
SCA database and search engine

Vignir Barði Einarsson

Supervisor: Nik Whitehead

Faculty of Information Technology,

University of Akureyri

Submitted April 2006, in partial fulfilment of

the conditions of the award of the degree Bsc.

I hereby declare that this dissertation is all my own work,

 except as indicated in the text :

Signature __________________________________

Date ______/______/_______

1

Abstract

This document contains background information about my final year project. It

contains information about what it was that motivated me to do this project as

well as what the gain of doing this project was. It contains detailed description of

my work, what the project was supposed to achieve, and also how the system is

suppose to function. This document also includes some information about the

existing system and other related systems. Included are descriptions of my

designs and implementations as well.

2

Table of Contents
Chapter 1, Introduction...5

1.1 Background..5
1.2 Motivations..5
1.3 Personal gain...6
1.4 Other gain..6

Chapter 2, Description of the work...7
2.1 What the project is supposed to achieve...7
2.2 How the project is suppose to function...7

Chapter 3, Related work...8
3.1 Existing system..8

Chapter 4, Design..9
4.1 Data files ...9
4.2 Category file..9
4.3 Registration file...10
4.4 Designing the database...12
4.6 Designing the front end...17
4.6 Designing the search engine...18
4.7 Designing program to import the data..19

Chapter 5, Implementation...20
5.1 Database..20
5.2 Importing the data...21
5.3 User interface.. ..22
5.4 Searching the data..23
5.5 Administration System..25

Chapter 6, Evaluation..26
References...27
Bibliography..27
Appendix A (Source code)...28

admin.php..28
namesearch.php..29
sca.php...33
data.pl..38
Appendix B (Database dump)..43

Appendix C (Format of the SCA Armorial Database)..46

3

Table of Figures
Figure 4.1..12
Figure 5.1..22
Figure 5.2..25

4

Chapter 1, Introduction

This chapter talks about the background of the project, the reasons for taking on

this project, and also what motivated me to do this project.

1.1 Background

The Society for Creative Anachronism also known as SCA is dedicated to

research and recreate the European Middle Ages in the present. The society was

established in 1966 in Berkeley California and has grown to include over 30,000

members. Every person in the society picks a unique name to use within the

society. Members have also the option to register a heraldic device or coat of

arms which is essentially a logo and identifies the owner in the same way a

company's logo identifies its company. Since the coat of arm identifies the

member who displays it, it is very important that no two members have the same

coat of arm to prevent confusion.

The purpose of this project is to create a database to store information about the

members of the SCA. This database has to store names, arms and other

information, for example when the name or the device was first registered. The

existing data has to be written into the database and user friendly interface and

mechanism to search the data has to be constructed.

1.2 Motivations

When choosing a final year project my first thought was about what it was I

wanted to learn from it. From my point of view the final year project is supposed

to be a way to add to my existing knowledge from studying computer science. I

also saw it as a way to add more practical experience to what I have learned so

far. One of my initial goal was to learn a new programming language and to add

a practical experience to my existing knowledge of databases. Then choosing a

supervisor for my final year project I choose to work with Nik Whitehead since I

had a very good experience working with her in the second year group project.

5

At a meeting with Nik she told me about this project and we figured out that it

was well suited for me to learn those things I wanted to learn from doing the

final year project. When I started doing my research for the project I did not

know anything about the SCA. After examining the existing system to search the

SCA records I saw that I had an opportunity to improve it and make it more user

friendly which again motivated me to take on this assignment.

1.3 Personal gain

What I gained from doing this project was that I got a hand on experience

designing a major programming and database system. I ran into multiple

problems because many of my initial plans did not add up when it came to

implementation. This taught me a lot about planing a project of this size. When it

came to implementing the system I had to learn a number of things in order to

implement the project successfully. I learnt two new programming languages,

PHP and Perl. I got a good experience importing raw data into a database and

learned a lot about the use of regular expressions. I got an experience

implementing and designing a user interface for web applications. I also got a

hand on experience designing and implementing a database from scratch.

1.4 Other gain

I have recently been informed by my supervisor that the program and the

database I constructed is going to be used by the SCA society. As the search

engine I constructed while doing this project is user friendlier than the existing

system and in some cases more powerful, it is my believe that this project will be

a good asset for the SCA.

6

Chapter 2, Description of the work

This chapter describes what the project is suppose to achieve and contains

description of the system functionality.

2.1 What the project is supposed to achieve

The primary objective of this project is to make a database and search engine

that is able to search for various information within the SCA records. The

records are kept in a flat datafile that is publicly available at the SCA web page

which can be located at www.oanda.sca.org. This flat file is roughly 8.5

megabytes in size. The information the systems has to store and be able to return

include information about the names of members, the date when the names were

first registered and in which kingdom the names were registered. The database

also has to contain information about blazons that are registered by the society,

the names and the kingdom the blazons were registered in, and also the

description of the blazons. The system has to be able to search within the

database and effectively return the results. Blazons in the database are

registered using old heraldic French which not everybody is familiar with. One of

the objective of the project is that a user can search for plain English words

when searching for a blazons in the database rather than the heraldic French

words.

2.2 How the project is suppose to function

The functionality of the system should be that a user can visit the web page

where the system is stored and choose a search that the they would like to

conduct. The system should then return a value that matches the search criteria.

The secondary objective was to create an administration system where an

administrator can log into and add new keywords which users can search for.

7

Chapter 3, Related work

This chapter describes the existing system.

3.1 Existing system

Existing system is available that can search the records of the SCA is on the web

page www.oanda.sca.org. The system consist of six separated web pages which

each keeps one search form. The search forms are the following:

1. A Name Search Form which allows the user to search the SCA Armorial

database for items associated with a particular name.

2. An Armoury Description Search Form which allows the user to search for

registered items that appear under a particular heading in the SCA Ordinary.

3. A Name Pattern Search Form which allows the user to search for items

associated with a name.

4. A Blazon Pattern Search Form which allows the user to search for blazons

containing particular words or text patterns.

5. A Date/Kingdom Search Form which allows the user to search for registrations

during a particular time-period or via a particular kingdom.

6. A Complex Search Form which allows the user to do sophisticated searches on

the database by combining the results of multiple searches.

8

Chapter 4, Design

This chapter covers the design of all the system components and the format of

the data files that are used.

4.1 Data files

There are two flat text files available at the SCA search form page. One being the

actual datafile containing all registrations within the SCA society which is going

to be referred to as registration file from now on in this report. Another file is

available containing all the keywords that a heraldry can have, which will be

called category file from now on.

4.2 Category file

The category file has two kind of records, one describing attributes and the other

describing objects that can have the attributes. An example of these two kinds of

records would look like the following:

Example 1, attribute:

“|tincture:sable<dark” here does “tincture:” mean that this record is a colour.

The word “sable” means black in the heraldic French and “dark” is a description

for people reading the category file

Example 2, object:

“beast, deer|BEAST-DEER AND STAG” the word beast at the beginning of the

file means that this record is a part of the main group beast. The word “deer”

means that this beast is a deer “BEAST-DEER AND STAG” is the string that is

used as keyword when describing the heraldry in the registration file.

The string “BEAST-DEER AND STAG:sable” in the registration file would mean

that the heraldry in the datafile contains a black deer.

9

Information I needed to import from the category file were the words that are

most likely to be used by an individual while searching the system. I had to

identifying the words that are most likely to be searched for when acquiring

heraldry information and write them into the database.

Example 1: |tincture:sable<dark: The word sable is a well known word in

heraldry. An indivitual looking for heraldry that contains black object or

background would most likely look up the word sable. The word tincture is the

group and tells nothing about this being string representing the word black and

is therefore not needed. The word <dark does not say much about this being

black so just like word tincture it's not needed.

Example 2 : beast, deer|BEAST-DEER AND STAG. In this example the user would

look up the word deer. In the registration file the record is registered using the

last upper case string BEAST-DEER AND STAG this string is however not

something that a user would try to search for when searching for a heraldry

containing the word deer.

4.3 Registration file

The registration file contains all informations about registrations within the SCA.

The structure of registrations in the file are always the same. Like presented by

Iulstan Sigewealding in the document “Format of the SCA Armorial Database”

“Each record occupies a single line in the file, and each line contains one record.

A record has at least five fields, separated by stiles (`|'). The five required fields

are: name, source, type, text, and notes, in that order.”[1]

The easiest way to describe the records in the registration file is by making an

example of two of the records in the file.

10

Example 1: Antonio di Rienzo|0207D|N||

Looking at the first example we can see that the name associated to this record

is Antonio di Rienzo, which in this case is the name that the member chose to

use within the society. Next string, 0207D, is the date that the record was first

registered and the kingdom that the record was registered in. The number 0207

means that this record was registered in July of 2002 and the D references to

that it was registered in the kingdom of Drachenwald. The N between the stiles

means that this record describes a Name.

Example 2: Antonio di Rienzo|0210D|d|Gules, a fleur-de-lys within a double

tressure Or.||FDL:1:or:spna|FIELD:gules|GU|ORLE AND

TRESSURE:2:or:pl:surrounding 1 only

Looking at example 2 we can see that the name associated with this record is the

same as in the previous example or Antonio di Rienzo. The date associated with

this record which is 0210 means that this record was registered in October of

2002 and the D means that this record was registered in the kingdom of

Drachenwald. The d between the stiles means that this record is a coat of arm.

Following comes a string that describes the coat of arm which in this case is:

“Gules, a fleur-de-lys within a double tressure Or”. “Gules” meaning the colour

red, a “fleur-de-lys” is a ornament that is somewhat shaped as a lily, and within

“douple tressure Or” means within two golden lines. Following the string comes

a description of the heraldry in keywords. “FDL:1:or:spna” In this string “FDL”

means a fleur-de-lys, “1“ saying that there is only one of it, “or” meaning that it

is gold and “spna” meaning that it is the sole or primary identification of the

heraldry. “FIELD:gules” “FIELD” means a field and “gules” standing for the

colour red again “GU” also means a red field. Looking at the next string “ORLE

AND TRESSURE:2:or:pl:surrounding 1 only” we can see that in this string the

words “ORLE AND TRESSURE” means inner boarder not touching the sides of

the shield, the number “2” meaning that there are two of them, “pl” means plain

lines, and “surrounding 1 only” means that one is surrounding the other. Full

description of the datafile can be found in Appendix C.

11

4.4 Designing the database

An important stage of the design phase was to design a database which could

store information about the records in the registration file and in the category

file. The first approach to this was a database that contained a specific column

for all data in both the category file and in the registration file as well. This

approach to the database design looked very appealing on paper but when it

came to implementing the queries into the program to search for heraldry in the

database this approach became to complicated to be efficient. In order to search

for one word the system had to search for the keywords in four columns in two

different tables. Even though I had counted for this in the designing of the

search system, this became very confusing and complicated to implement. I then

went back to the design phase and simplified the database at a later stage in the

project. Next design of the database was simpler than the first one and in this

design the system needed only to query one column in one of the tables in the

database to search for a keyword in a heraldry. Figure 4.1 contains diagram of

the database.

Figure 4.1

12

As it can been seen in figure 4.1 the final version of the database consists of five

tables which are the following.

A table that is called 'name'. This table contains the complete information about

the names of all members of the SCA. The table “name” contains the following

column:

1. The column “name_id” which is an integer and a primary key for the table

“name”.

2. The column “name” which is a string and contains the name that the

member has chosen to use within the society.

3. The column “name_date” which is an integer and stores informations about

the date the record was first registered.

4. The column “name_kingdom” where each row in the database stores one

letter that represents the kingdom the record was registered in.

13

A table called “arm”. This table stores all information about the heraldic devices

the members of the SCA have registered. This table contains the five following

columns.

1. The column “arm_id” This column is a integer and primary key for the table

“arm”

2. The column “name_id”, Is an integer and a foreign key that maps to the

table “name”. As every member in the SCA that registers a heraldic device

needs to register his or her name it is not necessary to store the name that

the member has chosen twice in both the “arm” table and also in the table

“name”. To avoid keeping duplicated value in the database I chose to use

foreign key that maps to the “name” table.

3. The column “arm_date” which is an integer that stores the date the arm

was registered

4. The column “arm_desc” which is a string that contains the full description

of the blazon in the old heraldic French, like it is written by the member.

5. The column “arm_kingdom” This column stores one letter that represents

the kingdom the blazon was registered in.

14

When reading from the category file the value goes into a table called

“keyword_search”. This table contains all keywords a user can search for when

looking for a heraldry. When an administrator of the system adds a keyword into

the system that a user can search for it goes into this table and with a reference

to the old heraldic French keyword. This table contains three column

1. The column “keyword_search_id” which is an integer and a primary key for

the table.

2. The column “search_string”. This column contains all keywords a user can

search for when looking for heraldic devices.

3. The column “references_to” The value of this column identifies if the

search string is an old heraldic French word or a plain English word that

the administrator of the system has added to the database. If the string in

the column “search_string” is one of the keywords imported from the

category file then the value of this column is null. If a string in the column

“search_string” has been added to the system by the administrator of the

system then the value of this column is the “keyword_search_id” of the old

heraldic French word that it is supposed to represent.

15

The table “group_keyword” is only used when writing a data about heraldic

devices into the database. The upper case keywords from the category file are

read into this table and mapped to the corresponding keyword in the

“keyword_search” table. For instance, looking at the string “beast, deer|BEAST-

DEER AND STAG”. Here the string “BEAST-DEER AND STAG” is kept in the

“group_keyword” table and is mapped to the keyword “deer” in the

“keyword_search” table. When reading into the database from the registration

file the program queries the “group_keyword” table for the keyword_search_id of

the string it is looking for and writes it into the table “arm_search” which we will

be looking at next. The table “group_keyword” contains three columns.

1. The column “groups_id” is an integer and primary key for the table.

2. The column “groups” is a string from the category datafile.

3. “keyword_search_id” is a foreign key and maps the corresponding keyword

in the “keyword_search” table.

The table “arm_search” maps keywords to heraldic devices. The ID of a heraldic

device is written into this table along with the ID of the keywords id contains.

1. “arm_id” which is a foreign key and maps to “arm_id” in the “arm” table

2. “keyword_search_id” Is a foreign key and maps to the “keyword_search”

table

16

4.6 Designing the front end

When it came to designing the user interface my main criteria was to keep it as

simple and as user friendly as possible. Also I wanted to keep all the graphics at

minimum as it increases the time it takes to load the web page. I decided to

design the user interface so that the user could do all of the searches within the

same web page. When designing the look of the web page I started of by using

paper and pencil to draw it. After doing a number of designs I ended up choosing

to use eight check boxes, three text fields and one drop down list. The check

boxes are used to decide what the individual wants to search for and what gets

returned. The text field is used to input the search words the user wants to

search for and the drop down list is used to select which kingdom to search for.

The results of a search then appears below the search fields allowing the user to

stay at the same web page, which again makes it easy to conduct another search.

17

4.6 Designing the search engine

Designing the system which searches the database was relatively straight

forward process. The whole search system is kept in the same file so no class

diagram had to be constructed. The system is designed so that the user can

search for a name or a part of a name he or she wants displayed. The user can

also wish to have the date the record was registered, the kingdom it was

registered in, or text string that represents the coat of arm. The user can select if

he or she wants to search for all of the information some of them or just one. It

is also possible for the user to choose what information about the record he or

she wants returned. For an example if a user would like to search for every

person called Aaron in the database and who has the string “sable” in their

heraldry, and return heraldry that matches that search criteria, he or she would

mark the check box “search for name” as well as the check box “search for

device”. Next the user would have to fill in the text fields for both the name and

device and mark the check box “return device” and hit the submit button In

return the user will obtain information about heraldry that matches the criteria .

Altogether there are 225 searches that are possible to construct from the 8

check boxes. Therefore the system needs to be able to construct 225 SQL queries

depending on the users search criteria. Number of these SQL queries where

constructed and tested on the design phase of this project before implementing

them into the program that searches the data. By testing these SQL queries I

found a pattern that I was able to use in order to construct the rest of the

queries.

18

4.7 Designing program to import the data

Designs for the program which import the data into the database where

insufficient. Which resulted in an increased time it took to construct it. The only

designs I did for this part of the project were to construct the SQL queries

beforehand. When it came to implementing this part of the project it became

apparent to me that it would require more work than I anticipated to construct

this program. Due to the lack of designs this process took up to much time

allowed for this project.

19

Chapter 5, Implementation

In this chapter all stages of the implementing of the system are described

5.1 Database

I used PostgreSQL 8.0.4 database in my project. The PostgreSQL is best

described at the PostgreSQL web page:

“PostgreSQL is a powerful, open source relational database system. It has more

than 15 years of active development and a proven architecture that has earned it

a strong reputation for reliability, data integrity, and correctness. It runs on all

major operating systems, including Linux, UNIX (AIX, BSD, HP-UX, SGI IRIX,

Mac OS X, Solaris, Tru64), and Windows. It is fully ACID compliant, has full

support for foreign keys, joins, views, triggers, and stored procedures (in

multiple languages).”[2]

Installing postgreSQL was an easy process on the Gentoo Linux machine which

was used to develop this system. When creating tables and column in the

database first thing I did was to use external tool called phpPgAdmin which is a

web based administration tool for PostgreSQL. phpPgAdmin came in handy when

it came to creating a demo version of the database and debuging the program to

import the data. It is a user friendly tool and the graphical user interface makes

it easy to browse and alter tables. The down side of the phpPgAdmin tool is that

it does have the ability to create primary keys and foreign keys. That is why

when it came to implementing the final version of the database I choose to do it

in terminal which gave me better control over the whole process. I did not want

to make the program that writes into the database create the tables and

columns. Therefore the database has to be created before hand and all tables,

columns and restrictions have to be created as well. This process took relatively

short time when the database had been designed. I created a view called

“deviceview” in the database to use when searching for heraldry as the process

of searching for heraldry is more complicated than the other searches. By using

20

views I was able to make the part of the search program that constructs the

query which searches for heraldry simpler and more efficient. A database dump

which contains the structure of the database can be found in Appendix B of this

report.

5.2 Importing the data

The program that imports the data is constructed in the Perl programming

language. The program can be found in Appendix A of this report under the

name data.pl. My reason for choosing the Perl programming language is that it

has excellent regular expression functionality. The Perl program breaks down

the strings in the two data files, the registration file and the category file. Then it

writes it into the database using multiple and complex rules. When writing into

the database the Perl script first checks the letter identifying if the record is a

heraldry or a name. In other words it checks the single letter within the stiles if

it is a N or d, if the letter is a N it breaks down the record and writes it into the

name table of the database. First the record gets an unique ID, then the name is

written into the name column and then the date is separated from the kingdom.

Next the date and the kingdom is written into corresponding column in the

database.

If the record is a heraldry it is written into the “arm” table in the database. The

record then gets a unique ID and the name ID in the “name” table is registered

as a foreign key in the “arms” table and by that linking the heraldry to the name.

The arm description is written into the database, and the date and kingdom is

separated and written into corresponding columns in the database.

21

5.3 User interface

The user interface was constructed using HTML web format. The code for the

user interface can be found in Appendix A under the name sca.php. The only

graphic used was one banner that I constructed to make the web page that keeps

the system looking better. The user interface also uses javascript to hide the text

fields for the searches that are not being used. When a user marks that he or she

wants to search for name the text field name appears, if the user clears the

check box the text field disappears again, the same happens when marking the

other check boxes. The user interface also contains a help page containing text

that explains how to conduct a search within the system. A screen shot of the

main page of the system can be seen in figure 5.1

Figure 5.1

22

5.4 Searching the data

The program that searches the database was constructed using the PHP

scripting language which is used to create the dynamic web page. Or like the

PHP programming language is described in the official PHP manual.

“PHP, which stands for "PHP: Hypertext Preprocessor" is a widely-used Open

Source general-purpose scripting language that is especially suited for Web

development and can be embedded into HTML. Its syntax draws upon C, Java,

and Perl, and is easy to learn. The main goal of the language is to allow web

developers to write dynamically generated webpages quickly, but you can do

much more with PHP.”[3]

The PHP program that I constructed can be found in Appendix A under the name

“namesearch.php”. The primary function of this part of the system is to construct

SQL queries and execute them based on the users search criteria. The program

starts of with three strings: “SELECT” “FROM” & “WHERE”. The program then

adds to the strings depending on the users search criteria and search strings.

After the program has construct the SQL queries the query is executed and the

results are returned.

Let's look at an example used in a previous chapter and pretend that the user

searches for every person called Aaron in the database who has the string

“sable” in their heraldry. The user then marks the check box “search for name”

as well as the check box “search for device”, then fills in the text fields for both

the name and device and marks the check box “return device”.

After hitting the submit button the search system checks what the user is

searching for and recognizes that the user is searching for a string in a heraldry

and adds the string “deviceview” to the string “FROM” which then looks like:

“FROM deviceview”. The system then adds the string to look for to the heraldry.

The “WHERE” string then looks like “WHERE search_string = 'sable'” the system

then checks to see what else to look for and sees that the user wants to search

also for the name and adds to the “WHERE” string which then looks like

23

“WHERE search_string = 'sable' AND names ~~* '%$name%” The system then

checks what to return to the user and recognizes that it is supposed to return a

string that contains the heraldry that belongs to members that match the search

criteria plus adds to the “SELECT” string which then looks like: “SELECT

arms_desc”. The system adds all of the strings together and executes the SQL

query that looks like this: “SELECT arms_desc FROM deviceview WHERE

search_string = 'sable' AND names ~~* '%$name%”. Of course this example is

just one of the 255 searches available to a user but should give a rough idea of

how the system works. The search for name functionality of the system is

constructed so a user can search for a part of name and without it being case

sensitive.

The original plan was to construct this program using the C++ programming

language and use common gateway interface to interact with a web page. After

having looked closer at that possibility I decided against it. One of the reasons

for changing from C++ to PHP was that PHP is better suited to work with web

pages and I was interested in learning PHP as it is being used in many areas of

the IT business.

24

5.5 Administration System

Creating a specified administration system was not a part of the original plan

and was an idea that came up in the process while implementing the search

system. The functionality of this part of the system is that it allows an

administrator to log into an administration section of the system and choose

option to add to the database. The administrator then inputs the old heraldic

word into one of the text fields and the new plain English word into another. The

system then queries the “keyword_search” table to find the old word and writes

the new word into the same table adding the keyword search ID to the

“reference_to” column in the database. This system uses the MD5 algorithm to

encrypt the administrator password and make sure that no unauthorised persons

can write into the database, The MD5 algorithm is a built in function in the PHP

programming language and is sufficient encryption for a system like this. Figure

5.2 contains screen shot of the web page containing the administration system.

The code for the administrator system can be found in Appendix A under the

name admin.php.

Figure 5.2

25

Chapter 6, Evaluation

My goals for this project were to create a database for the SCA data, upload the

data, create a user friendly interface and adding to its functionality so it is able

to search for plain English words within the database rather than the old

heraldic words. In the beginning of this project I did not plan on having users

able to combine searches the way I ended up doing and it was not a part of my

initial plans as well to create an administration system which allowed new

keywords to be searched for. As far as I see I have met all of my goals, plus

added some extra functionality to the system. The system I have created is

fully functional in doing all of the above. While working on this project I have

learned new programming languages, I have learned how to work with raw data

files, and I have also learned how to design and implement databases. I believe

that the experience and knowledge I have gained from doing this project will be

a great asset for me in the future.

26

References

[1] Iulstan Sigewealding, Format of the SCA Armorial Database, viewed 20

November, 2005, <http://oanda.sca.org/data_format.html>.

[2] The PHP group, PHP manual, viewed 14 Mars, 2006,
<http://www.php.net/manual/en/preface.php>

[3] PostgreSQL Global Development Group, About, viewed 10 April, 2006
<http://www.postgresql.org/about/>

Bibliography

Bennet S , Farmer R & McRobb S, 2002, Object-Oriented System Analysis And
Design, McGraw-Hill, Maidenhead, Berkshire.

Miklós Sándorfia, Heraldic Display, viewed 22 November, 2005,
<http://andrew.draskoy.net/sca/eilean/display/>.

Ramakrishnan, R & Gehrke J, 2003, Database management Systems, McGraw-
Hill, New York, NY

Siever, E, 1999, Perl in a Nutshell, O'Reilly, Sebastopol, CA

The Society for Creative Anachronism, What is an S.C.A. Heraldic Device, viewed
24 November, 2005, <http://www.sca.org/heraldry/laurel/whatis/device.html>.

27

Appendix A (Source code)
admin.php
<?php
if (!isset($_POST['submit']))
{
}

if ($_POST['where'] == '1')
{

$adminSearchString = $_POST['opt1'];
$adminInputQuery = $_POST['opt2'];

$dbconn = pg_connect("host=localhost dbname=oandadb user=vignir password=casio99")
or die('Could not connect: ' . pg_last_error());

$adminSelect = "SELECT keyword_search_id FROM keyword_search WHERE search_string =
'$adminSearchString'";
$result = pg_query($adminSelect) or die('The old keyword does not match to keywords in the
database');
$keyword_search_id = pg_fetch_result($result, 0, 0);

$maxSelect = "SELECT MAX (keyword_search_id) AS maxID FROM keyword_search";
$result = pg_query($maxSelect) or die('Query failed: ' . pg_last_error());
$MaxID = pg_fetch_result($result, 0, 0);
$MaxID ++;

$adminInputQuery = "INSERT INTO keyword_search (keyword_search_id, search_string,
references_to) VALUES ('$MaxID' , '$adminInputQuery', $keyword_search_id)";
$result = pg_query($adminInputQuery) or die('Query failed: ' . pg_last_error());
}
?>

28

namesearch.php

<?PHP

if ($searchName != 'on' && $searchDevice != 'on' && $searchKingdom != 'on' && $searchDate !=
'on')

{ echo "Must select what to search for <META HTTP-EQUIV='REFRESH' CONTENT='5'; URL=' .
basename($PHP_SELF) . '>
";};

if ($returnName != 'on' && $returnDevice != 'on' && $returnKingdom != 'on' && $returnDate !=
'on')

{ echo "Must select what return <META HTTP-EQUIV='REFRESH' CONTENT='5'; URL=' .
basename($PHP_SELF) . '>
 ";};

 $dbconn = pg_connect("host=localhost dbname=oandadb user=vignir password=casio99")
 or die('Could not connect: ' . pg_last_error());

$selectQuery = ' SELECT DISTINCT ';
$fromQuery = 'FROM';
$whereQuery = 'WHERE';

if ($searchDevice == 'on'){
$whereQuery .=" (";
$fromQuery .= " deviceview ";
$searchDeviceArray = explode(" ",$device);
foreach ($searchDeviceArray as $searchString){

if ($gaur == 1) $whereQuery .= " OR ";
$res = pg_query($dbconn, "SELECT references_to FROM keyword_search

WHERE search_string = '$searchString'");
 if ($res) {
 if (pg_field_is_null($res, 0, "references_to") == 1) {

$whereQuery .=" search_string = '$searchString' ";
 }
 if (pg_field_is_null($res, 0, "references_to") == 0) {

$val = pg_fetch_result($res, 0, 0);
$query1 = pg_query($dbconn, "SELECT search_string FROM

keyword_search WHERE keyword_search_id = '$val'");
$val = pg_fetch_result($query1, 0, 0);

 $whereQuery .=" search_string = '$val' ";
 }
 }

$gaur = 1;

}

$whereQuery .=") ";

if ($returnName =='on'){
$selectQuery .= " names ";

}
if ($returnName =='on' && ($returnDevice =='on' || $returnKingdom =='on'

|| $returnDate =='on')) $selectQuery .= " , ";
if ($returnDevice =='on'){

 $selectQuery .= " arm_desc ";
 }

29

if ($returnDevice =='on' && ($returnKingdom =='on' || $returnDate
=='on')) $selectQuery .= " , ";

if ($returnKingdom =='on'){
 $selectQuery .= " name_kingdom ";
 }

if ($returnKingdom =='on' && $returnDate =='on') $selectQuery .= " , ";
 if ($returnDate =='on'){

 $selectQuery .= " name_date ";
 }

if ($searchName == 'on'){
$whereQuery .="AND names ~~* '%$name%' ";

}
if ($searchKingdom == 'on'){

$whereQuery .="AND name_Kingdom ='$kingdom' ";
}
if ($searchDate == 'on'){

$whereQuery .="AND name_date ='$date' ";
}

}

if ($searchName == 'on' && $searchDevice != 'on'){
$fromQuery .= ' names ';
$whereQuery .= ' names.names ';

if ($returnName == 'on'){
$selectQuery .= ' names.names ';
}

if (($returnDevice == 'on' || $returnKingdom == 'on' || $returnDate ==
'on') && $returnName == 'on') $selectQuery .= ', ';

if ($returnDevice == 'on'){
$selectQuery .= ' arm.arm_desc ';
$fromQuery .= ' LEFT OUTER JOIN arm ON (names.name_id = arm.name_id) ';
 }

 if (($returnKingdom == 'on' || $returnDate == 'on') && $returnDevice
=='on') $selectQuery .= ', ';

if ($returnKingdom == 'on'){

$selectQuery .= ' names.name_kingdom ';
}

 if ($returnDate == 'on' && $returnKingdom =='on') $selectQuery .= ', ';
//Fix this in the db

if ($returnDate == 'on'){
$selectQuery .= ' names.name_date ';

};
$whereQuery .= " ~~* '%$name%' ";

}

if (($searchName =='on' && $searchDevice != 'on') && ($searchKingdom == 'on' || $searchDate
=='on')) { $whereQuery .= " AND "; $fromQuery = 'FROM'; $selectQuery = 'SELECT';};

if ($searchKingdom == 'on' && $searchDevice != 'on'){
 $fromQuery .= ' names ';
 $whereQuery .= ' names.name_kingdom ';

 if ($returnName == 'on'){
 $selectQuery .= ' names.names ';
 }

if (($returnDevice == 'on' || $returnKingdom == 'on' || $returnDate ==
'on') && $returnName == 'on') $selectQuery .= ', ';

30

 if ($returnDevice == 'on'){
 $selectQuery .= ' arm.arm_desc ';
 $fromQuery .= ' LEFT OUTER JOIN arm ON (names.name_id =
arm.name_id) ';
 }

if (($returnKingdom == 'on' || $returnDate == 'on') && $returnDevice
=='on') $selectQuery .= ', ';

 if ($returnKingdom == 'on'){
 $selectQuery .= ' names.name_kingdom ';
 }
 if ($returnDate == 'on' && $returnKingdom =='on') $selectQuery .= ', ';

if ($returnDate == 'on'){
 $selectQuery .= ' names.name_date ';
 };
 $whereQuery .= " = '$kingdom' ";
}

if ($searchKingdom == 'on' && $searchDate =='on' && $searchDevice != 'on') { $whereQuery .=
" AND "; $fromQuery = 'FROM'; $selectQuery = 'SELECT';};

if ($searchDate == 'on' && $searchDevice != 'on'){
 $fromQuery .= ' names ';
 $whereQuery .= ' names.name_date ';

 if ($returnName == 'on'){
 $selectQuery .= ' names.names ';
 }

 if (($returnDevice == 'on' || $returnKingdom == 'on' || $returnDate ==
'on') && $returnName == 'on') $selectQuery .= ', ';

 if ($returnDevice == 'on'){
 $selectQuery .= ' arm.arm_desc ';
 $fromQuery .= ' LEFT OUTER JOIN arm ON (names.name_id = arm.name_id)
';
 }

 if (($returnKingdom == 'on' || $returnDate == 'on') && $returnDevice
=='on') $selectQuery .= ', ';

 if ($returnKingdom == 'on'){
 $selectQuery .= ' names.name_kingdom ';
 }
 if ($returnDate == 'on' && $returnKingdom =='on') $selectQuery .= ', ';

if ($returnDate == 'on'){
 $selectQuery .= ' names.name_date ';
 };
 $whereQuery .= " = '$date' ";
}

$query = $selectQuery . $fromQuery . $whereQuery;

$result = pg_query($query) or die('No results matching the search string');
$modPrint = 0;
if ($returnName == 'on') {$nameCount = $modPrint; $modPrint ++;}
if ($returnDevice == 'on') {$devCount= $modPrint; $modPrint ++;}
if ($returnKingdom == 'on') {$kingCount = $modPrint; $modPrint ++;}
if ($returnDate == 'on') {$dateCount = $modPrint; $modPrint ++;}
 $output = '

 <div id="output">';
 while ($line = pg_fetch_array($result, NULL , PGSQL_ASSOC)) {

31

$resultCounter ++;
$output .= " Result nr: $resultCounter
 ";

foreach ($line as $col_value) {
$counterinn = $i % $modPrint;
if ($returnName == 'on' && $counterinn == $nameCount) $output .= "

Name :";
if ($returnDevice == 'on' && $counterinn == $devCount) $output .=

" Device : ";
if ($returnKingdom == 'on' && $counterinn == $kingCount) {

$output .= " Kingdom : ";
switch ($col_value) {

case 'A': $col_value = "Atenveldt "; break;
 case 'C': $col_value = "Caid "; break;
 case 'D': $col_value = "Drachenwald ";
break;
 case 'E': $col_value = "East "; break;
 case 'G': $col_value = "Gleann Abhann ";
break;
 case 'H': $col_value = "AEthelmearc ";
break;
 case 'K': $col_value = "Calontir "; break;
 case 'L': $col_value = "Laurel or SCA ";
break;
 case 'M': $col_value = "Middle "; break;
 case 'm': $col_value = "Ealdomere "; break;
 case 'n': $col_value = "Northshield ";
break;
 case 'N': $col_value = "An Tir "; break;
 case 'O': $col_value = "Outlands "; break;
 case 'Q': $col_value = "Atlantia "; break;
 case 'R': $col_value = "Artemisia "; break;
 case 'S': $col_value = "Meridies "; break;
 case 'T': $col_value = "Trimaris "; break;
 case 'W': $col_value = "West "; break;
 case 'w': $col_value = "Lochac "; break;
 case 'X': $col_value = "Ansteorr "; break;

}
}
if ($returnDate == 'on' && $counterinn == $dateCount) $output .= "

Date : ";
$i++;
$output .= "$col_value\n\n";
$output .= '
';

}
 $output .= '
';

$output .= '<hr>';
$output .= '
';

 }
pg_free_result($result);
pg_close($dbconn);
$output .= '</div>';
echo $output;
?>

32

sca.php

<?
$user = 'vignir';
$pass = '6a204bd89f3c8348afd5c77c717a097a';
if ($_POST['logon'] == '1')
{
setcookie('logon['.$_POST['username'].']', md5($_POST['password']));
echo '<script> document.location = "sca.php" </script>';
}
if($_POST['logon'] == '2')
{
setcookie('logon['.$user.']', $pass, time() - 3600);
echo '<script> document.location = "sca.php" </script>';
}
if (isset($_COOKIE['logon']))
{

foreach ($_COOKIE['logon'] as $username => $password)
{
if ($user == $username && $pass = $password)

{
$loggedin = 1;
}

else
{
setcookie($username, $password, time() - 3600);
}

}
}
if ($_GET['e'] != NULL && $loggedin != 1)
{
die ('kemur');
}
if ($_GET['f'] != NULL && $loggedin != 1)
{
die ('kemur');
}
if ($_GET['f'] != NULL)
{
include 'admin.php';
}
?><html>
<head>
<title>SCA Search page</head>
<body bgcolor="#d0d0d0">

<div style="float:left;width:50%">
<form method="POST">
<?php
if ($loggedin != 1)
{
?>
Username: <input type="text" name="username">
Password: <input type="password" name="password">
<input type="hidden" name="logon" value="1">
<input type="submit" value="Logon">
<?php
}
else
{
echo '<input type="hidden" name="logon" value="2">';
echo '<input type="submit" value="Log out">';

33

}
?>
</form>
</div>
<?php
if($loggedin == 1)
{
?>
<div style="float:left;width:50%">
Add to database
</div>
<?php } ?>

<div id="nav" style="height:122;">Main | Help</div>

<?php
if ($_GET['s'] == NULL && $_GET['e'] == NULL || $_GET['s'] == 'main')
{
?>
<div id="Layer3" style="float:left;width:55%">

Enter a String to search for:

<?php
function skila()
{
if (isset($_POST['submit']))

{
 $name = $_POST['name'];
 $searchName = $_POST['searchName'];

$device = $_POST['device'];
$searchDevice = $_POST['searchDevice'];

 $kingdom = $_POST['kingdom'];
 $searchKingdom = $_POST['searchKingdom'];
 $date = $_POST['date'];
 $searchDate = $_POST['searchDate'];
 $returnName = $_POST['returnName'];
 $returnDevice = $_POST['returnDevice'];
 $returnKingdom = $_POST['returnKingdom'];
 $returnDate = $_POST['returnDate'];

include 'namesearch.php';
}

}
?>

<SCRIPT language="JavaScript" SRC="js_toggleVis.js" TYPE="text/javascript"></SCRIPT>

<form name="input" action="" method="POST">

<table border ="0">
<colgroup span="1">
<col width="90">
<td>name :</td>
</col>
</colgroup>
<td><input type="text" name="name"></td>
</table>

34

<table border ="0">
<colgroup span="1">
<col width="90">
<td>kingdom :
</col>
</colgroup>
<!--</td><td><input type="text" name="kingdom"></td>-->
</td><td>
<select name="kingdom">
<option value ="A">Atenveldt
<option value ="C">Caid
<option value ="D">Drachenwald
<option value ="E">East
<option value ="G">Gleann Abhann
<option value ="H">AEthelmearc
<option value ="K">Calontir
<option value ="L">Laurel or SCA
<option value ="M">Middle
<option value ="m">Ealdomere
<option value ="n">Northshield
<option value ="N">An Tir
<option value ="O">Outlands
<option value ="Q">Atlantia
<option value ="R">Artemisia
<option value ="S">Meridies
<option value ="T">Trimaris
<option value ="W">West
<option value ="w">Lochac
<option value ="X">Ansteorra
</td>
</select>

</table>

<table border ="0">
<colgroup span="1">
<col width="90">
<td>device :</td>
</col>
</colgroup>
<td><input type="text" name="device"></td>
</table>
</br>

<table border ="0">
<colgroup span="1">
<col width="90">
<td>date :</td>
</col>
</colgroup>
<td><input type="text" name="date"></td>
</table>

<input type="submit" value="submit" name="submit">

</div>

35

<div id="Layer4" style="float:left; width:22%" >
Select what to search for:

<input type="checkbox" name="searchName" onClick="toggleVis('nameField')">
Name

<input type="checkbox" name="searchDevice" onClick="toggleVis('deviceField')">
Device

<input type="checkbox" name="searchKingdom" onClick="toggleVis('kingdomField')">
Kingdom

<input type="checkbox" name="searchDate" onClick="toggleVis('dateField')">
Date
</div>

<div id="Layer5" style="float:left; width:23%">
Select what to return:

<input type="checkbox" name="returnName">
Name

<input type="checkbox" name="returnDevice">
Device

<input type="checkbox" name="returnKingdom">
Kingdom

<input type="checkbox" name="returnDate">
Date
</form>
</div>

<div id="Layer6" style="float: left; width:80%; clear: both;" align="left">
<?php skila(); ?>
</div>
<?php
}
elseif ($_GET['s'] == 'help')
{
?>
<div id="help" style="float:center;width:80%">
<?php
echo 'There are eight check boxes that can be marked when conducting a search within this
system.
 Four of the check boxes are used to choose what to search for and the other four are
used to
 select what values to return. When marking the \'search for\' check boxes \'name\',
\'date\' or \'device\' a text field
 appears where the search string is typed in. When marking the check box \'kingdom\'
a
 drop down list appears containing all kingdoms registered within the SCA. There are
also
 check boxes to choose what values to be returned. To conduct a search at least one
of the check box from each
 group must be marked. The system allows searches to be combined in any way a user
wants.
 After selecting the search criteria and fill in the text fields, hit the submit
button and the system returns
 all records that match the search criteria';

36

?>
</div>
<?php
}
elseif ($_GET['e'] == 'add')
{
echo '<form action="sca.php?f=add" method="post">';
echo '<table border="0">';
$options = array('Old Keyword'=>'opt1', 'New Keyword'=>'opt2');
foreach ($options as $op => $tions)
{
echo '<tr>';
echo '<td>'.$op.'</td><td><input type="text" name="'.$tions.'"></td>';
echo '</tr>';
}
echo '</table>';
echo '<input type="hidden" name="where" value="1">';
echo '<input type="submit" value="Add">';
echo '</form>';
}
?>

</body>
</html>

37

data.pl

#!/usr/bin/perl
use DBI;

$dbh = DBI->connect ("dbi:Pg:dbname=oandadb", "", "");
if (!defined $dbh) {
die "Cannot connect to database!\n";
}

myCat();

$id_name = 0;

open (FILE_HANDLE, oanda) || die "The file does not exist\n";

while(<FILE_HANDLE>){

$str =$_;
chomp ($str);

if ($str =~ m/\|d\|/) {arms ($str); arm_search($str)};
if ($str =~ m/\|N\|/) {name ($str)};

}

close (FILE_HANDLE);
sub name{

#Prepare data for table Name
$name_id ++;
$names = $str;
$names =~ s/\|.*//;

 $names =~ s/'/\\'/g;

$name_date = $str;
$name_date =~ s/\|N\|.*//;
$name_date =~ s/.*\|//;
$name_date =~ s/\D//;
if ($name_date =~ m/-/) {

$name_date =~ s/.*-//;
$name_date =~ s/\D//;
$name_kingdom = $str;

 $name_kingdom =~ s/\|N\|.*//;
 $name_kingdom =~ s/.*\|//;
 $name_kingdom =~ s/.*\d//;

name_table ($name_id, $name, $name_date, $name_kingdom); ##Uncomment to add
to table name

$name_id ++;
$name_date = $str;
$name_date =~ s/\|N\|.*//;
$name_date =~ s/.*\|//;
$name_date =~ s/-.*//;
$name_date =~ s/\D//;

}

$name_kingdom = $str;
 $name_kingdom =~ s/\|N\|.*//;
 $name_kingdom =~ s/.*\|//;
 $name_kingdom =~ s/.*\d//;

name_table ($name_id, $names, $name_date, $name_kingdom); ##Uncomment to add to
table name
}

sub name_table{

38

$sth = $dbh->do("
INSERT INTO names (name_id, names, name_date, name_kingdom) VALUES ($name_id,

'$names', $name_date, '$name_kingdom')
");
if (!defined $sth) {
die "name_table Cannot prepare statement: $DBI::errstr\n";
}

}

sub arms{
#Table Arms
$arm_id ++;
$device_foreign_key = $id_name;
$arm_date = $str;
$arm_date =~ s/\|d\|.*//;
$arm_date =~ s/.*\|//;

 if ($arm_date =~ m/-/) {
$arm_date =~ s/.*-//;
$arm_date =~ s/\D//;
arms_table ($arm_id, $arm_date, $arm_kingdom); ##Uncomment to add to

table name
$arm_id ++;
$arm_date = $str;
$arm_date =~ s/\|d\|.*//;
$arm_date =~ s/.*\|//;
$arm_date =~ s/-.*//;

}
 if ($arm_date eq ''){$arm_date = '0000'; $arm_kingdom = 'A';}

$arm_date =~ s/\D//;
$arm_kingdom = $str;

 $arm_kingdom =~ s/\|d\|.*//;
 $arm_kingdom =~ s/.*\|//;
 $arm_kingdom =~ s/.*\d//;

$arm_desc = $str;
$arm_desc =~ s/.*\|d\|//;
$arm_desc =~ s/\|.*//;
$arm_desc =~ s/'/\\'/g;
$arm_desc =~ s/,/\\,/g;
$dev_field1 = $str;
$dev_field1 =~ s/.*\.\|//;
arms_table ($arm_id, $arm_date, $arm_kingdom, $arms_desc); ##Uncomment to add to

table arms
}
sub arm_search{

$compare_string = $str;
$compare_string =~ s/.*\.\|//;
$compare_string =~ s/.*\]\|//;
$compare_string =~ s/.*\?\|//;
$compare_string =~ s/'/\\'/g;
$i = 0;
$i_2 = 0;
@some_arr = split(/\|/, $compare_string);
splice (@some_arr, 0, 1);

foreach (@some_arr) {
@some_arr_2 = split (/:/, $some_arr[$i]);
$i++;
$check = $some_arr_2[0];
splice (@some_arr_2, 0, 1);
table_arms_group();

39

foreach (@some_arr_2){

$check_attr = @some_arr_2[$i_2];

$i_2 ++;
table_group_attribute();

}
$i_2 =0;

}
}
sub table_group_attribute{

 #Insert into table Arms
$sth = $dbh->prepare("
SELECT keyword_search_id FROM keyword_search WHERE search_string =

'$check_attr';
");
if (!defined $sth) {
die "table group attribute SELECT Cannot prepare statement: $DBI::errstr\n";
}

$sth->execute;
#insert into table arms search
$sth = $dbh->do("
INSERT INTO arm_search (arm_id, keyword_search_id) VALUES ($arm_id,

$keyword_search_id)
");
if (!defined $sth) {
die "table group attribute INSERT Cannot prepare statement: $DBI::errstr\n";

}
}
sub table_arms_group{

#Insert into table Arms
$sth = $dbh->prepare("
SELECT keyword_search_id FROM group_keyword WHERE groups = '$check';
");
if (!defined $sth) {
die "table arms group SELECT Cannot prepare statement: $DBI::errstr\n";
}

$sth->execute;
#while ($row = $sth->fetchrow_array()) {
}
$row = $sth->fetchrow_array();
$arms_group_id++;
if ($check eq '(changed/released)'){$row = 10000}; ##Hax til að redda

(changed/released)
$sth = $dbh->do("

 INSERT INTO arm_search (arm_id, keyword_search_id) VALUES ($arm_id, $row)
 ");
 if (!defined $sth) {
 die "table arms grouop INSERT Cannot prepare statement 1: $DBI::errstr\n";

 }
}

sub arms_table{
#Insert into table Arms
$sth = $dbh->do("
INSERT INTO arm (arm_id, name_id, arm_date, arm_desc, arm_kingdom) VALUES ($arm_id,

$name_id, $arm_date, '$arm_desc', '$arm_kingdom')
");

40

if (!defined $sth) {
die "arms table INSERT Cannot prepare statement: $DBI::errstr\n";
}

}

sub myCat #Reads from mycat and splits it up
{

open (CAT_FILE,mycat)|| die "the file does not existi\n";

$groups_id = 0;
$keyword_search_id = 0;
$references_to = 'NULL';

while(<CAT_FILE>) {

$cat_str = $_;
chomp ($cat_str);
$search_string = $cat_str;
$cat_arg_group = $cat_str;

#Table Attribute attr_name

$groups = $cat_str;
if ($groups =~ m/.+\|/){

$groups =~ s/'/\\'/g;
$groups =~ s/.*\|//;
group_keyword($groups_id, $groups , $keyword_search_id);

##Uncomment to add to table a_group
$groups_id ++;

}

if ($search_string =~ m/^\|/){ ####add function to read in new search words

$search_string =~ s/\;.*//;
$search_string =~ s/\|.*\://;

 $search_string =~ s/\<.*//;
print "keyword_search_id : $keyword_search_id, search_string :
$search_string \n ";

###@args_array [$attr_ID] = $attr_Name;
keyword_search ($keyword_search_id, $search_string); ### Uncomment to

add into attr_name

$keyword_search_id ++;
}

#Table group g_Group
if ($search_string =~ m/.+\|/){

$search_string =~ s/\;.*//;
$search_string =~ s/'/\\'/g;
$search_string =~ s/\,.*//;
$search_string =~ s/\|.*//;

keyword_search ($search_string, $keyword_search_id); ##Uncomment
to add to table g_group

$keyword_search_id ++;

}

 $search_string = $cat_str;
 if ($search_string =~ m/\;/){
 $new_keyword = $search_string;

41

 $new_keyword =~ s/.*\;//;
 $new_keyword =~ s/\|.*//;
 @keyword_arr = split(/\+/, $new_keyword);
 $references_to = $keyword_search_id - 1;
 foreach (@keyword_arr) {
 $search_string = @keyword_arr[$i];
 keyword_search ($search_string, $keyword_search_id,
$references_to); ##Uncomment to add to table g_group

 $keyword_search_id ++;
 $i++;

$group_error ++;
}

 $references_to = 'NULL';

$i = 0;
}

}
}
sub keyword_search{ #inserts values into table attribute

#Insert into table attribute
$sth = $dbh->do("
INSERT INTO keyword_search (keyword_search_id, search_string, references_to) VALUES

($keyword_search_id, '$search_string', $references_to)
");
if (!defined $sth) {
die "attribute table Cannot prepare statement: $DBI::errstr\n";
}

}

sub group_keyword{ #inserts values into table attribute
#Insert into table attribute_group
$sth = $dbh->do("
INSERT INTO group_keyword (groups_id, groups, keyword_search_id) VALUES ($groups_id,

'$groups', $keyword_search_id)
");
if (!defined $sth) {
die "Cannot prepare statement: $DBI::errstr\n";
}

}

42

Appendix B (Database dump)

--
-- PostgreSQL database dump
--

SET client_encoding = 'SQL_ASCII';
SET check_function_bodies = false;
SET client_min_messages = warning;

--
-- Name: SCHEMA public; Type: COMMENT; Schema: -; Owner: postgres
--

COMMENT ON SCHEMA public IS 'Standard public schema';

SET search_path = public, pg_catalog;

SET default_tablespace = '';

SET default_with_oids = true;

--
-- Name: arm; Type: TABLE; Schema: public; Owner: vignir; Tablespace:
--

CREATE TABLE arm (
 arm_id integer NOT NULL,
 name_id integer NOT NULL,
 arm_date integer,
 arm_kingdom character varying(1),
 arm_desc character varying(500)
);

ALTER TABLE public.arm OWNER TO vignir;

--
-- Name: arm_search; Type: TABLE; Schema: public; Owner: vignir; Tablespace:
--

CREATE TABLE arm_search (
 arm_id integer NOT NULL,
 keyword_search_id integer NOT NULL
);

ALTER TABLE public.arm_search OWNER TO vignir;

--
-- Name: keyword_search; Type: TABLE; Schema: public; Owner: vignir; Tablespace:
--

CREATE TABLE keyword_search (
 keyword_search_id integer NOT NULL,
 search_string character varying(80) NOT NULL,
 references_to integer
);

ALTER TABLE public.keyword_search OWNER TO vignir;

43

--
-- Name: names; Type: TABLE; Schema: public; Owner: vignir; Tablespace:
--

CREATE TABLE "names" (
 name_id integer NOT NULL,
 "names" character varying(200) NOT NULL,
 name_date integer NOT NULL,
 name_kingdom character varying(1) NOT NULL
);

ALTER TABLE public."names" OWNER TO vignir;

--
-- Name: deviceview; Type: VIEW; Schema: public; Owner: vignir
--

CREATE VIEW deviceview AS
 SELECT keyword_search.search_string, "names"."names", "names".name_date,
"names".name_kingdom, arm.arm_date, arm.arm_desc, arm.arm_id,
keyword_search.keyword_search_id FROM "names", arm, keyword_search WHERE ((("names".name_id
= arm.name_id) AND (arm.arm_id = arm_search.arm_id)) AND (arm_search.keyword_search_id =
keyword_search.keyword_search_id));

ALTER TABLE public.deviceview OWNER TO vignir;

--
-- Name: group_keyword; Type: TABLE; Schema: public; Owner: vignir; Tablespace:
--

CREATE TABLE group_keyword (
 groups_id integer NOT NULL,
 groups character varying(80) NOT NULL,
 keyword_search_id integer NOT NULL
);

ALTER TABLE public.group_keyword OWNER TO vignir;

--
-- Name: arm_pkey; Type: CONSTRAINT; Schema: public; Owner: vignir; Tablespace:
--

ALTER TABLE ONLY arm
 ADD CONSTRAINT arm_pkey PRIMARY KEY (arm_id);

ALTER INDEX public.arm_pkey OWNER TO vignir;

--
-- Name: group_keyword_pkey; Type: CONSTRAINT; Schema: public; Owner: vignir; Tablespace:
--

ALTER TABLE ONLY group_keyword
 ADD CONSTRAINT group_keyword_pkey PRIMARY KEY (groups_id);

ALTER INDEX public.group_keyword_pkey OWNER TO vignir;

--

44

-- Name: keyword_search_pkey; Type: CONSTRAINT; Schema: public; Owner: vignir; Tablespace:
--

ALTER TABLE ONLY keyword_search
 ADD CONSTRAINT keyword_search_pkey PRIMARY KEY (keyword_search_id);

ALTER INDEX public.keyword_search_pkey OWNER TO vignir;

--
-- Name: names_pkey; Type: CONSTRAINT; Schema: public; Owner: vignir; Tablespace:
--

ALTER TABLE ONLY "names"
 ADD CONSTRAINT names_pkey PRIMARY KEY (name_id);

ALTER INDEX public.names_pkey OWNER TO vignir;

--
-- Name: arm_name_id_fkey; Type: FK CONSTRAINT; Schema: public; Owner: vignir
--

ALTER TABLE ONLY arm
 ADD CONSTRAINT arm_name_id_fkey FOREIGN KEY (name_id) REFERENCES "names"(name_id);

--
-- Name: public; Type: ACL; Schema: -; Owner: postgres
--

REVOKE ALL ON SCHEMA public FROM PUBLIC;
REVOKE ALL ON SCHEMA public FROM postgres;
GRANT ALL ON SCHEMA public TO postgres;
GRANT ALL ON SCHEMA public TO PUBLIC;

--
-- PostgreSQL database dump complete
--

45

Appendix C (Format of the SCA Armorial Database)

Format of the SCA Armorial Database

by Iulstan Sigewealding
9 December 1998

This document describes the format used to record names and armory in the SCA
Armorial Database. The database is actually a flat text file. The text is mostly
ASCII, with a few Latin-1 encodings. (Latin-1 is an extension of ASCII and is an
international standard. Unfortunately, its 8-bit codes are NOT compatible with
the "437" code page normally active on PCs running MS-DOS in the United
States.)

The file consists of a copyright notice followed by records.

NOTICE

The copyright notice begins with a line that reads "NOTICE:" and ends with a
line that reads "END OF NOTICE." The records begin immediately after the end-
of-notice.

RECORDS

Each record occupies a single line in the file, and each line contains one record.
A record has at least five fields, separated by stiles (`|'). The five required fields
are: name, source, type, text, and notes, in that order.

● (1) a name associated with the item
● If the type is one of `B' `D' `N' `a' `b' `d' `g' `j' `s' `BD' `BN' or `D?',

this is the registrant's name.
● If the type is `AN', this is the alternate name.
● If the type is `HN', this is the household name.
● If the type is `O', this is the name of the award or order.
● If the type is `t', this is the heraldic title.
● If the type is one of `ANC' `BNC' `BNc' `NC' `Nc' `HNC' or `OC', this

is the earlier name.
● If the type is one of `Bv' `Bvc' `v' or `vc', this is the incorrect spelling

of the name.
● If the type is `C', this is a blank.
● If the type is `R', this indicates where the cross-reference appears in

the Armorial.

There is no official limit on the length of a name.

46

● (2) reference to the source of the information:
● (a) empty, for items whose source is unknown
● (b) a four-digit LoAR date (in the form YYMM) optionally followed by

a kingdom ID letter

Examples:

● `7010' (= the October 1970 LoAR or errata letter)
● `9001E' (= the January 1990 LoAR or errata letter under

"EAST")
● `5912W' (= the December 2059 LoAR or errata letter under

"WEST")

In this case, the LoAR date indicates the date of the Laurel action
that created the record. For combined records (record types `B' `BD'
and `D') this is not necessarily the date the name was registered, nor
is it necessarily the date the armory was registered.

● (c) a dash, followed by an LoAR date, optionally followed by a
kingdom ID letter

In this case, the item has been released, transfered, redesignated,
corrected, reblazoned, or is otherwise obsolete. The date is the date
of the obsoleting action.

● (d) a pair of LoAR dates, each optionally followed by a kingdom ID,
the pair separated by a dash

In this case, the item is obsolete. The second date is the obsoleting
action, and the first date is the last action before the obsoleting
action.

The kingdom ID letters correspond closely to codes used by the S.C.A.
Registry:

● A = Atenveldt
● C = Caid
● D = Drachenwald
● E = East
● G = Gleann Abhann
● H = AEthelmearc
● K = Calontir
● L = Laurel or SCA (not submitted through a specific kingdom)
● M = Middle
● m = Ealdormere
● n = Northshield
● N = An Tir
● O = Outlands
● Q = Atlantia
● R = Artemisia

47

● S = Meridies
● T = Trimaris
● W = West
● w = Lochac
● X = Ansteorra

● (3) record type (required):
● a = Augmentation of arms
● AN = Alternate Name
● ANC = Alternate Name Change
● b = Badge (also used for misc. armory -- see "notes" field)
● B = personal name and Badge (combined record)
● BN = Branch Name
● BD = Branch name and Device (combined record)
● BNC = Branch Name Change
● BNc = Branch Name Correction
● Bv = Branch name Variant without correction (probable error)
● Bvc = Branch name Variant with Correction
● C = Comment (database identification and version control data)
● d = Device
● D = personal name and Device (combined record)
● D? = uncertain type of armory (could be a, b, d, or s)
● g = reGalia
● HN = Household Name
● HNC = Household Name Change
● j = Joint badge cross-reference
● N = primary personal Name
● NC = personal Name Change
● Nc = personal Name Correction
● O = award name or Order name
● OC = award name change or Order name Change
● R = cross-Reference
● s = Seal
● t = heraldic Title
● v = personal name Variant without correction (probable error)
● vc = personal name Variant with Correction

● (4) text:
● If the type is one of `B' `D' `a' `b' `d' `g' `s' `BD' or `D?', this is the

blazon.
● If the type is `BN' or `N', this must be empty.
● If the type is `j', this is the name of other registrant of the joint

badge. (The other registrant's record will have the complete blazon.)
● If the type is `AN', this is `For' followed by the primary name of the

registrant.
● If the type is `HN', this is the name of the registrant, or a list of

48

registrants, enclosed in double-quotes and separated by `and'.
● If the type is `O', this is the name of the branch that registered the

award or order.
● If the type is `t', this is the name of the branch which registered the

title.
● If the type is `BNC' or `NC', this is the word `See' followed by the

new (branch or personal) name.
● If the type is `ANC' `HNC' or 'OC' this is the new (alternate,

household, or award/order) name.
● If the type is `BNc', `Bv', `Bvc', `Nc', `v' or 'vc', this is the corrected

form of the (branch or personal) name.
● If the type is `C', this is the text of the comment.
● If the type is `R', this is the word `See' followed by the name under

which the referenced item appears, or a list of names enclosed in
double-quotes and separated by `or'.

There is no official limit on the length of the text field.

● (5) notes, individually enclosed in parentheses:
● To clarify the blazon: `A Cross of Samildanach is four Menorahs in

cross'
● To indicate the status the item: `Closed' `Deceased' `Disbanded' `-

released' `-corrected blazon'
● To indicate a special class of armory: `Civil Ensign' `Ensign' `Flag'

`Naval Ensign' `War Banner'
● To indicate the intended use of the item: `For House of Duckford'

`For the populace'
● To indicate the other holder of a joint badge: `JB: Elinor Aurora of

Rosewood'

There is no official limit on the number of notes or their length.

● (6) other fields:

For name items, there are always exactly four stiles (and thus five fields).

For armory items (types `B' `D' `a' `b' `d' `g' `s' `BD' and `D?') additional
fields are used to describe the headings under which the armory is indexed
in the SCA Ordinary. Obsolete armory is not indexed, and there is no
official limit on the number of headings.

49

	Chapter 1, Introduction
	1.1 Background
	1.2 Motivations
	1.3 Personal gain
	1.4 Other gain

	Chapter 2, Description of the work
	2.1 What the project is supposed to achieve
	2.2 How the project is suppose to function

	Chapter 3, Related work
	3.1 Existing system

	Chapter 4, Design
	4.1 Data files
	4.2 Category file
	4.3 Registration file
	4.4 Designing the database
	4.6 Designing the front end
	4.6 Designing the search engine
	4.7 Designing program to import the data

	Chapter 5, Implementation
	5.1 Database
	5.2 Importing the data
	5.3 User interface
	5.4 Searching the data
	5.5 Administration System

	Chapter 6, Evaluation
	References
	Bibliography
	Appendix A (Source code)
	admin.php
	namesearch.php
	sca.php
	data.pl
	Appendix B (Database dump)

	Appendix C (Format of the SCA Armorial Database)

