
NEAR-OPTIMAL STAFF
SCHEDULING USING A MIXED

INTEGER MODEL

May 2011
Guðríður Lilla Sigurðardóttir

Master of Science in Decision Engineering

NEAR-OPTIMAL STAFF SCHEDULING
USING A MIXED INTEGER MODEL

Guðríður Lilla Sigurðardóttir
Master of Science
Decision Engineering
May 2011
School of Science and Engineering
Reykjavík University

M.Sc. RESEARCH THESIS
ISSN 1670-8539

Near-optimal staff scheduling using a mixed integer
model

by

Guðríður Lilla Sigurðardóttir

Research thesis submitted to the School of Science and Engineering
at Reykjavík University in partial fulfillment of

the requirements for the degree of
Master of Science in Decision Engineering

May 2011

Research Thesis Committee:

Eyjólfur Ingi Ásgeirsson, Supervisor
Assistant professor , School of Science and Engineering, Reykja-
vík Univeristy

Páll Jensson
Professor, Faculty of Industrial Engineering, Mechanical Eng-
ineering and Computer Science, University of Iceland

Copyright
Guðríður Lilla Sigurðardóttir

May 2011

Date

Eyjólfur Ingi Ásgeirsson, Supervisor
Assistant professor , School of Science and Engineering,
Reykjavík Univeristy

Páll Jensson
Professor, Faculty of Industrial Engineering,
Mechanical Engineering and Computer Science,
University of Iceland

The undersigned hereby certify that they recommend to the School of Science
and Engineering at Reykjavík University for acceptance this research thes-
is entitled Near-optimal staff scheduling using a mixed integer model
submitted by Guðríður Lilla Sigurðardóttir in partial fulfillment of the
requirements for the degree of Master of Science in Decision Engineer-
ing.

Date

Guðríður Lilla Sigurðardóttir
Master of Science

The undersigned hereby grants permission to the Reykjavík University Li-
brary to reproduce single copies of this research thesis entitled Near-optimal
staff scheduling using a mixed integer model and to lend or sell such copies
for private, scholarly or scientific research purposes only.

The author reserves all other publication and other rights in association with
the copyright in the research thesis, and except as herein before provided,
neither the research thesis nor any substantial portion thereof may be prin-
ted or otherwise reproduced in any material form whatsoever without the
author’s prior written permission.

Near-optimal staff scheduling using a mixed integer model

Guðríður Lilla Sigurðardóttir

May 2011

Abstract

Making a feasible staff schedule is both a time consuming and a difficult
task for companies that have employees working on irregular schedules. We
introduce a mathematical model, using mixed integer programming, which
makes a feasible schedule that fulfills as many of employees requests as
possible while satisfying all hard constraints and as many soft constraints as
possible. Our goal with this model is to develop a mathematical model that
creates feasible staff schedules of high quality. The results from the model
are in worst case 10% worse than the optimal solution.

We present the mixed integer programming model and show results from four
Icelandic companies and institutions as well as comparing it to a local-search
based algorithm. The results show that it is possible to use mathematical
programming techniques to make staff schedules, even though it is a problem
with multiple and often changing objectives and goals.

Blandað heiltölubestunarlíkan sem skilar lausn sem nálgast bestu
lausn fyrir vaktatöflu vandamál

Guðríður Lilla Sigurðardóttir

Maí 2011

Útdráttur

Það er bæði tímafrekt og erfitt verkefni að útbúa vaktaplan fyrir stór fyrirtæki,
með starfsfólk sem vinnur á breytilegum vöktum. Í þessari grein kynnum við
blandað heiltölulíkan sem býr til vaktaplan sem uppfyllir eins margar óskir
starfsmanna um vaktir eins og mögulegt er án þess þó að brjóta skorðurnar
sem verða til vegna kjarasamninga og samninga við starfsmenn og með því
að brjóta eins fáar aðrar skorður og mögulegt er. Markmiðið með líkaninu
er að búa til stærðfræðimódel sem býr til gæða vaktaplan. Í versta falli er
lausnin á líkaninu 10% frá bestu lausn.

Heiltölulíkanið sem og helstu niðurstöðurnar frá fjórum íslenskum fyrirtækj-
um eru kynntar. Niðurstöður gefa til kynna að hægt er að nota stærðfræðileg-
ar aðferðir til að útbúa vaktatöflur, jafnvel þó vaktatöfluvandamálið hafi oft
óljóst markfall.

v

Acknowledgements

Thanks to Vaktaskipan ehf and Eyjólfur Ingi Ásgeirsson for the accessibility to data and
results.

vi

vii

Contents

List of Figures ix

List of Tables x

1 Introduction 1

2 Literature review 5

3 Constraints 7
3.1 Hard constraints . 7
3.2 Soft constraints . 8

4 Model description 11
4.1 Basic model . 11

4.1.1 Indexes . 12
4.1.2 Data . 13
4.1.3 Weight factors . 14
4.1.4 Penalty variables . 15
4.1.5 Binary variables . 15
4.1.6 Model . 16
4.1.7 Model limitations . 18

4.2 Model verification . 19
4.2.1 Test case 1 . 19
4.2.2 Test case 2 . 20

5 Experimental results 23
5.1 The nursing home . 24
5.2 Call center 1 . 25
5.3 Call center 2 . 27
5.4 The airport ground service . 28

viii

6 Comparison 31
6.1 The nursing home . 31
6.2 Call center 1 . 33
6.3 Call center 2 . 35
6.4 The airport ground service . 35
6.5 Summary of the comparisons . 36

7 Conclusion 39

8 Appendix 41

Bibliography 45

ix

List of Figures

4.1 Test case 2: Schedule . 21

6.1 Comparison of schedules: The nursing home 32
6.2 The nursing home, comparison . 32
6.3 Comparison of schedules: Call center 1 33
6.4 Call center 1, comparison . 34
6.5 Comparison of schedules: Call center 2 34
6.6 The call center 2, comparison . 35
6.7 Comparison of schedules: Airport ground service 36
6.8 The airport ground service, comparison 37

x

xi

List of Tables

4.1 Test case 1: Data created . 20
4.2 Test case 1: Solution . 21

5.1 The weight factors for the nursing home 24
5.2 Sum of the penalties for the nursing home 25
5.3 Results for the nursing home . 25
5.4 The weight factors for call center 1 . 26
5.5 Sum of the penalties for call center 1 . 26
5.6 Results for call center 1 . 27
5.7 The weight factors for call center 2 . 27
5.8 Sum of the penalties for call center 2 . 27
5.9 Results for call center 2 . 28
5.10 The weight factors for the airport ground service 29
5.11 Sum of the penalties for the airport ground service 29
5.12 Results for the airport ground service . 30

xii

1

Chapter 1

Introduction

The staff scheduling problem is a problem that is known to all companies that are concer-
ned with scheduling workforce to meet demand for manpower that vary within a day
and/or within a week. When dealing with a staff scheduling problem, shifts need to be
covered by available employees. The main problem in staff scheduling is to determine
which employees should cover which shifts so that the demand for manpower is met
at every time period and without breaking any regulations or contracts. Making a staff
schedule can be both a time consuming and a difficult task. However an inefficient staff
scheduling can be very expensive in financial terms, since manpower represents a large
component of total operating cost in companies. The main goal in staff scheduling is
therefore to efficiently utilize time and effort, to evenly distribute the workload among
staff and to attempt to satisfy as many personnel preferences as possible. A develop-
ment of a robust and powerful staff scheduling system that could handle a wide range
of requirements and constraints would provide significant benefits for company’s admin-
istrators and staff [7]. One of the best known problem in scheduling is concerned with
scheduling the working hours for hospital personnel, these problems are known as nurse
rostering or nurse scheduling problems.

The nurse rostering problem has been studied by personnel managers, operations rese-
archers and computer scientists for more than 45 years, making it therefore a well known
problem. The wide fluctuation in demand that can occur throughout the day and from one
day to the next is what makes hospital personnel scheduling so challenging and difficult.
Because the nurse rostering problem is well known and since it can include many types
of constraints and cover a large set of staff scheduling problems, most of the previous
work is focused on nurse rostering even though our problem is not specific for hospital

2 Near-optimal staff scheduling using a mixed integer model

personnel. As a matter of fact the terms nurse rostering and nurse scheduling have been
used over the years to cover several types of personnel scheduling problems [8].

In nurse rostering there are three key approaches: cyclical scheduling, preference schedul-
ing and self scheduling [5]. A cyclical scheduling problem is a scheduling problem in
which several sets of schedules are generated that cover a certain period of time i.e. a
month or three months. Then the hospital personnel are assigned to a schedule that best
fits their preferences so that all demands for manpower are met. The schedules are then
repeated for each period making the cyclical scheduling inflexible and therefore not able
to adjust rapidly to changes in the environment [14]. The main advantage of the cyclical
scheduling is that the personnel knows their schedule a long time in advance.

In preference scheduling hospital personnel list their preferences for the personnel mana-
ger who then creates schedules, trying to fulfill as many preferences as possible but also
makes sure that all demands for manpower and all work restrictions are met. Thus the
personnel manager has a great deal of responsibility for the quality of the schedules. The
preference scheduling has many advantages, the major ones being its flexibility and its
individual tailoring. However the preference scheduling has a big flaw, it is a very time
consuming approach for the personnel manager.

In self scheduling the hospital personnel makes the schedules themselves instead of the
personnel manager and are therefore responsible for the schedule. These schedules are
created by each employee signing up for their preferred shifts knowing the minimum and
maximum number of staff needed for each shift with the requirement that the resulting
schedule must be a feasible one. The self scheduling reduces the time involved in creating
a schedule. The biggest advantages of the self scheduling beside the time saving are
the potentially greater staff satisfaction, more commitment and reduced staff turnover,
since the employees are empowered by making the schedules themselves. However until
recently self scheduling has not been a good approach since it was too difficult to execute
this method fairly [3]. Before the Internet was invented the greatest downside in pure self
scheduling was how hard it was to implement it fairly, the order in which the personnel
sign up did matter, there was a possibility that the system might get manipulated by some
personnel, new employers were unfamiliar with the system and might therefore be disa-
dvantaged and some employees might not sign up for any shifts at all. However with the
advent of the Internet it has become easier to implement self scheduling fairly, putting
self scheduling back on the map as a possible good approach.

A good way to execute self scheduling is by mixing preference scheduling and pure self
scheduling. Here the hospital personnel sign up for shifts, making a draft that the personn-
el manager then turns into feasible schedule. The personnel manager makes sure that the

Guðríður Lilla Sigurðardóttir 3

demand for manpower is met at every time and that no work regulations are broken. In this
approach the personnel is responsible for creating the schedule but the final responsibility
of creating the schedule lies with the personnel manager, making this approach better and
more fair than either preference scheduling or pure self scheduling. This is the approach
used in this paper.

It is often believed that mathematical programming techniques are too rigid to deal with
the multiple and often changing, objectives and goals of staff scheduling [8, 16]. However
one of our goals is to challenge the belief by using mixed linear programming formulation
to determine the optimum staff schedule. The model was developed in MPL and solved
using Gurobi 2.0.3 and 4.0.1 Optimization. Two test cases were made to verify the model
and then it was tested on four different Icelandic companies and institutions.

The paper is structured as follows: in Chapter 2 there is a literature review of the most
relevant work, Chapter 3 covers the problems hard and soft constraints, in Chapter 4 the
model is developed and described and two test cases created to show how the model
works, in Chapter 5 the result of testing the model with real data is discussed and ana-
lyzed, Chapter 6 compares our result with the result from [16] and in Chapter 7 main
conclusions, possible areas of extension as well as further research are noted.

4

5

Chapter 2

Literature review

The origin of staff rostering and scheduling can be traced back to 1954, to Edie’s work
on traffic delays at toll booths [11]. Since then staff rostering and scheduling methods
have been applied to many fields [4, 6, 15, 17]. Vast amount of literature on personnel
scheduling has been made over the years [10, 12, 13].

Ever since staff scheduling was first applied many different methods have been used to
solve the staff scheduling problem. These are methods like Mathematical programming,
Goal programming, Artificial intelligence methods, Heuristics and Metaheuristic schedul-
ing like Tabu search and Genetic algorithms [8]. Even though many different methods
have been and are used to solve staff scheduling problems, only three different key app-
roaches are usually used when solving the staff scheduling problem, these are cyclical
scheduling, self scheduling and preference scheduling [5]. The self scheduling approach
was first documented in 1963 by Jenkinson [3], however the possibilities of using this
approach have increased with the emergence of the computers since it is possible to imp-
lement this approach more fairly using computers.

In this paper we use mathematical programming which has not been used much over the
years to solve staff scheduling problems since mathematical programming is believed to
be too rigid to deal with the multiple and often changing, objectives and goals of staff
scheduling. Another possible reason for not using mathematical programming to solve
staff scheduling problems is hardware limitations. However throughout time there have
been several articles published that have used mathematical programming, this review
will be limited to the most relevant work.

Abernathy et al. [1] presented a staff planning and scheduling model that had specific
application in the nurse-staffing process in acute hospitals in 1973. That model was
solved using mathematical (stochastic) programming techniques. In 1972 Warner and

6 Near-optimal staff scheduling using a mixed integer model

Prawda [19] developed a model to solve the nursing personnel scheduling problem. They
presented a mixed-integer quadratic programming formulation to calculate the number
of specifically skilled nurses to undertake a number of shifts per day. Warner improved
the previous formulation by adding weights or fairness levels and introduced it in 1976
[18].

Burns and Carter [9] presented a paper in 1985 where they developed lower bounds on the
workforce size and then introduced them as an additional constraint in a linear programm-
ing model to ensure integer solution. That same year Bailey and Field [2] introduced a
general mathematical model for the nurse scheduling problem. This model is still today
one of the few published models that allow shifts to start at any time during the day. But
since the nurse scheduling is becoming more and more complicated and complex this
approach cannot address the current needs of today’s hospitals.

Brunner et al. [6] formulated a mixed-integer program for physicians shift scheduling and
solved it with the CPLEX optimization software package. Even though physician schedul-
ing and nurse scheduling are similar problems, physician scheduling is more complex
than nurse scheduling. In 2010 Ásgeirsson introduced the same problem as this paper
addresses using a local-search based algorithm to find a solution [16].

7

Chapter 3

Constraints

Staff scheduling problems have a large number of constraints that need to be satisfied.
Those constraints can be divided into two groups, hard constraints and soft constraints.
Hard constraints must always be satisfied in order to have a feasible schedule. Hard
constraints are often a result of physical resource restrictions and legislations. Soft constraints
are requirements that are desirable but not obligatory and therefore allowed to be violated
if necessary but it will result in a penalty in the model. Soft constraints are often used to
evaluate the quality of feasible schedules.

3.1 Hard constraints

The hard constraints are mainly based on contracts with the employees and union contracts
and must therefore be satisfied at all times. Not all the constraints are the same for all
employees although usually the main constraints are the same. The constraints that are
usually not the same for all employees are the work limit constraints. In the model the
following hard constraints are considered:

• Restrictions on working hours and rest periods from union regulations and
employee contracts. The union regulations about rest periods, maximum lengths of
continuous work within a day, maximum number of continuous days worked, mini-
mum length of continuous rest between shifts and other limits have to be met. Empl-
oyee contracts can include restrictions on when employee can work, for example
an employee that will never work nights or weekends.

• Vacation request. This needs to be a hard constraint so employees will never be
assigned to a shift while they are on vacation.

8 Near-optimal staff scheduling using a mixed integer model

• Requests for time off. Each employee has a right to some time off, how many
hours depending on the company and the employee contract. In our settings this
needs to be a hard constraint so these requests won’t be violated.

• Working weekends. There can be limits on how many weekends employees are
allowed to work in each scheduling period. Each employee has to receive at least A
out of every B weekends off, where A ≤ B. These are limits like 2 or 3 weekends
off out of every 4 consecutive weekends.

• Special shifts, training sessions or meetings. Employees often have work related
duties that are not flexible and are often not included in the number of employees
on duty. Since training sessions and meetings are not flexible these constraints must
be satisfied.

• Other limits on shifts or working hours, for example split shifts. Split shifts
are defined as two separate shifts within the same day, where the time between
the shifts is less than the minimum resting period between shifts. It can differ
between companies whether splits shifts are allowed or not. Splits shifts are only
hard constraints when split shifts are not allowed.

Each company is different when it comes to number of employees, contracts, habits and
regulations, therefore the constraints differs from one company to another. Each comp-
any wants to be able to quickly generate a high quality schedule that satisfies all hard
constraints and as many of the soft constraints as possible.

3.2 Soft constraints

Each time a soft constraint is violated the schedule receives a penalty that appears in
the objective function. How high the total penalty is depends on which constraints are
violated and how often they are violated. The penalties have different weight factors,
depending on how serious a violation of the relevant constraint would be. In the model
the following soft constraints are considered:

• Minimum and maximum staff level. An estimate of the demand for manpower at
every time slot over the whole period the schedule is supposed to cover is necess-
ary. This estimate can vary greatly between companies depending on how good
their forecast for the demand of manpower is. Some companies use minimum and
maximum staff level for every time slot while others give exact number of empl-
oyees needed for every time slot. We want the on-duty employees in the schedule

Guðríður Lilla Sigurðardóttir 9

to be between the minimum and maximum staff level or as close as possible to
the exact number of required on-duty employees, otherwise the schedule will be
penalized.

• Minimum and maximum number of on-duty hours for each employee. In every
employee contract a number of required on-duty hours are given. However since
the employees are often working irregular hours, there must be some flexibility
in required on-duty hours for each scheduling period. Therefore the required on-
duty hours are interpreted as minimum and maximum number of on-duty hours
for each employee. Minimum and maximum numbers of on-duty hours for each
employee are calculated based on monthly working hours given in the contracts and
accumulated deviations from the required on-duty hours from the previous period.

• Employee requests for shifts. The first step in making a schedule is to make each
employee signs up for their preferred shifts knowing the minimum and maximum
number of staff needed for each shift. This encourages employees to create their
own work schedule and makes the schedule more acceptable for the employees. It
is therefore important to meet as many requests as possible.

• Employees assigned to shifts on weekends contiguous to their vacations. If an
employee is finishing his vacation on Friday or beginning his vacation on Monday
it is unlikely he wants to work the adjacent weekend. So unless otherwise requested
we will try to have the adjacent weekend free.

10

11

Chapter 4

Model description

4.1 Basic model

When a mathematical model is used to approximate a real-life problem like in this paper
it is essential that a manager goes through the result from the model and makes changes to
the schedule if necessary. An example why this is essential is for example if an incident
occurs where too few employees are available. In this case the personnel manager needs
to be able to deal with some of the unavailable employees to be available and on-duty
so there will be enough manpower. Here the personnel manager needs to change the
schedule by hand because the model can’t deal with the employees, it can only identify
whether they are available or not. The personnel manager also has to be able to connect
past, present and future staffing schedules.

The objective of the mixed integer model is to minimize the penalties that occur if soft
constraints are broken while satisfying all the hard constraints. To formulate the problem,
five sets of binary decision variables are used. The first set of variables tells whether an
employee is working a shift or not. Let

xijk =

 1, if employee i works shift j starting on day k;∀ i ∈ I, j ∈ J, k ∈ K

0, otherwise
(4.1)

where I is the set of employees, J is the set of available shifts and K the set of days.

In the model the time horizon is divided into days and each day is further divided into fixed
length time periods. The length of the time periods can be different from one company
to the next, the length might be a quarter, a half an hour or an hour. The second set
of variables indicates whether an employee is working in the period t on day k or not.

12 Near-optimal staff scheduling using a mixed integer model

Let

yitk =

 1, if employee i works period t on day k ;∀ i ∈ I, t ∈ T, k ∈ K

0, otherwise
(4.2)

where T is the set of time periods.

Union regulations and employees contracts have some restrictions on rest periods between
shifts, these rest periods are expressed as rest shifts. The purpose of the rest shifts is to act
as a witness that the regulations on rest periods are being fulfilled. It is therefore essential
to have a variable that tells us whether an employee is taking a rest shift or not, that would
be the third set of variables. Let

zilk =

 1, if employee i has a rest shift l starting on day k;∀ i ∈ I, l ∈ L, k ∈ K

0, otherwise
(4.3)

where L is the set of available rest shifts.

Employees are only allowed to work a certain number of consecutive days and therefore
we need a variable that tells us whether an employee is working on a day or not. The
fourth set of variables indicates whether an employee is working on a particular day or
not. Let

dik =

 1, if employee i works on day k;∀ i ∈ I, k ∈ K

0, otherwise
(4.4)

There are some regulation concerning how many weekends employees are allowed to
work. It is therefore not enough only to know whether an employee is working a on day
or not, we need to have the fifth set of variables that tells what weekends employees are
working if any. Let

wi,ω =

1, if employee i is working on the weekend that starts on Saturday ω ;

∀i ∈ I, ω ∈ W

0, otherwise
(4.5)

where W is the set of Saturdays in the scheduling period.

4.1.1 Indexes

The model uses the following 7 set of indexes to represent employees, shifts, days, time
periods, rest shifts, weekends and consecutive days.

I: set of employees

Guðríður Lilla Sigurðardóttir 13

J: set of shifts, J = {t1, t2, ..., t|J |} where tj ∈ T, j = 1, 2, ..., |J |

K: set of days

T: set of time periods

L: set of rest shifts, L = {t1, t2, ..., t|L|} where tl ∈ T, l = 1, 2, ..., |L|

W: set of weekends, K ⊇ W = {k6, k13, ..., k|W |} where kω ∈ K,ω = 1, 2, ..., |W |

C: set of consecutive days

4.1.2 Data

The following 7 data sets are used as inputs in the model.

availableitk 1 if employee i ∈ I is available at time period t ∈ T on day k ∈ K, 0
otherwise

availableonshiftijk 1 if employee i ∈ I is available to work shift j ∈ J beginning on
day k ∈ K, 0 otherwise

requestshiftsitk 1 if employee i ∈ I requests working time period t ∈ T on day k ∈ K,
0 otherwise

shiftsjkt connects shifts and time

restshiftslkt connects rest shifts and time

weekendωk connects weekends (Saturdays) and days

kdays needs to be calculated as: number of days k - maximum number of consecutive
days

Right hand side

In the model we use the following 7 parameters.

demandmin
tk minimum number of employees required at time period t in day k; for t ∈

T, k ∈ K

demandmax
tk maximum number of employees required at time period t in day k; for t ∈

T, k ∈ K

timemin
i minimum number of time periods employee i should work in the scheduling

period; for i ∈ I

14 Near-optimal staff scheduling using a mixed integer model

timemax
i maximum number of time periods employee i should work in the scheduling

period; for i ∈ I

timewhithinadaymax
ik maximum number of time periods employee i can work within day

k; for i ∈ I, k ∈ K

weekendsmax
i maximum number of weekends employee i can work in the scheduling

period; for i ∈ I

daysmax
i maximum number of consecutive days; for i ∈ I

4.1.3 Weight factors

The penalties each have a different weight factor depending on how severe it is to break
the relevant constraint. These weight factors are marked with numbers corresponding to
the relevant constraint in the model.

c4.7: Weight factor if there are too few employees at any time period

c4.8: Weight factor if there are too many employees at any time period

c4.14: Weight factor if there are too few on duty hours in the schedule for any empl-
oyee

c4.15: Weight factor if employees are below the minimum on duty hours

c4.16: Weight factor if there are too many on duty hours in the schedule for any empl-
oyee

c4.17: Weight factor if there are too many on duty hours within a day for any empl-
oyee

c4.18: Weight factor if we do not fulfill a request for a shift

c4.19: Weight factor if there are too many shifts within a day for any employee

c4.22: Weight factor if there are too many on duty weekends in the schedule for any
employee

The weight factors all have different weights depending on how serious a violation of the
relevant constraint is. The lowest weight is on the requests because we want to fulfill as
many of them as possible but it is not necessary. The highest weights are high compared
to the other weights making it very important not to violate the corresponding constraints
, these constraints are the constraints we classify as hard constraints. By putting a penalty

Guðríður Lilla Sigurðardóttir 15

on hard constraints we are able to monitor if hard constraints are broken and which hard
constraints are broken if any.

4.1.4 Penalty variables

p4.7tk: penalty because of too few employees at time period t ∈ T at day k ∈ K

p4.8tk: penalty because of too many employees at time period t ∈ T at day k ∈ K

p4.14i: penalty because an employee i ∈ I works too few hours in the scheduling peri-
od

p4.16i: penalty because an employee i ∈ I works too many hours in the scheduling
period

p4.17ik: penalty because an employee i ∈ I works too many hours within day k ∈
K

p4.18itk: penalty because an employee’s i ∈ I request for a shift j ∈ J in day k ∈ K is
not fulfilled

p4.19ik: penalty because an employee i ∈ I is working more than one shift in day k ∈
K

p4.22i : penalty because an employee i ∈ I is working too many weekends

A reference number is connected to each constraint, making it easy to refer to both the
constraints and penalties. Both the factors and the penalties are marked with numbers
corresponding to the relevant reference number in the model.

4.1.5 Binary variables

In the model there are 6 binary variables five of which are covered in Section 4.1 but one
is a penalty to count how many employees go under the minimum on duty hours.

xijk: 1 if employee i ∈ I works shift j ∈ J beginning on day k ∈ K, 0 otherwise

yitk: 1 if employee i ∈ I works time period t ∈ T on day k ∈ K, 0 otherwise

zilk: 1 if employee i ∈ I has a rest shift l ∈ L beginning on day k ∈ K, 0 otherwise

dik: 1 if employee i ∈ I starts working on day k ∈ K, 0 otherwise

16 Near-optimal staff scheduling using a mixed integer model

wiω: 1 if employee i ∈ I is working on the weekend that starts on Saturday ω ∈ W , 0
otherwise

p4.15i: 1 if employee i ∈ I is below the minimum duty hours in the scheduling period, 0
otherwise

4.1.6 Model

The following mixed integer model was developed.

min c4.7×
∑
t∈T

∑
k∈K

p4.7tk + c4.8×
∑
t∈T

∑
k∈K

p4.8tk + c4.14×
∑
i∈I

p4.14i (4.6)

+c4.15×
∑
i∈I

p4.15i + c4.16×
∑
i∈I

p4.16i + c4.17×
∑
i∈I

∑
k∈K

p4.17ik

+c4.18×
∑
i∈I

∑
t∈T

∑
k∈K

p4.18itk + c4.19×
∑
i∈I

∑
k∈K

p4.19ik

+c4.22×
∑
i∈I

p4.22i

s.t.
∑
i∈I

yitk ≥ demandmin
tk − p4.7tk ∀t ∈ T, k ∈ K (4.7)∑

i∈I
yitk ≤ demandmax

tk + p4.8tk ∀t ∈ T, k ∈ K (4.8)

yitk =
∑

j∈shifts
xijk ∀i ∈ I, t ∈ T, k ∈ K (4.9)

yitk ≤ 1− zilk ∀i ∈ I, t ∈ T, l ∈ L, k ∈ K where t ∈ L (4.10)∑
l∈L

zilk = 1 ∀i ∈ I, k ∈ K (4.11)

yitk ≤ availableitk ∀i ∈ I, t ∈ T, k ∈ K (4.12)

xijk ≤ availableonshiftijk ∀i ∈ I, j ∈ J, k ∈ K (4.13)∑
t∈T

∑
k∈K

yitk ≥ timemin
i − p4.14i ∀i ∈ I (4.14)

∑
t∈T

∑
k∈K

yitk ≥ timemin
i ∗ (1− p4.15i) ∀i ∈ I (4.15)

∑
t∈T

∑
k∈K

yitk ≤ timemax
i + p4.16i ∀i ∈ I (4.16)

∑
t∈T

yitk ≤ timewhithinadaymax
ik + p4.17ik ∀i ∈ I, k ∈ K (4.17)

requestshiftitk − yitk ≤ p4.18itk ∀i ∈ I, t ∈ T, k ∈ K (4.18)∑
j∈J

xijk = dik + p4.19ik ∀i ∈ I, k ∈ K (4.19)

xijk ≤ dik ∀i ∈ I, j ∈ J, k ∈ K (4.20)

Guðríður Lilla Sigurðardóttir 17

∑
c∈C

dik+c ≤ daysmax
i ∀i ∈ I, k ∈ Kwhere k < kdays (4.21)

dik + di(k+1) = 2 ∗ wiω ∀i ∈ I, k ∈ K,ω ∈ W where k ∈ W (4.22)∑
ω∈W

wiω ≤ weekendsmax
i + p4.22i ∀i ∈ I (4.23)

xijk ∈ {0, 1} ∀i ∈ I, j ∈ J, k ∈ K (4.24)

yitk ∈ {0, 1} ∀i ∈ I, t ∈ T, k ∈ K (4.25)

zilk ∈ {0, 1} ∀i ∈ I, l ∈ L, k ∈ K (4.26)

dik ∈ {0, 1} ∀i ∈ I, k ∈ K (4.27)

wiω ∈ {0, 1} ∀i ∈ I, ω ∈ W (4.28)

p4.15i ∈ {0, 1} ∀i ∈ I (4.29)

p4.7tk, p4.8tk, p4.14i, p4.16i, p4.17ik, p4.18itk, p4.19ik, p4.22i ≥ 0 (4.30)

∀i ∈ I, t ∈ T, k ∈ K

(4.31)

The objective function (4.6) minimizes the sum of all the penalties. The penalties each
have a different weight factor depending on how serious it is to break the relevant constraint.
The first constraints, (4.7) and (4.8), make sure that the number of on-duty employees is as
close as possible to the estimated demand for manpower at every time period as in minim-
um and maximum number of on-duty hours for each employee soft constraint. Constraints
(4.9) and (4.10) tie together time periods and shifts, both normal shifts and rest shifts. A
connection between variables x and y is necessary so that employees won’t be assigned to
multiple shifts at the same time. The same applies for rest shifts, a connection between z
and y is necessary so that an employee will not be assigned to work on a shift that overlaps
the rest shift. Every employee has to have one rest shift every day to make sure the empl-
oyee get the mandatory rest, like in the hard constraint restrictions on working hours and
rest periods from union regulations and employee contracts, constraint (4.11) defines that
mandatory rest. An employee can’t be assigned to a shift while on a vacation or taking a
time off as in the hard constraints vacations request and requests for time off. Informati-
on about vacations and times off are documented in the data sets available-on-shift and
available respectively. Constraints (4.12) and (4.13) assign vacations and times off to the
schedule. Each employee contract features information about minimum and maximum
time periods the employee can work in the scheduling period. In constraints (4.14) and
(4.16) the soft constraints about minimum and maximum time periods for each employee
is met. To minimize the number of employees that are below the minimum time peri-
ods constraint (4.15) is essential. While constraint (4.14) penalizes for every time period
below the minimum on duty hour, constraint (4.15) penalizes for every employee that is

18 Near-optimal staff scheduling using a mixed integer model

below the minimum on duty hour. Constraint (4.17) ensures that an employee does not
work too much within a day.

Employees make requests about which hours they prefer to work as in the soft constraint
employee requests for shifts and that information is saved in the dataset requestshift. We
want to meet as many requests as possible and therefore assign a penalty if a request is
not met, constraint (4.18). We decided that instead of employees requesting special shifts,
the employees request the time periods included in the shifts the employees want to work.
This method is thought to be more fair since we might be able to fulfill some of the time
periods in the requested shift but not all. For example if an employee requests a 8-16 shift
but we assign that employee to a 9-17 shift then we are not fulfilling the request however
if an employee requests all the time periods between 8 and 16 and we assign him to a 9-17
shift we are fulfilling 7 out of 8 requests. Making requests about time periods instead of
shifts is not always more fair, however for the collaborating companies and institutions in
this paper, requesting time periods instead of shifts is considered appropriate. Nonetheless
it would be easy to change the model so it would consider requested shifts instead of
requested hours. Constraint (4.19) records whether an employee is working a particular
day or not and assigns penalty if employee has more than one shift in any day. If split
shifts are allowed another constraint, constraint (4.20) is needed to record whether an
employee is working a particular day or not. Employees are only allowed to work a
specific number of consecutive days as in the hard constraint restrictions on working hours
and rest periods from union regulations and employee contracts, constraint (4.21). If an
employee is working on a weekend then that employee will be assigned to a shift both
on Saturday and Sunday since employees are only allowed to work a specific number
of weekends in the scheduling period and those weekends are defined as working both
Saturday and Sunday. Constraint (4.22) makes certain that employees either work both
Saturday and Sunday or neither Saturday nor Sunday, as well as documenting whether an
employee is working a weekend or not. The hard constraint working weekends has limits
on how many weekends employees can work in the scheduling period, constraint (4.23).
Constraints (4.24), (4.25), (4.26), (4.27), (4.28) define x, y, z, d and w as binary variables.
Constraint (4.29) makes sure that (4.15) is a binary variable and constraint (4.30) that the
rest of the penalties can not be negative.

4.1.7 Model limitations

The model is not without limitations. For example the staff scheduling problem is a
problem that has a fuzzy objective and therefore it is difficult to use mathematical programm-

Guðríður Lilla Sigurðardóttir 19

ing to solve it, since the mathematical programming does not incorporate any fuzziness.
Another example about the models limitations is the fairness, every employee should be
treated the same in the model, however, since there is a penalty for every employee that
goes under the minimum on duty hours the model tends to fulfill as many minimum on
duty hour constraints as possible so the employees not fulfilling their on duty hours might
therefore be missing a lot of hours. This might create a unfairness for those employees
that go below the minimum on duty hours, the staff manager needs to keep an open eye out
for this. Another limitation is that the problem is NP-hard so the time that it takes to find
the optimal solution is exponential in the model size. We had to take this time problem
under consideration so instead of making the model find the optimal solution, the model
finds a solution that is in worst case 10% worse than the optimal solution, see details in
Chapter 5. Another way to deal with this time problem is to split the scheduling period
up to smaller scheduling periods or make the time periods within a day longer. Another
problem with the time is the boundary problem, for example are employees only allowed
to work a certain number of consecutive days but when going from one scheduling period
to the next these constraints might get broken. Since our goal is to show that it is possible
to formulate a mathematical model that works we do not take this under considerations.
However it would be possible to solve this problem but to do so we would have to add
constraints and/or change parameters.

4.2 Model verification

4.2.1 Test case 1

A very small test case was created to check whether the model worked properly. The
test case consists of four employees who are suppose to cover four shifts that span two
adjacent days where each day has four time periods. Each employee is only allowed
to work max 2 time periods per day and max 4 time periods over the whole schedul-
ing period. However each employee must work at least 2 time periods over the whole
scheduling period. Due to the simplicity of test case 1, constraints (4.19),(4.21), (4.22)
and (4.23) are not used. This model has 168 constraints and it uses 140 continuous varia-
bles and 96 binary variables. The matrix density is 0.018 and the number of objective
function coefficients is 60. All the weight factors in test case 1 are equal to 1. Table 4.1
contains information about the minimum and maximum expected demands for manpower
for every time period, as well as information about when the employees are available and
what shifts they want to work.

20 Near-optimal staff scheduling using a mixed integer model

Day, k : 1 2
Time, t : 1 2 3 4 1 2 3 4
Shift, j : 1 2 1 2

Restshift, l : 1 2 3 4 1 2 3 4
demandmin : 1 1 2 2 2 1 1 1
demandmax : 2 2 3 3 2 2 2 1

Available time periods, employee 1 : x x x x x x
Available time periods, employee 2 : x x x x x x x x
Available time periods, employee 3 : x x x x x x
Available time periods, employee 4 : x x x x x x

Requested shifts, employee 1 : x x
Requested shifts, employee 2 : x x
Requested shifts, employee 3 : x x
Requested shifts, employee 4 : x x

Table 4.1: Test case 1: Data created

The model was solved using the Gurobi Optimizer 4.0.1 solver which is supported in the
MPL modeling system. The solutions for test case 1 are stated in Table 4.2. For test case
1 it can be seen that if an employee is working a shift then the employee is not available
in those time periods the shift covers. When an employee is not assigned to a shift than
the employee can be assigned to a rest shift. The only constraint that is broken is the
constraint concerning the requested shifts, since employee 3 and 4 both requested to work
two shifts but only got one each. The value of the objective function in test case 1 is
therefore two times the weight for the penalty in constraint (4.18).

4.2.2 Test case 2

Test case 1 only has two adjacent days and therefore the constraint telling how many
weekends the employees can work is not relevant. To test whether the weekend constraints
worked properly test case 2 was created. Test case 2 consists of six employees who are
supposed to cover twenty eight shifts that span fourteen adjacent days, or two weeks, wh-
ere each day has four time period and the first day of the schedule is Monday, see Figure
4.1. This second model has 1906 constraints and it uses 1570 continuous variables and
936 binary variables. The matrix density is 0.0017 and the number of objective function
coefficients is 634. The only constraints violated in test case 2 are the request constraints
(4.18). In test case 2 it is not effective to keep all the weight factors equal to 1, since if
we violate a request for one weekend it would result in penalty of 4 (one shift or two time
periods in Saturday and one shift or two time periods in Sunday) however if we assign
an employee to one too many weekends it would only result in penalty of 1. But the

Guðríður Lilla Sigurðardóttir 21

Day, k : 1 2
Time, t : 1 2 3 4 1 2 3 4
Shift, j : 1 2 1 2

Restshift, l : 1 2 3 4 1 2 3 4
On duty hours, employee 1 : x x x x
On duty hours, employee 2 : x x x x
On duty hours, employee 3 : x x
On duty hours, employee 4 : x x
On duty shifts, employee 1 : x x
On duty shifts, employee 2 : x x
On duty shifts, employee 3 : x
On duty shifts, employee 4 : x

Restshiftemployee 1 : x x
Restshiftemployee 2 : x x
Restshiftemployee 3 : x x
Restshiftemployee 4 : x x

Table 4.2: Test case 1: Solution

request constraints have the lowest significance in the model therefore the weight factor
for request constraints needs to be lower than the ones for too many weekends. In test
case 2 weight factor c4.18 is 2 and all the others are 10 making the value of the objective
function 56, since 28 requests are not met.

Figure 4.1: The schedule for test case 2. The blue line denotes the maximum required staff on
duty at each time and the red line the minimum required staff, the gray area denotes the number
of employees on duty.

22

23

Chapter 5

Experimental results

Actual data from four Icelandic companies and institutions are used to evaluate the per-
formance and quality of the model. These companies and institutions are a nursing home,
two call centers and an airport ground service company. Since we have real data from two
call centers we will refer to them as call center 1 and call center 2 in this paper.

When solving an integer model some parameters can be changed to get a faster outcome
at the expense of getting a worse outcome. One parameter is the relative gap. The formula
for the relative gap is the absolute value of the best solution minus the best bound and then
that outcome is divided by the best bound,

|best solution− best bound|/best bound (5.1)

The MIP search will stop when the relative gap is less than or equal to the criterion
value, the default value of the criterion value is 0.0. The criterion level we use for the
experimental data is 0.1, that is our result will in worst case be 10% worse than the optimal
solution. When solving a model most of the time often goes into going from a good
solution to the optimal solution or proving that the current solution is indeed optimal,
therefore we will get a faster outcome using a 10% relative gap. Another parameter is
integrality but the integrality tolerance specifies the amount by which an integer variable
can be different than an integer and still be considered feasible. The integrality we use for
our data is 0.001.

Different schedules can be obtained by changing the values of the weight factors. The
combinations we choose use a very low weight factor for not fulfilling requests since
requests are only preferable but not an obligation. Minimum demand, maximum demand,
minimum on duty hours and maximum on duty hours are soft constraints and all have low

24 Near-optimal staff scheduling using a mixed integer model

weight factors. However the weight factor for the minimum demand is slightly higher
than the others since it is least desirable to be understaffed and the weight factor for the
maximum demand is a bit lower since we are more willing to be overstaffed than having
employees working too few hours. The weight factor for number of employees below
the minimum on duty hours is higher since we want to have as few employees under the
minimum on duty hours as possible. The weight factors for too many hours worked in
one day, more than one shift worked within a day and more weekends worked than the
maximum weekends allow are very high because if these constraints are broken then the
model is either not fulfilling the union regulations or an employee contract and we are
obligated to fulfill all the union regulations and all the employee contracts.

In Sections 5.1, 5.2, 5.3 and 5.4 each company and institution will be covered and discus-
sed separately.

5.1 The nursing home

The first data set is from a nursing home with 55 employees. Out of these there are 50
employees that are used as inputs in the optimization, the other 5 employees have fixed
shifts and are therefore not included in the optimization. The scheduling period is 6 weeks
or 42 days with 30 minute intervals or 48 time periods each day. In the schedule there
are 18 possible shifts per day where the length of each shift varies from 4 hours to 8.5
hours.

The weight factors for the nursing home are recorded in Table 5.1 and the sum of the
penalties are recorded in Table 5.2. With these weight factors the value of the objecti-
ve function is in our solution 5602 and it took approximately 21 seconds to solve the
model.

c4.7 c4.8 c4.14 c4.15 c4.16 c4.17 c4.18 c4.19 c4.22
15 2 10 100 10 10,000 1 10,000 10,000

Table 5.1: The weight factors for the nursing home where the numbers correspond to the relevant
constraint. We are obligated to fulfill c4.17, c4.19 and c.4.22 and therefore these weight factors
are really high. c4.18 is preferable but not an obligations and is therefore very low. And c4.7,
c4.8, c4.14, c4.15 and c4.16 all have low weight factors but the difference is because of different
importances in fulfilling these constraints.

For the nursing home the following hard constraints are considered. An employee cannot
work on more than 6 consecutive days. The minimum length of a shift is 4 hours and
the maximum length of a shift is 8.5 hours. The maximum number of working hours

Guðríður Lilla Sigurðardóttir 25

p4.7 p4.8 p4.14 p4.15 p4.16 p4.17 p4.18 p.4.19 p4.22
218 0 3 1 8 0 2122 0 0

Table 5.2: Sum of the penalties for the nursing home where the numbers correspond to the
relevant constraint. p4.7, p4.8, p4.14, p4.16, p4.17 and p4.18 are all based on 30 minutes intervals
or 48 time periods each day.

in any 24 hour period is 9 hours and each employee must get a rest period of at least 8
consecutive hours in any 24 hour period.

The main results for the nursing home are summarized in Table 5.2. About 6% of the time
the nursing home is understaffed and the nursing home is never overstaffed. There is only
one employee that does not fulfill his minimum working hours, but this employee is only
1.5 hours below his minimum requirement. There are four employees that are over the
maximum working hours, two employees are 0.5 hours over, one employee is 1 hour over
and one employee is 2 hours over the maximum working hours in the scheduling period.
Union regulations and employees contracts about restrictions on working hours and rest
periods and working weekends are always met. Finally more than 98% of the requests
made by the employees in the optimization are met.

Scheduled man-hours 4774
Man-hours understaffed 109
Man-hours overstaffed 0
Employees below minimum duty hours 1
Employees over the maximum duty hours 4
Employees over the maximum duty hours within a day 0
Employees working more than one shift per day 0
Employees working more then the maximum weekends 0
Requests met 108,758
Requests not met 2,122

Table 5.3: Results for the nursing home: A summation of the main results for the nursing home.

5.2 Call center 1

The second data set is from the first call center. Call center 1 has 92 employees out of
which 74 are used as inputs in the optimization. The scheduling period is 6 weeks or 42
days with 30 minute intervals. In the scheduling period there are 4074 different shifts that
employees in the optimization are allowed to work. The length of each shift ranges from
4 hours up to 8.5 hours.

26 Near-optimal staff scheduling using a mixed integer model

Table 5.4 records the weight factors for call center 1 and the sum of the penalties are
recorded in Table 5.5. The solution time is around 10 minutes and with these weight
factors the value of the objective function is 13,358.

c4.7 c4.8 c4.14 c.4.15 c4.16 c4.17 c4.18 c4.19 c4.22
15 2 10 100 10 10,000 1 10,000 10,000

Table 5.4: The weight factors for call center 1 where the numbers correspond to the relevant
constraint. We are obligated to fulfill c4.17, c4.19 and c.4.22 and therefore these weight factors
are really high. c4.18 is preferable but not an obligations and is therefore very low. And c4.7,
c4.8, c4.14, c4.15 and c4.16 all have low weight factors but the difference is because of different
importances in fulfilling these constraints.

p4.7 p4.8 p4.14 p4.15 p4.16 p4.17 p4.18 p.4.19 p4.22
156 80 606 10 0 0 3,798 0 0

Table 5.5: Sum of the penalties for call center 1 where the numbers correspond to the relevant
constraint. p4.7, p4.8, p4.14, p4.16, p4.17 and p4.18 are all based on 48 time periods each day.

Call center 1 has the following hard constraints, an employee cannot work on more than
6 consecutive days, where the maximum number of working hours in each 24 hour period
is 9 hours. In any 24 hour period, each employee must get at least 11 consecutive hours
of rest.

Table 5.6 summarizes the main results for call center 1. Call center 1 is understaffed
about 2.2% of the scheduling period and overstaffed about 2.6% of the scheduling period.
There are 10 employees below the required minimum on duty hours but out of these 10
employees there are 5 employees that are taking a vacation and are therefore not available
but have some minimum on duty hours they are suppose to meet. Out of the 5 remaining
employees, two employees are only one hour below the minimum on duty hours, one
employee is 14.5 hours below, one is 29 hours below and the last one is 37 hours below the
minimum on duty hours. The employee with 37 hours below the minimum on duty hours
does not have enough available time periods to fulfill his requirements about minimum
on duty hours and has therefore so many hours below the requirements. No employee is
working more than the maximum on duty hours. All union regulations and employees
contracts about restrictions on working hours, rest periods and working weekends are
fulfilled. The percent of requests met in the result is skewed since we are not able to
fulfill the requests made by employees requesting shifts while they are on a vacation. We
are not able to fulfill these requests since we are only able to fulfill requests if employees
are available and employees on a vacation are not available. We are able to fulfill about
79% of requests made by employees in the optimization.

Guðríður Lilla Sigurðardóttir 27

Scheduled man-hours 10,577.5
Man-hours understaffed 78
Man-hours overstaffed 40
Employees below minimum duty hours 10
Employees over the maximum duty hours 0
Employees over the maximum duty hours within a day 0
Employees working more than one shift per day 0
Employees working more then the maximum weekends 0
Requests met 14,310
Requests not met 3,798

Table 5.6: Results for call center 1: A summation of the main results for call center 1.

5.3 Call center 2

The third data set is from the second call center. Call center 2 has 62 employees and out
of these only 46 are used as inputs in the optimization. The scheduling period is only 31
days but with 15 minute intervals or 96 time periods every day. Call center 2 specifies the
exact number of employees that should be on-duty at each time instead of minimum and
maximum number of employees that should be on-duty in each interval. The minimum
length of a shift is 4 hours while the maximum length of a shift is 11 hours.

Call center 2 has the weight factor given in Table 5.7 and the sum of the penalties in Table
5.8. With these weight factors it took 3 hours 47 minutes and 9 seconds to solve the model
and the software was very vulnerable while solving the model, that is it would report an
error and need to close if interfered with during execution. With the given weight factors
the value of the objective function is 24,299.

c4.7 c4.8 c4.14 c.4.15 c4.16 c4.17 c4.18 c4.19 c4.22
15 2 10 100 10 10,000 1 10,000 10,000

Table 5.7: The weight factors for call center 2 where the numbers correspond to the relevant
constraint. We are obligated to fulfill c4.17, c4.19 and c.4.22 and therefore these weight factors
are really high. c4.18 is preferable but not an obligations and is therefore very low. And c4.7,
c4.8, c4.14, c4.15 and c4.16 all have low weight factors but the difference is because of different
importances in fulfilling these constraints.

p4.7 p4.8 p4.14 p4.15 p4.16 p4.17 p4.18 p.4.19 p4.22
149 936 1096 17 0 0 7,532 0 0

Table 5.8: Sum of the penalties for the call center 2 where the numbers correspond to the relevant
constraint. p4.7, p4.8, p4.14, p4.16, p4.17 and p4.18 are all based on 15 minutes intervals or 96
time periods each day.

28 Near-optimal staff scheduling using a mixed integer model

The hard constraints for call center 2 are that employees cannot work more than 6 con-
secutive days, in every 24 hour period there must be a rest period of at least 11 consecutive
hours for each employee and each employee can work at most 11 hours of work in every
24 hour period.

The main results for call center 2 are summarized in Table 5.9. Around 3.7% of the time
call center 2 is understaffed and around 21.8% of the time it is overstaffed. 17 employees
are below their minimum on duty hours and two of those 17 employees are on a vacation
but have minimum on duty hours that they are suppose to fulfill. Five of the remaining
15 employees are less than 4 hours below the minimum on duty hours, four employee
are between 4 and 14 hours below, two employees are between 14 and 24 hours below
and the remaining four are between 37 and 50 hours below the minimum on duty hours.
All employees are below the maximum on duty hours and all the restrictions from union
regulations and employee contracts about maximum working hours, minimum rest and
maximum weekends worked are met. About 65% of the requests made by employees in
the optimization are fulfilled. A lot of employees are requesting the same time periods
making the number of employees requesting to be on duty more than the maximum on
duty demand. This results in many requests being discarded so the model can rather fulfill
the maximum on duty demand constraint than the requests constraints and therefore the
percent of requests met is so low.

Scheduled man-hours 6,071
Man-hours understaffed 37.25
Man-hours overstaffed 234
Employees below minimum duty hours 17
Employees over the maximum duty hours 0
Employees over the maximum duty hours within a day 0
Employees working more than one shift per day 0
Employees working more then the maximum weekends 0
Requests met 13,961
Requests not met 7,532

Table 5.9: Results for call center 2: A summation of the main results for call center 2.

5.4 The airport ground service

The fourth data set is from an airport ground service with 53 employees and out of these
there are 52 employees used as inputs in the optimization. The scheduling period is 6
weeks or 42 days with 30 minute intervals. The on-duty demand for manpower depends
on the flight schedules at the airport. Here there are many flights that leave during the early

Guðríður Lilla Sigurðardóttir 29

morning and again in the afternoon. There are almost no flights scheduled at any time
apart from the mornings and afternoons and because of this the demand for manpower
peaks during the mornings and again in the afternoons but drops sharply during other
times. Due to this the employees often work a short morning shift and then another short
afternoon shift with a few hour break in between.

The weight factors for the airport ground service are a bit different than for the other three
companies and institutions because here it is allowed to work more than one shift per day
so the weight factor for more than one shift per day is 0 here. The weight factors for the
airport ground service are recorded in Table 5.10 and the sum of the penalties in Table
5.11. It took 28 minutes and 24 seconds to solve the model and the value of the objective
function is 1523.

c4.7 c4.8 c4.14 c.4.15 c4.16 c4.17 c4.18 c4.19 c4.22
15 2 10 100 10 10,000 1 0 10,000

Table 5.10: The weight factors for the airport ground service where the numbers correspond to
the relevant constraint. We are obligated to fulfill c4.17 and c.4.22 and therefore they are really
high. c4.18 is preferable but not an obligations therefore very low and c4.19 is not relevant in this
case. c4.7, c4.8, c4.14, c4.15 and c4.16 all have low weight factors but the difference is because
of different importances in fulfilling these constraints.

p4.7 p4.8 p4.14 p4.15 p4.16 p4.17 p4.18 p.4.19 p4.22
22 100 0 0 11 0 883 552 0

Table 5.11: Sum of the penalties for the airport ground service where the numbers correspond
to the relevant constraint. p4.7, p4.8, p4.14, p4.16 p4.17 and p4.18 are all based on 30 minutes
interval.

The hard constraints that must be satisfied for the airport ground service are that there
must be a minimum continuous rest of 11 hours in any 24 hour period, the maximum
number of consecutive working days is 5 and the employees cannot work more than 12
consecutive hours.

Table 5.12 summarizes the results for the airport ground service. The airport ground
service is understaffed around 1% of the scheduling period and overstaffed about 5% of
the scheduling period. All employees do fulfill the minimum on duty hours requirements,
but six employees are working more than the maximum on duty hour. Four employees
are half an hour above the maximum on duty hours, two employees are 1 hour above and
one employee is 1.5 hours above the maximum on duty hours. All employees except one
work more than one shift in one day somewhere in the scheduling period, but since they
do not work more than the maximum number of working hours in any 24 hour period
and all employees get the mandatory rest this is not a problem. All union regulations and

30 Near-optimal staff scheduling using a mixed integer model

employee contracts about the maximum number of weekends worked in the scheduling
period are satisfied. For the airport ground service we are able to meet about 89% of the
requests made by the employees in the optimization.

Scheduled man-hours 6613
Man-hours understaffed 11
Man-hours overstaffed 50
Employees below minimum duty hours 0
Employees over the maximum duty hours 6
Employees over the maximum duty hours within a day 0
Employees working more than one shift per day 52
Employees working more then the maximum weekends 0
Requests met 7173
Requests not met 816

Table 5.12: Results for the airport ground service: A summations of the main results for the
airport ground service.

31

Chapter 6

Comparison

Mathematical programming is believed by many to be too rigid an approach to solve the
complicated problem of making a feasible schedule [8, 16]. This is true up to a certain
level, this approach is for example more rigid than the local-search based algorithm which
Ásgeirsson used in [16]. An example would be that Ásgeirsson allows employees to
break constraints if they want to but that is not possible in our model. But despite this
we are going to compare our results from all four companies and institutions with those
Ásgeirsson got in his article.

In the datasets there are employees that have fixed assignments either for the whole period
or only for parts of it. The availability, minimum and maximum demand as well as the
minimum and maximum working hours are altered to regard these fixed assignments since
these fixed assignments are not part of the optimization. In the following comparisons we
have added these fixed assignments as fulfilled requests to be able to compare requests
met with those in [16].

6.1 The nursing home

The MIP model generates a different result than the Ásgeirsson local-search based algo-
rithm (ÁLS-algorithm) for the nursing home. The MIP result tends to have understaffed
man-hours but the ÁLS-algorithm result tends to have overstaffed man-hours see Figure
6.2, this difference can also be seen in the last three days in Figure 6.1. The MIP model
result has 109 man-hours understaffed and 0 man-hour overstaffed but the ÁLS-algorithm
result has 21 man-hours understaffed and 220 man-hours overstaffed. The scheduled man-
hours for the MIP model are 4774 but 5198 for the ÁLS-algorithm. But while the ÁLS-

32 Near-optimal staff scheduling using a mixed integer model

algorithm result has no employees below minimum on duty hours the result for the MIP
model has 1 employee below minimum on duty hours. The MIP model fulfills more than
98% of the requests made by the employees while the ÁLS-algorithm about 97.2%.

Figure 6.1: A comparison between the preliminary schedule, the schedule made from the results
from the Ásgeirsson local-search based algorithm [16] and the schedule made from the results
from the MIP model for the nursing home. The gray area denotes the number of employees on
duty, the blue line denotes the maximum required staff on duty at each time and the red line the
minimum required staff.

Figure 6.2: The nursing home: A comparison between the MIP model and the Ásgeirsson local-
search based algorithm in [16] of the number of man-hours under- and overstaffed.

Guðríður Lilla Sigurðardóttir 33

Figure 6.3: A comparison between the preliminary schedule, the schedule made from the results
from the Ásgeirsson local-search based algorithm [16] and the schedule made from the results
from the MIP model for call center 1. The gray area denotes the number of employees on duty, the
blue line denotes the maximum required staff on duty at each time and the red line the minimum
required staff.

6.2 Call center 1

The result generated by the MIP model is different than the ÁLS-algorithm for call center
1, see Figure 6.3. Understaffed man-hours in the result from the MIP model are 78 and
man-hours overstaffed are 40 but understaffed man-hours in the result from the ÁLS-
algorithm are 14 and overstaffed man-hours are 791, see Figure 6.4. 10,577.5 man-hours
are scheduled in the MIP result but 11.920 man-hours scheduled in the ÁLS-algorithm.
Call center 1 has 10 employees below the minimum on duty hours in the MIP result but
the ÁLS-algorithm result has only 5 employees below. The ÁLS-algorithm result has
overstaffed man-hours and is therefore able to fulfill more requests than the MIP model
result that has understaffed man-hours, this difference is because of different emphases in
these methods. The MIP model fulfills about 79% of the requests made by the employees
but the ÁLS-algorithm about 96%.

34 Near-optimal staff scheduling using a mixed integer model

Figure 6.4: Call center 1: A comparison between the MIP model and the Ásgeirsson local-search
based algorithm in [16] of the number of man-hours under- and overstaffed.

Figure 6.5: A comparison between the preliminary schedule, the schedule made from the results
from the Ásgeirsson local-search based algorithm [16] and the schedule made from the results
from the MIP model for call center 2. The gray area denotes the number of employees on duty,
the blue line and the red line denotes the required staff on duty at each time.

Guðríður Lilla Sigurðardóttir 35

Figure 6.6: Call center 2: A comparison between the MIP model and the Ásgeirsson local-search
based algorithm in [16] of the number of man-hours under- and overstaffed.

6.3 Call center 2

The MIP model generates a better result than the ÁLS-algorithm for call center 2, see
Figure 6.5 and Figure 6.6. The MIP model result has 37 man-hours and 15 minutes
understaffed and 234 man-hour overstaffed but the result generated by the ÁLS-algorithm
has 189 man-hours understaffed and 609 man-hours overstaffed. Since the demand for
manpower is an exact number instead of being minimum and maximum demand it is
really difficult not to have any under- or overstaffed time periods. The MIP result has
6,071 scheduled man-hours but the result from the ÁLS-algorithm has 7,554 scheduled
man-hours. The MIP model result has more employees below the minimum on duty
hours than the ÁLS-algorithm or 17 employees versus 7 employees. The MIP model also
fulfills fewer requests than the ÁLS-algorithm or 65% of all requests versus 86% of all
requests. Different emphases in the methods can be seen in that the MIP model tends to
have understaffed man-hours and employees below the minimum on duty hours but the
ÁLS-algorithm tends to have overstaffed man-hours and employees above the maximum
on duty hours. This tendency makes it possible for the ÁLS-algorithm to fulfill more
requests than the MIP model.

6.4 The airport ground service

For the airport ground service the MIP model generates a better result than the ÁLS-
algorithm, see Figure 6.7. The Ásgeirsson local-search based algorithm returns a result
with 517 man-hours understaffed and 641 man-hours overstaffed but the MIP model ret-
urns a result with only 11 man-hours understaffed and 50 man-hours overstaffed, see

36 Near-optimal staff scheduling using a mixed integer model

Figure 6.7: A comparison between the preliminary schedule, the schedule made from the results
from the Ásgeirsson local-search based algorithm [16] and the schedule made from the results
from the MIP model for the airport ground service.The blue line denotes the maximum required
staff on duty at each time and the red line the minimum required staff, the gray area denotes the
number of employees on duty.

Figure 6.8. Another interesting thing to compare is the scheduled hours, the ÁLS-algorithm
has 6670 scheduled hours but the MIP model 6607.5, however the average percentage of
requested hours met is 94% for the ÁLS-algorithm but 89% for the MIP model. Neither
method has any employees under the minimum on duty hours.

6.5 Summary of the comparisons

The MIP model is able to generate a feasible staff schedule for all four companies and
institutions just like the Ásgeirsson local-search based algorithm. There is an equilibrium
between the minimum and maximum demand and being below or above the required
on duty hours. The result from the MIP model show that the MIP model tends to have
understaffed time periods and more employees below the minimum on duty hours but the
ÁLS-algorithm goes in the other direction, its schedule tends to be overstaffed and have
fewer employees below the minimum on duty hours. Neither method is more correct
than the other, it depends on the companies policies and on the staff managers which
one is more preferable. However the gaps between under- and overstaffed employees in

Guðríður Lilla Sigurðardóttir 37

Figure 6.8: The airport ground service: A comparison between the MIP model and the Ásgeirsson
local-search based algorithm in [16] of the number of man-hours under- and overstaffed.

the results from the MIP model are smaller than for the ÁLS-algorithm, showing that
there might be a room for improvement in the ÁLS-algorithm. However it is not obvious
that it is possible to improve the ÁLS-algorithm since employees needs to be able to get
an explanation and justification for every change that the ÁLS-algorithm makes to the
employee requests.

The methods have different emphasis on the requests made by the employees. Two of
the companies, the nursing home and the airport ground service have comparable number
of requests fulfilled but for the other two companies the MIP is much stricter. The MIP
model discards employees requests rather than being overstaffed while the ÁLS-algorithm
fulfills more requests at the cost of having more overstaffed hours. This could make the
employee tolerance toward the ÁLS-algorithm more than toward the MIP model.

38

39

Chapter 7

Conclusion

In this paper we have introduced a model using the mathematical programming technique
of mixed integer programming. The results from the four different Icelandic comp-
anies and institutions show that it is possible to achieve high quality schedules in a rea-
sonable amount of time by using mixed integer programming. Our model allows flexi-
bility in terms of shifts lengths and shifts starting times. The proposed model is able to
handle all the constraints and requirements of personnel scheduling in today’s complex
environments.

A comparison between the proposed model and a local-search based algorithm [16] was
executed. Both methods generated a feasible staff schedule for all four companies and
institutions. The methods however have different emphasis and therefore generate diff-
erent solutions. Neither method gives more correct solution than the other, it only depends
on the staff managers and the companies policies which method is more preferable.

To be able to fully implement this model it is necessary to develop a graphical user in-
terface, that would permit the employees to enter their requests and their availability and
allow the staff manager to enter the minimum and maximum demand, the minimum and
maximum on duty hours for each employee, maximum hours worked within a day, max-
imum amount of weekends each employee is allowed to work and the maximum amount
of consecutive days for each employee. It is also necessary to consider changes to the
model to take care of problems like fairness and boundary.

In this paper all employees are considered highly qualified so further research will be
aimed at looking at employees with different qualifications where each time period would
have a different manpower demand for each qualification.

40

41

Chapter 8

Appendix

The code written in MPL.

INDEX
i := DATAFILE(”Name of the company/indexi.dat”);

j := DATAFILE(”Name of the company/indexj.dat”);

k := DATAFILE(”Name of the company/indexk.dat”);

t := DATAFILE(”Name of the company/indext.dat”);

l := DATAFILE(”Name of the company/indexl.dat”);

w := DATAFILE(”Name of the company/indexw.dat”);

p := DATAFILE(”Name of the company/indexp.dat”);

c := DATAFILE(”Name of the company/indexc.dat”);

BINARY VARIABLES
x[i, j, k]EXPORTTOSPARSEFILE(”variablex.dat”);

y[i, t, k]EXPORTTOSPARSEFILE(”variabley.dat”);

z[i, l, k]EXPORTTOSPARSEFILE(”variablez.dat”);

d[i, k]EXPORTTOSPARSEFILE(”variabled.dat”);

ω[i, w]EXPORTTOSPARSEFILE(”variableω.dat”);

p9[i]EXPORTTOSPARSEFILE(”varialbep9”);

VARIABLES
p1[t, k]EXPORTTOSPARSEFILE(”variablep1.dat”);

p2[t, k]EXPORTTOSPARSEFILE(”variablep2.dat”);

p3[i]EXPORTTOSPARSEFILE(”variablep3.dat”);

p4[i]EXPORTTOSPARSEFILE(”variablep4.dat”);

42 Near-optimal staff scheduling using a mixed integer model

p5[i, k]EXPORTTOSPARSEFILE(”variablep5.dat”);

p6[i, t, k]EXPORTTOSPARSEFILE(”variablep6.dat”);

p7[i, k]EXPORTTOSPARSEFILE(”variablep7.dat”);

p8[i]EXPORTTOSPARSEFILE(”variablep8.dat”);

DATA
dmin[t, k] := SPARSEFILE(”Name of the company/dmin.dat”);

dmax[t, k] := SPARSEFILE(”Name of the company/dmax.dat”);

tmin[i] := SPARSEFILE(”Name of the company/tmin.dat”);

tmax[i] := SPARSEFILE(”Name of the company/tmax.dat”);

tdmax[i, k] := SPARSEFILE(”Name of the company/tdmax.dat”);

maxw[i] := SPARSEFILE(”Name of the company/maxw.dat”)

available[i, t, k] := SPARSEFILE(”Name of the company/available.dat”);

availables[i, j, k] := SPARSEFILE(”Name of the company/availableshifts.dat”);

shifts[j, k, t] := SPARSEFILE(”Name of the company/shifts.dat”);

restshifts[l, k, t] := SPARSEFILE(”Name of the company/restshifts.dat”);

requestshift[i, t, k] := SPARSEFILE(”Name of the company/requestshift.dat”);

weekend[ω, k] := SPARSEFILE(”Name of the company/weekend.dat”);

penalties[p] := SPARSEFILE(”Name of the company/penalties.dat”);

maxday[i] := SPARSEFILE(”Name of the company/maxdays.dat”);

days := DATAFILE(”Name of the company/days.dat”);

MACROS
pen1 = SUM(t, k : p1[t, k]);

pen2 = SUM(t, k : p2[t, k]);

pen3 = SUM(i : p3[i]);

pen4 = SUM(i : p4[i]);

pen5 = SUM(i, k : p5[i, k]);

pen6 = SUM(i, t, k : p6[i, t, k]);

pen7 = SUM(i, k : p7[i, k]);

pen8 = SUM(i : p8[i]);

pen9 = SUM(i : p9[i]);

MODEL
MINpenalty = penalties[1] ∗ SUM(t, k : p1[t, k]) + penalties[2] ∗ SUM(t, k :

p2[t, k])+penalties[3]∗SUM(i : p3[i])+penalties[4]∗SUM(i : p4[i])+penalties[5]∗

Guðríður Lilla Sigurðardóttir 43

SUM(i, k : p5[i, k])+penalties[6]∗SUM(i, t, k : p6[i, t, k])+penalties[7]∗SUM(i, k :

p7[i, k]) + penalties[8] ∗ SUM(i : p8[i]) + penalties[9] ∗ SUM(i : p9[i]);

SUBJECT TO
MinDemand[t, k] : SUM(i : y) >= dmin[t, k]− p1[t, k];

MaxDemand[t, k] : SUM(i : y) <= dmax[t, k] + p2[t, k];

TimeShift[i, t, k] : y[i, t, k] = SUM(j : shifts[j, k, t] ∗ x[i, j, k]);
TimeFreeShift[i, t, l, k]WHERE(restshifts > 0) : y[i, t, k] <= 1− z[i, l, k];

FreeShift[i, k] : SUM(l : z) = 1;

AvailableAtT ime[i, t, k] : y[i, t, k] <= available[i, t, k];

AvailableOnShift[i, j, k] : x[i, j, k] <= availables[i, j, k];

MinNr[i] : SUM(t, k : y) >= tmin[i]− p3[i];

MinNrb[i] : SUM(t, k : y) >= tmin[i] ∗ (1− p9[i]);

MaxNr[i] : SUM(t, k : y) <= tmax[i] + p4[i];

MaxNrWithinDay[i, k] : SUM(t : y) <= tdmax[i, k] + p5[i, k];

Request[i, t, k] : requestshift[i, t, k]− y[i, t, k] <= p6[i, t, k];

OneShiftPerDay[i, k] : SUM(j : x) = d[i, k] + p7[i, k];

MaxDays[i, k]WHERE(k < days) : SUM(c : d[i, k + c]) <= maxday[i];

weekends[i, w, k]WHERE(weekend > 0) : d[i, k] + d[i, k + 1] = 2 ∗ ω[i, w];
maxweekend[i] : SUM(w : ω) <= maxw[i] + p8[i];

BOUNDS
p1[t, k] >= 0;

p2[t, k] >= 0;

p3[i] >= 0;

p4[i] >= 0;

p5[i, k] >= 0;

p6[i, t, k] >= 0;

p7[i, k] >= 0;

p8[i] >= 0;

44

45

Bibliography

[1] W. J. Abernathy, N. Baloff, J. C. Hershey, and S. Wandel. A three-stage manpower
planning and scheduling model-a service-sector example. Operations Research,
21(3):693–711, 1973.

[2] J. Bailey and J. Field. Personnel scheduling with flexshift models. Journal of

Operations Management, 5(3):327–338, 1985.

[3] L. Bailyn, R. Collins, and Y. Song. Self-scheduling for hospital nurses: an attempt
and its difficulties. Journal of Nursing Management, 15(1):72–77, 2007.

[4] J. F. Bard, C. Binici, and A. H. deSilva. Staff scheduling at the united states postal
service. Computers and Operations Research, 30(5):745–771, 2003.

[5] J. F. Bard and H. W. Purnomo. Preference scheduling for nurses using column
generation. European Journal of Operational Research, 164(2):510–534, 2005.

[6] J. O. Brunner, J. F. Bard, and R. Kolisch. Flexible shift scheduling of physicians.
Health Care Management Science, 12(3):285–305, 2009.

[7] E. K. Burke, J. Li, and R. Qu. A hybrid model of integer programming and variable
neighborhood search for highly-constrained nurse rostering problems. European

Journal of Operational Research, 203(2):484–493, 2010.

[8] E.K. Burke, P. D. Causmaecker, G. V. Berghe, and H. V. Landeghem. The state of
the art of nurse rostering. Journal of Scheduling, 7(6):441–499, 2004.

[9] R. N. Burns and M. W. Carter. Work force size and single shift schedules with
variable demands. Management Science, 31(5):599–607, 1985.

[10] B. Cheang, H. Li, A. Lim, and B. Rodrigues. Nurse rostering problems - a bibli-
ographic survey. European Journal of Operational Research, 151(3):447–460, 2003.

[11] L. C. Edie. Traffic delays at toll booths. Journal of the Operations Research Society

of America, 2(2):107–138, 1954.

46 Near-optimal staff scheduling using a mixed integer model

[12] A. T. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier. Staff scheduling and roster-
ing: A review of applications, methods and models. European Journal of Operati-

onal Research, 153(1):3–27, 2004.

[13] B. Gopalakrishnan and E. L. Johnson. Airline crew scheduling: State-of-the-art.
Annals of Operations Research, 140(1):305–337, 2005.

[14] H. S. Rowland and B. L. Rowland. In Nursing administration handbook 4th ed.,
Gaithersburg, Maryland, 1997.

[15] D. M. Ryan. The solution of massive generalized set partitioning problems in
aircrew rostering. The Journal of the Operational Research Society, 43(5):459–467,
1992.

[16] E. I. Ásgeirsson. Bridging the gap between schedules and feasible schedules in staff
scheduling. Practice and Theory of Automated Timetabling (PATAT), 2010.

[17] W. Townsend. An approach to bus-crew roster design in london regional transport.
The Journal of the Operational Research Society, 39(6):543–550, 1988.

[18] D. M. Warner. Scheduling nursing personnel according to nursing preference: A
mathematical programming approach. Operations Research, 24(5):842–856, 1976.

[19] D. M. Warner and J. Prawda. A mathematical programming model for scheduling
nursing personnel in a hospital. Management Science, 19(4):411–422, 1972.

School of Science and Engineering
Reykjavík University
Menntavegur 1
101 Reykjavík, Iceland
Tel. +354 599 6200
Fax +354 599 6201
www.reykjavikuniversity.is
ISSN 1670-8539

