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Abstract

In this thesis, a Bayesian hierarchical model for daily average temperature is pre-
sented. A multivariate normal distribution is selected as the data distribution due
to its flexibility and theoretical basis. The linear fit is assumed to be governed by
a seasonal effect parameter vector, a linear trend parameter, a long term fluctua-
tion parameter vector and a model constant. The seasonal effect and fluctuations
are modeled as independent Gaussian processes which are governed by (Gaussian
Markov random fields. The covariance matrix of the multivariate normal distribu-
tion describes temporal correlation and a seasonally changing variance of the data.
A periodic autoregressive (PAR) process is used to model the temporal correlation
and regression is used to estimate the parameters. An iterative process is used to
update the regression parameters and the Bayesian parameters, since they are de-
pendent on each other. This model allows for future predictions, but is limited to
predicting one year ahead.

A program based on the model was developed in the R programming language. The
program uses the Gibbs sampler, a Markov chain Monte Carlo algorithm, to estimate
the parameters of the model by sampling from their conditional distributions. Using
the R program the model is applied to observed data from four locations in Iceland
over the years 1949 to 2010. These locations are Reykjavik, Akureyri, Dalatangi and
Storhofdi. Based on the model the estimated increase in average temperature over
the period is from 0.05 to 0.46°C, depending on location. A prediction was made for
the year 2011, which was not a part of the training set. Of the actual temperature
values of 2011, only 2.5 to 4.7% of the observations were outside the 95% posterior
prediction interval.



Utdrattur

I pessari ritgerd er Bayesiskt stigskipt likan fyrir daglegan medalhita sett fram.
Margvida normaldreifingin er valin sem gagnadreifing vegna sveigjanleika hennar.
Veentigildi gagnadreifingarinnar er stjornad af stikavigri fyrir arstidasveiflur, stika
fyrir linulega leitni, stikavigri fyrir langtima sveiflur { medalhita og fasta likansins.
Arstidabundna sveiflan og medaltalssveiflan eru metin sem 6had Gaussian ferli sem
er stjornad af Gaussian Markov slembiferli. Samfylgnifylkio i margvidu normal-
dreifingunni inniheldur timahé&da fylgni og arstidabundnar sveiflur i dreifni. Lo-
tubundid eiginadhvarfs likan (PAR) er notad til ad lysa timahadu fylgninni og adh-
varfsgreiningu er beitt til ad meta stika likansins. Stikanir { Bayesiska likaninu og
i PAR likaninu eru hadir hvor 60rum svo naudsynlegt er ad nota itrunarferli til ad
uppfeera stikana. Haegt er ad nota likanio til ad spé eitt ar fram i timann.

Forrit byggt & likaninu var préad i forritunarmalinu R. Forritio notar Gibbs hermun,
Markov kedju Monte Carlo reiknirit til a0 meta stikana i likaninu med pvi a0 draga tr
skilyrtu likindadreifingunum beirra. I gegnum R forritid er likaninu beitt & gogn fra
timabilinu 1949 til 2010, fra fjérum stédum & Islandi. Pessir stadir eru, Reykjavik,
Akureyri, Dalatangi og Storh6foi. Samkvaemt likaninu var haekkun medalhitastigs
fra 0.05 til 0.46°C & &aratug yfir timabilio, legst & Akureyri og hast i Reykjavik.
Spa var gerd fyrir arid 2011 og hin borin saman vid raunverulegan hita fra sama
ari. Pao kom i 1j6s ad ekki nema 2.5 til 4.7% af gildunum voru fyrir utan 95% spabil
likansins.

vi
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1. Introduction

1.1. Goals of the project

The main goal of this thesis is to estimate and model the seasonal effect and long
term fluctuations in average daily temperature and give reliable uncertainty esti-
mates for these quantities. This is done by setting up a Bayesian hierarchical model
which adequately describes univariate series of daily average temperature. Along
with the seasonal effect and the long term fluctuation, this model takes into account
temporal correlation and heteroscedasticity in the data. The programming language
R is used to apply the model to the given data and to predict the weather one year
ahead. These predictions are validated with data from that same year.

1.2. Possible applications

Air temperature has an impact in various subjects. Accurate and reliable informa-
tion about future temperature predictions as well as information about the past are
important to correctly estimate temperature effect in different subjects. Subjects
that are affected by temperature include, but are not limited to, ecology, where
temperature affects a wide variety of biological processes and the development of
ecosystems (e.g. the growth of plants, the population of animals), district heat-
ing, where the consumption of hot water depends on the outside air temperature,
tourism and in climate research. In the model presented in this thesis the uncer-
tainty of the predictions is reduced by including a temporal correlation and seasonal
variance in the model, resulting in a reliable model that can be used in any of the
fields mentioned above.
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1.3. The data

The weather data used in the development of the model presented here are time
series of average daily air temperature at four locations in Iceland spanning over 62
years, from the beginning of 1949 to the end of 2010. The locations are Reykjavik,
Akureyri, Dalatangi and Storhofdi.

The raw data from which the daily average is calculated, are from the Icelandic
Meteorological Office Database. They consist of standard daily readings of air tem-
perature taken by meteorological observers every three hours, beginning at 3 am
and ending at midnight the same day.

All years are assumed to contain 365 days with February 29th being removed from
all datasets. Missing values in the data are replaced using linear interpolation. Each
site is modeled separately but the general form of the model is assumed to be the
same for each site.

1.4. Literature review

Most meteorological time series data (e.g. temperature) contain a continuous slowly
varying change over long scales (long term fluctuations). In a recent paper, Craigmile
et al. (2004) propose using discrete wavelet transform (DWT) to extract polynomial
fluctuations from long memory processes. This method is demonstrated to work
well on annual temperature data. Kiraly and Janosi (2002) claim that detrended
fluctuation analysis (DFA) can effectively filter out slow fluctuations in daily average
temperature data. In DFA the time series analyzed is divided into non-overlapping
segments of equal length. The local linear trend is then fitted in each segment by a
polynomial and the data detrended by subtracting this local fit.

Das (2009) analyzes average daily temperature values for a 12 year period at some
cities around the world, including Reykjavik. He attempts to remove the seasonality
from the data by fitting adjusted sine functions, with time period 365 days, to the
data. He then subtracts the fitted sine functions from the data, getting residuals that
should be clear of all seasonality. He concludes however, that the sine functions are
not flexible enough to remove the seasonal behavior completely, with the residuals
containing traces of seasonality in them.

In his research, Tol (1996) presents a complete model for average daily temperature,
based on 30 years of observations from De Bilt in the Netherlands. He proposes using
a generalized autoregressive conditional heteroscedastic (GARCH) model to capture
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regular but heteroscedastic changes between summer and winter. This model gives
questionable results.

Short term correlations in meteorological records are usually explained by low order
autoregressive processes (Storch and Zwiers, 2002). In most of the literature cited
above first or second order autoregressive processes are used to describe the dynamics
of the data.

Some notable studies have been done on the statistical analysis of temperature
in Iceland. Crochet and Johannesson (2010) created a spatial data set of simulated
gridded daily air temperature in Iceland for the period 1949 to 2010. Jonasson (2005)
made predictions for annual temperature in Reykjavik using regression models con-
nected to temperature studies. According to the model the average temperature
will be 5.4°C for the period 2005 to 2015 and then increase significantly over the
next century and will be 7.7 °C in 2100. Hrafnkelsson et al. (2012) used Bayesian
hierarchical modeling to analyze annual minimum and maximum temperatures over
Iceland. Onme of their conclusion is that the average annual temperature increased
0.24 °C per decade over the period 1961 to 2009. They also conclude that the min-
imum and maximum temperatures over the same period increased 0.71 and 0.47°C
per decade, respectively.

In climatology, Bayesian hierarchical models are increasingly used to describe data
that is highly multivariate, with many response variables or autocorrelated (Banerjee
et al., 2004; Wikle and Berliner, 1998). In this thesis a flexible, three-level Bayesian
hierarchical model for daily average temperature is presented. The first level, which
is the data level, contains an autoregressive process with seasonal variance. Parame-
ters of this autoregressive process are estimated within the Bayesian approach using
classical inference. At level two the parameters for a seasonal effect, and parameters
that describe the long term fluctuation are presented through Gaussian prior distri-
butions based on Markov random fields. The third level contains prior distributions
for the parameters at the second level, so-called hyperparameters.

1.5. Structure of the Thesis

The structure of the thesis is as follows. In Chapter 2 an overview of some of
the theory used in the thesis is given. In Chapter 3 the data which are analysed
here are presented. In Chapter 4 all aspects of the model are given along with the
Bayesian setup, prior distributions and computational methods. The main results
are presented in Chapter 5 along with a forecast for the year 2011. Chapter 6
contains some discussion and conclusions and in Chapter 7 some ideas on future
projects are given.






2. Theory

In this chapter the theory used in this thesis is described. First a short introduction
to Bayesian inference and hierarchical models is given, followed by an introduction to
the multivariate normal distribution and Gaussian Markov random fields. Then an
introduction to the posterior simulation tools used, the Gibbs sampler and to Markov
chain Monte Carlo (MCMC). Further, the model criterias AIC and DIC, which are
used for the model comparison, are described. Finally a brief introduction is given
to B-splines, which are used to model the long term fluctuations, and periodic auto
regression, which is used to model temporal correlation in the data.

2.1. Bayesian Inference

Bayesian inference is a method for statistical inference in which Bayes’ theorem is
used to make a statistical conclusion about a set of model parameters 6 in terms
of probability statements that are conditional on the given data y. Parameters 6
are treated as random variables and the data are used to update prior knowledge
about the parameters. The essential ingredient in Bayesian statistics is that the
information about 6 is summarized in the likelihood function. Based on Bayes’ rule,

p(y0)p(6)

p(0ly) = o)

(2.1)

where p(0) is the prior density of 6 (that expresses the knowledge about 6 before
observing the data), p(f|y) is the posterior density of 6 and p(y|6) is the data dis-
tribution (the likelihood). If 6 is continuous then the probability of y is

py) = / p(6) p(yl6) db (2.2)

which is sometimes referred to as the normalizing constant and does not depend on
6. If 0 is discrete then the probability of y is

py) =" p(®) p(ylo). (2.3)

0
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Bayes’ rule can therefore be rewritten as the posterior density proportional to the
product of the prior distribution and the likelihood

p(0ly) o< p(8)p(y|6). (2.4)

Bayesian inference about 6 follows from inspection of the posterior density (where
as a frequentist would look at the likelihood).

2.1.1. Hierarchical Models

For many of the complex data sets which Bayesian statistics can be applied to, the
model parameters can be regarded as related or connected to each other in some
way according to the structure of the problem. In that case a Bayesian hierar-
chical model structure can be used to ensure that the joint probability model for
these parameters reflects the dependencies among them (Gelman (2004)). A general
hierarchical model with three levels has the form shown in Table 2.1.

Table 2.1: Hierarchical model structure.

Level Variables Density
1 (Data level) Observations | Processes, Parameters p(y|0, ¢)
2 (Latent level) Processes|Parameters p(0]p)

3 (Hyperparameters) Parameters p(p)

Let y denote the data as before, 6 a set of parameters in the data distribution, re-
ferred to as latent parameters and ¢ are the parameters in a distribution describing
the latent parameters, referred to as hyperparameters. In most real-world problems,
there is some knowledge about how to constrain the hyperparameters ¢, although
the exact values of them are not known. The hyperparameters have the prior dis-
tribution p(¢). The joint distribution of the latent- and hyperparameters is

p(0,¢) = p(0]p)p(¢) (2.5)

and the posterior density for the hierarchical model is

p(0, ¢ly) o< p(ylo, ©)p(0]w)p(p) (2.6)

2.1.2. The Multivariate Normal distribution

In probability theory, the univariate normal (or Gaussian) distribution is a com-
monly known continuous probability distribution that has a probability density
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function
1 _(z—p)?

fz;p,0%) = e 22, zreR (2.7)

o\ 2T

where parameter y is the mean or expected value and o2 is the variance. The general
notation is z ~ N(u, 02). The multivariate normal distribution is a generalization
of the univariate normal distribution to higher dimensions and has a probability
density function

Felorseenn) = e (—g- 'S ) 29)

where 1 € R is the mean vector, ¥ € R*** the covariance matrix and || the
determinant of the covariance matrix. The covariance matrix X is a matrix which
contains the covariance between the i-th and the j-th element of a vector in its (4, j)
position. Tt is symmetric and positive definite with Cov(z) = E((z — p)(z — u)7)
and Cov(z);; = Cov(z;, z;).

2.1.3. Gaussian Markov Random Fields

Gaussian Markov random fields (GMRF), also known as conditionally specified
Gaussian fields, are useful to describe the temporal (and spatial) dependencies be-
tween neighbors. GMRFs are usually specified by their precision matrix P meaning
that the covariance matrix, 3 = P~! is only known trough its inverse.

In Bayesian hierarchical models the precision matrix can be used on the second
level in the hierarchical model to generate dependence structure between the latent
parameters and therefore the dependence between the observed data (Rue and Mar-
tino, 2007). In this thesis a result in Lindgren et al. (2011), referred to as main
result 1, is used to describe the latent relationship and create the precision matrix.

Since our data is one dimensional with regular spacing the form of the matrix is
relatively simple. It is done by examining the solution (on R) to the linear fractional
stochastic partial differential equation

(k2 =V -HV)*?z(u) = W(u), ueR (2.9)

where H is a positive element. For any u = wuq,...,u, € R let v, = w; — u;_q,
0; = uip1 —u; and s; = (7y; + 6;)/2. Then the elements of row ¢ around the diagonal
of the precision matrix are given by,

Plzsi-[—ai C; —bl], fa=1

Py :s;-[aiair —ai(cion+¢) aibi—q + C? +biaipr — bi(c +cipr) bibiga], if =2
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where a; = H/v;s;, b; = H/d;s; and ¢; = k* + a; + b;. Since the data used in this
thesis has regular even spacing between all observations we can write, s =0 =y =1
and a = a; = b; = H/6 = 1 and the lines in the precision matrix as,

P, : [-1 (k*+2) —1] (2.10)

Py: [I — (267 +4) (k*+4K%+6) — (2x%+4) 1] (2.11)

In some cases when sampling from a GMRF under an additional constraint Ax = e,
using the precision matrix P (i.e. p(x|Az) = e where x ~ N (u, P™1)) it is necessary
to use a correction algorithm. The following correction algorithm is from Rue and
Held (2005).

Algorithm 1 Sampling z|Az = e where z ~ N (u, Q7).

Compute the Cholesky factorization, Q = LLT
Sample z ~ N(0, 1)

Solve LTv = z

Compute © = pu + v

Compute V. = Q7 1AT

Compute Wiy = AV

Compute Ugyp = WIVT

Compute ¢ = Ax — ¢

Compute z* =z — U'c

Return x*

[
=

2.2. The Gibbs sampler and MCMC

Markov chain Monte Carlo (MCMC) methods are a class of algorithms used to
sample from probability distributions based on constructing a Markov chain that
has the desired distribution as its equilibrium distribution. The state of the chain
after a large number of iterations is used as a sample of the desired distribution
and the quality of the sample improves as a function of the number of iterations.
The Gibbs sampler is one of the most commonly used MCMC methods in Bayesian
statistics since it is useful for multidimensional posterior densities (Gelman, 2004).

The Gibbs sampler draws samples from a set of conditional distributions which are
based on the prior distributions and the posterior distribution of the parameters.

Suppose that the parameter vector of interest is = (6y,...,0k). The param-
eters are given initial values and then the Gibbs sampler is used to iterate the



2.3. Model information criterion

parameters by drawing samples from their conditional dlstrlbutlons The condi-
tional distribution of parameter 6; at iteration ¢ is p(@(tJrl \9 ,data), where 0_; =
(01,...,0;-1,0,41, ...,0k) is the set of all parameter excludlng g;. For a joint dis-
tribution with full conditionals p(#\"""|0") data), ..., p(6%"V|6%) , data), the Gibbs
sampler simulates successively from all conditionals, modlfymg one component of ¢
at a time. The corresponding algorithmic representation is given in Algorithm 2.

Algorithm 2 The Gibbs sampler.

Specify an initial value ) = (6%0), . ,0}?))
fort=1,2,....,M do
Draw 6" from p(6"™|6"), data)
Draw 6’5“” from p(9§t+1)|0g, data)

Draw 6’( ) from p(0 (t+1)|0 K,data)
end for
return the values (6,0 ... 94

Under general conditions, draws from this simulation algorithm will converge to the
target distribution of interest (the joint posterior of 6).

2.3. Model information criterion

An information criterion is a measure of the relative goodness of fit of a statistical
model. The information criteria used in this thesis are Akaike’s information criterion
(AIC) and Deviance information criterion (DIC).

2.3.1. AIC

Akaike’s information criterion is probably the most commonly used procedure for
the model selection in classical statistics. It is defined as

AIC = —2log(L) + 2n; (2.12)

where n; is the number of parameters in the statistical model, and L is the maximized
value of the likelihood function for the estimated model, see Akaike (1974) for further
information.
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2.3.2. DIC

The Deviance information criterion is a generalization of the AIC that was devel-
oped by Spiegelhalter et al. (2002). It is the commonly used criterion for model
comparison within a Bayesian framework. The advantage of DIC over other criteria
in Bayesian model selection is that the DIC can be fairly easily calculated from the
samples generated by a Markov chain Monte Carlo simulation. Define the deviance
as

D(y,0) = —2log {p(y|0)} (2.13)

where y is the data, 6 the unknown parameters of the model and p(y|6) the likelihood
function. A summary of D(y,0) based on 6 is given by

Dy(y) = D {y7é(y)} (2.14)

In MCMC simulations 6 is usually the mean of the posterior simulations. The
average of D(y,0) is given by

Davg(y) = E{D(y,0)|y}

which can be estimated with
1 X
~ _ Z {
Davg(y) - E s D(yae ) (215)

where ¢! is the [-th draw from p(f|y). The summary Dy,.,(y) is a measure of how
well the model fits the data. The smaller this summary is, the better the fit of the
model. The effective number of parameters of the model, are commonly estimated
by

Pp = Davg(y) — Dy(y) (2.16)

The higher this value is, the easier it is for the model to fit the data. The deviance
information criterion is defined as

DIC = 2Dy (y) — Dy(y) = Davg(y) + pp (2.17)

To calculate DIC, compute D(y,8') for every iteration I, compute ﬁavg(y) as the
average of D(y, ) over the samples of § and D;(y). Then the DIC follows directly
from these approximations. The DIC is used in Section 4.2.3 to determine how many
parameters should be used to model the long term fluctuation in the data.
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2.4. B-Splines
2.4. B-Splines

A B-spline basis is a set of natural splines that is particularly well suited for com-
putation (Wasserman, 2006). An M-order B-spline is a piecewise M — 1 degree
polynomial with M — 2 continuous derivatives. In this thesis only cubic B-splines
are used (i.e. M = 4). The general definition of B-splines is as follows.

Let 21 < x9 < ... < x, be a set of knot points on the interval (0,1), and 2o = 0 and
Zp4+1 = 1. Lets define new knots ¢; such that t; <ty < ... <ty < @, tj4m = x; for

j=1,....kand xpi1 < tprmi1 < ... <tpron. Usually the extra points are chosen
tobety =... =ty =x9and vy = tgipre1 = ... = tgron- The basis functions are
then defined recursively as
1 if ¢, <t<tin
bjo(t) == I I =1 k2M -1 2.18
jiolt) {0 otherwise » J e B ( )
t—t ivnpr — 1 ,
b]n(t) = —ij,n—l(t)—'—Lbj—i-l,n—l(t)y ] = 1, ceey k:—|—2M—m (219)
litn — 1 Litnt1 — tjp1
g _
< | / 2 A
g _ Y ,I/I \\\\_,' ,.v// ;‘f’\ ‘\\\
T I

Figure 2.1: Cubic B-spline basis using seven equally spaced knots.

The B-splines will be used in Chapter 4 to estimate the long term fluctuation in the
data.

11



2. Theory

2.5. Periodic autoregression

Periodic autoregressive models (PAR) are time series models which allow the value
and number of AR parameters to vary with the seasons, and allows a non-constant
standard deviation.

A classical AR(p) process is given by
p
=Y ¢Yii+ea (2.20)
i=1

where &; represents an independent and identically distributed with zero mean
(E(g;) = 0) and constant variance (var(g;) = 02 > 0), i.e. white noise. A PAR(p(t))
process that allows the parameters and the order to be a function of ¢ is given by

(t)
Y=Y ¢it)Yii+e (2.21)
=1

where ¢, is again independent with zero mean (E(g;) = 0), but now the variance is
var(e;) = o%(t) > 0.

The periodic autoregressive process will be used in Section 4.1.3 to describe the

temporal correlation in the residuals of the model. For additional information on
PAR see Jones and Brelsford (1967); Troutman (1979).

12



3. Data

The data set analyzed in this thesis consists of daily average air temperatures at
four locations in Iceland, which are Reykjavik, Akureyri, Dalatangi and Storhofdi,
and range over 62 years from the beginning of 1949 to the end of 2010, all in all
22630 values. The daily average was calculated from air temperature measurements
observed on three hour intervals by the Icelandic Meteorological Office, i.e. eight
times each day. The average was calculated from 3am to midnight for each day.
In the Storhofdi series linear interpolation was used to replace two years of missing
observations at 3am, but apart from these missing values at Storhofdi the data sets
seem to be without errors and with no apparent outliers or defects. In Figure 3.1 the
first three years of the Reykjavik series are plotted, showing the general structure
of all the series.

T T T T T T 1
1949.0 1949.5 1950.0 1950.5 1951.0 1951.5 1952.0
Year

Figure 3.1: The daily temperature averages in Reykjavik the first three years, 1949-
1951.
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3. Data

The daily average data sets will either be referred to as y;, wheret =1,... m-n is
an index, or by v, , where ¢ =1,...,m, m = 62 stands for a year and k =1,...,n,
n = 365 is a Julian calendar day. A statistical summary of the data is given in Table
3.1. From the summary it is apparent that Akureyri has both highest maximum
value and the lowest minimum. It also has the lowest mean temperature and the
highest standard deviation, while Storhofdi has the highest mean temperature and
the lowest standard deviation.

Histograms of the daily average temperature are plotted in Figure 3.2 for each loca-
tion. These histograms show a negative skewness with a tail towards low tempera-
tures. The histograms for Reykjavik and Akureyri seem to have a relatively similar
shape with flat peak while Dalatangi and Storhofdi have narrower peak. This re-
semblance between the series is clearer in Figure 3.3 which shows the densities of
the daily average temperature, estimated by a kernel smoothing function.

Table 3.1: Summary statistics of the daily average temperature series.
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Reykjavik  Akureyri  Dalatangi  Storhofdi

Min. -15.11 -20.15 -15.91 -14.96
1st Qu. 1.05 -0.60 1.09 2.44
Median 5.08 3.94 4.23 5.61
Mean 4.68 3.63 3.84 5.12
3rd Qu. 9.03 8.45 7.10 8.34
Max. 20.08 20.90 18.91 17.41

o 5.12 6.20 4.24 4.10
Latitude  64°07.648" 65°41.135" 65°16.090° 63°23.985’
Longitude 21°54.166" 18°06.014° 13°34.556"  20°17.299’
Altitude  52.0 m.y.s. 23.0 m.y.s. 9.0 m.y.s. 118.0 m.y.s.
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Figure 3.2: Frequency distribution of daily mean temperature for the whole period
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3. Data

= . .
;! -| — Reykjavik
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Figure 3.3: The densities of the daily mean temperature for the whole period 1949-
2010, estimated by kernel smoothing.

3.1. Seasonal behavior

The data has a clear annual periodic behavior that is apparent in Figure 3.1, and
should be expected in this type of seasonal data. The seasonal behavior can be
examined by calculating the sample mean of each Julian calendar day by

pa(k) = %Zyk (3.1)

The mean annual temperature cycle based on the daily average data is shown in
Figure 3.4 (solid line) together with the 2.5% and 97.5% percentiles of each Julian
day (dashed lines). Notice how the space between the two percentiles changes from
winter to summer, indicating a difference in variance between seasons. The sample
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3.1. Seasonal behavior

standard deviation for each Julian calendar day is computed by

70 = | =g 3 (e~ alh) (32

The annual variation of the sample standard deviation of the daily mean temperature
is plotted in Figure 3.5, showing a clear difference between seasons.
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Figure 3.4: The mean annual temperature cycle based on daily temperature averages
(solid line), together with 2.5% and 97.5% percentiles (dashed lines).

17



3. Data

Reykjavik Akureyri
© — © —
0 — n —
< — < -
6 ™ & ™
N — N —
— - — —
o - o —
T T T T T T T T
0 100 200 300 0 100 200 300
Julian day Julian day
Dalatangi Storhofdi
© — ©o —
o — n —
< - <
& ©® & ©
N — N —
— — - —
o — o
T T T T T T T T
0 100 200 300 0 100 200 300
Julian day Julian day

Figure 3.5: The sample standard deviation of the daily average temperature, as a
function of Julian day.

3.2. Long term fluctuations

It is likely that the data contains some long term fluctuations. Since no long term
fluctuation is observable visually, it has to be brought out of the data using the
model, which will be done in following chapters. An estimate of the long term fluc-
tuation can be made straight from the data. This is done by removing the seasonal
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3.2. Long term fluctuations

factor from the data and examining the residuals. The seasonality is removed by

& =7 (1® i)

(3.3)

where 1 is vector of ones of length m = 62 and the operator ® is the Kronecker
product. An estimate of the fluctuations is shown in Figure 3.6, where a kernel
smoothing object has been fitted to the residuals €7. These figures are later be used
for a comparison to the results from the model.

1.0

0.0 0.5

-0.5

0.5

0.0

-1.0

Reykjavik
I I I I I I I
1950 1970 1990 2010
Year
Dalatangi
I I I I I I I
1950 1970 1990 2010
Year

1.0

0.5

-1.0

0.0 0.5

-0.5

Akureyri
T T T T T
1970 1990 2010
Year
Storhofdi
T T T T T
1970 1990 2010
Year

Figure 5.6: An estimation of the long term fluctuation in the data, calculated by a
kernel smoothing, with bandwidth 1500, of € in Equation (3.3).
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3. Data

3.3. Correlation

Before examining the autocorrelation in the data, the estimated seasonal factor
and long term fluctuation are subtracted from the data, resulting in the following
residuals, . .

e =7— (1® fig) — ks (3.4)

where ks stands for the Kernel smoothing estimate of the long term fluctuation.
These residuals are similar to those of the model presented later in the thesis and
should therefore give an indication of how the residuals in the model are temporally
correlated. Figure 3.7 show the autocorrelation and partial autocorrelation functions
of the residuals in Equation (3.4) for the Reykjavik series (the ACF and PACF figures
are identical for all four locations, hence only results from one site are shown). It
is apparent that there is correlation in the residuals and the PACF suggests that a
low order autoregressive model (perhaps of third-order) would describe the temporal
correlation in the data sufficiently.

Reykjavik Reykjavik
o |
-
© | 24
o
g 7 L g T
uw Q
? g
ﬁ: - §
° ~
o
* |
o
[“ R e e o o E B
g podbdbdbdd J“HHHHHHHHHHHHM““” ‘
T T T T T T T T T T
0 10 20 30 40 0 10 20 30 40
Lag Lag

Figure 3.7: ACF and PACF for residuals € from Equation (3.4).
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4. The Model

As explained in Chapter 3 there is a strong yearly seasonal behavior in the daily
temperature data with temperatures being high in summer and low during winter.
It is also likely that there is a long term fluctuation in the mean temperature over the
period as Figure 3.6 and the discussion on global warming suggest (see for example
Cox et al. (2000)). The data has a non-constant variance, which is clear from Figures
3.4 and 3.5, and its residuals after subtracting the seasonal factor and the long term
fluctuation from the data are correlated (Figure 3.7). The structure of the model
proposed in this chapter takes into account all the factors mentioned above. To
summarize, the model should be able to capture:

e An annual change (seasonal effect).

A linear trend.

Long term fluctuations in the mean.

The temporal correlation in the data.

The seasonally changing variance.

4.1. A linear model

The model proposed in this thesis is a linear model of the form

F=XB+ Bl 4+~ +2Za+¢ (4.1)

where ¢ represents the daily average temperature data, Xg a seasonal component,
Bo the constant of the model (which is very close to the mean of the time series),
%f a long term linear trend in the series, Za a long term fluctuation term based
on B-splines and an error term € that is assumed to be a normally distributed and
autocorrelated with seasonally changing variance.
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4. The Model

4.1.1. Seasonal behavior

The annual temperature change is represented in the model as Xg, where 5 is a
constrained parameter vector E = (B4, Ba, - - ., P365)T where there is one 3, parameter
for every calendar day k, with February 29th being excluded (i.e. the day 1st January
will get & = 1, 2nd January k = 2 up to 31th December k& = 365). The matrix X
is a matrix of covariates (index variables) that ensures that every combination of
day-year (i,k) gets the right ;. It is given by

X = mel X In

where m is the number of years and n number of calendar days (in this case the
data spans 62 years so m = 62 and n = 365).

When multiplied with E the outcome will be
b

Bass
8,

ﬁ365

A

5365

4.1.2. Long term behavior

The long term temperature behavior is represented in the model as 701: + Za. The
term Za is supposed to capture nonlinear fluctuations while 7" is a linear trend
over the whole period. In the linear trend the vector T is a line created by

J
T = — —t 4.2
77365 Y (4.2)
where j is an index and ¢ is the center of the time series, in this case ty = —62;6%65 X % =

31. The parameter v, is the slope of the line.
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4.1. A linear model

The matrix Z is created by using B-spline Equations (2.18) and (2.19) from Section
2.4 and @ is a constrained parameter vector that scales the B-spline functions into
their desired shape.

4.1.3. Autocorrelation

The model from Equation (4.1) can be written as
e=4§—XB— Bl +7T — Za (4.3)

which is similar to the residuals in Section 3.3 (Equation (3.4)), where an estimate
of the seasonal effect and long term fluctuation have been subtracted from the data.
From Figure 3.7 it is likely that an autoregressive process of order p = 3 will describe
the serial correlation in the data adequately well.

A periodic autoregression model (PAR), presented in Section 2.5, is used to describe
the serial correlation in the error term €. The PAR model has the advantage over a
regular AR model that it allows the variance to be non-constant.

An univariate n-period PAR model with varying order (p(1),p(2),...,p(n)) is de-
fined by

k k k
Ei-z-i-k = SOg )68~n+k—1 +.o+ QOI()(])C)Es-n-Q-k’—p(k:) + Vsn+k (4'4)

where
e k : period index, k=1,...,n, e.g. n =365
e 5: year index, s=0,...,m—1, e.g. m =62
® Uy, : noise term with E(vs,,yx) = 0 and var(ve.,ix) = 02(k)

A simple approach to the PAR model is taken by setting

p(1)=p2)=...=pn)=3
and
dr=0" | =P | by =P vk

A regression model is used to estimate vs.,.x and the auto regressive parameters ¢y,
¢ and ¢3. Define

€4 €3 €9 €1
€t = , €t—1 = , Et—2 = , Et—3 =

En-m En-m—1 En-m—2 En-m—3
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4. The Model

then Equation (4.4) can be written on the form

1
& = [5t—1 €t—2 5t—3} Q2| + U =€)+ U (4.5)
®3

where € = [5,5,1 €r_9 5},3} and € = [gbl 103 ¢3]. The parameters of the PAR
model can be estimated by

~
—

o= (e W e)_l W el g (4.6)

where W = diag(I ® 42) is created using o, from Equation (4.9) and a vector of
ones of length m. An estimate of the noise term ., can be computed by

(4.7)

(4.8)

4.1.4. Heteroscedasticity (non-constant variance)

It is important to include the seasonally changing variance in the error term ¢; in
the model to ensure that the uncertainty of the model parameters is as correct as
possible. The standard deviation of the noise term vg.,, 1 is approximated using
trigonometric functions described in the following equation,

oo () :a0+23:{aj cos (2”5 k) + b, sin (2”3 ’“)} (4.9)

j=1

where a; and b; are unrestricted parameters and n = 365. The vector o, will
be of length n. Parameters ag, a1, as,as, by, by and by are estimated by fitting the
trigonometric function in Equation (4.9) to the calculated standard deviation from
Equation (4.8).

4.2. Bayesian Inference

In this chapter assumptions are made about the prior distributions of the parameters
in order to derive the posterior probability of the model and the conditional posterior
distributions for each model parameter.
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4.2. Bayesian Inference

It is assumed that the data follows a multivariate normal distribution, as described
in Section 2.1.2. Then the model in Equation (4.1) will become

37|B: ﬁ07 Y0, 0_27 02 ~ N<Xg+ 50T+ ’Yof + Z&, 0-2L71 \u4 LiT) (410)

where o2 is a scaling parameter that describes the variance of the model and L is a
matrix containing the autoregressive parameters described in Section 4.1.3,

1 for (i,j =1i)
—¢, for (i,j =i+1)
Lij={ —¢y for(i,j=i+2) (4.11)
—¢s  for (i,j =i+3)
0 Otherwise.

The matrix W is a diagonal matrix containing the variance from Equation (4.9),
such that W = diag(I ® #2). Both matrices are derived using the assumption that
the residuals € of the model can be described by the multivariate normal distribution
as € ~ N(0,0’L~'WL™T), see Appendix A.3.

4.2.1. Prior distributions

An important part of Bayesian inference is the selection of appropriate prior distri-
butions for the unknown parameters. The following prior distributions are assumed
for the unknown parameters in Equation (4.10) (the latent parameters of the model)

Blod ~ N(0,05P;")
50\#60,%2-;0 ~ N(uﬁo:aéo), ta, =0, ‘7202104
Yolity, 03~ N(py,03) poy =0, o5 =10"
dloy ~ N(0,00P7")
Vo, S~ Invx*(Vo, S32) Vo =107, Sp=1

where pg,, ago, fy, Viry S2 are all constants selected based the knowledge of the data
and 03, 0, are hyperparameters. The precision matrixes Py and Py are constructed
using Equations (2.10) and (2.11), respectively. These matrices generate a depen-
dency structure in the parameter vectors 5 and @. The prior distributions selected
for the hyperparameters are

J§|V05,S‘zﬁ ~ Inv-x*(V,5, S25) , Vys = 10712 Sﬁﬁ =1

g

02\ Ve, S2, ~ Inv-x*(Vya, S2,) , Voo =10712 52 =1
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4. The Model

4.2.2. Posterior distribution

The posterior distribution is a product of the prior distribution and the likelihood
(recall Equations (2.4) and (2.6)). The posterior distribution for the model is

p(ﬁ7 /307 &7 Y0, 0-27 0-27 0-3|g) X p(g|ﬁ7 /307 &7 Y0, 0-2) p(/87 /607 627 0, 027 0-[237 0-2)
p(18, Bo, @, 70, 0°) p(Blog) p(Bo) p(dlol) p(vo)

p(a®) p(o) ploz)

The conditional posterior distributions for each parameter can be calculated us-
ing the posterior distribution above and the prior distributions from Section 4.2.1
(see Appendix A.1 for derivation). The conditional posterior distributions for the
parameters are:

p(g|rest) ~ N (fi 5,posts 248, post)
p(Bolrest) ~ N (ﬂ'/BmPOSt?UBo,post)

(Yolrest) ~ N (N%,post; O, post)

p(alrest) ~ N (fa,posts Za,post) (4.12)
p(o2 lrest) ~ Inv-y?2 (Vi posts Sipost)
p(UZ’ rest) ~ InV‘X2(Vo@,post> Sgg,post)
p(“i rest) ~ IHV‘X2(Voa oSt s Szza,post)

The mean and variance or covariance matrices in the normal conditional posterior
distributions for 3, By, @ and v are

Y5 post = (UEQP +o2XT 3! X)_l B post = 238 post * o 2XT yle

-1 — — —1-
Jﬁo ,post (Jﬁo +17072 57! 1) HBo,post = Jéo,post ) (0502,u60 +o021"% 16)
a,post ( (;QP + O_QZT > Z) -1 Povpost = E&,post . U—QZT E_l e
_ _ -1 _ _ I
707p08 = (O’,y +0 2Y—VT > T) /’L'YO;pOSt = 0.’2}/0,}7051? . (O-7 2:”7 +0o 2TT )y E)

The degrees of freedom and scale in the scaled inverse-x? conditional posterior dis-
tributions of 02, 03 and o7, are

V,SE+ i ute

Va,post = Va +n S2

opost V n
V,.S2 + BTP3
_ 2 78 ‘75
Va;%post - V + k S og post V + k,
% 52 + OZTPQ (0%
2 OTa™~oq
ch,post V +m S Oa post Va'a +m
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4.3. Computer implementation

where €= — X3 — Bol — 7T — Z& and ¥ = L7 W L.

4.2.3. MCMC

Inference for the parameters 5, Bi, Y0, @, 02 will be based on the Bayesian approach
but the parameters ag, a1, as, as, by, ba, b3, ¢1, P2 and @3 will be estimated with clas-
sical estimators, see Sections 4.1.3 and 4.1.4. Since the autoregressive parameters
are used to estimate the Bayesian parameters and vice versa, an iterative process is
used. The following iterative inference algorithm is used to update the autoregressive
parameters in the model

Algorithm 3 Iterative inference

Assume & ~ N(0, 02I)
Compute 3, B, 7o, @ and o>
foriin1,... hdo
Now assume & ~ N(0, 0L "WL™T)
Compute € =y — Xg— Bol — 707: —Za
Get estimates for ¢q, ¢o, @3, a0, ...,a04,b1,...,b4
Compute 3, By, 7o, @ and o>
end for
return 3, B, 7o, @ and o>

4.3. Computer implementation

A program based on the model was developed in the statistical programming lan-
guage R. The program is based on Algorithm 3, from Section 4.2.3, and uses the
Gibbs sampler, described in Section 2.2, to create samples from the posterior distri-
bution of the model, using the conditional posterior distributions of the parameters.
The starting values for the Gibbs sampler are determined with experiments, the
number of chains and the number of iterations are chosen to be 4 and 5000 respec-
tively. A burn-in of 1000 is found to be sufficient by examining the MCMC trace
plots and the Gelman-Rubin statistics for the chains, see Section 5.1.1. The number
of iterations in Algorithm 3 is chosen to be h = 4.

One of the biggest obstacle in creating a computationally efficient program for the
model was the size of the data. The length of the data vector ¥ is m - n so the
correlation matrices of the data distribution will be m -n x m - n. A full matrix
of this size is to big for most personal computers on the market to handle (at least
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4. The Model

when using R). Therefore the covariance matrices had to be estimated through their
inverse as GMRF matrices and by using the PAR structure (Equation (4.11)) to
create sparse band matrices.

To ensure that the parameter vectors 5 and a have zero mean, Algorithm 1 from
Section 2.1.3 is used. This ensures that all model parameters are identifiable. The
numbers of parameters in parameter vector @ is chosen by examining the DIC for
various numbers of parameters in parameter vector @. The number of o parameters
in the model is an important factor to create a smooth process and to avoid over-
fitting. According to the DIC criteria the lowest value of DIC gives the best fit. In
Figure 4.1 the lowest DIC is when the number of o parameters is 31, which means
one o per every two years.
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Figure 4.1: Dewviance information criterion for different numbers of parameters in
parameter vector d.
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5. Results

In this chapter the Bayesian model described in Chapter 4 is applied to the four
data sets using the programming language R. The resulting parameter estimates and
other results are presented in Section 5.1. The convergence is discussed in Subsection
5.1.1. In Section 5.2 the outcome from the model is compared to the data analysis
done in Chapter 3. In Section 5.3 a forecast for the year 2011 is made, using the
model and fitted parameters and compared to the actual data for the year 2011.
In Section 5.4 the residuals of the model are analyzed and it is checked whether a
filtered version of the residuals has reduced to white noise.

5.1. Main results

The results from fitting the model to the data are presented in the following tables
and figures. The expected values and 95% posterior intervals for the single latent
parameters are shown in Table 5.1 and for the hyperparameters in Table 5.2. Tt
is apparent from Table 5.1 that the parameter [y is very similar to the mean of
the data shown in Table 3.1, as expected and [, is statistically significant for all
locations. Based on the parameter 7, it can be seen that the linear trend increases
by about 0.05 to 0.46°C per 10 years over the time period. The v, parameters are
all statistically significant except the parameter for trend at Dalatangi (zero in the
95% posterior interval for 7o). The parameters 02, 03 and o2 are difficult to interpret
since they are not the marginal variances (since the inverses of the precision matrices
they are multiplied to are not correlation matrices). Parameter estimates for the
PAR model are shown in Table 5.3 and the results for the parameter vector & along
with 95% posterior intervals is plotted in Figure 5.1.

The outcome for seasonal component of the model (5 + fy) is plotted in Figure
5.2 along with 95% posterior intervals, showing a curve similar to the mean Julian
calendar temperature from Chapter 3. The posterior intervals are narrow indicating
a small uncertainty in the estimate, this is due to the large data set and neighbor
structure. The posterior intervals also have a similar varying behavior as is apparent
in Figure 3.4, suggesting that the model is capturing the changing uncertainty over
Julian days. The long term temperature fluctuation is shown in Figure 5.3. From
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5. Results

Figure 5.3 it is easy to imagine a linear trend for Dalatangi for the period 1970 to
2010 but it is difficult to see a linear trend when looking at the whole period. That
suggest that perhaps the vy parameter for Dalatangi is insignificant.

Table 5.1: Posterior means of By, Yo and o along with 95% credible intervals in
brackets.

Bo Yo [°C/10 years] o?
Reykjavik | 4.72 (4.66,4.78) | 0.29 (0.15,0.46) | 1.01 (0.99,1.03)
Akureyri | 3.65 (3.60,3.71) | 0.20 (0.05,0.35) | 1.01 (0.99,1.03)
Dalatangi | 3.86 (3.82,3.91) | 0.17 (-0.03,0.36) | 1.01 (0.99,1.03)
Storhdfdi | 5.17 (5.12,5.21) | 0.25 (0.08,0.43) | 1.02 (1.00,1.04)

2

Table 5.2: Posterior means of ag and - along with 95% credible intervals in brack-

ets.
2 .10~ 3 0.2
Reykjavik | 1.14 (0 66,1.86) | 0.12 (0.04,0.30)
Akureyri | 1.52 (0.88,2.58) | 0.10 (0.02,0.28)
Dalatangi | 0.67 (0.38,1.12) | 0.27 (0.10,0.62)
Storhofdi | 0.68 (0.39,1.13) | 0.18 (0.05,0.47)

Table 5.3: Autoregressive parameter estimates.
¢ P2 P3

Reykjavik | 0.844 | -0.192 | 0.0902
Akureyri | 0.819 | -0.183 | 0.0857
Dalatangi | 0.795 | -0.176 | 0.0861
Storhofdi | 0.828 | -0.193 | 0.0929
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5.1. Main results

Reykjavik Akureyri

Dalatangi Storhofdi

Figure 5.1: Posterior means for the four locations of & (solid line) and 95% credible
intervals (dashed lines).
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Figure 5.2: Posterior means of (8 + Bo) (solid line) and 95% credible intervals
(dashed lines), for the four locations.
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5. Results

5.1.1. Convergence

Convergence of iterative parameters in Bayesian statistics is usually checked by vi-
sual inspection of trace plots for each parameter and by the Gelman-Rubin statistic.
The Gelman-Rubin statistic, first presented in Gelman and Rubin (1992), is an esti-
mate of how far the current sampling distribution is from its target distribution. In
most cases values of the Gelman-Rubin statistic below 1.1 are acceptable (Gelman,
2004). For all the parameters in this case the value is below 1.1 (for most of them
close to 1). This and the MCMC trace plots (which are shown for two parameters
at Reykjavik in Figure 5.4) confirm that 5000 iterations with a burn-in of 1000 is
sufficient for the model parameters to converge to their target distribution. This
fast convergence is most likely due to the way the model is set up with the normal
distribution describing most of the model parameters. Histograms and MCMC trace
plots for other parameters and locations are shown in Appendix B.
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Figure 5.4: Histograms and MCMC trace plots after burn-in for the parameters [
and o at location Reykjavik.
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5.2. Comparison to the data

5.2. Comparison to the data

To see how well the model describes the data the outcome of the model is compared
to the original data described in Chapter 3. The seasonal effect from the model
should be close to the mean for every calendar day from Figure 3.4, but smoother
due to its prior structure. In Figure 5.5 the fitted values of the seasonal factor in the
model (S + fy) are plotted as a solid line along with the calendar day sample mean
from Chapter 3 as a dashed line. This appears to be a perfect fit with the model cre-
ating a smooth process through the mean samples. The long term fluctuation from
the model should also be similar to the fluctuation estimated using kernel smoothing
in Section 3.2. Figure 5.6 shows the fitted values of the long term fluctuation in the
model compared to the long term fluctuation estimate from Section 3.2, showing
that the fit of these two approaches is similar.
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Figure 5.5: Posterior means of (5+ Bo) (black line) compared to the sample means
of Julian calendar day temperature from Figure 3.4 in Chapter 3 (blue line).
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Reykjavik Akureyri

1.0
1.0

0.5
|
0.5

-05 0.0

-0.5
|

-1.0

-1.0

1950 1970 1990 2010 1950 1970 1990 2010

Year Year

Dalatangi Storhofdi

0.5

-0.5
|

-1.0

I I I I I I I I I I I I I I
1950 1970 1990 2010 1950 1970 1990 2010

Year Year

Figure 5.6: Posterior means for the fluctuation ('yof+ ZQ) (solid line) compared to
the fluctuation estimate based on smoothing from Figure 5.6 (dashed line).
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5.3. Prediction

5.3. Prediction

In this section the parameter estimates are used to make a prediction for one year
ahead. An equation for a future y, denoted by 7, can be written as

Y~ N(ﬁpredv Zplred) (5-1)

with
ﬁpred=5+50'f+70'i+z*-@ (5.2)

and
Yored = 0 - LWL LT (5.3)

where E . B0, 70, @ and o are parameter estimates from the model and fpred and Zpyeq
are extensions of 7' and Z, with Tp.eq being calculated from Equation (4.2) using
j=m-n+1,....m-n+nand ty =31 as before.

The matrices in the covariance matrix have the same structure as before, only now
they contain information for just one year. That is, the matrix L, is created using
Equation (4.11) and W, = diag(c?).

In Figure 5.7 a prediction for one year ahead (solid line) is plotted along with 2.5%
and 97.5% percentiles (dashed line) created by drawing a sample of 30.000 from the
normal distribution in Equation (5.1). The red line shows the actual daily average
temperature for 2011. The actual temperature is within the 95% confidence interval
between 2.5% to 4.7% of the days for the four locations.
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Figure 5.7: Prediction for the year 2011 (solid line) along with 2.5% and 97.5% per-
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5.4. The residuals

5.4. The residuals

One way of checking if the model is describing the data adequately is by examining
the residuals of the model to check whether or not they resemble white noise.

In Figure 5.8 the standard deviation of the residuals vy, from the PAR model
are plotted (calculated from Equation (4.8)) along with the trigonometric fit from
Equation (4.9). The trigonometric function fits the values of the standard deviation
well.

Figure 5.9 shows different residuals from the model, using Reykjavik data. At the
top are the correlated residuals ¢; that have seasonal variance. In the middle are the
residuals v; where the correlation has been removed but the variance still unequal,
which is clearly visible in the figure. The bottom residuals have been standardized
by dividing the uncorrelated residuals v; with the fitted standard deviation &,. The
standardized residuals should be uncorrelated with unit variance, that is they should
be close to being white noise.

A density estimate of the standardized residuals is plotted in Figure 5.10, showing a
distribution that resembles the normal distribution closely. In Figure 5.11 a normal
Q-Q plot is shown for the standardized residuals. Most of the residual quantiles are
on the plotted line, implying that they are close to the theoretical quantiles. The
quantiles only deviate from the line at both the ends, indicating that the distribution
for the residuals has heavier tails than the normal distribution (perhaps a student-
t distribution would describe it better). The autocorrelation function plot of the
standardized residuals are structured, shown in Figure 5.12, also suggest that the
residuals are not completely normally distributed and not white noise.
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Figure 5.8: The standard deviation of the v, residuals from Equation (4.8) and a
trigonometric fit from Equation (4.9), for the four locations.
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5.4. The residuals

v/oy
0

1949 1950 1951 1952 1953
Figure 5.9: Three different residuals for Reykjavik. Top panel, the residuals €, from

the Bayesian model, middle panel, the residuals vy from the PAR model, and at
the bottom panel, the standardized residuals :;—Z
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5. Results
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5.4. The residuals
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6. Discussion and conclusions

The main goal of this study was to estimate the seasonal factor and long term
fluctuation in daily average temperature, as accurately as possible. This was done
by developing a Bayesian hierarchical model for the average daily temperature, which
takes into account the seasonality, long term fluctuation, temporal correlation and
heteroscedasticity. The model is based on normal distribution assumption, resulting
in a simple, flexible and computationally efficient model that converges fast.

The seasonal behavior in the data is modeled by giving each calendar day its own
parameter and using Markov random field prior distribution to generate dependency
structure between the parameters. The same type of prior distribution is used to
generate dependency structure for the @ parameter vector for the B-splines fluctu-
ation. By using this type of prior structure the number of effective parameters in
the model is reduced significantly. This results in correlated processes, as seen in
Figures 5.2 and 5.3. All other parameters in the model have non-informative prior
distributions. It is unlikely that giving these parameters other, more descriptive,
prior distributions would result in a better fit.

The analysis of the residuals of the model in Section 5.4 shows that the standardized
residuals are close to being white noise and normally distributed, as they were
expected to be (although they are not completely white noise, see Figures 5.10
and 5.11). The autocorrelation function of the standardized residuals, in Figure
5.12, also indicates that the residuals are not white noise since the ACF has an
apparent structure (nonetheless the values in the ACF are small and mostly within
the limits). It could be argued that using a different method to estimate the standard
deviation of the PAR model residuals would result in the residuals fitting the normal
distribution better and allowing ¢, ¢ and ¢3 in the periodic autoregressive model to
vary between calendar days might result in more convincing autocorrelation function
for the standardized residuals. This will not be pursued here but left as a future
research.

The results in Chapter 5 indicate that the model describes the data well. The
seasonal component of the model fits the sample mean of the calendar day reasonably
well, see Figure 5.5, and Figure 5.6 shows that the long term fluctuation from the
model is close to the long term fluctuation estimated straight from the data using
kernel smoothing. The values of the constant of the model (5y), shown in Table 5.1,
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6. Discussion and conclusions

are close to the mean values of the data presented in Table 3.1.

The point estimates of the linear trend 7, are between 0.2 and 0.29°C per decade
depending on location. This is somewhat consistent with Hrafnkelsson et al. (2012),
that estimate a 0.24°C increase per decade for the period 1961 to 2009, and with
Johannesson et al. (2004) that estimate that the temperature in Iceland will increase
by a sinusoidal variation with a maximum of 0.3°C per decade during winter and a
minimum of 0.15°C per decade during summer.
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7. Future studies

While working on this thesis some ideas about future studies/projects came up. The
main ideas are:

e Further development of the model by including a spatial connection between
the weather stations.

e Analysis of daily maximum and minimum temperatures based on the Bayesian
approach.

e Full Bayesian approach.
e Allow the seasonal effect to change over time.

e Allow the parameters of the periodic autoregressive model to vary between
calender days.

e Link the mean function to smooth outputs from meteorological large scale
models which give predictions decades ahead.

e Estimate long term fluctuations in other temperature series, e.g. data created
by Crochet and Johannesson (2010).
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A. Formulations

A.1. Posterior Formulation

The Bayesian hierarchical Gaussian Markov random field model is

y’57607707@702 ~ NX6+501+T70+ZO[70.22)
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A. Formulations

The conditional distribution of 3 is

p(Blrest) o< p(Blog) p(ylB, Bo, . Y0, 0%)
x N(Bl0,05P " YN(XB+ Bol + T + Zav, 0°%)
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This is a normal distribution with covariance matrix and mean
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A.1. Posterior Formulation

The conditional distribution of « is
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A. Formulations

The conditional distribution of o2 is
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A.1. Posterior Formulation

The conditional distribution of o2
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A. Formulations

A.2. DIC formulation

To simplify the calculations lets introduce a new variable @ and v, as the vectors
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mn 1
= —2log[(2m) "2 |o2x| 2 exp(—zi" £ )

= @' L1+ log(|Z]) + mnlog(2n) + mnlog(o?)

Dy(y) = " X 7+ log(|Z]) + mnlog(2r) + mnlog(c?)

L

L
Davg(y) = l ZD(%el) - %ZD(%B[?ﬁ(l]?%l)ﬂ al> (02>l>

=1 =1

h

pp = Dag(y) — Dy(y)

DIC = 2Dau(y) — Dy(y)

L
2
= 7 Z (@)T 27t a4 v 27 4+ 1og(|2]) + mnlog(27) 4+ mnlog(o?)
I=1
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A.3. The error term e

A.3. The error term ¢

Assume that € can be described by
€~ N0, 0’L T WL

where L is a matrix containing the AR parameters ¢, ¢o, 3 and P is a matrix
containing variance information from (4.9).

The conditional distribution of €is
n-m

p(€lrest) oc p([e1, €2, €3]) H pletler—1, €—2, €1-3)
t=4
n-m

< p([er, €2, €5)) H N(et|pre—1 + pocr—o + P3€r_3, 0 (1))

t=4

1
X 617 €2, 63 H \/%02 exXp {_W(Et — Q161 — Pa€p_o — ¢3€t3)2}

From viewing the last to lines in the conditional distribution for € the matrices L
and W can be written as

1 for (i, =1)
—¢y for (i, =i+1)
Lij=< —¢o for(i,j=1i+2) (A.1)
—¢3  for (i,j =1+ 3)
0 Otherwise

and
W = diag(I ® ?).
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B. Figures

Histograms and MCMC trace plots for some parameters (see discussion in Section
5.1.1).
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Figure B.1: Histograms and MCMC trace plots after burn-in for the parameter (3.
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Figure B.2: Histograms and MCMC trace plots after burn-in for the parameter .
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Figure B.3: Histograms and MCMC trace plots after burn-in for the parameter o2.
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Figure B.6: Histograms and MCMC trace plots after burn-in for the parameter (.
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Figure B.8: Histograms and MCMC trace plots after burn-in for the parameter a;.
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