the GP distribution and the histogram of the
POTs indicates that the model is a good �t for the data. Plotting the annual
maximum values on the return level plot also seem to indicate that the model �ts
the data well.
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Figure D.14: (V010 TM DBM w/DRC) CASE 3: Prior and posterior distributions for
the GP parameters

Threshold model using the diagnostic based method (DBM) for
determining the threshold value - Figures and tables displaying the
posterior parameters of the GP distribution
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Figure D.15: (V010 TM DBM w/DRC) CASE 3: Diagnostic plots for the threshold model

Table D.3: (V010 TM DBM w/DRC): Percentiles for the posterior distributions of
the GP parameters, sampled using a MCMC iteration scheme, for all three cases
of prior distributions, calculated with DRC uncertainty

Threshold model with DRC and u = 40
Percentiles for parameters in the GEV distribution

Normal Neg-Gamma Neg-Beta
σ ξ̃ σ ξ̃ σ ξ̃

2.5% 14.50 -0.37 15.21 -0.35 15.75 -0.39
25% 18.20 -0.25 18.00 -0.22 18.87 -0.27
50% 20.31 -0.18 19.86 -0.15 20.87 -0.20
75% 22.65 -0.09 21.86 -0.08 23.13 -0.13
97.5% 27.41 0.11 26.76 -0.01 28.14 -0.02
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Figure D.16: (V010 TM DBM w/DRC) Case 1: Markov chain Monte Carlo simulation
for the parameters in the GP distribution

0 2000 4000 6000 8000 10000
10

15

20

25

30

35

40

45
σ

Gelman−Rubin stats = 1.0058
Acceptance ratio = 0.4453

MCMC iteration for the GP parameters

0 2000 4000 6000 8000 10000
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0
ξ

Gelman−Rubin stats = 1.0032
Acceptance ratio = 0.51505

Figure D.17: (V010 TM DBM w/DRC) Case 2: Markov chain Monte Carlo simulation
for the parameters in the GP distribution
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Figure D.18: (V010 TM DBM w/DRC) Case 3: Markov chain Monte Carlo simulation
for the parameters in the GEV distribution

D.1.3. Threshold model using the �xed frequency method
(FFM) for determining the threshold value

Threshold model using the �xed frequency method for choosing a
threshold- Case 1: A normal prior distribution for the ξ parameter (TM
FFM w/DRC C1)

In Case 1, the prior distribution for ξ was chosen to be a normal distribution with
a large variance, making it non-informative prior. The prior distribution for σ̃ is
a non-informative inv-χ2 distribution. So, in this case, the GP parameters are
not constricted in any way by their prior distributions. The prior and posterior
distributions for the GP parameters are shown in Figure D.19.

The model seems to be a good �t for the data, having an Anderson-Darling p-value
of pB = 0.59. The diagnostic plots in Figure D.20 also indicate that the model �ts
the data well. The annual maximum values on the probability plot all lie close to the
unit diagonal and the points are close to linear on the quantile plot. Comparison
between the probability density of the GP distribution and the histogram of the
POTs indicates that the model could be a good �t for the data. Plotting the annual
maximum values on the return level plot also seem to indicate that the model �ts
the data well.
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Figure D.19: (V010 TM FFM w/DRC) CASE 1: Prior and posterior distributions for
the GP parameters

Threshold model using the �xed frequency method for choosing a
threshold- Case 2: A negative gamma prior distribution for the ξ parameter
(TM FFM w/DRC C2)

In Case 2, the prior distribution for ξ was chosen to be a negative gamma distribu-
tion. It contains only negative values having majority of the mass of the distribution
is close to the y-axis. The prior distribution for σ̃ is a non-informative inv-χ2 dis-
tribution. Therefore, in this case, the posterior density of the shape parameter of
the GP distribution is constricted to negative values only. The prior and posterior
distributions for the GP parameters are shown in Figure D.21.

The model seems to be a good �t for the data, having an Anderson-Darling p-value
of pB = 0.59. The diagnostic plots in Figure D.22 also indicate that the model �ts
the data well. The annual maximum values on the probability plot all lie close to the
unit diagonal and the points are close to linear on the quantile plot. Comparison
between the probability density of the GP distribution and the histogram of the
POTs indicates that the model could be a good �t for the data. Plotting the annual
maximum values on the return level plot also seem to indicate that the model �ts
the data well.
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Figure D.20: (V010 TM FFM w/DRC) CASE 1: Diagnostic plots for the Threshold
Model
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Figure D.21: (V010 TM FFM w/DRC) CASE 2: Prior and posterior distributions for
the GP parameters
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D.1. V010: With discharge rating curve uncertainty
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Figure D.22: (V010 TM FFM w/DRC) CASE 2: Diagnostic plots for the Threshold
Model

Threshold model using the �xed frequency method for choosing a
threshold- Case 3: A negative beta prior distribution for the ξ parameter
(TM FFM w/DRC C3)

In Case 3, the prior distribution for ξ was chosen to be a negative beta distribution.
It is a uniform distribution containing values on the interval [−1; 0] The prior dis-
tribution for σ̃ is a non-informative inv-χ2 distribution. Therefore, in this case, the
posterior density of the shape parameter of the GEV distribution is constricted to
negative values only. The prior and posterior distributions for the GP parameters
are shown in Figure D.23.

The model seems to be a good �t for the data, having an Anderson-Darling p-value
of pB = 0.61. The diagnostic plots in Figure D.24 also indicate that the model �ts
the data well. The annual maximum values on the probability plot all lie close to the
unit diagonal and the points are close to linear on the quantile plot. Comparison
between the probability density of the GP distribution and the histogram of the
POTs indicates that the model could be a good �t for the data. Plotting the annual
maximum values on the return level plot also seem to indicate that the model �ts
the data well.
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D. More details on the �ood analysis for Svarta

0 10 20 30
0

1

2

3

4

x 10
−12

Prior distribution of σ

−1.5 −1 −0.5 0 0.5
0

0.5

1

1.5
Prior distribution of ξ

150 200 250 300 350 400
0

0.002

0.004

0.006

0.008

0.01

0.012
Posterior distribution of σ

−0.4 −0.3 −0.2 −0.1 0
0

2

4

6

8

10
Posterior distribution of ξ

0 10 20 30

Prior distribution of σ̂

−1.5 −1 −0.5 0 0.5

Prior distribution of ξ

10 20 30 40 50

Posterior distribution of σ̂

−0.6 −0.4 −0.2 0

Posterior distribution of ξ

Figure D.23: (V010 TM FFM w/DRC) CASE 3: Prior and posterior distributions for
the GP parameters

Threshold model using the �xed frequency method (FFM) for determining
the threshold value - Figures and tables displaying the posterior parameters
of the GP distribution

254



D.1. V010: With discharge rating curve uncertainty
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Figure D.24: (V010 TM FFM w/DRC) CASE 3: Diagnostic plots for the threshold model

Table D.4: (V010 TM FFM w/DRC): Percentiles for the posterior distributions of
the GP parameters, sampled using a MCMC iteration scheme, for all three cases
of prior distributions, calculated with DRC uncertainty

Threshold model with DRC and u = 52
Percentiles for parameters in the GEV distribution

Normal Neg-Gamma Neg-Beta
σ ξ̃ σ ξ̃ σ ξ̃

2.5% 12.73 -0.53 13.38 -0.47 14.35 -0.61
25% 17.26 -0.34 16.85 -0.28 18.51 -0.39
50% 20.00 -0.24 19.24 -0.18 21.37 -0.29
75% 23.21 -0.11 21.97 -0.09 24.60 -0.18
97.5% 31.19 0.18 28.20 -0.01 33.98 -0.03
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D. More details on the �ood analysis for Svarta
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Figure D.25: (V010 TM FFM w/DRC) Case 1: Markov chain Monte Carlo simulation
for the parameters in the GP distribution
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Figure D.26: (V010 TM FFM w/DRC) Case 2: Markov chain Monte Carlo simulation
for the parameters in the GP distribution
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D.2. V010: Without discharge rating curve uncertainty
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Figure D.27: (V010 TM FFM w/DRC) Case 3: Markov chain Monte Carlo simulation
for the parameters in the GEV distribution

D.2. V010: Without discharge rating curve

uncertainty

D.2.1. Block maxima model

Table D.5: (V010 BM w/o DRC): Percentiles for the posterior distributions of the
GEV parameters, sampled using a MCMC iteration scheme, for all three cases of
prior distributions, calculated without DRC uncertainty

Block Extrema without DRC
Percentiles for parameters in the GEV distribution

Normal Neg-Gamma Neg-Beta
µ σ ξ µ σ ξ µ σ ξ

2.5% 49.00 11.68 -0.33 49.25 12.31 -0.32 49.55 12.66 -0.38
25% 52.39 14.04 -0.14 52.95 14.51 -0.16 53.34 15.00 -0.23
50% 54.23 15.56 -0.03 54.80 15.93 -0.09 55.31 16.52 -0.14
75% 56.18 17.24 0.09 56.74 17.53 -0.04 57.30 18.18 -0.07
97.5% 59.99 21.23 0.34 60.73 21.44 -0.00 61.35 22.13 -0.01
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D. More details on the �ood analysis for Svarta
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Figure D.28: (V010 BM w/o DRC) Case 1: Markov chain Monte Carlo simulation for
the parameters in the GEV distribution

−5000 0 5000
0

1

2

3

4
x 10

−4Prior distribution of µ

0 10 20 30
0

1

2

3

4

x 10
−12

Prior distribution of σ

−100 0 100
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014
Prior distribution of ξ

750 800 850 900 950
0

0.005

0.01

0.015

Acceptance ratio = 0.41825

Posterior distribution of µ

150 200 250
0

0.005

0.01

0.015

0.02

Acceptance ratio = 0.44975

Posterior distribution of σ

−0.2 0 0.2 0.4 0.6
0

1

2

3

4

5

Acceptance ratio = 0.46575

Posterior distribution of ξ

20 40 60 80
0

0.01

0.02

0.03

0.04

0.05

0.06
Prior distribution of µ

0 10 20 30
0

1

2

3

4

x 10
−12

Prior distribution of σ

−2 0 2
0

0.2

0.4

0.6

0.8
Prior distribution of ξ

45 50 55 60 65
0

0.05

0.1

0.15

0.2

Acceptance ratio = 0.41788

Posterior distribution of µ

10 15 20 25
0

0.05

0.1

0.15

0.2

Acceptance ratio = 0.44265

Posterior distribution of σ

−0.5 0 0.5
0

0.5

1

1.5

2

2.5

Acceptance ratio = 0.4314

Posterior distribution of ξ

Figure D.29: (V010 BM w/o DRC) CASE 1: Prior and posterior distributions for the
GEV parameters
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D.2. V010: Without discharge rating curve uncertainty
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Figure D.30: (V010 BM w/o DRC) CASE 1: Diagnostic plots for the block maxima
model

D.2.2. Threshold model using the diagnostic based method
(DBM) for determining the threshold value

Table D.6: (V010 TM DBM w/o DRC): Percentiles for the posterior distributions of
the GP parameters, sampled using a MCMC iteration scheme, for all three cases
of prior distributions, calculated without DRC uncertainty

Threshold model with DRC and u = 40
Percentiles for parameters in the GEV distribution

Normal Neg-Gamma Neg-Beta
σ ξ̃ σ ξ̃ σ ξ̃

2.5% 14.72 -0.37 15.24 -0.34 15.87 -0.38
25% 18.24 -0.25 17.98 -0.22 18.95 -0.27
50% 20.21 -0.18 19.71 -0.15 20.92 -0.21
75% 22.40 -0.09 21.68 -0.08 23.10 -0.13
97.5% 27.25 0.11 25.89 -0.01 27.82 -0.02
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D. More details on the �ood analysis for Svarta
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Figure D.31: (V010 BM w/o DRC) Case 2: Markov chain Monte Carlo simulation for
the parameters in the GEV distribution

−5000 0 5000
0

1

2

3

4
x 10

−4Prior distribution of µ

0 10 20 30
0

1

2

3

4

x 10
−12

Prior distribution of σ

−1 −0.5 0
0

1

2

3

4

5
Prior distribution of ξ

750 800 850 900 950
0

0.002

0.004

0.006

0.008

0.01

0.012

Acceptance ratio = 0.4445

Posterior distribution of µ

150 200 250 300
0

0.005

0.01

0.015

0.02

Acceptance ratio = 0.43175

Posterior distribution of σ

−0.2 −0.1 0
0

5

10

15

20

Acceptance ratio = 0.41875

Posterior distribution of ξ

−5000 0 5000

Prior distribution of µ

0 10 20 30

Prior distribution of σ

−1 −0.5 0

Prior distribution of ξ

45 50 55 60 65

Posterior distribution of µ

10 15 20 25

Posterior distribution of σ

−0.4 −0.2 0

Posterior distribution of ξ

Figure D.32: (V010 BM w/o DRC) CASE 2: Prior and posterior distributions for the
GEV parameters
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D.2. V010: Without discharge rating curve uncertainty
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Figure D.33: (V010 BM w/o DRC) CASE 2: Diagnostic plots for the block maxima
model
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Figure D.34: (V010 BM w/o DRC) Case 3: Markov chain Monte Carlo simulation for
the parameters in the GEV distribution
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Figure D.35: (V010 BM w/o DRC) CASE 3: Prior and posterior distributions for the
GEV parameters
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Figure D.36: (V010 BM w/o DRC) CASE 3: Diagnostic plots for the block maxima
model
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D.2. V010: Without discharge rating curve uncertainty
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Figure D.37: (V010 TM DBM w/o DRC) Case 1: Markov chain Monte Carlo simulation
for the parameters in the GP distribution
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Figure D.38: (V010 TM DBM w/o DRC) CASE 1: Prior and posterior distributions for
the GP parameters
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Figure D.39: (V010 TM DBM w/o DRC) CASE 1: Diagnostic plots for the threshold
model

D.2.3. Threshold model using the �xed frequency method
(FFM) for determining the threshold value

Table D.7: (V010 TM FFM w/o DRC): Percentiles for the posterior distributions of
the GP parameters, sampled using a MCMC iteration scheme, for all three cases
of prior distributions, calculated without DRC uncertainty

Threshold model without DRC and u = 52
Percentiles for parameters in the GP distribution

Normal Neg-Gamma Neg-Beta
σ ξ̃ σ ξ̃ σ ξ̃

2.5% 13.65 -0.55 13.98 -0.49 14.86 -0.58
25% 18.20 -0.38 17.50 -0.30 19.00 -0.41
50% 21.10 -0.27 19.87 -0.20 21.81 -0.30
75% 24.42 -0.15 22.68 -0.10 25.22 -0.20
97.5% 31.72 0.14 29.25 -0.01 32.09 -0.03
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D.2. V010: Without discharge rating curve uncertainty
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Figure D.40: (V010 TM DBM w/o DRC) Case 2: Markov chain Monte Carlo simulation
for the parameters in the GP distribution
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Figure D.41: (V010 TM DBM w/o DRC) CASE 2: Prior and posterior distributions for
the GP parameters
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Figure D.42: (V010 TM DBM w/o DRC) CASE 2: Diagnostic plots for the threshold
model
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Figure D.43: (V010 TM DBM w/o DRC) Case 3: Markov chain Monte Carlo simulation
for the parameters in the GP distribution
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D.2. V010: Without discharge rating curve uncertainty
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Figure D.44: (V010 TM DBM w/o DRC) CASE 3: Prior and posterior distributions for
the GP parameters
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Figure D.45: (V010 TM DBM w/o DRC) CASE 3: Diagnostic plots for the threshold
model
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D. More details on the �ood analysis for Svarta
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Figure D.46: (V010 TM FFM w/o DRC) Case 1: Markov chain Monte Carlo simulation
for the parameters in the GP distribution
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Figure D.47: (V010 TM FFM w/o DRC) CASE 1: Prior and posterior distributions for
the GP parameters
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D.2. V010: Without discharge rating curve uncertainty
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Figure D.48: (V010 TM FFM w/o DRC) CASE 1: Diagnostic plots for the threshold
model
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Figure D.49: (V010 TM FFM w/o DRC) Case 2: Markov chain Monte Carlo simulation
for the parameters in the GP distribution
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D. More details on the �ood analysis for Svarta
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Figure D.50: (V010 TM FFM w/o DRC) CASE 2: Prior and posterior distributions for
the GP parameters
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Figure D.51: (V010 TM FFM w/o DRC) CASE 2: Diagnostic plots for the threshold
model
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D.2. V010: Without discharge rating curve uncertainty
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Figure D.52: (V010 TM FFM w/o DRC) Case 3: Markov chain Monte Carlo simulation
for the parameters in the GP distribution
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Figure D.53: (V010 TM FFM w/o DRC) CASE 3: Prior and posterior distributions for
the GP parameters
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D. More details on the �ood analysis for Svarta
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Figure D.54: (V010 TM FFM w/o DRC) CASE 3: Diagnostic plots for the threshold
model
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