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Accelerating Constraint Automata Composition with GPGPU
Parallelization

Gunnar K. Vilbergsson

January 2012

Abstract

One of the principle challenges of Constraint Automata composition is the
rapid growth of the state space and the difficulty inherent in processing very
large state spaces both in terms of space as well as computation time. We
show that the method outlined here goes some way in tackling both these
issues by making it possible to process the composition in parallel using
GPGPU programming. We also show how, using the methods put forth to
make the GPGPU parallelization possible, it is possible to distribute the com-
position of Constraint Automata across many nodes.



Hröðun Samsetningar Þvingunarstöðuvéla með GPGPU
Samhliðun
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Útdráttur

Ein helsta áskorunin þegar kemur að samsetningu þvingunarstöðuvéla er
hversu hratt stöðunum fjölgar og vandamál sem upp koma við meðhöndlun
mikils stöðufjölda bæði þegar kemur að gagnamagni og vinnslutíma. Við
sýnum að aðferðin sem er útlistuð hér nýtist til að samþætta þvingunarstöðu-
vélar samhliða með GPGPU forritun. Við sýnum einnig hvernig hægt er, með
aðferðunum sem gera GPGPU samhliðunina mögulega, að dreifa samþáttun
þvingunarstöðuvéla á margar vélar.
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Chapter 1

Introduction

As CPU designers hit the physical limits of what processors can do with respect to clock
speed and computational ability the importance of parallelization grows exponentially. It
is a fact that the advancement of computing power comes no longer from architectural
changes or the increase of clock frequencies. Moore’s Law states that the number of tran-
sistors that can be placed inexpensively on an integrated circuit doubles every two years.
As chipmakers are faced with the limits of current microchip manufacturing techinques,
Moore’s Law is now being kept alive by adding more cores to processors. This means
that any increases in computation speed must come from the parallelization of computing
tasks since single threaded tasks can, by definition, not run on more than one core. Cur-
rently the strongest gains are being had with GPGPU (General Purpose computation on
Graphics Processing Units). The most widespread API for writing GPGPU enabled code,
currently, is the CUDA API from NVIDIA.

Several computational tasks are said to be "embarrassingly parallel" in that they can be
parallelized with little or no effort. There are, however, many more problems that are
not so easily parallelized. Some of these tasks can however be made significantly par-
allelizeable by some simple changes to either algorithms or data structure. The com-
plexity of these changes can span a wide gamut ranging from minor tweaks to complete
rewrites.

The Reo coordination language (Arbab, 2004) has Constraint Automata as its formal
semantics. This means that for a Reo network to be reasoned about computationally it
must be converted into a Constraint Automaton that represents said Reo network. Since
Reo networks are made up of simple components which all have their own Constraint
Automata representation any Constraint Automata representation of a Reo network must
be created by compositing the component Constraint Automata of the networks. This
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often leads to very large Constraint Automata which are very costly both in terms of
memory and computation since the state space growth is geometric.

The problem of compositing Constraint Automata (Arbab, Baier, Rutten, & Sirjani, 2004)
is one of those problems which may appear to be hard to parallelize. However with a
change of data representation and some simple changes to the algorithm, the problem of
composing Constraint Automatons becomes highly parallel. Once the problem of compo-
sition has been made parallel, computational models such as the massively parallel exe-
cution on GPGPU hardware can be introduced to exploit the parallelism for great gains in
efficiency. More classically parallel execution models such as grid computation and dis-
tributed computation also become feasible. This paper will however focus on the GPGPU
side, specifically the CUDA API from NVIDIA.

Current approaches (Pourvatan & Rouhy, 2007) to generating the product of Constraint
Automata are inherently single threaded where the Constraint Automata are presented as
lists of states, names, transitions and data constraints. In fact, each iteration of the algo-
rithm relies on the work done by the previous iteration. By changing the representations
of the Constraint Automata to adjacency matrices we eliminate the need for each iteration
to rely on any previous iteration. This is achieved by having each cell in the adjacency
matrix contain all pertinent information about each transition. With this we can then use
what is essentially matrix product, albeit with a fair bit of extra logic, to produce the
product of two Constraint Automata. The challenge is creating an algorithm that will
consistently follow the rules of Constraint Automata composition while also scaling up to
very large automata.

To address these challenges the following has been done:

• Identify the challenges to parallelization inherent in current methods

• Identify necessary changes to enable parallelization

• Implement a new data structure to represent Constraint Automata

• Create an algorithm for composing Constraint Automata

The creation of a new data representation for Constraint Automata as well as a new al-
gorithm for Constraint Automata composition using this data representation means that
composition can be achieved at greater speed using parallelization. Beyond that, com-
position can be distributed across an arbitrary number of nodes without any cross node
communication. This means that there will be no need for computation to halt while
waiting for synchronization. This can clearly increase throughput considerably.
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Chapter 2

Background

This work is motivated by the need for an efficient way to use Reo to model real systems.
Since Reo has Constraint Automata as its formal semantics it is very important that Con-
traint Automata can be composited in an efficient manner. This is because all Reo circuits
can be represented as Constraint Automata to enable us to reason about their behavior
computationally. That means that it is very important to be able to efficiently composite
Constraint Automata into larger automatons that represent Reo circuits. This is where
CUDA comes in.

2.1 Reo

From (Arbab, 2004):

Reo is a coordination model and as such has very little to say about the
computational entities whose activities it coordinates. These entities can be
fragments or modules of sequential code, passive or active objects, threads,
processes, agents, or software components. Without loss of generality, we re-
fer to these entities as component instances in Reo. From the point of view of
Reo, a system consists of a number of component instances executing at one
or more locations, communicating through connectors that coordinate their
activities. This is shown in Figure 2.1, where component instances are repre-
sented as boxes, channels as straight lines, and connectors are delineated by
dashed lines. Each connector in Reo is, in turn, constructed compositionally
out of simpler connectors, which are ultimately composed out of channels.
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This is why each dashed closed curve representing a connector in Figure 2.1
contains only a set of channels connected together in a specific topology.

Figure 2.1: Components and Connectors

A component instance, p, is a non-empty set of active entities (e.g., pro-
cesses, agents, threads, actors, etc.) whose only means of communication
with the entities outside of this set is through input/output operations that
they perform on a (dynamic) set of channel ends that are connected to p. The
communication among the active entities inside a component instance, and
the mechanisms used for this communication, are of no interest. Likewise,
Reo is oblivious to the synchronization, mutual exclusion, and coordination
that may have to take place among the active entities inside a component
instance for their proper utilization of the channel ends that are connected
to that component instance. All these details are internal to a component
instance and, thus, irrelevant. What is relevant is only the inter-component-
instance communication which takes place exclusively through channels that
comprise Reo connectors. Indeed, the constituents inside a component in-
stance may themselves be other component instances that are connected by
Reo connectors.

Components are software implementations, instances of which can be executed on either
physical or logical devices. Thus components are abstract types that describe the proper-
ties of their instances.

Physical or logical devices where active entities execute are called locations. Such entities
may include virtual machines, processes or even actual computers. Entities also do not
need to be confined to single computers so an entity can be a grid of computers. There
is no locality constraint on entities so an entity can be distributed over a large geographic
area, thus a highly distributed grid could still be an entity. The configuration of device
is considered an internal detail of the component instance and therefore Reo is oblivi-
ous to it. An instance of a distributed component will however always have a unique
location associated with it. There can be zero or more component instances executing at
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a given location and instances can move between locations while they execute. Reo is
concerned with locations only as far as inter-component communication optimization is
concerned. A channel is the only primitive communication medium between two com-
ponent instances. Channels have their own unique identities and are dynamically created
and automatically garbage collected.

Channels in themselves have no direction. Each channel in Reo however has exactly two
directed ends, each with its own identity, through which components refer to and manipu-
late the data they carry. Channel ends are either sources or sinks. Source ends accept data
into channels and sink ends dispense data out of channels. Any of a component instance’s
active entities can use any channel ends that are known to that component instance in Reo
operations.

Channels in Reo are exclusively for data transfer using input/output operations of their
ends. Only component instances, or entities inside component instances, connected to
channel ends can perform operations on said channel ends. While several component
instances may know the identity of a channel end only one component instance can be
connected to any channel end at any given time. The connection of a channel end to
a component instance is a logical notion and therefore independent of the locations of
either the channel end or the component instance. Whereas a component instance sharing
a location with a channel end may be able to more efficiently manipulate said channel
end, co-location is not a prerequisite for any such manipulation.

Components and channels in Reo can both be considered to be mobile. Component in-
stances may move from one location to another during their lifetime but when this hap-
pens the channel connection topology remains intact. Channel ends may also be moved by
active entities inside component instances for whatever reason without changing the con-
nection topology. Irrespective of this channel ends may be disconnected from component
instances and perhaps connected to another component instance, altering the connection
topology at any time.

2.2 Constraint Automata

To ensure that Reo components can be reasoned about by machines a concrete operational
model is needed. For Reo this model is Constraint Automata. The CA states stand for
the possible configurations of Reo channels, such as the contents of a FIFO buffer. The
transitions of the Constraint Automata however describe the possible data flow through
the channel and its effect on the configuration of the Reo channel and thus the state of the
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Constraint Automata. The operational semantics of Reo, as described in (Arbab, 2004)
can be reformulated in terms of constraint automata.

In (Arbab et al., 2004) Constraint Automata are defined as follows:

A constraint automaton (over the data domain Data) is a tuple AA =

(Q,N,→, Q0) where
• Q is a finite set of states
• N is a finite set of names
• → is a finite subset of Q× 2N ×DC ×Q, called the transition relation

of A
Q0 ⊆ Q is the set of initial states. We call N the name set and g the guard of
the transition. For every transition (q,N, g, p) ∈→ we require that (1)N 6= 0

and (2)g ∈ DC(N,Data).

2.3 CUDA

CUDA is an acronym for Compute Unified Device Architecture. CUDA was developed
by NVIDIA, the world’s leading creator of graphics cards and released on February 15th
2007 as a way to facilitate GPGPU, or General Purpose Graphics Processing Unit, pro-
gramming. Prior to the release of CUDA researchers interested in harnessing the power of
graphics cards to do parallel computation had to essentially trick 3D APIs to do the com-
putational work they wanted done by using texture operations on matrices containing not
textures but actual computational data. Obviously this was very challenging and proved
a great limitation to the growth of GPGPU programming. CUDA completely changes
the landscape of GPGPU programming by giving programmers a C like API. This meant
that programming for the GPU became possible for anyone with knowledge of the C
programming language and enough patience to learn the particulars of CUDA.

2.3.1 CUDA Applications

The applications for CUDA have been incredibly varied, ranging from physics acceler-
ation of video games in the form of PhysX from NVIDIA to Geographic Information
Systems (GIS) and medical imaging. Recently CUDA has even been used for breaking
encryption at incredible speeds by speeding up the brute-force guessing of encryption
keys (Gómez et al., 2010).
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2.3.2 The Power of CUDA

The power of CUDA comes not only from having hundreds of processors and incredibly
wide memory busses allowing very fast memory access but also from CUDA’s execution
model. A fast CUDA program will be designed to run over thousands of threads. This
means that even running on hardware that has hundreds of processors context switches are
necessary. GPU hardware is designed to be able to context switch very fast, so fast in fact
that the performance impact of context switching is almost negligible. Switching threads
out one by one would clearly not be feasible, since that would place a huge bookkeeping
load on the system. This is why threads in CUDA are arranged into blocks. These blocks
are then switched out rather than the individual threads. Since context switches need
to happen anyway, it would be good to be able to use context switches to achieve even
greater performance. In fact this is what CUDA does. When a block of threads needs
to wait for a memory operation, it is switched out immediately and another block that is
all ready to go is run in its place. This means that in the theoretical "perfect" program
memory access is effectively nearly instantaneous since each block’s memory accessing
is done while another block is being run.

2.3.3 CUDA Programming Challenges

There are many challenges facing CUDA programmers. The principal of them being
the stochastic order of execution, the fact that synchronization and locking have drastic
performance implications and the fact that whenever data in the GPU context must be
made available to the CPU context and vice versa said data must be transferred across
the PCI-Express bus. The PCI-Express bus is, relative to the CPU memory bus and espe-
cially the GPU memory bus, very slow. The CUDA driver, the bit of code that essentially
sits between the CPU context and the GPU context will decide which blocks to run first
based on a black-box algorithm. Thus the CUDA developer can and should not concern
himself with execution order and therefore must design his program in such a way that
no matter which part of the input data is processed first the outcome of the program will
not change. To illustrate the potential performance degradation caused by locks imagine
one thread causing thousands of other threads to hold effectively turning the parallel pro-
cessing behemoth that is the modern graphics card into what is effectively a rather weak
single-threaded processor. Finally to underline the difference between PCI-Express and
memory busses current graphics cards such as the NVIDIA GeForce 580 GTX have a
memory bus capable of a theoretic maximum of 192.4 GB/sec (Corporation, 2011) while
the PCI-Express 2.0 bus for that same card is capable of a relatively slow 16 GB/sec
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(Group, 2011), a difference of more than an order of magnitude. It is therefore fairly ob-
vious that the designer should avoid at all costs excessive transfers between the CPU and
GPU contexts, as such transfers can have a serious negative impact on performance.
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Chapter 3

The Method

To be able to utilize the power of CUDA parallelization a new kind of algorithm was
needed. One that could be run on hundreds or even thousand of processors concurrently.
This required an entirely new approach, both in terms of algorithm design and data repre-
sentation. In this chapter we cover the challenges encountered and the solutions to those
challenges as well as some of the broader ramifications of those solutions.

3.1 Algorithm Design

In designing an algorithm to run in a CUDA kernel it is necessary to be mindful of the
architecture and runtime behavior of CUDA. Rather than one thread running in a serial
manner there are hundreds or even thousands of threads running in parallel at any given
moment during execution. This poses some interesting design challenges.

• The data must be laid out in such a manner that is we imagine the data needed for a
single iteration to be a conceptual whole, let’s call this entity a chunk, each chunk
must be accessible independently from any other chunk.

• It can not matter whether a chunk’s neighbor has already been processed or not, nor
can the order in which the chunks are processed matter, nor the number of chunks
being processed concurrently.

• While locks and atomic transactions are possible within CUDA they incur a large
performance penalty and should therefore be avoided.

Current approaches to Constraint Automata composition (Pourvatan & Rouhy, 2007)
rely heavily on the results of previous iterations for correctness and speed. Previous ap-
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proaches have for instance split the data representation of Constraint Automata into what
basically amounts to a collection of lists. The algorithm would then run searches through
those lists and mark off transitions that had been checked and manipulated, thus previous
implementations were clearly unsuitable. A massively parallel CUDA implementation
can not use such structures or methods because of the previously discussed need for atom-
icity in iterations. Thus an entirely new approach had to be devised that would no only
avoid these issues but also do so in such a way as to increase performance.

The central innovation of this project is the representation of Constraint Automata as ad-
jacency matrices. With the use of adjacency matrices much of the data, which in previous
work, is represented with lists of transitions, states and destinations is inherent in the very
structure of the data representation. When generating a transition in the output constraint
automaton adjacency matrix for a product it is only necessary to access two transitions,
one in each of the input Constraint Automata adjacency matrices, in order to gain a com-
plete picture of the transitions that need to be considered for the product. This certainty
is due to the structure of the algebraic representation introduced in (Pourvatan & Rouhy,
2007) which ensures that searching for contradictory transitions is not necessary since any
contradiction is encoded into the transition. In essence the way this works is that rather
than each transition simply having the names of the constraints that allow that transition to
fire also included are the constraints that must not be met in order to allow that transition
to fire. This means that a search through the set of transitions for a contradictory transition
is not necessary. While this constituted a great efficiency increase in the serial algorithm
it is fairly essential for this work since while it would probably be possible without the
algebraic representation it would be so inefficient as to probably very nearly negate any
performance increase.

Due to this highly efficient encoding the algorithm itself is quite simple. In fact the only
real computation the algorithm does is to ascertain whether there are any contradicting
labels in the transitions being joined and if there are to drop the transition since there can
clearly be no transition with contradicting labels.

3.1.1 Encoding

The data that needs to be encoded for each transition is its origin, destination and the
names of the constraints of the activation of that edge. Since a constraint automaton can
have more than one transition between each state but an adjacency matrix only has one
entry for each adjacency the word edge shall be used for each adjacency matrix entry
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and all transitions within said entry. This means that the word edge covers all transitions
between a pair of states.

Each edge is represented as a list of names for its transitions. If an edge has more than
one transition such as the example of a sync channel (figure 3.2) a separator is inserted
and then the next transition’s names are listed for all transitions in the edge. The final
name for the final transition is then followed by a terminator character.

This structure was selected because of its space efficiency as well as the greater ease
offered when programming the addressing and manipulation of multiple transitions.

The origin and destination of each edge is not included in the encoding of the transitions
since they ares implicit in the structure of the adjacency matrix, namely the position of
each transition in the adjacency matrix indicates what its origin is and what its destination
is.

Using an adjacency matrix as opposed to a series of lists as in (Pourvatan & Rouhy, 2007)
for instance therefore not only enables far greater atomicity of calculation but can also
afford significant space saving. This is especially true when combined with sparse matrix
representation such as is described in (Bošnački, Edelkamp, & Sulewski, 2009). Such
representation eliminates dead entries in the adjacency matrix which would otherwise
consume space needlessly.

3.1.2 Examples

Let’s compare the representation of a constraint automaton for a primitive Reo channel
known as a FIFO1 buffer. This channel can store one bit of data and forward it once it’s
output end is activated. The constraint automaton for the FIFO1 channel has two states,
two names and in the algebraic representation four transitions. The adjacency matrix of
this constraint automaton would be a 2× 2 matrix which, since Constraint Automata are
in essence directed graphs, can be asymmetrical.

If we look at the constraint automaton in Figure 3.1 we see it has two states, 1 and 2, an
edge leading from state 1 to state 2 labeled ab, a self loop on 1 labeled ab, an edge from
2 to 1 labeled ab and finally a self loop on 2 labeled ab. Note how transition A from state
1 to state 2 is in cell (1,2) and similarly transition B is in cell (2,1). The conventional
representation would note the structure in a manner similar to this textual description in
that there would be a list of states, transitions, labels and so forth. In the adjacency matrix
representation however the structure of the graph would be inferred from the placement
of entries in the matrix. Since state 1 has a self loop there would be an entry in cell (1,1)
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Figure 3.1: The graph and adjacency matrix representations of a FIFO1 Reo channel.

with the labels ab, since there is an edge from state 1 to state 2 there would be an entry
in cell (1,2) with the labels ab, since there is an edge from state 2 to state 1 there would
be an entry in cell (2,1) with the label ab and finally the self loop on state 2 would be
represented by an entry in the cell (2,2) with the labels ab.

Figure 3.2: The graph and adjacency matrix representations of a SYNC Reo channel.

Similarly if a constraint automaton has more than one edge between any two states or
more than one self loop on any state as in Figure 3.2 this is represented simply by having
more than one entry in each cell. Thus if we were representing the sync Reo channel,
which has one state and two self loops labeled ab and ab respectively, we would use a
1x1 matrix and in cell (1,1) we would put an entry with the labels ab and another with the
label ab.

This data layout allows an algorithm that behaves much like a matrix product. Happily
the vector hardware on graphics cards was in fact designed to handle matrix operations
very efficiently since their normal job is to process textures. These are composed of pixels
arranged into matrices, into screen renderings which are also pixel matrices. This means
that matrix products are as close to the perfect job to port to CUDA as can be imagined.
So perfect in fact that the very first demonstration programs any student studying CUDA
writes will almost certainly include a matrix product.
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The algorithm we developed is in fact a modified version of a matrix product algorithm
for CUDA. Rather than each cell in the output matrix being the sum of the products of a
whole row and a whole column, calculating the value of a cell in the output matrix only
requires accessing one cell in the left hand side input matrix and the corresponding cell in
the right hand side matrix. This obviously affords great efficiency gains as well.

The computation would then proceed in iterations where with each iteration the number
of constraint automatons would be halved until we are left with a single adjacency matrix
representing the union of the input Constraint Automata.

3.1.3 Broader Ramifications

What may not be apparent is the effect that the adjacency matrix representation will have
on non-CUDA parallelization of Constraint Automata product calculation.

The fact that the representation of each state is very much independent of its neighboring
states means that the calculation of Constraint Automata products can be split among
many computers since the representation of each automaton can be split down into an
arbitrary number of sections without affecting calculation efficiency.

This opens up huge possibilities for processing the gargantuan state spaces that the state
explosion inherent to Constraint Automata products due to its exponential state growth.

To illustrate this point let’s look at the FIFO1 constraint automaton mentioned earlier.
This constraint automaton has 4 transitions to begin with. Once we have combined 2
of these the resulting constraint automaton has 16 states. Combine two of those and we
have 256 transitions. Combining two of those gives us 65,536 transitions. This is where
we start to really see the bite of state explosion since combining two of the previously
discussed constraint automatons yields 4,294,967,296 transitions. That’s over 4 billion
transitions. A naive calculation assuming a size of 30 bytes for each transition gives us
a total size of just under 129 gigabytes. While this is clearly way outside the capacity of
any single graphics card the discrete nature of the data representation means that, with the
ubiquitous availability of terabyte level hard disk drives, even consumer grade computers
will be able to process Constraint Automata of this magnitude by simply partitioning the
output Constraint Automaton’s adjacency matrix representation, as well as the input Con-
straint Automata’s adjacency matrices and processing one partition at a time by swapping
out the relevant data on the card. We can also assume that hard drive latencies will not
be much of an issue since even consumer grade modern computers have between 2 and
8 gigabytes of RAM meaning that while one partition is being processed on the GPU
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the previous partition’s output can be written to disk and any necessary input data can be
cached up in RAM ready to be swapped onto the GPU for processing.

The design of the our structure does by no means isolate its usefulness to graphics cards
since the layout of the data structure makes it ideally suitable for grid and cloud compu-
tation. The atomic nature of the data structure means that it could be spread out across
an arbitrary number of nodes with absolutely no communication or synchronization and
fairly little data replication needed. Each node would be allocated a portion of the out-
put data structure as well as the portions of the input data structures needed to build the
output. There would inevitably be some overlapping of input data. This means several
nodes would need to access the same data in the input data structures. The fact that the
input data structures are not changed at all allows for portions of the input data structures
to simply be duplicated across nodes. This means that even though the product of two
of the previously discussed 4,3 billion edge constraint automatons would be ludicrously
large it could, in theory, be calculated given a large enough grid of computers and enough
processing time. The calculation of the next step up however would probably outlast the
sun so we will not consider it.

3.2 Implementation

The implementation is effectively split into two parts, namely the host code and the
GPGPU code, henceforth known as the kernel according to GPGPU programming con-
vention. The host code takes care of memory allocation and deallocation, initializing the
data structures, splitting the task up into blocks, allocating thread count for blocks and in
general doing all the housekeeping and management. The main kernel on the other hand
contains the functional portion of the code as it is responsible for the actual calculations
and implements the algorithm itself. The main kernel also calls a few helper functions
that for one reason or another did not belong inside the kernel itself. A pseudo code
representation of the kernel follows.
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Algorithm 1 Main kernel function
init coordWidth
init coordHeight
for x = 0 to inputWidth do

for y = 0 to inputHeight do
if itercount == threadIdx.x then
coordWidth.x← x
coordWidth.y ← y

end if
if iterCount == threadIdx.y then
coordHeight.x← x
coordHeight.y ← y

end if
iterCount++

end for
end for
outerIterator ← 0
innerIterator ← 0
prodIterator ← 0
isNotV alue← 0
while inputArrLeft[(coordWidth.x×2)+coordHeight.x].names[outerIterator] 6=
0 do

while inputArrRight[(coordWidth.y × 2) +
coordHeight.y].names[innerIterator] 6= 0 do
isNotV alue ← isNotV alue + isNot(inputArrLeft[(coordWidth.x × 2) +
coordHeight.x].names[outerIterator], inputArrRight[(coordWidth.y× 2)+
coordHeight.y].names[innerIterator])
innerIterator ++

end while
innerIterator ← 0
outerIterator ++

end while
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Algorithm 2 Main kernel function cont.
if isNotV alue == 0 then
outerIterator ← 0
innerEterator ← 0
while inputArrLeft[(coordWidth.x×2)+coordHeight.x].names[outerIterator] 6=
0 do

while inputArrRight[(coordWidth.y × 2) +
coordHeight.y].names[innerIterator] 6= 0 do
outputArr[threadIdx.x × 4 + threadIdx.y].names[prodIterator + +] ←
inputArrLeft[(coordWidth.x×2)+coordHeight.x].names[outerIterator]
outputArr[threadIdx.x × 4 + threadIdx.y].names[prodIterator +
+] ← inputArrRight[(coordWidth.y × 2) +
coordHeight.y].names[innerIterator]
innerIterator ++

end while
innerIterator ← 0
outerIterator ++

end while
outputArr[threadIdx.x× 4 + threadIdx.y].names[prodIterator ++]← 0
outputArr[threadIdx.x × 4 + threadIdx.y] ←
dupRemove(outputArr[threadIdx.x× 4 + threadIdx.y])

end if

Algorithm 3 dupRemove() function which remove duplicate transition labels
while in.names[nameCount] 6= 0 do
nameCount++

end while
if nameCount > 0 then

for i = 0 to nameCount− 1 do
for j = i+ 1 to nameCount do

if in.names[i]− in.names[j] == 0 then
removeP laces[removeCount]← j
removeCount++

end if
end for

end for
for x = removeCount− 1 to 0 do
nameCount← nameCount− 1
for j = removeP laces[x] to j < nameCount do
in.names[j]← in.names[j + 1]

end for
end for
in.names[nameCount]← 0

end if
return in
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Algorithm 4 isNot() function which checks whether the two input labels are contradictory
by checking if the two input characters are upper and lowercase versions of the same
character since NOTed characters are represented as upper case. In ASCII the difference
between upper and lowercase is 32

result← left− right
result← absolute(result)
if result == 32 then

return 1
else

return 0
end if
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3.2.1 Architecture

To implement the algorithm for joining two Constraint Automata first the data structure
meant to hold the adjacency matrices had to be decided upon. For simplicity and robust-
ness it was decided to forgo a 2 dimensional array for a 1 dimensional array. Normally
such a decision would have to be balanced against the extra calculations needed to address
a 1 dimensional array as if it were a 2 dimensional array. However due to the algorithm
being very memory bound it was decided that the few extra calculations needed for ad-
dressing would not be a factor.

Since the addressing of the component transitions of each combined transition is not
straightforward for each combined transition the positions it should look at for its com-
ponent transitions is calculated on a per transition basis in a space vs. time trade-off once
again due to the fact that the algorithm is memory bound and a data structure that would
hold the positions of each combined transitions component transitions would either have
to be stored in global memory, which is slow, or duplicated into shared memory for each
block which is inefficient space-wise.
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Chapter 4

Experiments

To benchmark the performance of the GPU versus the CPU versions of the algorithm
the combination of two four state FIFO1, themselves the results of the composition of a
pair of two state FIFO1s, was repeated up to a thousand times. The rationale behind this
decision was as follows. Firstly anything smaller would have caused the multiprocessors
in the CUDA cards to have been largely idle and would therefore have lead to an unfair
test and anything larger would not have fitted into the available on board memory of the
cards. Secondly fewer iterations would have pushed the limits of reliable timing. In fact
a preliminary test involving 5 iterations was over in a matter of microseconds and the
timing mechanisms used were not designed to be able to accurately measure such short
durations accurately and thus repeatability would have suffered.

4.1 Experimental Results

To assess the performance of the algorithm, two versions were implemented. One version
was written in C using the CUDA API from graphics card manufacturer NVIDIA to run
on their graphics cards. A second reference version was written in C but this one was
made to run on normal processors. Both versions were written without the aid of any
libraries or special purpose enhanced data types to eliminate any possible discrepancies
and make the comparison as fair as possible.

It should be noted that due to time constraints the CUDA code was written without any
sort of performance optimization and that much headroom is available as far as perfor-
mance optimization is concerned in the CUDA code. We believe that with proper per-
formance optimization, performance can by increased significantly. In fact in (Nickolls,
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Buck, Garland, & Skadron, 2008) performance was increased significantly by using the
shared memory built into each CUDA multiprocessor. This shared memory operates at
processor speed, like the cache on a traditional microprocessor, and that alone should
therefore increase performance significantly. There are also many other techniques, many
of them discussed in (Nickolls et al., 2008), that could be utilized to gain further improve-
ments.

Despite the CUDA code having been written in a very inefficient manner it still manages
to outperform the CPU code by up to a factor of 4 as can be seen in Table 4.1 and Table
4.2.

Table 4.1: GPU vs. CPU Averages
Iterations 100 200 300 400 500

GTX570 GPU Averages 1,5566304 3,06376 4,574966 6,063792 7,623904
E8400 CPU Averages 3,92294 7,812669 11,67134 15,66299 19,54998
T7100 CPU Average 6,6391209 13,28748 19,33361 26,15898 32,22918

Table 4.2: GPU vs. CPU Averages cont.d
Iterations 600 700 800 900 1000

GTX570 GPU Averages 9,1789376 10,61772 12,06964 13,70077 15,2143
E8400 CPU Averages 23,3996744 27,24991 31,23446 35,27192 39,13096
T7100 CPU Average 39,850584 44,03374 51,96439 57,65711 68,8065

The benchmarks were run on three distinct platforms, each belonging to a separate per-
formance category. These were the NVIDIA GeForce GTX570 graphics card, the Intel
E8400 processor and the Intel T7100 processor. The specifications of these platforms are
listed in Table 4.3. These specifications underline the significance of the findings of this
project. Note that the E8400 has more than twice the clock rate of the GTX570 and only
about 30 percent slower memory interface and yet Tables 4.1 and 4.2 show the GTX570
is roughly twice as fast through all the tests as the E8400. Finally since both the GTX570
and the E8400 are fairly high performance parts the T7100 was added as representative
of a lower performance bracket. Despite having a faster core clock than the GTX570 the
T7100 was roughly four times slower than the GTX570.

Both the GTX570 and the E8400 returned beautifully consistent benchmark results. In
fact Figure 4.1 shows both of them having very straight lines indicating very consistent
data and therefore a valid test. The T7100 line however is less consistent and this is
believed to be either a result of background processes in the Windows operating system
or perhaps more aggressive power saving settings since the T7100 is a laptop part. In
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Figure 4.1: GPU vs. CPU Performance

Table 4.3: Benchmarking Platforms
Platform NVIDIA GeForce GTX570 GPU Intel E8400 CPU Intel T7100 CPU

Number of Processing Cores 480 2 2
Processing Core Speed (MHz) 1464 3000 1800

Memory Speed (MHz) 1900 1333 800
Memory Size (MB) 1280 2048 2048

fact the effects of power saving technologies such as clock speed manipulation are very
evident in the raw run times in Tables 4.6, 4.7, 4.8 and 4.9. Note how the first few
runs are almost always slower than the following. According to (Hoban, 2010) this is
because operating systems poll CPU demand in time slices and apparently these time
slices are large enough that the first few runs are over before the operating system switches
to a higher performance state. Due to this effect, the CPU benchmarks were run 15
times whereas the GPU benchmarks were run 10 times since the GPU did not exhibit this
behavior. The first five runs were then ignored when calculating average run times for the
CPU benchmarks.
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Table 4.4: GTX570 Run Times in Milliseconds
Iterations 100 200 300 400 500

1,564896 3,058496 4,571968 6,024704 7,647776
1,565088 3,061344 4,585344 6,090752 7,587424

1,5488 3,0536 4,595648 6,089408 7,517376
1,547552 3,07216 4,581312 6,070944 7,655008

1,5464 3,054976 4,562976 6,089984 7,60496
1,566112 3,066912 4,56736 5,94176 7,583424
1,544736 3,081856 4,563584 6,072128 7,70144
1,567392 3,072032 4,570144 6,091872 7,671712
1,56672 3,098432 4,582944 6,070976 7,671712

1,548608 3,017792 4,568384 6,095392 7,598208

Average 1,5566304 3,06376 4,5749664 6,063792 7,623904

Table 4.5: GTX570 Run Times in Milliseconds cont.d
Iterations 600 700 800 900 1000

9,180928 10,600256 12,092288 13,677216 15,239872
9,284416 10,637792 12,072768 13,687808 15,21536
9,112384 10,605536 12,094688 13,72528 15,202816
9,115712 10,633216 12,060384 13,710528 15,222368
9,143456 10,600736 12,096576 13,683904 15,1976
9,115328 10,59696 12,065216 13,703616 15,20752
9,093152 10,658688 12,05552 13,691584 15,212864
9,117504 10,632704 12,072224 13,74896 15,20352
9,512416 10,621248 12,013408 13,650208 15,240704
9,11408 10,59008 12,073312 13,728608 15,200416

Average 9,1789376 10,6177216 12,0696384 13,7007712 15,214304
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Table 4.6: E8400 Run Times in Milliseconds
Iterations 100 200 300 400 500

3,872048 11,745507 12,121311 20,905439 19,646273
3,883312 9,625848 11,585082 15,595368 19,666753
3,902085 7,915443 11,61785 15,701181 19,73024
3,87785 7,808265 11,775885 15,627795 19,639446
3,91369 7,814751 11,708302 15,753404 19,536365

3,907205 7,844105 11,722638 15,757159 19,442499
3,919834 7,750581 11,674852 15,696743 19,671531
3,895258 7,803145 11,684068 15,830886 19,586199
3,957721 7,748191 11,637988 15,60595 19,396078
3,870341 7,794271 11,545488 15,610728 19,608727
4,072067 7,74785 11,645497 15,77798 19,63023
3,893893 7,856393 11,803533 15,55987 19,490626
3,916421 7,82738 11,635599 15,63428 19,590295
3,895941 7,905203 11,656761 15,586835 19,583809
3,900719 7,849566 11,706937 15,569427 19,499842

Average 3,92294 7,8126685 11,6713361 15,6629858 19,5499836

Table 4.7: E8400 Run Times in Milliseconds cont.d
Iterations 600 700 800 900 1000

33,623054 27,41392 31,359695 42,697654 44,242514
23,516614 27,453514 31,510221 35,057323 39,124611
23,700249 27,485941 31,676449 35,961506 39,089113
23,705028 27,692445 31,326927 35,164159 39,205507
23,462684 27,24974 31,192102 35,062102 38,850182
23,505009 27,194786 31,251835 35,206143 38,972037
23,491355 27,298892 31,26856 35,116032 39,009242
23,391004 27,355894 31,189713 36,007586 38,785329
23,26403 27,232674 31,204731 35,14641 38,94473
23,24867 27,266124 31,193809 35,199316 39,099353

23,316595 27,317324 31,161382 35,321171 39,299031
23,425479 27,197858 31,517389 35,151189 39,265922
23,485212 27,220386 31,22999 35,106474 38,979546
23,368477 27,203661 31,113937 34,985302 39,059417
23,500913 27,211511 31,213264 35,479548 39,894993

Average 23,3996744 27,249911 31,234461 35,2719171 39,13096
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Table 4.8: T7100 Run Times in milliseconds
Iterations 100 200 300 400 500

8,08405 13,142357 30,084007 26,661791 33,019616
6,697251 13,312355 21,524189 26,492363 33,505652
6,230611 13,250175 19,618268 26,656086 33,421223
6,653325 13,432723 18,83445 26,896252 33,533034
6,734902 13,149203 19,55894 26,443303 32,976831
6,484468 13,309503 19,55894 26,871722 33,251795
6,579736 13,140646 19,610282 26,442733 32,011606
6,79366 13,417891 18,477339 26,510618 30,708095

6,655607 13,290107 19,727797 26,430183 31,163325
6,620809 13,132089 19,526994 26,712562 31,578623
6,706949 13,136652 19,752898 25,897939 31,885533
6,697251 13,140075 18,287945 24,744461 33,623167
6,628225 13,276416 19,935446 25,645224 32,340763
6,551783 13,555373 18,481333 26,341761 32,526735
6,672721 13,476079 19,97709 25,992636 33,202165

Average 6,6391209 13,2874831 19,3336064 26,1589839 32,2291807

Table 4.9: T7100 Run Times in milliseconds cont.d
Iterations 600 700 800 900 1000

40,456759 44,452291 61,428739 68,251493 77,737744
38,570804 45,618321 50,879143 55,912349 61,553101
41,236014 46,313146 52,923116 58,847388 61,843467
40,612496 47,105521 51,766215 59,425269 64,115056
41,262255 46,092376 52,802178 58,386453 62,625573
39,594788 46,179087 53,262543 56,432613 63,98556
40,979305 44,302259 50,18774 59,003695 64,148143
40,119615 43,478509 50,896827 58,51823 65,707222
40,257097 43,813942 49,974386 56,353318 66,629663
39,960455 43,187572 52,407987 55,74121 65,702088
40,24854 43,88525 52,855801 55,693861 67,245194

39,360897 44,213837 53,061739 55,972819 81,027612
39,099625 44,865308 51,806147 56,899253 67,010162
39,391132 42,810495 52,155271 60,490325 69,444904
39,494386 43,601159 53,035498 61,465819 77,164427

Average 39,850584 44,0337418 51,9643939 57,6571143 68,8064975
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Chapter 5

Conclusions

5.1 Conclusions and Future Work

It has been shown that there is real benefit in parallelizing the composition of Constraint
Automata. A performance benefit of 100 percent and up in terms of speed of calculation
has been shown. Beyond pure speed it has been shown that one of the greatest obstacles to
the composition of large Constraint Automata, namely state explosion, can be overcome
with the methods detailed here. By splitting the task of combining Constraint Automata
over multiple machines the limitations of memory addressing and hardware costs may be
ameliorated by distributing the task over many machines. In fact by combining the two
core methods detailed here it is possible to tackle both limitations of large Constraint Au-
tomata combination. Running through millions of states takes a long time but by having
many machines working on the problem will considerably shorten computational time.
Storing millions of states takes up a lot of space but distributing the state-space over
many machines makes it possible to avoid the hard limits of memory addressing. The
atomicity of data introduced here will even make caching data to storage easier and more
efficient by making data accesses more predictable.

Even though only one type of Constraint Automaton was used in testing due to time
constraints other types should give very similar results due to the structure of the algorithm
and the data representation. No matter what kind of Constraint Automaton is used the only
differences will be the sparseness of the adjacency matrix and the number of transitions
in each cell. Transition counts greater than one mean that there are more transitions to
combine and thus more work for each thread to do. However since the algorithm does
no calculation more strenuous than a value comparison and is therefore clearly memory
bound this should not have a noticeable effect. The sparseness of the adjacency matrix will
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also have very little impact on the speed of calculation beyond offering greater potential
for optimization since once a thread hits a null transition it has nothing to do. This is due
to the fact that with the current data representation each and every cell in the adjacency
matrix is checked but if sparse matrix representation were to be used that would mean
that only non-empty cells would be checked. This would then mean that more sparse
adjacency matrices would be processed more rapidly.

5.2 Future Work

This work barely scratches the surface of the possibilities of parallelization. Future di-
rections of research include distributing the combination of Constraint Automata over
multiple nodes, exploring the feasibility of bypassing the memory limitations of current
GPUs by storing the main Constraint Automata data structure in the memory of the host
machine and then moving it portion by portion on to the GPU for processing or even a
combination of both.

Clearly further research is needed.
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