
Resource estimation of upper layer

network traffic analysis

Birgir Haraldsson

Supervisor: Adam Bridgen

Faculty of Information Technology,
University of Akureyri

Submitted April 2005, in partial fulfilment of
the conditions of the award of the degree BSc.

I hereby declare that this dissertation is all my own work, except as indicated in the text:

Signature

Date / /

Abstract

This paper describes an experiment to create estimates of how much resources are needed to
analyze network traffic at the upper network layers. The paper shows that upper layer analysis
requires significantly more resources than a lower layer analysis. Upper layer analysis introduces
many issues including concerns for privacy. A prototype software to filter at the upper layers was
implemented using multi-threaded pipeline of filters. The prototype was further used in a sequence
of experiments, with varying loads and searches, to generate resource estimates.

Contents

1 Introduction 3

2 Preliminary information 4

3 The Project 9
3.1 Description of project . 9

3.1.1 Requirements of Netvaki . 9
3.1.2 Prototype decisions . 10

3.2 Issues . 10
3.2.1 Performance . 10
3.2.2 Segmentation . 11
3.2.3 Compression . 11
3.2.4 Encryption . 11
3.2.5 IPv6 . 12
3.2.6 Privacy . 12
3.2.7 Proxy . 12
3.2.8 HTTP . 12

3.3 Related work . 13

4 Design & implementation 14
4.1 Sampling the traffic . 14
4.2 Solutions . 14
4.3 Architecture . 16
4.4 Implementation . 19

5 Experimentation 21
5.1 The method . 21
5.2 Results . 22

5.2.1 Data . 22
5.2.2 Correlation . 23

5.3 Conclusion . 24
5.4 Reflection and improvements . 25

6 Discussion 28

1

References 29

A Appendix A 31

2

Chapter 1

Introduction

Network traffic analysis tools are one of the many things that are evolving quite fast due to increased
request for such tools. These tools are being used for scanning for viruses, attacks and even if
employees are doing anything other then what they are supposed to do. These tools are expected
to deliver greater accuracy without loosing performance. To achieve more accuracy in the analysis,
the tools need to look into the content of the traffic, instead of just the transport data. Looking
into the content of the traffic increases the resource need of the tool extensively and despite more
and more powerful machines coming on the market, the amount of traffic to analyze increases as
well.

A company in Akureyri, Iceland by the name of Stefna ehf. is working on a network traffic
analyzing tool, Netvaki 1, that examines the material of traffic, and generates lists to filter out
traffic coming from servers that serve illegal material. The first step of Netvaki’s way of analyzing
the network traffic, is to filter out non-interesting and non-important traffic according to the content
of the traffic.

This project deals with estimating resource requirements for this filtering process and therefore
a prototype of such filtering system was built.

This paper starts off by delivering some preliminary background material in chapter 2 including
information about HTTP and the OSI reference model. The project is presented in chapter 3, where
a description of the project is given, main requirements are cited and how they effect some decisions.
Then in chapter 4 the design and implementation of the prototype is presented and thereafter, I
describe the evaluation of the project along with the results from evaluation in chapter 5, and
finally I will go over the key points together with a discussion on further research. Appendix A
includes all the source code of the prototype.

1For more information on Netvaki or Stefna ehf. please visit http://www.stefna.is/ for contact information

3

Chapter 2

Preliminary background information

This chapter introduces preliminary material on several items that are discussed in this paper. Ba-
sics of network layers, the HTTP protocol and web caches are briefly described herein. Information
about network sampling is given and the difference between content and transport traffic discussed.
In the end a summary of what computing resources are is presented.

The OSI seven-layer model

In order to aid discussions of networks and their components we use the traditional OSI reference
model. The Open Systems Interconnection Reference Model (OSI model) has seven layers, where
each layer has a special function to carry out, which it does by some protocols. Following is a brief
description of each layer in this model[10]:

• Layer 1: Physical layer: The physical layer defines all electrical and physical specifications
for devices. Wires, fiber optic cables, hubs, modems, etc. are parts of this layer, and they
communicate by sending bits or signals.

• Layer 2: Data link layer: The data link layer is responsible for transferring data (frames)
between network items and to detect and correct errors from the physical layer. Here the
Maximum Transfer Unit (MTU) is very important, and stands for the maximum byte size
that is allowed enter this layer. The MTU plays a big part of this paper.

• Layer 3: Network layer: The network layer is responsible for transferring data items called
datagrams or packets from a source to a destination. Addresses in this layer are chosen by the
network administrator and are arranged in a hierarchical manner which allows for network
routing. This layer also handles flow control, segmentation/desegmentation of packets from
the transport layer, and error control.

• Layer 4: Transport layer: The transport layer deals with transporting segments from the
upper layers to the network. This service is reliable and transparent.

• Layer 5: Session layer: The session layer handles the dialog between end-user application
processes. Adjournment, termination and establishment of checkpoints are among the things
that this layer does.

4

• Layer 6: Presentation layer: The presentation layer allows the application layer to forget
about how data is represented. This includes MIME encoding, encryption, etc.

• Layer 7: Application layer: The application layer handles communication with the application
process itself and delivers it onto the next layer.

Network traffic flows from layer 7 of the sender down to the 1. layer, over the physical link
arriving at the 1. layer of the receiver, where the traffic flows up into the application layer.
Figure 2.1 displays this movement of traffic.

Figure 2.1: The flow of network traffic through the OSI 7-layer model[8]

HTTP

HyperText Transfer Protocol is the most used protocol of the Application layer protocols. It is
the primary item in the World Wide Web. HTTP needs a client and a server. A client sends a
request to the server who will respond in some manner. A Request can be of one of the following:
GET, POST, DELETE, HEAD, TRACE and CONNECT. Each as a purpose but GET is the mot
common one, and the only one that concerns this paper. A get request from a Firefox browser on
a GNU/Linux machine looks like this:

GET / HTTP/1.1

Host: www.stefna.is

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.7.6) Gecko/20050223 Firefox/1.0.1

5

Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

The responses have a numerical code, followed by an header and then the file. In this header
there are several items that have a meaning to the client, like what kind of file it is, date, server
information, etc. The corresponding response to the request above (stopping after encountering
the beginning of the HTML document):

HTTP/1.1 200 OK

Date: Sat, 09 Apr 2005 13:10:54 GMT

Server: Apache/2.0.52 (Gentoo/Linux) PHP/4.3.9

X-Powered-By: PHP/4.3.9

Set-Cookie: PHPSESSID=a8e11039ba77219bf0bf3a092385fd49; path=/

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0

Pragma: no-cache

Keep-Alive: timeout=15, max=100

Connection: Keep-Alive

Transfer-Encoding: chunked

Content-Type: text/html; charset=ISO-8859-1

<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

...

A HTML document can include links to other files, that the browser will then fetch, the same
way it did the HTML, by a GET request. In the HTTP header there is a mandatory item describing
the type of file was fetched. This is the Content-Type item. The Content-Type as two parts, the
general category it is in and the type itself. In the above sample, the file is a text document of
HTML type. This is in fact the most common file type for text documents, and is referred to as
the HTML document.

Proxy

A web cache or a Proxy, is a service that runs on a server and caches web pages and files attained
from web servers. The client is configured to use one, and from there on, the client sends all requests
to the proxy, who does is own request to the web server, get the response, and sends it back to the
client. This way, the client never accesses the web server by itself. This is useful for protecting the
client, and is often used also to filter out unwanted material. Note that by using a proxy, the server
never knows exactly who is getting the information, and the client really does not know anything
about the server it is getting the information from.

Network Sampling

Network sampling is the process of taking a sample of network traffic. This process is done at
the physical layer, so the sampling device must be physically connected to the line being sampled.
Sampling is primarily done in network debugging, analysis and criminal intent.

6

There are two things to consider while sampling: obtaining copies of the traffic, and filtering
the traffic to obtain the relevant information. Following are the four most common ways to obtain
the traffic:

• HUB: A hub is placed on the line being taped so that it can broadcast all traffic to the analysis
machine.

• SPAN: Switched Port ANalysis is a special way of having a switch broadcast a copy of traffic
to and from a port to another port

• TAP: Test Access Port is the preferred way of tapping a line. It is a designated device that
replicates network traffic on a line and sends it to a special monitoring port

• Gateway: If a all traffic flows through a single server, called the gateway, this machine can
run the analyzing tool.

Each technique has its pros and cons. HUBs are inexpensive but they can only handle half-duplex
traffic and therefore can not handle extensive traffic loads. The SPAN method can be done easily
on most manageable switches today, so setup time and planning is to a minimum. However, the
switch can be flooded with traffic if the traffic load is up, since it is cloning the traffic. SPAN can
also monitor multiple ports. TAPs have many advantages such as that if they go down, the traffic
can still flow through, this is a very small device, and it can easily handle whatever traffic load it
gets. The big disadvantage of this equipment is the price. Cost of TAPs range from the price of
small server up to ten times that. Gateways servers can easily be used for obtaining traffic. They
require no extra cost, since they are already there, but need to allocate resources for the analysis.
Thus, might need more hardware, and are not able to perform their other function if they are there.

When filtering for data, the OSI model must be considered along with the idea of the two
different types of traffic. Filtering can be done at any of the layers in the OSI model, but the
outputs of the layers are different between the layers. Table 2.1 gives a brief description of what to
filter for each layer.

Layer Data unit Purpose

Physical layer signals debugging of lines and devices

Data link layer frames debugging device drivers

Network layer packets debugging network stack of operating systems

Transport layer segments analysis of meta-traffic

Session layer and above data analysis of meta- and content-based traffic

Table 2.1: OSI layers and filtering

Content vs. Traffic data

There are two types of network traffic to consider: content-based traffic and descriptive traffic.
Descriptive traffic is the network traffic that deals with making the all the different protocols work,
and can be thought of as meta-traffic. Most of this type of traffic is based on the lower layers of the

7

OSI model, such as the network, transport and session layer, although that is not always the case.
Examples of meta-traffic that reside in the upper layers are the DNS lookups, ARP lookups, HTTP
requests, FTP control commands, etc. Content-based traffic is the collection of all network traffic
that contains data regular users are after. This kind of traffic can only be in the upper layers, or
the layers above the TCP/IP model, but the real problem is when the meta-traffic is in the same
layer as the content. Using the same example as above: the HTTP data response containing the
HTML and the images gotten from IMG HTML tags are all content-based. Things get even more
uncertain when thinking about HTML itself. There the content is tangled with the HTML tags,
which do not have a specific meaning to a user as content, and therefore should be considered as
descriptive traffic.

Resources

Computers need resources to function. These resources can be memory, CPU cycles, disk space
and more. The memory is needed to store information and programs that are being worked on,
CPU cycles are used to perform actions, disk space is used to store static data that is currently not
being worked on, and network access is needed to communicate with networks. The network load
of the network is also very important, especially when performing analysis of network traffic.

Resource requirements of machines are dependent on the purpose of the machine. Some ma-
chines are built to focus on the users (the higher layers of the OSI model), while others are focusing
on handling high network loads and perform actions on the lower levels of OSI model. A machine
focusing on most or all the network layers will need more resources than others that focus on fewer
layers.

CPU load in GNU/Linux is measured in jiffies, which is 1/100 ms, and is the way GNU/Linux
is set out to measure loading information for processes and the whole system. Network load is
normally measured in bits per second, or even bytes per second, usually in kilo- or mega-bits per
second. Memory is measured in bytes, usually in MBs.

8

Chapter 3

The Project

This chapter gives the motivation for the project, details the requirements and itemizes many
decisions made regarding the project.

3.1 Description of project

The Netvaki project deals with helping firewalls filtering out unwanted material by using methods of
data mining and machine learning. Using methods like data mining and machine learning requires
much computations, so to help improving the performance of these methods the data that is to
be mined or learned must be stripped of everything that does not have effect on the outcome of
these techniques. This means that packets such as normal TCP control packets can be discarded,
because they do not contain any information about the material of interest. Packets containing
sounds or any other material that is not content related text are also discarded because they most
likely are only used for making the experience a little better.

While using HTTP as an example, the only document type that really contains information
about the content of the web page, is the HTML document. The HTML document itself might be
non-important because it might not contain the material in question.

Non-relevant traffic should be filtered out before the real analysis tools begin their work. The
problem with filtering these things out, however, is that the packet must be dissected all the way up
to the application layer (7. layer). This introduces many issues that are described in chapter 3.2.

To create meaningful estimates, a prototype filter was built. Other currently existing programs
are not good enough for our purposes, as it is described in chapter 3.3.

3.1.1 Requirements of Netvaki

In addition to which layer to filter at, the Netvaki project put forward two requirements that effect
the design of the prototype.

First of all, the placement of Netvaki will effect what can and will be filtered out. Netvaki will
reside at the ISP level, where users cannot turn it off, or in any way get around it. By doing this,
the total number of instances of the tool is lowered, and also allows for doing the analysis using
a tool built to run on a multi-processor machine. Further, Netvaki is kept on the Internet side of

9

the ISP, meaning that it is the first unit a network packet goes through on its way to the user.
This is in part due to privacy issues. By taking out the address of the user of the ISP, personal
identification is impossible and many potential legal issues are avoided.

The second requirement has to do with performance. Analyzing network traffic for an ISP
obviously needs quite a lot of power, and therefore, the Netvaki project will require a multi-
processor machine to work on. Hence, for performance reasons, the prototype was designed to take
full advantage of using more than one processor.

3.1.2 Prototype decisions

The purpose of building the prototype was to gaining some knowledge of the resource requirements
for this kind of a program, several decisions were made regarding the magnitude of the project.

In this project, only HTTP traffic will be examined. Thus, all other upper layer protocols are
discarded. HTTP is very common way of using the Internet, and is probably the most used way
of getting information today. All exceptions from the normal network traffic will be discarded to
minimize the time spent on the HTTP protocol itself.

The analysis will be confined to textual searches; meaning that only text is examined. The
prototype will try to find IP addresses of servers that contain information about a given topic. The
topic used will be concerning java and its API. Note, that it really does not matter what topic is
chosen, it only has to do some searching.

3.2 Issues

There are plenty of issues involving upper layer network traffic analysis, specifically HTTP. Solutions
to the issues raised here are considered in section 4.

3.2.1 Performance

Analyzing traffic at the ISP level requires that the software should at least be able to analyze traffic
up to 1Gb/sec for a normal sized ISP. Even the biggest ones in Iceland are using that amount of
traffic. Examination of Cisco PIX data sheets [4] suggests that a PIX that can handle traffic of
1.7Gb/sec is merely a 1GHz machine. The PIX however, only looks at headers of the traffic and
does not deal with compression and segmentation is not an issue there because they do not examine
the payload itself. Also, the PIX firewall is uses a specially built operating system that is built
for this purpose only. That way they keep the hardware requirements down. By looking at these
numbers, one can assume that analyzing the payload will cost more CPU power.

One way to solve the performance issue is to have separate processes doing separate jobs. This
suggests a concurrent solution (as will be described in section 4), a solution in which a process
that does desegmentation, while another is decompressing the document, while yet another one is
searching full uncompressed documents for special keywords. This concurrent solution will be more
effective than having one processor trying to do all of this sequentially for all packets.

Another way of solving this problem is to have multiple machines. Each machine could perform
a task such as the separate processes before. This however has much more cost associated with it,
and creates several problems with management.

10

3.2.2 Segmentation

Segmentation of network traffic is when a packet is split into segments in order to fit the maximum
transfer unit (MTU) of a network. Normal Ethernet MTU is 1500 bytes. Most upper layer content
related packets are much more than that, so most of this kind of traffic will be segmented. Since
the analysis is done at upper layers, the analysis tool will most likely need to have the whole packet
to analyze it, though some analysis can be performed on the segments themselves. The process of
putting the whole packet together is called desegmentation.

In order to reconstruct the whole packet, all the segments of an incomplete packet must be
kept in memory. This should not be a big problem for most HTTP HTML traffic, since normal
HTML document rarely exceeds 2 MB. However, this could be a very big problem for protocols
that deal with large files such as FTP. Focusing on HTML documents, another problem emerges,
HTTP traffic is stateless; meaning that HTTP connections do not have to close, and therefore, it is
difficult to determine the last segment of a packet. To accommodate this situation, the HTTP/1.0
specification [6] introduces a header item Content-Length. This item allows web servers to include
the length of the responded message if the server knows that it will not close the TCP connection.
Unfortunately, the Content-Length is not required by the HTTP/1.1 specification [5] even though
the connection is not terminated.

3.2.3 Compression

Compression was a very crucial part of network traffic a few years ago. It still remains much used,
but because of increasing speeds of networks, this feature is beginning to be less used. Compressing
packets before they are sent usually does not take much time because normal packets are not so
big. Protocols typically have an upper limit of the size that should be compressed, due to CPU
power and memory that is needed to compress and decompress.

Many web servers, including Apache, have a option of compressing material before it is sent. The
methods of compression allowed in HTTP are gzip, deflate and compress [6]. These are public/open
methods of compression, and most browsers include support for them.

Decompressing an HTML document requires the whole document to be used, so decompression
will take place after desegmentation. Despite the obvious disadvantage of this, there is a good side
to it. Since web servers need to compress the document as a whole, the Content-Length of it is
available.

3.2.4 Encryption

Today, privacy and other security measures require much of network traffic to be encrypted. This
is of course a problem when analyzing the traffic. There is no way it would be computationally
acceptable to try to decrypt all encrypted packets. Though it might be possible, it would just take
too much time.

The way around the need to decrypt all packets in order to analyze the network traffic, we could
look at the transport data instead, and perhaps create a profile of use, by, for example, calculating
the percentage of traffic that is encrypted. However, even this can be difficult, since tunneling
encrypts some or all traffic data. With IPSec, this is not possible, unless the transport data of the
IPSec traffic itself is used.

11

3.2.5 IPv6

IP version 6 (IPv6), has a few problems and they exist in the security part of the protocol. In the
future, some sort of IPSec will be built in it, which will introduce the same problems as mentioned
in the encryption section. Today, IPv6 is not in general use and there are no intentions of usage in
near future.

3.2.6 Privacy

For legal reasons, we need to ask: Are network analysis tools allowed to look at content related
traffic? The quick answer is no. However, ISPs do it all the time, they scan your emails for viruses
and SPAM. There is a general acceptance of using virus and SPAM scan engines to browse through
content related email. The big question is: will the same acceptance be associated with overall
network traffic?

3.2.7 Proxy

Proxy servers are a very popular for local area networks, especially in big corporate environments.
Proxy servers are used to control the access of the employees as well as lessen the network load of
the Internet connection. ISPs are using proxies for the same purpose. Due to the nature of proxies,
some traffic data is altered and depending on which side of the proxy you are on, you are denied
access to either the client or the server.

In a traffic analysis where addresses of both the client and the server is needed, having a proxy
makes things more complex. There are different ways to implement a solution to this type of proxy
problem. Building an extension for straight communication between the proxy and the analysis
tool, is one way to go, while another solution include installing the monitoring tool on both sides
of the proxy, and do the connection matching itself. Yet another solution is to have the analysis
tool sit on the client side of the proxy, and dig into the HTTP proxy requests for URLs and host
names, and use those to change the incoming packet accordingly.

If the analysis does not need either client or server addresses, the tool can be placed appropri-
ately on the right side of the proxy, and discard the information that is not needed.

3.2.8 HTTP

Aside from the issues mentioned above, the HTTP protocol as described in 2 effects many possibil-
ities for shortcuts in the analysis. First of all only responses with code 200 are basically important,
along with the request itself. Secondly, unless you need to try to analyze image, videos, or even
stylesheets, the content document1 is the most important part of the analysis. If you are able to
skip all except the content document then most of the traffic load can be dropped.

1Here the content document is though of as text/html, text/plain, and text/xml. All the text files that contain
data

12

3.3 Related work

There are quite a few network analysis tools being used today and some are better than others.
After considerable amount of time spent on searching for good tools to do the job, I found that
the most likely ones would be Snort, tcpdump and Ethereal. These tools are open source, so they
could be modified if needed. However, these tools do not take any steps towards utilizing multi-
processing, and filtering at the upper layers needs to be specially built. Therefore, these tools
cannot help this project in any other way, than just giving ideas of how to do certain specific things
like decompressing HTML documents and general TCP connection tracking.

This project is unique because it specializes in using multi-processing machines to increase
performance, thus creating different results from the rest of the tools. According to my study no
one has tried to build estimates that deal with upper layer network traffic analysis.

13

Chapter 4

Design & implementation

Herein the design and implementation of the prototype is described. The techniques for obtaining
network traffic are enumerated, and the architecture and code implementation of the prototype is
described in detail.

4.1 Sampling the traffic

The Netvaki project team does not have a preferred placement for the tool itself. Therefore, any
method of getting the traffic as described in section 2 can be used. I choose to use a Gateway. (see
section5.1 for details on why this particular method was selected). By using this method, no extra
hardware or software is required and there is no need to change anything in the environment.

4.2 Solutions

In section 3.2 the issues related to network traffic analysis at the upper network layers were pre-
sented. In this section each of these issues is discussed separately, and designed solutions are
presented.

Performance

The performance issue really influences the architecture of the prototype software. The requirement
for multi-processing is met by using threaded pipeline of filters. Each thread will be able to be run
on separate processor if possible, and work on its part of the filtering process. Using a pipeline
helps distinguish between the tasks, and delivers a simple but powerful way of exchanging data.
The pipeline was chosen because each thread has to finish its job, before the next one continues
filtering (if needed).

Segmentation

The process of desegmentation in the prototype is as follows: If a segment contains an HTTP header
but not Content-Length, then that segment will be regarded as the only segment in the packet,
and therefore, the whole packet. Note that there is no attempt to look for closing connections. The

14

reason for that is that if a FIN packet is expected, and it does not arrive, then there is perhaps
a large portion of memory that will never be used again. The way around that problem can be
implemented by using periodic checking for packets that have been there for too long.

If the segment contains an HTTP header and the Content-Length, the following segments will
be appended to the previous segment, until that segment has reached a similar size as the content-
length value designated. Note, that after quite a bit of HTTP traffic analysis using Ethereal, I
noticed that some packets did not have the exact length, so there is a leeway for packets to be 10
bytes more or less that the content-length proposed.

If a segment does not contain header data, then it will try to find a match in the segmentation
table described in section 4.3, and if there is no match the segment is deleted. Note, that this leads
to some traffic data not being analyzed. The reason for deleting instead of trying to analyze, is that
the segment might lead to misjudgment because the context is not right. Also, unpacking cannot
be done on incomplete data.

Compression

The check for compression, just checks the HTTP header for Content-Encoding to equal compress,
deflate or gzip. From there the data is uncompressed into a big buffer, and from there the newly
uncompressed data is used to generate a new packet containing all the headers from the compressed
packet, and then the compressed packet is deleted.

If there are any errors while trying to decompress, the packet is deleted. There is no reason for
trying analyze compressed data in the same way as uncompressed because compressed data is in
binary form, and cannot be analyzed textually without decompress it first.

Encryption

This prototype does not solve the encryption issue. Since its general goal is to perform textual
analysis of the HTML documents, there is no need for the transport traffic data that follows the
encryption, and as said in section 3.2.4 it is computationally too hard to decrypt packets.

Privacy

By following the Netvaki requirements and architecture, there is no need to address this issue.

Proxy

By following the Netvaki requirements and architecture, there is no need to address this issue.

HTTP

The prototype will only focus on HTTP response 200 and text files of type HTML. Plain text,
XML files and other content documents could be a part of this, but since the analysis of those files
is identical to the HTML one, and that these files are not as common as the HTML files, they are
not used.

15

4.3 Architecture

The architecture of the program is a multi-threaded pipe-lined filter. Each filter is a thread that
gets a input and delivers output. The pipe itself is created from scratch using a thread-safe first in
first out queue. Following are the main parts and the classes of the program as well as descriptions
of each part. Figure 4.1 shows the relationship between the threads of the prototype.

Figure 4.1: The overall architecture of the prototype

Main

The main thread serves as the coordinator. The main thread starts everything up, initializes all
threads and variables, and fetches counting data from the other threads. The main thread also
contains code to handle all signals, including the reconfigure signal (SIGHUP) and termination
signals. When a termination signal is found, the thread tries to stop all the other threads, by
calling their stop method.

Once all threads are started, the main thread fetches the newest counts from the threads every 1
second. Method calls from the main thread get the counts, that are then outputted to the screen1.

The counters include: number of packets coming in, total size of the packets, user and sys-
tem CPU usage in jiffies, current number of items along with maximum number of items for the
segmentation table, and also the number of items in the last filter’s answer table.

NetworkReader

The NetworkReader is the thread that does the actual traffic sampling by getting the packets of
the network interface, and creates Packets. The reader discards all traffic not coming from TCP
port 80, i.e. HTTP responses. Furthermore, it checks to see if the payload of the packet is more
than 10, because 10 is the number of bytes that can be used as a leeway in the desegmentation

1uses standard out, so it can be piped or filtered at will

16

process. This removes all control messages, such as the TCP three-way handshake, and others that
do not contain any content.

Packet

The Packet is created each time a valid packet destined for Filter2 from the NetworkReader. The
packet is a class that contains a string of bytes, i.e. the packet itself, also has pointers to the
Ethernet, IP and TCP headers with the possibility of referencing those with the right semantics.
Meaning that to get the TCP source port, we do packet.tcp.src port and it automatically find
the reference to TCP in the packet, and find the source port from there2. The packet also contains
sizes of all headers in the packet along with the payload size.

There are two constructors for Packet, one for the NetworkReader, where only the string of
bytes from the network interface is copied, and the other for the Segmentation table to recreate on
Packet from two others. Other than the constructors and the destructor, Packet does not have any
functions, all done to minimize the extra memory needed to create a Packet. Remember, Packet is
create every time the reader reads a valid packet.

Filter

The Filter class is the super-class of all the Filter classes (segFilter, HTTPFilter and IPList filter).
This class contains methods that are common to all of them, such as the interaction methods that
are called from the Main thread for counters. Semaphores are used to ensure mutual exclusion of
the counters.

segFilter

The segmentation filter thread gets the Packet from the reader, and tries to create a Header object
from the Packet. If the Packet does not contain a HTTP header, the header return an error, else it
creates a Header object that will be associated with the Packet by creating a HTTPPacket. From
the Header object, the response code and the file type is read, and HTTPackets with the wrong
code or file type are discarded. The packets that get through carry on and next the Content-Length
is read, and if it is valid, and needs more bytes, the HTTPPacket is put in the segmentation table.
HTTPPackets that have the whole content are sent directly to Filter3.

Packets not containing an header, are sent to the segmentation table in order to search for
parents. If no parents are found, the Packet is deleted. (See following section for detail on the
segmentation table). If a parent was found and the HTTPPacket has all its bytes, it is sent to
Filter3.

Segmentation table

The SegTable object resides inside the Filter2 object. It contains a static table of 1000 items of
type segitem. Segitems are a struct with HTTPPacket, length of that packet, and a flag whether
the item is free or not. A static table was chose to lessen the load of the machine due to memory
allocation.

2Done by using a C struct

17

When the first segment is sent to the table, it finds a free item, and the HTTPPacket is placed
there, and the length of the item is set to the length of the total payload size. For each segment
that follows the table is searched for a prior segment that has the same TCP destination port, TCP
ack number and IP source address. If found, a new Packet is created from the parent and the new
packet. The reference to the Packet in the HTTPPacket object is then updated to the new Packet.
When the full length of a HTTPPacket is found, it is removed by only setting the segitem free flag
to true and that packet is returned.

Header

The header class is used to get and maintain the HTTP header of a packet. Its constructor takes
in a reference to the Packet, and checks if the packet is a header by checking if the first 4 bytes are
“HTTP”. If that fails, no other actions are taken and the error flag is set for the header. However,
if it works, then the HTTP header items are read sequentially into a static array of headers.

Methods such as getResponse and getValue search the array for matching item, and return the
corresponding value.

HTTPFilter

This filter gets HTTPPackets from the segFilter. First task is to check if the encoding matches
some of the compression types. If the answer is yes, then an attempt to unzip the packet is made.
(The unzipping process is discussed in section 4.4).

The next task is the textual analysis. Regular expressions are used for the search. The regular
expressions are read in through the configuration file and then compiled. There can be up to 15
regular expressions, all with the maximum length of 100. These regular expressions are associated
with points that are given when a pattern is found. By using this method, one can both expand
and narrow searches, and use this to control the searching in any way.

If a document is scored at 70 points or more, an HTTPItem is created and sent to Filter4. The
documents that do not reach the threshold are deleted.

HTTPItem

HTTPItem is a small class that contains the packet number, points given, IP source address and
the size of the Packet. Note, that it does not contain any reference to any Packet or HTTPPacket.

IPList filter

This is the last filter thread. This filter maintains the IP table of the matched sources. HTTPItems
coming from Filter3 are put into an array of HTTPItem only if the total points of an item does
not exceed a certain threshold of 500 points. This is done to minimize the memory usage of the
program.

BQueue

The BQueue class is used as the thread-safe FIFO queue between the filters. It uses a producer
consumer in a bounded buffer paradigm. Use of signal and wait ensures mutual exclusion on the

18

data buffer. The buffer can contain 16384 items, and each item is a pure pointer to an object using
Cs void pointer and casting it to the right type after the pointer has been fetched from the queue.

4.4 Implementation

This section contains a description of the prototype implementation, comments on particular lan-
guages and libraries used in the implementation are given.

• Language: The prototype was implemented in C and C++, mainly for performance reasons.
Although most code is in C, C++ classes are used to utilize the constructor and destructor
features for objects instantiated therefrom. I chose C and C++ for programming languages,
since they are known to produce very fast code. I mainly use C style of coding, except for I
am using C++ classes, because of the convenience of constructors and destructors and also
because I have experience in that language.

• Operating System: I choose GNU/Linux for the operating system to be used, because devices
are presented in an uniform way of block and character devices. This uniform way allows
a program to listen on ANY network interface, and therefore, allows the programmer to
listen to more than one device at a time. Further, GNU/Linux is a very stable and secure
operating system that makes the programmer’s life a little easier by including source, header
and instruction files where they need them.

• Libraries:

– pthread: Since Linux was chosen, the pthread library is the best step for threading.
Linux maintains the threads in the kernel, and therefore, can schedule the threads onto
multiple processors easily and effectively. Note, in Linux kernel headers 2.6 these threads
are not split onto separate CPUs, but rather processed as one process. To use the pthread
effectively on a 2.6 kernel, the following command is needed before running the program:
export LD ASSUME KERNEL=2.4.1.

I also found a very interesting class POSIXThread[22] that creates a virtual thread class
that uses the pthread library. This allows for creating an Object Oriented thread class.

Inside the pthread library, are also routines that are called conditions, where the pro-
grammer can tell a thread to wait until it get a signal. The signal can then be signaled
to the next thread waiting, or even a broadcast to all. This is used in the BQueue class
to ensure that the buffer is not accessed by two threads at the same time.

– libpcap: PCAP library[23] is the most used packet capturing library in the UNIX envi-
ronment. This hides all the issues with actually sniffing a network interface, and allows
the programmer to simply capture packets.

– zlib: The zlib library includes functionality to compress and decompress data in deflate
and gzip format all in the same inflate function. The actual unzipping method is derived
from the tvb uncompress of the tvbuff.c file in the epan directory of the Ethereal source
code[24].

19

– regex: I use the POSIX regular expression library for regular expressions (RE). This is
the most common RE library used in GNU/Linux. They are really easy to use, and for
programmers that have to deal with REs this is a must have library.

• Process and machine loads: In GNU/Linux every process has a directory in the /proc direc-
tory containing a file stat that holds the number of jiffies that the process has had the CPU
for, both user and system time. There is also a file /proc/stat that holds information about
the total amount of jiffies the CPUs have performed for, along with the total number for all
processors.

I found the best way of getting this information was to keep the process ID for all threads
and read from the corresponding /proc/¡pid¿/stat file and the total CPU file. This is done
each time the Main thread gathers the counters and prints out.

• Compiler: I use the standard GNU C++ compiler, g++, which is a part of the known gcc
compiler. In GNU/Linux, using this compiler is the easiest and most common. I also use
their debugger gdb for most of the debugging, along with the ddd[25] helper tool.

• Coding: All source code is edited with either vim or gvim on a GNU/Linux system.

20

Chapter 5

Experimentation

To evaluate the prototype and to be able to derive some conclusion about the estimation, some
testing was performed. This chapter discusses how the experiment was designed and how the results
are to be interpreted.

5.1 The method

This section describes the methods used to test and evaluate the prototype. Included are methods
to build statistics of the program’s CPU usage, and observations on how network traffic loads effect
CPU usage.

The test site was the computer science computer lab of University of Akureyri (R316). It has
around 30 Linux client machines and all traffic flows through one server (viti). Viti has 4 Intel
XEON processors of 2.2GHz each, all supporting hyper-threading. Thus, the Linux operating
system treats the server as if it has 8 CPUs when running a threaded program.

One of the biggest problems encountered in this project was the problem of generating network
traffic for testing purposes. The traffic must at least include HTTP packets, so the program can
do some work. It should be possible to generate traffic up to 80Mb/sec, so that it is easier to see
what happens at extreme loads. I created a small shell script that utilizes the wget utility. Wget
has options of recursively crawling through web sites, following all links they encounter. By using
wget I can manually pick a website, and make wget generate the traffic itself, also by using wget,
no hits will be detected as cached. The script spawns 6 wget processes for separate web sites.

I used a remote connection to the client computers of the lab to run the robot crawler. At most
I was using 14 computers at one time. The traffic load was controlled by the number of clients
running the robot. I had problems with generating a steady stream of packets coming in. There
were gaps in the flow, which lead to non-normal distribution that makes deriving statistics much
harder. These outliers are usually at the upper boundaries of the network load, so to fix this I had
to generate more load, and just simply cut out the outliers afterwards.

Besides testing the network load versus the processor load, I took a look at how different
regular expressions had an effect on the CPU load. I tested with 1, 5 and 10 regular expressions. I
structured the REs as such that they narrow the search down with each RE. This can give results
that show how much output can decrease with each pattern, and maybe find a limit of how many

21

REs one should use, before CPU load starts to get effected.
All the output from the prototype, i.e. all the information about the network load and the cpu

load is saved into a file, and then later processed using statistical analysis tool such as Open Office
Spreadsheet and SPSS. The statistics are then used to generate predictions about the state of a
machine when under certain network traffic load. This statistic can also be used to show what part
of the process is most demanding, and what is the least demanding.

The execution of the experiment had 6 parts; for all three pattern numbers 1,5 and 10, the
experiment ran with both 2 client and 7. The single pattern was simply the word java. Thus, it
performs a basic word search. The 5 patterns were aimed at trying to find java APIs by including
several words contained in the official API for each of the 5 patterns. The last one was designed
to bring more accuracy to the 5 pattern search, by holding more patterns but an equal number of
items in the pattern. There was also a test run with 14 clients and 1 pattern, to help seeing how
accurate the predictions are. Each test ran for 2 minutes, producing 120 cases of data. The filter
began execution after the robots had been started and the filter was stopped before the robots were
stopped.

5.2 Results

This section describes and discusses the results from the testing. I will go through the statistics
that were derived, and make suggestions on what they mean.

5.2.1 Data

By exploring correlations of individual variables of the data, only a few variables were decided to
be significant, and the rest of the variables were discarded.

Following is a list of the significant variables. Note that the number of jiffies consumed be a
thread in a second is a measure of the how much of a CPUs time the thread takes. Since one
processor executes 100 jiffies in a second, the number of jiffies consumed are also the percentage of
usage for a single processor. The consumed jiffies represent the load of a thread.

• Load of reader thread.

• Load of segmentation thread.

• Load of the search thread.

• Total load of the program.

• Network traffic load, in kilobits per second.

Variables such as the load of the unzipping thread and the IP list thread not significant because
they did not consume any considerable amount of jiffies. The main thread however is discarded
here because its load was generated when creating this data.

From hereon, the significant data is referred to as data and the discarded data is not considered
further.

22

Kb/sec

20000,0

19500,0

19000,0

18500,0

18000,0

17500,0

17000,0

16500,0

16000,0

15500,0

15000,0

14500,0

14000,0

13500,0

13000,0

12500,0

12000,0

11500,0

11000,0

Kb/sec

Fr
eq

ue
nc

y

20

10

0

Std. Dev = 1864,10

Mean = 15637,3

N = 120,00

Figure 5.1: Distribution of traffic load. 1 pat-
tern and 7 clients used.

Kb/sec

23000,0

21000,0

19000,0

17000,0

15000,0

13000,0

11000,0

9000,0

7000,0

5000,0

3000,0

Kb/sec

Fr
eq

ue
nc

y

120

100

80

60

40

20

0

Std. Dev = 5371,65

Mean = 10483,0

N = 702,00

Figure 5.2: Distribution of traffic load. All
pattern and clients used.

For each of the 6 individual tests, all the data had a reasonably normal distribution as shown in
an example histogram in figure 5.1. However, when all tests are considered the distribution suffers
from lack of continuity (figure 5.2), which leads to less descriptive and accurate information.

5.2.2 Correlation

The correlation between the variables is best described in scatter graphs and regression lines.

1 Pattern Search

In figure 5.3 the relation between traffic load and the load of the segmentation thread is shown.
R2 is 0.5931, so there is some relation between the two. This is natural since, there are usually
some portion of network traffic that is segmented, and therefore, the segmentation thread needs
to work accordingly. As shown in figure 5.4 the reader is also influenced by the traffic load, since
the reader is the first thread to encounter the the traffic. The search filter is not showing much
traffic in figure 5.5 because there is only one pattern to search for, and the thread seems to handle
it easily.

The load balancing of the three major filter is shown in a pie chart in figure 5.6. The search
filter does not take up any considerable amount of time, while most of the work is performed by
the reader thread.

5 and 10 Pattern Searches

When more patterns are used by the search filter, the balancing of load starts to change. The pie
chart in figure 5.7 shows how much the search thread has taken over when it needs to search for 10
patterns.

The difference between the patterns is best described in figure 5.8. There is a very clear
distinction between the regression lines of each number of patterns group. This filtering effects the
overall program load significantly as shown in figure 5.9.

23

5.3 Conclusion

By extending the regression on the previous covered statistics, the future values of the data can be
found according the regression equation. Figures 5.10, 5.11 and 5.12 show the predicted values the
reader, segmentation and search threads respectively.

Reader thread

According to the prediction figures, the CPU load of the reader thread will hit the 100% mark at
around 150Mb/sec. Many ISPs in Iceland only have a 100Mb/sec link. According to [26] the biggest
service providers, Siminn, Lina.net and Islandsimi are able to generate traffic over 150Mb/sec. The
Netvaki project is aiming for the biggest ISP in Iceland to begin with, and perhaps later in Europe.
These results are bad news for the project, but suggestions on how to improve the performance of
the reader are discussed in the following section.

Segmentation thread

The segmentation thread manage a little more network traffic load then the reader, up to 180Mb/sec.
According to [26], both Siminn and Lina.net are above that number, and others are near. Again,
this is not good for the Netvaki project, although improvements can easily be made to this thread
(see next section).

search thread

The search thread however can only handle up to 50Mb/sec using 10 patterns, and 80Mb/sec using
5 patterns. Many ISP and companies are reaching these numbers in their network load, and it is
clear that something radical must be done to this thread in order to be able withstand loads of
big ISPs. On the other hand using the single pattern, single word search the search thread reaches
over the 1000Mb/sec limit, and this is a good sign for Netvaki, who will likely use this to their
advantage.

overall

The overall load is related to the number of patterns used, and with more than 1 pattern the
overall process will hang before reaching the limit of e.g. Lina.net of approximately 300Mb/sec.
Even when considering only one pattern searches (or even no searches), this type of filtering will
not work for Lina.net. Major improvements are needed on the whole process, especially if a large
European ISP is considered.

Correctness

To see if the statistical analysis was correct, I performed a test of a single pattern using 14 client,
generating up to 38Mb/sec. Comparing the actual results from that test with the predicted values,
demonstrated that the experiment was a success and the predictions can be trusted.

24

5.4 Reflection and improvements

Herein, are several suggestions on how the performance of the prototype can be improved. None
of the suggestions should involve major change in the program. Further improvements and devel-
opment is described in the discussion chapter.

Increasing the performance of the reader can be done by perhaps using multiple readers. Having
multiple readers however requires multiple interfaces, or some load balancing between the readers.
Reading from multiple interfaces has to do with splitting the traffic at either layer 2 or 3 while
using a switch. An extra machine between the network sniffing point and the filtering tool, can
also split the traffic according to some routing rules.

Another way to enhance the readers performance is to rewrite or skip the pcap library. The
library has several function that are not needed, and therefore, can be skipped. Writing a very
simple and fixed solution might allow for significant increase of traffic load being read before CPU
load hits critical levels.

The segmentation thread is only using a simple array, and will go through the whole array if
needed to find a match. Using a tree structure should be very easy to implement, and will bring
the segmentation search to O(log n) from O(n). There is also a choice of having more than one
segmentation thread, but still use the same data structure.

Improving the search thread is not needed when using the single word pattern, and by creating
a pipeline of such filters, the search can be executed on more than one CPU. By creating several
copies of the current search thread, and load balance between them, the searches can include more
patterns and they can be more complex. There are also other methods of searching than can
improve both the performance and accuracy of the search.

25

Kb/sec

3000020000100000

se
qF

ilt
er

 L
oa

d

20

15

10

5

0 Rsq = 0.5931

Figure 5.3: Relationship between segFilter
load and network traffic load. 1 pattern used

Kb/sec

3000020000100000

re
ad

er
 L

oa
d

12

10

8

6

4

2

0 Rsq = 0.8586

Figure 5.4: Relationship between reader load
and network traffic load. 1 pattern used

Kb/sec

3000020000100000

se
ar

ch
Fi

lte
r L

oa
d

3,5

3,0

2,5

2,0

1,5

1,0

,5 Rsq = 0.2512

Figure 5.5: Relationship between search
thread load and network traffic load. 1 pat-
tern used

9,3%

41,3%

49,4%

search

segFilter

reader

Figure 5.6: Distribution of load using 1 pat-
tern

75,5%

11,1%

13,4%

search

segFilter

reader

Figure 5.7: Distribution of load using 10 pat-
terns

26

Kb/sec

3000020000100000

se
ar

ch
Fi

lte
r L

oa
d

70

60

50

40

30

20

10

0

#patterns

 10

Rsq = 0.5073

 5

Rsq = 0.5331

 1

Rsq = 0.2512

Total Population

Rsq = 0.2113

Figure 5.8: Relationship between search
thread load and network traffic load

Kb/sec

3000020000100000

%
cp

u
- p

ro
gr

am

12

10

8

6

4

2

0

#patterns

 10

Rsq = 0.6325

 5

Rsq = 0.6706

 1

Rsq = 0.8209

Total Population

Rsq = 0.3981

Figure 5.9: Relationship between program
load and network traffic load.

Kb/sec

1000000

800000

600000

400000

200000

0

re
ad

er
 -

%
of

 1
 c

pu

100

80

60

40

20

0

#patterns

 10

Rsq = 0.8601

 5

Rsq = 0.8032

 1

Rsq = 0.8586

Total Population

Rsq = 0.8477

Figure 5.10: Prediction for the load of the
reader thread according to traffic load

Kb/sec

1000000

800000

600000

400000

200000

0

se
gF

ilt
er

 -
%

 o
f 1

 c
pu

100

90

80

70

60

50

40

30

20

10

0

#patterns

 10

Rsq = 0.6550

 5

Rsq = 0.5321

 1

Rsq = 0.5931

Total Population

Rsq = 0.6019

Figure 5.11: Prediction for the load of the seg-
mentation thread according to traffic load

Kb/sec

100000800006000040000200000

se
ar

ch
Fi

lte
r L

oa
d

100

90

80

70

60

50

40

30

20

10

0

#patterns

 10

Rsq = 0.5073

 5

Rsq = 0.5331

 1

Rsq = 0.2512

Total Population

Rsq = 0.2113

Figure 5.12: Prediction for the load of the
search thread according to traffic load

27

Chapter 6

Discussion

The project described herein, was designed to help the Netvaki project team estimating needed
resources for network traffic analysis that analysis at layers above the transport layer. The project
also makes the first steps of building the primary sniffer and filter for Netvaki easier by creating
a prototype of such tool. Further, the project discusses ideas for improving the prototype for
increased performance.

Aside from helping the Netvaki project, this project contributes to interested parties resource
estimation along with bringing out issues with network traffic analysis at the higher layers and
how they can be solved in a multi-processor environment. Research on this specific topic has not
been available, and now that machines are becoming more powerful, companies will begin creating
devices that work on the higher levels. This paper should benefit those companies.

As with all things, this is not a complete study. This is merely the beginning. Further studies
include improving the efficiency of this project’s prototype described in section 5.4, altering the
prototype to allow for the filter to reside on different machines and thus, creating a distributive
analyzing tool, and since this project decided to discard issues like proxy, missing content-length
and file types other than text/html, solutions for these issues is need for the general analyzing tool.

Even further research on the data and its statistics can be performed without making extensive
changes to the prototype. Creating more conclusive and extensive data sets to work out statistics
and estimates with more accuracy is very important, as well as extending the experiment to include
data on IO and memory usage. To gain a better estimation of the actual computing power needed,
the experiment can be performed using different types of machines, single processor, more than 8
processor machines, slower and faster machines, etc.

There are plenty of possibilities for studies in this field, and hopefully there will be many more.
At least I will continue to develop and improve this prototype even further along with helping the
Netvaki team create their solution.

I would like to say that this project was a partial success. A prototype was created and used
to create estimates of resources. However, the time it took to design and build the prototype
exceeded all time-plan by a big margin. I would have liked to use the time for more data building,
and perhaps some of the improvements described in section 5.4. Nevertheless, many issues were
found and some solved, some ideas of the resources needed was proposed and ways to improve the
performance of the prototype were introduced. So, all in all, the project was a success.

28

Bibliography

[1] A. Escudero-Pascual, I. Hosein, Questioning Lawful Access to Traffic Data, ACM, 2004.

[2] Andrews, Gregory R. 2000. Multithreaded, Parallel, and Distributed Programming. United States
of America. Addison-Wesley.

[3] Moore, David S. and McCape, Gregory P. 2003. Introduction to the Practice of Statistics. New
York. W. H. Freeman and Company.

[4] http://www.cisco.com/go/pix,
last accessed April 15, 2005

[5] http://www.ietf.org/rfc/rfc2616.txt,
last accessed April 15, 2005

[6] http://www.ietf.org/rfc/rfc1945.txt,
last accessed April 15, 2005

[7] http://www.erg.abdn.ac.uk/users/gorry/course/intro-pages/osi-example.html,
last accessed April 15, 2005

[8] www.webopedia.com/ quick ref/OSI Layers.asp,
last accessed April 15, 2005

[9] http://www.usenix.org/publications/library/proceedings/bsdcon02/
full papers/lemon/lemon html/node2.html,
last accessed April 15, 2005

[10] http://en.wikipedia.org,
last accessed April 15, 2005

[11] http://markun.cs.shinshu-u.ac.jp/learn/osi/,
last accessed April 15, 2005

[12] http://freespace.virgin.net/glynn.etherington/data encapsulation.htm,
last accessed April 15, 2005

[13] http://www.wilsonmar.com/1isotp.htm,
last accessed April 15, 2005

29

[14] http://www.rabbitsemiconductor.com/documentation/docs/manuals/TCPIP/Introduction,
last accessed April 15, 2005

[15] http://www.ciscopress.com/articles/article.asp?p=98156&seqNum=2,
last accessed April 15, 2005

[16] http://navigators.com/internet architecture.html,
last accessed April 15, 2005

[17] http://www.cs.columbia.edu/ hgs/internet/,
last accessed April 15, 2005

[18] http://www.helsinki.fi/ ksiazkie/nerd/internet/infrastructure.html,
last accessed April 15, 2005

[19] http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito doc/ip.htm,
last accessed April 15, 2005

[20] http://www.tcpipguide.com/free/,
last accessed April 15, 2005

[21] http://telecom.tbi.net/how-dial.htm,
last accessed April 15, 2005

[22] http://www.partow.net/programming/POSIXsynchwrapper/index.html,
last accessed April 15, 2005

[23] http://www.tcpdump.org/,
last accessed April 15, 2005

[24] http://www.ethereal.com,
last accessed April 15, 2005

[25] http://www.gnu.org/software/ddd/,
last accessed April 15, 2005

[26] http://www.rix.is/statistics.html,
last accessed April 15, 2005

30

Appendix A

Appendix A includes the whole source code of the prototype. Files are displayed in alphabetical
order, and are separated with the header of the next file.

/*
Project: Final year project in CS in UNAK
Author: biggistefna.is

File: biggisfilter.cpp
Summary: Main methods for the project

along with coordinator and logging thread.
*/

#include "funcs.h" // get hwaddr, debug 10
#include "networkreader.h" // the network reader
#include "bqueue.h" // queues
#include "segfilter.h" // segmentation filter
#include "search.h" // search filter
#include "filtz.h" // filter zip
#include "iplist.h" // ip list filter

#include <stdio.h>
#include <iostream>

#include <pthread.h> 20
#include <unistd.h>
#include <signal.h>
#include <sys/types.h>
#include <time.h>
#include <fcntl.h>
#include <sys/resource.h>
#include <stdarg.h>

FILE *fdebug; 30
char debugfile[] = "main.debug";

BQueue q1("queue1"),q2("queue2"),q3("queue3"),qZ("queueZ");

NetworkReader reader(&q1);

IPList iplist(&q3);
Search search(&q2,&q3);
FiltZ filtz(&qZ,&q2);

SegFilter segfilter(&q1,&q2,&qZ); 40

int mainpid;
char configFile[100];
char *configFile;

// array of pids
#define NUM PS 6 //main+reader+filt*4
int pids[NUM PS];

#define PID MAIN 0 50
#define PID READER 1
#define PID FILTZ 2
#define PID FILT2 3
#define PID FILT3 4
#define PID FILT4 5

void debug(int d, char *name, char *str, . . .)
{
#if DEBUG B >= d

31

if (DEBUG B>=d) 60
{

va list argp;
va start(argp,str);
fprintf(fdebug,"DEBUG(%s(%d)): ",name,d);
vfprintf(fdebug,str,argp);
fprintf(fdebug,"\n");
fflush(fdebug);
va end(argp);

}
#endif 70
}
void stopAll()
{

reader.stop();
debug(1,"main","Now, asking filters to stop");
//filt1.stop();
segfilter.stop();
search.stop();
filtz.stop();

iplist.stop(); 80
debug(1,"main","Filters have stopped, now for logger");

debug(1,"main","waiting for everybody to finish");

reader.join();
debug(2,"main","joined the reader");

//filt1.join();

segfilter.join(); 90
search.join();
filtz.join();
iplist.join();
debug(2,"main","joined the filters");

debug(2,"main","joined the logger");

exit(0);
};

void terminate(int x) 100
{

int signalpid = getpid();
debug(2,"main","Got a signal(%i). Stopping(pid=%d)\n",x,signalpid);

if (signalpid==mainpid)
{

stopAll();
}
else

{ 110
debug(2,"main","hmm. . . this is not the main thread mainpid=%i - mypid=%i\n",mainpid,signalpid);

}
}
void newFailed()
{

fprintf(stderr,"A function calling new has failed, Failed to allocate storage\n");
stopAll();

};
void reconfigure(int x)

{ 120
if (getpid()!=mainpid)

return;
FILE* f = fopen(configFile,"r");
if (f==NULL)
{

fprintf(stderr,"Could not open %s for reading",configFile);
exit(1);

}
search.flushPatterns();

char line t[150]; 130
char *line = line t;
char *key;
char *value;
u int keylen = 0;
u int strlength = 0;
u int vallen = 0;
while (fgets(line,150,f)!=NULL)
{

debug(2,"main","Got line %s",line);

while(isspace(*line)) 140
*line++;

if (*line == ’#’ | | *line ==’\n’ | | *line == ’\0’)

32

continue;
debug(2,"main","komst hinga (%i)",*line);
strlength = strlen(line);
key = line;
value = index(line,’ ’);
vallen = strlen(value);
keylen = strlength − vallen;

while (isspace(*value)) 150
*value++;

if (strlen(value)<1)
continue;

debug(2,"main","Value = %s",value);
if (strncasecmp(key,"pattern",keylen)==0)
{

search.addPattern(value);
}
else if (strncasecmp(key,"maxpackets",keylen)==0)

{ 160
int c = atoi(value);
reader.setPacketsCount(c);

}
else if (strncasecmp(key,"filter",keylen)==0)
{

reader.addFilter(value);
}

}
search.compileREs();

fclose(f); 170
}
void usage(char *s)
{

fprintf(stderr,"Usage: %s [-d dev] [-c configFile]\n\n",s);
exit(1);

}

void readPIDStat(int pid, unsigned long long *user, unsigned long long *sys)
{

char filename[80]; 180
char s[1024];
char *S = s;
int fd;
int num read;

sprintf(filename,"/proc/%d/stat",pid);
fd = open(filename, O RDONLY, 0);
if (fd==−1)
{

fprintf(stderr,"Could not open %s\n",filename); 190
*user = *sys = 0;
terminate(19);
return;

}
num read = read(fd,S,1023);
close(fd);
if (num read<=0)
{

fprintf(stderr,"Could not read from %s\n",filename);

*user = *sys = 0; 200
terminate(19);
return;

}

S[num read] = ’\0’;
S = strchr(S, ’)’) + 1;
*S =+ 2; // skip “) ”

unsigned long long utime,stime,cutime,cstime;

int i; 210
for (i=0;i<11;i++)

S = strchr(S,’ ’) +1;

//printf(“S=%s”,S);
int num,n;
num = sscanf(S,"%Lu %Lu %Lu %Lu %n", &utime, &stime, &cutime, &cstime,&n);

//printf(“%d - %Lu %Lu %Lu %Lu\n”,num,utime,stime,cutime,cstime);

*user = utime; 220
*sys = stime;

};
void readCmdLine(int argc, char *argv[])
{

for (int i=1;i<argc;i++)

33

{
printf("Checking %s\n",argv[i]);
if (argv[i][0]==’-’)
{

switch(argv[i][1]) 230
{

case ’d’: //device
i++;
if (i==argc) usage(argv[0]);
reader.setDev(argv[i]);
break;

case ’D’: //debug
break; // not implemented

case ’c’: //configfile

i++; 240
if (i==argc) usage(argv[0]);
configFile = argv[i];
break;

default:
usage(argv[0]);

}
}
else
{

usage(argv[0]); 250
}

}
}
void segfault(int x)
{

fprintf(stderr,"Got SIGSEGV. My pid=%i\n",getpid());
sleep(2);
exit(100);

};

void getCPUUsage(unsigned long long *user, unsigned long long *total) 260
{

static int f;
char buff[1024];
if (f)
{

lseek(f,0L,SEEK SET);
}
else
{

f = open("/proc/stat",O RDONLY,0); 270
if (f==−1)
{

fprintf(stderr,"Gat ekki opna");
//exit(1);

}
}
int n = read(f,buff,1023);
if (n<0)
{

fprintf(stderr,"Gat ekki lesi (%d)\n",n); 280
//exit(2);

}
buff[n] = ’\0’;
static int num;
unsigned long long utime,nice,sys,idle,iow,xxx,yyy;
//printf(“Got following line: %s”,buff);
num = sscanf(buff,"%*s %llu %llu %llu %llu %llu %llu %llu %*s",&utime,&nice,&sys,&idle,&iow,&xxx,&yyy);
*user = utime+nice+sys;

*total = utime+nice+sys+idle+iow+xxx+yyy;

//printf(“returning %u,%u\n”,*user,*total); 290
}
void printStatus()
{

debug(1,"main","getting load information");

// cpu totals
unsigned long long cpuwork,cputotal;
getCPUUsage(&cpuwork,&cputotal);

// program cpu totals 300
unsigned long long uuse,suse;
//getProcessUsage(&uuse,&suse);
// will be derived after all cpu loads have been fetched

//reader totals
unsigned long long rdrCpuUser, rdrCpuSys;
readPIDStat(pids[PID READER],&rdrCpuUser,&rdrCpuSys);

34

// packet totals

unsigned long packetsRead,packetsTotal; 310
reader.getCounter(&packetsRead,&packetsTotal);

// filter2
unsigned long long segfiltercpuUser,segfiltercpuSys;
unsigned long segfilterCount, segfilterSize;
readPIDStat(pids[PID FILT2],&segfiltercpuUser,&segfiltercpuSys);
segfilter.getCounters(&segfilterCount,&segfilterSize);

// filter3

unsigned long long searchcpuUser,searchcpuSys; 320
unsigned long searchCount, searchSize;
readPIDStat(pids[PID FILT3],&searchcpuUser,&searchcpuSys);
search.getCounters(&searchCount,&searchSize);

// filterZ
unsigned long long filtZcpuUser,filtZcpuSys;
unsigned long filtZCount, filtZSize;
readPIDStat(pids[PID FILTZ],&filtZcpuUser,&filtZcpuSys);
filtz.getCounters(&filtZCount,&filtZSize);

330
// filter4
unsigned long long iplistcpuUser,iplistcpuSys;
unsigned long iplistCount, iplistSize, iplistItems;
readPIDStat(pids[PID FILT4],&iplistcpuUser,&iplistcpuSys);
iplist.getCounters(&iplistCount,&iplistSize);
iplistItems = iplist.getNumItems();

// other
unsigned long segCount, segMax;

segfilter.getSegCounter(&segCount,&segMax); 340
double load[3];
getloadavg(&load[0],3);

// calculated vars
uuse = rdrCpuUser + segfiltercpuUser + searchcpuUser + filtZcpuUser + iplistcpuUser;
suse = rdrCpuSys + segfiltercpuSys + searchcpuSys + filtZcpuSys + iplistcpuSys;

static unsigned long lastTraffic = 0;
double traffic = 0.0;

traffic = (packetsTotal − lastTraffic) / 1024.0; 350
lastTraffic = packetsTotal;

fprintf(stdout,"LOGGER: %lu %llu %llu %llu %llu %llu %llu %lu %lu %llu %llu %lu %lu %llu %llu,
%lu %lu %llu %llu %lu %lu %llu %llu %lu %lu %lu %lu %lu %f %0.2f\n",

time(NULL), // 1. current time
// cpu totals
cpuwork, // 2. working cputime
cputotal, // 3. total cputime
// program cpu totals

uuse, // 4. total program user cputime 360
suse, // 5. total program system cputime
// reader
rdrCpuUser, // r1.reader user cpu
rdrCpuSys, // r2.reader sys cpu
// packet totals
packetsRead, // 6. packet count
packetsTotal, // 7. total packet size
// filter2
segfiltercpuUser, // 8. segfilter user cpu

segfiltercpuSys, // 9. segfilter sys cpu 370
segfilterCount, // 10. packets in segfilter
segfilterSize, // 11. packet size in segfilter
// filter3
searchcpuUser, // 12. search user cpu
searchcpuSys, // 13. search sys cpu
searchCount, // 14. packets in search
searchSize, // 15. packet size in search
// filterZ
filtZcpuUser, // 12z. filtz user cpu

filtZcpuSys, // 13z. filtz sys cpu 380
filtZCount, // 14z. packets in filtz
filtZSize, // 15z. packet size in filtz
// filter4
iplistcpuUser, // 16. iplist user cpu
iplistcpuSys, // 17. iplist sys cpu
iplistCount, // 18. packets in iplist
iplistSize, // 19. packet size in iplist
iplistItems, // 20. total number of items in iplist
// segmentation data

segCount, // 21. current seg count 390

35

segMax, // 22. max seg count
// other
load[0], // 23. 1 min load avg.
traffic // 24. network traffic last 1 sec in KB

);
// testing memory
//struct mstats ms = mstats();
//printf(“memory: bytes total=%i, chunks used=%i, bytes used=%i, chunks free=%i, bytes free=%i\n”,
// ms.bytes total, ms.chunks used, ms.bytes used, ms.chunks free, ms.bytes free);

400
}
void printTable()
{

debug(2,"main","getting ip table");
iplist.printTable();

};
void check()
{

debug(2,"main","->Execute() pid=%i",getpid());

int count = 0; 410
while(1)
{

printStatus();
if (count==15)
{

count = 0;
printTable();

}
sleep(1);

count++; 420
}
printStatus();

}
void printPids()
{

fprintf(stdout,"pid of main = %d\n",pids[PID MAIN]);
fprintf(stdout,"pid of reader = %d\n",pids[PID READER]);
fprintf(stdout,"pid of segfilter = %d\n",pids[PID FILT2]);
fprintf(stdout,"pid of search = %d\n",pids[PID FILT3]);

fprintf(stdout,"pid of filtZ = %d\n",pids[PID FILTZ]); 430
fprintf(stdout,"pid of iplist = %d\n",pids[PID FILT4]);
fflush(stdout);

}
int main(int argc, char *argv[])
{

mainpid = getpid();
pids[0] = mainpid;
signal(SIGINT, terminate);
signal(SIGKILL, terminate);

signal(SIGQUIT, terminate); 440
signal(SIGTERM, terminate);
signal(SIGHUP, reconfigure);
signal(SIGSEGV, segfault);

std::set new handler(&newFailed);

fdebug = fopen(debugfile,"w");
if (fdebug==NULL)
{

fprintf(stderr,"Could not open %s",debugfile); 450
exit(1);

}
// setting default values
reader.setPacketsCount(5000);
char *filt0 = ""; // skoa hr taf proxy
reader.addFilter(filt0);
reader.setDev("eth0");
configFile = "filt.conf";

readCmdLine(argc,argv); 460
reconfigure(0);

debug(1,"main","Starting filters");
iplist.start();
search.start();
filtz.start();
segfilter.start();
//filt1.start();

debug(1,"main","Filters has started"); 470

debug(1,"main","Starting reader (0x%x)",&reader);
sleep(1);

36

reader.start(true);
debug(1,"main","Reader has started");

sleep(1);
pids[PID READER] = reader.getPid();
pids[PID FILTZ] = filtz.getPid();

pids[PID FILT2] = segfilter.getPid(); 480
pids[PID FILT3] = search.getPid();
pids[PID FILT4] = iplist.getPid();

printPids();
fprintf(stdout,"LOGGER: time cpuwork cputotal uuse suse rdrCpuUser rdrCpuSys pktcnt pktsz f2usr f2sys f2cnt f2sz

f3usr f3sys f3cnt f3sz fZusr fZsys fZcnt fZsz f4usr f4sys f4cnt f4sz f4itms segcnt segmax load kb/s\n");
check();

terminate(0);

fclose(fdebug); 490
}

/*
Project: Final year project in CS in UNAK
Author: biggistefna.is

File: bqueue.cpp
Summary: The thread−safe queue

*/ 500
#include "bqueue.h"

#include "funcs.h"

BQueue::BQueue(char * n) : name(n)
{

if (pthread mutex init(&mutex,NULL) != 0)
{

fprintf(stderr,"Could not init mutex\n");
exit(1);

} 510
putIndex = getIndex = 0;
pthread cond init(¬FullCond,NULL);
pthread cond init(¬EmptyCond,NULL);
closed = false;
char ff[100];
char *f = ff;
strcpy(f,n);
f = strcat(f,".debug");
fdebug = fopen(f,"w");

if (fdebug==NULL) 520
{

fprintf(stderr,"Could not open %s",f);
exit(1);

}

};

BQueue::˜BQueue()
{

debug(1,name,"Destructing"); 530
fclose(fdebug);

};

void BQueue::put(void *packet)
{

debug(2,name,"bq::put now locking");

if (closed)
return;

540
pthread mutex lock(&mutex);

while (isFull())
{

debug(2,name,"bq::put -> waiting");
fprintf(stderr,"Queue ’%s’ is full, waiting. time=%lu\n",name,time(NULL));
pthread cond wait(¬FullCond, &mutex);

}
array[putIndex] = packet;

debug(2,name,"bq::putting data (addr:%X) (index=%i)",packet,putIndex); 550
putIndex = (++putIndex) % BQUEUE MAX SIZE;

pthread cond signal(¬EmptyCond);

pthread mutex unlock(&mutex);

37

debug(2,name,"bq::put unlocked and signaled");
};

void *BQueue::get() 560
{

debug(2,name,"bq::get -> trying to lock");
pthread mutex lock(&mutex);

while (isEmpty())
{

debug(2,name,"bq::get -> waiting");
pthread cond wait(¬EmptyCond, &mutex);

}
if (closed) return NULL; 570
debug(2,name,"bq::getting data (index=%i)",getIndex);
void *x = array[getIndex];
array[getIndex] = NULL;
getIndex = (++getIndex) % BQUEUE MAX SIZE;

pthread cond signal(¬FullCond);
pthread mutex unlock(&mutex);
debug(2,name,"bq::get -> done and unlocked (addr:%X)",x);
return x;

}; 580

bool BQueue::isEmpty()
{

return (putIndex==getIndex);
};
bool BQueue::isFull()
{

return (((putIndex + 1) % BQUEUE MAX SIZE) == getIndex);
};

void BQueue::debug(int d, char *name, char *str, . . .) 590
{
#if DEBUG B >= d

if (DEBUG B>=d)
{

va list argp;
va start(argp,str);
fprintf(fdebug,"DEBUG(%s(%d)): ",name,d);
vfprintf(fdebug,str,argp);
fprintf(fdebug,"\n");

fflush(fdebug); 600
va end(argp);

}
#endif
}

/*
Project: Final year project in CS in UNAK
Author: biggistefna.is

File: bqueue.h 610
Summary: The thread−safe queue header file

*/

#ifndef CLASS BQUEUE
#define CLASS BQUEUE
#include <unistd.h>
#include <pthread.h>
#include "netdef.h"

#define BQUEUE MAX SIZE 16384 620

class BQueue
{

public:
BQueue(char *);
˜BQueue();
void *get();
void put(void *);

bool isEmpty(); 630
bool isFull();

protected:
int xxx;

private:
void* array[BQUEUE MAX SIZE];
pthread mutex t mutex;
pthread cond t notFullCond;
pthread cond t notEmptyCond;
int putIndex;

38

int getIndex; 640
char * name;
bool closed;
FILE *fdebug;
void debug(int , char *, char *, . . .);

};
#endif
/*

Project: Final year project in CS in UNAK
Author: biggistefna.is

650
File: filter.cpp
Summary: The super class for the filters

*/

#include <iostream.h>
#include "filter.h"

#include "funcs.h"

Filter::Filter(char *n, BQueue *q) : inQ(q)

{ 660
init(n);

};

Filter::Filter(char *n, BQueue *iq, BQueue *oq) : inQ(iq), outQ(oq)
{

init(n);
};
Filter::˜Filter()
{

debug(2,name,"Filter destruction"); 670
fclose(fdebug);

};
void Filter::init(char *n)
{

char ff[100];
char *f = ff;
f = strncpy(f,n,20);
f = strcat(f,".debug");
fdebug = fopen(f,"w");

if (fdebug==NULL) 680
{

fprintf(stderr,"Could not open %s",f);
terminate();

}
debug(1,n,"Constructing. . .");
setName(n);
threadRunning = true;
packetsIn = packetSize = 0;
sem init(&s pc,0,1);

}; 690

void Filter::execute()
{

mypid = getpid();
debug(1,name,"->execute() myPID = %i",mypid);
void *packet;
while(threadRunning)
{

packet = inQ−>get();

checkPacket(packet); 700
}

};

void Filter::stop()
{

debug(1,name,"->stop()");
detach();
threadRunning = false;

};

710
void Filter::incCounters(u long *s)
{

debug(2,name,"increasing counter");
sem wait(&s pc);
++packetsIn;
packetSize+=*s;
sem post(&s pc);

};
void Filter::getCounters(u long *c, u long *s)

{ 720
debug(2,name,"getting counter");
sem wait(&s pc);

39

*c = packetsIn;
*s = packetSize;
sem post(&s pc);

};
void Filter::debug(int d, char *name, char *str, . . .)
{
#if DEBUG B >= d

if (DEBUG B>=d) 730
{

va list argp;
va start(argp,str);
fprintf(fdebug,"DEBUG(%s(%d)): ",name,d);
vfprintf(fdebug,str,argp);
fprintf(fdebug,"\n");
fflush(fdebug);
va end(argp);

}
#endif 740
}
/*

Project: Final year project in CS in UNAK
Author: biggistefna.is

File: filter.h
Summary: The generic filter header file

*/

#ifndef CLASS FILTER 750
#define CLASS FILTER
#include <unistd.h>
#include "POSIXThread.h"

#include "netdef.h"

#include "bqueue.h"

#include "packet.h"

#include "funcs.h"

#include <semaphore.h>

class Filter : public POSIXThread 760
{

public:
Filter(char*, BQueue *);
Filter(char*, BQueue *, BQueue *);
˜Filter();
void stop();
virtual void checkPacket(void *) = 0;
BQueue *inQ;
BQueue *outQ;

void setName(char *n) {name = n;} ; 770
void getCounters(u long*, u long*);
void getUsage(double *u,double *s) {getRUsage(u,s);}
int getPid() { return mypid; }

protected:
void execute();
char * name;
void incCounters(u long*);
sem t s pc;
u long packetsIn;

u long packetSize; 780
int mypid;
FILE *fdebug;
void debug(int , char *, char *, . . .);

private:
bool threadRunning;
void init(char *);

};

#endif

/* 790
Project: Final year project in CS in UNAK
Author: biggistefna.is

File: filtz.cpp
Summary: The unzipping filter

*/

#include <iostream.h>
#include "filtz.h"

#include <unistd.h> 800
#include "funcs.h"

#include "packet.h"

#include "httpitem.h"

#include <zlib.h>

40

FiltZ::FiltZ(BQueue *q)
: Filter("FilterZ",q)

{
}; 810
FiltZ::FiltZ(BQueue *iq,BQueue *oq)

: Filter("FilterZ",iq,oq)
{
};

FiltZ::˜FiltZ()
{

debug(1,"FilterZ","Destructing. . .");
}

820

// note: will not check for http encoding
// must be checked elsewhere (the one that sends it here)
void FiltZ::checkPacket(void *p)
{

HTTPPacket *hp = (HTTPPacket*)p;
debug(1,"FilterZ","starting examination packet #%u",hp−>packet−>number);
incCounters((u long*)&hp−>packet−>size);

if (hp−>packet−>size payload>MAX UNZIP SIZE) 830
{

// sennilega best a gera bara hreinlega ekki neitt ?
// meira a segja sleppa v a skoa lengra
debug(2,"FilterZ","The packet is too big to unzip => deleting httppacket");
delete hp;
hp=NULL;
return;

}
else

{ 840
if (unzip(hp)<0)
{

debug(2,"FilterZ","could not unzip => so delete httppacket");
delete hp;
hp = NULL;
return;

}
outQ−>put(hp);

}
}; 850

/*
Taken from http://www.zlib.net/zpipe.c
http://www.zlib.net/manual.html

*/
int FiltZ::unzip(HTTPPacket *packet)
{

debug(1,"FilterZ","now unzipping packet. Compressed size: %i",packet−>packet−>size);
int ret;

u char *source, *dest; 860
z stream strm;
u long i,compressed len;
int wbits = MAX WBITS;

// getting full header size (with http)
u long headerLengths = packet−>packet−>size ethernet +

packet−>packet−>size ip +
packet−>packet−>size tcp +
packet−>header−>headerLength;

870

// first copy all headers
for(i = 0; i < headerLengths;i++)
{

bigbuffer[i] = packet−>packet−>packet[i];
}

debug(2,"FilterZ","wrote %i bytes as headerinformation",i);

// set the dest to the end of the new packet which resides in bigbuffer 880
dest = bigbuffer+i;

source = packet−>packet−>payload +(packet−>header−>headerLength);
compressed len = packet−>packet−>size payload − packet−>header−>headerLength;

strm.zalloc = Z NULL;
strm.zfree = Z NULL;
strm.opaque = Z NULL;

41

strm.avail in = compressed len;

strm.next in = source; 890
ret = inflateInit2(&strm,wbits);
int initsDone = 1;
if (ret != Z OK)
{

debug(2,"FilterZ","Could not initialize the zstream, ret=%i. msg=%s",ret,strm.msg);
(void)inflateEnd(&strm);
return ret;

}

while(1) 900
{

debug(2,"FilterZ","Now next four chars of source(0x%x) are: 0x%x, 0x%x, 0x%x and 0x%x",
source,source[0],source[1],source[2],source[3]);

strm.avail out = FILTZ BIG BUF;
strm.next out = dest;
ret = inflate(&strm,Z FINISH);

// taken from tvbuff.c of ethereal code
if (ret == Z DATA ERROR && (*source == 0x1f) && (*(source + 1) == 0x8b))

{ 910
debug(2,"FilterZ","Damn, got Z_DATA_ERROR, so we must do some fix. msg=%s",strm.msg);
/*

* inflate() is supposed to handle both gzip and deflate
* streams automatically, but in reality it doesn’t
* seem to handle either (at least not within the
* context of an HTTP response.) We have to try
* several tweaks, depending on the type of data and
* version of the library installed.
*/

920
/*

* Gzip file format. Skip past the header, since the
* fix to make it work (setting windowBits to 31)
* doesn’t work with all versions of the library.
*/

Bytef *c = source + 2;
Bytef flags = 0;

if (*c == Z DEFLATED) {
c++; 930

} else {
debug(2,"FilterZ","sorry, but cannot uncompress gzip");
(void)inflateEnd(&strm);
return ret;

}

flags = *c;

/* Skip past the MTIME, XFL, and OS fields. */

c += 7; 940

if (flags & (1 << 2)) {
/* An Extra field is present. */
int xsize = (int)(*c |

(*(c + 1) << 8));

c += xsize;
}

if (flags & (1 << 3)) { 950
/* A null terminated filename */

while (*c != ’\0’) {
c++;

}

c++;
}

if (flags & (1 << 4)) { 960
/* A null terminated comment */

while (*c != ’\0’) {
c++;

}

c++;
}

970

42

inflateReset(&strm);
compressed len −= (c − source);
source = c;
strm.next in = source;

ret = inflateInit2(&strm, wbits);
++initsDone;
debug(2,"FilterZ","OK, lets try that again");

}
else if(ret==Z DATA ERROR && initsDone<=3) 980
{

debug(2,"FilterZ","Now, lets try if WBITS should be -1, inits:%i",initsDone);
/*

* Re-init the stream with a negative
* MAX WBITS. This is necessary due to
* some servers (Apache) not sending
* the deflate header with the
* content-encoded response.
*/

wbits = −MAX WBITS; 990

inflateReset(&strm);

strm.next in = source;
strm.avail in = compressed len;

strm.avail out = FILTZ BIG BUF;
strm.next out = dest;
ret = inflateInit2(&strm, wbits);

1000
initsDone++;

if (ret != Z OK)
{

debug(2,"FilterZ","I give up, wasn’t WBITS thingy");
(void)inflateEnd(&strm);
return ret;

}
}
else if(ret<0) 1010
{

debug(2,"FilterZ","Something went wrong with the inflation, ret=%i. msg=%s",ret,strm.msg);
(void)inflateEnd(&strm);
return ret;

}
else
{

debug(2,"FilterZ","Good, we got a good return");
break;

} 1020
}
(void)inflateEnd(&strm);
debug(2,"FilterZ","Inflation has ended, inflated %i bytes",strm.total out);
debug(2,"FilterZ","-- fyrst 4 chars in uncompressed packet: %c,%c,%c and %c",

bigbuffer[headerLengths],
bigbuffer[headerLengths+1],
bigbuffer[headerLengths+2],
bigbuffer[headerLengths+3]);

u long totalpacketsize = strm.total out+headerLengths;

debug(2,"FilterZ","-- last 4 chars in uncompressed packet: %c,%c,%c and %c", 1030
bigbuffer[totalpacketsize−4],
bigbuffer[totalpacketsize−3],
bigbuffer[totalpacketsize−2],
bigbuffer[totalpacketsize−1]);

Packet *newpacket = new Packet(bigbuffer,totalpacketsize,packet−>packet−>number);

delete packet−>packet;
packet−>packet = newpacket;
return 0;

}; 1040

/*
Project: Final year project in CS in UNAK
Author: biggistefna.is

File: filtz.h
Summary: The unzipping filter header file

*/

#ifndef CLASS FILTZ 1050
#define CLASS FILTZ
#include <unistd.h>
#include "netdef.h"

43

#include "filter.h"

#include "httppacket.h"

#include "sys/ioctl.h"

#define FILTZ BIG BUF 1048576 // 1MB
#define MAX UNZIP SIZE 307200 // 300kb

1060
class FiltZ : public Filter
{

public:
FiltZ(BQueue *);
FiltZ(BQueue *,BQueue *);
void checkPacket(void *);
˜FiltZ();

private:
int unzip(HTTPPacket *);

u char bigbuffer[FILTZ BIG BUF]; 1070
};

#endif
/*

Project: Final year project in CS in UNAK
Author: biggistefna.is

File: funcs.cpp
Summary: general function

*/ 1080

#include "funcs.h"

#include <stdio.h>
#include <sys/ioctl.h>
#include "netdef.h"

#include <iostream>
#include <stdarg.h>
#include <fcntl.h>
#include <sys/resource.h>

1090
/*void debug(int d, char *name, char *str, . . .)
{

if (DEBUG B>=d)
{

va list argp;
va start(argp,str);
fprintf(stderr,“DEBUG(%s(%d)): ”,name,d);
vfprintf(stderr,str,argp);
fprintf(stderr,“\n”);

va end(argp); 1100
}

}
*/
void getRUsage(double *user, double *sys)
{

struct rusage ruse;
int res = getrusage(RUSAGE CHILDREN,&ruse);
if (res!=0)
{

fprintf(stderr,"did not get good ruseage\n"); 1110
ruse.ru utime.tv sec = 0;
ruse.ru utime.tv usec = 0;
ruse.ru stime.tv sec = 0;
ruse.ru stime.tv usec = 0;

}

*user = ruse.ru utime.tv sec + (ruse.ru utime.tv usec/1000000.0);
*sys = ruse.ru stime.tv sec + (ruse.ru stime.tv usec/1000000.0);
fprintf(stderr,"getRusage(pid=%d): = %3.6f , %3.6f\n",getpid(),*user,*sys);

}; 1120

/*
Project: Final year project in CS in UNAK
Author: biggistefna.is

File: funcs.h
Summary: generic functions

and the all mighty DEBUG B constant

1130
*/

#ifndef DEF FUNCS
#define DEF FUNCS

#define DEBUG B 0

44

#include <time.h>
#include <sys/resource.h>

#include <stdarg.h> 1140
#include <string.h>

//void debug(int, char*, char *,. . .);
void getRUsage(double *, double *);
#endif
/*

Project: Final year project in CS in UNAK
Author: biggistefna.is

File: header.cpp 1150
Summary: The HTTP header class

*/

#include "header.h"

#include <string.h>
#include "funcs.h"

#include <ctype.h>

Header::Header(Packet *p)

{ 1160
hdebug(1,"header","Constructing an header");
error = 0;
u long n = p−>number;
packet = p;
numItems = 0;
if (isHeader())
{

getItems();
printItems();

} 1170
else

error = 1;
hdebug(2,"header","header(%X or packet #%u) constructed error=%i",this,n,error);

};
Header::˜Header()
{

packet = NULL;
hdebug(1,"header","Deststructing(%X)",this);

};

void Header::printItems() 1180
{

for(int i=0;i<numItems;i++)
hdebug(2,"header","#%lu Item[%i]=\"%s\"",packet−>number,i,items[i]);

};
bool Header::isHeader()
{

hdebug(1,"header","isHeader?");
return (memcmp(packet−>payload,"HTTP",4)==0);

};

void Header::getItems() 1190
{

hdebug(1,"header","starting to get Items");
u char *data = packet−>payload;
int i = 0;
for(u int c=0;c<packet−>size payload−3;c++) //-3 because of \r\n\0
{

hdebug(3,"header","Read char #%i = %c",c,data[c]);
if ((data[c]==’\r’ && data[c+1]==’\n’) | | data[c]==’\n’)
{

// end of line 1200
items[numItems][i] = ’\0’;
numItems++;
if (numItems>MAX HEADER ITEMS)
{

fprintf(stderr,"header","numItems overflow");
}
if (data[c]==’\r’) c++;
hdebug(3,"header","EOL - nextItem=%i",numItems);
i = 0;

if ((data[c+1]==’\r’ && data[c+2]==’\n’) | | data[c+1]==’\n’ | | numItems>=MAX HEADER ITEMS) 1210
{

// got the whole header
headerLength = c+3; // run through \r\n (plus 1)
if (data[c+1]==’\n’) −−headerLength; // ohh. . . too far (if header ends in \n\n
hdebug(3,"header","EOH - end of header. len=%i",headerLength);
return;

}
}
else

45

{ 1220
items[numItems][i] = data[c];
i++;

}
}
numItems = 0;
headerLength = −1;
error = 1;
fprintf(stderr,"span through the whole payload. . . and did not discover the header. some thing is wrong\n");

};

1230
// ath. a er hgt a nota atoi <stdlib.h> til a f”s int r essu
// lka reyndar atol
char *Header::getValue(char *key)
{

hdebug(1,"header","#%lu now finding the value for %s",packet−>number,key);
if (key==NULL) return NULL;

int keylen = strlen(key);
if (keylen>=MAX IN LINE) return NULL;

1240
for(int i=1;i<numItems;i++)
{

hdebug(2,"header","#%lu checking %s=%s",packet−>number,key,items[i]);
if (strncasecmp(items[i],key,keylen)==0)
{

char *ind = index(items[i],’:’);
if (ind!=NULL)
{

*ind++;

while (isspace(*ind)) 1250
*ind++;

hdebug(2,"header","#%lu found that %s==%s",packet−>number,key,ind);
return ind;

}
hdebug(2,"header","#%lu nope that was not the right key (%s!=%s)",packet−>number,key,items[i]);
return NULL;

}
}
hdebug(1,"header","#%lu could not find %s",packet−>number,key);

return NULL; 1260
};
int Header::getResponseValue()
{

hdebug(1,"header","#%lu now getting response value",packet−>number);
char *item = items[0];
hdebug(2,"headerResponse","item 0 = %s",item);
if (item==NULL) return 0;
//HTTP/x.x 123
//012345678

char number[] = "000"; 1270
strncpy(number,&item[9],3);
int answer = atoi(number);
hdebug(2,"headerResponse"," answer = %i",answer);
return answer;

};

void hdebug(int d, char *name, char *str, . . .)
{
#if DEBUG B >= d

if (DEBUG B>=d) 1280
{

va list argp;
va start(argp,str);
fprintf(stderr,"DEBUG(%s(%d)): ",name,d);
vfprintf(stderr,str,argp);
fprintf(stderr,"\n");
fflush(stderr);
va end(argp);

}
#endif 1290
}
/*

Project: Final year project in CS in UNAK
Author: biggistefna.is

File: header.h
Summary: The http header header file

*/

1300
#ifndef CLASS HEADER
#define CLASS HEADER

46

#define MAX HEADER ITEMS 50
#define MAX IN LINE 50
#include "packet.h"

void hdebug(int d, char *name, char *str, . . .);
typedef char headline[MAX IN LINE];
class Header

{ 1310
public:

Header(Packet *);
˜Header();
char * getValue(char *);
int getResponseValue();
int error;
int headerLength;

private:
char *header;

headline items[MAX HEADER ITEMS]; 1320
int numItems;
Packet *packet;
bool isHeader();
void getItems();
void printItems();

};

#endif
/*

Project: Final year project in CS in UNAK 1330
Author: biggistefna.is

File: httpitem.cpp
Summary: The http item class

*/

#include "httpitem.h"

#include "funcs.h"

HTTPItem::HTTPItem(HTTPPacket *hp, int p) 1340
{

//debug(1,“HTTPItem”,“Constructing. .”);
points = p;
ip src = (u long)(hp−>packet−>ip−>ip src.s addr);
number = hp−>packet−>number;
size = hp−>packet−>size;

};
HTTPItem::˜HTTPItem()
{

//debug(1,“HTTPItem”,“Destructing”); 1350
};
/*

Project: Final year project in CS in UNAK
Author: biggistefna.is

File: httpitem.h
Summary: The http item header file

*/

1360
#ifndef CLASS HTTPITEM
#define CLASS HTTPITEM
#include "httppacket.h"

class HTTPItem
{

public:
HTTPItem(HTTPPacket *,int);
˜HTTPItem();

u long number; 1370
int points;
u long ip src;
u long size;

};

#endif
/*

Project: Final year project in CS in UNAK
Author: biggistefna.is

1380
File: httppacket.cpp
Summary: The http packet

*/

#include "httppacket.h"

47

HTTPPacket::HTTPPacket(Packet *p, Header *h)
{

packet = p;

header = h; 1390
};
HTTPPacket::˜HTTPPacket()
{

delete header;
header = NULL;
delete packet;
packet = NULL;

};

/* 1400
Project: Final year project in CS in UNAK
Author: biggistefna.is

File: httpacket.h
Summary: The http packet header file

*/

#ifndef CLASS HTTPPACKET

#define CLASS HTTPPACKET 1410
#include "packet.h"

#include "header.h"

class HTTPPacket
{

public:
HTTPPacket(Packet *,Header *);
˜HTTPPacket();
Packet *packet;

Header *header; 1420
};

#endif
/*

Project: Final year project in CS in UNAK
Author: biggistefna.is

File: iplist.cpp
Summary: The last filter, the IP list manager

*/ 1430

#include <iostream.h>
#include "iplist.h"

#include "funcs.h"

IPList::IPList(BQueue *q)
: Filter("IPList",q)

{
numberOfItems = 0; 1440
sem init(&s list,SHARED,1);
sem init(&s items,0,1);
for (u int i=0;i<MAX LIST ITEMS;i++)
{

list[i] = NULL;
}

debug(1,name,"Construction done");
};

1450
void IPList::stop()
{

debug(1,name,"stopping");
detach();

};

IPList::˜IPList()
{

debug(1,name,"Destructing");

printTable(); 1460
u long x = getNumItems();
sem wait(&s list);
for (u int i=0;i<x;i++)
{

debug(2,name,"deleting #%i",i);
delete list[i];

}

48

sem post(&s list);

1470
};
void IPList::printTable()
{

debug(1,name,"Printing table:");

char addr[] = "xxx.xxx.xxx.xxx";
struct in addr a;
u long x = getNumItems();
sem wait(&s list);

for (u int i=0;i<x;i++) 1480
{

if (list[i]!=NULL)
{

a.s addr = list[i]−>ip src;
sprintf(addr,"%s",inet ntoa(a));
fprintf(stdout,"List[%i] = {%s,%i,%i}\n",i,addr,list[i]−>number,list[i]−>points);

}
}

sem post(&s list); 1490
};

u long IPList::getNumItems()
{

debug(2,name,"getting numItems");
sem wait(&s items);
u long x = numberOfItems;
sem post(&s items);

return x; 1500
};
void IPList::incNumItems()
{

sem wait(&s items);
++numberOfItems;
debug(2,name,"increasing numItems to %u",numberOfItems);
sem post(&s items);

};

1510
void IPList::checkPacket(void *p)
{

HTTPItem *hi = (HTTPItem*)p;
debug(1,name,"starting examination packet #%u",hi−>number);
incCounters(&hi−>size);
int i = findInList(hi−>ip src);
if (i<0)

add2List(hi);
else

updateList(i,hi); 1520
/*debug(2,name,“Now I’m done using the httpitem, => deleteing it”);
delete hi;
hi=NULL;*/

};
void IPList::updateList(int index,HTTPItem *hi)
{

char ip[] = "xxx.xxx.xxx.xxx";
struct in addr a;
a.s addr = hi−>ip src;

sprintf(ip,"%s",inet ntoa(a)); 1530

debug(1,name,"updating the list (%s)",ip);
sem wait(&s list);
if (list[index]−>points < ENOUGH POINTS)
{

list[index]−>points += hi−>points;
list[index]−>number++;
debug(2,name,"update => %s => %i points (in %i packets)",ip,list[index]−>points,list[index]−>number);

}
sem post(&s list); 1540

};
void IPList::add2List(HTTPItem *hi)
{

char ip[] = "xxx.xxx.xxx.xxx";
struct in addr a;
a.s addr = hi−>ip src;
sprintf(ip,"%s",inet ntoa(a));

debug(2,name,"adding to the list (packet #%i (%s): %i points)",hi−>number,ip,hi−>points);

u long x = getNumItems(); 1550

49

if (x>=MAX LIST ITEMS)
{

fprintf(stderr,"the IP List is full");
return;

}

sem wait(&s list);
list[x] = hi;
list[x]−>number = 1;

incNumItems(); 1560
sem post(&s list);

};
int IPList::findInList(u long ip)
{

debug(1,name,"Trying to search the list");
u long x = getNumItems();
sem wait(&s list);
int answer = −1;
for (u int i=0;i<x;i++)

{ 1570
if (ip==list[i]−>ip src)
{

answer = i;
break;

}
}
sem post(&s list);
return answer;

};

1580

/*
Project: Final year project in CS in UNAK
Author: biggistefna.is

File: iplist.h
Summary: The iplist filter header file

*/

1590
#ifndef CLASS FILT4
#define CLASS FILT4
#include <unistd.h>
#include "netdef.h"

#include "filter.h"

#include "httpitem.h"

#include <semaphore.h>
#define MAX LIST ITEMS 100
#define ENOUGH POINTS 500

#define SHARED 0 1600

typedef HTTPItem *httpitem;

class IPList : public Filter
{

public:
IPList(BQueue *);
void checkPacket(void *);
u long getNumItems();

void incNumItems(); 1610
void stop();
void printTable();
˜IPList();

private:
sem t s list;
sem t s items;
httpitem list[MAX LIST ITEMS];
u int numberOfItems;
void updateList(int ,HTTPItem *);

void add2List(HTTPItem *); 1620
int findInList(u long);

};

#endif
/*

Project: Final year project in CS in UNAK
Author: biggistefna.is

File: netdef.h

Summary: The file that defines the network packet 1630
*/

#ifndef DEF NETDEFS

50

#define DEF NETDEFS
#include <pcap.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/socket.h>

#include <netinet/in.h> 1640
#include <arpa/inet.h>
#include <net/if.h>
#include <netinet/if ether.h>
#include <netinet/ether.h>
#include <netinet/tcp.h>
#include <netdb.h>

/* Ethernet header */
struct sniff ethernet {

u char ether dhost[ETHER ADDR LEN]; /* Destination host address */ 1650
u char ether shost[ETHER ADDR LEN]; /* Source host address */
u short ether type; /* IP? ARP? RARP? etc */

};
#define ETH SIZE 14

/* IP header */
struct sniff ip {

#if BYTE ORDER == LITTLE ENDIAN
u int ip hl:4, /* header length */

ip v:4; /* version */ 1660
#if BYTE ORDER == BIG ENDIAN
u int ip v:4, /* version */
ip hl:4; /* header length */
#endif
#endif /* not IP VHL */
u char ip tos; /* type of service */
u short ip len; /* total length */
u short ip id; /* identification */
u short ip off; /* fragment offset field */

#define IP RF 0x8000 /* reserved fragment flag */ 1670
#define IP DF 0x4000 /* dont fragment flag */
#define IP MF 0x2000 /* more fragments flag */
#define IP OFFMASK 0x1fff /* mask for fragmenting bits */
u char ip ttl; /* time to live */
u char ip p; /* protocol */
u short ip sum; /* checksum */
struct in addr ip src,ip dst; /* source and dest address */

};
#define IP SIZE 20

/* TCP header */ 1680
struct sniff tcp {

u short th sport; /* source port */
u short th dport; /* destination port */
u long th seq; /* sequence number */
u long th ack; /* acknowledgement number */
#if BYTE ORDER == LITTLE ENDIAN
u int th x2:4, /* (unused) */
th off:4; /* data offset */
#endif

#if BYTE ORDER == BIG ENDIAN 1690
u int th off:4, /* data offset */
th x2:4; /* (unused) */
#endif
u char th flags;
#define TH FIN 0x01
#define TH SYN 0x02
#define TH RST 0x04
#define TH PUSH 0x08
#define TH ACK 0x10

#define TH URG 0x20 1700
#define TH ECE 0x40
#define TH CWR 0x80
#define TH FLAGS (TH FIN|TH SYN|TH RST|TH ACK|TH URG|TH ECE|TH CWR)
u short th win; /* window */
u short th sum; /* checksum */
u short th urp; /* urgent pointer */

};
#define TCP SIZE 20

#endif 1710
/*

Project: Final year project in CS in UNAK
Author: biggistefna.is

File: networkreader.cpp
Summary: The thread that is responsible for reading the network

51

*/

#include <pcap.h>

#include "networkreader.h" 1720
#include <stdio.h>
#include <stdlib.h>
#include "netdef.h"

#include "POSIXThread.h"

#include "funcs.h"

using namespace std;

NetworkReader::NetworkReader(BQueue *q)

{ 1730
fdebug = fopen("reader.debug","w");
if (fdebug==NULL)
{

fprintf(stderr,"Could not open reader.main");
terminate();

}
debug(1,"reader","Constructing a reader. . .");
myQ = q;
packetCount=packetTotal=0;

count = 0; 1740
sem init(&s pc,0,1);
debug(2,"reader","Construction is done");

}

NetworkReader::˜NetworkReader()
{

debug(1,"reader","Destructing reader");
delete packet;
fclose(fdebug);

} 1750
void NetworkReader::stop()
{

debug(1,"reader","Stopping reader");
detach();

};
void NetworkReader::setDev(char *d)
{

debug(1,"reader","setting Device to %s",d);
dev = d;

}; 1760

void NetworkReader::init()
{

int op;

debug(1,"reader","Trying to init. . . ");

/*if ((dev = pcap lookupdev(errbuf)) == NULL)

error(“lookupdev”,errbuf);*/ 1770
//dev = “eth0”;
//debug(2,“reader”,“\tInit->lookupdev(dev=%s) . . . done ”,dev);

/* Attach pcap to the network interface */
// snaplen var BUFSIZE
if ((handle = pcap open live(dev, 1600, 0, 0, errbuf)) == NULL)

error("open_live", errbuf);
debug(2,"reader","\tInit->open_live . . . done ");

1780
op = pcap datalink(handle);
debug(2,"reader","\tInit->datalink = %i. while DLT_EN10MB = %i",op,DLT EN10MB);

if (op != DLT EN10MB
#ifdef DLT IEEE802

&& op != DLT IEEE802
#endif

) error("Check for ethernet, not Ethernet:", dev);

if ((pcap lookupnet(dev, &net, &mask, errbuf)) < 0) 1790
error("lookupnet",errbuf);

debug(2,"reader","Init->lookupnet. . . done ");

if ((pcap compile(handle, &filter, filter exp, 0, net)) < 0)
error("compile",pcap geterr(handle));

debug(2,"reader","Init->compile . . . done ");

if ((pcap setfilter(handle,&filter)) < 0)
error("setfilter",pcap geterr(handle));

52

debug(2,"reader","Init: dev=%s",dev); 1800
};
void NetworkReader::setPacketsCount(int n)
{

if (n<packetCount)
{

count = n+packetCount;
}
else
{

count = n − packetCount; 1810
}
debug(2,"reader","setPacketsCount(%i)",count);

};

void NetworkReader::execute()
{

myPID = getpid();
debug(1,"reader","READER: starting to exec. pid=%i",myPID);
init();

pcap loop(handle,count,NetworkReader::callback,(u char*)this); 1820
debug(2,"reader","closing pcap");
pcap close(handle);

}
void NetworkReader::gotPacket(const struct pcap pkthdr *header, const u char *p)
{

debug(2,"reader","gotPacket. . .");
if (p==NULL)
{

fprintf(stderr,"READER: got null\n"); 1830
return;

}
u long x = incCounter(header−>caplen);
struct sniff tcp *t = (struct sniff tcp*)(p + ETH SIZE + IP SIZE);
if (ntohs(t−>th sport) == 80 && header−>caplen > MIN CAPLEN)
{

packet = new Packet(p,header−>caplen,x);
debug(2,"reader","Got a big enough(%u) packet from port 80 #%u",header−>caplen,x);
myQ−>put(packet);

} 1840
else
{

debug(2,"reader","packet not sport==80 or not big enough (#%u",x);
}

}

void NetworkReader::addFilter(char *str)
{

debug(2,"reader","adding filter %s",str);

if (strcpy(filter exp,str)==NULL) 1850
{

fprintf(stderr,"Could not copy (%s) to the filter",str);
terminate();

}
//actually does not work :)

}

void NetworkReader::error(char *where, char *err)
{

printf("ERROR in %s: %s\n",where,err); 1860
terminate();

}

long NetworkReader::getCounter()
{

sem wait(&s pc);
long x = packetCount;
sem post(&s pc);
return x;

} 1870

void NetworkReader::getCounter(u long *n, u long *s)
{

debug(1,"reader","getting Counters");
sem wait(&s pc);
u long x = packetCount;
u long t = packetTotal;
sem post(&s pc);
*n = x;

*s = t; 1880
};
u long NetworkReader::incCounter(u long size)

53

{
u long x;
debug(1,"reader","increasing counter, sem_wait()");
sem wait(&s pc);
debug(2,"reader","incCounter, sem_wait() is over");
x = ++packetCount;
packetTotal += size;

sem post(&s pc); 1890
debug(2,"reader","incCounter, sem_post done");
return x;

};
void NetworkReader::debug(int d, char *name, char *str, . . .)
{
#if DEBUG B >= d

if (DEBUG B>=d)
{

va list argp;

va start(argp,str); 1900
fprintf(fdebug,"DEBUG(%s(%d)): ",name,d);
vfprintf(fdebug,str,argp);
fprintf(fdebug,"\n");
fflush(fdebug);
va end(argp);

}
#endif
}

void NetworkReader::callback(u char *args, const struct pcap pkthdr *header, const u char *p) 1910
{

NetworkReader* r = (NetworkReader*)args;
r−>gotPacket(header,p);

};

/*
Project: Final year project in CS in UNAK
Author: biggistefna.is

File: netdef.h 1920
Summary: The network reader header file

*/

#ifndef CLASS BCAPI
#define CLASS BCAPI

#include <pcap.h>
#include "POSIXThread.h"

#include "netdef.h"

#include "bqueue.h" 1930
#include "packet.h"

#include "semaphore.h"

#include "funcs.h"

#define MAX FILT SIZE 150
#define MIN PAYLOAD 20
#define MIN CAPLEN (MIN PAYLOAD + ETH SIZE + IP SIZE + TCP SIZE)

class NetworkReader : public POSIXThread

{ 1940
public:

NetworkReader(BQueue *);
˜NetworkReader();
void setPacketsCount(int);
void setDev(char *);
void addFilter(char *);
long getCounter();
void getCounter(u long *, u long *);
void getUsage(double *u,double *s) {getRUsage(u,s);}
void gotPacket(const struct pcap pkthdr *, const u char *); 1950
void stop();
int getPid() { return myPID;};

private:
void init();
void actOnPacket();
u long incCounter(u long);
void error(char *, char*);

int count; /* Max number of packets to read */

long packetCount; /* To count the packets */ 1960
u long packetTotal; /* Total size */

pcap t *handle; /* Session handle */
char *dev; /* The device to sniff on */
char errbuf[PCAP ERRBUF SIZE]; /* Error string */

54

struct bpf program filter; /* The compiled filter */
char filter exp[MAX FILT SIZE]; /* The filter expression */
bpf u int32 mask; /* Our netmask */
bpf u int32 net; /* Our IP */

struct pcap pkthdr header; /* Packet header */ 1970
BQueue *myQ;
sem t s pc;
Packet *packet;
int myPID;
FILE *fdebug;
void debug(int , char *, char *, . . .);

protected:
void execute();
static void callback(u char *, const struct pcap pkthdr *, const u char *);

}; 1980

#endif
/*

Project: Final year project in CS in UNAK
Author: biggistefna.is

File: packet.cpp
Summary: The packet

*/

1990
#include "packet.h"

#include "funcs.h"

#include <string.h>
#include <new>

void memFail()
{

fprintf(stderr,"packet: could not create memory\n");
};

2000
Packet::Packet(const u char *x, bpf u int32 s, u long n) : number(n)
{

size = s+1;
#if DEBUG B > 0

fprintf(stderr,"packet: (#%lu) constructing a packet(%x) of size: %u\n",n,this,size);
#endif

size ethernet = ETH SIZE;
size ip = IP SIZE;
size tcp = TCP SIZE;

2010
packet = new u char[size];
if (packet==NULL)
{

fprintf(stderr,"packet: (#%lu) malloc failed",n);
return;

}
#if DEBUG B > 1

fprintf(stderr,"packet: (#%lu) have created new memory block (%x)\n",n,packet);
#endif

for (bpf u int32 i=0;i<size−1;i++) 2020
{

packet[i] = x[i];
}
packet[size−1] = ’\0’;

#if DEBUG B > 1
fprintf(stderr,"packet: (#%lu) has created memory\n",n);

#endif
ethernet = (struct sniff ethernet*)(packet);
ip = (struct sniff ip*)(packet + size ethernet);

tcp = (struct sniff tcp*)(packet + size ethernet + size ip); 2030
unsigned short offset = tcp−>th off * 4;
size payload = size − size ethernet − size ip − offset;
if (size payload > 0)

payload = (u char *)(packet + size ethernet + size ip + offset);

};
Packet::Packet(Packet *a, Packet *b)
{

number = a−>number;

bpf u int32 asize = a−>size − 1; //-1 for the \0 at the end 2040
size = asize + b−>size payload ; // we get a terminating null here

#if DEBUG B > 0
fprintf(stderr,"packet2: (#%lu) constructing packet(%x) (from two others ([a]=%u,[b]=%u) of size: %u\n",number,this,asize,b−>size,size);

#endif
//debug(2,“packet”,“Constructing a packet (from two others (a=%x,b=%x) ”,a,b);

//packet = (u char*)malloc(size);
packet = new u char[size];

55

if (packet==NULL)

{ 2050
fprintf(stderr,"packet: (#%lu) malloc failed",number);
return;

}
#if DEBUG B > 1

fprintf(stderr,"packet2: (#%lu) have created new memory block (%x)\n",number,packet);
#endif

bpf u int32 i;
for (i=0;i<asize;i++)
{

/*if (a->packet[i]>32 && a->packet[i]<127) 2060
//printf(“%c”,a->packet[i]);

else
//printf(“.”);

*/
packet[i] = a−>packet[i];

}

for (i=0;i<b−>size payload;i++)
{

//printf(“%c”,b->payload[i]); 2070
packet[i+asize] = b−>payload[i];

}
#if DEBUG B > 1

fprintf(stderr,"packet2: (#%lu) has created memory\n",number);
#endif

size ethernet = sizeof(struct sniff ethernet);
size ip = sizeof(struct sniff ip);
size tcp = sizeof(struct sniff tcp);

2080
ethernet = (struct sniff ethernet*)(packet);
ip = (struct sniff ip*)(packet + size ethernet);
tcp = (struct sniff tcp*)(packet + size ethernet + size ip);
unsigned short offset = tcp−>th off * 4;
size payload = size − size ethernet − size ip − offset;
payload = (u char *)(packet + size ethernet + size ip + offset);

};

Packet::˜Packet()

{ 2090
#if DEBUG B > 0

fprintf(stderr,"packet: (#%lu) Deleting packet (%x) arr=(%x)\n",number,this,packet);
#endif

delete [] packet;
packet=NULL;

#if DEBUG B > 0
fprintf(stderr,"packet: (#%lu) Deletion successful\n",number);

#endif
};

2100
void packetDump(Packet *packet)
{

printf("================ Packet number %lu ================\n",packet−>number);
printf("==================== Ethernet ====================\n");
printf("| |\tDestination MAC: %s\n",ether ntoa((struct ether addr*)packet−>ethernet−>ether dhost));
printf("| |\tSource MAC: %s\n",ether ntoa((struct ether addr*)packet−>ethernet−>ether shost));
printf("| |\tType: 0x%x\n",packet−>ethernet−>ether type);

if (packet−>ethernet−>ether type==0x8)

{ 2110
struct protoent *proto;
char p[10];
if ((proto = getprotobynumber(packet−>ip−>ip p)) != NULL)

sprintf(p,"%s (%d)", proto−>p name,packet−>ip−>ip p);
else

sprintf(p,"%d", packet−>ip−>ip p);
printf("| | ======================= IP =======================\n");
printf("| | | |\tVersion: %u\n",packet−>ip−>ip v);
printf("| | | |\tHeader Length: %u\n",packet−>ip−>ip hl);

printf("| | | |\tType of Service:0x%x\n",packet−>ip−>ip tos); 2120
printf("| | | |\tLength: %u\n",packet−>ip−>ip len);
printf("| | | |\tID: 0x%x\n",packet−>ip−>ip id);
printf("| | | |\tOffset: 0x%x\n",packet−>ip−>ip off);
printf("| | | |\tTTL: %u\n",packet−>ip−>ip ttl);
printf("| | | |\tProtocol: %s\n",p);
printf("| | | |\tChecksum: 0x%x\n",packet−>ip−>ip sum);
printf("| | | |\tSource IP: %s\n",inet ntoa(packet−>ip−>ip src));
printf("| | | |\tDestination IP: %s\n",inet ntoa(packet−>ip−>ip dst));

if (packet−>ip−>ip p==IPPROTO TCP) 2130

56

{
char flags[64] = "<None>";
char *fstr[] = {"FIN", "SYN", "RST", "PSH", "ACK", "URG", "ECN", "CWR" };
int fpos = 0, i;
unsigned int bpos;
for (i = 0; i < 8; i++)
{

bpos = 1 << i;
if (packet−>tcp−>th flags & bpos)

{ 2140
if (fpos)
{

strcpy(&flags[fpos], ", ");
fpos += 2;

}
strcpy(&flags[fpos], fstr[i]);
fpos += 3;

}
}
flags[fpos] = ’\0’; 2150

printf("| | | | ======================= TCP ======================\n");
printf("| | | | | |\tSource Port: %u\n",ntohs(packet−>tcp−>th sport));
printf("| | | | | |\tDest. Port: %u\n",ntohs(packet−>tcp−>th dport));
printf("| | | | | |\tSeq#: %u\n",ntohl(packet−>tcp−>th seq));
printf("| | | | | |\tAck#: %u\n",ntohl(packet−>tcp−>th ack));
printf("| | | | | |\tData Offset: %u\n",packet−>tcp−>th off*4);
printf("| | | | | |\tFlags: 0x%x (%s)\n",packet−>tcp−>th flags,flags);
printf("| | | | | |\tWindow size: %u\n",ntohs(packet−>tcp−>th win));

printf("| | | | | |\tChecksum: 0x%04x\n",packet−>tcp−>th sum); 2160
if (packet−>size payload>0)
{

printf("| | | | | | ======================= DATA ======================\n");
char *prefix = "| | | | | | | |\t";
printf("%s",prefix);
u char c;
const u char *data = packet−>payload;
int colcount = 0;
const int LINEMAX = 64;

2170
for(u int i=0; i<packet−>size payload; i++)
{

c = data[i];
if (c>32 && c<127)

printf("%c",c);
else

printf(".");
if (colcount==LINEMAX)
{

printf("\n%s",prefix); 2180
colcount=0;

}
colcount++;

}
printf("\n");
printf("| | | | | | ===\n");

}
printf("| | | | ==\n");

}
printf("| | ==\n"); 2190

}

printf("==\n");

};

/*
Project: Final year project in CS in UNAK

Author: biggistefna.is 2200

File: packet.h
Summary: The network packet header file

*/

#ifndef CLASS PACKET
#define CLASS PACKET
#include "netdef.h"

class Packet 2210
{

public:
Packet(const u char *, bpf u int32, u long);

57

Packet(Packet *, Packet *);
˜Packet();

u long number;
u char *packet;
bpf u int32 size;

2220
const struct sniff ethernet *ethernet; /* The ethernet header */
const struct sniff ip *ip; /* The IP header */
const struct sniff tcp *tcp; /* The TCP header */
u char *payload; /* Packet payload */

/* For readability, we’ll make variables for the sizes of each of the structures */
u int size ethernet;
u int size ip;
u int size tcp;

u int size payload; 2230
};

void packetDump(Packet *packet);

#endif
/*

Project: Final year project in CS in UNAK
Author: biggistefna.is

File: search.cpp 2240
Summary: The searching filter

*/

#include <iostream.h>
#include "search.h"

#include <unistd.h>
#include "funcs.h"

#include "packet.h"

#include "httpitem.h"

#include <zlib.h> 2250

Search::Search(BQueue *q)
: Filter("filter3",q)

{
init3();

};
Search::Search(BQueue *iq,BQueue *oq)

: Filter("filter3",iq,oq)

{ 2260
init3();

};
void Search::init3()
{

debug(1,"Search","Constructing. . .");
numPatterns=0;
//getPatterns();
//compileREs();
sem init(&s config,0,1);

debug(1,"Search","Construction done"); 2270
};

Search::˜Search()
{

debug(1,"Search","Destructing. . .");
flushPatterns();
sem post(&s config);

}
void Search::flushPatterns()

{ 2280
debug(2,"Search","Flushing patterns (%i)",numPatterns);
sem wait(&s config);
for(u int i=0;i<numPatterns;i++)
{

debug(2,"Search","freeing reg #(%i)",i);
regfree(&(regarr[i]));

}
numPatterns=0;
debug(2,"Search","done flushing patterns");

}; 2290

void Search::addPattern(char *s)
{

if (numPatterns==(RE MAX COUNT−1))
{

fprintf(stderr, "Patterns are full\n");

58

return;
}
char b[] = "(^|([[:space:]]|[[:punct:]]|[[:cntrl:]])+)";

char *p = pattern[numPatterns]; 2300

points[numPatterns] = atoi(s);
char *f = index(s,’ ’);
while (isspace(*f)) *f++;
int len = strlen(f);
if (len<1) return;
if (f[len−1]==’\n’)

f[len−1]=’\0’;

if (strcpy(p,b)==NULL) 2310
{

fprintf(stderr, "Could not add %s to the pattern begining",b);
return;

}
if (strcat(p,f)==NULL)
{

fprintf(stderr,"Could not add %s as pattern number %i",f,numPatterns);
return;

}
debug(2,"Search","Adding pattern: ’%s’ for %i points",pattern[numPatterns],points[numPatterns]); 2320
numPatterns++;

};

void Search::compileREs()
{

debug(1,"Search","compiling regular expressions");
#define MAX MESSAGE LENGTH 1024
char message[MAX MESSAGE LENGTH];
size t msize;

int error; 2330

for(u int i=0;i<numPatterns;i++)
{

debug(2,"Search","compiling pattern[%i]=%s",i,pattern[i]);
if ((error = regcomp(&(regarr[i]), pattern[i], REG ICASE | REG EXTENDED | REG NOSUB)))
{

msize = regerror(error, &(regarr[i]), message, MAX MESSAGE LENGTH);
fprintf(stderr,"%s\n", message);
exit();

} 2340
}
sem post(&s config);
debug(2,"Search","compilation of REs done");

};

void Search::checkPacket(void *p)
{

HTTPPacket *hp = (HTTPPacket*)p;
sem wait(&s config);

debug(1,"Search","starting examination packet #%u",hp−>packet−>number); 2350
incCounters((u long*)&hp−>packet−>size);
if (numPatterns<1)
{

fprintf(stderr,"There are no patterns, so, not doing anything");
sem post(&s config);
return;

}
analysePacket(hp);
sem post(&s config);

}; 2360
void Search::analysePacket(HTTPPacket *packet)
{

debug(1,"Search","Analyse Packet #%i",packet−>packet−>number);
u char *p = packet−>packet−>payload;
//packetDump(packet->packet);
int mypoints = getPoints(p);
HTTPItem *hi;
if (mypoints>SCORE THRESHOLD)
{

hi = new HTTPItem(packet,mypoints); 2370
debug(2,"Search","created a new httpItem, forwarding it");
outQ−>put(hi);

}
debug(2,"Search","done analyzing the packet, so => delete httppacket");
HTTPPacket *x = packet;
packet = NULL;
delete x;
x = NULL;

};

59

int Search::getPoints(u char *body) 2380
{

debug(1,"Search","getting points");
int error;
int sum = 0;
for (u int i=0;i<numPatterns;i++)
{

debug(2,"Search","checking for: %s",pattern[i]);
error = regexec(®arr[i], (const char*)body, 1, NULL, REG NOTEOL);
if (error != REG NOMATCH)

{ 2390
sum+=points[i];

}
}
debug(2,"Search","Points = %i",sum);
return sum;

};

/*
Project: Final year project in CS in UNAK

Author: biggistefna.is 2400

File: search.h
Summary: The searching filter header file

*/

#ifndef CLASS FILT3
#define CLASS FILT3
#include <unistd.h>
#include "netdef.h"

#include "filter.h" 2410
#include "httppacket.h"

#include "sys/ioctl.h"

#include <regex.h>
#include <semaphore.h>

#define RE MAX COUNT 15
#define PATT LEN 100
#define SCORE THRESHOLD 70

class Search : public Filter 2420
{

public:
Search(BQueue *);
Search(BQueue *,BQueue *);
void checkPacket(void *);
˜Search();
void compileREs();
void flushPatterns();
void addPattern(char *);

private: 2430
void init3();
void analysePacket(HTTPPacket*);
regex t regarr[RE MAX COUNT];
char pattern[RE MAX COUNT][PATT LEN];
u int numPatterns;
int points[RE MAX COUNT];
int getPoints(u char *);
sem t s config;

};

2440
#endif
/*

Project: Final year project in CS in UNAK
Author: biggistefna.is

File: segfilter.cpp
Summary: The segmentation filter

*/

#include <iostream.h> 2450
#include "segfilter.h"

#include <unistd.h>
#include "funcs.h"

#include "header.h"

#include "httppacket.h"

SegFilter::SegFilter(BQueue *q)
: Filter("segFilter",q)

{
}; 2460

SegFilter::SegFilter(BQueue *iq,BQueue *oq,BQueue *zq)

60

: Filter("segFilter",iq,oq)
{

zipQ = zq;
};
SegFilter::˜SegFilter()
{

debug(1,name,"Destructing");

}; 2470
void SegFilter::getSegCounter(u long *num, u long *max)
{

segmenttable.getNumItems(num,max);
};
void SegFilter::checkPacket(void *p)
{

Packet *packet = (Packet*)p;
debug(1,name,"starting examination packet #%u",packet−>number);
incCounters((u long*)&packet−>size);

debug(2,name,"XXX - #%lu pp=%x",packet−>number,packet−>packet); 2480
Header *header = new Header(packet);
debug(2,name,"XXX - #%lu pp=%x",packet−>number,packet−>packet);
if (header−>error==0)
{ // is an header packet

int res = header−>getResponseValue();
char *type = header−>getValue("Content-Type");
if (res==200 && type!=NULL && strlen(type)>=9 &&

strncasecmp(type,"text/html",9)==0)
{ // good, lets dig deeper

// does the header contain the length parameter? 2490
char *b = header−>getValue("Content-Length");
debug(2,name,"Content-length==%s",b);
u long len = (b==NULL) ? 0 : atol(b);
debug(2,name,"====> %ld",len);
if (len==0 | | (len<=packet−>size payload && len > 100))
{ // good, we’ve got the whole packet, or

// the content-length did not exist
debug(2,name,"got the whole packet or content-length did not exist = > creating httppacket");
HTTPPacket *p = new HTTPPacket(packet,header);

sendPacket(p); 2500
}
else
{ // ok, we’ll just try to find the rest of packet

// note: the len for segment is the total payload size
// therefore, we add the http header (+\r\n\r\n) to len
debug(2,name,"ohh, got the first segment");
gotFirstSegment(packet,header,len+header−>headerLength+1);

}
}
else 2510
{ // not interested

debug(2,name,"header was != 200 and != text/html => deleting");
Packet *x = packet;
packet = NULL;
delete x;
x = NULL;

if (header!=NULL)
{

delete header; 2520
header = NULL;

}
}

}
else
{ // does not contain an header

debug(2,name,"header was currupted, trying to find the header");
gotSegment(packet);
if (header!=NULL)

{ 2530
debug(2,name,"deleting header addr=%X",header);
delete header;
header = NULL;
debug(2,name,"deleting header success");

}
}

};

void SegFilter::gotFirstSegment(Packet *packet, Header *header, int len) 2540
{

debug(1,name,"gotFirstSegment");
HTTPPacket *p = new HTTPPacket(packet,header);
// put this in the segmenttable
segmenttable.addFirst(p,len);

61

};
void SegFilter::gotSegment(Packet *packet)
{

debug(1,name,"trying to find a parent segment");

int res = segmenttable.add(packet); 2550
if (res<0)
{

// could not add it, so it probably did not belong to
// other packets
debug(2,name,"could not find header for this segment => deleting packet(%x)",packet);
Packet *x = packet;
packet = NULL;
delete x;
debug(2,name,"packet deletion success");

x = NULL; 2560
}
else if (res>0)
{

// yes, that was the last segment, so lets forward it
// but first through away the entry in segmenttable
debug(2,name,"great, we found the last segment, lets forward it");
sendPacket(segmenttable.remove(res));

}
else

{ 2570
debug(2,name,"found the parent, waiting for more");

}
};
void SegFilter::sendPacket(HTTPPacket *packet)
{

debug(2,name,"sending httppacket");
char *enc = packet−>header−>getValue("Content-Encoding");
debug(2,name,"encoding:%s",enc);
if (enc!=NULL && strlen(enc)>3 &&

((strncasecmp(enc,"gzip",4)==0) | | 2580
(strncasecmp(enc,"defalte",4)==0)

))
{

debug(2,name,"found compression encoding. . . put to zipQ");
zipQ−>put(packet);

}
else
{

debug(2,name,"found no comp. encoding. . . put to outQ");

outQ−>put(packet); 2590
}

};

/*
Project: Final year project in CS in UNAK
Author: biggistefna.is

File: segfilter.h

Summary: The segmentation filter header file 2600
*/

#ifndef CLASS FILT2
#define CLASS FILT2
#include <unistd.h>
#include "netdef.h"

#include "filter.h"

#include "packet.h"

#include "segtable.h"

#include "sys/ioctl.h" 2610
#include "httppacket.h"

class SegFilter : public Filter
{

public:
SegFilter(BQueue *);
SegFilter(BQueue *,BQueue *,BQueue *);
˜SegFilter();
void checkPacket(void *);

void getSegCounter(u long*, u long*); 2620
private:

void gotFirstSegment(Packet *,Header *, int);
void gotSegment(Packet *);
Segtable segmenttable;
void sendPacket(HTTPPacket *);
BQueue *zipQ;

};

62

#endif

/* 2630
Project: Final year project in CS in UNAK
Author: biggistefna.is

File: segtable.cpp
Summary: The segmentation table class

*/

#include <stdio.h>
#include "funcs.h"

#include "segtable.h" 2640

Segtable::Segtable()
{

firstCheck = 0;
numItems = maxItems = 0;
sem init(&s items,0,1);
for(int i=0;i<MAX SEGITEMS;i++) table[i].free = true;
fdebug = fopen("segtable.debug","w");
if (fdebug==NULL)

{ 2650
fprintf(stderr,"Could not open segtable.debug");
exit(1);

}
debug(1,seg name,"segtable constructed");

};
Segtable::˜Segtable()
{

debug(1,seg name,"segtable destructed");
fclose(fdebug);

}; 2660
u long Segtable::getNumItems()
{

debug(2,seg name,"getting counter");
sem wait(&s items);
u long x = numItems;
sem post(&s items);
return x;

};
void Segtable::getNumItems(u long *n, u long *m)

{ 2670
debug(2,seg name,"getting counter and max");
sem wait(&s items);
*n = numItems;
*m = maxItems;
sem post(&s items);

};
void Segtable::incNumItems()
{

debug(2,seg name,"increasing counter");

sem wait(&s items); 2680
++numItems;
if (numItems>maxItems)

maxItems=numItems;
sem post(&s items);

};
void Segtable::decNumItems()
{

debug(2,seg name,"decreasing counter");
sem wait(&s items);

−−numItems; 2690
sem post(&s items);

};
void Segtable::addFirst(HTTPPacket *packet, int len)
{

debug(1,seg name,"adding the first packet of length %i",len);
debug(2,seg name,"adding First: Packet->number=#%i, size=%i",packet−>packet−>number,packet−>packet−>size);
unsigned int i = firstCheck;
unsigned int count = 0;
debug(2,seg name,"remember true=%i,false=%i",true,false);

while(1) 2700
{

debug(2,seg name,"checking if table[%i] is free %i",i,table[i].free);
if (table[i].free)
{

debug(2,seg name,"ohh, great found a free table(%i)",i);
table[i].packet = packet;
table[i].len = len;
table[i].free = false;
firstCheck=(++i%MAX SEGITEMS);

incNumItems(); 2710

63

return;
}
i++;
if (i>=MAX SEGITEMS)

i = 0;
count++;
if (count>=MAX SEGITEMS)

break;
}
// now, we’ve overflown the table :(2720
fprintf(stderr,"SegmentTable overflown\n");
// XXX-for now, just don’t add it :s

};

// return >=0 for success
// >0 for last packet (is the index of that item)
// <0 for not found
int Segtable::add(Packet *packet)
{

debug(1,seg name,"adding segment to parent"); 2730
int i = find(packet);
if (i<0)

return i;
debug(2,seg name,"well, we found a matching packet i=%i. #%i",i,table[i].packet−>packet−>number);
Packet *newpacket = new Packet(table[i].packet−>packet,packet);
debug(2,seg name,"constructed a new packet of size %i, table.len=%i",newpacket−>size payload,table[i].len);
Packet *x = packet;
packet = NULL;
delete x;

x = NULL; 2740
delete table[i].packet−>packet;
table[i].packet−>packet = newpacket;
int rest = table[i].len − table[i].packet−>packet−>size payload;
debug(2,seg name,"rest of packet is %i",rest);
if (rest==0)
{

// return i+1 because of the return thingy for this function
debug(2,seg name,"so, returning %i",i+1);
return i+1;

} 2750
else
{

if (rest<0)
{

debug(2,seg name,"overshot the length, returning %i",rest);
return rest;

}
else
{

debug(2,seg name,"still some left (rest=%i)",rest); 2760
if (rest < PACKET REST ALLOW)
{

debug(2,seg name,"but it is less than %i, so we stop here",PACKET REST ALLOW);
return i+1; //+1 because of return thingy

}
return 0;

}
}

};

int Segtable::find(Packet *packet) 2770
{

debug(1,seg name,"trying to find a parent");
int i = firstCheck;
int count = 0;
while(1)
{

// TODO - maybe, put ip dst and th sport also ?
if (!table[i].free &&

(table[i].packet−>packet−>tcp−>th ack == packet−>tcp−>th ack) &&

(table[i].packet−>packet−>ip−>ip src.s addr == packet−>ip−>ip src.s addr) && 2780
(table[i].packet−>packet−>tcp−>th dport == packet−>tcp−>th dport)

)
{

debug(2,seg name,"found parent i=%i",i);
return i;

}
i++; // ++i%=MAX SEGMENTS ??
if (i>=MAX SEGITEMS)

i = 0;

count++; 2790
if (count>=MAX SEGITEMS)

break;
}

64

debug(2,seg name,"nope did not find the parent");
return −1;

};

HTTPPacket * Segtable::remove(int index)
{

debug(1,seg name,"removing an item of index: %i",index−1); 2800
table[index−1].free = true;
decNumItems();
return table[index−1].packet;

};
void Segtable::debug(int d, char *name, char *str, . . .)
{
#if DEBUG B >= d

if (DEBUG B>=d)
{

va list argp; 2810
va start(argp,str);
fprintf(fdebug,"DEBUG(%s(%d)): ",name,d);
vfprintf(fdebug,str,argp);
fprintf(fdebug,"\n");
fflush(fdebug);
va end(argp);

}
#endif
}
/* 2820

Project: Final year project in CS in UNAK
Author: biggistefna.is

File: segitem.h
Summary: The segmentation table header file

*/

#ifndef CLASS SEGDEF
#define CLASS SEGDEF

#define MAX SEGITEMS 1000 2830
#define PACKET REST ALLOW 10
#define seg name "segtable"

#include "httppacket.h"

#include <semaphore.h>

struct segitem
{

HTTPPacket *packet;
int len;

bool free; 2840
};

class Segtable
{

public:
Segtable();
˜Segtable();
int add(Packet *);
void addFirst(HTTPPacket *, int);

HTTPPacket *remove(int); 2850
void getNumItems(u long*, u long*);
u long getNumItems();

private:
struct segitem table[MAX SEGITEMS];
unsigned int firstCheck;
int find(Packet *);
sem t s items;
u long numItems;
u long maxItems;

void incNumItems(); 2860
void decNumItems();
FILE *fdebug;
void debug(int , char *, char *, . . .);

};

#endif

65

