
Faculty of Industrial Engineering
University of Iceland

2012

Faculty of Industrial Engineering
University of Iceland

2012

Rollout Algorithms for Job-Shop
Scheduling

Einar Geirsson

ROLLOUT ALGORITHMS FOR JOB-SHOP
SCHEDULING

Einar Geirsson

30 ECTS thesis submitted in partial fulfillment of a
Magister Scientiarum degree in Industrial engineering

Advisors
Tómas Philip Rúnarsson

Steinn Guðmundsson

Faculty Representative
Sven Þórarinn Sigurðsson

Faculty of Industrial Engineering
School of Engineering and Natural Sciences

University of Iceland
Reykjavik, May 2012

Rollout Algorithms for Job-Shop Scheduling

30 ECTS thesis submitted in partial fulfillment of a M.Sc. degree in Industrial engineering

Copyright © 2012 Einar Geirsson
All rights reserved

Faculty of Industrial Engineering
School of Engineering and Natural Sciences
University of Iceland
Hjarðarhagi 2-6
107, Reykjavik, Reykjavik
Iceland

Telephone: 525 4000

Bibliographic information:
Einar Geirsson, 2012, Rollout Algorithms for Job-Shop Scheduling, M.Sc. thesis, Faculty
of Industrial Engineering, University of Iceland.

Printing: Háskólaprent, Fálkagata 2, 107 Reykjavík
Reykjavik, Iceland, May 2012

Abstract

The topic of this thesis are new approximation methods for job-shop scheduling that
dispatch jobs based on statistics collected from multiple Monte Carlo rollouts. The
methods use a look-ahead feature to evaluate all the jobs available for dispatching, by
generating multiple feasible schedules. Previous work on rollout algorithms for com-
binatorial optimization problems has focused on sequentially consistent heuristics,
that only search small areas of the solution space. The new algorithms widen the
search space by basing the search on sequentially inconsistent algorithms. Four new
algorithms are proposed: the fortified rollout algorithm, average rollout algorithm,
hybrid rollout algorithm and quantile rollout algorithm. These methods differ in
the way jobs are dispatched after completion of rollouts. The methods are tested on
600 job-shop problems of three different dimensions. All of the algorithms were able
to generate schedules of higher quality than previous algorithms employing rollouts
and the quantile rollout algorithm produced the best schedules overall, especially
for larger problem instances.

Ágrip

Útspilunarreiknirit fyrir verkniðurröðun

Umfjöllunarefni þessarrar rigerðar eru nálgunaraðferðir fyrir verkniðurröðun. Aðferð-
irnar skoða næstu verk sem bíða niðurröðunar, mynda þaðan fjölda lausna með
Monte Carlo útspilun (e. rollouts) og ákveða svo næsta verk til þess að raða.
Rannsóknir á þessum aðferðum hafa hingað til einskorðast við röðunarreglur sem
beina leit sinni að takmörkuðu svæði lausnarrúmsins. Aðferðirnar sem hér eru kyn-
ntar víkka leitarsvæði útspilanna með því að einblína á slembnar röðunarreglur.
Fjórum nýjum reikniritum er lýst: styrktarreiknirit (e. fortified rollout algorithm),
meðaltalsreiknirit (e. average rollout algorithm), tvinnreiknirit (e. hybrid rollout al-
gorithm) og hlutfallsmarksreiknirit (e. quantile rollout algorithm) og liggur munur
þeirra í því hvernig verkum er raðað eftir lok útspilanna. Aðferðirnar voru prófaðar á
600 mismunandi verkniðurröðunarverkefnum af þremur mismunandi stærðum. Allar
nýju aðferðirnar fundu betri lausnir en önnur þekkt útspilsreiknirit. Hlutfallsmarks-
reikniritið fann bestu lausnirnar í heildina, sérstaklega fyrir stærri gerðir verkefna.

v

Contents

List of Figures ix

List of Tables xi

List of Algorithms xiii

1 Introduction 1
1.1 Motivation . 2
1.2 Contribution . 2
1.3 Overview . 3

2 The Job-Shop Problem 5
2.1 A Formal Statement of the Job-Shop problem 5
2.2 Complexity of the Job-Shop Problem 6
2.3 Approximation Methods for Solving the Job-Shop Problem 7

2.3.1 Heuristics . 8
2.3.2 Meta-Heuristics . 8

2.4 Optimal Methods for Solving the Job-Shop Problem 9
2.4.1 Mixed Integer Programming 10
2.4.2 Branch and Bound . 10

2.5 Summary . 11

3 Rollout Algorithms for Combinatorial Optimization 13
3.1 A Framework for Rollout Algorithms 13
3.2 Sequentially Improving Algorithms 14
3.3 A Rollout Algorithm for the Job-Shop Problem 15
3.4 Summary . 18

4 Bandit Algorithms 19
4.1 The Conflict Between Exploration and Exploitation 19
4.2 Evaluating Levers . 20
4.3 The Job-Shop Bandit . 21
4.4 The Max K-Armed Bandit . 22

4.4.1 Threshold Ascent . 22
4.5 Summary . 24

vii

Contents

5 Rollout Algorithms for the Job-Shop Problem 25
5.1 Pilot Heuristics . 25

5.1.1 Random Heuristic . 26
5.1.2 Randomly Chosen Dispatch Rules 26

5.2 Policies for Dispatching Jobs . 26
5.2.1 The Fortified Rollout Algorithm 27
5.2.2 The Average Rollout Algorithm 28
5.2.3 The Quantile Rollout Algorithm 29
5.2.4 A Hybrid Rollout Algorithm 29

5.3 Exploration Policies . 30
5.3.1 Evenly Distributed Rollouts 30
5.3.2 Threshold Ascent . 31

5.4 Summary . 31

6 Experimental Study 33
6.1 Experimental Setup . 33

6.1.1 Performance Criteria . 34
6.2 Results . 34

6.2.1 Results for the Fortified Rollout Algorithm 35
6.2.2 Results for the Average Rollout Algorithm 36
6.2.3 Results for the Hybrid Rollout Algorithm 37
6.2.4 Results for the Quantile Rollout Algorithm 37
6.2.5 Results for Threshold Ascent 38
6.2.6 Randomly Chosen Dispatch Rule 39
6.2.7 Results for Different Number of Rollouts 40
6.2.8 Results for Different Problem Sizes 41
6.2.9 Results for the Yamada 20×20 Problems 42

6.3 Computational Time Comparisons . 44
6.3.1 Results of Other Research . 44

6.4 Summary . 45

7 Summary and Discussion 47

8 Conclusion and Future Work 49

Bibliography 51

viii

List of Figures

3.1 Graph for a 3× 3 problem. 15

3.2 Graph of the 3× 3 example. The first steps of the rollout algorithm
using a look-ahead feature are shown. The current node is shown in
bold, available nodes in stripes and visited nodes in grey. 17

5.1 Two normal distributions where the one with the lower mean (black)
is less likely to contain good schedules compared to the higher mean
(grey). 29

ix

List of Tables

2.1 Popular heuristics and their description. 9

6.1 Abbreviations. 35

6.2 Results for the fortified rollout algorithm. 36

6.3 Results for the average rollout algorithm. 36

6.4 Results for the hybrid rollout algorithm. 37

6.5 Results for the quantile rollout algorithm. 38

6.6 Results when using threshold ascent as exploration policy. 39

6.7 Results when using randomly chosen dispatch rules as exploration
policy. 39

6.8 Average mean percentage error for different number of rollouts. 40

6.9 Results for the 6× 6 problems. 41

6.10 Results for the 10× 10 problems. 42

6.11 Results for the 14× 14 problems. 42

6.12 Results for the 20× 20 problems. 43

6.13 Average computational time for solving one problem. 44

xi

List of Algorithms

3.1 A rollout algorithm for combinatorial optimization problems 14
3.2 A rollout algorithm for the job-shop problem 16

4.1 Threshold ascent . 23

5.1 The fortified rollout algorithm for the job-shop problem 27
5.2 The average rollout algorithm for the job-shop problem 28

xiii

1 Introduction

How to allocate resources to jobs is one of the most important issues of production
management. Most companies have limited amount of resources that they need to
use for maximum productivity. In large companies with many different jobs, the task
of allocating resources optimally to the different jobs quickly becomes impossible to
solve manually. This is known as a scheduling problem.

The problem is how to allocate a number of jobs to a number of machines to meet
a predefined criteria. Due to it’s practical nature, scheduling problems have been
widely researched since the industrial revolution of the 19th century. To begin with,
simple rules, such as first in first out, were introduced to help production managers
and many of these rules are still in use today. But these rules mostly give subop-
timal solutions and in the middle of the 20th century mathematical formulations
and algorithms for solving scheduling problems more accurately started to receive
attention. The focus of this thesis will be on scheduling problems known as job-shop
problems.

Job-shop problems are very difficult to solve to optimality and to account for this
most methods used to tackle these problems are approximation methods, i.e. meth-
ods that are able to find good solutions in a reasonably short time period, without
the requirement of optimality. These methods range from very simple rules that re-
quire little knowledge, to sophisticated ones that require detailed knowledge about
the problem at hand.

Since optimal methods are too slow for practical use we will introduce new methods
to approximate solutions to the job-shop problem. These new methods are based on
machine learning methods used successfully for playing the game of Go and are called
rollout algorithms. Rollout algorithms have previously been used by Bertsekas et al.
(1997) and Duin and Voß (1999) for solving combinatorial optimization problems,
by Runarsson et al. (2011) and Meloni et al. (2004) for the job-shop problem. In
this thesis, rollout algorithms are expanded towards methods that resemble the
reinforcement learning tactics introduced by Sutton and Barto (1998).

1

1 Introduction

1.1 Motivation

The main difficulty of the job-shop problem is that as more machines and jobs
are added to the problem its complexity increases exponentially and along with
it, the computational time required to solve it. Despite increased computational
capabilities of the last decades, larger job-shop problems are still extremely difficult
to solve optimally and most of them are impossible to solve efficiently.

Due to the difficulty in solving to optimality, there exist many methods for finding
good approximate solutions, ranging from very simple to complex and sophisticated
methods. Approximation methods search for good solutions to the problem without
the requirement of optimality. The most simple ones are not very accurate and the
most sophisticated ones are usually knowledge based, i.e. they depend on special
features of particular problems and do not necessarily give good results for other
related problems.

Many approximation methods formulate the job-shop problem as a sequential deci-
sion problem, i.e. the task of successively choosing one of multiple available actions,
each resulting in a different outcome. Consider a board game were we are in a par-
ticular state and wish to find the action that maximizes our chances of victory. This
scenario is similar to the one we encounter with job-shop problems. We have a set of
available jobs and wish to find which one to dispatch in order to maximize/minimize
our objective function.

A popular method to find this action, when playing board games, is to play several
random games (this is known as Monte Carlo rollouts), originating from the different
available actions and pick the one that is the most likely to lead to victory. The aim
of this thesis is to investigate whether Monte Carlo rollouts and rollout algorithms
can be as successful in finding good solutions to job-shop problems, as they are in
board games such as Go (Brügmann, 1993). Is it is possible to transfer the ideology
of rollouts to deterministic optimization problems such as the job-shop problem?
Can we get reasonable results for large, combinatorial, optimization problems using
rollout algorithms?

1.2 Contribution

One of the greatest difficulties of designing algorithms for the job-shop problem, is
that different problem instances vary significantly and so does the performance of
the algorithms. The Monte Carlo rollouts used are random and do not depend on
the particular problem at hand and should work for any type of job-shop problem.

2

1.3 Overview

This removes the necessity of the user to study the problem in detail before starting
the solution process and, enabling non-experts to use the method. The new methods
offers multiple strategies for implementation that finds good solutions for all kinds of
different job-shop problems and it gives insight into how strategies work differently
for problems of varying size.

The new methods and algorithms in the thesis are based on the new job-shop bandit
(section 4.3). The quantile rollout algorithm (section 5.2.3) is most noteworthy
but other methods and algorithms presented in the thesis are the fortified rollout
algorithm (section 5.2.1), the average rollout algorithm (section 5.2.2), the hybrid
rollout algorithm (section 5.2.4) as well as a new heuristic, randomly chosen dispatch
rule (see section 5.1.2).

1.3 Overview

The job-shop problem is introduced in chapter two, its complexity and known meth-
ods for solving the problem are discussed. We follow up in chapter three with
an introduction to rollout algorithms for combinatorial optimization problems, the
mathematical framework they are used in and several rollout strategies. We also
show how the job-shop problem can be framed in terms of rollout algorithms. In the
fourth chapter the bandit problem is discussed together with several variants of it.
The job-shop bandit, where the job-shop problem is framed as a bandit problem, is
introduced. The fifth chapter describes strategies, methods and different versions of
rollout algorithms for solving job-shop problems. In this chapter new methods for
dealing with the job-shop problem are proposed and explained in detail. In the sixth
chapter the experimental setup is explained and results are presented. The seventh
chapter is a summary and discussion of the results. Conclusions and directions of
future research are presented in chapter eight.

3

2 The Job-Shop Problem

The job-shop problem consists of a set of jobs that need to be processed on a set of
machines. The problem assumes that a machine can only process one job at a time
and that the processing of a job, referred to as an operation, cannot be interrupted.
In an n × m job-shop problem, n jobs must be processed on m machines (Carlier
and Pinson, 1989). If a job requires processing on a machine more than once the
job-shop is said to be recirculating (Pinedo, 2008). The jobs are scheduled as a
chain of operations where each operation needs to be processed during a given time
period on each machine. The objective is to find the set of operations (a schedule)
that has minimum length (Vaessens et al., 1994).

2.1 A Formal Statement of the Job-Shop problem

The following formal formulation of the job-shop problem is influenced by Vaessens
et al. (1994) and Runarsson et al. (2011). A setM of m machines is given together
with a set J of n jobs and a set O of n ∗m operations. For each operation, o ∈ O,
there is a processing time, p(o) ∈ N, a unique machine M(o) ∈ M where it is
processed, and a unique job J(o) ∈ J to which it belongs. Hence each o ∈ O can
be denoted by oij where i is the job and j the machine belonging to this operation.

The order of the jobs on the machines is specified in a permutation matrix σj,i ∈M,
where σj,i is the i-th machine that needs to process job j. The matrix σ decides
the total ordering of operations for each job. It should be noted that there are
no precedence constraints between operations of different jobs. Let s(oj,i) be the
starting time of job j on machine i. A schedule is a function, S : O → Z+, that
for each operation o defines a start time s(o). A feasible schedule must hold the
following constraints:

5

2 The Job-Shop Problem

s(oj,i) ≥ 0 ∀j ∈ J i ∈M (2.1)
s(oj,σj,i) ≥ s(oj,σj,i−1

) + p(oj,σj,i−1
) ∀j ∈ J i ∈M (2.2)

s(oj,i) ≥ s(ok,i) + p(ok,i) or s(ok,i) + p(ok,i) ≤ s(oj,i) (2.3)
∀j, k ∈ J , j 6= k, i ∈M

Constraint (2.1) states that the starting time of each job must be non-negative.
Constraint (2.2) guarantees that all precedence constraints are satisfied. Constraint
(2.3) makes sure that no machine can process two jobs at the same time. The length
of a schedule, or the makespan, is the completion time of the last job and is defined
as

Cmax = max
o∈O

s(o) + p(o) (2.4)

The objective of the job-shop problem is to minimize the makespan

minCmax = max
o∈O

s(o) + p(o) (2.5)

A feasible schedule is called left-justified if no job can start earlier without changing
the processing order on any machine. If no job can start a operation without delaying
another operation it is called active (Vaessens et al., 1994).

The most widely researched job-shop problems are deterministic, where the pro-
cessing time is considered to be known and without uncertainties. Additional time
required during processing, such as set-up times, is often implemented in the model
as additional processing time. This is of course a simplification, since the process-
ing time of a job in the real world is always stochastic. Despite this simplification,
solving deterministic problems is a useful tool in scheduling to give insight in the
workings of the job-shop (Pinedo, 2008).

2.2 Complexity of the Job-Shop Problem

The job-shop problem is extremely difficult to solve to optimality. The first examples
of efficient methods that deal and solve scheduling problems are credited to Johnson

6

2.3 Approximation Methods for Solving the Job-Shop Problem

(1954) who developed an algorithm to solve a two machine flow shop that minimizes
the maximum flow time. The idea of minimizing the makespan has since then been
attributed to Johnson. His method was easily extended to different variations of
simple scheduling problems (Jain and Meeran, 1998).

There exist algorithms that solve the job-shop problem optimally, but the worst case
running time increases exponentially with respect to the size of the input except for
a few special cases (e.g. Hefetz and Adiri (1982) show that job-shop problems with
m = 2 and p(o) = 1 is such a case). Garey et al. (1976) showed that the job-shop
problem is NP-hard for instances where m ≥ 3 and n ≥ 3. This means that it
is highly unlikely that an algorithm with polynomial running time exists for these
problems. A well known NP-hard problem is the traveling salesman problem. This
problem can be looked upon as a special case of the job-shop problem with one
machine (m = 1), i.e. the machine is the salesman and the jobs are the cities.

While many special cases of the job-shop problem have been solved to optimality
there are for a given n×m instance (n!)m possible solutions to the problem. To put
this into context, a 20× 10 problem has (20!)10 = 7.2651× 10183 possible solutions.
That is more than the supposed age of the universe in microseconds (Jain and
Meeran, 1998). The difficulty of the job-shop problem can also be seen in the fact
that a 10 × 10 problem, proposed by Fisher and Thompson (1963), was not solved
to optimality until 1986 (Vaessens et al., 1994).

Knowing that the job-shop problem is NP-hard and extremely difficult to solve is of
no consolation for those faced with such a problem. But it might help that not all
job-shop problems are equally hard to solve from a practical point of view. Some
can be solved using dynamic programming or branch and bound methods (discussed
in section 2.4.2). But these methods only produce satisfactory results if the problem
is not too large.

Since it is not feasible to produce optimal solutions for larger problems in a reason-
able time, considerable effort has been put into approximation methods, i.e. efficient
methods that search for good solutions, without the requirement of optimality.

2.3 Approximation Methods for Solving the
Job-Shop Problem

Heuristics, or dispatching rules as they are sometimes called, dispatch jobs according
to predefined rules. There are several simple heuristics commonly used for solving
the job-shop problem. Meta-heuristics modify complete solutions, usually found

7

2 The Job-Shop Problem

from heuristics in search of better ones.

2.3.1 Heuristics

Heuristics are simple dispatch rules gained from experience and expertise. Most of
these rules are dependent on the type of problem at hand and are in general not
efficient for different types of problems. Each method dispatches a job, one at a
time, based on the current state of all machines and jobs, to create a feasible and
good schedule (Kawai and Fujimoto, 2005).

Popular dispatching rules include shortest processing time (SPT) where the job with
the shortest processing time is dispatched next and First Come First Serve (FCFS)
where the first job to enter the job-shop is dispatched next. Several well known
dispatching rules are listed in table 2.1.

2.3.2 Meta-Heuristics

Meta-heuristics combine different heuristic methods and search among several sched-
ules. The meta-heuristics search for better schedules mostly by manipulating a com-
plete schedule repeatedly at each iteration. The family of meta-heuristics cover a
large variation of techniques, from the very simple to sophisticated ones. The draw-
back of meta-heuristics is that they often depend on the properties of each problem
for which they were developed. Implementing properties of a certain type of prob-
lem into the solution process helps the search for high-quality solutions, but when
applied to a more general form of the problem it can prove to be less helpful or even
counterproductive (Kawai and Fujimoto, 2005).

Popular meta-heuristics that have been used to solve the job-shop problem include
simulated annealing (Laarhoven et al., 1992), tabu search (Pezzella and Merelli,
2000; Sun et al., 1995) and genetic algorithms (Croce et al., 1995).

8

2.4 Optimal Methods for Solving the Job-Shop Problem

Table 2.1: Popular heuristics and their description.
Heuristic Description
Shortest Processing Time The job that has the shortest processing

time is dispatched next.

Processing time left The job that has the least processing time
left is dispatched next.

Machine Release Time The job that generates the earliest release
time on its machine is dispatched next.

LQUE The job with the smallest difference be-
tween duedate and (processing time +
tail) is dispatched next.

New Makespan The job that adds least to the new
makespan is dispatched next.

Release Time The job that has the shortest release time
is dispatched next.

Start Time The job with the earliest possible start
time is dispatched next.

Earliest Completion Time The job with the earliest completion time
is dispatched next.

Longest Processing Time The job with the longest processing time
is dispatched next.

First Come First Serve First job arriving at a machine is dis-
patched next.

Random A randomly chosen job is dispatched next.

2.4 Optimal Methods for Solving the Job-Shop
Problem

There exist several methods for solving the job-shop problem to optimality. For
smaller problems they work well but as the problem size increases, so does the
computational time required. The most relevant exact methods are mixed integer
programming and branch and bound.

9

2 The Job-Shop Problem

2.4.1 Mixed Integer Programming

Mixed integer programming (MIP) is the mathematical formulation of a linear pro-
gram with linear constraints and an objective function, with the additional con-
straint that some of the decision variables are integers. MIP formulations for the
job-shop problem set up the constraints discussed in section 2.1. The main problem
with MIP is that for most formulations, the number of integer variables scales expo-
nentially and even when using more compact formulations they still require a large
number of integer variables. This makes them difficult to solve to optimality (Jain
and Meeran, 1998). For an overview of MIP formulations for the job-shop problem
see Pan (1997).

Advances in computing technology and integer programming software of the past
decade has made mathematical programming based scheduling receive more atten-
tion from researchers, even if they are not yet considered efficient for tackling large
scheduling problems. MIP methods help researchers study special cases, which pos-
sess certain structures, that are solvable and there are often various partial relax-
ations of the constraints that can be useful (Pan and Chen, 2005). Since mathemat-
ical approaches have shown to be inadequate for solving job-shop problems arising
in practice, more effort has been put into enumerative methods such as branch and
bound (Pinedo, 2008).

2.4.2 Branch and Bound

Branch and bound is an enumerative method of solving combinatorial optimization
problems. The main idea of branch and bound is to intelligently enumerate all
feasible solutions of the problem, S. To do this S is divided into subproblems, Si,
which is a subset of all feasible solutions of the optimization problem: Si ⊆ S.
Branch and bound consists of three phases.

1. Branching: The process of branching is to divide all feasible solutions, S,

into subproblems, Si for i = 1, . . . , n such that
n⋃
i=1

Si = S. Branching is a

recursive process so each Si may be divided into further subproblems. The
branching is represented as a branching tree where S is the root and Si, for
i = 1, . . . , n are its children (or branches).

2. Bounding: The process of bounding is to calculate a lower bound, LB, and
an upper bound, UB, for all feasible solutions to a subproblem.

3. Pruning: If the lower bound, LB, of a subproblem is greater or equal to the

10

2.5 Summary

best upper bound, UB, this subproblem can not produce a better solution than
the one already found and is discarded. If subproblems cannot be pruned, the
branching must continue from current subproblems.

There are many ways to implement branch and bound algorithms and they mostly
differ in the way the branching is done. When calculating lower bounds one must
often choose between tight bounds, which may be computationally heavy, and wider
bounds that are more computationally efficient. At each branching step, a choice
must be made of which node to branch next. Common strategies are least-lower-
bound-next, last-in-first-out and first-in-first-out. Which design strategy to use
depends on the problem at hand, and its data (Brucker, 2007).

The most effective branch and bound methods for the job-shop problem are based
on the so-called disjunctive graph model. For the job-shop problem, all operations
of the same job are connected using conjunctive (directed) arcs and operations of
different jobs are connected using disjunctive (undirected) arcs. When building a
complete schedule precedence relations are fixed between operations by turning dis-
junctive arcs into conjunctive. A set of fixed disjunctions defines a feasible schedule
if and only if every disjunctive arc has been fixed and the resulting graph is acyclic
(Brucker, 2007).

At the beginning of the algorithm, the tree only contains one node, the root, for
which no disjunctive arcs are fixed. The root represents all feasible solutions to
this problem. Branching is started by fixing disjunctions. The corresponding dis-
junctive graph represents all feasible solutions, respecting these disjunctions. Every
disjunctive graph can then be examined recursively in the same way. If a node only
represents one solution (i.e. a complete solution) or it can be shown that the node
does not contain an optimal solution, branching is stopped from that node.

2.5 Summary

This chapter introduced the job-shop problem. The problem was formally stated and
its complexity discussed. Several approximation methods for finding solutions to the
problem were introduced and heuristics and meta-heuristics were described briefly.
Methods for finding the optimal solution of the job-shop problem were discussed,
mixed integer programming and branch and bound.

In the next chapter, rollout algorithms for generating solutions to job-shop problems
will be introduced.

11

3 Rollout Algorithms for
Combinatorial Optimization

Rollout algorithms for combinatorial optimization developed by Bertsekas et al.
(1997), or the equivalent pilot method developed by Duin and Voß (1999), are
metaheuristic methods aimed at improving solutions of known heuristics. Rollout
algorithms improve the performance of heuristics by sequential application of the
heuristic. Rollout algorithms can be very useful when exact methods are too slow
and solutions obtained by existing heuristics are not good enough.

3.1 A Framework for Rollout Algorithms

The framework used for rollout algorithms can be characterized by a finite set O
of feasible solutions and a cost function g(o). Each solution has K components of
the form o = (o1, o2, . . . , oK), called the path of the solution. Our objective is to
find the solution o ∈ O that minimizes the function g(o). It is possible to view the
problem as a sequential decision problem, whereby the components of (o1 . . . oK) are
selected one at a time. A solution containing the first k components, (o1, . . . ok) is a
partial solution to the problem and is called a k-solution. A solution containing all
K components is a complete solution and is called a K-solution (Bertsekas et al.,
1997).

Let J∗(o1, . . . ok) be the optimal cost starting from a k-solution. Finding this optimal
solution is seldom viable, due to the large computational effort required. This can
be dealt with by replacing J∗(o1, . . . ok) with an approximation J̃(o1, . . . ok) and
obtaining a suboptimal solution (õ1, . . . õK) with the algorithm:

õi = arg min
oi∈O

J̃(õ1, . . . õi−1, oi), i = 1, . . . , K (3.1)

The function J̃ is called a scoring function (Bertsekas et al., 1997).

13

3 Rollout Algorithms for Combinatorial Optimization

Let us assume a heuristic algorithm H, which when given a k-solution sequentially
constructs a K-solution. This heuristic is called a pilot heuristic following Duin and
Voß (1999). A typical step of a rollout algorithm is to apply a pilot heuristic, H,
from all components that are available for selection and move to the component that
finds the best solution. The sequential version of H is called the rollout algorithm
based on H. A pseudocode for a typical rollout algorithm can be seen in algorithm
3.1 (Bertsekas et al., 1997).

Algorithm 3.1 A rollout algorithm for combinatorial optimization problems
1: Input: A k-solution ok = (o1, o2, . . . , ok) and pilot heuristic H
2: Output: A good complete solution.
3:
4: repeat
5: for all i where oi ∈ O and oi /∈ ok do
6: J̃i = H(ok, oi)
7: end for
8: i∗ ← arg mini J̃i
9: Operation oi∗ is added to the end of k-solution, ok

10: until complete solution found

3.2 Sequentially Improving Algorithms

A heuristic algorithm that generates the path i = (i, i1, i2, . . . iK) when starting with
component i and the path i′ = (i1, i2, . . . , iK) when starting with component i1, is
called sequentially consistent. If the pilot heuristic, H, of a rollout algorithm is se-
quentially consistent then the rollout algorithm is terminating and has the following
property:

H(i1) ≥ H(i2) ≥ . . . ≥ H(iK) (3.2)

where H(i1) is the cost of H starting from component i1. If the algorithm has this
property the next k-solution is guaranteed to be no worse than the current and the
rollout algorithm is said to be sequentially improving.

If the pilot heuristic is sequentially inconsistent, it is possible to modify the rollout
algorithm to make it sequentially improving. If no better solution is found from the
available components, it follows the path from the current component and thus the
algorithm stays sequentially improving. This is called the extended rollout algorithm.

14

3.3 A Rollout Algorithm for the Job-Shop Problem

If the rollout algorithm is not sequentially improving, it is possible to modify it so
that from the first component it always follows the best path found so far. It always
keeps the best path starting from the first component and does not leave the path
until a improved path is found. If/When a better path is found it switches paths.
This is called the fortified rollout algorithm and will be discussed further in chapter
5.

If the pilot heuristic is sequentially inconsistent, then it is possible that the roll-
out algorithm generates a worse solution than the solutions generated by the pilot
heuristic. This can be corrected by a minor modification of the rollout algorithm.
When running the algorithm, one can generate several solutions and upon termina-
tion choose the solution that gives minimal cost. This is called the optimized rollout
algorithm. If the pilot heuristic is sequentially consistent all rollout algorithms dis-
cussed coincide (Bertsekas et al., 1997).

3.3 A Rollout Algorithm for the Job-Shop Problem

A rollout algorithm based on the job-shop problem, as presented by Runarsson et al.
(2011) and Meloni et al. (2004), uses the property that the problem can be defined as
a sequential decision problem where the solution is built in stages. The components,
in this case the operations, are chosen one at a time to build a complete and feasible
schedule.

0

M3

M1

M1

M2

M2

M3

M1

M3

M2

0

J1

J2

J3

Figure 3.1: Graph for a 3× 3 problem.

The problem instance is encoded as a graph. An example is given in figure 3.1 for a
problem with 3 jobs and 3 machines (3× 3). To the left and right there are dummy
nodes labeled with 0 that do not belong to any job and this is where the algorithm
starts and ends respectively. Every row of nodes (excluding the two dummy nodes)
belongs to a job, the top row belongs to job 1, the next to job 2 and so on. Every
node corresponds to a machine, and is marked with an M, so that the first node in
the first row in figure 3.1 belongs to job 1 and machine 3, or operation o13 (recall that

15

3 Rollout Algorithms for Combinatorial Optimization

oji is job j processed on machine i). The arcs represent the precedence constraints,
a node cannot be visited until all the nodes that have a arc pointing at it have been
processed. The second node in the first row is operation o12 and the arc denotes
that it cannot be processed until after o13 is finished. The precedence matrix, σ, for
this problem is:

σ =

3 2 1
1 2 3
1 3 2


The rollout algorithm for the job-shop problem uses a look-ahead procedure to
choose the next job. For every k-solution the number of possible nodes to visit next
are at most the same as the number of jobs. Recall that the pilot heuristic must be
able to create a feasible K-solution from any given k-solution, so at each available
node, the underlying pilot heuristic is used and a feasible K-solution is found and
its makespan is calculated. The node that gave the best K-solution is then chosen
to be processed next. From the new (k + 1)-solution the procedure is repeated, all
available nodes tested and the best one found. This is repeated until all nodes have
been visited and a complete and feasible K-solution has been found. A pseudocode
for a rollout algorithm for solving the job-shop problem is given in algorithm 3.2.
The vector t keeps a record of how many machines the jobs have visited, tj is the
number of machines job j has visited so far.

Algorithm 3.2 A rollout algorithm for the job-shop problem
1: Input: Partial solution S0, precedence matrix σ, J, number of jobs m,

t = (t1, . . . , tn) and the cost of heuristic H from partial solution S0 starting from
job j is H(S0, j).

2: Output: A complete and feasible schedule.
3:
4: repeat
5: for all j ∈ J do
6: if tj ≤ m then
7: rj = H(S0, j)
8: end if
9: end for

10: j = arg minj rj
11: Operation oj,σj,tj is added to the end of solution S0

12: tj ← tj + 1
13: until all operations have been assigned

An illustration of the procedure, for the 3 × 3 example is shown in figure 3.2. The

16

3.3 A Rollout Algorithm for the Job-Shop Problem

current node is shown in bold, the available nodes in stripes and the visited nodes
in grey. The algorithm starts at the dummy node on the left labeled with 0. From
the dummy node, three operations can be selected: {o13, o21, o31}. For each of
these operations a rollout is performed using the underlying heuristic and the node
resulting in the best schedule, is chosen to be visited next. Assuming that the
operation chosen is o13, we then move to the node associated with o13, remove that
operation from the set of available operations and add the next operation of job
1 that is now available for allocation, o12. The set of available operations is now
{o12, o21, o31}. The next two iterations are shown in figure 3.2. The procedure is
repeated until all nodes have been visited and all the operations processed. The
final makespan is then calculated.

0

M3

M1

M1

M2

M2

M3

M1

M3

M2

0

M0

M3

M1

M1

M2

M2

M3

M1

M3

M2

M0

M0

M3

M1

M1

M2

M2

M3

M1

M3

M2

M0

M0

M3

M1

M1

M2

M2

M3

M1

M3

M2

M0

J1

J2

J3

J1

J2

J3

J1

J2

J3

J1

J2

J3

Figure 3.2: Graph of the 3×3 example. The first steps of the rollout algorithm using
a look-ahead feature are shown. The current node is shown in bold, available nodes
in stripes and visited nodes in grey.

17

3 Rollout Algorithms for Combinatorial Optimization

3.4 Summary

In this chapter the fundamentals of rollout algorithms were explained and how they
can be used to solve sequential decision problems. The chapter also described se-
quentially improving algorithms, together with some variations of the rollout algo-
rithm. The last section described how the job-shop problem can be viewed as a
sequential decision problem and how it can be solved with rollout algorithms.

In the next chapter the so-called bandit problem is explained as well as the job-shop
bandit, were the rollout algorithm for the job-shop problem is expanded and set up
as a bandit problem.

18

4 Bandit Algorithms

The K-armed bandit can be considered as a decision problem where one is faced
with a hypothetical slot machine with K levers. Each lever gives a payoff coming
from a stationary but unknown probability distribution (Alpaydin, 2010). The goal
is to find out which lever to pull in order to maximize the expected cumulative
payoff received over a series of n-trials. To solve the problem a balance must be
found between exploration (pulling the lever to find out the reward) and exploitation
(pulling the best known lever repeatedly) (Streeter and Smith, 2006).

4.1 The Conflict Between Exploration and
Exploitation

Each lever has an expected reward or mean reward called the true value of that lever.
If the value of each lever is known, solving the bandit problem is trivial and the lever
with the highest value is always chosen. Since it is assumed that the distribution
associated with each lever are not known with certainty, it is necessary to keep an
estimation of the value of the different levers.

The lever that has the greatest estimated value is called the greedy lever. If the
greedy lever is chosen it is called an exploitation action since the current knowledge
of the lever values are exploited. If a non-greedy lever is chosen it is called an
exploration action since the environment is being explored to improve the estimates
of the lever values.

To get the maximum possible reward for a particular move, it is best to choose
an exploitation lever. But in order to maximize the cumulative reward, for a fixed
number of trials, it may often be better to choose an exploration lever since it gives
a better estimate of the value of the non-greedy levers. Due to the uncertainty in the
non-greedy lever values, one of them might actually have a better expected return
than the greedy lever. So even if the reward is lower in the short run, a better
estimate might be found of a non-greedy lever and by exploiting that lever the total
reward might be higher in the long run. Whether it is better to exploit or explore
depends on a number of factors such as the uncertainty of the lever values and the

19

4 Bandit Algorithms

number of remaining pulls. Due to the impossibility of exploring and exploiting at
the same time one often refers to the conflict between exploration and exploitation
(Sutton and Barto, 1998).

The conflict between exploration and exploitation is critical. A balance has to be
found between exploring the environment for gathering statistics and searching for
profitable actions, while taking the best action as often as possible and keeping the
computational time at a minimum (Auer et al., 2002).

4.2 Evaluating Levers

When solving the K-armed bandit the means by which the levers are evaluated is
critical. The methods vary from very simple to complex methods. The true value
of a lever, a = 1, 2, . . . K, is denoted Q(a) and the estimated true value of lever a,
after t pulls, is denoted Qt(a) (Sutton and Barto, 1998). The most straightforward
method to evaluate the true value of a lever is to calculate the mean reward received
so far from that lever. If after t plays, lever a has been chosen na times, giving the
rewards r1, r2, . . . , rna then

Qt(a) =
r1 + r2 + . . . rna

na
(4.1)

If na = 0, then Qt(a) is defined at some initial value, such as Q0(a) = 0. From
the law of large numbers, Qt(a) → Q(a) when t → ∞. This method is called the
sample-average method.

The intuitive choice of a lever is to choose lever a∗ = arga maxQt(a), but as dis-
cussed in section 4.1 this always exploits current knowledge of the levers and due to
uncertainties in the estimates of the non-greedy lever values one of them might have
a higher true value and alternative methods are therefore needed. To take this into
consideration, so-called ε-greedy methods are commonly used, where a non-greedy
lever is chosen during a trial with probability ε. This has been shown to be far more
effective, for most problems, than choosing constantly the greedy lever (Sutton and
Barto, 1998).

The choice of ε depends on the task at hand. If the variance of the reward is high, it
is best to use a high value of ε, to be able to evaluate the levers true value accurately.
If the variance is low, it is better to have a small degree of exploration (low value of
ε) since our estimate of the true value becomes quite accurate. If the variance of the

20

4.3 The Job-Shop Bandit

rewards are zero, it is best to always choose the greedy lever (ε = 0), since it will
always give us the best outcome. Another commonly used strategy is to decrease
ε with time. A high value of ε in the early stages leads to reliable estimates of the
levers and with time the aim is to exploit those values more often so ε is lowered to
allow more exploitation (Sutton and Barto, 1998).

4.3 The Job-Shop Bandit

To expand the framework introduced in section 3.3 the job-shop problem can be
considered as a version of the K-armed bandit problem, where at each node the
jobs available for processing next are the levers. The best job to dispatch at a given
stage is not known so all available jobs are evaluated, using rollouts.

Instead of using a sequentially consistent heuristic during the rollout, the focus will
be on sequentially inconsistent algorithms. This approach is new and has not been
taken to the authors knowledge before. The most simple sequentially inconsistent
heuristic is the random heuristic. The random heuristic dispatches jobs for process-
ing at random. Since the random heuristic is sequentially inconsistent, every rollout
will produce a different solution. By allocating a number of trials for every job, us-
ing known exploration and exploitation strategies, it is possible to generate several
schedules with the random heuristic originating from the same job. By considering
the distribution of these schedules for each job, it is possible to evaluate each job and
choose the one showing the most promising results. The four stages of the job-shop
bandit are:

1. Find all available jobs.

2. Allocate rollouts originating from these jobs.

3. Evaluate schedules found during rollouts.

4. Dispatch the most promising job and return to stage one.

When viewing the problem in this context, the exploration and exploitation strate-
gies, i.e. how the rollouts are allocated to different jobs, is not the only matter of
critical importance. Other important factors are which pilot heuristic to use when
generating schedules during the rollout stage and to determine after the rollout
stage, which job is deemed the most promising one. These issues will be discussed
chapter 5.

21

4 Bandit Algorithms

4.4 The Max K-Armed Bandit

The max K-armed bandit is a version of the K-armed bandit were the goal is to
maximize the maximum payoff received over a series of n trials. In any given trial
it is possible to choose between K levers. This version of the bandit problem is
useful when dealing with combinatorial optimization problems for which a number
of search heuristics exists, like the job-shop problem (Streeter and Smith, 2006). The
aim is to allocate trials to these heuristics to find out which is the most likely one
to maximize the expected best single sample reward. The objective can be stated
in the following way:

max

(
K

max
i=1

(
ni

max
j=1

Rj(Di)

))
(4.2)

where Rj(Di) is the reward of the j-th trial of lever i with reward distribution Di

(Cicirello and Smith, 2005). Cicirello and Smith (2005) assume that that the payoffs
are drawn from the generalized extreme value distribution (GEV) and they derive
an exploration strategy for allocating trials to different heuristics. The exploration
strategy then follows the following distribution

P (Hi) =
exp(Ri/T)∑H
j=1 exp(Rj/T)

(4.3)

where Ri is an estimator of the expected maximum of a series of the trial heuristics,
hi, H is the number of trials allocated so far, and T is an exponentially decreasing
temperature parameter. The aim is to increase the allocation of trials to the best
levers double exponentially and to do this Cicirello and Smith (2005) propose to set
T = exp(−j).

The assumption of a GEV distribution set by Cicirello and Smith (2005) may cause
problems since it may be difficult to find a suitable distribution for the payoffs.
Streeter and Smith (2006) propose a distribution free algorithm for solving the max
K-armed bandit called Threshold ascent.

4.4.1 Threshold Ascent

It can be difficult to find a suitable distribution for the payoffs and Streeter and
Smith (2006) assume that the payoff distribution does not belong to any specific

22

4.4 The Max K-Armed Bandit

parametric family and make no formal assumptions at all about the underlying
distribution. Their algorithm is called Threshold ascent. The algorithm works best
when two criteria are satisfied:

1. There is a threshold, tcritical such that for all t > tcritical the lever most likely
to yield a payoff greater than t is the lever most likely to yield a payoff greater
than tcritical. This lever is called i∗.

2. As t increases beyond tcritical the gap between the probability that lever i∗
yields a payoff greater than t and the corresponding probability for other
levers is growing.

The Threshold ascent algorithm for solving the max bandit problem sets a threshold
tcritical that varies over time. Initially it is set to zero and whenever s payoffs have
been received that are greater than tcritical, the value of tcritical is incremented. A
pseudocode for Threshold ascent can be seen in algorithm 4.1.

Algorithm 4.1 Threshold ascent
1: Input: Number of levers K, parameter s, parameter δ, a small number ∆.
2: Output: Payoff of the different levers.
3:
4: tcritical ← 0
5: for all i ={1,2,. . . , K} do
6: ni ← 0
7: end for
8: for all rollouts do
9: while number of payoffs greater than threshold ≥ s do

10: tcritical ← tcritical + ∆
11: end while
12: i∗ ← arg maxi U(Si

ni
, ni)

13: Pull arm i∗ and receive payoff R
14: ni ← ni + 1
15: end for

Where i = 1, 2, . . . , K are the different levers, n is the total number of pulls, ni is
the number of times lever i has been pulled, Si is the amount of rewards received
by arm i above tcritical and:

U(µ, n) =

{
µ+

α+
√

2nµα+α2

n
if n > 0;

∞ otherwise.
(4.4)

where α = ln(2nk
δ

) and δ is a parameter. The parameter s controls the tradeoff
between exploration and exploitation. It is the amount of payoffs the strategy is

23

4 Bandit Algorithms

based on. If s = 1 then the policy is only dependent on how many pulls each lever
has received and the lever that has had the least pulls so far is chosen. If s → ∞
the policy equals the policy for the classical bandit problem (Streeter and Smith,
2006).

4.5 Summary

This chapter introduced the K-armed bandit problem. The conflict between explo-
ration and exploitation and how levers can be evaluated was explained. A way of
looking at rollout algorithms for the job-shop problem as bandit problems was intro-
duced, referred to as the job-shop bandit. The max K-armed bandit problem was
discussed together with threshold ascent algorithm for solving the max K-armed
bandit.

In the next chapter a variety of rollout algorithms for solving the job-shop problem,
based on the job-shop bandit, are introduced.

24

5 Rollout Algorithms for the
Job-Shop Problem

The nature of the job-shop problem makes exact methods slow and easily imple-
mented heuristics giving quality solutions are rare. By sequential application of a
pilot heuristic it is possible to gather solutions of higher quality. Implementations
of rollout algorithms, to solve the job-shop problem have been done by Meloni et al.
(2004) and Runarsson et al. (2011) (chapter 3). Their results have shown that roll-
out algorithms for the job-shop problem improve the performance of the underlying
heuristic. In this chapter the use of rollout algorithms to solve the job-shop problem
is taken a step further.

This chapter is based on the job-shop bandit introduced in section 4.3. In the first
section some useful pilot heuristics for the job-shop bandit will be discussed and
rollout algorithms for the job-shop problem introduced. The last section describes
several exploration policies. Some of these methods have been discussed in general
terms in chapter 3 and 4 but are now described in detail for the job-shop prob-
lem. Others are new implementations first introduced here. These are the main
contributions of the thesis.

5.1 Pilot Heuristics

The pilot heuristic is the method used for dispatching jobs during rollouts. A useful
pilot heuristic for the job-shop bandit must generate a wide range of solutions since
if it only generates a handful of solutions, it will converge to the original rollout
algorithm of Bertsekas et al. (1997), discussed in chapter 3. In this thesis two pilot
heuristics are used, the random heuristic and a new heuristic called randomly chosen
dispatch rule.

25

5 Rollout Algorithms for the Job-Shop Problem

5.1.1 Random Heuristic

The random heuristic chooses the next job at random from all the available jobs.
This provides a wide range of solutions, some good and many bad. One advantage
of the random heuristic is that it is completely knowledge free, i.e. no knowledge
about the particular type of problem is necessary, making it possible to estimate the
true value of choosing each possible job.

On the other hand the pure randomness makes the algorithm evaluate large areas
of the solution space that are not likely to contain good solutions and many of the
rollouts add little knowledge to the problem. But the random heuristic is easily
programmed and the computational effort required is very low so even if more roll-
outs are required to find good solutions, compared to more sophisticated dispatching
rules, the method may be able to produce reasonable results. The random heuristic
is used for most experiments in this thesis.

5.1.2 Randomly Chosen Dispatch Rules

Another pilot heuristic which generates paths using multiple dispatching rules,
H1,H2, . . . ,HK is also studied. During the rollout, a dispatching rule is chosen
at random at every node, i.e. every time a new operation is selected. Since the dis-
patching rules are selected randomly, the outcome is sequentially inconsistent and
every rollout will generate a different schedule, giving us a way to estimate the true
value of the different jobs.

The main advantage of randomly chosen dispatch rules, compared to the random
heuristic, is that the solutions generated during rollouts are of a higher quality,
so fewer rollouts should be required. On the other hand the computational effort
required for rollouts is considerably higher than when using the random heuristic.
The dispatching rules used are SPT, PL, MRT, LQUE, NM, RT, ST, ECT, LPT,
FCFS (detailed descriptions of these dispatching rules may be found in table 2.1).

5.2 Policies for Dispatching Jobs

After the rollout stage a decision has to be made about which job to dispatch next.
The aim is to follow the job showing the most promising results, but choosing which
job is the most promising is not straightforward. In the following sections some
policies for deciding which job to dispatch are discussed.

26

5.2 Policies for Dispatching Jobs

5.2.1 The Fortified Rollout Algorithm

The fortified rollout algorithm was introduced by Bertsekas et al. (1997) and is
discussed in section 3.2. The fortified rollout algorithm is used when the pilot
heuristic is not sequentially consistent (as with all the pilot heuristics in this thesis).
The algorithm follows the best schedule that has been generated so far. If no better
schedule is found from the next nodes the sequence found from the first node is
followed until a better schedule has been found. This policy guarantees that the
rollout algorithm stays sequentially improving, despite the sequential inconsistency
of the pilot heuristic. A pseudocode for the fortified rollout algorithm can be seen
in algorithm 5.1.

Algorithm 5.1 The fortified rollout algorithm for the job-shop problem
1: Input: Processing times p, precedence matrix σ, J , number of machines m, number

of jobs n and heuristic R.
2: Output: A complete and feasible schedule.
3:
4: S ← ∅
5: for all j ∈ J do
6: tj ← 1
7: end for
8: V ← +∞
9:

10: for i = 1→ n ∗m do
11: for all j ∈ J do
12: if tj < m then
13: for k= 1, 2, . . . , number of rollouts do
14: [rk, B] = R(S1→i, j, p, σ)
15: if rk < V then
16: S ← B
17: V ← rk
18: end if
19: end for
20: end if
21: end for
22: j ← Si
23: tj ← tj + 1
24: end for

27

5 Rollout Algorithms for the Job-Shop Problem

5.2.2 The Average Rollout Algorithm

When dispatching jobs after the rollout stage, it might seem intuitive to keep the
algorithm sequentially improving. For this the fortified rollout algorithm is a good
choice. But, for larger job-shop problems, the number of feasible solutions are ex-
tremely high (as discussed in section 2.2) and by using the fortified rollout algorithm
there may be too much bias towards the best schedule found early. This may in
return result in a low probability of visiting regions of greater solution quality.

To counter this, a new rollout algorithm is proposed, called the average rollout algo-
rithm, that follows the job that finds the best schedule on average. This algorithm
is not sequentially improving, so the final schedule found is not necessarily the best
schedule found by the algorithm. To account for this, the final solution is the best
solution found during rollouts. The advantage of the average rollout algorithm is
that it should give a better estimate of the jobs scheduled first. This puts it in
a favorable position in the solution space were good solutions can be found. A
pseudocode for the average rollout algorithm is given in algorithm 5.2

Algorithm 5.2 The average rollout algorithm for the job-shop problem
1: Input: Processing times p, precedence matrix σ, J , number of machines m, number

of jobs n and heuristic R.
2: Output: A complete and feasible schedule.
3:
4: S ← ∅
5: for all j ∈ J do
6: tj ← 1
7: end for
8: for i = 1→ n ∗m do
9: for all j ∈ J do

10: Qj ← +∞
11: if tj ≤ m then
12: Qj ← 0
13: for k= 1, 2, . . . , number of rollouts do
14: rk = R(S, j, p, σ)

15: Qj ← Qj +
rk−Qj

k

16: end for
17: end if
18: end for
19: j ← arg minj Qj

20: Si ← j
21: tj ← tj + 1
22: end for

28

5.2 Policies for Dispatching Jobs

5.2.3 The Quantile Rollout Algorithm

The average rollout algorithm dispatches the job giving the most promising results
on average, for all the rollouts. This means that a job that finds many solutions
of low quality is discarded even if other parts of the solution space might contain
high quality solutions. To counter this problem a new rollout algorithm is proposed
called the quantile rollout algorithm.

Instead of gathering statistics of all rollouts and evaluating their average the quan-
tile rollout algorithm discards all rollouts except those in the lower quantile. The
quantile is found by dividing ordered data into q equally sized data subsets and is
the data point which marks the boundary of these subsets. After completion of the
rollout stage, the quantile rollout algorithm select the job that has schedules with
the lowest average makespan in the lower quantile.

−2 0 2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 5.1: Two normal distributions where the one with the lower mean (black) is
less likely to contain good schedules compared to the higher mean (grey).

The advantage of the quantile rollout algorithm is that it takes into account that the
solutions for each job do not necessarily follow the same distribution. Consider figure
??, the black distribution has a lower mean than the grey, but the grey distribution
is more likely to have a high density of good solutions and therefore is more likely
to yield good results. The quantile average rollout algorithm takes this into account
by following the job that has the highest average of good solutions, not the highest
average of good and bad solutions. In this study the lower quartile (q = 4) and
octile (q = 8) are used.

5.2.4 A Hybrid Rollout Algorithm

A fourth rollout algorithm is proposed called the hybrid rollout algorithm. The
hybrid rollout algorithm is a mixture of the fortified rollout and the average rollout

29

5 Rollout Algorithms for the Job-Shop Problem

algorithms. The hybrid algorithm uses the average rollout algorithm for scheduling
the first (100 − α)% operations and the fortified rollout algorithm for the last α%
operations.

The hybrid rollout algorithm is intended to exploit the advantages of the two rollout
algorithms for larger problems. When dispatching the first jobs, the number of
feasible schedules is very high, but as more jobs are dispatched the solution space
narrows down towards areas that are more likely to contain good solutions and the
fortified rollout algorithm might become the better option. The main difficulty of
the hybrid rollout algorithm is how to select the value of the α parameter. The
value is likely to be dependent on the size of the job-shop problem.

5.3 Exploration Policies

As discussed in chapter 4, the choice of exploration policy during the rollout stage
is of high importance. When using rollout algorithms to solve the job-shop problem
there are various ways to explore the solution space. The choice of exploration does
not only depend on the particular problem or it’s size, but also on which rollout
algorithm is in use.

5.3.1 Evenly Distributed Rollouts

A simple policy is to evenly distribute the rollouts on every available job. Since
the objective of the rollouts is to gather as much information about every job, and
not to maximize the cumulative reward, like in the classical job-shop problem, this
exploration policy gives us the closest possible estimate of the true value of every
available job. This is a good option when using the average rollout algorithm, since
it gives the best estimate of the true value of the jobs. The total amount of rollouts
per available job is then

Nj =

⌊
N

n

⌋
(5.1)

where n is the number of jobs available for processing, N is the total amount of
rollouts and Nj is the amount of rollouts for job j.

30

5.4 Summary

5.3.2 Threshold Ascent

The threshold ascent algorithm described in section 4.4.1 allocates more rollouts to
the jobs that are finding the best schedules. A pseudocode for threshold ascent is
given in algorithm 4.1. Since the reward of the job-shop problem is the makespan,
records must be kept for the s best rollouts and from which job they originated.
Our choice of which job to explore follows a distribution that depends on were the
s best rollouts originated from. A job that consistently finds good solutions is more
likely to be explored than jobs that did not find good solutions.

This exploration strategy is best when used with the fortified rollout algorithm
since it explores jobs that are giving us good schedules more often. If used with the
average rollout algorithm the uncertainties of the different jobs differ significantly
and are not reliable for decision making.

5.4 Summary

In this chapter a variation of rollout algorithms that are based on the job-shop
bandit were introduced. These were the fortified rollout algorithm, the average
rollout algorithm, the quantile rollout algorithm and the hybrid rollout algorithm.
We also discussed pilot heuristics and exploration policies. In the following chapter
different variations of these methods are tested on job-shop problems.

31

6 Experimental Study

The performance of the proposed rollout algorithms, in solving the job-shop problem,
is evaluated in this chapter. Since the new rollout algorithms are randomized search
methods, they need to be tested multiple times on multiple problems of different
dimensions in order to measure their efficiency and effectiveness. In the first section
the set up of experiments and how the test problems are generated is discussed. In
the second section the experimental results will be presented.

6.1 Experimental Setup

All the methods discussed in the thesis were tested on 600 variations of the job-
shop problem. These problems are divided equally into three different n×m sizes:
6 × 6, 10 × 10 and 14 × 14. The problems were created using the methodology
proposed by Taillard (1993) and solved to optimality using a branch and bound
algorithm developed by Brucker (2007). The processing times of all the jobs on all
the machines in all the problems are uniformly distributed between 1 and 200 and
the sequencing of every job is a random permutation. Every job has to visit every
machine once. The rollout algorithms were additionally tested on four well known
20×20 benchmark problems proposed by Yamada and Nakano (1992), for which no
optimal solutions are known to the best of the authors knowledge.

Every problem was solved with 6 different number of rollouts: 100, 500, 1.000, 3.000,
5.000 and 10.000. Since the methods are randomized, every run gives a potentially
different solution. To account for this 30 trials were carried out for every problem
and every amount of rollout. Each problem was therefore solved 180 times in all.

The methods were programmed in C as a mex-file that are executable from MATLAB.
The computations were performed on the University of Iceland computer cluster
Sól.

33

6 Experimental Study

6.1.1 Performance Criteria

When comparing the results of the different algorithms it is necessary to have an
unbiased performance measure. Here the mean percentage error and (MPE) and
average mean percentage error (AMPE) are used

MPEj =
1

n

n∑
i=1

Ri −Oj

Oj

(6.1)

AMPE =
1

t

t∑
j=1

MPEj (6.2)

where j is the problem index, n is the number of trials, Ri is the solution found with
rollout algorithm in the i-th trial and Oj is the optimal solution of problem instance
j. For our experiments t = 200 and n = 30. The results are tested for statistical
significance with the Wilcoxon rank sum test.

6.2 Results

In this section the results of the experiments are presented. In the first subsections
the results for the separate rollout algorithms are presented and in later sections
the results of the different rollout methods are compared for each problem size and
number of rollouts. The following statistics are displayed in tables:

1. Min: The minimum MPE found for a problem.

2. Mean: AMPE of all solutions found.

3. Max: The maximum MPE found for a problem.

4. Stdev: Standard deviation of the solutions found.

5. Opt: The percentage of solutions found that were optimal.

The results presented are based on 10.000 rollouts for each job dispatch decision
made, unless otherwise indicated and shown in percentages. Abbreviations used to

34

6.2 Results

describe the specific rollout algorithm and pilot heuristic when presenting results
can be seen in table 6.1.

Table 6.1: Abbreviations.
Abbr. Pilot Exploration policy Rollout algorithm Section
DRave Random dispatch rule Evenly distributed Average 6.2.2
DRfor Random dispatch rule Evenly distributed Fortified 6.2.1
RHave Random Heuristic. Evenly distributed Average 6.2.2
RHfor Random Heuristic. Evenly distributed Fortified 6.2.1
HR Random Heuristic. Evenly distributed Hybrid 6.2.3
RHTAfor Random heuristic Threshold Ascent Fortified 6.2.1
RHQ1/4 Random heuristic Evenly distributed Quantile 6.2.4

6.2.1 Results for the Fortified Rollout Algorithm

Rollouts were made using the fortified rollout algorithm which follows the best se-
quence found so far (see section 5.2.1). For the fortified rollout algorithm the pilot
heuristics used were the random heuristic (see section 5.1.1) and using randomly
chosen dispatch rule (see section 5.1.2). The exploration policies used were evenly
distributed (see section 5.3.1) and threshold ascent (see section 4.4.1).

The results for the fortified rollout algorithm can be seen in table 6.2. For the
6× 6 problems the mean error is close to zero and the optimal solution is found in
most cases by all the methods. Using randomly chosen dispatch rules as the pilot
heuristic finds the optimal solution slightly more often than other methods, but the
difference is not statistically significant. For the 10 × 10 problems using randomly
chosen dispatch rules gives the best results, with the other methods showing slightly
worse results. For the 14 × 14 problems the same pattern was observed, using
randomly chosen dispatch rules works best, but other methods are not lagging far
behind. The standard deviation of the different methods is quite small, around
1− 2% of the optimal value.

35

6 Experimental Study

Table 6.2: Results for the fortified rollout algorithm.
Problem Method min mean max stdev opt

6× 6 DRfor 0.00 0.34 10.88 0.32 83.33
RHfor 0.00 0.30 8.42 0.26 81.83
RHTAfor 0.00 0.30 8.35 0.29 81.87

10× 10 DRfor 0.58 4.34 9.63 1.93 1.60
RHfor 0.84 4.92 9.58 1.76 0.57
RHTAfor 0.59 4.84 9.17 1.85 0.58

14× 14 DRfor 4.45 10.44 13.97 1.99 0.37
RHfor 6.41 11.26 14.32 2.16 0.00
RHTAfor 5.95 11.19 14.03 1.76 0.22

6.2.2 Results for the Average Rollout Algorithm

Rollouts were made using the average rollout algorithm where the job that has the
best average of solutions (see section 5.2.2) is followed. For the average rollout
algorithm, the methods tested were the same as for the fortified rollout algorithm.
The pilot heuristics used were the random heuristic and random dispatching rules.
The exploration policies used were evenly distributed and threshold ascent.

The results for the average rollout algorithm can be seen in table 6.3. For the 6× 6
and 10 × 10 problems the performance is inferior to the fortified rollout algorithm
(table 6.2). Using randomly chosen dispatch rules again gives slightly better results
for these problem sizes. For the 14×14 problems, the average rollout algorithm per-
forms better than the fortified rollout algorithm on average. The difference between
random heuristic and randomly chosen dispatch rules is statistically insignificant for
this problem size. The optimal solution is not found except in a very few cases.

Table 6.3: Results for the average rollout algorithm.
Problem Method min mean max stdev opt

6× 6 DRave 0.00 3.35 18.35 0.96 22.63
RHave 0.00 4.62 16.19 1.30 14.77
RHTAave 1.32 6.71 17.46 3.84 8.10

10× 10 DRave 1.03 6.45 12.93 1.87 0.28
RHave 3.12 7.42 12.04 2.21 0.08
RHTAave 4.99 10.42 15.38 3.19 0.05

14× 14 DRave 3.70 9.45 14.38 1.91 0.28
RHave 4.11 9.17 12.71 1.95 0.00
RHTAave 6.20 13.29 17.22 2.67 0.18

36

6.2 Results

6.2.3 Results for the Hybrid Rollout Algorithm

Since the average rollout algorithm is producing better results than the fortified
rollout algorithm for large problems with a large solution space, a new method is
proposed called the hybrid rollout algorithm. With the hybrid rollout algorithm the
first (100−α)% of operations are chosen with the average rollout algorithm but the
other α% of operations are chosen with the fortified rollout algorithm (see section
5.2.4 for details).

The hybrid rollout was only tested with the random hueristic due to the compu-
tational time required to use randomly chosen dispatch rule. The results for the
hybrid rollout algorithm used with the random heuristics can be seen in table 6.4.
For smaller problems (6×6 and 10×10) the hybrid rollout algorithm performs best
when α = 30. For 14 × 14 problems α = 40 and α = 30 give similar results. The
hybrid rollout algorithm only managed to find the optimal solution in very few runs.

The hybrid rollout algorithm manages to find better schedules (on average) than the
average and fortified rollout algorithm (see table 6.2 and 6.3) for larger problem in-
stances. For smaller instances it performs worse than the fortified rollout algorithm,
but similarly to the average rollout algorithm.

Table 6.4: Results for the hybrid rollout algorithm.
Problem α min mean max stdev opt

6× 6 10 0.00 4.66 15.86 1.29 15.12
20 0.00 4.70 15.94 1.32 14.63
30 0.00 4.37 16.69 1.27 16.22
40 0.00 4.67 16.22 1.36 14.95

10× 10 10 2.30 7.38 11.81 2.20 0.08
20 2.39 7.37 11.77 2.21 0.05
30 1.04 5.91 11.27 2.09 0.33
40 2.77 6.71 11.13 2.20 0.15

14× 14 10 3.92 9.19 12.16 1.59 0.43
20 4.31 9.13 12.36 1.37 0.35
30 3.49 7.92 11.04 1.74 0.00
40 3.61 7.88 11.17 1.62 0.30

6.2.4 Results for the Quantile Rollout Algorithm

The quantile rollout algorithm follows the job that has the best average of solutions
in the lower quantile (see section 5.2.3). Two separate quantiles were tested, quartile

37

6 Experimental Study

(q = 4) and octile (q = 8), i.e. the ordered solutions were divided into 4 and 8 equally
large subsets and the job with the lowest makespan average in the lowest quartile
or octile was chosen to be processed next. Results for the quantile rollout algorithm
are listed in table 6.5.

Table 6.5: Results for the quantile rollout algorithm.
Problem Quantile min mean max stdev opt

6× 6 Octile 0.00 0.37 8.41 0.24 77.32
Quartile 0.00 0.37 8.46 0.24 76.95

10× 10 Octile 0.22 3.83 7.89 1.19 1.20
Quartile 0.20 3.86 7.78 1.16 1.50

14× 14 Octile 3.17 6.99 9.85 1.40 0.33
Quartile 3.40 6.81 10.14 0.98 0.25

For the 6×6 and 10×10 problems there is no statistical difference between choosing
the lower quartile or octile. For the 14×14 problems using the quartile gives slightly
better results on average but the difference is still not statistically significant. The
optimal solution, of the 14×14 problems, is only found in a few cases but the method
produces results on average that are not very far off from the optimal solution.

6.2.5 Results for Threshold Ascent

Threshold ascent depends on two parameters, s and δ. The parameter s is the
number of solutions that are kept and the next exploration move is chosen from.
Experiments were made for the following values s = 30, 50, 70, 100, 200 and δ = 0.1
as is done by (Streeter and Smith, 2006). Experiments with threshold ascent were
only performed using the random heuristic. The reason for this is that it requires
less computational effort. Experiments with Threshold ascent were performed using
the fortified rollout algorithm and average rollout algorithm. Experiments using the
average rollout algorithm did not produce satisfactory results and are not presented.
The reason for the poor results of the average rollout algorithm is thought to be
that the bias of allocating too many rollouts to the jobs that are finding the best
solutions leads to bad estimates of the true value of the other jobs. This might lead
to dispatching based upon unreliable job values. The results for threshold ascent as
an exploration policy with the fortified rollout algorithm can be seen in table 6.6.

For the 6 × 6 problem instances, threshold ascent performs extremely well, finding
the optimal solution in 81 − 82% of the runs. As the problem size gets larger it is
still able to find the optimal solution but only in very few instances. The mean is
very low for the 6× 6 and 10× 10 problems but quite high for the 14× 14 problems.

38

6.2 Results

The value of s did not make a statistical difference for the results.

Table 6.6: Results when using threshold ascent as exploration policy.
Problem s min mean max stdev opt

6× 6 30 0.00 0.30 8.35 0.29 81.87
50 0.00 0.28 8.40 0.26 82.13
70 0.00 0.27 8.35 0.23 82.43
100 0.00 0.27 8.33 0.24 82.57
200 0.00 0.28 8.33 0.26 82.20

10× 10 30 0.59 4.84 9.17 1.85 0.58
50 0.51 4.85 9.30 1.75 0.53
70 0.66 4.78 8.94 1.74 0.47
100 0.74 4.80 9.45 1.75 0.55
200 0.59 4.73 8.99 1.70 0.58

14× 14 30 5.95 11.19 14.03 1.76 0.22
50 5.71 11.18 13.93 2.03 0.13
70 6.13 11.10 14.45 2.45 0.15
100 5.83 11.18 14.32 1.59 0.15
200 5.50 11.07 14.12 2.05 0.22

6.2.6 Randomly Chosen Dispatch Rule

Experiments were made where the heuristic used to select the next job during roll-
outs was chosen at random from the list in table 2.1. The results are shown in
table 6.7. For the 6× 6 and 10× 10 the fortified rollout algorithm produced better
results, but for the 14× 14 problems the average rollout algorithm is outperforming
the fortified rollout algorithm. It is worth noting that this methodology requires
considerably more computational time than when the random heuristic is used as
the pilot heuristic.

Table 6.7: Results when using randomly chosen dispatch rules as exploration policy.
Problem Method min mean max stdev opt

6× 6 DRave 0.00 0.34 10.88 0.32 83.33
DRfor 0.00 3.35 18.35 0.96 22.63

10× 10 DRave 0.58 4.34 9.63 1.93 1.60
DRfor 1.03 6.45 12.93 1.87 0.28

14× 14 DRave 4.45 10.44 13.97 1.99 0.37
DRfor 3.70 9.45 14.38 1.91 0.28

39

6 Experimental Study

6.2.7 Results for Different Number of Rollouts

Rollouts were made using six different budgets of rollouts for all the methods: 100,
500, 1.000, 3.000, 5.000 and 10.000. Table 6.8, shows the average mean percentage
error (AMPE) for all the methods and all the different problem sizes. As expected
the AMPE decreases with increasing amount of rollouts. The method giving the
best results for a smaller amount of rollouts is when randomly chosen dispatch rules
are used as the pilot heuristic, but the difference is not statistically significant. This
method is very computationally demanding compared to the random heuristic.

For the 6 × 6 problems the results do not improve significantly when increasing
the rollout number above 3.000 rollouts. For the 10 × 10 problems there is an
improvement going above 3.000 rollouts but the gain is limited. For the 14 × 14
problems, the gain is significant and better results might be obtained by going
above 10.000 rollouts.

Table 6.8: Average mean percentage error for different number of rollouts.
Number of rollouts

Problem Method 100 500 1,000 3,000 5,000 10,000
6× 6 DRave 4.27 3.52 3.44 3.36 3.34 3.35

DRfor 2.47 1.13 0.80 0.52 0.44 0.34
RHave 6.45 5.14 4.90 4.71 4.67 4.62
RHfor 2.27 1.16 0.87 0.49 0.38 0.30
HR 6.05 4.75 4.60 4.43 4.46 4.37
RHTAfor 2.24 1.13 0.86 0.49 0.40 0.30
RHQ1/4 2.41 1.27 0.96 0.62 0.50 0.36

10× 10 DRave 10.26 7.88 7.31 6.76 6.62 6.45
DRfor 13.50 9.75 8.73 7.78 7.55 7.42
RHave 10.39 7.50 6.57 5.38 4.96 4.34
RHfor 9.13 7.33 6.64 5.77 5.41 4.92
HR 12.68 8.43 7.36 6.47 6.11 5.91
RHTAfor 9.08 7.23 6.61 5.72 5.33 4.84
RHQ1/4 10.73 6.55 5.64 4.50 4.16 3.83

14× 14 DRave 16.07 12.13 11.02 10.00 9.71 9.45
DRfor 18.06 14.68 13.46 11.82 11.22 10.44
RHave 19.69 14.17 12.25 10.32 9.70 9.17
RHfor 15.77 14.04 13.33 12.28 11.76 11.26
HR 19.56 13.89 11.74 9.49 8.68 7.92
RHTAfor 15.92 14.01 13.27 12.24 11.84 11.19
RHQ1/4 18.43 11.91 10.17 8.07 7.47 6.93

40

6.2 Results

6.2.8 Results for Different Problem Sizes

In tables 6.9, 6.10 and 6.11 the results of all tested methods for problem sizes 6× 6,
10×10 and 14×14 are presented. For threshold ascent, the hybrid rollout algorithm
and quantile rollout algorithm only the best results from the different experiments
are displayed.

For the 6×6 problems the fortified rollout algorithm is giving the best results (table
6.9). Threshold ascent with the random heuristics has the lowest error, a 0.28% on
average. The optimal value is found most often using the fortified rollout algorithm
with randomly chosen dispatch rules. Using the fortified rollout algorithm with
an evenly distributed exploration strategy or using randomly chosen dispatching
rules as the pilot heuristic are not far behind threshold ascent. The hybrid rollout
algorithm is giving better results than the average rollout algorithm for this problem
size.

Table 6.9: Results for the 6× 6 problems.
Problem Method min mean max stdev opt

6× 6 DRave 0.00 3.35 18.35 0.96 22.63
DRfor 0.00 0.34 10.88 0.32 83.33
RHave 0.00 4.62 16.19 1.30 14.77
RHfor 0.00 0.30 8.42 0.26 81.83
HR 0.00 4.37 16.69 1.27 16.22
RHTAave 1.32 6.63 17.46 3.84 8.10
RHTAfor 0.00 0.28 8.35 0.29 81.87
RHQ1/4 0.00 0.37 8.46 0.24 76.95

Results for the 10×10 problems can be seen in table 6.10. For this problem size, the
quantile rollout algorithm is giving the best results with a 3.86% error on average
from the optimal solution. The fortified rollout algorithm using randomly chosen
dispatch rules is the second best and the fortified rollout algorithm using the random
heuristic is the third best. It is worth to note that the hybrid rollout algorithm per-
forms better than the fortified rollout algorithm with an evenly distributed random
heuristic.

41

6 Experimental Study

Table 6.10: Results for the 10× 10 problems.
Problem Method min mean max stdev opt
10× 10 DRave 0.58 4.34 9.63 1.93 1.60

DRfor 1.03 6.45 12.93 1.87 0.28
RHave 3.12 7.42 12.04 2.21 0.08
RHfor 0.84 4.92 9.58 1.76 0.57
HR 1.04 5.91 11.27 2.09 0.33
RHTAave 4.99 10.42 15.38 3.19 0.05
RHTAfor 0.59 4.84 9.17 1.85 0.58
RHQ1/4 0.20 3.86 7.78 1.16 1.50

For the 14 × 14 problems (see table 6.11) the average rollout algorithm performs
better than the fortified rollout algorithm. The method showing the best results
here is the quantile rollout algorithm with a 6.81% error on average from the optimal
solution and the hybrid rollout algorithm with an AMPE of 7.92%. For this problem
size using randomly chosen dispatch rules is extremely computationally demanding
compared to the other methods. For this larger problem it is worth noting that the
threshold ascent exploration strategy, which showed promising results for 6× 6 and
10× 10 problems is not performing well, giving the highest percentage error.

Table 6.11: Results for the 14× 14 problems.
Problem Method min mean max stdev opt
14× 14 DRave 4.45 10.44 13.97 1.99 0.37

DRfor 3.70 9.45 14.38 1.91 0.28
RHave 4.11 9.17 12.71 1.95 0.00
RHfor 6.41 11.26 14.32 2.16 0.00
HR 3.49 7.92 11.04 1.74 0.00
RHTAave 6.20 13.29 17.22 2.67 0.18
RHTAfor 5.95 11.19 14.03 1.76 0.22
RHQ1/4 3.40 6.81 10.14 0.98 0.25

6.2.9 Results for the Yamada 20×20 Problems

Yamada and Nakano (1992) proposed four different 20 × 20 benchmark job-shop
problems. No optimal solution has been proven for these problems and the results
are compared to best known solutions given by Banharnsakun et al. (2011). The
results are presented in table 6.12. It can be seen that the quantile average rollout
algorithm produces the best results for all four problems, the hybrid rollout algo-
rithm produces the second best results. The same pattern was seen for the 14× 14

42

6.2 Results

problems in table 6.11. For these problems the average rollout algorithm also out-
performs the fortified rollout algorithm. When using the quantile rollout algorithm,
dividing the solutions into four different datasets and estimating the lower quartile,
results in better schedules than dividing into eight datasets and estimating the lower
octile. The difference between the two settings has increased compared to what was
observed for the 14× 14 problems in table 6.5.

Table 6.12: Results for the 20× 20 problems.
Problem Method min mean max stdev % best
yn01 DRave 11.37 17.11 26.35 3.07 0.00

DRfor 6.98 9.97 12.27 1.21 0.00
RHave 7.55 10.68 12.73 1.39 0.00
RHfor 12.16 16.88 19.82 1.83 0.00
HR 7.77 9.70 12.05 1.13 0.00
RHTAfor 11.60 17.11 22.52 2.41 0.00
RHQ1/4 6.76 8.48 10.59 0.95 0.00
RHQ1/8 7.66 9.77 12.61 1.35 0.00

yn02 DRave 13.09 18.27 26.84 2.68 0.00
DRfor 7.92 10.20 11.77 1.14 0.00
RHave 8.14 11.20 14.19 1.45 0.00
RHfor 12.65 17.95 22.00 1.90 0.00
HR 5.72 10.18 13.97 1.64 0.00
RHTAfor 13.64 19.03 22.22 1.84 0.00
RHQ1/4 6.82 9.72 13.64 1.45 0.00
RHQ1/8 7.92 10.72 13.53 1.43 0.00

yn03 DRave 11.98 17.88 22.62 2.53 0.00
DRfor 7.73 10.65 13.66 1.50 0.00
RHave 7.95 10.96 13.77 1.51 0.00
RHfor 12.99 17.81 22.40 1.98 0.00
HR 8.17 10.45 14.11 1.48 0.00
RHTAfor 13.21 18.07 23.29 2.03 0.00
RHQ1/4 6.05 9.00 11.09 1.21 0.00
RHQ1/8 7.05 9.79 13.21 1.47 0.00

yn04 DRave 13.43 18.37 23.45 2.26 0.00
DRfor 7.33 11.39 14.26 1.72 0.00
RHave 9.50 11.48 14.67 1.13 0.00
RHfor 12.60 17.59 22.31 2.03 0.00
HR 8.06 11.95 14.98 1.63 0.00
RHTAfor 13.53 17.01 21.90 1.92 0.00
RHQ1/4 6.71 9.77 13.02 1.52 0.00
RHQ1/8 6.10 10.62 12.81 1.44 0.00

43

6 Experimental Study

6.3 Computational Time Comparisons

Using rollout algorithms for the job-shop problem is computationally demanding.
What matters most, in terms of computational effort, is the problem dimension
and computational requirements of the pilot heuristic. In the experiments two pilot
heuristics were used; the random heuristic and randomly chosen dispatch rule. In
table 6.13 the average computational time it took to solve one problem, using 10.000
rollouts, is displayed for the three problem sizes. Using randomly chosen dispatch
rule requires more computational time than the random heuristic. As the problem
dimensions are increased the computational effort increases considerably. The com-
putational time increases faster for randomly chosen dispatch rule than for random
heuristic. Despite the increase in computational time, when using randomly chosen
dispatch rules, the difference in results were not significant, leading to the conclusion
that the random heuristic should be preferred.

Table 6.13: Average computational time for solving one problem.
Problem Method Seconds
6× 6 Random Heuristic 1.05

Random Dispatch Rule 2.73
10× 10 Random Heuristic 9.23

Random Dispatch Rule 38.72
14× 14 Random Heuristic 36.15

Random Dispatch Rule 191.76

6.3.1 Results of Other Research

In Runarsson et al. (2011) experiments are made with the Pilot method of Duin
and Voß (1999) (equivalent to rollout algorithm of Bertsekas et al. (1997) discussed
in chapter 3) as well as a Monte Carlo tree search algorithm on the same set of
problems as here. Meloni et al. (2004) test the Pilot method on some well known
10 × 10 benchmark problems. The results of both papers are similar even tough
they are not tested on the same set of problems.

The approach of setting the problem up in the framework of bandit algorithms, as
is taken here, finds considerably better schedules than the papers mentioned above.
The quantile rollout algorithm manages to decrease the average error of the 10× 10
problems of up to 5% compared to the best results obtained with the Pilot method.
For larger problems the gain is even more. The results are directly comparable to
those of Runarsson et al. since they are tested on the same set of problems but
since Meloni et al. test on different problem instances the results are not directly

44

6.4 Summary

comparable.

6.4 Summary

In this chapter the experimental setup was explained as well as the performance mea-
sures. The results for experiments with the fortified, average, hybrid and quantile
rollout algorithms were presented for four different problems sizes and the computa-
tional effort discussed. For the larger problems the quantile rollout algorithm gave
the best performance. The final chapters follows up on those results with summary
and discussion.

45

7 Summary and Discussion

The rollout algorithms presented in this study show promising results and by using
simple exploration/exploitation tactics it is possible to generate good schedules for
job-shop problems.

For smaller problems, 6 × 6, the fortified rollout algorithm finds the optimal solu-
tion for most runs with a budget of 10.000 rollouts, especially with threshold ascent
exploration policy. For the larger problems, 14 × 14 and 20 × 20, the rollout algo-
rithms were able to generate good schedules in a reasonable time. For these problems
instances the average rollout algorithm outperformed the fortified rollout and the
hybrid rollout algorithm outperformed the average rollout. This is interesting since
the fortified rollout algorithm is sequentially improving, but the average and hybrid
rollout algorithms are not.

This can be explained by the fact that for larger problems the number of feasible
solutions is extremely high and the probability of finding a good schedule early on is
small. This may result in the fortified rollout algorithm putting too much emphasis
on schedules found early in the scheduling process. The average rollout algorithm
on the other hand dispatches the job that finds the best schedules on average and
therefore does not depend upon finding good schedules early on. This generates
promising positions in the solution space from where the fortified rollout algorithm is
more effective than the average rollout, explaining why the hybrid rollout algorithm
outperforms the average rollout.

For larger problem instances the quantile rollout algorithm gave the best results.
The quantile rollout algorithm dispatches jobs that have the best average of good
solutions, compared to the job with the highest average of total solutions as done by
the average rollout algorithm. For the larger problems this method outperformed
both the average and hybrid rollout algorithm. The reason is that when a job is
dispatched based on the average there may be a greater probability of finding low
quality solutions. Similarly, dispatches based on extreme values, such as the fortified
rollout algorithm, may put too much bias on the best schedule found for the given
set of rollouts, which in return may result in a low probability of visiting regions
of greater solution quality. For the smaller problems the quantile rollout algorithm
also gave very promising results even if the fortified rollout algorithm works better
for these problems. The quantile rollout algorithm was the most consistent method,

47

7 Summary and Discussion

giving good result for all problem sizes.

When using the average rollout algorithm the best exploration policy is to evenly
distribute the rollouts between jobs. This gives us the best estimate of the true
value of each job and our final choice is more reliable. When using the fortified
rollout algorithm, threshold ascent is the best exploration policy since it allocates
more rollouts to the more promising jobs and is therefore more likely to find good
schedules.

Rollouts were made for six different rollout budgets: 100, 500, 1.000, 3.000, 5.000 and
10.000. There is no need for more than 3000 rollouts when solving smaller problem
instances, but for larger problem instances (14×14 and 20×20) it might be possible
to generate better schedules by increasing the rollout budget above 10.000. This will
on the other hand, of course increase the computational effort of the algorithms.

Rollout algorithms are effective methods for finding approximate schedules for job-
shop problems. But the computational effort increases considerably as the problem
size is increased. The variable having the greatest impact on the computational time
is the choice of pilot heuristic. Two different pilot heuristics were tested, the random
heuristic and randomly chosen dispatch rules. When using randomly chosen dispatch
rules, the computational time increased significantly. The average computational
time needed for solving one problem of each problem size using randomly chosen
dispatch rules was five times higher compared to using the random heuristic. Despite
the increase in computational time the difference in results were not significant,
leading to the conclusion that the random heuristic should be preferred.

48

8 Conclusion and Future Work

Rollout algorithms gave encouraging results for the job-shop problem. Within rea-
sonable computational time promising and good schedules can be found. The best
way to tackle smaller problem instances is to use the fortified rollout algorithm and
dispatch based on the best overall schedule found from rollouts. However, for larger
problems different strategies are needed.

The quantile rollout algorithm was the most successful rollout algorithm for solving
larger job-shop problems. This method was also the most consistent one, producing
good schedules for both the smaller as well as the larger problems. The advantage
of the quantile rollout algorithm is that it dispatches jobs with a higher likelihood
of finding good solutions. When a job is dispatched based on the average there may
still be a greater probability of finding low quality solutions. Similarly, dispatches
based on extreme values, such as the fortified rollout algorithm, may put too much
bias on the best schedule found for the given set of rollouts, which in return may
result in a low probability of visiting regions of greater solution quality.

The performance of the different rollouts algorithms is highly reliant on the underly-
ing pilot heuristic used in the rollout phase. In the thesis two approaches were taken.
The first was purely random job dispatching, this is the fastest way of performing
rollouts. The second approach was significantly slower; this was the approach of dis-
patching according to a randomly chosen classical job-shop dispatching rule. These
were, SPT, PL, MRT, LQUE, NM, RT, ST, ECT, LPT, FCFS (detailed descriptions
of these dispatching rules may be found in table 2.1). Despite the increase in com-
putational time the difference in results between the two pilot heuristics were not
significant, leading to the conclusion that the random heuristic should be preferred.

Despite that a more effective pilot heuristic will undeniably lead to better schedules,
but as the chosen pilot heuristic becomes more effective, it’s computational cost
might follow suit. Future work should aim at finding pilot heuristics that are able
to find better schedules while being computationally efficient.

The rollout algorithms gave good results for deterministic problems but the method-
ology is easily transferrable to stochastic problems. Further work should go into
discovering the applicability of these rollout algorithms to stochastic problems.

49

Bibliography

Alpaydin, E. (2010). Introduction to Machine Learning. The MIT Press, 2nd edition.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time Analysis of the
Multiarmed Bandit Problem. Machine learning, 47(2):235–256.

Banharnsakun, A., Sirinaovakul, B., and Achalakul, T. (2011). Job Shop Scheduling
with the Best-so-far ABC. Engineering Applications of Artificial Intelligence,
(2006):1–11.

Bertsekas, D. P., Tsitsiklis, J. N., and Wu, C. (1997). Rollout algorithms for com-
binatorial optimization. Journal of Heuristics, 3:245–262.

Brucker, P. (2007). Scheduling algorithms. Springer, 5th edition.

Brügmann, B. (1993). Monte carlo go. White paper.

Carlier, J. and Pinson, E. (1989). An algorithm for solving the job-shop problem.
Management Science, 35(2):164–176.

Cicirello, V. and Smith, S. (2005). The max k-armed bandit: A new model of
exploration applied to search heuristic selection. In Proceedings of the National
Conference on Artificial Intelligence, volume 20. AAAI Press.

Croce, F. D., Tadei, R., and Volta, G. (1995). A genetic algorithm for the job shop
problem. Computers and Operations Research, 22(1):15–24.

Duin, C. and Voß, S. (1999). The Pilot method: A strategy for heuristic repetition
with application to the Steiner problem in graphs. Networks, 34(3):181–191.

Fisher, H. and Thompson, G. L. (1963). Probabilistic learning combinations of local
job-shop scheduling rules. In Muth, J. F. and Thompson, G. L., editors, Industrial
scheduling, chapter 15, pages 225–251. Prentice Hall.

Garey, M., Johnson, D., and Sethi, R. (1976). The complexity of flowshop and
jobshop scheduling. Mathematics of operations research, 1(2):117–129.

Hefetz, N. and Adiri, I. (1982). An efficient optimal algorithm for the two-machines
unit-time jobshop schedule-length problem. Mathematics of Operations Research,
7(3):354–360.

51

BIBLIOGRAPHY

Jain, A. and Meeran, S. (1998). A state-of-the-art review of job-shop scheduling
techniques.

Johnson, S. M. (1954). Optimal two- and three-stage production schedules with
setup times included. Naval Research Logistics Quarterly, 1(1):61–68.

Kawai, T. and Fujimoto, Y. (2005). An efficient combination of dispatch rules
for job-shop scheduling problem. IEEE International Conference on Industrial
Informatics, pages 484–488.

Laarhoven, P. J. M. v., Aarts, E. H. L., and Lenstra, J. K. (1992). Job shop
scheduling by simulated annealing. Operations Research, 40(1):113–125.

Meloni, C., Pacciarelli, D., and Pranzo, M. (2004). A rollout metaheuristic for job
shop scheduling problems. Annals of Operations Research, 131(1):215–235.

Pan, C.-H. (1997). A study of integer programming formulations for scheduling
problems. International journal of systems science, 28(1):33–41.

Pan, J. C.-H. and Chen, J.-S. (2005). Mixed binary integer programming formu-
lations for the reentrant job shop scheduling problem. Computers & Operations
Research, 32(5):1197–1212.

Pezzella, F. and Merelli, E. (2000). A tabu search method guided by shifting bot-
tleneck for the job shop scheduling problem. European Journal of Operational
Research, 120(2):297–310.

Pinedo, M. L. (2008). Scheduling: Theory, Algorithms, and Systems. Prentice Hall,
3rd edition.

Runarsson, T. P., Schoenauer, M., and Sebag, M. (2011). Pilot, Rollout and Monte
Carlo Tree Search Methods for Job Shop Scheduling.

Streeter, M. and Smith, S. (2006). A simple distribution-free approach to the max
k-armed bandit problem. Principles and Practice of Constraint Programming,
4204(2006):560–574.

Sun, D., Batta, R., and Lin, L. (1995). Effective job shop scheduling through active
chain manipulation. Computers and Operations Research, 22(2):159–172.

Sutton, R. and Barto, A. (1998). Reinforcement learning: an introduction. Adaptive
computation and machine learning. MIT Press.

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal
of Operational Research, 64(2):278–285.

Vaessens, R. J. M., Aarts, E., and Lenstra, J. (1994). Job shop scheduling by local
search. INFORMS Journal on Computing, 8:302–317.

52

BIBLIOGRAPHY

Yamada, T. and Nakano, R. (1992). A genetic algorithm applicable to large-scale
job shop Problems. In Parallel Problem Solving from Nature, pages 281–290.

53

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	Contribution
	Overview

	The Job-Shop Problem
	A Formal Statement of the Job-Shop problem
	Complexity of the Job-Shop Problem
	Approximation Methods for Solving the Job-Shop Problem
	Heuristics
	Meta-Heuristics

	Optimal Methods for Solving the Job-Shop Problem
	Mixed Integer Programming
	Branch and Bound

	Summary

	Rollout Algorithms for Combinatorial Optimization
	A Framework for Rollout Algorithms
	Sequentially Improving Algorithms
	A Rollout Algorithm for the Job-Shop Problem
	Summary

	Bandit Algorithms
	The Conflict Between Exploration and Exploitation
	Evaluating Levers
	The Job-Shop Bandit
	The Max K-Armed Bandit
	Threshold Ascent

	Summary

	Rollout Algorithms for the Job-Shop Problem
	Pilot Heuristics
	Random Heuristic
	Randomly Chosen Dispatch Rules

	Policies for Dispatching Jobs
	The Fortified Rollout Algorithm
	The Average Rollout Algorithm
	The Quantile Rollout Algorithm
	A Hybrid Rollout Algorithm

	Exploration Policies
	Evenly Distributed Rollouts
	Threshold Ascent

	Summary

	Experimental Study
	Experimental Setup
	Performance Criteria

	Results
	Results for the Fortified Rollout Algorithm
	Results for the Average Rollout Algorithm
	Results for the Hybrid Rollout Algorithm
	Results for the Quantile Rollout Algorithm
	Results for Threshold Ascent
	Randomly Chosen Dispatch Rule
	Results for Different Number of Rollouts
	Results for Different Problem Sizes
	Results for the Yamada 2020 Problems

	Computational Time Comparisons
	Results of Other Research

	Summary

	Summary and Discussion
	Conclusion and Future Work
	Bibliography

