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Abstract 

Epigenetic studies are commonly conducted on DNA from tissue samples. However, tissues are 

ensembles of cells that may each have their own epigenetic profile and therefore inter-individual 

difference in cellular heterogeneity may compromise these studies. In work presented here, the 

potential for such confounding on DNA methylation measurement outcomes when using DNA from 

whole blood was explored. DNA methylation was measured using pyrosequencing based 

methodology in two white blood cell fractions, isolated using density gradient centrifugation. In three 

out of four regions tested, significant differential DNA methylation between the two fractions was 

detected. The difference was very moderate in all but one region where the average absolute 

methylation difference per CpG site ranged between 3.4-15.7 percentage points. In this same region, 

inter-individual variation in cellular heterogeneity explained up to 36% (p<0.0001) of the variation in 

measured whole blood DNA methylation levels. In the examined regions, methylation levels were 

highly correlated between cell fractions. In summary, the analysis detects region-specific differential 

DNA methylation between white blood cell sub-types, which can confound the outcome of whole blood 

DNA methylation measurements. Finally, by demonstrating the high correlation between methylation 

levels in cell fractions, the results suggest a possibility to use a proportional number of a single white 

blood cell type to correct for this confounding effect in analyses. 

Type 2 diabetes mellitus (T2DM) is a complex disease (i.e., multifactorial and polygenic) 

characterized by high blood glucose levels due to reduced insulin sensitivity and β-cell function. 

Heritable as well as lifestyle and environmental factors contribute to risk of development of the 

disease. Despite recent advances in identifying T2DM genetic risk variants, a large proportion of the 

disease’s heritable component remains unidentified. One potential explanation is the existence of 

inherited epigenetic aberration(s) that contribute to the disease. Additionally, it is possible that the 

effects of environmental and lifestyle factors are mediated through induced epigenetic aberration(s). 

On this basis, it was hypothesized that aberrant DNAm could be associated with T2DM, and to 

address this hypothesis, the second study presented here aimed to identify such aberrations. DNA 

methylation levels were measured using pyrosequencing based methodology in whole blood DNA. 

DNA methylation levels were compared between individuals with and without T2DM in seven regions, 

located in three loci previously associated with T2DM through genetic studies. A single region located 

in an intragenic CpG island in the HHEX gene was selected for further study, and comparing DNAm 

levels between 214 cases and 164 controls, lower average DNAm levels were observed in individuals 

with T2DM. Further, the difference was significant after correction for cellular heterogeneity, age and 

gender, and was not carried by an association with obesity. These results support the hypothesis that 

DNAm aberrations may be associated with T2DM. 
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Ágrip 

Utangenaerfðarannsóknir eru oft á tíðum framkvæmdar með erfðaefni úr vefjasýnum. Vefir eru hins 

vegar samsettir úr fjölda frumutegunda sem hver um sig hefur mögulega einkennandi 

utangenaerðamerki og þar af leiðandi getur breytileyki í hlutfallslegum frumufjölda milli einstaklinga 

gruggað (e.confound) þessar rannsóknir. Í einni af tveimur rannsóknum sem hér verða kynntar verður 

möguleikinn á slíkri gruggun rannsakaður m.t.t. rannsókna á DNA metýlun sem framkvæmdar eru með 

DNA úr heilblóði. DNA metýlun var mæld með aðferð sem byggir á raðgreiningu á bísúlfíð umbreyttu 

DNA í tveimur heilblóðs frumuhlutum sem einangraðir voru með aðferð sem byggir á skilvindun 

blóðsins. Marktækur munur á DNA metýlun milli frumuhlutanna greindist í þremur af þeim fjórum 

svæðum sem rannsökuð voru. Munurinn var mjög lítill í tveimur svæðanna, en í einu þeirra mældist 

munur í meðaltals DNA metýlun hlutanna 3.4-15.7 prósentustig per CpG set. Í þessu sama svæði 

skýrði breytileiki í hlutfallslegum frumufjölda milli einstaklinga allt að 36% (p<0.0001) af breytileika í 

mældri DNA metýlun í heilblóði. Í öllum svæðanna var fylgni milli mældrar DNA metýlunar mjög há milli 

frumuhlutanna tveggja. Niðurstöðurnar benda til svæðis-sértæks munar í DNA metýlun mismunandi 

hvítra frumutegunda sem gruggað geta niðurstöður mælinga á DNA metýlun í heilblóði. Með því að 

sýna fram á fylgni milli DNA metýlunar í hinum mismunandi frumuhlutum gefa niðurstöðurnar til kynna 

að leiðrétta megi fyrir þessari gruggun með notkun hlutfallslegs fjölda einnar frumutegundar hvítra 

blóðkorna við greiningu gagna á DNA metýlun í heilblóði. 

Sykursýki af týpu 2 (SST2) er sjúkdómur sem einkennist af háum blóðsykurstyrk vegna skerts 

insúlínnæmis og skertrar virkni β frumna. Lífstíls, umhverfis og erfðaþættir valda áhættu á SST2. Þrátt 

fyrir miklar framfarir á síðustu árum í að finna erfðabreytileika tengda SST2, þá er stór hluti arfbundna 

þáttar áhættu á SST2 enn óþekktur. Ein möguleg skýring á því felst í því að afbrigðileg arfgeng 

utangenaerfðamörk tengist sjúkdómnum. Að auki er mögulegt að umhverfis og lífstílsþættir miðli 

áhrifum sínum gegnum utangenaerfðaþætti. Á þessum rökum var sú tilgáta sett fram að afbrigðileg 

utangenaerfðamörk gætu tengst sjúkdómnum og markmið seinni rannsóknarinnar sem hér verður 

kynnt var að prófa tilgátuna með því að leita slíkra afbrigðileika. DNA metýlun var mæld með sömu 

aðferð og áður í erfðaefni úr heilblóði. DNA metýlun í einstaklingum með og án SST2 var borin saman 

í sjö svæðum sem staðsett eru í þremur erfðasætum sem áður hafa verið tengd SST2 með 

erfðafræðirannsóknum. Eitt svæðanna, sem staðsett er í CpG eyju innan HHEX gensins, var valið til 

frekari skoðunar. Lægri meðaltals DNA metýlun greindist í einstaklingum með SST2 í þessu svæði 

þegar 214 sykursjúkir og 164 einstaklingar án sjúkdómsins voru bornir saman. Munurinn var 

marktækur eftir leiðréttingu fyrir kyni, aldri, líkamsþyngdarstuðli og breytileyka í hlutfallslegum 

frumufjölda. Niðurstöðurnar styðja tilgátuna sem sett var fram, að afbrigðileg DNA metýlun tengist 

sykursýki af týpu 2.  
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1 Introduction 

1.1 Epigenetics 

Epigenetics refers to the heritable, but reversible, regulation of various genetic functions, including 

gene expression, mediated through modifications of DNA or chromatin (1,2). The most extensively 

studied epigenetic mark, described in detail below, is DNA methylation (DNAm). Histone modifications 

are a second well established epigenetic mark and will be discussed briefly. 

1.1.1 DNA methylation, CpG sites, CpG islands and distribution 

DNAm is a covalent addition of a methyl molecule on a cytosine base (specifically to position 5 of 

cytosine’s pyrimidine ring) in DNA. It can be maintained through cell division, possibly between 

generations and can affect gene expression. Such marking is sequence dependent, in humans 

cytosines followed by guanine bases, i.e., 5’-CpG-3’ (C phosphate G) sequences, termed CpG sites 

are the predominant target for methylation (3). Extensive methylation in the sequences CHG and CHH 

(H = A, C or T) has also been observed in embryonic stem cells (3). In all following text DNA 

methylation only refers to methylation in the CpG sequence context. 

In the human genome, the number of CpG dinucleotides is underrepresented with respect to 

expected numbers. A frequently suggested cause is that spontaneous deamination of methylated 

cytosines results in formation of a thymine base, while the same event occurring on unmethylated 

cytosines results in the formation of a uracil. While the resulting uracil-guanine mismatch is easily 

detectable and correctly repaired, the thymine-guanine mismatch is frequently erroneously repaired to 

a thymine-adenine basepair which may have led to gradual loss of CpG sites over evolutionary time 

(reviewed in reference (rev. in ref.) (4)). A lack of correlation between TpG excess and CpG shortage 

(5) does however suggest that other mechanisms contribute to the CpG shortage. In certain regions of 

DNA, called CpG islands (CGI), the CpG dinucleotide occurs in close to its expected frequency (6).  

In the human genome, approximately 70-80% of CpG sites are methylated (7,8). The pattern of 

DNAm in mammals with respect to genomic context is global, i.e., genes, intergenic regions, repetitive 

elements such as satellite DNA and transposons are generally methylated (6). The predominant 

exception is that CpG islands are generally not methylated; Illingworth et al. investigated DNAm in 

14.318 CpG islands in four somatic human tissues and found that only 11.6% are methylated (9). As 

56-72% of gene promoters are estimated to contain CpG islands (depending e.g., on definition of a 

CGI) (4,10), it follows that the 5’ extremities of genes are an exception of the global methylation 

pattern found in the genome.  

1.1.2 Establishment and erasure of DNA methylation and reprogramming 

Three enzymes that catalyze DNAm have been identified, the DNA methyltransferases (DNMT) 

DNMT1, DNMT3A and DNMT3B. These enzymes catalyze de novo and/or maintenance DNAm, which 

is necessary to maintain normal methylation patterns through cell divisions and after DNA repair. 

DNMT1 has a stronger affinity for hemi-methylated DNA than completely unmethylated DNA (11), and 

is therefore commonly referred to as a maintenance methyltransferase, while DNMT3A and DNMT3B 
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are referred to as de novo methyltransferases (rev. in ref. (12,13)). Demethylation can occur passively 

or actively. Passive demethylation occurs during cell division when the DNAm marks are not 

maintained. The cellular processes involved in active demethylation are not well established, but 

results from a recent study suggest that they may involve oxidation of methylated cytosines by Tet 

proteins, resulting in formation of hydroxymethylated cytosine (14). 

DNAm is globally erased and re-established during development, a phenomenon termed 

reprogramming. These events have been studied in considerable detail in mice, but sampling 

difficulties have prevented similar studies for humans. Following fertilization, a global demethylation 

occurs in the zygote, the paternally derived chromosomes are actively demethylated and the 

maternally derived chromosomes passively. After implantation, de novo methylation occurs and is 

maintained in most tissues of the embryo. An exception is primordial germ cells, which after embryonic 

day 7.25 undergo a global demethylation event. In male embryos, the germ-cell precursor undergoes 

a de novo methylation event which is completed before birth, while in females, this event occurs after 

birth (rev. in ref. (15)). 

1.1.3 Tissue and cell specificity of DNA methylation 

Tissue and cell specific methylation are well established in human DNA. In 2006 Eckhardt et al. 

presented data from the Human Epigenome Project (HEP, a project which aims to identify, catalog 

and interpret genome-wide DNAm profiles of all human genes in all major tissues) that suggest that 

tissue-specific differential methylation is very common in the genome (16). The dataset describes 

DNAm of CpG sites in 2524 sequenced amplicons on chromosomes 6, 20 and 22 in 12 different 

tissues. Differential DNAm between tissues was observed in approximately 22% of the investigated 

amplicons and the average absolute methylation levels differed by up to 20% (or up to 15% if only 

somatic tissues are compared). Recently, Fan and Zhang analyzed DNAm in selected (CpG site 

coverage > 30%) CGIs using the HEP dataset (17). Similarly, their results indicate that a substantial 

proportion of CGIs (~18%) are differentially methylated between tissues. Three recent independent 

studies using microarray based methods also identify differences in DNAm between tissues after 

interrogating CpG sites across the whole genome (18), in CGIs across the genome (9), and in non-

CGI regions on chromosome 1 (19). 

Relatively few studies have addressed the question whether different white blood cell types have 

specific DNAm levels. Common types of white blood cells include the granulocytes neutrophils 

basophils and eosinophils, collectively called polymorphonuclear cells (PMNCs) here, and the 

mononuclear cells (MNCs) lymphocytes and monocytes. All white blood cells originate from 

multipotent hemopoietic stem cells in the bone marrow that differentiate into a lymphoid progenitor 

which gives rise to lymphocytes and a myeloid progenitor which gives rise to the other four cell types. 

Basophils mediate inflammatory reactions by releasing histamine and lymphocytes produce 

antibodies, kill virus infected cells and regulate activities of other white blood cells. Monocytes and 

neutrophils both phagocytose invading bacteria while eosinophils participate in removing larger 

parasites (rev. in ref. (20)). In two papers from 1990 and 1991 Kochanek et al. reported results from a 

study investigating DNAm of the TNFα and TNFβ (tumor necrosis factor α and β respectively) genes in 
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multiple cancerous and non-cancerous white blood cells and cell lines (21,22). Their results revealed 

gross differences in TNFβ methylation in lymphocytes versus granulo- and monocytes as well as 

minor distinctions in the TNFα gene between cell types in the control samples. A comparison of DNAm 

levels in CD4+ and CD8+ (CD; cluster of differentiation) lymphocytes was included in the HEP report 

which showed that these highly developmentally related cell types exhibit on average ~5% absolute 

difference in DNAm (16). Finally, Wu et al. compared different methods and sources of DNA for 

measuring global DNAm (i.e., methylation of the genome as a whole) in whole blood (23). DNA 

derived from whole blood and two blood fractions, MNCs and PMNCs was measured using five global 

methylation assays that interrogate methylation at CpG sites located in different genome contexts, 

e.g., in different repetitive elements. In four of the five assays, global methylation levels in MNCs and 

PMNCs were not correlated, suggesting a widespread difference in DNAm between the two cell 

groups. 

1.1.4 Histone modifications 

Histone modification is a covalent addition of a chemical group to a core histone (the proteins which 

DNA is wrapped around in the eukaryotic cell nuclei forming nucleosomes). The chemical group may 

be of several types, e.g., histones can be methylated, acetylated or phosphorylated, some may be 

added singly or in multiple copies e.g., monomethylation, dimethylation and trimethylation, and they 

can be added on various locations on the histone protein tails, i.e., on different amino acid residues on 

the polypeptide tails that extend from the core of the nucleosome. The full histone code, i.e., the full 

repertoire of histone modifications and their effects on cell function, is therefore very complicated and 

the vast majority of them is poorly understood. Some histone modifications have nevertheless been 

relatively well characterized, especially lysine acetylation and methylation (i.e., a lysine residue on the 

histone tail is methylated or acetylated). Lysine acetylation almost always correlates with chromatin 

accessibility and transcriptional activity, but lysine methylation correlates with both transcriptional 

activity and repression, depending on which histone residue is modified. It is worth noting that not all 

histone modifications have been shown to be maintained through cell divisions, and therefore they 

may not all represent an epigenetic mark (rev. in ref. (24,25)). 

1.1.5 Correlations between epigenetic marks 

In the present study, DNAm was the only epigenetic mark under investigation. Although other 

epigenetic marks may be just as important for studies on normal and abnormal phenotypes their 

investigation was beyond the scope of this study. Patterns of different epigenetic marks have however 

been observed to be correlated both in mouse and human cells (3,26). Although not the purpose here, 

it is worth noting that profiling DNAm may therefore provide indirect information on other epigenetic 

marks, i.e., DNAm may potentially be used as surrogate of an epigenetic state (collective epigenetic 

marks in a particular region under investigation) (27).  

1.1.6 Measuring DNA methylation 

During early DNAm research, DNAm levels could only be investigated in a global manner, using HPLC 

(high-performance liquid chromatography) or other chromatography. The first method for detecting 
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DNAm at specific loci was to digest DNA using methylation sensitive restriction endonucleases 

followed by Southern blotting (28). The drawback of the method is that only CpG sites that occur in a 

restriction enzyme recognized sequence can be investigated, and in addition it requires large amounts 

of DNA. Analysis of DNAm was revolutionized in 1992 after Frommer et al. demonstrated the 

usefulness of bisulfite conversion of DNA for such analyses. Treating DNA with bisulfite converts 

unmethylated cytosines to uracil while methylated cytosines are unaffected (29). Following such 

conversion, a region of interest can be PCR (polymerase chain reaction) amplified and DNAm levels 

analyzed with multiple different techniques. Multiple methods have been developed on basis of this 

principle (rev. in ref. (28)), and either involve amplification with primers that bind sequences that 

contain no CpG sites and reveal the methylation status of CpGs in the amplicons in downstream 

analyses or involve amplification using primers that anneal to the CpG sites whose methylation status 

is to be investigated (methylation specific polymerase chain reaction, MSP). Downstream analyses for 

the former methodology include COBRA (combined bisulfite restriction analysis) where the products 

are digested and separated on gels to reveal the extent of methylation (30), and sequencing, e.g., 

using pyrosequencing. 

Pyrosequencing is a sequencing by synthesis method which relies on detecting nucleotide 

incorporation by light emission (31). In short, its principle is to add dNTPs to a solution containing the 

DNA strand to be analyzed and a team of enzymes. If the dNTP is complementary to the DNA 

sequence, which is made single stranded and a sequencing primer annealed adjacent to a region of 

interest, it is incorporated and a pyrophosphate is released. In a series of enzymatic steps (involving 

sulfurylase and luciferase enzymes and luciferin substrate) the pyrophosphate causes light emission 

in amounts that are proportional to the numbers of dNTPs incorporated and thus the number of 

complementary bases in the analyzed DNA molecules. Pyrosequencing of amplified bisulfite treated 

DNA can be used to analyze DNAm levels in a single or a series of CpG sites in a highly reproducible 

and accurate quantitative manner (32,33). Its principle relies on that after amplification of bisulfite 

treated DNA, potential methylated positions can be treated as polymorphisms, and the allele 

frequencies determined to reveal their methylation status (e.g., a C/T polymorphism for C in a CpG 

sequence). 

Studying DNAm epigenome wide (complete collection of all epigenetic marks present in a cell) has 

become a feasible option in the last few years, thus allowing for epigenome wide associations studies 

(EWAS or EWA study). Multiple technologies have emerged which enable such profiling, based on 

DNA microarray chip or sequencing based methods. In a recent article by Rakyan et al. (ref. (27)) 

where study designs for EWAS are discussed, an insight into which of these technologies are 

preferred by researchers conducting EWAS is provided. Although whole genome bisulfite sequencing 

is ideal because it provides the highest level of genome coverage and a single base resolution, it is 

currently considered too expensive. Due to rapidly falling costs, this method may however become 

feasible and prevail in the future. Enrichment methods, such as MeDIP (Methylated DNA 

Immunoprecipitation) can be employed followed by sequencing (or analysis on chip arrays) to cut 

costs, but although they may be suitable for some studies, the lack of single base resolution reduces 

their usefulness. Rakyan et al. state that in their view, the Illumina 450K Infinium Methylation 
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BeadChip array is currently the best option for EWA studies as it provides a single-base resolution, 

high genome coverage (over 450 thousand CpG sites interrogated) and is suitable for high throughput, 

analyzing up to 96 samples per run.  

1.2 DNA methylation and gene expression 

1.2.1 Examples from normal cellular processes; imprinting and X inactivation 

Normal cellular processes, such as imprinting and X-chromosome inactivation provide examples of the 

role of DNAm in controlling gene expression.  

Specific genes, often clustered together, are non-randomly expressed in a parental-origin specific 

manner in all somatic cells or in specific cells or tissues of the body, a phenomenon termed imprinting. 

Control of parental-origin specific expression requires differential DNAm of the parental alleles in 

regions in close proximity to the genes, so called imprinting specific differentially methylated regions 

(iDMRs) (rev. in ref. (34)). The allele specific methylation is inherited from parent to offspring and 

escapes the genome-wide demethylation event in the zygote. Methylation in iDMRs is erased along 

with other methylation marks in primordial germ cells and subsequently reestablished at specific 

iDMRs depending on the embryo’s gender (rev. in ref. (15,34)). In section 1.3.3 (pg. 8), several 

examples are discussed of aberrations in iDMRs that lead to loss of parental-origin specific expression 

of imprinted genes, highlighting the causal role of DNAm in control of gene expression. 

In placental mammals, the different dosage of X-chromosomes in males and females is 

compensated by inactivation of one of the X-chromosomes in females. Multiple mechanisms take part 

in achieving X-inactivation, including coating of the inactive chromosome with the Xist non-coding 

RNA, histone modifications and DNAm of gene promoters (rev. in ref. (35)). Evidence for a causal role 

of DNAm in controlling X-inactivation is discussed in the next section. 

1.2.2 Evidence for a causal role 

Experimental evidence for a role of DNAm in regulating gene expression date as far back as to the 

1980s. Vardimon et al. injected in vitro methylated and unmethylated DNA containing a reporter gene 

into frog oocytes, and observed expression of the gene in oocytes that were injected with 

unmethylated DNA, but not in those that were injected with methylated DNA (36). In a similar 

experiment, Stein et al. found that when transfected into cultured mouse cells, the Aprt (adenine 

phosphoribosiltransferase) gene was silenced when methylated, but not when it was unmethylated 

(37). Shortly after it was discovered that silencing of genes on the inactive X-chromosome was 

correlated with promoter DNAm levels, a study was conducted to test their causal relationship. 

Treating cells with a methyltransferase inhibitor, 5-azacytidine, caused expression of genes from a 

previously inactive X-chromosome (38). In a subsequent study, transfecting cells with DNA obtained 

from cells that had received inhibitor treatment showed the same effect on a specific gene on the X-

chromosome, indicating that the observation was not caused by secondary mechanisms of the 

inhibitor, but rather changed DNAm state (39).  

Results from more recent studies, which have investigated the correlation between gene 

expression and DNAm at a large number of loci (whole chromosomes or across the whole genome) 
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provide evidence that these findings are not confined to a few genes. In three recent reports, where 

DNAm was measured in normal human cell lines (i.e., not from diseased tissues) in 66.000 CpG sites 

on chromosomes 12 and 20 and at 7.000 CpG sites in ENCODE (Encyclopedia of DNA elements) 

pilot project regions (44 genomic regions comprising 1% of the human genome (40)) at a single-base 

resolution and in the entire genome at 100 bp resolution, all found that DNAm in proximity to 

transcription start sites (TSS) correlated negatively with gene expression. In addition, all studies found 

that DNAm in gene-bodies correlated positively with gene expression (41–43). This has also been 

observed in other experimental settings, e.g., when comparing DNAm levels between the inactive and 

active X-chromosomes, researchers found that the inactive chromosome is more heavily methylated in 

the region flanking TSS, but less methylated in gene bodies compared to the active chromosome (44).  

1.2.3 Mechanisms  

How DNAm affects gene expression may be mediated through multiple mechanisms, but two are 

described here. First, it is possible that the addition of methyl groups to DNA interferes with 

transcription factor binding. This is supported by experimental evidence, e.g., showing that a particular 

transcription factor, MLTF, is unable to bind to DNA when CpG sites in its recognition sequence are 

methylated (45). Second, methylated DNA may attract proteins that mediate gene silencing. Multiple 

proteins with affinity for methylated DNA sequences have been identified, and evidence suggests that 

some may recruit other proteins or enzymes that cause compacting of chromatin, e.g., through histone 

modifications resulting in repression of gene expression. These and other potential mechanisms are 

reviewed in reference (46). 

1.3 DNA methylation aberrations in disease 

Investigation of the role of DNAm in human disease has largely been limited to cancer, where aberrant 

DNAm of multiple genes has been linked to multiple types of the disease. Additionally, DNAm 

aberrations have been well established in so called imprinting disorders. Their association with other 

diseases has however not been studied in detail, but recently EWA studies for a few non-malignant 

complex diseases have been reported. It is worth noting that at least in some cases, differences in 

DNAm between cases and controls discussed below may represent normal DNAm variation, rather 

than an aberration per se, but for simplification they are referred to as DNAm aberrations. Before 

examples of DNAm aberrations are discussed, the next section considers where inter-individual 

variation in DNAm may originate. 

1.3.1 When and how do variations of DNAm arise 

Inter-individual variation of DNAm may arise by three means (rev. in ref. (27)) or by a combination of 

these means; it may be 1. inherited, 2. due to stochastic events or 3. environmentally or lifestyle 

induced. If DNAm of a particular region is inherited, it may be observable in all tissues of the body. 

This is an important concept for studies linking DNAm with disease, because in this situation DNAm 

may potentially be measured in easily acquired surrogate tissues such as whole blood rather than 

target tissues which may be hard to obtain. In addition, if stochastic or environmentally induced events 

occur early in development, they may also be observable in many tissue types.  
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Inherited inter-individual variation has to be divided into two classes; one that depends on the 

underlying genotype, and a second that does not. Due to the epigenetic reprogramming that follows 

oocyte fertilization, transgenerational epigenetic inheritance that is independent of genotype may be 

limited. However, evidence for such inheritance comes from studies of the agouti locus in mice. The 

agouti gene, A, is responsible for yellow coat color of mice, a/a mice are black. The A
vy

 allele carries 

an intra-cisternal A particle (IAP) retrotransposon upstream from the gene, and in A
vy

/a mice, coat 

color depends on methylation status of the IAP insertion; heavy methylation results in black (termed 

pseudoagouti) coat color while lower methylation causes yellow color. Interestingly, the coat color 

phenotype of A
vy

/a offspring that inherit the A
vy

 allele maternally depends on the maternal phenotype, 

suggesting that DNAm of the A
vy

 allele is transgenerationally inherited (47). Whether this type of 

inheritance extends to other genomic loci or is observable in humans is unclear. Methylation of IAP 

transposons has been observed to escape reprogramming (48,49), and it is therefore possible that 

this is an isolated occurrence. It nevertheless presents an example of the potential for non-sequence 

dependent intra-individual variation of DNAm due to transgenerational inheritance. Several studies 

have demonstrated associations between DNAm and the underlying genotype that extend over both 

short and long distances, even across chromosomes (50–52). Most of these associations are not 

absolute, i.e., methylation is not unequivocally varied by genetic variants. A specific genotype rather 

generates an increased probability of a particular methylation level (27).  

Evidence for both stochastic and environmentally induced epigenetic changes come from studies 

on twins. Fraga et al. showed that monozygotic twins that had shared more of their life together had 

more similar epigenetic patterns than those that had shared less of their lives together (53). This may 

suggest an environmental contribution to epigenetic patterns. In addition, all twin pairs, including those 

that had spent more of their life together and very young twin pairs (youngest pair was 3 years old), 

had some dissimilarity in terms of epigenetic states. Although this does not rule out environmental 

effects, it may suggest that stochastic events occur. Multiple environmental and lifestyle factors have 

been associated with DNAm variation, including diet, smoking, environmental toxins and etc. (rev. in 

ref. (54)) and stochastic events may occur e.g., due to errors in maintaining DNAm through cell 

division. 

1.3.2 DNAm aberrations in cancer 

DNAm aberrations in cancer were first reported in 1983 by Feinberg and Vogelstein. Using 

methylation sensitive restriction enzymes on human normal and cancerous cell derived DNA followed 

by southern blotting, they found several CpG sites to be unmethylated in cancers, where they were 

methylated in normal cells from the same tissue (55). In the same year, Gama-Sosa et al. reported 

that global DNAm levels were reduced in human tumor samples compared to normal tissue using 

HPLC methodology (56). Since these studies were reported, DNAm aberrations have been associated 

with multiple forms of the disease (rev. in ref. (57,58)). An example of the scale of these aberrations is 

provided in a report by Costello et al. where it was estimated that in the 98 primary tumor types 

investigated, an average of 600 (range 0-4.500) of 45.000 CpG islands were aberrantly methylated 

(59). 
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A DNAm aberration is often referred to as a hypermethylation or a hypomethylation, depending on 

whether the DNA sequence under investigation is methylated in a normally unmethylated region, or 

unmethylated in a normally methylated region, respectively. Hypermethylation of multiple tumor 

suppressor genes has been observed and hypomethylation of repeat sequences and a few 

oncogenes (58). In a review published in 2004, Feinberg and Tycko mention that although 

hypomethylation was the first DNAm aberration identified in cancer, it was subsequently mostly 

overlooked and hypermethylations are better defined (57). They note that this is due to a bias in 

experimental design, researchers focused on aberrations in normally unmethylated sites, and thus 

only identified hypermethylations. Examples of aberrantly methylated genes in cancer include 

hypermethylation of the CDKN2A (INK4A cyclin dependent kinase inhibitor) tumor suppressor in 

bladder tumors and hypomethylation of the SNCG (gamma-synuclein) oncogene in breast and ovarian 

tumors, which correlate with decreased and increased gene expression respectively (60,61). 

1.3.3 DNAm aberrations in imprinting disorders 

Imprinting disorders are diseases that arise due to defects in imprinted regions leading to loss of 

parental-origin specific expression. The defects can be of genetic or epigenetic nature. Genetic 

defects such as uniparental disomy (a genetic region is inherited in two copies from one parent and 

not from the second parent), deletions, duplications, translocations and etc, can lead to imprinting 

disorders when they include an imprinted region. As these defects are not epigenetic in nature, they 

will not be discussed here, but they account for a large proportion of the cases affected by the 

diseases discussed. Epigenetic defects in the context of imprinting disorders are termed loss of 

imprinting (LOI). LOI is a loss or gain of DNAm in iDMRs leading to loss of expression in the normally 

expressed allele or gain of expression in the normally silent allele. 

Examples of imprinting disorders are Beckwith-Wiedemann syndrome (BWS), characterized by 

overgrowth and predisposition to embryonic tumors, Prader-Willi syndrome (PWS) and Angelman 

syndrome (AS), characterized by mental retardation and behavioral abnormalities and Transient 

neonatal diabetes mellitus (TNDM), characterized by diabetes which presents in the first weeks after 

birth, followed by remission in following months, and frequently a recurrence in adult life. All disorders 

can be caused by LOI and provide examples of how DNAm aberrations can affect gene expression 

and phenotypes. 

Epigenetic defects leading to BWS include LOI of KCNQ10T1 (KCNQ1 overlapping transcript 1) 

due to loss of DNAm on the maternal allele and LOI of IGF2 (insulin-like growth factor 2) due to de 

novo DNAm on the maternal allele, both resulting in biallelic expression of the genes. Upregulation of 

IGF2 is thought to contribute to the predisposition to embryonic tumors, while upregulation of 

KCNQ10T1, which causes a downregulation of proximal genes, is thought to contribute to the other 

phenotypic characteristics of BWS. Epigenetic defects leading to PWS and AS occur in the same 

genomic region, 15q11-q13. In PWS, LOI of multiple genes in the region through de novo DNAm of 

the paternal allele results in loss of their expression. In AS, LOI only affects a single gene in the 

region, UBE3A (ubiquitin protein ligase E3A), through loss of DNAm on the maternal allele, resulting in 
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loss of its expression. Finally, in TNDM, LOI of PLAG1 (pleomorphic adenoma gene-like 1) through 

loss of DNAm of the maternal allele results in biallelic expression of the gene (rev. in ref. (58)).   

1.3.4 DNA methylation aberrations in non-malignant complex diseases 

Whether aberrant DNAm is associated with non-malignant complex diseases has not been 

investigated in detail. With the advent of technologies that allow determining the methylation levels of 

thousands of CpG sites across the genome, a few EWA studies for non-malignant complex diseases 

have been reported in the last few years. The diseases investigated in these studies include auto-

immune related diseases; type 1 diabetes (T1D), systemic lupus erythematosus (SLC), rheumatoid 

arthritis (RA), dermatomyositis (DM) and multiple schlerosis (MS) and mental disorders such as 

autism, schizophrenia and bipolar disorder, and other disease related traits such as body mass index 

(BMI) and obesity (1,62–67). In addition, two studies, published after the present study was initiated, 

have investigated the association between DNAm and type 2 diabetes. These will be discussed in the 

discussion chapter of the thesis in relation to the results of the present study. 

Rakyan et al. investigated DNAm in 27.458 CpG sites in 14.475 promoters (i.e., about 2 CpG sites 

were investigated per promoter) in CD14+ monocytes from 15 monozygotic (MZ) twin pairs discordant 

for T1D (62). In using discordant MZ twins, confounding due to underlying genotype that may affect 

DNAm levels is prevented and thus serves as a very convenient model for studying DNAm 

aberrations. Their analysis identified 132 CpG sites in 132 different loci where the direction of the 

DNAm difference in the intra-twin pairs was significantly associated with T1D. Several of these CpG 

sites were located in genes involved in immune function or in genes previously associated with T1D, 

including HLA-DQB1 which contains a genetic variant conferring the highest known genetic 

predisposition for the disease. In addition, Rakyan et al. investigated the temporal origin of the 

differences observed and found that for 71% of the differentially methylated CpG sites, the same 

directionality of the aberration was also found in pre-disease manifestation samples from individuals 

that later developed the disease, compared to controls. Javierre et al. investigated DNAm in 1505 

CpG sites in 807 gene promoters in whole blood DNA from 15 MZ twin pairs discordant for three 

diseases SLC, RA and DM (i.e., five pairs discordant for each disease) (63).  No significant differences 

were observed in DNAm levels of intra-pairs discordant for RA or DM. Significant intra-pair DNAm 

differences were observed in 49 genes in twins discordant for SLC. Many of these genes have 

disease relevant functions, such as in immune response and cytokine production.  In addition, Javierre 

et al. investigated correlations between DNAm and expression in seven differentially methylated 

genes, and found that five showed a significant association. Baranzini et al. investigated DNAm in 1.7 

million CpG sites in CD4+ lymphocytes in 3 MZ twin pairs discordant for MS (64). Their analysis 

revealed no DNAm differences that were shared between all twin pairs. However, they only 

considered marked differences in DNAm of an on/off fashion; changes to/from less than 20% to/from 

more than 80%. Nguyen et al. investigated DNAm in 8109 CpG islands in lymphoblastoid cell lines 

derived from 3 MZ twin pairs discordant for autism (65). Their analysis revealed significant intra-pair 

differential methylation in 73 islands, including in multiple genes with biologically relevant functions 

such as in nervous system development and in several genes involved in neurological disorders. 
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Additionally, Nguyen et al. investigated expression of two genes that were differentially methylated, 

BLC-2 (B cell CLL/lymphoma 2) and RORA (retinoic acid-related orphan receptor alpha), and found 

that they were downregulated in autistic samples. Further they found that the downregulation was 

alleviated with treatment with methyltransferase inhibitor, suggesting a causal role for DNAm in their 

regulation. Finally, Feinberg et al. investigated DNAm in 227 highly variably methylated regions in 74 

DNA samples from whole blood, selected randomly from individuals recruited by the Icelandic Heart 

Association and tested for associations between DNAm and BMI (66). Their analysis revealed that 

methylation levels in or near four genes, including PM20D1 (peptidase M20 domain containing 1) was 

significantly associated with BMI. These genes have previously been implicated in body weight 

regulation or diabetes.  

These studies have revealed evidence that aberrant DNAm is associated with many non-malignant 

complex diseases. Yet these studies only interrogated a small fraction of the genomes total number of 

CpG sites. In addition, they were generally performed using arrays that have a biased selection for 

promoter regions and specific genes, such as oncogenes, differentially expressed genes and etc. 

These results may therefore only represent the tip of the iceberg. With one exception, they have been 

conducted in a retrospective setting (comparing cases and controls) and thus the observed differences 

in DNAm potentially do not represent predisposing aberrations. Until this has been established, their 

clinical relevance is uncertain. 

1.3.5 Applications for DNAm aberrations 

The identification of DNAm aberrations in relation to disease has at least three potential applications: 

Identified aberrations may 1. contribute information on disease pathogenesis, 2. serve as drug targets 

and 3. be used for disease detection or prediction. 

Both correlational and more direct experimental evidence suggests that DNAm aberrations of 

specific genes associated with cancer, imprinting disorders and non-malignant complex diseases 

affect gene expression. These findings provide evidence for a potential role for DNAm aberrations in 

disease pathogenesis. The first step towards elucidating possible etiological role will be to establish 

their temporal origins, i.e., whether these aberrations are present prior to disease onset and are thus 

potentially causal in disease development, or whether they arise after disease onset. 

In principle, epigenetic marks are reversible and are therefore attractive targets for therapeutic drug 

treatment (28). The methyltransferase inhibitor drug 5-azaCdR has been used in chemotherapy 

treatments for leukemias (57). In line with its inhibitory effects on methyltransferases, it is possible that 

its therapeutic influence stems from hypomethylating effects that may induce expression of tumor 

suppressor genes (57). However, evidence suggests that its effect, or at least part of it, may be 

mediated through a different mechanism. The drug incorporates into DNA, where it inhibits 

methyltransferases by covalently binding to them, and experimental evidence suggests that the 

methyltransferase-DNA adduct is rather the causal factor in the drugs cytotoxicity than its effects on 

DNAm (68).   

DNAm aberrations may have an application as diagnostic markers of disease or markers for 

disease risk assessment and perhaps in addition, monitoring of recurrence and disease stratification 
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(28). The concept of using DNAm for disease detection has been studied in some detail for cancer. 

Early detection of cancer is very important for disease prognosis but for some types of the disease 

detectable symptoms do not arise until after it has metastasized. In such cases, biomarkers present 

one of the best options for early detection (28). Measurements of DNAm levels in DNA obtained from 

bodily fluids, such as plasma, serum, urine, saliva and etc. have been tested for use as such 

biomarkers because tumor cells or tumor cell DNA can often be found in such fluids. In a review from 

2003, it was noted that such biomarkers can be highly specific (i.e., do not detect aberrations in 

controls), and that their sensitivity (i.e., detection of the aberration in cases) is generally around 50% 

(28). Using DNAm aberrations for detection for many non-malignant complex diseases may not be of 

much relevance because they often present with obvious symptoms or are detectable with other 

robust means (e.g., blood glucose measurements for diabetes). For these diseases, DNAm 

aberrations may however be useful for disease risk assessment, particularly if they are detected in 

easily collectable tissues such as blood. Their ability for such application is however unclear due to 

lack of studies on associations between DNAm and diseases performed in a longitudinal setting (69). 

1.4 Diabetes 

1.4.1 Characteristics, prevalence and risk factors 

Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by high blood glucose levels 

(hyperglycemia) due to insulin resistance (the biological effects of insulin on liver and skeletal muscle 

that normally result in decreased glucose production and increased glucose uptake respectively are 

reduced) and reduced β cell function (insulin production in the pancreas is decreased) (70). T2DM risk 

factors include aging, physical inactivity, overweight and hypertension (71). Disease symptoms include 

excessive urine production accompanied by thirst and increased fluid intake, weight loss, lethargy, 

blurred vision and changes to energy metabolism (72). The disease is accompanied by serious 

complications, mostly micro- and macro-vascular in nature, including renal failure and cardiovascular 

disease. These complications present the greatest medical and socioeconomic burden of the disease 

(73). Other forms of diabetes, e.g., type 1 diabetes and maturity onset diabetes of the young share 

some or all of the characteristics, symptoms and complications of type 2 diabetes. In the following 

discussion diabetes will refer to all types of the disease combined, and T2DM explicitly to type 2 

diabetes. In other chapters of the thesis, diabetes only refers to T2DM unless specified otherwise. 

The International Diabetes Federation estimated that in 2010, 285 million individuals aged between 

20-79 years were diabetic globally, of which 90-95% had T2DM (rev. in ref. (71)). Global prevalence of 

the disease has risen rapidly over the last decades; Danaei et al. estimated that it was 8.3% in men 

and 7.5% in women in 1980 and increased to 9.8% in men and 9.2% in women in 2008 for individuals 

25 years and older (74), and it has been predicted to continue to increase (75). The prevalence in the 

Icelandic population specifically, has also grown, although it is still lower than global estimates. In a 

report from 1953, Albertsson describes studies and observations made by medical doctors in Iceland 

between ca. 1850-1940, which all concluded that diabetes was a very rare disease, and that it was an 

“extraordinary occurrence for doctors to come across it” (76). Using data from the Icelandic Heart 

Association, Bergsveinsson et al. reported that that the prevalence of T2DM in 45-64 year old 
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Icelanders rose by 50% between 1967-72 and 1997-2002 and was 3.8% in both genders in the latter 

period (77).  

A number of demographic and health care related factors are thought to contribute to the increased 

global prevalence estimates; elderly continually comprise a larger proportion of the population with 

increasing life spans and reduced birth rates, mortality among diabetes patients has decreased and 

diabetes is more readily diagnosed. However, lifestyle and environmental changes in the past 

decades concerning e.g., diet, exercise and stress are also though to contribute to the increased 

prevalence due to their effects on disease risk  factors (i.e., higher weight, higher blood pressure and 

etc.) (71). As noted above, multiple examples of associations between DNAm and environmental or 

lifestyle factors have been reported. It is possible that these factors mediate their effects on T2DM risk 

through epigenetic factors. 

The increased prevalence of T2DM cannot be explained by emerging genetic factors, because the 

increase is taking place at such a fast rate, over one or two generations (71).  Nevertheless, even 

before genetic factors were found to associate with the disease, they were a known contributing factor. 

The evidence supporting this presumption included; high concordance rates for T2DM in monozygotic 

twins, 35-58% compared to 17-20% in dizygotic twins, increased risk of T2DM development in 

offspring with affected parent(s) and differences in prevalence between ethnic groups (71,73). 

Although estimates vary, the heritability component of T2DM risk may exceed 50% (71). Perhaps 

interaction with the aforementioned lifestyle and environmental factors, which were not present until 

very recently are necessary to reveal the genetic predisposition (71). Again, it is possible that these 

interactions are mediated through epigenetic factors. 

1.4.2 Genetic contribution to T2DM 

Prior to the advent of genome wide association studies (GWAS) in 2005, genetic studies on complex 

diseases and other phenotypes depended on candidate gene and family based linkage study 

approaches. In a report from 2005, these studies were described as disappointingly unsuccessful in 

identifying genetic variants associated with T2DM, only revealing a handful of associated genes or 

genetic regions, of which most associations were not robust (i.e., results were conflicting between 

studies) and only conferred a very small risk for development of the disease (73). From 2007, when 

the first GWAS for T2DM was reported by Sladek et al. (78) and to date, about 50 genetic risk variants 

have been associated with the disease (79). These include variants in loci containing the HHEX 

(homeobox, hematopoietically expressed) (78), KCNJ11 (potassium inwardly rectifying channel, 

subfamily J, member 11) (80) and KCNQ1 (potassium voltage-gated channel, KCT-like subfamily, 

member 1) (81) genes investigated in the present study. HHEX is expressed in the pancreas and 

codes for a transcription factor implicated in pancreatic development, KCNJ11 and KCNQ1 are 

expressed in several tissues, including the pancreas and code for proteins that form a part of 

potassium channels involved regulation of cell membrane potential (discussed in references 

(78,80,81)). The variants in all three loci are thought to associate with T2DM through effects on 

pancreatic β cell function (71) due to the aforementioned functions, and/or due to results from studies 

investigating the variants’ association with indices of β cell function and insulin sensitivity. One such 
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index is homeostasis model assessment (HOMA, -IR for insulin resistance and –β for β cell function) 

used in the present study. Most other indices of insulin sensitivity and β cell function require data from 

complex measurements, such as time series data from a glucose tolerance test. The HOMA model is 

based on experimental data, i.e., it is constructed from physiological dose responses of glucose 

uptake and insulin production, and can be used to estimate IR and β cell function relative to a normal 

reference population using routinely measured clinical parameters, fasting glucose and insulin 

concentrations (82,83). 

Similar to previous studies, the T2DM risk variants identified through GWAS are common, 

generally with allele frequencies of > 25% and only confer a very small increase in risk for T2DM. 

Odds ratios for having the disease if carrying a risk allele is generally less than 1.2 (79).   

1.4.3 Missing heritability 

Despite the advances in identifying genetic T2DM risk variants in the last years, 90% of the total 

heritable component of T2DM risk remains unidentified (71). This scenario is common for other 

complex diseases and phenotypes, e.g., Chron’s disease, systemic lupus erythematosus and height, 

and has raised the question where the missing heritability is hiding (rev in ref. (84,85)). A few possible 

explanations are discussed here: First, it is possible that the proportion of the identified heritable 

component is underestimated because the genetic variants identified through GWAS are usually not 

the actual causal variants, but rather are identified as associated with the trait in question because 

they are in linkage disequilibrium (LD) with the causal variants. The causal variants may be more 

strongly associated with the phenotype of interest, and thus explain more of the risk. Second, much 

larger number of risk variants conferring smaller risk may exist that require much larger sample sizes 

for detection than have been used previously. Third, causal variants that are independent from those 

identified through GWAS may exist in the loci identified. Fourth, structural variants, such as copy 

number variants may contribute to these phenotypes, but have not been investigated in detail. Fifth, 

rare and low frequency variants may contribute to the disease, and perhaps confer greater risk than 

common variants but GWA studies have limited potential to capture them. Finally, epigenetic variation 

may contribute to the heritability estimates. Epigenetic variants that depend on genotype would 

presumably be readily detectable by genetic studies. Evidence for association between GWAS 

identified disease risk variants and DNAm levels have been reported; the FTO (fat mass and obesity 

associated) variants rs8050136 and rs1121980, associated with T2DM and obesity risk, have been 

shown to correlate with proximal DNAm (86,87). In this scenario, it is possible that the identified 

genetic variant is tagging variations in DNAm that it or other variants it is in LD with cause and through 

which the genetic variant affects cell function. Epigenetic variation that is inherited from parent to 

offspring but does not depend on the underlying genetic variation would  however not be captured by 

genetic studies. 

1.4.4 T2DM prevention and prediction 

Impaired fasting glucose (IFG, hyperglycemia in fasting state, although not as severe as in T2DM) and 

impaired glucose tolerance (IGT, hyperglycemia after glucose load, i.e., consumption of a large dose 

of glucose, although not as severe as in T2DM) precede overt T2DM. If untreated, 7% of individuals 
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with IFG and IGT develop T2DM every year (73). A few studies have investigated whether simple 

interventions involving lifestyle changes of diet and exercise could delay or prevent these conditions 

progressing to T2DM, with promising results. 

The first study of this kind was performed in China on 577 individuals with IGT (88). The individuals 

were randomized into four groups, of which three received active treatment, and the fourth served as a 

control group. The treatments consisted of lifestyle change with regard to diet in one group, exercise in 

a second group and both diet and exercise in the third group with active counseling over a six year 

period. The diet prescribed for individuals with BMI < 25 kg/m
2
 contained 25-30 kcal/kg body weight 

and these participants were encouraged to reduce consumption of alcohol and simple sugars and 

increase vegetable intake. Individuals with BMI ≥ 25 kg/m
2
 were encouraged to reduce caloric intake 

to reduce body weight by 0.5-1.0 kg per month until they reached a BMI of 23 kg/m
2
. The exercise 

recommendation consisted of 5-60 minutes of exercise per day depending on intensity and physical 

form of the individuals. After six years the cumulative incidence of diabetes was 67.7% in the control 

group compared with 43.8% in the diet group, 41.1% in the exercise group and 46.0% in the combined 

diet and exercise group. The difference corresponds to a 31-46% reduced risk of disease 

development. A follow up study was conducted 14 years later, a period of no intervention, to 

investigate whether any long term benefits of such interventions could be observed (89). The study 

showed that in 20 years after the intervention was initiated, the individuals receiving any form of 

intervention had a 43% lower incidence of diabetes compared to controls. Other studies have revealed 

similar results. For example, in the largest study (i.e., with the largest number of participants) on 

effects of lifestyle intervention on T2DM risk conducted to date, significantly reduced risk for T2DM 

progression with simple lifestyle interventions was also observed (90). The study followed 3234 

individuals with IFG and IGT for an average of 2.8 years, randomly assigned to three groups; one 

receiving a lifestyle modification program with the goal of 150 minutes of physical activity per week 

and a 7% weight loss, a group receiving metformin (a drug used for managing T2DM that increases 

insulin sensitivity of muscle cells and reduces hepatic glucose production), and a control group 

receiving a placebo. The lifestyle intervention reduced the incidence of T2DM by 58% and metformin 

by 31% compared to the placebo group, suggesting that physical activity is a more effective 

prevention for T2DM development than metformin. Due to the effectiveness of these interventions, 

identifying individuals at increased risk for T2DM is highly beneficial, both for the individual and 

society. 

Current risk prediction models cannot accurately predict individual risk of T2DM development. It 

was expected that identified genetic T2DM risk variants would improve such models due to the high 

genetic contribution to the disease (71). Recently, several studies have been conducted comparing 

the accuracy of T2DM risk prediction models relying on conventional risk factors with those relying on 

genetic risk scores and combination of the two. Eleven such studies were reviewed by Herder and 

Roden which revealed that genetic risk scores were less accurate predictors of type 2 diabetes 

development than scores using conventional risk factors (71). The area under the receiver-operating 

characteristic curve (AUC) was about 10-35% lower when using genetic risk scores. Additionally, 

although combining the two resulted in a significant increase in AUC compared to models only relying 
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on conventional factors, the increase was too subtle to be of any clinical relevance, AUC changed by ≤ 

0.02. 
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2 Aims 

2.1 Investigation of DNA methylation in type 2 diabetes genetic risk loci 

2.1.1 Hypothesis 

In the past few years, genetic studies have been very successful in identifying multiple genetic T2DM 

risk variants, but a large proportion of the disease’s heritable component nevertheless remains 

unidentified. Several explanations may account for missing heritability, but one is the existence of 

inherited epigenetic aberration(s). Additionally, multiple environmental and lifestyle factors are 

associated with T2DM risk and it is possible that their effects are mediated through induced epigenetic 

aberration(s). On this basis, it was hypothesized that aberrant DNAm could be associated with T2DM, 

and to address this hypothesis, the present study aimed to identify such aberrations. 

2.1.1.1 Specific aims to address hypothesis: 

1. Measure and compare methylation levels in DNA extracted from whole blood in selected 

regions between a small number of diabetics and controls in order to identify any aberrantly 

methylated region(s). Loci that have been associated with type 2 diabetes through genetic 

studies were targeted because it was hypothesized that such loci may be good candidates for 

identifying epigenetic aberrations that may be associated with the disease, due to the 

assumption that altered expression that they may cause may have similar consequences as 

alterations in gene products (at least if such alterations change the product's activity). The 

HHEX, KCNJ11 and KCNQ1 loci were selected as they were considered representative of loci 

exhibiting a genetic association with the disease. 

2. Select a promising candidate from the above experiment (if one is identified), and repeat the 

comparison in a larger set of samples to establish the robustness of the finding, and to enable 

adjusting for potential confounders. 

2.2 Investigation of whether cellular heterogeneity may confound 
analyses of DNA methylation data 

2.2.1 Hypothesis 

As peripheral blood cell DNA is relatively easily accessible it has been an essential source for genetic 

experiments for the past decades. However whether it is appropriate material for studies on 

epigenetics has been debated (91) because inter-individual variation in the number of specific white 

blood cells in combination with cell specific methylation could compromise measurement outcomes for 

DNAm carried out on cells from whole blood. This concern has largely been theoretical due to lack of 

experimental data. The hypothesized confounding on whole blood DNAm measurement outcomes due 

to cellular heterogeneity was therefore investigated.  

Analyses were conducted in a non-disease specific context to understand the potential for 

confounding in general. A confounding effect may be region-specific, depending on two factors; first, 

the size of the difference in methylation level between cell types, and second due to the relative size of 
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the difference compared to the variation in methylation levels caused by other factors. DNAm was 

therefore analyzed in four regions, in genes HHEX, KCNJ11, KCNQ1 and PM20D1, which 

represented a range of inter-individual variation in DNAm from very low to very high. 

2.2.1.1 Specific aims to address hypothesis: 

1. Measure DNAm in whole blood DNA samples in selected regions and test for an association 

between the measured levels and cellular heterogeneity. 

2. Fractionate whole blood and measure and compare DNAm levels in the fractions to test 

whether methylation levels differ in the fractions and may thus underlie the observed 

association(s), if any.  
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3 Materials and methods 

A part of the results presented in this thesis have been submitted for publication in PLoS ONE. The 

manuscript, which is provided as supplement at the end of the thesis, was used as a basis for section 

1.1.3 in the introduction, section 4.1 of the results and section 5.1 of the discussion. 

3.1 Sample acquisition and processing 

3.1.1 Participants 

Samples were obtained from two cohort studies conducted at the Icelandic Heart Association (IHA); 

the Age, Gene/Environment Susceptibility (AGES)-Reykjavik (92) and the Risk Evaluation For Infarct 

Estimates (REFINE)-Reykjavik studies. DNA samples extracted from whole blood were obtained from 

both studies and blood collected for fractionation from individuals taking part in the REFINE-Reykjavik 

study. In the latter case, the REFINE-Reykjavik study was not selected per se, individuals were visiting 

the clinic for participation in the REFINE-Reykjavik study but not the AGES-Reykjavik study at the time 

when these samples were needed. 

Briefly, the AGES-Reykjavik study was the seventh visit of the Reykjavik Study, a population-based 

cohort study initiated in 1967, inviting all Reykjavik inhabitants born between 1907 and 1935 to 

participate. In this visit, 5764 of the surviving members were recruited. REFINE-Reykjavik is a 

prospective study on risk factors and cause of atherosclerotic disease in a population of Icelandic 

people. The main goal of the study is to improve the predictability of cardiovascular disease risk 

estimates. The study was initiated in 2005 and recruitment of the first phase was completed in spring 

2011 recruiting 6942 men and women born in the years 1936-1980 living in the Reykjavik city area. 

Both studies are approved by the Icelandic National Bioethics Committee (VSN: 05-112, VSN: 00-063) 

and the Data Protection Authority and all participants gave written informed consent on entry into the 

studies. 

3.1.2 Fractionation of blood samples 

Blood samples collected for fractionation were processed as soon as possible, never later than 4 

hours after being drawn. About a third of the volume collected from each individual was taken aside for 

extraction of whole blood DNA, and the rest used for the fractionation. The blood was fractionated by 

density gradient centrifugation using Histopaque-1077 Ficoll medium in Accuspin
TM

 Tubes (Sigma-

Aldrich, St. Louis, MO, USA, cat.nr.: 10771 and A1930 respectively). In short (the protocol is provided 

in full in the appendix, pg. 54), blood was poured on top of Ficoll medium in an Accuspin Tube, where 

a porous barrier separates the two liquids and prevents them from mixing prior to centrifugation. On 

centrifugation, polymorphonuclear cells (PMNCs) descended through the membrane and to the 

bottom of the tubes while the mononuclear cells (MNCs) were retained in a thin layer between the 

plasma and the Ficoll medium. The MNC fraction was extracted from the plasma/medium boundary 

and the PMNC fraction from the bottom of the tubes using pipettes. DNA was subsequently extracted 

from each fraction and thus three DNA samples were obtained from each blood sample collected; 

from whole blood (MNCs and PMNCs combined), MNCs and PMNCs. 
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3.1.3 DNA extraction 

A simple salting out method was used for DNA extraction, based on an extraction method developed 

by Scotlab Bioscience (Coatbridge, Scotland, UK, protocol is provided in the appendix, pg. 54). After 

extraction, the DNA was dissolved in TE buffer (see aforementioned protocol) and its concentration 

measured using ultra-violet absorbance quantification (260 nm) on a Spectramax M2 microplate 

reader (Molecular Devices, Sunnyvale, CA, USA). 

3.2  Selection of loci and regions and design of assays 

3.2.1 Selection of loci for the study of DNAm in T2DM  

DNAm levels in four loci had been investigated at the IHA by sequencing of amplified, bisulfite 

converted DNA using Sanger methodology (referred to as the “Sanger study” hereafter). The four loci, 

TCF7L2 (transcription factor 7-like2), CDKAL1 (CDK5 regulatory subunit associated protein 1-like1), 

HHEX and KCNJ11, had been chosen on the basis that, according to the literature and a GWAS of a 

large proportion of the AGES-Reykjavik cohort, they were representative of loci exhibiting a strong 

genetic association with type 2 diabetes. The results from this analysis (data not shown) revealed little 

or no DNAm in the regions investigated in the TCF7L2 and CDKAL1 loci, and in one of two regions 

investigated in the KCNJ11 locus. Evidence for low methylation levels were observed in the HHEX 

locus and high methylation levels in the second region investigated in the KCNJ11 locus. More 

importantly, considerable inter-individual variation of DNAm levels was observed in this second region 

in the KCNJ11 locus and in the HHEX locus. Therefore, the HHEX and KCNJ11 loci were selected for 

further investigation. In addition, a third locus, KCNQ1, was selected for the present study because of 

its genetic association with T2DM and because DNAm levels in the locus had been shown to 

associate with the genotype of the identified T2DM risk variant (SNP (single nucleotide polymorphism) 

rs2334499) (93).  

3.2.2 Selection of regions per locus for the study of DNAm in T2DM 

In the present study, selected regions in one gene per locus were investigated. In each case the gene 

most proximal to the genetic variant exhibiting the strongest association with the disease was 

selected: in the HHEX locus, the HHEX gene, in the KCNJ11 locus the KCNJ11 gene and in the 

KCNQ1 locus the KCNQ1 gene. Genetic regions classified as CpG islands (CGI) or CGI shores (2 kb 

DNA stretch up- and downstream of CpG islands (18)) were targeted, principally those proximal to 

predicted transcription start sites (TSS). The regions were located with the University of California, 

Santa Cruz genome browser (Human March 2006 NCBI36/hg18 assembly) (94) using default track 

settings for identifying CGIs (the track is termed “CpG islands” in the browser) and TSS (both the 

“SwitchGear TSS” and “Epionine TSS” tracks were used, which predict TSS based on cDNA 

(complementary DNA) alignment (95) and computational analysis of sequence motifs (96), 

respectively). KCNJ11 contains two CGIs (figure 1A), and both had been investigated in the Sanger 

study. The CGI located at the 3’ end of the gene contains a predicted TSS. Results from the Sanger 

study revealed no methylation in this CGI and it was therefore not investigated in the present study. 

The other CGI in the KCNJ11 gene resides in the gene body and is where inter-individual variation 
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was detected in the Sanger study. This region was therefore investigated further in the present study 

and is termed “the KCNJ11 region” in the following text. The HHEX gene contains four CGIs, and two 

were selected for investigation in the present study (figure 1B); the largest CGI, located in the 5’ 

region, which contains a predicted TSS (termed “the HHEXI region”) and an island residing in the 

gene body (termed “the HHEXII region”). In HHEX, two CGI shores were additionally investigated and 

are termed “the HHEXIII region“ and “the HHEXIV region”. Finally, in KCNQ1 (figure 1C), two CGIs 

were selected, both containing a predicted TSS, located in the 5’ end (termed “the KCNQ1I region”) 

and the intragenically (“the KCNQ1II region”). The specific sequences analyzed per region are 

discussed in section 3.2.4 (pg. 21). Note that all region names are non-italicized to distinguish them 

from gene and loci names, e.g., the KCNJ11 region vs. the KCNJ11 gene and the KCNJ11 locus. 

 

Figure 1. Gene-maps of the four genes investigated in the study.  
The gene maps (adapted from the UCSC genome browser (94)) depict A. KCNJ11, B. HHEX, C. 
KCNQ1 and D. PM20D1. At the top of each map, a ruler indicates the scale and genomic position of 
the regions shown. Genes are depicted in blue and mRNAs in black, the exons as blocks, the introns 
as thin lines connecting the blocks and arrows indicating the direction of transcription. Transcription 
start sites (TSS, the “Epionine TSS” and “SwitchGear TSS” tracks were combined) are shown as light 
blue ticks and CpG islands are shown as green blocks and ticks (depending on their size relative to 
the gene). At the bottom of each map the positions of the regions investigated are indicated (thin line 
points approximately to the middle of each region, with the name of the region below; KCNJ11, 
HHEXI-IV, KCNQ1I-II and PM20D1).  
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3.2.3 Selection of regions for the study of confounding  

For the study of whether measured DNAm levels in whole blood may be confounded due to cellular 

heterogeneity, four regions were chosen to represent a range of inter-individual variation of DNAm 

from very low to very high. HHEXII, KCNJ11 and KCNQ1II were chosen to represent low to 

intermediate variability regions. A fourth region located in the only CGI in the PM20D1 gene (termed 

“the PM20D1 region”, figure 1D), was selected from previous, published work (66) to represent a 

highly variable DNAm region. More specifically, these regions were selected from a larger set of 

candidates (e.g., the other regions selected for the analysis of DNAm in T2DM) based on two criteria: 

First, on basis of the size of the inter-individual variability present in each region to represent a 

spectrum of variability from very low to very high and second, on basis of which region in each 

variability category had available data on DNAm in the largest number of whole blood DNA. 

3.2.4 Design of assays for measuring DNAm in the selected regions 

Assays were designed to measure DNAm levels using pyrosequencing methodology in a series of 

adjacent CpG sites in the selected regions. The assays are entitled with the name of the region they 

were designed for, e.g., “the HHEXI assay” for the HHEXI region. Primer sets (forward and reverse 

PCR primers, one tagged with biotin, and a sequencing primer) were designed using PyroMark Assay 

Design software (version 2.0.1.15, QIAGEN). The same software provided each assay’s dispensation 

sequence for the pyrosequencer. The primer sets chosen, and thus the specific CpG sites interrogated 

per region, depended on their quality as determined by the software. Primers that would bind to a 

sequence containing a CpG site were not considered. Primer sequences for the selected sets are 

provided in table 5 (appendix, pg. 57) and the genomic positions of the CpG sites analyzed in each 

region are listed in table 1. Assays were tested for PCR bias and their robustness assessed, and the 

results suggest that their precision is high but that their accuracy is low (sections 7.1.2.2 and 7.1.2.3, 

pg. 51 and 52). PCR bias, i.e., preferential amplification of particular alleles in a heterogeneous pool of 

alleles, has been demonstrated for bisulfite treated DNA (97) and most of the assays used here were 

biased towards unmethylated DNA to some degree. Consequently measured DNAm levels presented 

here may be lower than actual DNAm levels. Because this bias does not affect analysis outcomes, 

i.e., whether DNAm is or is not associated with diabetes status or cellular heterogeneity, but only the 

effect sizes, the assays are suitable to address the aims of the present study.  

Table 1. Genomic positions* of the CpG sites analyzed per region. 
  CpG site #, chromosomal position** 

Region Chromosome 1 2 3 4 5 6 7 8 9 10 

KCNJ11 11 17366204 187 178 168 135 129 123 114   

HHEXI 10 94439119 130 137 141       

HHEXII 10 94441605 607 619 627 633 637 644 646 662 676 

HHEXIII 10 94441831 855 875        

HHEXIV 10 94445518 522 529 539       

KCNQ1I 11 2423364 376 379 387 393      

KCNQ1II 11 2677095 111 115 117       

PM20D1 1 204085711 713 716 733 740 749 760    

* Human March 2006 NCBI36/hg18 assembly 
**The genomic position is given in full for CpG site 1 per region. For the other CpG sites, only the last 
three digits of the position are provided. 
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3.3 DNA methylation measurements 

DNAm was measured using a pyrosequencing based methodology. It involved three steps; 1. bisulfite 

conversion of DNA, 2. amplification of the converted DNA using PCR, and 3. sequencing of the 

products on a pyrosequencer. 

3.3.1 Bisulfite conversion of DNA samples 

Bisulfite conversion of DNA samples was carried out using the EZ DNA Methylation
TM

 kit (Zymo 

Research, Irvine, CA, USA, cat.nr.: D5004) following the manufacturer's instructions (the protocol is 

provided in the appendix, pg. 55). In short, the DNA was diluted in a buffer and heated to separate the 

strands before bisulfite was added to the solution and incubated overnight. The DNA was 

subsequently washed in a series of steps and finally eluted using 15 µl of the provided elution buffer. 

When the DNA was not analyzed immediately following the conversion process it was stored at -20°C 

for later use. As a general rule, when certain groups of individuals were being compared, e.g., 

individuals with and without type 2 diabetes, each “conversion batch” contained the same number of 

samples from each group so as to minimize potential confounding due to batch effects. For the same 

reason, DNA from blood fractions and the corresponding whole blood DNA for each individual was 

also converted in the same batch. Signal strength in the pyrosequencing reactions and data quality 

obtained from the reactions was observed to be positively associated with DNA concentration used in 

preceding PCRs (for details see sections 7.1.1.1 and 7.1.2.1, pg. 48 and 50). On basis of these 

results, 400 ng of DNA were converted for each sample used for the experiments presented in the 

results chapter. 

3.3.2 Amplification of converted DNA  

For nested-PCR, two reactions were performed; the first in a total volume of 10 µl containing 2 µl of 

the bisulfite converted DNA, and the second in a total volume of 30 µl containing 3 µl of the reaction 

mixture from the previous PCR. For one-step PCR, the reaction was performed in a total volume of 30 

µl containing 3 µl of the bisulfite converted DNA. Signal strength in pyrosequencing reactions on PCR 

products from a nested and a one-step PCR was not observed to differ (for details see section 7.1.1.2, 

pg. 49). A one-step PCR was therefore generally used for the experiments presented in the results 

chapter. 

PCRs were carried out on a 2720 Thermal cycler (Applied Biosystems, Foster City, CA, USA) with 

1X Standard Taq Reaction Buffer (New England Biolabs (NEB), Ipswich, MA, USA, cat.nr.: B90145), 

0.2 mM dNTP (NEB, cat.nr.: N04465), 0.25 μM of each primer (Sigma-Aldrich) and the amount of 

polymerase according to the manufacturer’s instructions in each case (Taq polymerase from NEB 

(“Standard-Taq”), OneTaq from NEB, AmpliTaq from Life Technologies, Carlsbad, CA, USA and 

TITANIUM-Taq from Clontech, Mountain View, CA, USA (cat.nrs.: M0273, M0481, N8080160 and 

639208 respectively) were tested). The signal strength in pyrosequencing reactions on PCR products 

from amplification using the four different polymerase brands was observed to differ considerably (for 

details see section 7.1.1.3, pg. 49). On basis of these results, TITANIUM-taq polymerase was 

generally used for the experiments presented in the results section. 
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For the nested PCR, the cycling conditions for both reactions were as follows; 5 cycles of 30s at 

96°C, 90s at 55°C and 120s at 72°C followed by 35 cycles of 30s at 96°C, 90s at an assay specific 

annealing temperature and 90s at 72°C. For the one-step PCR, the cycling conditions were as follows; 

40 cycles of 30s at 96°C, 90s at an assay specific annealing temperature and 90s at 72°C. Annealing 

temperatures were 62°C for all assays except for KCNQ1I (64°C) and HHEXIV (58°C). Pre-cycling 

conditions varied depending on the manufacturer’s instructions for the polymerase used in each 

reaction and post-cycling conditions were; 240s at 72°C followed by a hold at 4°C. 

3.3.3 Analysis of amplicons on the pyrosequencer 

Preparation of PCR products for analysis on the pyrosequencer was performed according to the 

manufacturer’s instructions (protocol is provided in the appendix, pg. 56). In short, the biotinilated 

sequencing template was extracted from the PCR product mixture by annealing with streptavidin 

coated sepharose beads (Streptavidin Sepharose
TM

 High Performance, GE Healthcare, cat.nr.: 17-

5113-01). The template was subsequently washed and made single stranded in a series of steps 

using a Vacuum prep workstation (QIAGEN cat.nr.: 9001518) and released onto a sequencing plate 

(QIAGEN, cat.nr.: 979201) containing annealing buffer (QIAGEN, cat.nr.: 979309) with the appropriate 

sequencing primer (table 5 in appendix, pg. 57). The amplicons were sequenced using a PyroMark 

Q24 pyrosequencer (QIAGEN) and PyroMark
TM

 Gold Q24 reagents (QIAGEN, cat.nr.: 97082).  

3.3.4 Standard DNA 

DNA samples of known methylation state, both 100% methylated (catalog number (cat.nr.): 59655) 

and 0% methylated (cat.nr.: 59665) were obtained from QIAGEN (Hilden, Germany, bisulfite converted 

by the manufacturer). To acquire DNA of intermediate methylation states, these samples were mixed 

in the desired proportions.  

3.4 Data processing and statistical analyses  

3.4.1 Analysis of pyrograms 

Pyrograms from the pyrosequencing reactions were analyzed with the “PyroMark Q24 Software” 

(v1.0.10, QIAGEN). Two types of data were extracted, DNAm data and signal strength data. 

DNAm data: Methylation levels were calculated from the pyrograms as the ratio between peak 

heights for methylated C’s and the sum of methylated and unmethylated C’s for each CpG site. 

Default software settings were used for quality assessment of the pyrograms per CpG site and 

measurements that failed the assessment were discarded when appropriate. Consequently, some 

individuals had missing values for one or more CpG site. A bisulfite conversion control was included in 

all assays where the conversion of a cytosine base in a non-CpG sequence was tested, which should 

theoretically be 100% if the conversion is complete. DNAm data from samples that failed this control 

were discarded as a whole (i.e., not on a per CpG basis) when appropriate. The DNAm data was 

deposited into the IHA’s database as a percentage value per CpG site per region for each individual. 

Signal strength data: Signal strength during the reactions was assessed by extracting data on light 

emission per nucleotide dispensation from the pyrograms. The average signal strength from all 
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dispensations was calculated and compared. The comparison was made in a relative manner, where 

the average signal strength under specific conditions was divided by the average signal strength from 

reactions that gave the lowest signal strength per analysis. The condition causing the lowest average 

signal strength thus had relative average signal strength of 1.  

3.4.2 General data processing 

For each statistical analysis, DNAm data was retrieved from the IHA’s database with other information 

for each individual, e.g., age, gender, BMI and et cetera. Mixed models were used to compare DNAm 

levels between groups of individuals, which assume normal distribution of the data. Data on a 

percentage scale has a skewed distribution when the bulk of the data is close to either 0% or 100%. 

DNAm data for the HHEXI, HHEXII, HHEXIII and KCNQ1I regions was transformed prior to mixed 

model analysis due to such skewing by taking the arcsine of the square root of each percentage value. 

When multiple DNAm measurements had been conducted on a particular sample using the same 

assay, average DNAm values from the measurements were used in subsequent analyses. For each 

analysis, outliers in the DNAm data were identified per CpG site. Outliers were defined as values 

outside mean ± 2.698s, where s is standard deviation. For a standard Gaussian distribution, this 

criterion defines 0.35% of the data farthest from the mean in both directions as outliers. Data was not 

pooled from measurements conducted under varying conditions (e.g., nested or one-step PCR, or with 

different polymerases) unless it had been established that no measurement bias was detectable due 

to the differing conditions (see section 7.1.2.4, pg. 52). 

3.4.3 Definitions of variables 

The characteristics used in statistical analyses of the DNAm data were obtained from the IHA’s 

database. This information was originally obtained from the participants in the AGES-Reykjavik and 

REFINE-Reykjavik studies through questionnaires, direct measurements, or from measurements of 

biosamples. Definitions, laboratory acquisition and derivations are explained in short: 

Body mass index, BMI (kg/m
2
), was calculated from measurements of weight (kg) and height 

(m), using the formula BMI = weight / height
2
. 

Homeostasis model assessment, HOMA indices, were derived from laboratory results of 
fasting glucose and insulin levels. Glucose (mmol/l) and insulin levels (µIU/ml) were 
measured in serum using automated clinical chemistry analyzers (Cobas c311 and e411 
respectively, from Roche, Basel, Switzerland). HOMA-IR was calculated using the formula 
HOMA-IR = [glucose]*[insulin]/22.5 and HOMA-β with the formula HOMA-β = 
20*[insulin]/([glucose]-3.5), where [glucose] and [insulin] are glucose and insulin 
concentrations in mmol/l and µIU/ml respectively. The output of the model is calibrated to 
give normal β-cell function of 100% and normal insulin resistance of 1 (82,83). 

Type 2 diabetes mellitus, T2DM, status was derived from answers to the questionnaires and 
laboratory results (fasting serum glucose level). If an individual had a history of T2DM 
and/or was taking T2DM medication and/or his blood glucose level was ≥ 7 mmol/l (WHO 
2006 diagnostic criteria (98)), he/she was defined as having T2DM. If an individual was not 
diabetic according to this criteria, but had a fasting plasma glucose level of 6.1-6.9 mmol/l 
(WHO 2006), he/she was defined as having impaired fasting glucose, IFG. Finally, 
individuals were defined as having normal fasting glucose, NFG, when they were non-
diabetic according to the criteria above and had a fasting plasma glucose level of < 6.1 
mmol/l (WHO 2006). 
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Blood cell ratios (%) were obtained from laboratory results. White blood cells (monocytes, 
lymphocytes, eosinophils, basophils and neutrophils) were counted in whole blood by an 
automated cell counter (Coulter HmX AL Hematology Analyzer, Beckman Coulter, High 
Wycombe, England, UK). The proportion of each cell type was calculated as the ratio of 
the count for the respective cell type of total white blood cell counts.   

3.4.4 Statistical analysis for assessing correlation between DNAm and cellular 
heterogeneity 

The coefficient of determination, R
2
, was used to estimate the proportion of inter-individual variation in 

measured whole blood DNAm levels explained by differential white blood cell counts. The analysis 

was conducted using unadjusted mixed models with DNAm as the dependent variable and a random 

intercept term to account for the correlation of DNAm levels between CpG sites within a person 

(performed in SAS Enterprise Guide version 4.2). Since R
2
 cannot be obtained directly from such 

analyses, two models were applied, an intercept only model containing only CpG sites as fixed effects 

and a full model where additionally, the proportional number of a specific white blood cell type was 

added to the intercept model as fixed effect. R
2
 was then calculated from the residual variance (vr) and 

variance of the random intercept (vs) terms using the formula R
2
=(Vi-Vf)/Vi where Vi=vr+vs for the 

intercept only model and Vf=vr+vs for the full model. Individuals that had missing DNAm data for one or 

more CpG site (due to failed quality check, see section 3.4.1) or outliers in one or more CpG sites (for 

criteria, see 3.4.2) were analyzed separately. 

3.4.5 Statistical analysis for comparing DNAm between cell fractions 

For comparison of DNAm in two blood cell fractions, PMNC and MNCs, non-parametric statistical tests 

were used to avoid making a generalized assumption about the distribution of the data, which may 

differ between regions. Paired Wilcoxon signed rank test was used to assess statistical differences in 

methylation levels between the two cell populations and their correlation assessed with Spearman’s ρ 

correlation coefficient using R version 2.13.2. 

3.4.6 Statistical analysis for assessing correlation between DNAm and T2DM 
or HOMA indices 

Mixed models were used to estimate the association between DNAm levels and diabetes status or 

HOMA indices. For these analyses, both unadjusted and adjusted models with a random intercept 

term were used where DNAm was the dependent variable, CpG sites fixed effects, and the 

independent variable and the covariables were added to the model as fixed effects. Individuals that 

had missing DNAm data for one or more CpG site or outliers in one or more CpG sites were analyzed 

separately. Such exclusion was not conducted when sample sizes were small (n < 25) to avoid losing 

statistical power and because identifying outliers from measurements on such small numbers of 

individuals may be misleading. 

3.4.7 Other statistical analyses 

Statistical tests used in analyses that are not described in detail above are specified in the results 

chapter when applied. These are Student’s t-test (Welch, i.e. assuming unequal variance in the groups 

being compared) and Spearman’s ρ correlation coefficient, performed in R version 2.13.2.  
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3.4.8 Plotting 

All plots presented in the results and appendix chapters were prepared using R version 2.13.2. 

Figures 2-5, 10 and 12 were prepared using built-in functions while plotting figures 6-9, 11, 13 and 14 

required additional packages called VennDiagram and gglplot2. A script was created, and is provided 

in the appendix (section 7.4, pg. 59), for preparing the plots presented in figures 6, 7 and 14. As 

multiple variations of boxplots exist, it is worth noting that the default settings for the boxplot() function 

in R were used here. In short the box’s hinges correspond the first and third quartiles, and a horizontal 

line is drawn through the box marking the median. The whiskers extend to the most extreme data 

point that is no more than 1.5 IQR (inter quartile range, i.e., length of the box) from the box. Finally, 

circles or dots are drawn for data points that fall outside the range of the whiskers. In some cases, 

figures were edited, e.g., to indicate statistical significance between groups of data. Such editing was 

performed using GIMP graphics software, version 2.6 
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4 Results 

4.1 Investigation of whether white blood cell heterogeneity can 
confound analyses of DNA methylation data 

DNAm levels measured in DNA isolated from whole blood are dependent on the methylation levels in 

each white blood cell type and on the ratio of each cell type of the total cell count. A study was 

conducted to estimate whether cellular heterogeneity had potential to confound analyses of whole 

blood DNAm data by first testing for an association between whole blood DNAm levels and cellular 

heterogeneity, and second to test whether differential methylation in two cell fractions (MNCs and 

PMNCs) might underlie the association, if any. The analysis was not conducted in a disease specific 

context but rather its aim was to investigate the potential for such confounding in general. 

4.1.1 Analysis testing for association between DNAm levels and cellular 
heterogeneity 

DNAm was measured using pyrosequencing based methodology in four regions; HHEXII (10 CpG 

sites), KCNJ11 (8 CpG sites), KCNQ1II (4 CpG sites) and PM20D1 (7 CpG sites), i.e., in CGIs in four 

genes; HHEX, KCNJ11, KCNQ1 and PM20D1 respectively, in DNA isolated from whole blood to test 

whether the measured levels were associated with cellular heterogeneity. Samples from apparently 

healthy adults (~ 45% males), aged between 22-96 years were selected for this study from the AGES-

Reykjavik and REFINE-Reykjavik cohorts (n=211 in total). Samples were analyzed independently for 

each region, and therefore there was only partial sample overlap between regions (figure 13, pg. 57). 

After exclusion of individuals due to missing values and outliers, whole blood DNAm data was 

successfully obtained for 169 individuals for HHEXII, 54 for KCNJ11, 49 for KCNQ1II and 59 for 

PM20D1. 

Whole blood DNAm levels differed between CpG sites within each region (figure 2), but were 

generally low for HHEXII (range ~0-20%), intermediate for KCNQ1II (range ~40-60%), intermediate to 

very high for KCNJ11 (range ~60-100%) and ranging from very low to very high for PM20D1 (range 

~0-100%). The results also indicated that intra-individual variability in DNAm differed between regions; 

it was high for KCNJ11 and KCNQ1II, but low for HHEXII and PM20D1. In general, inter-individual 

variability was very low for KCNQ1II, intermediate for HHEXII and KCNJ11 and very high for PM20D1; 

the standard deviation per CpG site ranged between 1.4-1.9 percentage points (pp) for KCNQ1II, 1.5-

3.0 pp for HHEXII, 1.3-3.4 pp for KCNJ11 and 22.8-25.3 pp for PM20D1. 
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Figure 2. Percent DNA methylation in whole blood samples. 
Percent DNAm (y-axis) in whole blood DNA per CpG site (x-axis) in the HHEXII (n=169), KCNJ11 
(n=54), KCNQ1II (n=49) and PM20D1 (n=59) regions. Data for each region is depicted in a separate 
boxplot (the boxplot is defined in detail in the materials and methods, pg. 26). Note the varying scale 
on the y-axis per plot. 

The inter-individual variability in whole blood DNAm level could in theory, at least partly, be 

explained in terms of differential white blood cell composition between the studied individuals. The 

numbers of white blood cells, neutrophils, lymphocytes, monocytes, eosinophils and basophils, were 

counted using an automated cell counter. In the samples used for this study (n=211), the cell counts 

varied considerably between individuals. The relative standard deviation for the neutrophil proportion 

was 14.7% (56.8% ± 8.3%), lymphocytes 25.8% (29.7% ± 7.7%), monocytes 30.8% (9.4% ± 2.9%), 

eosinophils 61.1% (3.6% ± 2.2%) and basophils 96.9% (0.5% ± 0.5%). An analysis was conducted to 

test whether the variation in proportional numbers of specific white blood cell types were associated 

with variation in measured DNAm levels. Statistical analyses indicated that a significant proportion of 

the DNAm level variability in the HHEXII region could be explained by this factor, or up to 36% 

(p<0.0001, table 2). Additionally, DNAm levels in the KCNJ11 region were suggestively associated 

with the basophil proportion, explaining 3% of the variation (p=0.04, table 2), perhaps only owing to 

multiple testing. None of the five white blood cell ratios were significantly associated with 

measurement outcomes in the KCNQ1II and PM20D1 regions (table 2). These results were minimally 

affected by outliers and missing values (in total, n=10 for the HHEXII data, n=10 for KCNJ11, n=1 for 
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KCNQ1II and n=0 for PM20D1), except for the association between DNAm in KCNJ11 and the 

basophil proportion, which was not significant when this data was included. 

Table 2. Proportion of variation in measured DNA methylation level accounted for by cellular 
heterogeneity.  

 Variance explained by cell proportion (%) 

Region Lymphocytes Monocytes Neutrophils Eosinophils Basophils 

HHEXII 36** 0 27** 0 0 

KCNJ11 0 0 0 0 3* 

KCNQ1II 1 0 0 0 0 

PM20D1 0 0 0 0 0 

*p<0.05, **p<0.0001 

Note: the small discrepancy between the results for HHEXII in the table presented here, and in the 
article manuscript (see end of the thesis) stems from transformation of the data, which was not 
conducted prior to submission of the manuscript. 

4.1.2 Comparison of DNAm levels in cell fractions 

To examine if the variability in measured methylation level at different CGIs in whole blood was 

attributable to differential methylation in the white blood cell types comprising whole blood, whole 

blood samples from 20 individuals were fractionated into mononuclear cells (MNCs, containing 

lymphocytes and monocytes) and polymorphonuclear cells (PMNCs, containing neutrophils, basophils 

and eosinophils), DNA isolated and methylation levels measured at the four regions in each fraction 

(DNA was also isolated from whole blood for these individuals, methylation levels measured in each of 

the four regions and the data included in the analysis described in section 4.1.1 above).  

A comparison of the methylation levels measured in MNCs and PMNCs indicated higher average 

methylation in MNCs in 21 of the 29 CpG sites investigated in total. Paired Wilcoxon signed rank test 

revealed that 18 of these CpGs were significantly differentially methylated in the two different cell 

fractions, located in the HHEXII, KCNJ11 and KCNQ1II regions (figure 3). The average absolute 

difference between the two cell fractions was highest in the HHEXII region. All ten CpGs studied in this 

region showed significantly higher methylation in MNCs, the average DNAm levels differed by 3.4-15.7 

pp per CpG site (corresponding to ~2.3-4.0 fold higher methylation levels in MNCs). Methylation in the 

KCNJ11 region was also significantly higher in MNCs. The average difference was more moderate 

than in the HHEXII region, but nonetheless significant in 7 out of 8 CpGs, ranging between 0.4-6.1 pp 

per site (corresponding up to ~1.1 fold higher methylation levels). In the case of the KCNQ1II region, 

only one CpG site was significantly differentially methylated between the two fractions, where average 

levels differed by 1.2 pp between cell fractions, corresponding to ~2% higher methylation levels in 

MNCs. DNAm levels did not differ significantly between cell fractions in the PM20D1 region. 
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Figure 3. Percent DNA methylation in mononuclear and polymorphonuclear cells. 
Percent DNA methylation (y-axis) in mononuclear and polymorphonuclear cells (MNCs and PMNCs, 
n=20) per CpG site (x-axis) in the HHEXII, KCNJ11, KCNQ1II and PM20D1 regions. Data for each 
region is depicted in a separate boxplot where measurements for MNCs are shown in red and for 
PMNCs in blue. The dotted lines separating the boxes indicate that at each CpG site a pair of data is 
being compared (i.e., for MNCs and PMNCs). Significantly (p<0.05) differentially methylated CpG sites 
(MNCs versus PMNCs DNAm) are indicated with an asterisk. Note the varying y-axis scale. 

4.1.3 Analysis testing for correlation between DNAm in blood cell fractions 

The results presented in figure 3 suggest that the methylation patterns between cell fractions are 

highly similar overall. To quantify this observation the correlation between methylation levels for the 

two different fractions was analyzed.  

The correlation was very high in all regions, irrespective of whether methylation levels differed 

between cell fractions or not (figure 4); Spearman’s ρ was 0.72 for the HHEXII region, 0.93 for 

KCNJ11, 0.80 for KCNQ1II, and 0.95 for PM20D1.  
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Figure 4. Correlation between DNA 
methylation in mononuclear and 
polymorphonuclear cells. 
Comparison of DNA methylation 
levels measured in two cell fractions 
(n=20), mononuclear cells (MNCs) 
and polymorphonuclear cells 
(PMNCs). Percent methylation in 
PMNCs (y-axis) is plotted against 
percent methylation in MNCs (x-axis). 
Each dot represents the two 
measurements for a single CpG per 
individual. The Spearman’s ρ for 
correlation between measurements in 
MNCs and PMNCs for each assay is 
shown in the legend. 
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4.2 Comparison of blood cell counts in diabetics and controls 

The results presented in section 4.1 demonstrate a potential for confounding in the analysis of DNAm 

data due to cellular heterogeneity in whole blood. For this reason, an analysis was conducted to test 

whether the proportional number of specific cell types differed in individuals with type 2 diabetes 

compared to individuals without the disease. 

4.2.1 Comparison of proportional cell counts in diabetics and controls 

The proportional numbers of five cell types (monocytes, neutrophils, lymphocytes, basophils and 

eosinophils) were compared between individuals with and without type 2 diabetes in the AGES-

Reykjavik cohort (i.e., all individuals with T2DM were defined as cases and all individuals without the 

disease as controls, without regard to any other factors). Of the 5764 individuals recruited, data on 

both diabetes status and the five white cell counts was available for 5688, 781 of whom were diabetic. 

The statistical comparison was unadjusted, conducted using Student’s t-tests. 

The average proportional number of neutrophils was higher in individuals with type 2 diabetes 

compared to controls (it was 59.5% in cases and 57.6% in controls, p = 5·10
-10

), the average 

proportion of lymphocytes was lower (it was 27.6% in cases and 29.3% in controls, p = 3·10
-9

) and 

similarly the average monocyte proportion was lower in diabetic individuals (it was 8.8% in cases and 

9.2% in controls, p = 2·10
-5

, figure 5). A subtle difference in average basophil and eosinophil 

proportions was also detected between cases and controls, but it was not statistically significant 

(p=0.4 and p=0.2 respectively). 

 

Figure 5. Comparison of proportional numbers of five white blood cell types in diabetic and 
non-diabetic individuals.  
The proportional number of total cell counts (y-axis) for five white blood cell types (x-axis) were 
compared in individuals with (cases, n=781) and without (controls, n=4907) type 2 diabetes. On the x-
axis, names are abbreviated, where MO is monocytes, NE is neutrophils, LY is lymphocytes, BA is 
basophils and EO is eosinophils. An asterisk indicates where significant (p<0.05) differences in 
proportional numbers were detected between the cases and controls. 
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Table 3. Association between DNAm and T2DM. 

Region n (T2DM / NFG) β* p* 

HHEXI** 23 (9/14) -0.26 0.5515 

HHEXII** 19 (11/8) -2.85 0.0445 

HHEXIV 16 (9/7) -1.41 0.5627 

KCNJ11 20 (6/14) 0.05 0.9411 

KCNQ1I** 13 (8/5) -1.03 0.0393 

KCNQ1II 14 (8/6) -0.36 0.6328 

*From an unadjusted model 
**DNAm values were transformed, see materials 
and methods for details. 

 

4.3 Investigation of DNA methylation in type 2 diabetes genetic risk loci  

4.3.1 A comparison of DNAm levels in six regions between diabetics and 
controls 

As a first stage of this study (referred to hereafter as the “discovery stage”) DNAm levels in whole 

blood from type 2 diabetic individuals (referred to as diabetics or cases) were compared to controls 

(individuals with normal fasting glucose (NFG), also referred to as non-diabetics) to attempt to identify 

aberrantly methylated regions in individuals with diabetes. Six regions in three genes were 

investigated; the HHEXI (4 CpG sites), HHEXII (10 CpGs) and HHEXIV (4 CpGs) regions in the HHEX 

gene, the KCNJ11 region (8 CpGs) in the KCNJ11 gene and the KCNQ1I (5 CpGs) and KCNQ1II (4 

CpGs) regions in the KCNQ1 gene. Each region was investigated in an independent set of DNA 

samples (there was only a single sample overlap between KCNQ1I and KCNQ1II, otherwise no 

sample overlapped between any regions) from 13-23 individuals each, roughly half diabetic and half 

controls, selected randomly from the AGES-Reykjavik cohort.   

DNAm levels differed between CpG sites within each region but were generally close to 0% in the 

HHEXI and KCNQ1I regions (ranging between ~0-5%), low in the HHEXII region (ranging between ~0-

20%), intermediate in the KCNQ1II region (ranging between ~50-70%) and intermediate to high in the 

KCNJ11 and HHEXIV regions (ranging between ~70-100%, figure 6). Inter-individual variation was 

close to none in the HHEXI and KCNQ1I regions (standard deviation per CpG site ranged between 

0.4-0.7 pp and 0.1-0.5 pp respectively), very low in the KCNQ1II region (ranging between 1.0-1.8 pp) 

but higher in the other three regions (ranging between 1.5-3.8 pp in HHEXII, 3.7-8.3 pp in HHEXIV 

and 0.8-3.0 pp in KCNJ11, figure 6). Comparison of average DNAm levels in diabetics and controls 

indicated that for four of the regions tested, HHEXI, HHEXIV, KCNJ11 and KCNQ1II the inter-

individual variation was not explained in terms of T2DM phenotype as the average difference per CpG 

site was either close to none and/or was alternately positive and negative across the respective CpG 

sites (the difference between the two groups is better displayed on figure 14 in the appendix, pg. 58, 

than on figure 6). However, in the HHEXII and KCNQ1I regions, average DNAm levels were lower in 

diabetics compared to controls in all 

respective CpG sites (figure 14). The 

difference ranged between 0.9-3.0 pp in 

HHEXII and between 0.1-0.5 pp in KCNQ1I 

per CpG site. Statistical analysis of the data 

indicated that average DNAm levels across 

the respective CpG sites differed between 

cases and controls in HHEXII and KCNQ1I 

(p=0.0445 and p=0.0393 respectively), but 

not in the other four regions (table 3). 
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Figure 6. Comparison of DNAm in diabetics and controls in six regions in three genes.  
DNAm levels (y-axis) per CpG site (x-axis) in six regions in three genes (indicated at the top of the 
figure) are compared between diabetics (blue) and controls (red). The dots indicate individual 
measurements for each sample, the lines the mean methylation, and the ribbons the 95% confidence 
intervals per CpG site. The lines and ribbons extend between the CpG sites for better visualization of 
the data and are not intended to imply any interrelation between measurements. The same plots are 
shown in an enlarged form in the appendix (figure 14). 

An assay was prepared to investigate DNAm in CpG sites located directly adjacent to the HHEXII 

region (~150 base pairs downstream, region was termed HHEXIII).  DNAm levels were compared 

between diabetics (n=11) and controls (n=8), as before, in an independent set of samples.  

Methylation levels in the HHEXIII region ranged between ~0-15% across the three CpG sites 

investigated, and the standard deviation between 1.4-2.3 pp. Average DNAm levels were lower in 

individuals with type 2 diabetes in the region; the difference ranged between 0.9-1.8 pp per CpG site. 

However, unadjusted mixed model statistical analysis of DNAm levels across the three CpG sites 

indicated that the difference was not significant (β=-1.72, p=0.1119). 

4.3.2 Comparison of DNAm levels in the HHEXII region in a larger set of 
samples 

To test whether the result that average DNAm levels in the HHEXII region differ between cases and 

controls in the HHEXII region was robust, and to be able to account for covariates and confounding 

factors that are associated with type 2 diabetes (either the disease state itself, or with the development 

of T2DM) and DNAm levels (age (99,100), gender (99,101), BMI (66,102) and cellular heterogeneity), 

the analysis was repeated in a larger set of samples. Samples were again selected from the AGES-

Reykjavik and REFINE-Reykjavik cohorts from male and female (~55% male ratio) adults (age range 

was 56-96 years). After exclusion of individuals with missing values and outliers, DNAm data was 

analyzed for 378 individuals, of which 164 controls and 214 cases. This analysis is referred to 

hereafter as “the replication stage”. 

The results indicated that DNAm levels ranged between ~0-20% in the HHEXII region in both 

diabetics and controls (figure 7) and that the overlap of measured levels in the two groups was very 

high. Nonetheless, in agreement with the previous results, lower average DNAm levels were observed 

in diabetic individuals compared to controls (figure 7), although more moderate than in the discovery 

stage the difference per CpG site ranged between 0.5-1.1 pp. The difference was statistically 

significant both in an unadjusted model and after adjusting for the potential confounders (table 4).  In 
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Figure 7. 
Comparison of 
DNAm levels in 
HHEXII in diabetics 
and controls.  
DNAm levels (y-axis) 
per CpG site (x-axis) 
in the HHEXII region 
is compared between 
diabetics (blue) and 
controls (red). The 
dots indicate individual 
measurements for 
each sample and the 
lines and “ribbons” the 
mean methylation and 
the 95% confidence 
intervals respectively, 
per CpG site. The dots 
are “jittered” for better 
visualization. 

Table 4. Association between DNAm in 
HHEXII and T2DM. 

 

β p 

model 1* -0.90 0.0010 

model 2** -0.54 0.0090 

model 3*** -0.62 0.0047 

*Unadjusted.  

**Adjusting for cellular heterogeneity (using the 
percentage of lymphocytes of total white blood 
cell counts). 

***Adjusting for cellular heterogeneity, age, 
gender, and BMI. 

the full model (model 3), cellular heterogeneity (% lymphocytes of total white blood cell count) was 

significantly associated with DNAm levels but age, BMI and gender were not. The results from the 

unadjusted model (model 1) and the model only adjusting for cellular heterogeneity (model 2) allow for 

estimation of the confounding effect caused by 

this covariate; the unadjusted beta estimate for 

DNAm difference in diabetics versus controls 

was 67% higher than the beta estimate from the 

model adjusting for cellular heterogeneity. These 

results (applies to all results discussed in the 

paragraph) were minimally affected when 

individuals were included that had been 

identified as outliers (n=3) or had missing DNAm 

values (n=22) 

 

 

4.3.3 Analysis testing for association between HHEXII DNAm and HOMA 
indices 

The genetic association between the HHEX locus and T2DM is thought to be mediated through effects 

on β cell function (71,103–105) rather than insulin sensitivity. An analysis was conducted to test 

whether DNAm in this locus was associated with β cell function or insulin sensitivity. A subset of the 
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samples that were used in the analysis presented in section 4.3.2 had available data on fasting serum 

glucose and insulin levels (n=244), enabling an estimation of the β cell function and insulin sensitivity 

of these individuals through the HOMA-β and HOMA-IR indices. The association between these 

indices and DNAm in HHEXII was therefore tested.  

The variation in both HOMA-β and HOMA-IR values was very high in the 244 samples analyzed; 

the relative standard deviation was 87.3% for HOMA-β (average and standard deviation were 104% ± 

90.8%) and 151% for HOMA-IR (4.88 ± 7.37). Both indices were log transformed prior to statistical 

analysis of the data due to their highly skewed distribution. The statistical analysis revealed a 

significant positive association between DNAm in the HHEXII region and HOMA-β (p=0.0242, β=0.47) 

after adjusting for cellular heterogeneity. No association was however detected between DNAm in the 

region and the HOMA-IR index (p=0.9385, β=-0.01, in the same model). 
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5 Discussion 

5.1 Heterogeneity in white blood cells has potential to confound 
analyses of DNA methylation data 

5.1.1 Summary of aim and results 

Studies on DNAm using whole blood DNA frequently do not control for inter-individual variation in the 

cellular population from which the DNA is derived, the white blood cells; lymphocytes, neutrophils, 

eosinophils, basophils and monocytes. This has been criticized due to hypothesized potential for 

confounding effect when cellular heterogeneity is present in conjunction with cell type specific DNAm 

(91). Here, the aim was to study this hypothesis in a more comprehensive manner than has been 

done previously by first testing for an association between whole blood DNAm levels and cellular 

heterogeneity, and second to test whether differential methylation in two cell fractions might underlie 

the observed association, if any.  

The results indicated that indeed a locus specific association between measured DNAm levels and 

cellular heterogeneity in whole blood can be observed. Further, significant differences in locus specific 

DNAm levels were observed between two blood fractions, MNCs and PMNCs, suggesting that it could 

be the underlying cause of the observed association between DNAm levels and white blood cell 

counts. Finally, in all loci tested DNAm in MNCs and PMNCs was highly correlated independent of 

differential methylation levels in these fractions. 

5.1.2 Interpretation of the results, their comparability with other studies and 
the hypothesis under question 

The results indicated that up to 36% of the inter-individual variation in whole blood DNAm in the 

HHEXII region was attributed to cellular heterogeneity, suggesting that a considerable confounding 

can affect measured levels of whole blood DNAm due to differences in the cellular population. A weak 

association between DNAm in the KCNJ11 region and the basophil ratio of small effect size (3%) was 

also detected. However, given a very small proportion of basophils, as well as a suggestive p-value of 

0.04, this result does not convincingly suggest this as an additional example of cellular heterogeneity 

confounding methylation measurements. Additionally, given the number of tests performed, a 

correction for multiple testing may be appropriate. Any such correction would presumably deem the 

association between the basophil ratio and methylation in the KCNJ11 region not significant, while 

even a conservative correction (e.g., Bonferroni) would not affect the significance of the association 

between cell fractions and DNAm in the HHEXII region. No effect on measurements for the KCNQ1II 

and PM20D1 regions was observed, suggesting that this type of confounding does not affect DNAm 

measurement outcomes universally throughout the genome, but may be locus-specific. These results 

are in concordance with a previous study (106) where out of a total of 16 loci assayed, only a single 

locus was affected in similar magnitude as the HHEXII region. Together, these studies indicate that 

while measured DNAm levels in a substantial proportion of loci may not be affected by cellular 

heterogeneity, measurement outcomes in some loci may be.  
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DNAm levels in PMNCs and MNCs differed significantly in individual CpG sites in three out of four 

regions examined; i.e., in all CpG sites analyzed in the HHEXII region, 7 of 8 CpG sites analyzed in 

the KCNJ11 region and 1 of 4 CpG sites analyzed in the KCNQ1II region but not in the PM20D1 

region. The gross difference observed in the HHEXII region may reflect the fact that the HHEX gene is 

differentially expressed in the various blood cells (107–109). Just as in whole blood DNAm 

measurements, this analysis may have been confounded by cellular heterogeneity because PMNCs 

and MNCs both consist of groups of cells. However, the fractionation split up the two white blood cell 

groups that affected whole blood DNAm measurements and their numbers are so dominant relative to 

the other groups that the analysis is likely to be minimally affected. Kerkel et al. have previously 

studied methylation in these fractions, and identified multiple differentially methylated loci (110). Their 

analysis was however not described in detail. Nonetheless, together these studies indicate that 

differential methylation between white blood cell types may be relatively common. 

Analysis of DNAm both in whole blood and blood fractions has allowed evaluation of the hypothesis 

that measured DNAm levels in whole blood can be confounded by cellular heterogeneity due to 

differential methylation levels in the various white blood cell types. Differential methylation was 

observed between cell fractions in the HHEXII, KCNJ11 and KCNQ1II regions and not in the PM20D1 

region, but a significant effect due to cellular heterogeneity on whole blood DNAm measurement 

outcomes was only detected (convincingly) for the HHEXII region. However, the difference in DNAm 

between fractions was very moderate in the KCNJ11 and KCNQ1II regions and in the KCNQ1II region 

only one of four CpG sites was differentially methylated. It is therefore possible that the effect of 

cellular heterogeneity on measurement outcomes for the KCNJ11 and KCNQ1II regions, if any, is 

subtle, and thus undetectable by the methods employed in the study. It can therefore be argued that 

the results presented here support the hypothesis, and that they suggest a need to control for cellular 

heterogeneity in the analysis of methylation in blood cells. 

5.1.3 Discussion of ideas to address the confounding effect of cellular 
heterogeneity 

Since the confounding effect would only be observed when both the genomic region of interest is 

differentially methylated amongst white blood cell types, and when there is blood cell count 

heterogeneity in the individuals being compared, controlling for this problem may be addressed in 

different ways depending on available data. Differences in white blood cell composition may be 

assessed, and controlled for when applicable, if blood cell counts for the individuals under 

investigation are available. In that scenario, subjects can alternatively be paired with controls that are 

concordant in terms of cellular composition prior to the analysis. Furthermore, whole blood can be 

fractionated to assess possible differential methylation in the area of interest. This may be done with 

the Ficoll medium method used here which is relatively easy to perform, but due to heterogeneity in 

the fractions, as noted previously, this approach may not be sufficient to address the problem. Finally, 

referring to the literature may be advisable to assess the risk of altered blood cell counts in the groups 

of individuals under study. For example white blood cell counts have been shown to be associated 

with the development of cancers (111) and coronary heart disease (112). This raises the issue that 
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whenever there is a difference in cell fractions associated with disease, an adjustment for blood cell 

proportions could be essential for better controlled analyses. 

The different approaches may cause inconsistent results, and therefore it may be important to 

standardize methods for this correction. As has been discussed previously (106), adjusting for white 

blood cell counts can be achieved with standard statistical approaches. Such an approach may be 

well suited for that purpose since such data is presumably readily available at many laboratories 

conducting experiments on whole blood DNA. This could be achieved in two ways: One is to use 

multiple variables accounting for the absolute number of each cell type (commonly five; neutrophils, 

lymphocytes, monocytes, basophils and eosinophils) or alternatively use a single variable accounting 

for the proportion of one cell type. Using a single variable is more appealing because the other option 

would reduce the number of degrees of freedom. However, to be able to correct for the confounding 

effect of cellular heterogeneity in statistical models by using a variable accounting for the proportional 

number of one cell type, there needs to be a correlation between methylation levels in the different 

types of white blood cells. Results from this study indicate that in the analyzed regions, methylation 

patterns across the corresponding CpG sites within a region are very similar between the different cell 

types irrespective of demonstrable differences in the cell specific absolute methylation levels. The 

study therefore suggests that use of a single variable to account for the proportional number of a 

single cell type (e.g., neutrophils or lymphocytes) in statistical analyses might be sufficient to correct 

for the confounding effect of cellular heterogeneity on DNAm measurements conducted using whole 

blood DNA. 

In line with the suggestions above, proportional cell counts were compared between diabetics and 

non-diabetics in the present study to assess the need to control for cellular heterogeneity in the 

subsequent analyses testing for association between DNAm and T2DM. The results indicate that 

average proportional numbers of neutrophils and lymphocytes (together comprising about 85% of the 

total white blood cell count) differ significantly between cases and controls (section 4.2). Although a 

more detailed analysis needs to be conducted to verify these results (e.g., adjusting for potential 

confounders), they, in conjunction with the data indicating an association between proportional cell 

counts and DNAm levels, suggest a need to control for cellular heterogeneity in the analysis of DNAm 

data in association with type 2 diabetes. Finally, the study provides an example of how this 

confounding factor can affect analysis of DNAm data: When comparing DNAm differences between 

diabetics and non-diabetics in HHEXII in the replication stage, the unadjusted β-value was highly 

overestimated, specifically 67% higher than the estimate from the analysis controlling for cellular 

heterogeneity (section 4.3.2).  

5.1.4 Other considerations 

The findings from the present study may not only be relevant for methylation measurements using 

whole blood DNA. Other tissues are samples of different types of cells as well, so a similar problem 

could affect measurements in these tissues. The data presented here indicates that although 

methylation levels may differ between blood cell types in some loci, the methylation pattern may at the 

same time be very similar (as indicated by the high correlation between methylation levels). This is in 
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agreement with previous studies which have shown that different cells and tissues, even from 

separate germ layers, generally have similar DNAm patterns (17,106,113). If blood cell DNAm 

measurements could be used as surrogates for methylation in other tissues based on this feature, it 

might be preferable to use blood.  

DNAm levels are sometimes assessed in a global manner, assaying CpG sites across the entire 

genome. Since the study presented here was conducted in a gene-specific manner the results may 

not apply to global DNAm measurements. Indeed, in a previous study using LUMA (Luminometric 

methylation assay) to estimate global methylation, it was reported that no association was detected 

between methylation levels and white blood cell counts (100). However, as mentioned in the 

introduction, Wu et al. report that global methylation levels in PMNCs, as measured by LUMA, are 

significantly higher than in MNCs and are not correlated (23). In the same study, results from three 

other assays for global DNAm showed no association between PMNCs and MNCs methylation levels. 

It is therefore possible that global methylation measurements are also confounded by cellular 

heterogeneity. A more detailed analysis, comparing both the association between global methylation 

levels in whole blood and cellular composition and global methylation levels in cell fractions, such as in 

the present study, should be conducted in order to extend these observations. 

5.1.5 Future directions 

The results from the present study call for an analysis of larger number of regions to reveal the full 

extent of how confounding effects may influence analyses on DNAm conducted using whole blood 

DNA. It is important to assess whether measured methylation levels at a considerable amount of loci 

are affected by this effect or whether only a small fraction of loci are affected. Second, it would be of 

value to study whether methylation of CpGs positioned in certain genes is more prone to be affected 

by this factor than others (e.g., in genes that are differentially expressed in the different cell subtypes 

such as HHEX). Finally, it would be interesting to investigate whether certain sequences (e.g., introns, 

exons, CGIs, CGI shores, transcription start sites or promoter regions) are more likely to be affected 

by this confounding effect. 
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5.2 Type 2 diabetes associated DNA methylation identified in genetic 
diabetes risk locus  

5.2.1 Summary of hypothesis, aim and results 

It was hypothesized here that aberrant DNAm could be associated with T2DM due to possible 

inherited or environmentally or lifestyle induced epigenetic aberrations. To address this hypothesis the 

study aimed to identify aberrant DNAm in individuals with T2DM. Genetic studies, most recently GWA 

studies, have been very successful in identifying loci containing genetic variants associated with type 

2 diabetes. It was hypothesized that these loci may present good candidates for studying epigenetic 

aberrations that may be associated with the disease, due to the assumption that altered expression 

caused by epigenetic mechanisms may have similar consequences as alterations in gene products 

caused by genetic variants (at least if such alterations change the product's activity). DNAm in three 

such loci were investigated in the present study. 

The results indicated that average DNAm levels were significantly lower in individuals with type 2 

diabetes compared to controls in at least one of the seven regions investigated, located in the HHEX 

locus (HHEXII). Importantly, the data indicates that the observed difference in DNAm in the HHEXII 

region is not carried by an association with obesity and that it is not an artifact due to differences in the 

white blood cell composition of diabetics and controls. Finally, the results indicate that methylation in 

the region may be associated with T2DM through effects on pancreatic β cell function, perhaps an 

indication that the aberration affects the same molecular mechanism in the cell as does the genetic 

T2DM risk variant in the locus. 

5.2.2 Interpretation of the results and their comparability with other studies 

Of the seven regions investigated in total in the discovery stage, average DNAm levels were observed 

to differ significantly between cases and controls in two; in the HHEXII and KCNQ1I regions. However, 

DNAm levels in the KCNQ1I region were close to 0% and the difference was therefore not considered 

a convincing example of DNAm aberration in T2DM. Using close to 400 samples, average DNAm 

levels were again observed to be significantly lower in diabetic individuals in the HHEXII region and 

the result robust after controlling for cellular heterogeneity, age, and gender and not carried by an 

association with BMI. These findings support the hypothesis that DNAm aberrations may be 

associated with T2DM. Whether they are environmentally or lifestyle induced, inherited or stochastic 

cannot be inferred from the results presented here.  

Two recent studies by Bell et al. and Toperoff et al. (86,87) have included an investigation of whole 

blood DNAm levels in the loci investigated here, HHEX, KCNJ11 and KCNQ1, in attempts to identify 

DNAm aberrations in individuals with type 2 diabetes, but neither study detected the aberration in 

HHEX. Bell et al. investigated DNAm in 20 loci previously associated with type 2 diabetes through 

genetic studies and about a hundred other loci associated with monogenic forms of diabetes and 

obesity, in imprinted genes an others, using MeDIP-chip (methylated DNA immunoprecipitation 

followed by analysis on microarray chips) methodology. Their analysis did not reveal any significant 

methylation differences between diabetic and non-diabetic individuals in any of the loci. Toperoff et al. 
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conducted an epigenome wide association study (EWAS) using a methodology involving methylation 

sensitive restriction digest followed by microarray chip analysis. Their analysis identified several 

differentially methylated loci between diabetics and non-diabetics, enriched in genes previously 

associated with T2DM through GWAS. The epigenome wide analysis was followed by sequencing of 

93 selected single CpG sites embedded in the microarray probed fragments, including 2 CpG sites in 

the HHEX locus, 1 in the KCNJ11 locus and 13 in the KCNQ1 locus. This CpG-specific analysis 

revealed that 13 CpG sites in 6 loci were significantly differentially methylated between diabetics and 

non-diabetics, including three sites in the KCNQ1 locus, but none in the HHEX and KCNJ11 loci. The 

discordance between the results presented here and these two studies may be explained both by 

differences in the specific regions investigated per locus and by the different experimental approaches 

used. While a small number of consecutive CpG sites were interrogated here at single base 

resolution, Bell et al. measured DNAm at a 100 bp resolution and in the EWAS stage, Toperoff et al. 

measured methylation at an average of about 1000 bp resolution. The subtle methylation differences 

in a few CpG sites, as observed in the present study, may have been lost by averaging the levels 

across multiple CpG sites, many of which with no DNAm differences. The differentially methylated 

CpG sites identified in the KCNQ1 locus by Toperoff et al. in the CpG-specific analysis are located 

over 100 kb downstream from the regions investigated here and the CpG sites they interrogated in the 

HHEX locus, over 10 kb downstream from the HHEXII region. 

The difference in average DNAm levels between cases and controls in the HHEXII region observed 

in the present study was moderate. This is in agreement both with the results from the study by 

Toperoff et al., where average DNAm levels were reported to differ by ~0.5-4 pp between diabetics 

and non-diabetics in the CpG sites where significant differences were observed and with other studies 

using a candidate gene approach on pancreatic islet DNA, revealing differences in average DNAm 

between diabetics and non-diabetics in the PPARGC1A (peroxisome proliferator activated receptor 

gamma coactivator-1 alpha) (114) and the insulin genes (115) of about 5-10 pp in the CpG sites 

investigated. In contrast, studies on cancer have revealed gross DNAm differences between 

cancerous and normal cells in an on/off fashion, i.e., methylation completely abrogated in normally 

methylated regions or introduced in normally unmethylated regions (see e.g., ref. (60)). Such gross 

differences are however perhaps nonexistent in association with non-malignant complex diseases. 

Recent EWA studies on non-malignant complex diseases discussed in the introduction have generally 

revealed subtle differences between cases and controls (1,62–67). Although such subtle differences 

may appear to be inconsequential, it is however important to realize that any difference in average 

DNAm levels between groups, irrespective of its size, corresponds to an absolute change in 

methylation status (i.e., cytosine is methylated or not methylated) on the allele level for a respective 

proportion of the alleles investigated. 

The results indicate that average DNAm levels in the HHEXIII region, which is located adjacent to 

the HHEXII region, separated by a 155 bp sequence (i.e., distance between 10th CpG site in HHEXII 

and 1st CpG site in HHEXIII) containing 8 CpG sites, do not differ significantly between diabetics and 

non-diabetics. This may suggest that the difference observed in the HHEXII region does not extend 

downstream (at least not 155 bp), but although not significant, average DNAm levels were lower in 
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diabetics in the HHEXIII region similar to what was observed in HHEXII and it is possible that the lack 

of significance of the result stems from insufficient statistical power. To allow assessment of the region 

specificity of the difference observed in HHEXII, the HHEXIII region needs to be investigated further, 

and additionally, a region directly upstream from HHEXII has to be examined. 

The results presented here indicate a positive association between DNAm in the HHEX locus, 

specifically in an intragenic CGI in the HHEX gene (HHEXII region), and HOMA-β but no association 

with HOMA-IR. Identical to the genetic T2DM risk variants in the HHEX locus, the association between 

DNAm in the region and T2DM may therefore be mediated through effects on β cell function. It can 

therefore be speculated that the aberration in DNAm levels in the HHEXII region may affect the same 

molecular mechanism as does the genetic variant in the locus through which the association with type 

2 diabetes is caused.  

This result may strengthen the hypothesis that was used as a basis for selecting loci for this study. 

The study was not designed to assess whether selecting loci for the purpose of identifying epigenetic 

aberrations on the basis of this hypothesis is more effective than using any other criteria and the 

results presented here cannot be used for such an assessment because they are limited to a small 

number of loci and no comparison with other approaches was included. Results from the EWA study 

by Toperoff et al. do however suggest that this approach may be more effective than others: In an 

analysis assessing whether the distribution of regions exhibiting differential methylation between 

diabetics and non-diabetics across the genome was concentrated at specific genomic locations, e.g., 

in T2DM risk loci, in loci containing genes involved in metabolic pathways that have not been 

associated with T2DM and various other gene-ontology terms (not defined further in the paper), a 

significant enrichment of such regions was observed in T2DM risk loci relative to the genome while 

they were not enriched in any other location tested. In addition, in some of the EWA studies on non-

malignant complex diseases discussed in the introduction an enrichment of differentially methylated 

regions was often observed in loci with previously identified genetic association with the respective 

disease (1,62–67). 

5.2.3 Consideration about temporal origins and speculations about applied 
relevance 

A cross-sectional comparison of DNAm levels cannot distinguish between differences that are present 

prior to the disease onset, and thus possibly causal in the disease progression, and those that arise 

after disease onset, possibly due to effects of the disease state itself or the disease treatment, such as 

drugs. This is a well defined issue in epidemiological studies, but is in stark contrast to genetic studies, 

where such comparison reveals truly predisposing associations. To determine the temporal origin of 

the DNAm difference observed in the HHEXII region, and thus whether it can potentially be 

predisposing to diabetes, a longitudinal comparison of non-diabetic individuals that later develop 

T2DM to those who do not has to be conducted. An alternative approach has recently been suggested 

by Relton and Davey Smith (54), to adjust the principle of Mendelian Randomization for epigenetic 

studies (the method was named “Genetical Epigenomics”). The approach requires establishing an 

association between genetic variants that are associated with the disease in question and DNAm in 
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the region where methylation differences have been observed, and therefore cannot be used here. In 

the EWA study report by Toperoff et al., an analysis was conducted of the temporal origin of the 

DNAm difference observed between cases and controls in a single region, specifically a single CpG 

site in the FTO locus. Non-diabetic individuals that later developed IFG or T2DM were reported to 

have lower average methylation levels in the CpG site compared to those that did not develop the 

disease (in 13.1 year follow-up on average), similar to diabetics compared to controls. Such pre-

disease manifestation differences have also been reported prior to the onset of type 1 diabetes, but 

have not been assessed in other non-malignant complex disease epigenome studies (62). Until the 

temporal origin of the DNAm difference observed between diabetics and non-diabetics in the HHEXII 

region presented here has been established, its possible functional implications and use as a 

biomarker for disease prediction can only be speculated under the condition that the results can be 

replicated in such a setting. 

While average DNAm levels were observed to differ significantly between cases and controls in the 

HHEXII region, the range of DNAm levels was observed to overlap considerably between the two 

groups. If it is assumed that a similar scenario is present at baseline between individuals that will 

develop the disease and those that will not, it can be speculated that the power of DNAm levels in 

HHEXII as a biomarker for T2DM risk prediction cannot be absolute, i.e., will develop, will not develop 

disease. Whether it will exceed the prediction power of genetic risk variants, which similar to the above 

scenario non-diabetic individuals commonly carry but are present in a higher frequency in diabetic 

individuals than controls, cannot be speculated on grounds of the results presented here. In their 

EWAS report, Toperoff et al. included a receiver-operating characteristic analysis of cross sectional 

DNAm data for a single CpG site in FTO. On basis of the results, they suggested that DNAm level in 

this single CpG site in the FTO locus was more closely related to T2DM than 18 most established 

genetic T2DM risk variants combined (area under curve was 0.638 versus 0.6). This observation 

needs to be extended in a longitudinal setting. 

Although the data from the present study do not allow for claims of definitive functional implications, 

it is interesting to speculate about their possible biological relevance. The CpG sites interrogated in 

the HHEXII region are positioned in the gene-body and previous studies have revealed a positive 

association between gene-body methylation and gene-expression (41–43). A study on Hhex knockout 

mice suggests that the gene product is essential for normal embryonic development of the pancreas 

(116) and it has therefore been suggested that the association between the genetic variation in the 

HHEX locus and diabetes arises from alterations in pancreatic development caused by the causal 

allele (105). The data presented here may present an additional mechanism leading to the same 

outcome, whereby aberrantly reduced DNAm would cause a reduction in HHEX gene expression 

which may cause aberrant development of the pancreas and thus reduced pancreatic β cell function in 

the adult individual. This above scenario is dependent on that the DNAm difference observed in whole 

blood is present in the pre-pancreatic tissue during development.  
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5.2.4 Other considerations 

The present study was conducted using DNA from whole blood, rather than the target tissue, 

pancreatic β cells. Since epigenetic marks can be tissue specific (9,16–19), this may limit the 

biological inferences to be made based on the data. However, it is possible that epigenetic aberrations 

in a particular tissue are observable in surrogate tissues such as blood. For example, LOI in IGF2 is 

found in both white blood cells and in the colon (117).  

Using blood derived DNA rather than pancreatic DNA has at least three important advantages. 

First, the subtle differences in DNAm observed in this and other studies on non-malignant complex 

diseases require large numbers of samples to be detected, which is much easier to acquire through 

the use of whole blood DNA than pancreatic β cells. Second, pancreatic β cells are only available 

post-mortem or in pancreatic resections and could therefore only be used in a case-control setting, 

which limits the clinical importance of any findings while DNA from whole blood can be taken on 

multiple time points to establish the temporal origins of observed differences in DNAm. It may 

therefore be sensible to use the experimental approach applied in the present study for the 

investigation of epigenetic marks in non-malignant complex diseases as a locus discovery step, and 

subsequently try to replicate the results in the target tissue to assess their potential mechanistic 

impact. Finally, for studies where the aim is to identify DNAm aberrations for use as biomarkers for the 

disease, pancreatic DNAm is not useful because it cannot be obtained for such purposes, while using 

whole blood DNA is ideal.      

5.2.5 Future directions    

The experiment needs to be replicated in an independent cohort, to provide independent biological 

confirmation of the results. This was beyond the scope of the present study, a weakness that limits its 

confidence. As has been discussed above, it is of crucial importance to establish the temporal origin of 

the DNAm difference observed between diabetics and non-diabetics in the HHEXII region. The same 

data could be used to investigate the potential use of DNAm in the region as a biomarker for 

assessing risk for development of the disease. From a functional perspective, a comparison of DNAm 

levels in HHEXII in pancreatic tissue of diabetic and non-diabetic individuals needs to be conducted. If 

the DNAm difference is observed in the target tissue, a study on the association between DNAm 

levels in the region and HHEX gene expression in the pancreas is presumably the first step towards 

elucidating the functional importance of the finding. A second step might involve studying effects on 

HHEX protein levels, and/or transcription of genes regulated by the transcription factor.  

The present study was limited to investigating small regions within much larger loci. Each of the 

three loci contains a number of genes and all could be as valid targets as the ones investigated here. 

For example, in addition to containing the HHEX gene, the HHEX locus contains the IDE (insulin 

degrading enzyme) gene, whose product degrades amylin that may cause β cell dysfunction through 

amyloid deposition (118). In addition, at present, about 50 genetic variants have been associated with 

T2DM risk (79) and only three loci were considered here. Although the studies by Bell et al. and 

Toperoff et al. investigated these loci, their analysis failed to detect the difference in HHEXII observed 
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here. The results presented here may therefore warrant a more detailed analysis, focused on 

identifying DNAm aberrations in T2DM genetic risk loci. 
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6 Conclusions 

6.1 Heterogeneity in white blood cells has potential to confound DNA 
methylation measurements 

The results indicate region-specific differential DNA methylation between white blood cell sub-types 

and region-specific association between DNAm levels measured in whole blood and cellular 

heterogeneity. Together these results allowed evaluation of the hypothesis that measured DNA 

methylation levels in whole blood can be confounded by cellular heterogeneity due to differential 

methylation levels in the various white blood cell types. In the region where gross white blood cell type 

specific DNA methylation differences were detected (HHEXII), an association between whole blood 

DNA methylation levels and cellular heterogeneity was observed, but where only subtle or no DNAm 

differences were observed between the cell types (KCNJ11, KCNQ1II and PM20D1), no convincing 

association was observed. This suggests that the results from the study support the hypothesis, and a 

need to control for cellular heterogeneity in the analysis of whole blood DNAm data. Finally, a high 

correlation between DNA methylation levels in cell fractions was observed, which suggest a possibility 

to use a proportional number of a single white blood cell type to correct for this confounding effect in 

analyses. 

6.2 Type 2 diabetes associated DNA methylation identified in genetic 
diabetes risk locus 

The results indicate that average DNAm levels differ between diabetic and non-diabetic individuals in 

at least one of the seven regions investigated in total. The region is located in an intragenic CpG 

island in the HHEX gene, which resides in a locus previously associated with type 2 diabetes through 

genetic studies. The results indicate that the observed difference is not carried by an association with 

obesity and that it is not an artifact due to differences in the white blood cell composition of diabetics 

and controls. These findings support the hypothesis that DNAm aberrations may be associated with 

T2DM. 
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7 Appendix 

7.1 Technical aspects of the DNA methylation assays 

Multiple tests were conducted on technical aspects of the DNAm assays used in the study in order to 

optimize the assays and to gain information on potential sources of measurement error. Samples used 

for the analyses presented in this section are from diabetic and non-diabetic individuals, both whole 

blood and blood fraction DNA, and unless otherwise specified did not overlap between the different 

conditions under study in each case.  

7.1.1 Assay optimization 

Prior to analysis of DNA samples on the pyrosequencer, PCRs are conducted in order to amplify the 

sequence which is to be analyzed. It is important to optimize this step in the process because the 

number of DNA strands present in the pyrosequencing reaction is directly related to the signal strength 

during sequencing, and thus (presumably) the quality of the DNAm data. In order to establish optimum 

PCR conditions for subsequent analysis on the pyrosequencer, the effects of three factors on 

pyrosequencing signal strength were evaluated; the amount of input DNA (section 7.1.1.1), number of 

PCR steps (section 7.1.1.2) and polymerase type (section 7.1.1.3) used in preceding PCRs. 

7.1.1.1 Effect of the amount of input DNA  

An experiment was conducted to test whether the DNA concentration in preceding PCRs affected 

pyrosequencing signal strength. DNA samples from three individuals were bisulfite converted, each in 

eight reactions with varying amounts of input DNA, ranging from ~6 ng to 800 ng. PCR was 

subsequently performed using the HHEXII assay with 3 µl of DNA eluted from each of the 24 

conversions. All PCRs were conducted under the same conditions in terms of all other aspects than 

DNA concentration. The average signal strength from pyrosequencing reactions on the PCR products 

were compared and two factors were evaluated; whether the signal strength was dependent on the 

amount of input DNA, and if so, whether a “plateau” would be reached where increasing the amount 

had no additional effect on the signal strength.  

The results indicated that average signal strength in the pyrosequencing reaction increased with 

increasing DNA concentration in the preceding PCRs (figure 8A). In addition, the results indicated 

that the increase in average signal strength reached a plateau when products from PCRs conducted 

with DNA eluted from bisulfite conversion of 400 ng of DNA were sequenced, i.e., the signal strength 

did not increase further. 
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Figure 8. The effect of DNA concentration (A), PCR steps (B) and polymerase types (C) in 
preceding PCRs on pyrosequencing signal strength.  
In each of the three plots, the relative average light emission, an indicator of signal strength (y-axis, 
note the varying scale) is compared by the different factors in question (x-axis). The HHEXII assay 
was utilized in all cases. The height of the bars indicate the relative average signal strength observed, 
and the whiskers extend a single standard deviation above and below the average. 

 

7.1.1.2 Nested versus one-step PCR 

An analysis was conducted to test whether employing a one-step PCR rather than a nested (two-step) 

PCR preceding pyrosequencing affected signal strength in the pyrosequencing reactions. A total of 96 

one-step and 96 nested PCRs using the HHEXII assay were conducted and analyzed on the 

pyrosequencer using the same conditions in all other aspects than varying cycling conditions. Average 

signal strength in the pyrosequencing reactions on the PCR products from one step and nested PCRs 

were compared. 

The results indicated that the average signal strength in the pyrosequencing reactions conducted 

on PCR products from a nested and a one-step PCR was very similar (figure 8B). They also indicated 

that variation of the signal strength was much higher when analyzing products from a nested PCR (the 

standard deviation was ~1.6 times higher), resulting in reads of very poor and very good signal 

strength, while the reads after a one-step PCR were more uniform. 

7.1.1.3 Comparison of DNA polymerases 

Amplification of bisulfite converted DNA was tested with four different DNA polymerases (Taq 

polymerase from NEB (“Standard-Taq”), AmpliTaq from Life Technologies, OneTaq from NEB and 

TITANIUM-Taq from Clontech) to assess whether use of different types of polymerases affected 

downstream analyses on the pyrosequencer in terms of signal strength. For each polymerase, 24 

DNA samples were amplified under the same conditions using the HHEXII assay and the products 

analyzed on the pyrosequencer. Average signal strength produced in pyrosequencing reactions on 

products from each polymerase was compared. 

Average signal strengths in the pyrosequencing reactions were observed to differ depending on 

which polymerase was used for the preceding PCR (figure 8C). The average signal strength was 

highest after PCR using the TITANIUM-Taq. It was ≥ 3.0 times stronger than the signal strength 

observed after PCR with the other three polymerases, which were all very similar (figure 8C). 
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7.1.2 Tests for biases and robustness of measures 

Several analyses were conducted in order to identify factors that cause biases in the DNAm 

measurements and to establish the robustness of the measurements. 

7.1.2.1 Amount of input DNA and data quality 

The data presented in section 7.1.1.1 suggests that signal strength in the pyrosequencing reactions is 

dependent on the amount of input DNA in the preceding PCRs, but it remains to evaluate whether it 

affects DNAm measurement quality, and if so, whether at a certain level, no further gain in data quality 

is obtained by the stronger signal. DNAm data from the experiments described in section 7.1.1.1 were 

therefore used to assess these questions. An average (n=3) intra-individual comparison was made of 

measured DNAm levels from pyrosequencing of PCR products from amplification of DNA from the 

eight conversions (which were conducted on varying amounts of input DNA, ranging between ~6 to 

800 ng) to reveal whether at a certain level of input DNA, measurements become inconsistent with the 

other data. 

The comparison indicated that measurements on products from PCRs conducted on DNA from 

conversion of 100-800 ng generally gave consistent results, i.e., similar DNAm pattern across the 10 

CpG sites and similar methylation levels at each site (figures 9A and 9B). The measurements 

obtained from the analysis of amplicons from PCRs conducted on DNA from conversion of less than 

50 ng did however appear to be less consistent (figures 9A and 9C). 

 

Figure 9. Amount of input DNA and data quality. 
The amount of input DNA for bisulfite conversion was varied from ~6 to 800 ng for three individuals, 
PCR performed on the eluted DNA and the products analyzed on the pyrosequencer using the HHEXII 
assay. An average intra-individual comparison of measured DNAm levels (y-axis) per CpG site (x-axis) 
is plotted. Data from analysis of each concentration of DNA is presented with points and lines of a 
specific color (see legend – the two blue lines are hard to distinguish when printed, but can be viewed 
in the electronic version). First, the total data is presented (A), second, only the data obtained from 
measurements on DNA from conversion of 100-800 ng is compared (B), and third only the data 
obtained from measurements on DNA from conversion of ~6-50 ng is compared (C), i.e., data from A 
is re-plotted in B and C for better visualization of the data. A line is drawn through the data points for 
each CpG site solely for the purpose of better visualization of the data and is not intended to imply any 
interdependency between measurements per CpG site 
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Figure 10. Robustness of DNA 
methylation measurements.  
Two separate DNAm 
measurements were conducted on 
DNA samples after separate 
conversion and amplification using 
four assays: HHEXII (n=9), 
KCNJ11 (n=16), KCNQ1II (n=14) 
and PM20D1 (n=13). Results from 
the two measurements were 
compared per CpG site, i.e., 
measured DNA methylation at 
each CpG site in the first 
measurement (y-axis) was plotted 
against the measured DNA 
methylation at the corresponding 
CpG site in the second 
measurement (x-axis). Each dot 
constitutes a comparison of the 
DNA methylation level measured 
per CpG site per assay. 

 

7.1.2.2 Robustness of measures 

An experiment was conducted to assess the robustness of the DNAm measurements. The 

measurement process, i.e., conversion, amplification and analysis on the pyrosequencer, was 

performed in duplicate under the same conditions on a number of samples for the HHEXII (n=9), 

KCNJ11 (n=16), KCNQ1II (n=14) and PM20D1 (n=13) assays.  Measured DNAm levels in all CpG 

sites per assay in the first measurement were compared with the corresponding level in the second 

measurement and the correlation between measures calculated.  

The analysis indicated a high correlation between measurements for all assays, the Spearman’s ρ 

correlation coefficient was ~≥ 0.9 in all cases (figure 10). The average absolute difference between 

measurements was 0.9 percentage points (pp) for HHEXII, 2.5 pp for KCNJ11, 2.5 pp for KCNQ1II 

and 4.1 pp for PM20D1. Additionally, the data indicated that the measurement error that was detected 

was not systematic, which would result in a clustering of data on either side of the diagonal on figure 

10. Rather, the measurement error is sporadic, and the data points fall on either side of the diagonal. 

 

 

In order to assess whether the measurement error detected above was attributed to the conversion 

process specifically, rather than the PCR or pyrosequencing steps, a second test was performed. A 

single bisulfite conversion of 23 DNA samples was performed, two separate PCRs conducted for each 

sample and the products analyzed on the pyrosequencer. This analysis was only conducted for the 

HHEXII assay. As in the previous analysis, measured DNAm levels in all CpG sites in the first 

measurement were compared with the corresponding level in the second measurement and the 

correlation between them calculated.  

The results indicated that average absolute DNAm levels differed by 0.5 pp between 

measurements and that the Spearman’s ρ for correlation between the two measurements was 0.93.  
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Figure 11. Test for PCR bias. 
DNA of known methylation state 
(0%, 25%, 50%, 75% and 100%) 
was converted, amplified and its 
methylation level measured on the 
pyrosequencer using seven 
different assays (see legend – it is 
hard to distinguish between the two 
green colors in the legend; HHEXIII 
is depicted in a lighter green color 
than HHEXIV). The expected DNA 
methylation level (x-axis) was 
compared to the average measured 
level across the respective CpG 
sites per assay (y-axis). Points 
indicate a single comparison of an 
expected and measured level per 
assay, and an approximate trend is 
indicated by drawing a line through 
the points of a given assay. 

 

7.1.2.3 PCR bias  

PCR bias, i.e., preferential amplification of particular alleles in a heterogeneous pool of alleles, has 

been demonstrated for amplification of bisulfite treated DNA (97). All assays designed for the present 

study were tested for such bias, except the PM20D1 assay because methylation levels measured with 

the assay spanned the whole scale between 0-100%. Control DNA of known methylation state, 0% 

and 100%, was mixed to obtain DNA of methylation states ranging between 0-100% (specifically, 0%, 

25%, 50%, 75% and 100% methylated). The DNA was PCR amplified and the methylation level 

measured by pyrosequencing of the PCR products. Average measured DNAm levels across the 

corresponding CpG sites per assay were compared to the expected levels.  

The quality of the DNAm data obtained for the KCNQ1II assay was very poor (due to sporadic 

measurement failure rather than a problem with the assay) and should therefore be interpreted with 

caution. Additionally, it should be noted that for the KCNQ1I assay, data was only obtained from the 

measurement of DNA of three methylation states, 0%, 25% and 100%. The comparison indicated that 

measured methylation levels were in general lower than the expected level, i.e., a bias was observed 

in all assays, although of very varying degree, towards the unmethylated alleles (figure 11). The data 

for KCNQ1II appears to be in stark contrast with the other results, but given the low quality of the data 

as noted above, this result should be considered with caution. 

 

 

7.1.2.4 Bias due to other factors 

An analysis was performed to assess whether a systematic measurement bias could occur when 

measuring DNAm on the pyrosequencer if different polymerases were used in the preceding PCRs. 

DNA samples were converted, PCR amplified and analyzed on the pyrosequencer in duplicate under 

the same conditions in each case, except varying the DNA polymerase used in the preceding PCR, 
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using TITANIUM-Taq in one reaction and OneTaq in the other reaction. The analysis was conducted 

for four assays, HHEXII (n=21), KCNJ11 (n=14), KCNQ1II (n=16) and PM20D1 (n=16), and in each 

case measured DNAm levels from analysis of PCR products using the two polymerases were 

compared per CpG site per assay. 

The analysis indicated that correlation between measurement outcomes was very high for all 

assays, the Spearman’s ρ was ~ ≥ 0.8 (figure 12). However, DNAm measurement outcomes obtained 

from analysis of PCR products from the OneTaq polymerase were consistently lower than those 

obtained from TITANIUM-Taq for three of the four assays tested; HHEXII, KCNQ1II and PM20D1, but 

not KCNJ11 (figure 12, exemplified by the unidirectional deviation of the data points from the 

diagonal). For HHEXII, the average absolute difference between measurements was 3.7 pp, 10.0 pp 

for KCNQ1II and 13.9 pp for PM20D1, while it was 1.7 pp for KCNJ11. 

 

 

Finally, an analysis was performed to test whether a measurement bias could occur when 

measuring DNAm on the pyrosequencer depending on whether a one-step or a nested PCR was 

performed on DNA samples prior to analysis on the pyrosequencer. Eight DNA samples were 

converted, PCR amplified and analyzed on the pyrosequencer in duplicate under the same conditions, 

except using a nested PCR approach in one case, and a one-step approach in a second case. This 

analysis was only conducted for the HHEXII assay. The measured DNAm levels from the two pyroruns 

for each sample were compared per CpG site as before, and their correlation calculated.  

The results indicated that no bias was caused by the use of different PCR approaches. The 

average absolute difference between measurements was 1.0 pp and the Spearman’s correlation 

coefficient was 0.90. 

Figure 12. Test for DNA 
methylation measurement bias by 
polymerase type in the preceding 
PCR.  
DNA was amplified using two 
different polymerases and the 
products analyzed on the 
pyrosequencer. The DNA methylation 
levels detected after amplification 
using the OneTaq polymerase (y-
axis) were compared to those 
detected after amplification using the 
TITANIUM-Taq polymerase (x-axis) 
per CpG site. The dots represent a 
comparison of measured DNA 
methylation level from the two 
analyses. Data for each of the four 
assays tested, HHEXII (n=21), 
KCNJ11 (n=14), KCNQ1_2 (n=16) 
and PM20D1 (n=16), is represented 
in a distinct color (see legend). 
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7.2 Protocols 

7.2.1 Protocol for isolation of mononuclear and polymorphonuclear cells from 
whole blood 

The following protocol was used to isolate MNCs and PMNCs from whole blood. For this process, 

Histopaque-1077 Ficoll medium and Accuspin Tubes were used, and the protocol is adapted from the 

manufacturer’s instructions (Sigma-Aldrich). 

1. A day before blood is to be drawn, 15 ml of the Histopaque-1077 Ficoll medium are poured 

into the 50 ml Accuspin Tubes and stored at 4°C.  

2. Prior to pouring blood into the tube, the medium should have sunk through the porous 

membrane in the tube. If this is not the case, or if the tubes are to be prepared on the day of 

blood collection, they can be centrifuged briefly. Additionally, the blood and medium (in the 

tubes) should be at room temperature prior to proceeding further. 

3. Blood is poured slowly into the tubes, on top of the membrane which separates it from the 

medium below. 

4. The tubes are centrifuged for 15 minutes at 800 x g.  

5. The MNC fraction can be observed as a cloudy layer between the plasma (topmost layer) and 

the medium. These cells are collected by dipping a transfer pipette through the plasma and by 

“sucking” the liquid just above the cell layer.  

6. The PMNCs fraction can be observed as a pellet at the bottom of the tube. These cells are 

extracted by inserting a pipette into the tube and shifting the membrane carefully by pushing 

with the pipette’s tip at the membrane/tube boundary, so that the pipette can reach the bottom. 

When the pipette tip reaches the bottom of the tube, the pellet is extracted with the pipette. 

7. The fractions are transferred into separate tubes and kept at -20°C for DNA extraction. 

 

7.2.2 Protocol for DNA extraction 

The following protocol was used for extraction of DNA from whole blood and blood fractions. The 

protocol is based on an extraction method developed by Scotlab Bioscience (Coatbridge, Scotland, 

UK). Recipes for the reagents and buffers used are provided following the protocol. 

1. Blood and all solutions used should be cold (4°C) before use, unless otherwise specified.  

2. Reagent A, 30-40 ml, is added to 5-10 ml of EDTA blood and the solution is mixed by inverting 

its container briskly (e.g., tubes) for 2 minutes.   

3. The solution is centrifuged at 1600 x g for 10 minutes. 

4. The supernatant is decanted without disturbing the pellet which has formed at the bottom. 

5. Two milliliters of Reagent B (room temperature) are added and the pellet dissolved in the 

liquid by vortexing. 

6. The solution is transferred to 0.5 ml of 5 M sodium-perchlorate and incubated at 65°C for 25 

minutes. During incubation, the solution is mixed shortly by inverting the container every five 

minutes. 

7. The solution is cooled for ~ 15 minutes at 4°C and 2 ml of chilled (-20°C) chloroform added.  

8. The solution is mixed by rotation for 10 minutes and subsequently centrifuged at 1600 x g for 

10 minutes. 

9. The supernatant is transferred to 5 ml of 96% (v/v) ethanol and mixed slowly by inverting the 

container. 

10. The DNA can at this point be observed as a white substance floating around in the ethanol. It 

is transferred to ~1 ml of 70% (v/v) ethanol and finally to a tube containing 1 ml of TE buffer. 

11. The DNA is reconstituted in the buffer by rotating the tube at room temperature for 24 hours 

and subsequently by incubation at 4°C for four weeks.    
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TE buffer (10X, 1 L) 

1. 100 ml of 1 M Tris solution (pH=8) 

2. 16.7 ml of 0.6 M EDTA solution 

3. Add dH2O to 1 liter 

4. Autoclave 

 

Reagent A (1X, 2 L) 

1. 0.64 mol Sucrose (219.1 g of C12H22O11) 

2. 0.01 mol MgCl2 (2.04 g of MgCl2 · 6H20) 

3. 20 ml of 1 M Tris solution (pH=8) 

4. 20 ml Triton X 100 

5. Add dH20 to 2 liters 

6. Autoclave 

 

Reagent B (1X, 0.5 L) 

1. 200 ml of 1 M Tris solution (pH=8) 

2. 50 ml of 0.6 M EDTA solution 

3. 50 ml of 1.5 M NaCl solution 

4. Add dH2O to 450 ml 

5. Autoclave 

6. 50 ml of 10% (w/v) SDS solution added 

 

7.2.3 Protocol for bisulfite conversion of DNA samples 

The following protocol was used for bisulfite conversion of DNA samples in the study. It is adapted 

from the protocol provided by the manufacturer (Zymo Research) of the conversion kit used for this 

process (EZ-DNA Methylation kit). All buffers and plates ( e.g., M-dilution buffer and the Conversion 

Plate respectively) referred to in the protocol are provided in the kit, and are not defined here. 

1. Add 5 µl of M-Dilution Buffer to each DNA sample in a Conversion Plate and adjust the total 

volume to 50 µl with water. Mix each sample by pipetting up and down.  

2. Incubate the Conversion Plate containing the samples at 37°C for 15 minutes in a thermal 

cycler.  

3. After the above incubation, add 100 µl of the CT Conversion Reagent to each sample and mix 

by pipetting up and down. 

4. Incubate the Conversion Plate in the dark at 50°C for 12 – 16 hours using a thermal cycler.   

5. Incubate the sample at 0 - 4°C on ice for 10 minutes. 

6. Add 400 µl of M-Binding Buffer to each well of a Zymo-Spin™ I-96 Binding Plate on a 

Collection Plate. 

7. Load the samples (from Step 5) into the wells of the Zymo-Spin™ I-96 Binding Plate 

containing the M-Binding Buffer. Mix by pipetting up and down. 

8. Centrifuge at 3,000 x g for 5 minutes. Discard the flow-through. 

9. Add 500 µl of M-Wash Buffer to each well and centrifuge at ≥ 3,000 x g for 5 minutes. 

10. Add 200 µl of M-Desulphonation Buffer to each well of and let stand at room temperature for 

15 - 20 minutes. After the incubation, centrifuge at 3,000 x g for 5 minutes. 

11. Add 500 µl of M-Wash Buffer to each well and centrifuge at 3,000 x g for 5 minutes. Add 

another 500 µl of M-Wash Buffer and centrifuge for 10 minutes. 
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12. Place the Zymo-Spin™ I-96 Binding Plate onto an Elution Plate.  Add 15 µl of M-Elution Buffer 

directly to the binding matrix in each well. Centrifuge for 3 minutes at 3,000 x g to elute the 

DNA.  

13. The DNA is ready for immediate analysis or can be stored at or below -20°C for later use.  For 

long term storage, store at or below -70°C.  

 

7.2.4 Protocol for preparation of amplicons for analysis on the pyrosequencer 

The following protocol was used to capture and wash amplicons prior to analysis on the 

pyrosequencer. 

1. Mix 20 µl of the PCR product, 2 µl Streptavidin Sepharose solution (GE Healthcare, cat.nr.; 

19-5113-01), 40 µl PyroMark Binding Buffer (QIAGEN, cat.nr.: 979006) and 18 µl H2O. 

2. Agitate the above solution for 5-10 minutes at 1400 rpm and subsequently move to the 

PyroMark Q24 Vacuum Prep Workstation (QIAGEN, cat.nr.: 9001516). 

3. The PCR products are captured with the Vacuum Prep Tool (part of the workstation) and 

moved through a series of solutions, aspirating each through the tool’s filter probes. 

4. First, 70% ethanol is flushed through apparatus for 5 seconds, second 0.2 M NaOH solution 

for 5 seconds, and third 10 mM Tris-Acetate buffer for  5 seconds (PyroMark Wash Buffer, 

QIAGEN, cat.nr.: 979008). 

5. The PCR products are released onto a PyroMark Q24 Plate (QIAGEN, cat.nr.:979201) by 

turning the vacuum off and gently shaking the Vacuum Prep Tool with the filter probes 

positioned in the plates wells containing 25 µl of PyroMark Annealing Buffer (QIAGEN, cat.nr.: 

979009) with 0.3 µM of the appropriate sequencing primer. 

6. The plate is put in a PyroMark Plate Holder (QIAGEN, cat.nr.: 979205) and incubated on a 

thermal block at 80°C for 2 minutes. After the incubation, the plate is cooled down to room 

temperature by letting stand on the workbench for approximately 5 minutes. 

7. The plate, and its contents, the PCR products, are ready for analysis on the pyrosequencer. 
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Figure 13. Venn diagram depicting the 
number of samples analyzed per 
region.  
The diagram contains a set of 15 numbers 
that, when added together, represent the 
total number of whole blood DNA samples 
used for the study presented in section, 
4.1.1, pg. 27 Each ellipse contains a set of 
numbers, that when added together 
represent the total number of samples 
analyzed for a specific region. Finally, some 
samples were analyzed for more than one 
region, and this is represented by the 
overlapping of ellipses. 
 

  

7.3 Supplementary tables and figures 

 

Table 5. Primer sequences for the PCR assays used in the study. 

*Inner or outer primer set.  
Inner reverse primer was biotinilated in all cases, except for the KCNJ11 assay, where the inner forward primer was biotinilated. 

 

 

Region Inner/outer* Sequencing primer Forward primer Reverse primer 

KCNJ11 Outer  GTGTGTGGTTATTTGAGGTTTATTAG AACCTAATAATCTACCCTCCTCAAC 

KCNJ11  Inner ATCACCCAAACCATACTATCC GTTGTAGTTGTTTTTTTTGGATATAAAG  ACTCTACAATAAAACCCTAAACCAC 

HHEXI Outer  TGGATTGAAGATTGTATAGTTTTTGTT CCCCTAAAAACTCCAAACACC 

HHEXI Inner GAGTTCGTAGTATTTGAATTTTAGT/ 
AGGAATTTAGGGTA 

GGTTTTTAAATGAAATTAGGTGGA 
 

GTTTGGAAATAGTTGTTGTTATTT 
 

HHEXII Outer  TTTTTGGGTTATTGTTGGGAT CAACCTTATACACACACAAACAAAC 

HHEXII Inner GTTAGGATTGGAGGTTT ATGTTGTTATAGTTTATGGGGTGGT TTACCCCCTTAAATCTCCCTTAATA 

HHEXIII n/a GGGGGTAAAAAGTTATGTATA GGAGATTTAAGGGGGTAAAAAGT CCTAAAACTAAATCCAAACATACCTTTAAC 

HHEXIV n/a AAGTAATTTGATTATAAAATAAAG GTAAAAAAAATGGTTAAAATGTGTTT CAACAAAATCCAACCCCAATCA 

KCNQ1I n/a GGGGGAGTTTTGTTTTA TTGGTGTGGGGGAGTTTT ACTTCCTTCCCTCCTCTACT 

KCNQ1II n/a GGTTAGGTTGTATTGTTG GTATTGTTTAGGTTAGGTTGTATTGT ACCCTCCCCATCTCTCTAA 

PM20D1 n/a GTTGAATTGAGAAGGGAT ATGAGTATAGGTGGGTGAAG  ACCCTAATAACTATACTACTCCTAATTTTC 
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Figure 14. Comparison of DNAm levels in diabetics and controls in six regions in three genes. 
See legend on figure 6, pg. 34, where the same plots are shown. Here, the plots are provided on 
differing scales so as to provide better detail.  
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7.4 Other supplementary material 

The following script was used to prepare figures 6, 7 and 14. 

 

For a document “HHEXi.txt” containing a dataset in the following form (where variable S_ID is subject 
number, CPG1-4 is measured DNAm level per CpG site and group is a variable differentiating the 
groups of individuals being compared in the plot, e.g, with and without diabetes): 

 

S_ID CPG1 CPG2 CPG3 CPG4 group 

123456 2.31 1.31 0.54 1.72 G1 

123457 2.17 2.93 1.21 3.39 G2 

123458 2.04 1.78 0.78 1.12 G2 

… 

 

The following script calculates variables that are required for plotting and saves them in separate 
dataframes: 

hhexi <- read.delim("HHEXi.txt") 

library(reshape2) 

hhexim <- melt(hhexi, id=c("S_ID", "group")) 

hheximo <- na.omit(hhexim) 

CI <- function(x) sd(x)/sqrt(length(x))*1.96 

o2 <- data.frame(matrix(c(1:4)), t(tapply(hheximo$value, list(hheximo$group, hheximo$variable), 
mean)), t(tapply(hheximo$value, list(hheximo$group, hheximo$variable), CI)), t(tapply(hheximo$value, 
list(hheximo$group, hheximo$variable), mean)) - t(tapply(hheximo$value, list(hheximo$group, 
hheximo$variable), CI)), t(tapply(hheximo$value, list(hheximo$group, hheximo$variable), mean)) + 
t(tapply(hheximo$value, list(hheximo$group, hheximo$variable), CI))) 

colnames(o2) <- c("x", "mean", "mean", "ci", "ci", "ylo", "ylo", "yhi", "yhi") 

ok <- rbind(subset(o2, select=c(1,2,4,6,8)), subset(o2, select=c(1,3,5,7,9))) 

hhexi2 <- data.frame(group=matrix(c("G1","G1","G1","G1","G2","G2","G2","G2")), ok) 

 

The following plots the data: 

library(ggplot2)  

ggplot() + geom_point(data=hhexim ,aes(variable,value, colour=factor(group))) + 
geom_line(data=hhexi2, aes(x=x, y=mean, colour=factor(group))) + geom_ribbon(alpha=0.25, 
data=hhexi2, aes(x=x, ymin=ylo, ymax=yhi, fill=group)) 
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Abstract 12 

Epigenetic studies are commonly conducted on DNA from tissue samples. However, 13 

tissues are ensembles of cells that may each have their own epigenetic profile and therefore 14 

inter-individual difference in cellular heterogeneity may compromise these studies. Here, we 15 

explore the potential for such confounding on DNA methylation measurement outcomes 16 

when using DNA from whole blood. DNA methylation was measured using pyrosequencing 17 

based methodology in two white blood cell fractions, isolated using density gradient 18 

centrifugation. In three out of the four CGIs (CpG Islands) tested, we detected significant 19 

differential DNA methylation between the two fractions. The difference was very moderate in 20 

all but one CGI where the average absolute methylation difference per CpG site ranged 21 

between 3.4-15.7 percentage points. In this same CGI, inter-individual variation in cellular 22 

heterogeneity explained up to 35% (p<0.0001) of the variation in whole blood DNA 23 

methylation levels. In the examined CGIs, methylation levels were highly correlated between 24 

cell fractions. In summary, our analysis detects region-specific differential DNA methylation 25 

between white blood cell sub-types, which can confound the outcome of whole blood DNA 26 

methylation measurements. Finally, by demonstrating the high correlation between 27 

methylation levels in cell fractions, our results suggest a possibility to use a proportional 28 

number of a single white blood cell type to correct for this confounding effect in analyses. 29 
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Introduction 30 

Tissue and cell specific methylation are well established in human DNA. In 2006 31 

Eckhardt et al. presented data from the Human Epigenome Project (HEP) that suggest that 32 

tissue-specific differentially methylated regions (tDMRs) are very common in the genome [1]. 33 

The dataset describes DNA methylation of ~1.9 million CpG sites on chromosomes 6, 20 and 34 

22 in 12 different tissues. Approximately 22% of the investigated amplicons were tDMRs and 35 

their average absolute methylation levels differed by up to 20% between tissues (or up to 36 

15% if only somatic tissues are compared). Recently, Fan and Zhang analyzed DNA 37 

methylation in selected (CpG site coverage > 30%) CpG islands (CGIs) using the HEP 38 

dataset [2]. Similarly, their results indicate that a substantial proportion of CGIs (~18%) are 39 

tDMRs. Three recent independent studies using microarray based methods also identify 40 

tDMRs after interrogating CpG sites across the whole genome [3], in CGIs across the 41 

genome [4], and in non-CGI regions on chromosome 1 [5]. 42 

Relatively few studies have addressed the question whether different white blood cell 43 

types have specific DNA methylation levels or patterns. In two papers from 1990 and 1991 44 

Kochanek et al. studied the methylation of TNFα and TNFβ genes in multiple white blood cell 45 

types [6,7]. Their results revealed gross differences in TNFβ methylation in lymphocytes 46 

versus granulo- and monocytes as well as minor distinctions in the TNFα gene between cell 47 

types. A comparison of DNA methylation levels in CD4+ and CD8+ lymphocytes was 48 

included in the HEP report which showed that these highly developmentally related cell types 49 

exhibit on average ~5% absolute difference in DNA methylation [1]. Finally, Wu et al. 50 

compared different methods and sources of DNA for measuring global DNA methylation in 51 

whole blood [8]. DNA derived from whole blood and two blood fractions (mononuclear cells 52 

(MNCs) and polymorphonuclear cells (PMNCs)) was measured using five assays; 53 

luminometric methylation assay (LUMA), [3H]-methyl acceptance assay and MethyLight 54 

assays for long interspersed elements (LINE1), Sat2 and Alu repetitive elements. In four of 55 
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the five assays, global methylation levels in MNCs and PMNCs were not correlated, 56 

suggesting a widespread difference in methylation between the two cell groups. 57 

As peripheral blood cell DNA is relatively easily accessible it has been an essential 58 

source for genetic experiments for the past decades. However whether it is appropriate 59 

material for studies on epigenetics has been debated [9] because inter-individual variation in 60 

the number of specific white blood cells in combination with cell specific methylation profiles 61 

could compromise measurement outcomes for DNA methylation carried out on cells from 62 

whole blood. This concern has largely been theoretical due to lack of experimental data. 63 

Recently, Talens et al. studied the effect of inter-individual differential white blood cell counts 64 

on methylation measurements using whole blood DNA [10]. For a majority of the 16 loci 65 

studied, cellular heterogeneity had no effect on variation in DNA methylation. However for 66 

one locus it explained 25-50% of the variation and in additional three loci the effect was 67 

borderline significant, accounting for up to 8% of the variation between individuals. 68 

In the present study we aimed to investigate the potential confounding effect of cellular 69 

heterogeneity on DNA methylation measurement outcomes conducted using whole blood 70 

DNA in greater depth than has been done previously; first measuring methylation levels in 71 

whole blood DNA samples and estimating their association with cellular heterogeneity, and 72 

subsequently measuring and comparing DNA methylation levels in two whole blood cell 73 

fractions, MNCs and PMNCs, in order to verify whether any observed association was 74 

related to differential DNA methylation in the white blood cells. These analyses have been 75 

done in a general context, rather than in any disease-specific context, in order to understand 76 

the overall potential for confounding. A confounding effect may be region-specific, depending 77 

on two factors; first, the size of the difference in methylation level between cell types, and 78 

second due to the relative size of the difference compared to the variation in methylation 79 

levels caused by other factors. We therefore chose to analyze DNA methylation in four CGIs, 80 

(or more specifically, parts of CGIs, spanning 4-10 CpG sites in each), which represented a 81 

range of inter-individual variation in DNA methylation from very low to very high (in genes 82 

HHEX (Ensembl identifier: ENSG00000152804), KCNJ11 (ENSG00000187486), KCNQ1 83 
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(ENSG00000053918) and PM20D1 (ENSG00000162877)). Our analysis detects region-84 

specific differential DNA methylation in white blood cell fractions and suggests that such 85 

difference can confound DNA methylation measurement outcomes conducted on whole 86 

blood. 87 
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Results 88 

DNA methylation in whole blood 89 

DNA methylation was measured in DNA isolated from whole blood, in CGIs located in 90 

four genes; HHEX, KCNJ11, KCNQ1 and PM20D1. The examined loci are referred to as the  91 

“HHEX CGI”, ” KCNJ11 CGI”, “KCNQ1 CGI” and the “PM20D1 CGI” in the text below, as the 92 

analysis is focused on the methylation levels of the CpG islands, rather than on the genes 93 

themselves. We analyzed the methylation levels in a total of 10 CpG sites for the HHEX CGI, 94 

8 for the KCNJ11 CGI, 4 for the KCNQ1 CGI and 7 for the PM20D1 CGI. In total, whole blood 95 

DNA methylation data was successfully obtained for 169 individuals for the HHEX CGI, 54 for 96 

the KCNJ11 CGI, 49 for the KCNQ1 CGI and 59 for the PM20D1 CGI (after exclusion of 97 

individuals due to missing values and outliers, see materials and methods for details). Each 98 

CpG site was numbered sequentially on the basis of its distance from the forward primer. The 99 

exact genomic position and corresponding number assigned to each site is listed in table S1 100 

and a gene-map for each locus, to indicate the approximate position of the CpG sites 101 

analyzed is shown in figure 1. 102 

Whole blood DNA methylation levels differed between CpG sites within each CGI 103 

(figure 1), but were generally very low for the HHEX CGI (<20%), intermediate for the 104 

KCNQ1 CGI (ranging between ~40-60%), intermediate to very high for the KCNJ11 CGI 105 

(ranging between ~60-100%) and very low to very high for the PM20D1 CGI (ranging 106 

between ~0-100%). The results also indicated that intra-individual variability in DNA 107 

methylation differed between CGIs; it was high for the KCNJ11 and KCNQ1 CGIs, but low for 108 

the HHEX and PM20D1 CGIs. In general, inter-individual variability was very low for the 109 

KCNQ1 CGI, intermediate for the HHEX and KCNJ11 CGIs and very high for the PM20D1 110 

CGI; the standard deviation per CpG site ranged between 1.4-1.9 percentage points (pp) for 111 

the KCNQ1 CGI, 1.5-3.0 pp for the HHEX CGI, 1.3-3.4 pp for the KCNJ11 CGI and 22.8-25.3 112 

pp for the PM20D1 CGI. 113 
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The inter-individual variability in whole blood DNA methylation level could in theory, at 114 

least partly, be explained in terms of differential white blood cell composition between the 115 

studied individuals. The numbers of white blood cells, neutrophils, lymphocytes, monocytes, 116 

eosinophils and basophils, were counted using an automated cell counter. In our samples 117 

(n=211) the cell counts varied considerably between individuals. The relative standard 118 

deviation for the neutrophil proportion was 14.7% (56.8% ± 8.3%), lymphocytes 25.8% (29.7 119 

± 7.7%), monocytes 30.8% (9.4 ± 2.9%), eosinophils 61.1% (3.6 ± 2.2%) and basophils 120 

96.9% (0.5 ± 0.5%). We analyzed whether the variation in proportional numbers of specific 121 

white blood types were associated with variation in measured DNA methylation levels. 122 

Statistical analysis indicated that a significant proportion of the variability in the HHEX CGI 123 

could be explained by this factor, or up to 35% (p<0.0001). Additionally, DNA methylation 124 

levels in the KCNJ11 CGI were suggestively associated with the basophil proportion, 125 

explaining 3% of the variation in the tested model (p=0.04), perhaps only owing to multiple 126 

testing. None of the five white blood cell ratios were significantly associated with 127 

measurement outcomes for the KCNQ1 and PM20D1 CGIs (table 1). These results were 128 

minimally affected by outliers and missing values, except for the association between DNA 129 

methylation in the KCNJ11 CGI and the basophil proportion, which was not significant when 130 

this data was included. 131 

 132 

DNA methylation in white blood cell fractions 133 

To examine if the variability in measured methylation level at different CGIs in whole 134 

blood was attributable to differential methylation in the white blood cell types comprising 135 

whole blood, we fractionated whole blood samples from 20 individuals into mononuclear cells 136 

(MNCs, containing lymphocytes and monocytes) and polymorphonuclear cells (PMNCs, 137 

containing neutrophils, basophils and eosinophils), isolated DNA and measured the 138 

methylation levels at the four CGIs in each fraction. DNA was also isolated from whole blood 139 

for these individuals, methylation levels measured in each of the four CGIs and the data 140 

included in the analysis above.  141 
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We compared the methylation levels measured in MNCs and PMNCs and observed a 142 

higher average methylation in MNCs in 21 of the 29 CpG sites analyzed in total. Paired 143 

Wilcoxon signed rank test revealed that 18 of these CpGs were significantly differentially 144 

methylated in the two different cell fractions, located in the HHEX, KCNJ11 and KCNQ1 CGIs 145 

(figure 2). The average absolute difference between the two cell fractions was highest for the 146 

HHEX CGI. All ten CpGs studied at this CGI showed significantly higher methylation in 147 

MNCs. The absolute difference ranged between 3.4-15.7 pp (corresponding to ~2.3-4.0 fold 148 

higher methylation levels in MNCs per CpG site). Methylation in the KCNJ11 CGI was also 149 

significantly higher in MNCs. The difference was more moderate, but nonetheless significant 150 

in 7 out of 8 CpGs, ranging between 0.4-6.1 pp (corresponding up to ~1.1 fold higher 151 

methylation levels). In the case of the KCNQ1 CGI, only one CpG site was significantly 152 

differentially methylated between the two fractions (average absolute difference was 1.2 pp, 153 

corresponding to ~2% higher methylation levels). DNA methylation levels did not differ 154 

significantly in the PM20D1 CGI. 155 

 156 

DNA methylation levels are correlated between blood cell fractions 157 

The results in figure 2 suggest that the methylation patterns between cell fractions are 158 

highly similar. To quantify this observation we analyzed the correlation between methylation 159 

levels for the two different fractions (figure 3). The correlation was very high in all CGIs, 160 

irrespective of whether methylation levels differed between cell fractions or not. Spearmans ρ 161 

was 0.72 for the HHEX CGI, 0.93 for the KCNJ11 CGI, 0.80 for the KCNQ1 CGI and 0.95 for 162 

the PM20D1 CGI.  163 
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Discussion 164 

 Studies on DNA methylation using whole blood DNA frequently do not control for 165 

inter-individual variation in the cellular population from which the DNA is derived, the white 166 

blood cells; lymphocytes, neutrophils, eosinophils, basophils and monocytes. This has been 167 

criticized due to hypothesized potential for confounding effect when cellular heterogeneity is 168 

present in conjunction with cell type specific DNA methylation [9]. Here, we studied this 169 

hypothesis in a more comprehensive manner than has been done previously by first testing 170 

for an association between whole blood DNA methylation levels and cellular heterogeneity, 171 

and second to test whether differential methylation in two cell fractions might underlie the 172 

observed association. Our data indicated that indeed a locus specific association between 173 

measured DNA methylation levels and cellular heterogeneity in whole blood can be 174 

observed. Further, we observed significant differences in locus specific DNA methylation 175 

levels in two blood fractions, MNCs and PMNCs, suggesting that it could be the underlying 176 

cause of the observed association between DNA methylation levels and white blood cell 177 

counts. Finally, in all loci tested we observed that DNA methylation in MNCs and PMNCs is 178 

highly correlated independent of differential methylation levels in these fractions. 179 

 Up to 35% of the inter-individual variation in whole blood DNA methylation in the 180 

HHEX CGI was attributed to cellular heterogeneity, suggesting that a considerable 181 

confounding can affect measured levels of whole blood DNA methylation due to differences 182 

in the cellular population. We also detected a weak association between DNA methylation in 183 

the KCNJ11 CGI and the basophil ratio of small effect size (3%). However, given very small 184 

proportion of basophils, as well as a suggestive p-value of 0.04, this result does not 185 

convincingly demonstrate an example of cellular heterogeneity confounding methylation 186 

measurements. Additionally, given the number of tests performed, a correction for multiple 187 

testing may be appropriate. Any such correction would presumably deem the association 188 

between the basophil ratio and KCNJ11 CGI methylation not significant, while even a 189 

conservative correction (e.g., Bonferroni) would not affect the significance of the association 190 
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between cell fractions and DNA methylation in the HHEX CGI. No effect on measurements 191 

for the KCNQ1 and PM20D1 CGIs was observed, suggesting that this type of confounding 192 

does not affect DNA methylation outcomes universally throughout the genome, but may be 193 

locus-specific. These results are in concordance with a previous study [10] where out of a 194 

total of 16 loci assayed, only a single locus was affected in similar magnitude as the HHEX 195 

CGI. Together, these studies indicate that while measured DNA methylation levels in some 196 

loci may be affected by cellular heterogeneity, a substantial proportion of loci may not be 197 

affected by this confounding effect.  198 

 We detected that DNA methylation levels in PMNCs and MNCs differed significantly 199 

in three out of four CGIs examined; i.e., in all CpG sites analyzed in the HHEX CGI, 7 of 8 200 

CpG sites analyzed in the KCNJ11 CGI and 1 of 4 CpG sites analyzed in the KCNQ1 CGI 201 

but not in the PM20D1 CGI. The gross difference observed in the HHEX CGI may reflect the 202 

fact that the HHEX gene is differentially expressed in the various blood cells [12-14]. Just as 203 

in whole blood DNA methylation measurements, this analysis may have been confounded by 204 

cellular heterogeneity because PMNCs and MNCs both consist of groups of cells. However, 205 

the fractionation split up the two white blood cell groups that affected whole blood DNA 206 

methylation measurements and their numbers are so dominant relative to the other groups 207 

that the analysis is likely to be minimally affected. Kerkel et al. have previously studied 208 

methylation in these fractions, and identified multiple differentially methylated loci [15]. Their 209 

analysis was however not described in detail. Nonetheless, together these studies indicate 210 

that differential methylation between white blood cell types may be relatively common. 211 

 Analysis of DNA methylation both in whole blood and blood fractions has allowed 212 

evaluation of the hypothesis that measured DNA methylation levels in whole blood can be 213 

confounded by cellular heterogeneity due to differential methylation levels in the various 214 

white blood cell types. We observed differential methylation between cell fractions in the 215 

HHEX, KCNJ11 and KCNQ1 CGIs and not in the PM20D1 CGI, but we were only able to 216 

detect a significant effect due to cellular heterogeneity on whole blood DNA methylation 217 

measurement outcomes for the HHEX CGI. However, the difference in DNA methylation 218 
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between fractions was very moderate in the KCNJ11 and KCNQ1 CGIs and in the KCNQ1 219 

CGI only one of four CpG sites was differentially methylated. It is therefore possible that the 220 

effect of cellular heterogeneity on measurement outcomes for the KCNJ11 and KCNQ1 221 

CGIs, if any, is exceedingly subtle, and thus undetectable by the methods we employed. It is 222 

therefore our view that these results support the hypothesis, and that they suggest a need to 223 

control for cellular heterogeneity in the analysis of methylation in blood cells. 224 

 Since the confounding effect would only be observed when both the genomic region 225 

of interest is differentially methylated amongst white blood cell types, and when there is 226 

blood cell count heterogeneity in the individuals being compared, controlling for this problem 227 

may be addressed in different ways depending on available data. Differences in white blood 228 

cell composition may be assessed if blood cell counts for the individuals under investigation 229 

are available. Alternatively, subjects can be paired with controls that are concordant in terms 230 

of cellular composition prior to the analysis. Furthermore, whole blood can be fractionated to 231 

assess possible differential methylation in the area of interest. This may be done with the 232 

Ficoll medium method used here which is relatively easy to perform, but due to heterogeneity 233 

in the fractions, as noted previously, this approach may not be sufficient to address the 234 

problem. Finally, referring to the literature may be advisable to assess the risk of altered 235 

blood cell counts in the groups of individuals under study. For example white blood cell 236 

counts have been shown to be associated with the development of cancers [16] and 237 

coronary heart disease [17]. This raises the issue that whenever there is a difference in cell 238 

fractions associated with disease, an adjustment for blood cell proportions could be essential 239 

for better controlled analyses. 240 

 The different approaches may cause inconsistent results, and therefore it is important 241 

to standardize methods for this correction. As has been discussed previously [10], adjusting 242 

for white blood cell counts can be achieved with standard statistical approaches. Such an 243 

approach may be well suited for that purpose since such data is presumably readily available 244 

at many laboratories conducting experiments on whole blood DNA. This could be achieved in 245 

two ways: One is to use multiple variables accounting for the absolute number of each cell 246 
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type (commonly five; neutrophils, lymphocytes, monocytes, basophils and eosinophils) or 247 

alternatively use a single variable accounting for the proportion of one cell type. Using a 248 

single variable is more appealing because the other option would reduce the number of 249 

degrees of freedom. However, to be able to correct for the confounding effect of cellular 250 

heterogeneity in statistical models by using a variable accounting for the proportional number 251 

of one cell type, there needs to be a correlation between methylation levels in the different 252 

types of white blood cells. Our results indicate that in the analyzed CGIs, methylation 253 

patterns across the corresponding CpG sites within a CGI are very similar between the 254 

different cell types irrespective of demonstrable differences in the cell specific absolute 255 

methylation levels. Our analysis therefore suggests that use of a single variable to account 256 

for the proportional number of a single cell type (e.g., neutrophils or lymphocytes) in 257 

statistical analyses might be sufficient to correct for the confounding effect of cellular 258 

heterogeneity on DNA methylation measurements conducted using whole blood DNA. 259 

  260 

 Our findings may not only be relevant for methylation measurements using whole 261 

blood DNA. Other tissues are samples of different types of cells as well, so a similar problem 262 

could affect measurements in these tissues. Our data indicate that although methylation 263 

levels may differ between blood cell types in some loci, the methylation pattern may at the 264 

same time be very similar (as indicated by the high correlation between methylation levels). 265 

This is in agreement with previous studies which have shown that different cells and tissues, 266 

even from separate germ layers, generally have similar DNA methylation patterns [2,10,18]. 267 

If blood cell DNA methylation measurements could be used as surrogates for methylation in 268 

other tissues based on this feature, it might be preferable to use blood.  269 

 DNA methylation levels are sometimes assessed in a global manner, assaying CpG 270 

sites across the entire genome. Since our study was conducted in a gene-specific manner 271 

the results may not apply to global DNA methylation measurements. Indeed, in a previous 272 

study using LUMA to estimate global methylation, we report no association between 273 

methylation levels and white blood cell counts [19]. However, as mentioned above, Wu et al. 274 
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report that global methylation levels in PMNCs, as measured by LUMA, are significantly 275 

higher than in MNCs and are not correlated [8]. In the same study, results from three other 276 

assays for global DNA methylation showed no association between PMNCs and MNCs 277 

methylation levels. It is therefore possible that global methylation measurements are also 278 

confounded by cellular heterogeneity. A more detailed analysis, including comparison on the 279 

association between global methylation levels in whole blood and cellular composition, such 280 

as in the present study, should be conducted in order to extend these observations. 281 

 The results from the present study call for an analysis of larger number of CpG sites 282 

to reveal the full extent of how confounding effects may influence analyses on DNA 283 

methylation conducted using whole blood DNA. It is important to assess whether measured 284 

methylation levels at a considerable amount of loci are affected by this effect. Second, it 285 

would be of value to study whether methylation of CpGs positioned in certain genes is more 286 

prone to be affected by this factor than others (e.g., in genes that are differentially expressed 287 

in the different cell subtypes such as HHEX). Finally, it would be interesting to investigate 288 

whether certain sequences (e.g., introns, exons, CGIs, CGI shores, transcription start sites or 289 

promoter regions) are more likely to be affected by this confounding effect.290 
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Materials and methods 291 

Ethical statement 292 

The Age, Gene/Environment Susceptibility (AGES)-Reykjavik [20] and the Risk 293 

Evaluation For Infarct Estimates (REFINE)-Reykjavik studies are approved by the Icelandic 294 

National Bioethics Committee (VSN: 05-112, VSN: 00-063) and the Data Protection Authority. 295 

All participants gave written informed consent on arrival to the clinic. 296 

 297 

Samples 298 

Samples used in the present study were obtained from two cohort studies conducted at 299 

the Icelandic Heart Association, the AGES-Reykjavik [20] and the REFINE-Reykjavik studies. 300 

Whole blood DNA samples, which were analyzed independently for each CGI assayed in the 301 

study, were obtained from both the AGES-Reykjavik and the REFINE-Reykjavik studies 302 

(n=191). Blood was collected from individuals taking part in the REFINE-Reykjavik study 303 

(n=20), and these samples subsequently used for DNA extraction from both whole blood and 304 

two whole blood cell fractions (see details in next section). Three DNA samples were 305 

therefore obtained from each blood sample. All three DNA samples from all the 20 individuals 306 

were analyzed for each of the four CGIs assayed in the study. Both the whole blood DNA 307 

samples we obtained and the blood samples we collected were randomly selected from 308 

apparently healthy men and women. The age range of all individuals included in the study 309 

(n=211) was 22-96 years, and ~45% were males. An overview of the total number of whole 310 

blood DNA samples analyzed per CGI, and their overlap is provided in figure S1 311 

Briefly, AGES-Reykjavik study was the last of seven visits in the Reykjavik Study, a 312 

population-based cohort study initiated in 1967, inviting all Reykjavik inhabitants born 313 

between 1907 and 1935 to participate. In this final visit 5764 of the surviving members were 314 

recruited. REFINE-Reykjavik is a prospective study on risk factors and cause of 315 

atherosclerotic disease in a population of Icelandic people. The main goal of the study is to 316 

improve the predictability of cardiovascular disease risk estimates. The study was initiated in 317 
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2005 and recruitment of the first phase was completed in spring 2011 recruiting 6942 men 318 

and women born in the years 1936-1980 living in the Reykjavik city area.  319 

 320 

DNA isolation  321 

Whole blood was fractionated by density gradient centrifugation using Histopaque-1077 322 

Ficoll medium and AccuspinTM Tubes (Sigma-Aldrich, catalog numbers (cat.nr.): 10771 and 323 

A1930 respectively). The mononuclear cell fraction was extracted from the serum/medium 324 

boundary and the polymorphonuclear cell fraction from the bottom of the tubes. The blood 325 

samples were processed as “fresh” as possible, never later than 4 hours after the blood 326 

draw. 327 

A simple salting out method was used for DNA extraction, based on an extraction 328 

method developed by Scotlab Bioscience (Coatbridge, Scotland, UK). The DNA was 329 

dissolved in TE buffer and its concentration measured using UV absorbance quantification 330 

(260 nm) on a Spectramax M2 (Molecular Devices, Sunnyvale, CA, USA) microplate reader. 331 

 332 

Blood cell counts 333 

For all participants, white blood cells (monocytes, lymphocytes, eosinophils, basophils 334 

and neutrophils) were counted in whole blood by an automated cell counter, Coulter HmX AL 335 

Hematology Analyzer (Beckman Coulter, High Wycombe, England, UK). 336 

 337 

Bisulfite conversion of DNA samples 338 

Bisulfite conversion of DNA samples was carried out using the EZ DNA MethylationTM 339 

kit (Zymo Research, cat.nr.: D5004) following the manufacturer's instructions. When the DNA 340 

was not analyzed immediately following the conversion process it was stored at -20°C for 341 

later use. DNA from blood fractions and the corresponding whole blood DNA for each 342 

individual was converted in the same batch. 343 

 344 
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Analysis of DNA methylation 345 

DNA methylation was analyzed at four CGIs chosen to represent regions with a range 346 

of inter-individual variation in DNA methylation levels from very low to very high. The HHEX, 347 

KCNJ11 and KCNQ1 CGIs had been studied previously at the IHA (unpublished data) and 348 

were chosen to represent low to intermediate variability regions while the PM20D1 CGI was 349 

selected from our previous, published work to represent a highly variable region [21]. More 350 

specifically, the CGIs were selected from a larger set of CGIs based on two criteria. First, on 351 

basis of the size of the inter-individual variability present at each CGI so as to select CGIs 352 

representing a spectrum of variability from very low to very high and second, on basis of 353 

which CGI in each variability category had available data on DNA methylation in the largest 354 

number of whole blood DNA .The assays were designed to analyze DNA methylation levels 355 

in CGIs, located using the University of California, Santa Cruz genome browser (Human 356 

March 2006 NCBI36/hg18 assembly) [11]. 357 

Primer sets (forward and reverse PCR primers, one tagged with biotin, and a 358 

sequencing primer) were designed using PyroMark Assay Design software (version 2.0.1.15, 359 

QIAGEN, Hilden, Germany). Primer sequences and genomic positions of the CpG sites 360 

analyzed in each assay are listed in tables S1 and S2. A 30 μl PCR was carried out on a 361 

2720 Thermal cycler (Applied Biosystems, Foster City, CA, USA) using 1X TITANIUM Taq 362 

polymerase (Clontech, cat.nr.: 639220) or 3 units OneTaqTM Hot Start polymerase (New 363 

England Biolabs, cat.nr.:M0481L), 1X Standard Taq Reaction Buffer (New England Biolabs, 364 

cat.nr.: B90145), 0.2 mM dNTP (New England Biolabs, cat.nr.: N04465), 0,25 μM of each 365 

primer (Sigma-Aldrich) and 3 μl of bisulfite converted DNA. PCR cycling conditions for all 366 

assays were as follows; 2 minutes at 96°C, followed by 40 cycles of 90s at 96°C, 90s at 62°C 367 

and 90s at 72°C and finally 72°C for 10 minutes after cycling.  368 

The biotinilated sequencing template was extracted from the PCR product mixture by 369 

annealing with streptavidin coated sepharose beads (Streptavidin SepharoseTM High 370 

Performance, GE Healthcare, cat.nr.: 17-5113-01). The template was subsequently washed 371 

in a series of steps using a Vacuum prep workstation (QIAGEN cat.nr.: 9001518) and finally 372 
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released onto a sequencing plate (QIAGEN, cat.nr.: 979201) containing annealing buffer 373 

(QIAGEN, cat.nr.: 979309) with the appropriate sequencing primer. The samples were 374 

analyzed for methylation at each CpG site using a PyroMark Q24 pyrosequencer (QIAGEN) 375 

and PyroMarkTM Gold Q24 reagents (QIAGEN, cat.nr.: 97082). 376 

 377 

Data analysis 378 

Pyrograms from the pyrosequencing reactions were analyzed with the “PyroMark Q24 379 

Software” (v1.0.10, QIAGEN). Methylation levels were calculated as the ratio between peak 380 

heights for methylated C’s and the sum of methylated and unmethylated C’s for each CpG 381 

site. Default software settings were used for quality assessment of the pyrograms per CpG 382 

site and measurements that failed the assessment were discarded when appropriate. 383 

Consequently, some individuals had missing values for one or more CpG site and were 384 

analyzed separately. To verify that the assays were robust, the measurements were partly 385 

replicated (analysis not shown). For the replicated data, average methylation from the two 386 

measurements was used in the subsequent analysis. We tested for batch effects introduced 387 

by use of two brands of polymerases and only pooled data acquired through use of the two 388 

polymerases lacking any significant batch effects (data not shown). Finally, outliers were 389 

defined as values outside mean ± 2.698s (where s is standard deviation) per CpG site. For a 390 

standard Gaussian distribution, this criterion defines 0.35% of the data farthest from the 391 

mean in both directions as outliers. Individuals with one or more outliers were analyzed 392 

separately 393 

In total, whole blood DNA methylation data was obtained for 179 individuals for the 394 

HHEX CGI, 64 individuals for the KCNJ11 CGI, 50 individuals for the KCNQ1 CGI and 59 395 

individuals for the PM20D1 CGI (figure S1). For the HHEX CGI, one or more outliers were 396 

detected in the CpGs studied for seven individuals, and measurement of methylation at one 397 

or more CpG sites failed the quality assessment in an additional three samples. For the 398 

KCNJ11 CGI, measurements for five samples failed quality assessment at one or more CpG 399 

sites and five outliers were present. For the KCNQ1 CGI, a single outlier was present, but no 400 
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missing values. No outliers were present in the data for the PM20D1 CGI and none of the 401 

measurements failed the quality assessment. Successful and reliable measurements for all 402 

corresponding CpG sites in 169 samples for the HHEX CGI, 54 for the KCNJ11 CGI, 49 for 403 

the KCNQ1 CGI and 59 for the PM20D1 CGI were therefore obtained from whole blood DNA 404 

and used in the subsequent analysis. The proportion of variation in methylation levels 405 

between individuals explained by differential white blood cell counts was estimated from 406 

unadjusted mixed model analysis of the data using PROC MIXED in SAS Enterprise Guide 407 

version 4.2 using a random intercept term to account for the correlation within a person. 408 

Since R2 cannot be obtained directly from such analysis, two models were applied, an 409 

intercept only model containing only CpG sites as fixed effects and a full model where 410 

additionally, the proportional number of a specific cell type was added to the intercept model 411 

as fixed effect. R2 was then calculated from the residual variance (vr) and variance of the 412 

random intercept (vs) terms using the formula R2=(Vi-Vf)/Vi where Vi=vr+vs for the intercept 413 

only model and Vf=vr+vs for the full model. 414 

Measurements on DNA from the two blood cell fractions, PMNC and MNCs, were 415 

conducted on the same 20 individuals (40 samples total) for all four CGIs. Measurements 416 

were successfully obtained for all CpG sites at all CGIs. A single outlier was present in the 417 

data for the HHEX, KCNJ11 and KCNQ1 CGIs, but none in the data for the PM20D1 CGI. 418 

Due to the limited number of samples used in this analysis, this data was not excluded. 419 

Excluding the data did however not affect the analysis (analysis not shown). The data were 420 

analyzed using non-parametric statistics to avoid making a generalized assumption about the 421 

distribution of our data, which may differ between loci. Paired Wilcoxon signed rank test was 422 

used to assess statistical differences in methylation levels between the two cell populations 423 

and their correlation assessed with Spearman correlation coefficient using R version 2.12.2. 424 
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Figure Legends 

Figure 1. Percent DNA methylation in whole blood samples. 

Percent DNA methylation (y-axis) in whole blood DNA per CpG site (x-axis) in four 

CGIs located in the HHEX (n=169), KCNJ11 (n=54), KCNQ1 (n=49) and PM20D1 (n=59) 

genes respectively. Data for each CGI is depicted in a separate boxplot. Below each boxplot 

is a gene-map which roughly indicates the position of the analyzed CpG sites (adapted from 

the UCSC genome browser) [11]. Genes are depicted in blue, the exons as blocks, the 

introns as thin lines connecting the blocks, and the 5' and 3' untranslated regions as thin 

blocks at each end. CGIs are shown as green blocks. The genomic position depicted for 

each CGI is; 10:94,439,661-94,445,388 (chromosome:first base-last base) for the HHEX 

CGI, chr11:17,363,372-17,366,783 for the KCNJ11 CGI,  chr11:2,422,797-2,826,916 for the 

KCNQ1 CGI and chr1:204,063,776-204,085,881 for the PM20D1 CGI. An arrow indicates the 

direction of transcription and the position of the transcription start site. 

 

Figure 2. Percent DNA methylation in mononuclear and polymorphonuclear cells.  

Percent DNA methylation (y-axis) in mononuclear and polymorphonuclear cells (MNCs 

and PMNCs) per CpG site (x-axis) in four CGIs located in the HHEX, KCNJ11, KCNQ1 and 

PM20D1 genes respectively (n=20 each). Data for each CGI is depicted in a separate 

boxplot where measurements for MNCs are shown in red and for PMNCs in blue. The dotted 

lines separating the boxes indicate that at each CpG site a pair of data is being compared 

(i.e., for MNCs and PMNCs). Significantly (p<0.05) differentially methylated CpG sites (MNCs 

versus PMNCs DNA methylation) are indicated with an asterisk. 

 

Figure 3. Correlation between DNA methylation in mononuclear and 
polymorphonuclear cells. 

Comparison of DNA methylation levels measured in two cell fractions, mononuclear 

cells (MNCs) and polymorphonuclear cells (PMNCs). Percent methylation in PMNCs (y-axis) 

is plotted against percent methylation in MNCs (x-axis). Each dot represents the two 
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measurements for a single CpG per individual. The Spearman ρ for correlation between 

measurements in MNCs and PMNCs for each CGI is shown in the legend. 

 

Figure S1. Venn diagram depicting the number of samples analyzed per CGI. 

The diagram contains a set of 15 numbers that, when added together, represent the 

total number of individuals analyzed with DNA from whole blood. Each ellipse contains a set 

of numbers, that when added together represent the total number of individuals analyzed for 

a specific CGI. Finally, some individuals were analyzed for more than one CGI, and this is 

represented by the overlapping of ellipses. 

 

Table S1. Genomic positions of the CpG sites analysed per locus. 

 

Table S2. Primer sequences for the PCR assays used in the study. 
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Tables 
 
Table 1. Proportion of variation in measured DNA methylation level accounted for by cellular 
heterogeneity   
 Variance explained by cell proportion (%) 

CGI Lymphocytes Monocytes Neutrophils Eosinophils Basophils 
HHEX 35** 0 26** 0 0 

KCNJ11 0 0 0 0 3* 
KCNQ1 1 0 0 0 0 
PM20D1 0 0 0 0 0 
*p<0.05, **p<0.0001 
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Figure 1 
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Figure 2 
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Figure 3 
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Supplementary materials 

Figure S1: 
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