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Abstract 

The Active Shape Model (ASM) algorithm is an image segmentation technique that takes 

advantage of the data derived from the training set. The model is built up from shape 

information obtained from analyzing points along object boundaries known as landmarks. 

This forms the basis in searching unknown images for target shapes. 

The theory and process of building up the ASMs and image search is discussed. Examples 

are given to reinforce the discussion. Finally, the ASM is used on several poultry 

processing applications. 

It is found that the inherent ability of ASMs to adapt to different variations seen during 

training make it an ideal candidate for applications in the poultry processing industry.  
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1 Introduction 

Humans learn the concept of shapes at a very early age. It is an important tool in the 

child‟s language development [24]. Toys such as the one shown in Figure 1.1 help 

stimulate the process of learning shapes. Toddlers learn about different shapes and colors 

as they place the right object in its slot. As we grow older, we develop the ability to 

distinguish shapes naturally and intuitively.  This conceals the complexity at how the 

seemingly simple process of distinction is actually carried out. 

 

Figure 1.1 A child playing with a shape toy. 

Given a certain picture such as the one in Figure 2.1, it is trivial for anyone to name simple 

shapes like the triangle and square. This does not stop there; humans are able to identify 

more complex shapes even with great degree of variability. Dogs for example, come in all 

shapes and sizes. But presented with an image of a dog of a common breed, most persons 

will be able to identify it as a canine. 

Most people do not know all the breeds of dog that exist but most probably have seen a 

breed or two. This gives them a rough estimate of how a dog would look like. This a priori 

knowledge is enough to enable them to classify, to some degree, if an animal presented to 

them is a breed of dog or another animal entirely.  

In this thesis, the theory and application of the Active Shape Model (ASM) is explored. 

This technique is different in that it takes advantage of a priori information from a training 

set to search for object instances in unknown images.  
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1.1 Motivation and objective 

The poultry processing industry in general pose a difficult challenge for image processing 

algorithms. Natural products, as seen in the food processing industry, are mostly non-rigid 

objects. As such there is a great variety in which even the same type of product appears. In 

a processing line that handles only chicken wings, for example, it cannot be expected that 

the wings appear in the same exact position every time. Some can be lying on one side, 

while the others on the other; the angle at which the wings open can be different for every 

piece and even the sizes of the portions themselves can be different. These are just some of 

the hurdles that an image processing application has to overcome in order to be effective in 

this type of operation.  

The primary advantage of using ASMs is its ability to learn from training and allowance 

for large discrepancies during image search. We then aim to explore the theory of ASMs 

and investigate its effectiveness in applications in the poultry processing industry. 

1.2 Thesis overview 

This thesis is arranged into several chapters 

 Chapter 2: Discussion of shape –A formal definition of shape and point distribution 

models is introduced.  

 Chapter 3: Data set –A brief description of the SensorX machine and the test images used 

in this thesis is provided. 

 Chapter 4: Active Shape Models –The theory and foundation of the Active Shape Model is 

presented. 

 Chapter 5: ASM Implementation and Results –The ASM algorithm is trained with the X-

ray images and the performance is discussed. 

 Chapter 6: ASM Applications in the Poultry Processing Industry –The results from the 

ASM algorithm is used in conjunction with other techniques to solve different challenges 

in the poultry processing industry. 

 Chapter 7: Conclusion and Future Work –Proposals for further studies resulting from this 

thesis are put forward and a conclusion is submitted. 
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2 Discussion of Shape 

In this chapter we establish the definition of a shape. We also look into landmarks, the 

foundation of ASMs. Finally, we discuss point-distribution models.  

2.1 Shape 

Before any further discussion, we must first define shape. A formal definition is given by 

D. G. Kendall [10]: 

Definition 1: Shape is all the geometrical information that remains when location, scale 

and rotational effects are filtered out from an object.  

Changes in location, scale and rotation are called Euclidean similarity transformations. 

Several objects are presented in Figure 2.1. We identify the first three shapes, Figure 2.1a, 

Figure 2.1b and Figure 2.1c, as having the same shape, they are all triangles. The 

differences in size, location and orientation do not hinder us from classifying it as such. It 

can be shown that by performing one or a combination of  translation, rotation and scaling, 

these figures are exactly alike, e.g., Figure 2.1b can be scaled down to match Figure 2.1a, 

Figure 2.1c can be rotated to fit Figure 2.1b. The object in Figure 2.1d, however, cannot be 

classified as a triangle regardless of any similarity transforms. Hence, it is a different shape 

from the first three and we know it as a square. Therefore, a shape must be invariant to any 

similarity transformation.  

2.2 Landmark 

Now that we have defined what a shape is, we need to describe them. A good starting point 

is to look at the outline of the object in question. But instead of considering  

 

Figure 2.1 Objects (a), (b) and (c) have the same shape but different transformations. 

Object (d) has a shape that is different from the other three. 

all the points that lie in the outline, we select only certain points that are of interest. We 

adopt the concept of a landmark as defined by Dryden and Mardia [10]. 

Definition 2: A landmark is a point of correspondence on each object that matches 

between and within populations.  

These landmarks are further classified into three categories [10]: 
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1. Anatomical landmarks – Points assigned by an expert that corresponds between 

organisms in some biologically meaningful way. 

2. Mathematical landmarks – Points located on an object according to some 

mathematical or geometrical property of the figure, e.g., at a point of high curvature or 

at an extreme point.  

3. Pseudo-landmarks – Constructed points on an object located either around the outline 

or in between anatomical or mathematical landmarks. 

In this manner, a shape is described by the set of landmark points acquired along its 

boundary. Although this is directly applicable to two-dimensional (2D) shapes, extension 

to three or more dimensions is also possible.  

In the succeeding discussions, no distinction is made among the different landmark types. 

All landmark points whether anatomical, mathematical or pseudo-landmarks are called 

simply as landmarks or landmark points.  

In this thesis only 2D shapes are considered. A shape described by a vector representation 

would then be: 

 z = [𝑥1,𝑦1, 𝑥2, 𝑦2, . . . , 𝑥𝑛−1, 𝑦𝑛−1, 𝑥𝑛 ,𝑦𝑛 ]𝑇 . (2.1)  

2.3 Point Distribution Models 

Each object in Figure 2.1(a) - (c) can be transformed exactly to resemble the other two 

using similarity transformations. In less than ideal conditions, though, this is not the case. 

Normally, there are variations that exist among objects of the same shape that cannot be 

resolved by similarity transformations, i.e., one side may be a little longer or a vertex can 

be slightly skewed. These minor deformations are often acceptable and do not hinder the 

object from being classified into its respective shape. With this in mind, we build a model 

that describes a shape but allows for slight variations. This model is built upon the 

statistical information derived from analyzing known objects of the same shape class in the 

training set. This is a called point distribution model [8]. 

The foundation of point distribution models are landmarks. Each object in the training set 

must be labeled with a set of landmark points. In most cases, as is done in this thesis, there 

is one object for every training image. These objects do not necessarily have the same 

orientation across the training images. There can also be minor variations as described 

above. It is important that in the landmarking process, the landmark points correspond to 

the same point on the shape across all the training images regardless of orientation and 

slight deformations. For rigid objects or those that are regularly-shaped, the placement of 

landmark points is well-defined. Anatomical, mathematical, and pseudo-landmarks placed 

at equal distances in between are sufficient to describe the shape. For non-rigid objects like 

poultry or meat, the placement of landmarks can be ambiguous. The perimeters of these 

objects not only depend on the actual size of the cut but also how they are positioned 

during image acquisition. As a result, the normal process of placing pseudo-landmarks at 

equal distances from anatomical or mathematical landmarks becomes unreliable. Extra 

care must be taken so that each landmark corresponds to the same position across all 

images. 
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As mentioned above, the objects in the training images often have slight differences among 

them. Thus, after acquiring all the landmarks, we align them to a common reference frame. 

This is done by performing similarity transformations on the training images. This goes 

back to our definition of shape that all the translation, scale and rotation are filtered out.  

Statistical information is built up after isolating geometric information from the training 

images. Using multivariate data introduced by the landmarks prevents this from being a 

straightforward process. Hence, we must employ dimension-reduction techniques to 

facilitate the operation. One such method is the Principal Component Analysis (PCA). This 

will be discussed further in Chapter 4. 
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3 Data Set 

The primary aim of this thesis is to test the Active Shape Model (ASM) algorithm on non-

rigid images found in the food processing industry. For this purpose, all the images used in 

this thesis are taken by the SensorX poultry bone detection machine manufactured and 

developed by Marel hf. The images were taken by several SensorX machines at different 

instances running in factory conditions. This is evident in some of the images as artifacts or 

foreign objects are visible. The images selected for the experiments contain only one fillet. 

Most of the images include the complete fillet within its limits. In some, however, the fillet 

is not completely contained in the image. This was done to explore the performance of the 

ASM algorithm in these conditions.  

3.1 SensorX poultry bone detection machine 

 

Figure 3.1 The Marel SensorX machine. Courtesy of Marel ehf. 

The SensorX is an inspection machine that detects contaminants in poultry products. It 

uses X-ray technology to detect bones, metal, stone and glass. The X-rays are generated by 

a 500W source with an 1mm focal spot size having cone geometry. This is projected onto a 

belt which runs at 500mm/sec. The pixel size is about 0.6mm and the scanning width is 

305mm. A line scan sensor captures the projected X-rays and builds the image up at a rate 

of 625 lines per second. The images produced are in grayscale. 

Bones and other contaminants larger than 2mm are detected with an accuracy of 99% with 

only a 3% false positives rate.  

3.2 Chicken breast fillet 

All test and training images contain a chicken breast fillet. The United States Department 

of Agriculture (USDA) identifies the chicken breast as separated from the back at the 

shoulder joint and by a cut running backward and downward from that point along the 

junction of the vertebral and sternal ribs [35]. This is also known as the butterfly cut. It can 
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be sliced along the breastbone to separate them into equal halves. The ribs and other bones 

are taken out to complete the fillet. Figure 3.2 shows two samples of chicken breast fillets. 

 

Figure 3.2 Some samples of chicken breast fillets. 
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4 Active Shape Models 

This chapter discusses ASM. A review of existing literature is given to briefly explain the 

evolution of the algorithm. The ASM algorithm is broken down into two phases: the 

training phase and the search phase. Each of the steps in the two phases is reviewed. 

Finally, a multi-resolution approach to image search is examined. 

4.1 History of related work 

Numerous methods and algorithms have been developed to perform shape description and 

representation.  These techniques extract information from the desired object for 

identification and recognition. This information can be in the form of shape descriptors. 

Peura and Iivarinen [27] used classical shape descriptors like convexity, variance and 

principal axes to describe objects. Zahn and Roskies [43] described shapes using the 

Fourier coefficients of a periodic function from the closed curve bounding the object, 

calling these Fourier descriptors. This was extended by Abter et al. [1] to accommodate 

affine deformations. Xie et al. [41] used skeletal segments computed using the medial axis 

transform to find correspondences in different instances of an object.  

An entirely different approach was introduced by Fischler and Elschlager [13] with 

deformable models. In their representation, a model is a reference image composed of 

several rigid points or components. Each point is connected to another by a spring. The 

cost of fitting the model to an input image is measured by evaluating the tension that each 

spring experiences.  In the same year, Widrow [39], [40] presented his „rubber-masks‟. In 

his technique, a model is iteratively distorted to fit an input image up to a desired degree of 

accuracy; thus creating a stretched template or a rubber-mask. This was especially helpful 

for applications where the target objects do not share the same exact shape, such as human 

chromosomes in Widrow‟s study. The model-based approach benefit from being able to 

adapt to differences across the input images to correctly identify the target objects. This is 

especially true for objects that have a high degree of variation among similar instances 

such as in biological structures. Hence, the extensive use of these methods is found in 

medical applications [26].  

Kass et al. [22] proposed the active contour model. Energy-minimizing contours or snakes 

actively search for object boundaries. The snakes are acted upon by a combination of 

forces or energies.  

1) The internal contour forces act to impose piecewise smoothness.  

2) Image forces push the snake to prominent image features. 

3) External forces move the snake near the desired boundaries. In the presence of these forces, 

the snake deforms as it finds a local minimum of the energy.  

The constant minimization of the energy functional demonstrated by the snakes makes it 

an „active‟ model. In addition to this, constraints can be set on the snakes so that they 

remain smooth and do not bend more than is allowed. Shapes are then represented by the 

snakes computed by this method. However, parameters can be set so that the snakes are 

guided on to a desired path. Yuille et al. [42] used this to find the human eye in images. 

The problem with this method is that another set of parameters must be determined 

whenever a new object is introduced.  
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Cootes et al. [8] proposed the ASM to address both generality and specificity. They argue 

that modeling variability in a theoretical manner can be very difficult. Therefore, the only 

viable means is to build up statistical information from a set of training images and learn 

the patterns of variability from it. Thus, the model is only allowed to deform in a manner 

consistent with the variations described in the training set. ASMs have been successfully 

implemented in different applications [31], [32], and [21]. 

Further developments of ASM methods have also been proposed. Klim et al. [23], for 

example, used different regression matrices improving the search range and speed of the 

algorithm. Ginneken et al. [37] employed a non-linear classifier and trained it with a set of 

feature vectors to improve the movement of landmark points. A direct extension of ASM is 

the Active Appearance Model (AAM) [33]. 

4.2 ASM overview 

 

 

Figure 4.1 The major stages in training ASM. 

Building active shape models is a three-step process. The first step is to capture 

information from the training set. This is accomplished by labeling the images with 

landmark points. An expert can place points on significant sites of the image. An 

alternative to this tedious task is to have landmarking done by an automatic method. Once 

the images are all labeled, alignment can be done. Statistical analysis is then performed on 

the aligned shapes, an example of which is the Principal Component Analysis (PCA).  

These steps are further discussed in the following sections. 

4.3 Modeling shape variation 

4.3.1  Acquiring landmarks 

Labeling the training images is only done during training. Landmarks are the foundation of 

ASM. Hence, the process of acquiring a set of points must be done with great care to 

ensure the accuracy of the succeeding processes. Well-placed landmarks will also result in 

faster execution of the succeeding algorithms in the ASM technique.  

Images of bones and organs often contain points of anatomical importance. Accordingly, 

landmarks on these images are primarily placed manually by medical doctors or experts in 

that field. In the separate experiments done by Eiriksson [12] and Stegmann [33], the 

images were annotated by medical professionals. For more ambiguous shapes such as 

weed leaves [32], salient or mathematical points are chosen on the outline of the shape and 

an equal number of pseudo-landmarks are placed in between them. Whichever method is 

used for choosing the landmarks, the goal is to have each landmark correspond to the same 

position on the shape across the training images. The number of landmarks, although not as 

critical, must also be chosen carefully. Too few points can cause inaccuracies during the 

search phase, with the object not being sufficiently described by the model. Too many 

points, on the other hand, increase the computational complexity of the process and 

consequently lengthen the completion time. 

Landmarking 
Shape 

Alignment 

Statistical 

Analysis 
Shape model 

Training 

Image 
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Figure 4.2 A landmarked triangle shape. 

Figure 4.2 shows a triangle that is labeled with landmarks. A simple shape like this 

presents easily identifiable points that can be used as landmarks. Salient points such as the 

vertices of the triangle, marked with diamond indicators, are prime candidates for this. It is 

noticeable, though, that there are considerable distances between these mathematical 

landmarks. It is enough to represent a triangle with just three landmarks. But for more 

complex shapes, the distances between mathematical landmarks can be too great, or the 

mathematical landmarks themselves can be too few that it will not correctly represent the 

shape we are trying to build a model from. It is for this reason that we need to place points 

in between them. In Figure 4.2, the cross-shaped indicators are pseudo-landmarks. 

While it may be trivial to mark simple shapes such as in Figure 4.2, labeling images with 

hundreds of points is very tedious and even more so in 3D or higher dimensions. Several 

automatic and semi-automatic methods have been developed to counteract this.  

Walker et al. [38] used pairwise correspondence to generate landmarks. In their method, a 

bounding box containing the target shape is placed on all training images.  Salient features 

found in each image are then located on all the other images. Global correspondence is 

established through an iterative scheme. This technique worked well on images that do not 

have significant changes in pose.  

Hill et al. [19] took a slightly different approach. A pairwise corresponder is used to get the 

cost function of matching one image to another. A binary tree composed of paired images 

is built according to their cost function. The worst-match pair is placed at the bottom of the 

tree and the best-match pair is at the top. The top pair is averaged to get the mean shape. 

The landmark points are determined on the mean shape. These are propagated through the 

leaves of the tree using the pairwise corresponder employed previously. Rueda et al. [28] 

followed the same path of deriving the landmarks from a mean shape and propagated them 

through the training images. In their method, the training images are binarized and 

segmented prior to processing. A distance transform is then applied to the images and the 

mean is extracted. From the mean shape, the landmarks are selected by the c-scale method 

[30]. Parametric and distance transform propagation were compared as propagation 

methods for the landmarks.  
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Evaluating landmarks done manually involves several experts performing the landmarking 

process multiple times. This assesses the repeatability and reproducibility of the results 

[33]. For the purposes of this thesis, the landmarks are placed by the author. Mathematical 

and pseudo-landmarks points are chosen and located in each training image.  

4.3.2  Shape alignment 

Following Definition 1, we must remove the differences in size, position and rotation of 

the objects in the training set in order to properly describe the shape. By rotating, 

translating and scaling the shapes with respect to a set of axes, we effectively allow the 

landmarks to be used for statistical analysis. Only then can we build a reliable model.  

Shape alignment is done by mapping one shape to another [8]. Let the base shape za 

contain n points and be represented by  

 𝑧𝑎  = [𝑥𝑎1 ,𝑦𝑎1, 𝑥𝑎2,𝑦𝑎2 , . . . , 𝑥𝑎𝑛−1, 𝑦𝑎𝑛−1, 𝑥𝑎𝑛 ,𝑦𝑎𝑛 ]𝑇 . (4.1)  

 

We then map shape zb to za. Rotation and scale is introduced by the transformation, M(s,θ), 

of the shape vector 

 
𝑀 𝑠,𝛳  

𝑥𝑏𝑘
𝑦𝑏𝑘

 =   
 𝑠 cos 𝜃 𝑥𝑏𝑘 −  𝑠 sin𝜃 𝑦𝑏𝑘
 𝑠 sin 𝜃 𝑥𝑏𝑘 +  𝑠 cos 𝜃 𝑦𝑏𝑘

  
(4.2)  

 

where s is the scale and θ is the rotation. Translation is done by adding a vector of 

variables to the shape vector 

 𝑡𝑏 =  𝑡𝑥𝑏1
, 𝑡𝑦𝑏1

,… , 𝑡𝑥𝑏𝑛 , 𝑡𝑦𝑏𝑛  . (4.3)  

 

In order to accomplish alignment, we attempt to minimize a weighted sum of squares of 

distances between zb to the za. Let this sum be 

 𝐸𝑏 =  𝑧𝑎 −𝑀 𝑠𝑏 ,𝜃𝑗   𝑧𝑏  − 𝑡𝑏 
𝑇
𝑊 𝑧𝑎 −𝑀 𝑠𝑏 ,𝜃𝑗   𝑧𝑏  − 𝑡𝑏  (4.4)  

 

where W is a diagonal matrix of weights. The weights are included to give more 

importance to landmark points that vary less across the training images. The points in the 

shape that move considerably relative to the other points not only increase the 

computational complexity of the algorithm but also do not add significant information. 

Thus by placing less emphasis on such points, we improve the performance of the 

algorithm. The weights are computed by 

 𝑤𝑘 =   𝑉𝐷𝑖𝑗

𝑛−1

𝑖=0

 

−1

,𝑘 = 1,2,… ,𝑛, (4.5)  
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where wk is the vector of weights for point k. Dij is the distance between points in one 

shape. 𝑉𝐷𝑖𝑗  is the variance of the distances between points i and j over the training set. 

Points that have large movement will have large variances and consequently low weights. 

Stable landmarks have less movement and higher weights. 

In order to align N shapes, we apply the method described previously in an iterative 

scheme. A common method of doing this is by using the generalized Procrustes analysis 

[15]. This is an algorithm that normally involves the following steps: 

1. Determine a preliminary shape (e.g. first/last shape). 

2. Align the training shapes to the preliminary shape. 

3. Calculate the resulting mean from the aligned shapes. 

4. Normalize the mean to chosen constraints.  

5. Align the training shapes to the normalized mean. 

6. Repeat from until convergence.  

Convergence is reached when the computed mean only changes within a specified limit 

during iteration. The normalization step ensures that the algorithm converges. Establishing 

a preliminary shape provides a starting point of the alignment procedure. However, it does 

not affect the final mean shape. The experiments of Cootes et al. [8] showed that the 

scheme arrives at the same mean regardless of the preliminary shape chosen.  

 

Figure 4.3 Unaligned (a) and aligned (b) sets of triangles. 

Figure 4.3 (a) shows a plot of twenty triangles of different locations, sizes, and 

orientations. This was taken from a training set of twenty images, each containing one 

triangle and then manually landmarked. In this instance, only the vertices of the triangle 

were used for landmarking. For a simple shape such as this, the vertices are enough to 

model the shape and to show the effect of the alignment procedure. Figure 4.3 (b) is the 

plot of the aligned triangles. The mean shape is superimposed with the dotted outline. 

Looking closely at the image, we see there are triangles that appear in the center of the 

cluster. This shows that the alignment procedure does not alter the shape of the objects but 

rather only seeks to find the best fit through the similarity transformations.  
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4.3.3  Statistical analysis 

 

Figure 4.4 The mean shape of the training set with all the landmarks after the alignment 

process. 

Once the objects are aligned, capturing statistical information from the training set is done 

next. Figure 4.4 shows a mean shape derived from aligning a set of twenty images 

containing triangles.  The landmarks are overlaid on the mean showing the variability at 

which the landmarks are taken. It is important to note that these points are not independent 

and have some correlation between them. A point cannot move to a different location 

without affecting the adjacent points in the same object to some degree as they belong to 

the same object.  

We let each aligned shape za to be a point in 2n dimensional space. A training set of N 

images then forms a cloud of N points in this space. Cootes et al. [8] identify the region at 

which the points occupy in the 2n dimensional space as the allowable shape domain. New 

shapes that conform to the training set can be formed by moving about in this domain. The 

high dimensionality of this space complicates the process of finding new shapes 

mathematically. A common method of dealing with high dimensional data is by using 

PCA.  

PCA, also known as Karhunen-Loeve transform, was developed by Harold Hotelling in 

1933 [20].  In this technique, a new set of bases is determined according to the variance in 

the data. This set of bases, or principal components, are orthogonal to each other and 

arranged according to the magnitude of the variance each one describes. In the process of 

transforming the original basis of the data set to the computed PCA basis, dimensionality 

reduction is achieved.  

Principal components or modes are derived from the eigenvectors of the covariance matrix. 

The amount of variance contained in each mode is defined by its corresponding eigenvalue 

[8]. Therefore, the mode that corresponds to the largest eigenvalue describes the most 

variance and is also the most significant principal component. Conversely, the mode that 

corresponds to the smallest eigenvalue describes the least variance and is the least 

significant principal component.  
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The covariance matrix is computed as 

 

𝑆 =
1

𝑁
  𝑧𝑖 − 𝑧   𝑧𝑖 − 𝑧  𝑇
𝑁

𝑘=1

 

(4.6)  

 

where z  is the mean and is defined as 

 𝑧 =
1

𝑁
 𝑧𝑖  
𝑁
𝑖=1 . (4.7)  

 

The eigenvalues, λk, and eigenvectors, pk, are found by  

 𝑆𝑝𝑘 = 𝜆𝑘𝑝𝑘  . (4.8)  

 

Each principal component gives a mode of variation to the shape being described. These 

modes allow the landmark points to move as the shape varies. As stated earlier, the 

eigenvalues identify the variance that each mode explains. However, not all the modes are 

needed to describe the shape. The number of modes can be chosen such that a significant 

percentage of the variance is represented. This reduces the dimensionality from 2n 

dimensions to only t modes. In doing this we also reduce the amount of variance 

represented. As a result, the accuracy decreases. It now becomes a tradeoff between 

accuracy and compactness.  We can assume that the modes with low variance only contain 

noise and can therefore be disregarded. The total variance is computed as 

 

 

𝜆𝑇=  𝜆𝑘  .

𝑁

𝑘=1

 

(4.9)  

 

A shape can be generated by adding a linear combination of the selected modes to the 

mean shape, that is 

 𝑧 = 𝑧  + 𝑃𝑏 (4.10)  

 

where P = [p1, p2, …, pN] is the matrix of the chosen eigenvectors, and b = [b1, b2, …, bN] 

is a vector of weights. 

By varying the weights, b, we can generate new shapes that are not present in the data set. 

However, constraints must also be set so that the formed shapes still conform to the shapes 

from training. A common limit is set at three standard deviations from the mean or 

 −3 𝜆𝑘 ≤ 𝑏𝑘 ≤ 3 𝜆𝑘  . (4.11)  
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This is chosen because the variance, σ
2
, contained in each mode is equal to its 

corresponding eigenvalue, λ, and the range covered by ±3σ is already 99.73% of the 

distribution [33]. However, this simplification allows all elements of the vector b to 

assume the value of ± 3𝜎 at the same time. An improvement to this is to choose the 

elements of the vector b such that the Mahalanobis distance (Dm) is less than a suitable 

value, Dmax [8]: 

 

𝐷𝑚
2 =   

𝑏𝑘
2

𝜆𝑘
 

𝑁

𝑘=1

≤ 𝐷𝑚𝑎𝑥
2  . 

(4.12)  

 

From the training set of training images, we derive three modes corresponding to three 

elements for vector b. Figure 4.5 shows the new shapes formed by setting the first element 

of vector b to different values while keeping all the other elements to 0.  

 

   

Figure 4.5 Deformations of the mean shape resulting from modifying b1 by -3√λ1 (a),                 

-1.5√ λ 1 (b), 0(c), +1.5√ λ 1 (d), and +3√ λ 1 (e). 

4.4 ASM image search 

With the models already built up, it is now possible to find the desired shape in unknown 

images. This phase is generally known as image search. The process starts with positioning 

the model to an initial location in the test image. Several methods can be used to 

accomplish this. The simplest of which is placing the model in an arbitrary spot in the 

image. Ad hoc methods [32] have also been used to improve the initial placement of the 

model. For general applications, genetic algorithms have been employed for this purpose 

[18].  

From its starting position, the model moves, rotates, resizes and deforms until it finds the 

shape it was designed for. This is done in an iterative scheme hence limits are put in place 

to keep the algorithm from collapsing. Each iteration involves four steps: 

1. Calculate best movement locations for each model point. 

2. Align model to points computed from step 1. 

3. Deform model to accommodate difference between aligned model to best movement 

locations. 

4. Update parameters. 
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4.4.1  Selecting the movement location for each model point 

In the iterative process of moving the model towards desired shape in the image, we need 

to identify the best points for which to move each model point. This involves analyzing the 

area around all landmarks and then computing the optimal location for each one. In this 

thesis, the search area for moving each point is m pixels on either side of the model point 

along the normal. If the model points are trained to be at the shape boundaries, this method 

allows each landmark to move closer to the shape edges only at a path that is normal to the 

shape model. This is illustrated in Figure 4.6; model point M is only allowed to move 

along the dashed line. Because the normal is directly affected by the orientation of the 

other model points, the best location for a certain model point may not necessarily fall 

within the normal passing through that point. In the case of Figure 4.6, this is not the 

problem since point B lies in the normal passing through point M. If point B did not lie on 

the normal, model point M cannot reach it on that iteration. In effect, more iterations are 

needed to reach the best location.  A logical improvement to this method is expanding the 

search area from a 1D profile into a 2D area [44]. 

 

Figure 4.6 Searching for the best movement point along a normal to the model boundary. 

The simplest method of best point selection is to use the strongest edge. That is, selecting 

the location in which the highest peak occurs in the derivative of the profile. This of course 

makes the point selection susceptible to noise and foreign objects in the image. Also, when 

the model points are within the shape boundaries, the strongest edge approach does not 

perform well.  

A more robust alternative is to use gray level information built up from the training set. In 

this method, gray-level data is collected for every model point in each training image. A 

statistical database is then created from this. More details about the formation of the gray-

level statistical description are discussed in Appendix A. During image search, a subset of 

the profile taken at each model point is compared to the gray level database. The center of 

the subprofile is the trial movement position. The Mahalanobis distance [25] between the 

subprofile and the corresponding gray level covariance matrix is computed. The point at 

which the distance is least marks the best update position for the model point. This ensures 

that the algorithm selects points that are in accordance with the gray level information for 

each landmark in the training set. As a result, the effects of noise and foreign objects are 

minimized.  

Target shape 

Model 

boundary 
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4.4.2  Alignment 

The current position of the model, Z, is compared to the suggested movement points, 

computed from the previous step. We then introduce transformation parameters to Z in 

order to map it to the suggested points, similar to the alignment process done in building 

the shape model.  

4.4.3  Calculating model deformation 

Aligning the model to the suggested best points is often not enough to capture the desired 

shape in an unknown image. After alignment, there are still differences that exist between 

the aligned model and the suggested points. These differences can only be compensated by 

deforming the shape model but only according to the shape variations seen during training.  

The position of the model, Z, after the alignment stage is given by  

 𝑍 = 𝑀 𝑠,𝜃  𝑧 + 𝑍𝑐  , (4.13)  

 

where Zc is the center of the model location. We need to introduce an adjustment 

parameter, dZ, to this such that the points move closer still to the suggested points. We use 

(4.13) and add dZ 

  𝑍 + 𝑑𝑍 = 𝑀 𝑠 1 + 𝑑𝑠 ,  𝜃 + 𝑑𝜃   𝑧 + 𝑑𝑧 +  𝑍𝑐 + 𝑑𝑍𝑐  . (4.14)  

 

This becomes 

 𝑀 𝑠 1 + 𝑑𝑠 ,  𝜃 + 𝑑𝜃   𝑧 + 𝑑𝑧 = 𝑀 𝑠,𝜃  𝑧 + 𝑑𝑍 − 𝑑𝑍𝑐  . (4.15)  

 

Finally solving for dz yields,  

 𝑑𝑧 =   𝑀 𝑠,𝜃  𝑧 + 𝑑𝑧 − 𝑑𝑍𝑐 𝑀   𝑠 1 + 𝑑𝑠  
−1

,− 𝜃 + 𝑑𝜃   − 𝑧. (4.16)  

 

Equation (4.16) allows the model to move to the suggested points. Directly using this 

formula, though, forms shapes that are not necessarily consistent with the shape model 

built during the training phase. For this reason, we cannot immediately use dz to deform 

the model. We introduce another vector, db, to approximate dz that only deforms according 

to the variations seen in training. Starting from (4.10), we find that 

 𝑧 + 𝑑𝑧 ≈ 𝑧 + 𝑃 𝑏 + 𝑑𝑏  . (4.17)  

 

Thus, solving for db gives us 

 𝑑𝑏 =  𝑃𝑇𝑑𝑧 . (4.18)  
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4.4.4  Updating parameters 

The parameters computed above bring the model closer to the target shape in the unknown 

image. We use the computed parameters in the present iteration to scale, rotate, translate 

and deform the model. This becomes the initial pose and shape of the model for the next 

iteration. This demonstrates the iterative nature of the ASM search algorithm. Updating the 

parameters is shown as: 

 𝑍𝐶 → 𝑍𝐶 + 𝑑𝑍𝐶  (4.19)  

 𝜃 → 𝜃 + 𝑑𝜃 (4.20)  

 𝑠 → 𝑠 + 𝑠𝑑𝑠 (4.21)  

 𝑏 → 𝑏 + 𝑑𝑏 . (4.22)  

 

This update scheme treats all the elements of the adjustment vectors, dZC, dθ, ds, db, with 

the same weight. A weight vector, w, can be multiplied to each adjustment vector such that 

elements that deviate more from the training set is given more importance. This introduces 

the benefit of accommodating large variations of certain points during image search if it 

was also seen during training. 

Finally, the deformation of the model is checked so that it only deforms within certain 

limits. That is, we verify that the vector b lies within a hyper ellipsoid about the origin. 

This can be determined by computing the Mahalanobis distance, Dm, and confirming that it 

is less than a chosen Dmax. In cases where the computed Dm>Dmax, we scale b to stay within 

the limits and is computed by 

 𝑏𝑘 → 𝑏𝑘  
𝐷𝑚𝑎𝑥

𝐷𝑚
 ,𝑘 = 1,… ,𝑁. (4.23)  

 

This ensures that the new model still conforms to the training information. 

The new pose and shape of the model is compared to the location and form at the start of 

the iteration. Convergence is achieved when no significant change is recorded between 

them. 

4.4.5 Multi-resolution method for image search 

The ASM search method involves taking an 1-D profile at every model point.  Sections of 

the profile are compared to the gray-level model to find the best movement location for 

each model point. The length of the profiles, therefore, becomes an important part in the 

algorithm. Selecting long profiles provides for a longer search area, thus, making it easier 

to “see” the best point for every landmark at each iteration. This has the disadvantage of 

making the process more computationally expensive and prone to error. Opting for short 

profiles, on the other hand, shortens the duration for each iteration since fewer 

comparisons have to be made at each model point. This reduces the area that the search 

covers. As a result, more iterations are needed to move the model points at the correct 

positions. 

A good strategy is to use a multi-resolution approach [9]. We create several copies of the 

image in different resolution levels by employing Gaussian smoothing and subsampling. In 
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effect, we build a multi-resolution pyramid. With this, we allow the model to search large 

areas and move greater distances in the coarse levels. As we go up to the finer resolution 

levels, the search area is reduced. Therefore, the model is only made to move at small 

increments as it makes minor adjustments to capture the target object. 

At level l = 1 of the pyramid lies the original image which contains the highest resolution. 

In order to obtain the image at l = 2, we use a 5x5 pixel Gaussian mask to smooth the 

image and then we subsample at every other pixel. This halves the number of pixels for the 

next level. We keep the number of pixels the same at all levels by resizing them back to the 

dimensions of the original image. The process is repeated until the desired number of 

resolution levels is achieved. In Figure 4.7 we use a more complex image to highlight the 

effects of representing an image in several resolution levels. As we progress through the 

levels, the amount of aliasing that occurs increases. As a result, details of the image are lost 

with every level as seen by the worsening pixelation. 

 

Figure 4.7 One image represented in different resolution levels. (a)  Original image- Level 

1. (b) Level 2. (c) Level 3. (d) Level 4. 
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In order to implement this approach, we need to build the gray-level models at each level 

of the multi-resolution pyramid. We perform Gaussian smoothing and subsampling to 

every training image. Then the resulting images from the same resolution level are used to 

build the ASM model for that level. In this thesis, three levels of the multi-resolution 

pyramid are used. 

At every level we build a gray-level database for each landmark in the shape. However, 

capturing the actual pixel values at each profile directly makes the statistical analysis 

susceptible to noise and image acquisition conditions. Therefore, we perform 

differentiation and normalization on the profiles. 

During image search, the unknown input image is decomposed into three levels similar to 

the l levels in training. Since we keep the same size for the images in all levels, the pixels 

of the image in l + 1 cover an area that is twice as much as the pixels of the image in level 

l. Nevertheless, we still use the same number of pixels in each profile regardless of the 

level it is in. This allows the model to move larger distances in the coarse levels while in 

the finer levels, it can only make fine adjustments. We run n iterations at level l and use the 

final pose and location of the model as the initial state of the model as we start the 

algorithm again in level l - 1. 

Figure 4.8 shows how the profile behaves as we progress through the resolution levels, 

each bar represents a pixel in the profile. Each pixel in Level 0, for example, occupies two 

pixel positions in the next level due to the Gaussian smoothing and subsampling. And this 

repeats as we go from one level to the next. If we take only seven pixels per profile and 

mark the bars as shown in Figure 4.8, we notice that as we progress through the levels, the 

pixel values that we get appear more similar. It will finally get to a point where the pixel 

values that appear in the profile are the same. This does not help the image search 

technique since it is based on finding the minimum Mahalanobis distance from the test 

subprofile to the training profile. A solution to this is to skip pixels on the normal during 

profile acquisition. In that way, we can obtain profile information that has enough variation 

to be able to make reliable calculations. More details on acquiring pixels for profiles is 

given in Appendix A. 

 

Figure 4.8 One gray-level profile at different resolution levels. 
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4.5 Conclusion 

In this chapter we have gone through the training of the active shape model and its 

application in image search. During training, a point distribution model is built by 

recording landmark positions of the shape in the training images. We eliminate similarity 

transformation by removing scale, translation, and rotation effects from the landmark data. 

This is done in the shape alignment step. Once only shape information is left, we extract 

statistical information about the variations that can be seen for each model point. From this 

information, we create a model that can be deformed according to the variations seen in 

training. 

The built model is used to find the target shape in an unknown image. It is first placed in 

an arbitrary location in the test image. A line normal to the model boundary and passing 

though model point p is used to compute the best movement position for p. This is done for 

all the P points in the model. The model is then rotated, scaled and translated to best fit the 

suggested points. At this point, differences between the suggested points and the 

repositioned model can only be resolved by deforming the model, but only within 

limitations to keep the model from being altered into a different shape. The algorithm is 

completed if no significant disparity is seen between the initial and final pose and shape of 

the model. Otherwise, another iteration is done to bring the model closer to the target shape 

in the unknown image. 

A multi-resolution approach is employed to improve the performance of the ASM search 

algorithm. In training phase, each image is decomposed into several resolution levels. A 

shape model is built for every resolution level extracted in training. During image search, 

the unknown image is decomposed into the same number of resolution levels. The search 

is started at the coarsest level. The resulting pose, shape and location of the model are used 

as the initial settings for the search in the finer level. The final result of the image search is 

the pose and shape at the finest level. 
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5 ASM Implementation and Results 

This chapter describes the setup used in the experiments to test the ASM algorithm. We 

identify the specifications of the computer that the algorithm was tested on. The images 

used for testing are also briefly discussed. Finally the results of the ASM implementation 

are shown and examined. 

5.1 Computer specifications 

The ASM algorithm was implemented in MATLAB R2010a running on Ubuntu Linux 

10.04. This was installed on a laptop computer with a 1.80 GHz Intel Core 2 Duo 

processor with 2 GB of memory. 

5.2 Test and training images 

All the images used for this thesis were taken by the Marel SensorX machine in several 

different instances. The images are top-view X-ray captures of chicken breast pieces. 

Normally the entire chicken breast is cut into a shape called a butterfly. It is called such 

because the left and right portions of the chicken breast resemble the wings of a butterfly. 

In this application, only the images with portions on left side of the butterfly are used. 

Images with the portion on the right side of the butterfly are flipped and rotated to match 

portions on the left. This procedure increases the number of images for experimentation 

and also reduces the number of variables to be considered since “flipped” images are 

eliminated. Training images are selected such that there is only one object in each image 

and the entire fillet is completely within the limits of the image. 

 

Figure 5.1 Some samples of training ((a) & (b)) and test((c) & (d)) images. 
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 A total of fifty training images were used. Figure 5.1(a) and Figure 5.1(b) are examples of 

this. It is worth noting the differences in appearance between the two images. Even with 

size disparities, each training image was manually landmarked with 90 points. It falls upon 

the person performing the landmarking to carefully select the points such that each point 

reflects the same location across all the training images. For testing, a different set of 

images are chosen. Most of the test images are similar to Figure 5.1(c), with the object 

adhering to the criteria used for the training images. However, some images were selected 

outside of these conditions. This was done to evaluate the performance of the ASM 

algorithm under less than ideal conditions. 

 

Figure 5.2 A manually landmarked chicken breast fillet. 

Expectedly, the landmarking process for this type of images is more difficult from the ideal 

shape we have seen in Chapter 4. Figure 5.2 shows one training image that was manually 

labeled with ninety points. A quick look at the image reveals few salient features that can 

be used as key positions; those of which are marked with a diamond indicator. Several 

points are placed in between these to catch the contours better. If we take a different image 

of another chicken fillet, the points may well be differently located from the image above. 

This illustrates the difficulty with landmarking non-rigid shapes. The irregularity in the 

edges of the shape present opportunities for having variations in the location of each point 

when landmarking across several images. This is clearly seen in manual landmarking. 

Several labeled sets of the same image done by one person can still have some variations. 

While it is imperative to minimize these discrepancies, it is very difficult to completely 

eliminate them. 
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5.3 Alignment results 

 

Figure 5.3 Plots of landmarks for the training images before (a) and after (b) alignment 

and  a sample of their corresponding point clouds (c and d). 

Figure 5.3 (a) presents a plot of all the training images in their original sizes and 

orientations.  Figure 5.3 (b) shows the result of the alignment process. Even with the 

quantity of the landmarks and the disparity between the training shapes, the alignment 

algorithm was still able to perform well. We could see the rough shape of the chicken fillet 

from the aligned shapes. The superimposed mean then defines this shape more clearly. 

From the unaligned shapes in Figure 5.3 (a), we select landmarks at regular intervals from 

each of the training shapes and plot them in Figure 5.3 (c). This is also called a Point 

Distribution Model (PDM). Expectedly, we do not see any pattern arising from this. In 

Figure 5.3 (d), a PDM for the aligned shapes is taken from the same landmarks used in 

Figure 5.3 (c). Note that the clusters of points appear more distinct than in the Figure 5.3 

(c). However, even though the objects were successfully aligned, there is still a 

considerable amount of variation in the location of each landmark. Evidently, there are 

landmarks which have more variation than others. The standard deviation seen in each 

landmark is shown in Figure 5.4. The most movement is seen at the landmark which 

corresponds to the point nearest to the end of the sternum. The cut in this area can be 

highly irregular since it is done against a bony section. This part of the fillet is also thinner, 

and being in the extremity, is more easily displaced in relation to the rest of the piece. The 

least deviation, on the other hand, lies on the thickest part of the fillet which is near the 

neck region. This part of the chicken has more meat leading to more even cuts. 
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Figure 5.4 Standard deviation in each landmark. 

5.4 Statistical analysis results 

In Section 4.3.3 we discussed how statistical information is derived from the training set 

and used to generate new shapes that are consistent with the variations seen in training. In 

this thesis, there are ninety landmarks taken for each training image. This translates to one 

hundred and eighty dimensions where every shape moves around in. We explained 

previously that not all the dimensions or modes are necessary for shape generation. Some 

modes carry little or no information and thus can be disregarded. In order to identify which 

of these dimensions are worth taking into account, we use a dimension-reduction method 

such as PCA.  

Table  5.1 The most important principal components from the training data. 

Rank Variance % 

1 4089.8 42.55 

2 1524.5 15.86 

3 1014 10.55 

4 602.2 6.27 

5 456.1 4.75 

6 288.1 3.00 

7 269.5 2.80 

8 205.1 2.13 

9 153.1 1.59 

10 122.8 1.28 

11 111.3 1.16 

12 105.7 1.10 

13 88.1 0.92 

14 72.8 0.76 

15 70.9 0.74 

16 48.2 0.50 

17 38.2 0.40 

18 36.4 0.38 

19 30.9 0.32 

20 26.6 0.28 
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Table  5.1 shows the variances of the twenty most important principal components taken 

from the training data. The importance of each principal component is scored by taking its 

percentage against the sum of the variances of all principal components. It can be seen that 

the differences between the percentages of modes do not vary in a linear manner. In fact, 

the sum of the variances described by the first three already includes 68.97% of the total 

variance. We involve a few more components to increase the amount of variance that the 

model can describe. Using ten modes increases the percentage to 89.51%. This highlights 

the fact that the information is contained mostly in a few modes. Of course we can always 

take in more modes to increase the amount of variance that the model describes. However, 

this would not establish a significant improvement that is enough to justify the 

consequence of increasing the computational complexity. 

By applying (4.10) we can see how the model deforms according to the data set. 

Theoretically, we can mold the mean model to resemble any of the objects we used in 

training. The accuracy at which we can copy the training shapes depends on the number of 

elements in vector b. A smaller quantity of elements may be sufficient provided that the 

target training shape is not too different from the mean shape, since most of the 

information is contained in the first few modes. However, more components of the vector b 

may be needed to pull the mean shape in accordance to the extreme shapes in the training 

set. 

 

Figure 5.5 Deformations resulting from modifying the elements of vector b. 
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Figure 5.5 shows some of these deformations. For these images, the elements of b are set 

to zero apart from one of the first three modes. Only changes in the first three components 

are shown since they carry the most information and therefore the deformations are more 

pronounced. Expectedly, the shapes formed by modifying b1 yielded shapes that are the 

most distant from the mean.  

5.5 Search results 

5.5.1 Strongest edge method 

The objective of ASM is to find a known shape within an unknown image. In this section, 

we explore the results of using the ASM on the chicken fillet images. First we investigate 

the image search using the strongest edge method. We then compare the results to using 

the gray level model. Finally, we see the outcome of implementing the multi-resolution 

approach.  

Choosing the initial location of the model on the target image before performing image 

search is not explicitly defined in the ASM algorithm, and is mostly left to the user. In this 

thesis, we use the same location of the mean during the training phase. Figure 5.6 shows 

the initial position of the model as it is superimposed on a test image. Clearly in this 

situation, the choice of starting point is good because most of the target object is already 

inside the model. From here, the model has to move, rotate, scale and deform in small 

extents to complete the search. 

 

Figure 5.6 Input test image. 

 



29 

At each landmark point from the initial position of the model, profiles normal to the 

boundary are taken. This is illustrated in Figure 5.7. All the profiles have the same number 

of pixels contained in each one. Remember that the ideal situation is that the object 

boundary is contained in most, if not all, profiles. In this way, the algorithm will be able to 

move and deform the model correctly to the object outline with the least number of 

iterations. It is worth noting that in Figure 5.7, there is an offset between the locations of 

the model and the target object. As a result, there are some profiles that do not contain the 

object boundary. For the same reason, the resulting suggested points from these profiles 

will not be reliable. 

 

Figure 5.7 Search profiles for first iteration of image search. 

Figure 5.8 shows a plot of the results of the best points search for each landmark. We can 

see that on the profiles where the object boundary was present, the strongest edge method 

was able to find the edges. This is helped by the fact that the target object is in a mostly 

clean and white background. Hence, the contrast between the object and its surrounding 

pixels are high enough for the strongest edge method to easily detect the edge. 

Occasionally, some profiles will contain more than one object boundary, such as seen on 

the tail-end of the object on Figure 5.7. The point selected will be the edge that has the 

higher difference in pixel levels. We see the effect of the method choosing the wrong edge 

in that situation on Figure 5.8. On profiles that are completely inside the object or on the 

background, the method will just choose the highest peak in the pixel profile. Obviously, 

this does not contribute to the end goal of finding the edges of the object. Thus, we rely on 

the suggested points that have actually found the edge to guide the succeeding stages of the 

ASM image search in moving, scaling, rotating and deforming the model for the next 

iteration. Needless to say, if there are more landmarks that grabbed the edges, then there 

will be less iterations required to complete the image search.  
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Figure 5.8 Suggested points in the first iteration of the image search. 

 

 

Figure 5.9 The resulting position of the model after the first iteration of the image search. 
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We move and deform the model to best fit the suggested movement points. Figure 5.9 

illustrates the outcome of the first iteration of the image search method. Lines are drawn 

from the starting position of each landmark to its final position to emphasize the effect of 

the search technique. We observe that the greatest movement occurred where the model 

was able to reach the object boundary. The result of the first iteration becomes the starting 

position for the next one. In this example, it takes seven iterations for the method to 

complete. The outcome is shown on Figure 5.10. We observe that the model was able to 

correctly find the target. However, we notice that it is unable to deform to the exact 

contour of the object. This is not a fault of the strongest edge method. In fact, getting the 

suggested points from the strongest edge method on this location will capture the object 

boundary accurately. Nevertheless, the limits set for deformation keeps the model from 

completely conforming to these points. As a result, the model tries to change according to 

the suggested points but only within the specified constraints. This is clearly seen in this 

instance where the target is non-rigid and is therefore its boundary is highly variable. The 

objective of the algorithm is still accomplished, though, since the location and orientation 

of the target is found.  

 

Figure 5.10 Final position of the model after image search using the strongest edge 

method. 

Other examples of image search using the strongest edge method are shown on Figure 

5.11. It must be said that the initial location and orientation of the model is the same on all 

image search trials. We see that on Figure 5.11(a), the model lands outside the limits of the 

test image. This indicates that the object in the image is actually smaller than the average 

size in the training set. In this situation, the model must scale down to fit the target. After 

ten iterations, the algorithm converges at the position displayed on Figure 5.11 (b). The 

number of model landmarks that were in close proximity to the object boundary and led to 
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the fast convergence. Figure 5.11 (c) is another image tested with the strongest edge 

method. In this trial, the algorithm took twenty three iterations to complete. Despite the 

apparent nearness of the initial location of the model landmarks to the object boundary, the 

algorithm needed more repetitions. This can be attributed to the shape of the object. The 

cut in the top portion of the fillet is wider than the average piece in training which caused 

the algorithm to iterate more to accommodate this difference. 

 

Figure 5.11 The initial (a) (c) and final (b) (d) models of two test images after image 

search using the strongest edge method. 

 

Figure 5.12 Initial model placement (a)  and final result (b) of ASM image search with 

incomplete target object. 
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Figure 5.12 (a) shows an image with the fillet cut off at the bottom. Evidently, this is an 

alteration to the actual fillet of which the image was taken with. For the ASM image 

search, this is another impediment in finding the target object. The images used for training 

did not include incomplete fillets. It is for this reason that we cannot expect the algorithm 

to accurately find the object. Looking at Figure 5.12 (b) proves otherwise. We recall that 

the landmarks in ASM are not completely independent. During image search, each 

landmark is given its candidate movement point. But the actual position each landmark 

moves after each iteration is resolved by considering the positions of all movement 

candidates. This explains the result in Figure 5.12 (b). The model landmarks that were 

meant to search for object edges in the missing portion of the fillet are compensated by the 

landmarks that were able to seize object edges present in the image. This implies that ASM 

image search is able to tolerate missing features on its target object provided that there are 

enough landmarks that grabbed the object features present on the image. 

 

Figure 5.13 Non-convergence of image search because of model placement. (a)Initial 

model placement, (b)5
th

 iteration, (c) 10
th

 iteration, (d) 500
th

 iteration 

Given that in the strongest edge method, the model attaches itself to the points of largest 

contrast, it is very susceptible to noise and artifacts in the test images.  When the model 

does not encounter any impurities in the image, the method performs well. The examples 

shown in Figure 5.6 to Figure 5.11 illustrate such instances.  

However, in some test images, the method gets stuck not because of some stray object but 

rather the initial position of the model. In Figure 5.13 (a), we see a model that is positioned 

at the right side of the target at the start of the ASM image search. Figure 5.13 (d) shows 
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the result after 500 iterations. The model has scaled and rotated causing it to reach the 

bottom edge of the image. During the first few iterations, the model can only find the 

object edges indicated by the dotted line in Figure 5.13 (a). As a result, the model tries to 

rotate to attach to this edge as revealed in Figure 5.13 (b). In the same Figure, the edges 

indicated by the dotted line become exposed to the model. The model then rotates to cling 

to this without losing the edges it has already attached to. The consequence of this 

sequence of events is that the rotation of the model causes it to misalign from the fillet. The 

10
th

 iteration shown in Figure 5.13 (c) bares a model that has rotated such that its tail end 

has extended towards the bottom edge of the image. Close inspection uncovers a visible 

gray line just above the bottom edge. As the strongest edge method perceives the line 

artifact as an object edge, the method will try and attach to it. After five hundred iterations, 

Figure 5.13 (d) shows little improvement over Figure 5.13 (c), establishing non-

convergence at this test image. 

The model placement at Figure 5.13 (a) is clearly not the best initial position for the ASM 

Image search. As a result, the image search reaches non-convergence. If we try and move 

the model more to the left of the image, we expect to get better results. Figure 5.14 tracks 

the results as we move the model further to the left. We see that shifting the model to the 

left from twenty-five pixels to ninety-nine pixels results in the convergence of the image 

search algorithm. Outside of this window, however, non-convergence still occurs. This 

shows the importance of placing the model at the right position for optimum results. 

 

Figure 5.14 The effect of  moving the initial placement of the model horizontally to the 

number of iterations needed to complete the image search algorithm. 
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5.5.2 Gray-level method 

Another method for best point selection is the gray-level search. While the strongest edge 

method relies only on the highest peak in each derivative profile, the gray-level technique 

provides the advantage of using the statistical information taken for each landmark during 

training. This helps the technique to find the point that best resembles the profile of the 

landmark it was trained on. Figure 5.15 shows the effect of employing gray-level search in 

the first iteration of the test image in Figure 5.6. We see that the model was able to grab the 

object edge only on a number of landmarks. If we compare this to Figure 5.8, we see that 

there is a noticeable similarity. However, it took eight iterations to complete the ASM 

image search using the gray-level approach. This is one more than with the strongest edge 

scheme. In the second test image, seen in Figure 5.11(a), implementing the gray-level 

method took fourteen iterations of the ASM image search. Figure 5.16 (a) and Figure 5.16 

(b) show the results of the image search using the gray-level method on the test images of 

Figure 5.6 and Figure 5.11 (a), respectively. These two instances demonstrate that if the 

model does not encounter any artifacts or irregularities during image search, using the 

strongest edge technique actually performs better.  

 

Figure 5.15 Suggested points in the first iteration of the image search. 
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Figure 5.16 Final results of image search using gray-level method. 

The advantage of the gray-level method is that it is less-prone to stray marks and artifacts 

in the test image. Figure 5.17 shows the result of using the gray-level method in the image 

search for the same test image examined in Figure 5.13 (a). We immediately notice that 

instead of getting stuck at the gray line at the bottom of the image similar to the result seen 

in Figure 5.13 (a), the model was able to correctly locate and bind to the target. The image 

search was able to converge after just twenty-two iterations. 

 
Figure 5.17 The result of implementing image search with the gray-level method for the 

test image in Figure 5.13(a) 

Using the gray-level method to select the best points is not enough to produce useful 

results. The image search algorithm still needs to have the model be placed in a good initial 

position to achieve convergence. Figure 5.18 (a) shows one of the test images with the 

normal initial position of the model. Similar to Figure 5.13 (a), the model is also offset to 
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the right of the fillet. After reaching five hundred iterations, the result is shown in Figure 

5.18 (b). The model was able to grab the upper right edges of the fillet, but it failed to 

expand to reach the other side. In Figure 5.18 (c), we move the model to fifty pixels to the 

left of the original initial position. With this small change in the location of the model, 

convergence was achieved after only four iterations. The result of the image search is 

shown in Figure 5.18 (d).  

 

Figure 5.18 Comparing the effect of moving the initial placement of the model to the image 

search results.(a) Original position, (b) result after five hundred iterations from (a), (c) 

model moved to fifty pixels to the left of original position, (d) result after four iterations 

from (c). 

Figure 5.19 plots the number of iterations needed for the ASM image search to converge 

while applying the strongest edge and gray-level methods to a set of ninety test images. In 

every test image, the same initial position is used for the model. We also set the limit of 

iterations to five hundred. We assume that once this limit is reached, the algorithm is 

already stuck in a local minimum and we do not proceed any further. The performance of 

each method is judged by how quickly the image search completes. Put simply, less 

iterations indicates better performance.  

We notice in Figure 5.19 that the image search algorithm reaches the five hundred
th

 

iteration mark in five instances. We further observe that this situation occurred more while 

implementing the gray-level method of selecting the best points. Again it must be kept in 

mind, that the performance of the image search algorithm is not defined solely by the 

point-search method used. The initial model placement, similarity transformation and 
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deformation also play equally significant roles. The point-search method simply provides 

the initial direction while the other stages complete the iteration. Non-convergence can 

occur because of a number of factors. First of which is when the point-search method gets 

stuck because of a stray edge. When this happens, the model is prevented from getting to 

the fillet. The other important factor in deciding the success of the image search algorithm 

is the initial position of the model. The model has to see the object edges for it to move and 

deform to the right position and orientation. When no edges are seen, there is no way for 

the model to find the fillet. Also, there should be enough of the model landmarks that see 

the object edges to pull the model toward the fillet, otherwise non-convergence results.  

 

 

Figure 5.19 A comparison of the plots of the iterations needed by each test image to 

complete using the strongest edge and gray-level point-search methods. 
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5.5.3 Multi-resolution image search 

We have seen in the previous sections that moving the starting position of the model has a 

great effect on whether the image search algorithm reaches convergence or not. Figure 

5.13 and Figure 5.18 demonstrate that neither point-search method is immune to this. It is 

then that we explore the multi-resolution technique. The main advantage of using the 

multi-resolution technique in the image search algorithm is it eases the burden of placing 

the initial position of the model correctly to achieve convergence.  

 

Figure 5.20 Multiresolution representation of a chicken fillet image. (a)  Original image- 

Level 1. (b) Level 2. (c) Level 3. (d) Level 4. 

Figure 5.20 (a)-(d) shows one of the test images in different resolution levels. We can 

clearly see the difference in resolution as we progress through the levels, from the original 

image seen in Figure 5.20 (a) until the 4
th

 resolution level in Figure 5.20 (d). In the image 

search, experiments, we focus on the gray-level point-selection method. Again it is stressed 

that the original initial position used in the previous experiments has been retained in the 

multi-resolution trials. 

We look back at the test image used in Figure 5.18 (a)-(d). In Figure 5.18 (b) we saw that 

the image search resulted in non-convergence. But moving the model a few pixels to the 

left caused the model to correctly find the fillet in the image. In Figure 5.21 (a) we use the 

same image and keep the original position of the model and we apply the multi-resolution 

technique. Performing the image search in the coarsest resolution, at multi-resolution Level 
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3, the image search algorithm at this level converges after completing just six iterations. 

The result is shown in Figure 5.21 (b). We notice that the model has already moved a 

significant distance to the left, surrounding the fillet. Because of this, the image search 

algorithm needs very few iterations to converge in the succeeding multi-resolution levels. 

In fact, the Level 2 image search ends in only five iterations, the result of which is seen in 

Figure 5.21 (c). The Level 1 image search finishes after its first iteration, seen in Figure 

5.21(d). We clearly see the differences in the distances travelled by the model in each 

multi-resolution level. In the coarse resolutions, the model is able to move longer distances 

while in fine resolution, it only makes subtle adjustments to its position. In effect, the 

performance of the image search algorithm becomes less reliant on the initial placement of 

the model. 

 

Figure 5.21 Multi-resolution image search results.(a) Initial position of model, (b) after six 

iterations in the multi-resolution Level 3, (c) after five iterations in the multi-resolution 

Level 2, (d) after one iteration in the multi-resolution Level 1 

To further illustrate this point, we move the model fifty pixels further to the right as 

depicted in Figure 5.22(a). At this position, performing image search normally still ends in 

non-convergence. However, by implementing the multi-resolution technique, the image 

search algorithm is able to reach convergence. The result is shown in Figure 5.22(b). 

With this in mind, we perform image search and apply the multi-resolution technique to all 

the test images. Figure 5.23 shows the number of iterations it took for the image search to 

converge across the test images. We immediately see that convergence was achieved in all 

the test images. None of the test images required more than one hundred iterations to 
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complete. This attests to the advantage of using multi-resolution technique in the image 

search. 

 

Figure 5.22 The effect of the multi-resolution technique in the image search algorithm on a 

poorly placed model. (a) The initial position of the model, (b) the final result of the image 

search after twenty-one iterations. 

 

 

Figure 5.23 The plot of the iterations needed by the image search with the multi-resolution 

technique to converge for each test image. 
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5.5.4 Conclusion 

In this chapter, we explored the conditions around the experiments for building the ASM 

model and image search. The computer hardware and specifications that the algorithm was 

run on were also described. We discussed the type of images that were used in the 

experiments.  

Since the chicken fillets have a non-rigid nature, accurately landmarking these is not 

straightforward. There are only few salient features that can be used as mathematical 

landmarks and seen across several different images. To alleviate this insufficiency, we 

introduce pseudo-landmarks between the salient points. In this way we increase the 

number of landmarks thereby improving the performance of the ASM algorithm. 

In the alignment stage, we saw the variation of the chicken fillet pieces across the test 

images. This contributes to the discrepancy of the locations for each landmark in the 

training set. Some landmarks have more movement while others were more stable. The 

quantity of landmarks dictated the number of dimensions that each shape resides in. 

However, the dimensions do not carry the equal amounts of information. In this regard, we 

aim to reduce the number of dimensions by using PCA and eliminate those that possess the 

least information.  

For image search, the strongest edge and gray-level methods of selecting movement points 

were investigated. We found that for clean and noise-free images, the strongest edge 

method proved to be sufficient. However, in some images that contain noise and image 

artifacts, the gray-level method performed better. In both of these techniques, it is 

important to place the model correctly for image search. The initial position of the model 

can determine if the ASM search reaches convergence or not. To counteract this, we 

implemented the multi-resolution technique in the image search. With the multi-resolution 

operation, the model can be placed farther off the fillet but the ASM search still manages 

to converge.  
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6 ASM Applications in the Poultry 
Processing Industry 

In many cases, imaging systems are combined with image processing techniques to 

perform specific tasks. Machine vision systems, as these are called, are commonly seen in 

industrial environments. The food industry has been one of the key beneficiaries of this 

technical development. According to Gunasekaran [16], it ranks among the top ten 

industries using machine vision technology. 

Brosnan and Sun [2] acknowledge that previous studies on the applications of computer 

vision to the food industry focused on two areas: grading and product quality inspection. 

Automated inspection can either include separating questionable produce from  a 

wholesome batch [3] [11] [4], or detecting contaminants in the products [14] [17]. Quality 

inspection was traditionally done by trained experts. However, this task is time-consuming 

and labour-intensive. In addition, inspectors are exposed to a multitude of health hazards 

[36]. These include phlebitis, muscokeletal disorders, shoulder, upper arm, upper back, 

neck and head problems. With automated visual inspection systems [29] gaining accuracy 

and speeds that are acceptable in industry standards, the technology is being used in the 

food industry [34]. 

6.1 Analyzing size and shape of detected object 

In actual poultry processing plants, the throughput can range from tens to hundreds of 

pieces per minute. Poultry halves, breast quarters, leg quarters, legs, thighs, drumsticks, 

wings, and tenderloins are just some of the poultry cuts [35] identified by the USDA. 

Although the ideal condition is to have the same size, shape and weight of each piece to 

pass though the line, this is rarely the case due to the irregularity and non-rigid nature of 

poultry meat. 

The weight of each piece is often the only data that is extracted on many food processing 

lines. While this is enough in many applications, the possibility of extracting more 

information out of the products can lead to more efficient production. Being able to get 

data about each piece that goes through the processing line is important for building up 

statistical information about the state of the production. The non-invasive nature of image 

acquisition and processing make it a strong candidate for this type of application. 

However, the methods that should be used must be flexible enough to adapt to the 

differences in each piece. For this reason, the ASM algorithm is well suited for it. 

We again use the images of chicken breasts for training and testing. From the model we 

developed using the training set, we try and locate each piece in the test images. We 

assume that once the ASM search algorithm converges, the model has already found the 

chicken portion from the test image. We then proceed to take measurements of the 

outcome of the model, taking into account its length, width and area. Figure 6.1 illustrates 

how these measurements are taken. The area is found by counting all the pixels within the 

boundaries set by the landmark points. The length, represented as line L in Figure 6.1, is 

taken as the span of the line connecting the model landmarks having the greatest distance 

between each other. We then find the landmark points, x and y, on either side of L that has 

the farthest perpendicular distance to L. We identify these distances as W1 and W2. The 
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width is computed as the sum of W1 and W2.  We note that because of the asymmetrical 

shape of the chicken breast, the lines connecting points x and y to L are not collinear. 

Figure 6.2 shows two of the test images that have been found by the ASM algorithm. The 

lines denoting the length and the width have been marked so that the measurements can be 

obtained. Aside from these three measurements, other information can also be extracted. 

The location of the centroid of the model is computed from the positions of the landmark 

points. We can also compute the angle at which the length line is oriented with respect to 

the horizontal axis. 

 

 

Figure 6.1 Measurements taken from model, where width is the sum of W1 and W2 and L is 

the length. 

 

 

Figure 6.2 Chicken breasts (a) and (b) that were correctly located by the ASM search 

algorithm and labeled for measurement. 

Performing the ASM search algorithm and obtaining the measurements from each test 

image, we get an overview of the entire batch. We are able to examine the histograms for 

the length (Figure 6.3), width (Figure 6.4) and area (Figure 6.5). From these initial 

measurements, we can derive statistical computations such as the mean and standard 

deviation.  
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Figure 6.3 Histogram of the lengths of the chicken breasts in the test images. 

 

Figure 6.4 Histogram of the widths of the chicken breasts in the test images. 
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Figure 6.5 Histogram of the areas of the chicken breasts in the test images 

Taking a statistical analysis of the length, width and area of the test images, we obtain the 

data in Table  6.1. We observe that the range of sizes in the test set is very wide. This 

presents an opportunity to categorize the chicken breasts with regards to the size and 

shape.  It is a common practice to group products according to some defined metric such as 

weight, a process known as grading. The information about the size and shape of the 

chicken breasts will add another dimension to the grading process.  

Table  6.1 Statistical computations for length, width and area. 

 

Length 
(pixels) 

Width 
(pixels) 

Area 
(pixels

2
) 

Centroid 
X 

Centroid 
Y 

Rotation 
(degrees) 

Minimum 238.35 128.74 20937.50 132.00 107.00 -10.78 

Mean 266.17 145.93 26443.07 164.88 145.12 11.70 

Maximum 286.81 162.25 31011.50 191.00 172.00 24.96 
Standard 
Deviation 

11.80 7.51 2515.56 14.43 13.09 8.27 

 

It is also possible to find the centroid of each chicken breast in the test image. Instead of 

using all the pixels in the boundary of the shape, we use only the landmarks. This makes 

the computation very simple. We can also give weights to each landmark to further 

improve the accuracy of the centroid. In this example, however, we treat all the landmarks 

equally. The angle of the line L in Figure 6.1 is used to determine the orientation of each 

chicken breast with respect to the horizontal. Table  6.1 also lists the statistics for the 

centroid and rotation for each of the test images. Both the location of the centroid and the 
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rotation of the chicken breasts can be used by packing machines to correctly pick up the 

products.  

6.2 Locating bone fragments in chicken breasts 

The SensorX , as discussed in Chapter 3, is primarily designed to detect contaminants such 

as bones on poultry products. It uses a set of algorithms to accurately identify the location 

of bones in the image. In factory applications, the SensorX is inserted into the processing 

line right after deboning or cutting to inspect for bone fragments. Figure 6.6 shows the 

basic configuration of the SensorX machine. Bone-free products pass through the system 

until it reaches the take-away conveyor for further processing. Products that have been 

found to have bones are redirected to workstations for bone removal. These are then 

inspected by the machine for the second time.  

 

 

Figure 6.6 Basic SensorX in-line configuration. Courtesy of Marel Ehf. 

The SensorX then records the number of products that passed bone-free and those that did 

not. This is used to evaluate the efficiency of the deboning or cutting process preceding the 

SensorX. It does not specify the amount of bone that was found in each piece or which part 

of the product the bone was discovered. These two details will help identify the cause of 

the bone incidence in the products which can be an incorrect setting of the deboning or 

cutting machines or staff making imprecise cuts in the products.  

Obtaining the amount of detected bones and their location can be done separately using 

different techniques. In this example, we investigate a two-stage method to accomplish the 

objective. At the outset, we assume that the bone fragments have already been marked in 

the image. That is, they are highlighted to distinguish them from the rest of the image 

features.  We again use chicken breasts in the training and test images.  The training 

images are still the same as in the previous examples. For the test images however, we use 

a different set. All the test images have bone fragments marked with black pixels.  

First, we have to find the shape, location, and orientation of each product in the image. 

This is done using the ASM algorithm. The outcome of the ASM search algorithm is used 
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for the next stage of the process. We want to map the bone fragments found in a test image 

such as in Figure 6.7 (a) to a reference shape Figure 6.7 (b). We perform this procedure for 

every bone pixel found in all the test images. After performing this operation for the entire 

batch of images, we obtain an image that contains all the bone incidences in the chicken 

breasts.  

 

Figure 6.7 Mapping operation that locates the bone pixels in the test image(a), to a 

reference shape (b). 

The mapping operation is more commonly known in image processing terms as warping. 

The Euclidean similarity transformation performed in the course of the ASM algorithm is 

also a form of image warp. In this application, we execute warping in a different manner. 

We adopt some of the steps in acquiring texture in Active Appearance Models (AAM) [6].  

The AAM algorithm is the direct successor to ASM. Whereas ASM only deals with 

landmarks in the object and gathers information from the pixels surrounding those 

landmarks, AAM takes a step further and takes into account the texture found within the 

shape. Stegman [33] defines texture as 

Definition 2: Texture is the pixel intensities across the object in question.  

We are interested in the texture information as well but not quite in the same way as in the 

AAM algorithm. AAM combines the texture and the landmark information to find the 

target shape in the image. We only mean to look for the texture location of the bone pixels 

so that we may map it into a reference shape. The reference shape is the mean shape during 

the ASM training phase. 

In order to have a consistent system of gathering texture information, AAM partitions the 

reference shape using Delaunay triangulation. With this method, the landmarks are 

connected by a mesh of triangles that each satisfies the Delaunay property. The 

circumcircle of every triangle must be empty of other points or landmarks. Illustrated in 

Figure 6.8, the circumcircle is the unique circle that passes through all three vertices of the 

triangle.  

Because the shape of the chicken breasts is not entirely convex, some of the Delaunay 

triangles fall outside of the intended shape. Figure 6.9 (a) shows the model with some of 

the Delaunay triangles beyond the shape boundaries. These triangles do not contain any 

useful texture information as they are outside the shape and should therefore be removed. 



49 

For this reason, we need to constrain the Delaunay triangulation to include only triangles 

within the shape boundaries. In Figure 6.9 (b), only the Delaunay triangles inside the shape 

boundaries are included. In the course of the experiments, the Delaunay triangulation 

shown in Figure 6.9 (b) is implemented since we are only concerned about the bone 

fragments that appear within the boundaries of the chicken breast.  

 

Figure 6.8 Set of points connected by triangles that comply with the Delaunay property. 

 

Figure 6.9 The model shape with unconstrained (a) and constrained (b) Delaunay 

triangles. 
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Figure 6.10 The process of the bone warping algorithm.(a)test image with bone fragments 

marked in black pixels, (b) placement of the ASM model to initialize search, (c) final result 

of ASM image search, (d) Delaunay triangulation on the result of the image search, (e) 

identifying the triangle/s that contains bone pixels, (f) location of the triangle in the 

reference model, (g) map of the bone pixels to the respective triangle in the reference 

model, (h) the bone pixels mapped to the reference model. 
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We do not warp each triangle from the target to the reference shape. Since we are only 

concerned with bone pixels, we identify which triangles each bone pixel belongs to. Those 

are the only triangles we warp into the reference shape. Each bone pixel is mapped to the 

corresponding triangle in the reference shape by an affine transformation. More 

information about the affine transformation is described in [33]. 

Figure 6.10 displays each stage in the bone-warping method. Figure 6.10 (a) is the test 

image with bone pixels. Figure 6.10 (b) and Figure 6.10 (c) show the initial and final 

positions of the ASM model before and after the search algorithm, respectively. The 

Delaunay triangulation done on the reference shape is replicated on the  result of the ASM 

search as seen in Figure 6.10 (d). The triangles that contain the bone pixels are located and 

identified such as in Figure 6.10 (e). This triangle is the only one that will be warped. The 

bone pixels in this triangle will be warped to the corresponding triangle in the reference 

shape. The reference shape with the mapped bone pixels are shown in Figure 6.10 (h). 

The bone warping process is done for each of the test images with bone. The location of 

the bone pixels found in each test image is recorded and shown in the reference image seen 

in Figure 6.11. We immediately notice that bone pixels are relatively absent in the middle 

portion of the reference shape. We also note that most of the bone pixels appear in the top 

portion of the reference shape and along the bottom side. The top part where the shape 

curves slightly inward is where the wings are cut from the breast. The bottom part is where 

the breast halves are joined together and held by the breast bone. Owing to the proximity 

of these to the locations where the meat is separated from bone, much of the bones pixels 

found are in these two areas. 

 

Figure 6.11 Location of all the bone pixels seen by the bone-warp algorithm in all of the 

test images. 
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While it is indeed helpful to see where the bone pixels have appeared in the test images, 

the frequency at which the bone pixels occur at one location is also valuable information. 

Since the areas at which the bone pixels appear are not random, we expect the some bone 

pixels may overlap. Figure 6.12 reveals the rate of recurrence that each bone pixel position. 

A darker shade denotes more frequent occurrence. Here we see that the bone pixels appear 

at the same location only at a few instances. In a production standpoint, if this was a result 

of one continuous run, it indicates that a general recalibration of the cutting equipment may 

be in order.  

 

Figure 6.12 Distribution of bone pixels across all the test images showing the frequency of 

bones. 

6.3 Conclusion 

In this chapter we investigated two different applications for the ASM algorithms in 

poultry processing. The first application uses the final outcome of the ASM search 

algorithm to extract information about the test image. Because the model is able to capture 

the size, shape and location of the object in the image, measurements taken from the model 

is assumed to be the same as the object itself. Hence, measurements such as the length, 

width and size are measured and a statistical overview can be built with this information. 

The second application dealt with the bone fragments found in the chicken breasts. Using 

the outcome of the ASM search algorithm, the location of each bone pixel is mapped to a 

reference shape. In this manner, the occurrence of bone pixels and the frequency at which 

they occur can be tracked. With this data, appropriate measures can be done by the poultry 

line operator to eliminate or at least minimize the problem. 
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7 Conclusions and Future Work 

 

7.1 Conclusions 

The theory of the Active Shape Model algorithm has been examined in this thesis. Training 

is done to capture the statistical information about the shape that need to be found. A 

sufficient number of images are used to build up the Active shape model. If the number of 

training images is inadequate, there may not be enough variation described by the 

algorithm to correctly identify the shape during the search phase. However, there is also a 

possibility to over-train the algorithm by having too many training images.  

Points, labeled as landmarks, are placed around the outline of the shape in each of the 

training images. Landmarks are placed in mathematically or anatomically important 

locations around the shape. When the distances between these points are too great, pseudo-

landmarks are placed in between them to capture the shape more closely. Ideally these 

points are marked in the same place across the training images. This proves difficult 

especially for irregularly-shaped objects such as chicken breasts.  However, careful manual 

landmarking can also do the job. 

The positions of the landmarks in all the training images are recorded. Although the 

landmark sets contain the shape data, they also include some undesirable information. The 

rotation, translation, and scale are eliminated to extract the shape. For this purpose, shape 

alignment is performed. One of the shapes in the training set are used to serve as a 

reference shape. All the other landmark sets are aligned to this reference shape. With this 

method, only the shape and the variations that exist across the landmark sets remain after 

the alignment process.  

Each of the aligned shapes is a point in a 2n dimensional space known as the allowable 

shape domain. Any point within this shape domain will have a resemblance in some extent 

to the training images. However due to the high dimensionality, mathematically finding a 

shape is a problem. PCA solves this by finding the most significant principal components. 

These are the eigenvectors of the covariance matrix. Most of the variation found in the 

training set is described with only a few of the principal components. In order to recreate 

any shape in the training set, only the linear combination of the mean shape and the 

principal components are needed.  

The pixel information about each landmark point in the training images is also gathered 

during training. This will assist in selecting the best location to move each model point 

during the image search phase. Pixel samples extracted along paths normal to the shape 

boundary and passing through each landmark forms a statistical database of expected gray-

level profiles. 

During the image search, the model is placed in an arbitrary position in an unknown image. 

At each of the landmarks in the model, a gray-level profile normal to the shape boundary is 

extracted. The best movement positions for each model points are selected. The model is 

then rotated, scaled and translated to try and match the suggested landmark locations. This 

rarely results in a perfect match. The transformed model is then deformed according to the 
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established constraints to further conform to the suggested locations. When the disparity 

between the recommended positions and the deformed model is still above a set limit, the 

process is repeated.  

To improve the performance of the algorithm, a multi-resolution approach is applied. In 

this case, an ASM model is trained for every resolution level. During image search, the test 

image is decomposed into the appropriate number of resolutions. The search is done 

starting from the coarsest resolution going up to the finest level. The outcome at each level 

is used as the starting point for the next. This allows the model to move at large distances 

at the lower resolution levels and make fine adjustments at the higher resolutions. 

The flexibility and accuracy of the ASM algorithm lends itself well to applications where 

the target object is non-rigid. In this thesis, the algorithm is applied to poultry products. 

Since the ASM algorithm tries to find the target in the image and approximate the object 

boundaries, it is suited for gathering size information. The data collected from a number of 

images builds up a statistical summary of the test images. In a food processing line, this 

information is useful for measuring the quality of the batch.  

Another application for ASM in the food processing industry is identifying the locations at 

which bone fragments occur in poultry pieces. The ASM model serves as the reference 

shape to which bone fragments found in the poultry cuts is mapped to. This helps identify 

problem areas in the processing line and eventually lead to solutions for eliminating the 

bone fragments. 

7.2 Future work 

The landmarking method employed for building up the ASM model consisted of manually 

placing points along the object boundary on the training images. The irregularity with the 

shape boundaries of the poultry pieces only make this task even more challenging. An 

automated method of landmarking will definitely help in this regard. Another area that can 

be improved upon is on the search phase of the algorithm. The algorithm tries to grab on to 

edges that mostly resemble the object it was trained on. On the event that the model starts 

on a location where it does not reach any object edge, a mechanism must be put in place 

such that the movement is towards a location that has a high probability of having the 

object. Two possibilities for this is to take into account a priori knowledge or using 

histograms. 

Shape recognition of non-rigid objects such as food items is very challenging and difficult 

to accomplish with conventional image processing techniques. The capability of the ASM 

algorithm to accept a wide degree of variation in recognizing shapes makes it an ideal 

candidate for applications in the food processing industry. For more complicated images, 

AAMs can be used instead. This presents the advantage of utilizing texture information in 

addition to landmark data. 
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Appendix A - Selecting profile pixels at 
each landmark [5] 

During image search, a method must be put in place to facilitate the selection of the best 

movement location for each landmark. In choosing a one-dimensional (1-D) profile normal 

to the shape boundary, we restrict the movement to only one dimension which simplifies 

the calculation for locating the best point. Even with the restriction, this method still allows 

enough flexibility to be able to move and deform the model to fit the target shape. Figure 

A.1 shows how the profile is drawn for one landmark point. 

 

Figure A.1 A normal to the model boundary 

In order to obtain the normal, we have to compute for the tangent line to the shape 

boundary at the current landmark. First we compute 

 𝑑𝑥 = 𝑥𝑖+1 − 𝑥𝑖−1 and 𝑑𝑦 = 𝑦𝑖+1 − 𝑦𝑖−1 . (A.1) 

 

We use this to compute for the tangent line 

 
 𝑡𝑥 , 𝑡𝑦 =

(𝑑𝑥 ,𝑑𝑦)

  𝑑𝑥2 ,𝑑𝑦2 

 . 
(A.2) 

From the tangent line we derive the normal 

  𝑛𝑥 , 𝑛𝑦 =  −𝑡𝑦 , 𝑡𝑥  . (A.3) 
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Figure A.2 Selecting points along the normal 

If we let (X, Y) be the current landmark position we can choose points along the normal to 

belong to the profile using the equation 

  𝑋,𝑌 + 𝑖(𝑠𝑛𝑛𝑥 , 𝑠𝑛𝑛𝑦) (A.4) 

where i = (…,-2,-1,0,1,2,…) and sn is the steps along the normal that we want to consider. 

Being able to select the steps, sn, is especially useful when dealing with different resolution 

levels. Shown in Figure A.2, one pixel in a resolution level occupies two pixel locations in 

the next higher resolution level. If the pixels in the profiles were selected to be always the 

same distance with each other at all resolution levels, it would come to a point wherein all 

the pixels selected for the profiles would be of the same value. This will not benefit the 

best point selection in the image search process since there would be no difference in the 

Mahalanobis distances between pixels in the profile. Also during gray-level modeling, 

having profiles with very similar pixel levels would result to nearly singular covariance 

matrices. This will not produce accurate results during image search. 

A. Normalizing the gray-level profile 

Once the profile is profile is obtained, the best movement point of the landmark can be 

found using the strongest edge method. We do this by looking for the highest peak 

produced by computing the derivative of the profile. This method works well when the 

landmarks are placed on the boundary, the background is clean and the target shape has a 

large difference in contrast to the background. But it is rare that these conditions are met 

and most often the strongest edge method fails to produce satisfactory results. The next 

solution is to make a statistical analysis of the gray-level profiles of each landmark. This is 

done on every training image during the training phase. Before we can start on this, 

however, we have to perform a conditioning step for the profiles. Since the training images 

are taken at different instances in a range of settings, some variations can be observed. 

Some images appear darker or brighter than others while most, if not all, images will 

contain some noise. In this section, we adapt the method used in [7] to eliminate or 

minimize the effects described above. We start with computing the derivative profile, g, of 

the j
th

 landmark point at image i 
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 𝑔𝑖𝑗 = 𝑝𝑘 − 𝑝𝑘−1, (A.5) 

where p is the vector of pixel values taken at the profile. We then normalize this profile by 

 𝑔𝑖𝑗 ′ =
𝑔𝑖𝑗

  𝑔𝑖𝑗𝑘 ′ 
𝑛𝑝
𝑘=1

. (A.6) 

 

We then get the mean of the normalized derivative profiles for each landmark point across 

the images, 

 

𝑔𝑖 =
1

𝑁𝑆
 𝑔𝑖𝑗 ′

𝑁𝑠

𝑗=1

 . 

(A.7) 

 

During training, we gather the mean normalized derivative profiles for each landmark 

point and compute the covariance matrix, Sgi. This would form a statistical database of 

expected gray-level profiles for each landmark. During image search, we also perform the 

methods described above after extracting the profiles.  

  



62 

Appendix B –Training Images 
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Appendix C –ASM Results 
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Appendix D – Information from 
Resulting ASM  
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Appendix E – Test Images with Bone  
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Appendix F –Bones Mapped to 
Reference Shape 
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