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Abstract

This thesis establishes a framework for investigating digital communication between
individuals in a semi-automatic manner. The purpose of this framework is to give
forensics investigators a better oversight over the vast amount of communication
data commonly con�scated in a crime investigation. The motivation for this work
is the vast amount of data collected in Iceland with the fall of their banks. The
framework established, termed SALTeD, is composed of 3 main components; data
pre-processing and feature selection, cluster analysis, and �nally dynamic social
network analysis. These components are integrated in a unique manner to give
the investigator a semi-automated way of investigating communication networks
and discover new and novel patterns of communication. The framework is tested
on collected real world data, including the Enron Corp. emails, con�scated by
detectives investigating the Enron fraud case.

Útdráttur

Þessi lokaritgerð lýsir aðferðafræði sem beita má við rannsóknir á stafrænum sam-
skiptagögnum milli einstaklinga. Tilgangur þessa ramma er að gefa aðilum réttar-
rannsókna betra y�rlit y�r það gríðarmikla magn samskiptagagna sem jafnan er
safnað fyrir réttarrannsóknir. Kveikjan að þessari vinnu er það magn gagna sem
safnað hefur verið á Íslandi frá falli bankanna. Ramminn kallast SALTeD og er sam-
settur af þremur hlutum, forvinnu gagna og einkennavali,klasagreiningu og að lokum
virkri samfélags netgreiningu. Þessum hlutum er �éttað saman á einstakan máta til
að aðstoða við rannsókn á samskiptanetum og uppgötva nýstárleg samskiptamyn-
stur. Aðferðafræðin er prófuð á raunverulegum gögnum, þar á meðal vefpóstasafni
Enron Corp. sem gert var upptækt við rannsókn á fjármálamisferli stjórnenda þess.
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1. Introduction

Ever since the Internet became publicly available around 1990, digital tra�c has
grown immensely and it has been estimated that the growth rate through the late
1990's was 100% per year [12]. It can be safely assumed that the rate of commu-
nication through the Internet, with e.g. email, instant messaging, and social media
sites, has surpassed other forms of communication such as telephone and/or written
mail, humorously nicknamed snail mail, especially with the introduction of smart
devices such as smart phones, tablet computers etc. Even voice communication with
added video through the Internet is now getting more and more popular with Skype
and other similar programs. A consequence of this development is that much more
detailed information of the interaction between two or more individuals is available
and in larger quantities than before. This helps law enforcement agencies tremen-
dously when investigating crimes, since now they can collect vast amount of data
already available from servers, hard drives and smart devices, including personal
computers. The data can be in various forms, not only text or communication pat-
terns, but also location information from cell cites, global positioning systems (GPS)
integrated into many smart devices and the Internet protocol (IP) number, although
that last one can be masked by various means. All this comes as an addition to the
proven traditional methods like wire taps and manual surveillance.

Many methods, techniques and even programs are already available for dealing with
the data that is collected for forensic purposes. This thesis presents a digital frame-
work that can aid forensic detectives in analyzing emails, memos, short message
service (sms) and other text communication data on digital form. The framework is
called �Semi-automatic Analysis of Large Text�le Datasets� or SALTeD for short. It
has the potential to divide datasets into categories according to their topic and reveal
any odd or suspicious communication within that topic by presenting an animation
of its development over time. SALTeD is a promising tool to assist future forensic
investigations where vast amount of digital communication text data is accessible.
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1. Introduction

1.1. Motivation

In the wake of September 2008, when the three major commercial banks in Iceland
collapsed, and through the ongoing economical recession, multiple criminal inves-
tigations have been launched centering on the �nancial industry. The majority of
the con�scated data in those investigations are in digital form, including large col-
lections of emails.1 The investigative method utilized by the Icelandic investigators
initially involved reading through each digital document. Obviously those kind of
methods are thorough but take up a good amount of time and manpower. What
is not as obvious is that they can also overlook great supportive evidence such as
dynamic communication patterns and connections between the parties involved.

It was this problem that spurred the development of SALTeD, a framework or set
of methods that would give the investigator better oversight of the data and would
speed up the investigation considerably by minimizing the set of emails that he had
to read manually.

Since the Internet has been publicly open for over two decades it is not surprising
that this �eld of research is in no way unexplored. For the most part it has been
aimed at protecting computers and networks from spam and malicious email by
�ltering the good from bad. Most often this is accomplished with clustering by
subject matter [53] or by using headers and the content type [83]. With the latter
it is also possible to distinguish between two di�erent spam campaigns, not only to
�nd out how many campaigns are active but also to trace multiple campaigns to the
same source. Some studies have been focused on distinguishing between authors of
di�erent documents for the purpose of detecting plagiarism [20] while others have
ignored the content of the emails while mapping out the social network from the
header information [74].

The aforementioned methods and studies have been collected in at least two packages
for forensic purposes; the Email Mining Toolkit (EMT) [9, 73, 75, 76] and the
Integrated E-mail Forensic Analysis Framework (IEFAF) [32]. They compliment
each other quite nicely, what one lacks the other makes up for, on most levels. When
automatically analyzing a large quantity of objects for categorization or some kind of
sorting, a set of characterizing details called features must be selected to represent
them. This process is usually called feature extraction. For text documents the
obvious features are individual words, combinations of words and linguistic features.
The two packages are both designed with the English language in mind to make the
feature extraction as simple as possible and thus speed up the analysis.

1Quantities measured in terabytes
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1.2. Contribution

1.2. Contribution

The main contribution of this thesis is a framework which integrates three main
components: feature selection, clustering and dynamic network visualization. From
the input data SALTeD selects relevant information in the form of features. The
features are then used as an input to a clustering algorithm. The data is then
presented as a visual simulation of a network with the open source software Gephi [3].
In particular the framework SALTeD combines:

• a simple yet e�ective document threshold method (DTM) and some intuitive
rules to select and manipulate features.

• the K -means clustering algorithm and a version of CURE [31] to partition the
datasets into topics.

• and the open source program Gephi [3] to visualize and analyze the commu-
nication network presented by the datasets.

The Newsgroup data set as well as the Enron email data set are used for testing the
framework. The Enron data is a good example of real world data collected for the
purpose of investigating �nancial crime.

1.3. Overview

The organization of this thesis is as follows: Chapter 2 is a short literature review
of the underlying methods used in SALTeD, namely feature extraction and feature
processing, clustering, and visualization. Chapter 3 will then explain how those
methods are interwoven to make SALTeD, give some instructions on how to use it
and interpret the output. A case study and experiments that were conducted on
the Enron corpus2 [47] and the 20 Newsgroup Data3 are presented in chapter 4.
Finally, in chapter 5 the results of the experiments are discussed and in chapter 6
conclusions are drawn and further development of SALTeD or its integration with
other frameworks and toolkits will be suggested.

2available at http://www-2.cs.cmu.edu/~enron/
3available at http://people.csail.mit.edu/jrennie/20Newsgroups/
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2. Background

This chapter will describe clustering, feature selection and network visualization
in su�cient detail for the reader to be able to understand better the framework
SALTeD described in the next chapter.

Feature selection, where the representing characteristics of objects are chosen, and
clustering are both optimization problems. Feature selection minimizes the number
of features while maximizing information and clustering minimizes or maximizes
various distance attributes de�ned by the algorithm. These two optimization prob-
lems are highly dependent on each other. Firstly, to cluster e�ciently and accurately
it is of major importance to select appropriate features. Secondly, to evaluate the
selected features it is usually best to compare them with the applied clustering
method [54] or some pre-classi�cation of training data [56]. Methods have also been
developed to select features independently for unsupervised learning [23].

2.1. Clustering

Clustering is one of the primary tools for analyzing data sets in their entirety as
opposed to analyzing each object in the set individually. It can reveal engaging
distributions in the data and uncover hidden or unknown groups. It is the most
commonly applied unsupervised learning method [59].

The task is to divide a set of n points in some space into k clusters, otherwise
known as subsets. This is accomplished with minimal prior knowledge of which point
belongs to which cluster or what kind of attributes will characterize each cluster,
hence the term unsupervised learning. These points can represent objects of any type
such as emails, medical reports, pictures, genome patterns or communication data
to name a few. Therefore, various scienti�c disciplines such as image processing [67],
pattern recognition [41], and biology [6] apply clustering on a regular basis.

A simple clustering problem is shown in �gure 2.1. The nine points in two dimen-
sional space can be clustered into two or even three clusters by visual inspection.
Real world problems are rarely this simple but this �gure serves well to explain the
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2. Background

Figure 2.1: Randomly displaced data points.

essentials of clustering. If each point represents an object of some sort then the in-
dividual clusters produced should contain objects that are similar in structure and
dissimilar to objects in other clusters.

The similarity is calculated with various methods but usually by some kind of a
distance measure where the location of each object in the space is de�ned by nu-
merical values of the selected features. The dimensionality of the space corresponds
to the number of features. Here it is assumed that the features are real valued
m dimensional vectors, i.e. for any object i its features are represented by vector
vi ∈ Rm.

A straightforward approach for distance measurement, and also the most commonly
used is the Euclidean distance [39] where the distance between objects i and j is
de�ned as

D(vi, vj) =

√√√√ m∑
k=1

(vi,k − vj,k)2 (2.1)

A drawback of the Euclidean method is that if one or more features are dominant
in size they can distort the outcome. To counteract that, one should normalize the
feature vectors or use some other methods of weighing each component.

There are a number of di�erent techniques available for clustering. They can be
categorized by subtle or not so subtle di�erences in handling the given data. Every
technique produces di�erent clusters, with minuscule to substantial variations, since
the outcome of every clustering problem is highly dependent on several variables
such as the distance measurement, feature selection, and of course the choice of
algorithm. Those variables are in turn often correlated, making the choice of the
right technique that much more complicated. For the simpli�cation, this thesis uses

6



2.1. Clustering

the categorization of clustering approaches from Jain and Dubes [40] and divides
them into two main groups as seen in �gure 2.2,

Figure 2.2: A taxonomy of clustering techniques.

• Flat clustering algorithms withK-means being the most popular among many [58].

• Hierarchical clustering algorithms which are further split into agglomerative
and divisive.

Flat clustering algorithms are often referred to as partitional algorithms because
their output is a single partition of the data where each cluster is usually indepen-
dent of another and all clusters are on the same level. Figure 2.3 demonstrates an
example of how the points in �gure 2.1 could be clustered into three clusters by a
�at clustering algorithm. Most �at clustering algorithms are simple to implement
and have short running times due to their simplicity but a disadvantage is that the
number of clusters k must usually be speci�ed beforehand. This drawback demands
a priori knowledge of the data or the algorithm must be executed multiple times to
�nd the optimal number of clusters under some conditions. These conditions involve
some kind of a quality measure of the clustering outcome. A common approach for
determining this is by using the Akaike Information Criterion (AIC) [59], which
takes the form

K = argmin
K

[RSS(K) + λK] (2.2)

for K-means with λ = 2m, double the number of features, commonly used. K is
the number of clusters and RSS is the total squared distance of every point from a
speci�ed reference point in its assigned cluster. The reference point is the arithmetic
mean of all points in the cluster and is referred to as the cluster centroid. For centroid
µi in cluster i the RSS is:

RSSi =
∑

j∈clusteri

D2(vj, µi) (2.3)

7



2. Background

Figure 2.3: Flat clustering. The cluster centroids are represented by µ1, µ2 and µ3

and then for the entire set:

RSS =
K∑
i=1

RSSi (2.4)

Datasets for real world applications are almost always very large and determining
K from (2.2) can therefore result in considerably long running time. One way of
determining the number of clusters beforehand without having to cluster the entire
dataset more than once is by bootstrapping [63]. In short, it is a statistical method
of estimating parameters of an underlying distribution in the data by randomly
resampling it repeatedly and estimating the parameters for each sample set. Since
the computational complexity is usually more than O(n), by only taking e.g. half
the set and computing twice is going to execute faster than with the whole set once.
Repeatedly estimating parameters with a randomly selected subset of the data and
cumulatively calculating their means should eventually result in convergence towards
their actual value, given that the sampling size and number of iterations are large
enough. In the case of clustering having the samples size in the right range and
calculating K from (2.2) for each sample could give the right estimate of K for the
whole dataset without exhausting the computational capacity.

As mentioned above K-means clustering is the most commonly used method and a
simple version of it will be described in section 2.1.1. Other partitional algorithms
apply graph theory [85], mixture resolving and mode seeking methods [21, 40, 60] to
name a few. Those algorithms were not utilized during the development of SALTeD
and hence will not be discussed further.

Hierarchical Algorithms are named so after the structures they produce, which are
hierarchical trees of clusters and sub-clusters. These methods can provide much more
insightful and detailed analysis of the data as �gure 2.4 depicts where the hierarchy

8



2.1. Clustering

can be represented as a tree of connections. A scale could be placed along the
horizontal axis of �gure 2.4(b) with added information such as the value of a �tness
function of the clustering to decide how many and what clusters are optimal. Due
to these additional information the hierarchical algorithms can provide, they require
more computational power than the �at clustering algorithms, both regarding speed
and memory. The K-means algorithm as an example has a time complexity of O(n)
for one iteration [39] while the most commonly used Hierarchical algorithms have
at least 0(n2) complexity[59].

(a) Visual clustering (b) A tree showing the connections

Figure 2.4: Hierarchical clustering.

Hierarchical agglomerative clustering algorithms (HAC) are often referred to as
bottom-up algorithms as they start of with every data point as its own cluster
and then, by various rules, merge pairs of clusters until either some stop criteria
is met or all the points belong to the same cluster. The other type of hierarchical
clustering algorithms is divisive, also known as top-down algorithms and work in
the opposite direction of the HAC algorithms. No divisive clustering algorithm was
considered for SALTeD since they have even more complexity than HAC and the
outcome is highly dependent on the rules of splitting [36].

2.1.1. K-means

The K-means algorithm dates back to the nineteen sixties [2, 58] and has been
applied in and adapted for various problems. All K-means variations have the
common objective of dividing n points into K clusters. Most of them also de�ne the
space as Rm [45], the distant measure as Euclidean and the mean squared distance
for each point to the nearest cluster center as the �tness function.

Algorithm 2.1 is the K-means as used in this thesis. It starts by choosing, with some

9



2. Background

Algorithm 2.1 The K-means algorithm
1: choose k µ
2: repeat

3: for i = 1 to n do

4: for j = 1 to k do

5: if D(vi, µj) < D(vi,current µ) then
6: assign vi to µj

7: adjust µj and (now) former µ
8: else

9: continue loop
10: end if

11: end for

12: end for

13: until largest adjustment < α

heuristic, K cluster centers and then for each pair of center µj and data point vi it
compares the distance between them with the distance between the data point and
the center to which it is currently assigned. If it is smaller, the assignment of the
data point is changed and centers are adjusted to account for the switch. This is
usually repeated until the adjustment is less than some small value α. This produces
K groups represented by the mean of each group and is thus called K-means.

With many bene�ts such as simplicity in implementation and computational e�-
ciency K-means also has its limits. They include the uncertainty of convergence to
a global minimum, the shape of the clusters and the need for a priori knowledge of
the number of clusters. Convergence to a local minimum is guaranteed [41] but only
rare circumstances provide the global minimum. With Euclidean distance, K-means
produces hyper spherically shaped clusters [77] which usually do not �t well with
the data or deal e�ectively with outliers and variably sized clusters. Counteracting
the drawbacks involves a trade-o� such as giving up simplicity and/or demanding
more computational capacity. One must therefore weigh and measure each indi-
vidual task against a few alternative clustering techniques for an example various
K-means methods and CURE.

2.1.2. CURE

Since traditional hierarchical clustering algorithms are ill-suited to deal with large
databases without immense computational capacity, a number of variations have
been developed and proposed. Among those is the CURE algorithm, proposed in
1998 by Guha et. al [31].

10



2.1. Clustering

What mainly sets CURE apart from traditional HAC algorithms is the way it rep-
resents the clusters and how it deals with large databases. Instead of a centroid it
employs a constant number of strategically chosen points from each cluster which
tighten towards the center by some predetermined fraction α. That way variably
sized and shaped clusters can be detected and not just of one shape or minimal size.
For large databases the sample space is partitioned into subspaces which is each par-
tially clustered independently to a predetermined threshold before the whole space
is merged to form a complete hierarchy.

CURE employs two specialized data structures which are not detailed in this thesis,
a priority queue called a heap [27, 51, 82] which stores an entry for each cluster and
a binary search tree called k-d tree [8, 70].

Algorithm 2.2 CUREs clustering algorithm
1: Q← make_Heap
2: T ← make_Tree
3: repeat

4: u← extract_min(Q)
5: v ← u.closest
6: delete(Q, v)
7: w ← merge(u, v)
8: delete_rep(T, [u, v]); insert_rep(T,w)
9: w.closest← x {x is an arbitrary cluster from Q}

10: for all x ∈ Q do

11: if dist(w, x) < dist(w,w.closest) then
12: w.closest← x
13: end if

14: if x.closest is u or v then
15: if dist(x, x.closest) < dist(x,w) then
16: x.closest← closest_cluster(T, x, dist(x,w))
17: else

18: x.closest← w
19: end if

20: relocate(Q, x)
21: else if dist(x, x.closest) > dist(x,w) then
22: x.closest← w
23: relocate(Q, x)
24: end if

25: end for

26: insert(Q,w)
27: until size(Q) < k

Algorithm 2.2 is a rough outline of CUREs clustering algorithm. The �rst line is

11



2. Background

the initialization of the priority heap (Q) where the point with the smallest distance
to its closest neighbor has the highest priority. The second line is the initialization
of the k-d search tree (T ) where each point is treated as a separate cluster. CURE
needs a predetermined number, k, of desired clusters, contrary to what was stated
in the introduction to HAC algorithms above, but this is a trade-o� to reduce space
complexity to O(n). In lines 4 through 26, the algorithm iterates until the desired
number of clusters is reached, always merging the cluster with highest priority from
Q with its closest cluster and updating Q and T . The time complexity of the
algorithm is at most O(n2 log n).

2.2. Features

A feature of an object is an attribute of some kind that characterizes it. Objects
that belong to the same class will therefore share similar features. As an example a
person has multiple features such as height, weight and the number of toes. Collect
all imaginable features of a person and you have the means to describe anyone
uniquely in detail. The features can be discrete like the number of toes or have
continuous values like weight. Normally, a feature pattern for a single object is
represented by an array or a vector where each element is a feature [22]. Multiple
patterns are combined to form a data matrix which is then used as an input to a
grouping algorithm of some kind.

When clustering, it may be tempting to select the whole set of features the dataset
has to o�er and to think that more detailed description equals better clusters. Two
things suggest the opposite, �rstly over�tting, a well known term from statistical
analysis occurring when a model describes noise instead of the underlying connec-
tions; Secondly the curse of dimensionality [5], as the dimensionality of the dataset
increases, the volume of the search space expands so much that the number of di�er-
ent distances between objects become astronomical [37]. Although the �rst problem
can be contributed to the second one in many situations, over�tting can also hap-
pen in lower dimensions when features irrelevant to the analysis at hand distort the
outcome. It is therefore very important to carefully select features from the dataset
that can best describe the underlying information. If an objective of some research
is to verify a link between a certain age group of people with their occupation, the
hair color of the population would tell, by all reasonable assumptions, absolutely
nothing of interest.

For any given clustering problem there likely exists an optimal feature set that gives
the best results for the given problem. Finding this optimal set would theoretically
require an exhaustive search through all possible subsets and is not practical un-
less the number of features is relatively small [49]. Features can be eliminated by
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reasonable assumptions such as in the example above, if enough information about
the problem is known a priori. Any kind of information can be utilized to eliminate
features but doing it manually would make the whole process slow. There is an alter-
native, to approximate the best set or �nd the best set given a certain criteria. The
means to that alternative depend on the method that will use the features. Feature
selection is widely investigated [56] in such areas as machine learning [10, 43, 48],
data mining [17, 18, 46] and statistical pattern recognition [42, 61]. Feature selec-
tion is also successfully applied in image retrieval [78], genomic analysis [84] and
text categorization [52, 65], to name a few applications.

There are many ways to categorize feature selection methods, one is based on the
di�erence in the evaluation criteria [56]. The �lter model which utilizes the gen-
eral characteristics of the data without any mining algorithm [18, 33, 55]. The
wrapper model employs a predetermined mining algorithm to evaluate the selected
features [11, 24, 46] and the hybrid model, takes advantage of both methods at
di�erent levels of the search [16, 64]. Methods from each of these three categories
can be used for most data mining tasks [56] and each has its merits over the oth-
ers. The wrapper model for example tends to �nd features better suited to the
speci�c mining method while also being more computationally expensive than the
�lter model [23]. The hybrid method can either be computationally expensive or
�nd less suited features, depending on the implementation.

Choosing a good set of features is in most cases non-trivial [56]. For clustering, the
classes and their de�nitions are not known so one can not choose features that di�er-
entiate between classes. If, on the other hand, it would be known that e.g. a set of
news documents should be grouped into four categories, sports, weather, domestic
and international, keyword features such as �winner�, �loser�, ��rst�, �wind�, �coun-
try�, should be easy to identify. Selecting features for clustering, however, is much
more complicated because it is an unsupervised learning problem (see section 2.1).
Then one has to consider the trade-o�, computational cost versus better features.

2.3. Network Visualization

�A picture is worth a thousand words" is a popular adage and quite true since a
single image can convey a large amount of data. Network visualization is that in
practice where an overview of an interconnected community with lines for connec-
tions and nodes for each individual or object gives more information than any text
describing said community. Network visualization with pictures is static and could
be considered as a long exposure photograph of the network. Static network analysis
has been around for a long time and the visualization part of it was �rst drawn by
hand [14] where the outcome was simple and highly dependent on the author's skill
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and analytical eye. Since then visualization has come a long way through research in
multiple �elds such as social network analysis [28, 29, 72], statistics [50], biology [57],
computer graphics [25] and more.

�A video is worth many pictures" should be added to the original saying to make
it more adequate to modern times. Dynamic network visualization is an emerging
discipline accounting for the changes that the networks undergo with respect to
time. In research articles and such, networks still have to be represented on paper
but now they are snapshots rather than long exposures and can convey some under-
standing of the dynamics of the network [62]. With the world wide web open to most
people there is now also an e�cient way to present to fellow researchers network dy-
namics with video. There are various options for visualization tools available, both
free [3, 7] and commercial [81], that can produce videos and snapshots of networks
using multiple algorithms, such as Multi-Component Kamada-Kawai (MCKK) [44],
many of which are ad-hoc methods for speci�c problems. To avoid reinventing the
wheel the user can �nd a suitable algorithm to represent whatever data he wants to
draw. SALTeD integrates Gephi which in turn uses various algorithms, all of them
adaptations of static algorithms.

Since the mid nineteenth century, work on network layouts has been mostly focused
on static graphs. �Force-directed� layouts [30, 44], lower dimensionality projec-
tion [35], and layout criteria optimization [19] have been used with good results.
But the need for more than just static images for analysis has arisen in later times.
Being able to visualize how the network evolves and identify catalysts to certain
events is as much or even more important than the connections themselves. What
better way to do so than with a virtual surveillance video?

For that purpose many of the algorithms for static graphs can be recycled and
used for dynamic visualization as well. They are being implemented into software
packages speci�c to dynamic visualization [7] where they are used for calculating
each slice or frame of the videos. What these software packages then add on, is the
means to choose the length of each slice and transition from one to the other.

Quite a few software packages [4, 26, 38] have been implemented that extended visu-
alization research by introducing three dimensional viewing, time steps, descriptive
statistics, and more. The most promising software to date is Gephi, as it is open
source and being developed by a large community of researchers and professionals.

2.3.1. Gephi

Gephi [3] is an open source software collaboration project of The Gephi Consortium.
The program supports various �le formats for importing data, most of them only
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for static analysis and only two for dynamic analysis, graphic exchange XML format
(GEXF), speci�cally developed with Gephi in mind, and spreadsheet format. It has
an easily adaptable graphical user interface (GUI) for convenience.

Dynamic data of the form that network visualization program accept is usually
either in a script �le that tells them exactly where and when some event should
take place or in a comma separated value (csv) �les. The script �les like GEXF can
convey much more and detailed information making it only a formality to load them
in and producing an aesthetically pleasing graph. Csv �les on the other hand convey
as little information as possible, only nodes, arcs and lifetime. It is then up to the
user to manipulate the graph once it is loaded to make it pretty. The advantage of
the csv �le is, as with clustering, that no a priori knowledge is required so any data
can be fed to the program and then manipulated to discover relevant information
hidden from view.

Gephi, with its GUI, makes all of this relatively easy for any computer savvy in-
dividual while still providing transparency and all analytical tools needed for a
professional.

2.4. Summary

For most purposes clustering is not possible without features since they de�ne the
space in which the objects reside. Feature selection and clustering are thus tightly
intertwined so SALTeD has to implement both if one is going to be used. Clustering
is the act of grouping similar things together and in order to know if some things are
similar one has to know their distinctive features. If those features can be quantized
then it is possible to calculate a di�erence between two objects and thus group them
automatically with a clustering algorithm.

If those objects are signals of some sort, like messages, it would be useful to be
able to track their paths and �nd those individuals responsible for them. Network
visualization has been implemented in various programs but the one chosen for
SALTeD is called Gephi, a simple and user-friendly software.

The next chapter will explain the implementation of aforementioned components
into SALTeD.
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SALTeD is a framework for analysing large text-�le datasets and is aimed at aid-
ing forensic investigations. The datasets might be emails, short message service
(sms), memos, or any kind of communication data where the information of author,
recipients, and date of delivery are readily available.

The implementation described in this section assumes that each document is initially
contained in its own �le and begins by iterating through the �les to collect the
information into two �les, a central data�le and a dictionary. In the data�le each
document gets a formatted row of its own. The dictionary contains a single line entry
for each word recorded with the word itself and its frequency in the whole dataset.
From there on SALTeD uses those �les in the analysis. The process is outlined in
�gure 3.1. It starts by pre-clustering the documents to determine the number of
clusters or topics, followed by feature selection to reduce the dimensionality of the
data. Then with the information from the �rst two parts the data is divided into
clusters that are manually examined to discover interesting topics relating to the
investigation at hand. Those clusters containing interesting topics are thereafter
visualized as a dynamic network, hopefully revealing some communication pattern
that could aid any forensic investigation regarding the group or topic.
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Figure 3.1: Main steps in the process from start to �nish.

3.1. Pre-Clustering

The problem is to divide a set of text documents into K unknown groups and
with the partitional methods K is determined by clustering iteratively with the
number of chosen clusters as explained in chapter 2.1. As already mentioned that
can be very time consuming for large datasets. Thus to circumvent the problem,
randomly chosen subsets of the data are repeatedly clustered to approximate the
number of clusters required for the whole set. This procedure is called bootstrapping
and it limits the clustering of the whole dataset to a single pass. The whole pre-
clustering process is outlined in �gure 3.2. It starts by randomly selecting a subset
of data points, the size of that subset is passed as an input argument where the user
tries to balance between accurately representing the population and minimizing
time consumption of the process. That subset is then clustered with the K-means
algorithm and the optimal number of clusters determined with the approach detailed
in chapter 2.1.1. If the minimum number of iterations has not been reached the pre-
clustering process selects another random subset and repeats the process. Otherwise
it evaluates convergence. This cycle is repeated until the maximum amount of
iterations or convergence has been reached. The minimum and maximum number
of iterations must be decided beforehand and should re�ect the ratio of the sample
size to the population, i.e. if the subset is small with respect to the population
more iterations are needed. The convergence criteria is the variance in the number
of clusters of at least the minimum number of iterations and at most all of them.
If that variance drops below a predetermined proportion the convergence criteria is
considered ful�lled and the rounded mean number of clusters is the output of the
pre-clustering process.

18



3.2. Feature Selection

Figure 3.2: The pre-clustering process.

3.2. Feature Selection

When the objective of the clustering task is to divide text documents by topic an
obvious feature is the number of occurrences of each word it contains. The �rst task
of the feature selection process is therefore to make a dictionary, listing all strings
of alphabetical characters divided by white spaces in the data, their frequency and
in how many documents they appear. As mentioned before, high dimensionality
makes the clustering problem very di�cult and taking into account that the data is
written by multiple persons on multiple occasions the dictionary, with every unique
text string of a large dataset will be huge.

The inputs of the two clustering algorithms in section 3.3 are slightly di�erent from
each other and thus the feature selection process is also di�erent. SALTeD decreases
the dimensionality for the K-means algorithm as follows

• By �ltering out documents that are known not to describe peer to peer com-
munication, such as system responses, known newsletters in email collections
including spam, and documents where neither the recipient nor the author is
known.

• Eliminating text strings that have the same character occur more than �ve
times in succession since that text string is very likely just gibberish or only
in a single document and thus can not be used as a feature to group that
document with any other. Although it is unlikely that any language has a
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few words that have the same character occurring �ve times in a row there
is a possibility that any number up to that could be abbreviations, common
mistypings of certain words or some slang.

• Eliminating all symbols other than alphabetical. Note that this has to be
modi�ed for each language.

• Eliminating single character text strings. In most languages this eliminates
some stop words, commonly used words that do not describe any real content
and all acronyms.

• A crude variation of a document threshold method (DTM) where text strings
are eliminated according to their frequency in the dataset.

• The �lter model depicted in �gure 3.3.

Of the above steps only DTM and the �lter model are applied after the data has
been read into the central data�le as they work directly on the dictionary. DTM
simply eliminates features that do not fall in a prede�ned frequency range, either
they are to rare or to frequent.

Figure 3.3: The K-means feature selection process, k-select.

The remaining features are then put through the �lter model in �gure 3.3 that iter-
ates through every possible pairing of features and calculates a correlation coe�cient
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de�ned as the proportion of documents the pair show up in together to the total
number of documents the more frequent feature appears in. This coe�cient can,
therefore, be maximum 1 and minimum 0 and if it drops below a given threshold
one of the pair is eliminated. The current implementation of this method does,
however, not iterate through every pair. Instead it iterates alphabetically pairing
one feature with every subsequent feature and immediately eliminating the latter
when the threshold is breached, thus avoiding pairing said feature with any more
features. This method will be called k-select throughout the thesis since its output
is speci�c for the K -means implementation. Three other rules could have been im-
plemented to choose which one gets eliminated; the other type of relative position
in the alphabet, i.e. �rst and both of relative frequency in the dataset, more or less
frequent. Since this is a process of removing redundant features it should be of no
consequence which rule is adopted and an arbitrary choice can be made.

The output from the K-means feature selection process is a text �le where each
document is represented by one row. It is similar to a sparse matrix of sorts where
only the non zero elements are recorded. Every row begins with a number n counting
the non-zero features of the represented document and then alternating between an
index ik of those features and ck, their frequency in the document divided by the
total frequency over all the documents. The features are sorted so that if j < k then
ij < ik for each individual row. Any row in the text �le will thus look something
like this:

n i_1 c_1 i_2 c_2 ... i_n c_n

where n and ik are integers and 0 < ck < 1. Note that the subscript k counts the
non-zero elements of that particular row and i1 in this row might not be the same
as i1 for any other row.

The input for the CURE algorithm is similar, except a full matrix is used. Every
row is a document and each feature has a corresponding column. Otherwise the
elements are the same as in the K-means �le, document frequency divided by total
frequency.

Due to this di�erence the input �le for the CURE algorithm will in general be large.
The selection process must, therefore, be altered so that the selected feature space
dimensionality will not exceed a prede�ned size, where memory limitations typically
restrain the dimensions to at most 80, with 50 being a reasonable value. Figure 3.4
shows the main steps in the selection process which for this thesis will be called
c-select.

Initially the user chooses as many features as they see �t and this depends mostly
on their knowledge of the data. The number of chosen features can be any value, the
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Figure 3.4: The CURE feature selection process, c-select.

�lter method in the preceding part which is depicted in �gure 3.3 will reduce them
until the dimensionality is low enough by decreasing the threshold for the covariance
coe�cient in each iteration. How low is pre-speci�ed by the user with consideration
to the computational capacity of their equipment. If no a priori knowledge of the
data is available the �rst part of selecting an arbitrary number of features could be
done at random and the user only determines the starting size of the subset as well
as the lower bound. This is not likely to produce good features and in this thesis it
was assumed the investigators would have some a priori knowledge of the dataset.

3.3. Clustering

The framework is implemented around two di�erent clustering methods, K -means
and CURE which are both described in section 2.1. Both implementations were
programed in C for reasons of e�ciency.

3.3.1. K-means

The implementation of the K-means algorithm [71] closely follows algorithm 2.1,
is specially designed to handle sparse data like the feature selection produces and
reserves memory only for those elements that are non zero. The initial means are
randomly selected from the data points. Each data point is assigned to the cluster
with the nearest mean and the means are then adjusted accordingly. After the �rst
iteration the process of assigning points to clusters is done by checking if any mean
has been moved closer than the currently assigned one, if so the point in question
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is moved between clusters and the means are adjusted again. This iteration goes on
until one or more of the following criteria is met.

• Less than prede�ned number of points change clusters in a single iteration.

• The residual sum of squares (RSS) changes are below a certain tolerance be-
tween iterations.

• The maximum number of iterations has been reached.

Since the datasets that are under investigation can di�er widely in size, it is reason-
able to de�ne the stopping criteria by some kind of proportional limit. It is easily
adjustable for any size of dataset. The bound on number of points that change
emails for all tests and evaluations of the framework was arbitrarily chosen as 0.5%
of the total number of data points. The tolerance for the RSS changes between
iterations was set to 0.1%. The maximum number of iterations criterion is the only
one that has to be bound with an absolute value instead of a fraction because con-
siderations must be made for the equipment being used, memory and computational
speed.

The output of the K-means code is a single column text �le with as many rows
as the number of documents, each line indicating which cluster the corresponding
document belongs to.

3.3.2. CURE

The implementation of the CURE algorithm was done by Eui-Hong (Sam) Han [34].
It follows the algorithm described in section 2.1.2 closely.

The implementation allows the user to control several parameters. In this study
only three of those were adjusted and tested, the �nal number of clusters, the alpha
parameter and number of representing points for each cluster.

The �nal number of clusters is a stopping criterion since CURE is a HAC algorithm
which merges clusters and will stop when that goal is reached. The alpha parameter
is the tightening factor for the representing points.
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3.4. Visualization

The visualization is accomplished in two steps, �rst by deciding what to show and
secondly formating the data so that the image or video will convey as much infor-
mation as possible.

3.4.1. Manual analysis

If the clustering is successful it can reveal various categories of topics in the document
dataset. To identify interesting clusters the investigators must manually analyze
each cluster. Depending on the investigator's a priori knowledge, the nature of the
dataset and the quality of the clustering, this manual analysis can be done accurately
and swiftly or be time consuming and fruitless. For this framework it is assumed
that the investigators �ip through each cluster, inspect a few documents for content
and estimate the topic and decide if it is of special interest. It is therefore essential
that they have a good idea of what to look for.

Once the clusters for further investigation have been chosen a script gathers from
each document the author, recipients and the date it was published relative to the
earliest dated documents. The oldest documents get the time stamp 1, documents
that are a day younger get time stamp 2 and so on. This makes the default time
step of the analysis a single day. All authors and recipients of the chosen cluster
are registered as nodes and the documents as arcs. Two comma separated value
(csv) type �les are produced, one for nodes and another for arcs. An example and
description of those �les can be found in the appendix.

3.4.2. Imaging with Gephi

The main part of the visualization is done with Gephi, which is controlled through
a graphical user interface (�gure 3.5).

The network is imported by selecting Data Laboratory, then Import spreadsheet and
follow on screen instructions. Nodes and arcs must be separately imported from �les
like the ones introduced in previous section and described in the appendix.

After importing the data, if it is dynamic, the user must select timeline from the tools
menu to be able to view and manipulate the time slices. The overview tab provides
various modules such as layout and ranking for making the network aesthetically
pleasing and as informative as possible. At �rst, the positioning of the nodes is
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Figure 3.5: A screenshot from Gephi.

random. The layout module also provides various algorithms and means to control
their properties and position. With the ranking module the color of the nodes
and edges can be changed to re�ect their position and connection relative to the
network. The result of a random generated dynamic network and an arbitrary
layout algorithm, selected from those provided by default, can be seen in �gure 3.6.
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(a) (b)

(c) (d)

Figure 3.6: An example of output from Gephi, four time slices from the same dataset

The Gephi web site [80] provides extensive support and tutorials for the usage and
development of the program.

3.5. Summary

SALTeD can aid investigators in providing forensic evidence when the task at hand
is to dig through vast amounts of digitally stored text communication data. Firstly
by using bootstrapping to detect the number of topics, and hence the number of
clusters, from the entire feature space then reducing the dimensionality by elimi-
nating redundant and irrelevant features. With the reduced feature space and the
estimated number of clusters, the investigators can choose from the two clustering
methods, K-means and CURE, to process the whole dataset. The results must then
be explored by hand to see if any of them relate to the ongoing investigation. Those
that might are, thereafter, animated and analyzed visually with a program called
Gephi.
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The aim of the experiments conducted in this chapter is to evaluate the framework
as a whole. Is it applicable and can it be useful for investigators? Although some
minor details were tested the purpose of that was not to see if those sections of the
framework were e�cient or e�ective but to verify that the framework functioned as
planned and possibly explore if the �nal outcome is sensitive to small parameter
changes in individual parts of the whole process.

The tests were done on standard desktop and laptop computers running on Ubuntu
11.10 (oneiric) and Python 2.7.2.

4.1. The test data

For the evaluation of SALTeD two sets of publicly available data where used; the
Enron corpus of emails which was chosen mainly for the reason that it has been used
previously in a forensic investigation; and The 20 Newsgroup data because it has
already been categorized into topics and has multiple authors. The categorization
provides means to evaluate the accuracy of the clustering results.

The email dataset was used to test the whole framework and the newsgroup set was
only used to test the parts leading up to but not including the visualization.

4.1.1. The Enron Corpus

The Enron corpus is a dataset of emails gathered from the infamous Enron corpora-
tion while under investigation following its massive bankruptcy in 2001. The version
used for this thesis is publicly available on the Carnegie Mellon web site [13]. The
full dataset contains more than 500.000 e-mails in 150 folders, one for every user,
most of them senior managers. Each email is in its own text �le, an example is given
in listing 4.1.
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� �
Message−ID : <24839976.1075863386732. JavaMail . evans@thyme>
Date : Tue , 18 Sep 2001 12 : 27 : 43 −0700 (PDT)
From : 40 enron@enron . com
Subject : PLEASE READ: ISSUES ACCESSING INTERNET AND INTRANET
Mime−Vers ion : 1 . 0
Content−Type : t ex t / p l a i n ; cha r s e t=ANSI_X3.4−1968
Content−Transfer−Encoding : 7 b i t
X−From : Global Infrastructure@ENRON <IMCEANOTES−Global+20 I n f r a s t r u c t u r e+40
ENRON@ENRON. com>

X−To : Al l Enron Worldwide@ENRON <??SAll Enron Worldwide@ENRON>
X−cc :
X−bcc :
X−Folder : \RBENSON (Non−Pr i v i l e g ed ) \Benson , Robert\ Inbox
X−Orig in : Benson−R
X−FileName : RBENSON (Non−Pr i v i l e g ed ) . pst

Access to the In t e rn e t and In t rane t i s cu r r en t l y being a f f e c t ed , throughout Enron .
Global

I n f r a s t r u c t u r e i s working to a l l e v i a t e the i s s u e . There i s cu r r en t l y no est imated
time o f

complet ion .

You may be e f f e c t e d in the f o l l ow i n g manner :
? slow ac c e s s to i n t e r n e t
? no ac c e s s to i n t e r n e t
? slow ac c e s s to i n t r an e t
? no ac c e s s to i n t r an e t

Further updates w i l l be provided� �
Listing 4.1: An example of an e-mail from the Enron dataset.

The dates of the emails span the years 1994 to 2005 and are concentrated in the
years 2000 and 2001 (�gure 4.1). Due to lack of available computational capacity it
was decided to only use a time period of one year and the year 2000 was arbitrarily
selected. As can be seen in �gure 4.1 that year alone contains nearly 200,000 emails.

Figure 4.1: Number of the Enron emails over the years.

The version of the dataset used here does not include any attachments but a version
including them all is available from E.D.R.M.s web site [79]. Some e-mails were
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removed after the set was originally published due to personal requests from people
not directly connected to Enron.

4.1.2. The 20 Newsgroup Data

The 20 Newsgroups dataset can be found in various versions on the Internet but the
original is from Tom Mitchell [60] who collected 1000 articles or discussions from 20
di�erent newsgroups on Usenet listed in table 4.1. There is obviously a topic over-
lap between some groups and even to such an extent that two groups are basically the
same. For an example the groups Social.Religion.Christian, Talk.Religion.Miscellaneous
and Alternative.Atheism have closely related topics while Computers.Windows and
Computers.OperatingSystems.MicrosoftWindows are likely to be very similar.

Main category Subcategories Group name

Alternative Atheism
Miscellaneous For sale
Social Religion Christian

Computers

Graphics
Windows

Operating systems Microsoft Windows

Systems
IBM pc hardware
Macintosh hardware

Recreation

Autos
Motorcycles

Sport
Baseball
Hockey

Science

Cryptology
Electronics
Space
Medical

Talk
Politics

Guns
Middle east
Miscellaneous

Religion Miscellaneous

Table 4.1: The 20 Newsgroups categorized by topic

The original dataset contains 20,000 documents but the one used for this thesis
was obtained from Jason Rennie [69] and contains roughly 19,000 documents after
duplicates have been removed. They are sorted into folders and each document is in
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a separate text �le with the �rst two lines stating from whom the article originates
and the subject matter of said article as seen in listing 4.2.� �
From : keith@cco . c a l t e ch . edu ( Keith Allan Schne ider )
Subject : Re : >>>>>>Pompous as s

l i v e s e y@so l n t z e .wpd . s g i . com ( Jon Livesey ) wr i t e s :

>>>How long does i t [ the motto ] have to stay around be f o r e i t becomes the
>>>de f au l t ? . . . Where ' s the c u t o f f po int ?
>>I don ' t know where the exact c u t o f f i s , but i t i s at l e a s t a f t e r a few
>>years , and su r e l y a f t e r 40 years .
>Why does the not ion o f d e f au l t not take in to account changes
>in populat ion makeup?

S p e c i f i c a l l y , which changes are you t a l k i n g about ? Are you arguing
that the motto i s i n t e r p r e t e d as o f f e n s i v e by a l a r g e r por t i on o f the
populat ion now than 40 years ago?

ke i th� �
Listing 4.2: An example of a document from the 20 Newsgroups dataset

Additionally the Newsgroups data is complemented with a vocabulary text �le. It
is a list of 61,188 standalone text strings in the corpus containing only alphabetical
characters.

4.2. Pre-Clustering

The Newsgroups data was well suited to evaluate this part of the proposed framework
since the number of true clusters is approximately known. This part can most likely
be generalized for larger datasets, if it can estimate correctly the number of topics
in the Newsgroups which by examining table 4.1 should be in the range of 13 - 20
depending on how many similar groups will merge.

The two parameters that must be set, are the maximum number of iterations and the
size of the subset. When designing the experiments, the computational capacity and
purpose of the process were taken into account. The purpose is to decrease running
time since estimating the number of clusters of a small sample should be faster
compared to the whole dataset. The parameters were set to a limit of 300 iterations
and a 1% fraction of the documents. For the Newsgroups data this accounts for
slightly less than 200 documents.

The experiment then explored how the algorithm behaves for di�erent λ from (2.2),
testing only two di�erent values λ = 1 or 0 and not 2m because a preliminary
inspection suggested that it would always result in two cluster optimum.
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4.2.1. Results

When pre-clustering was carried out with the Newsgroups data, it was soon evident
that due to computational restraints the sample portion could not exceed 1% of
the 19.000 newsletters without making the process unacceptably slow. Anything
less than that would not add information and since the computational speed of the
program was around 30 seconds per iteration for this number of documents, the
number of documents in each subset was set to 200.
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Figure 4.2: Results for the pre-clustering process of the Newsgroups data with λ = 0

In �gures 4.2 and 4.3, results for two di�erent values of λ are shown. Each �gure
shows the optimal number of clusters for each iteration, the cumulative mean of
those numbers and the maximum and the minimum number of clusters recorded.
It is interesting to see how fast the cumulative mean converges and the di�erence
of the mean value and variance between λ values. A summary for the test runs is
given in table 4.2

Having λ = 0 returns a mean value much closer to the original estimate (13 to 20
clusters). There are quite many iterations that reach 19 clusters but also nearly
as many that �nd only 2. As a consequence the variance and standard error are
much higher for λ = 0. It is also interesting to see that the mean seems to converge
very quickly for all instances, in approximately 20 iterations, suggesting that only
relatively few iterations are necessary to get a useful estimate.

After reviewing the results for the Newsgroups data, it was decided to run the
Enron data through the process once with the most promising setup. Only one run
was su�cient enough to get an estimate of the number of topics within the email
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(a) 200 iterations with λ = 1
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(b) 300 iterations with λ = 1

Figure 4.3: Results for the pre-clustering process of the Newsgroups data with λ = 1

Table 4.2: Results for the pre-clustering process.

Figure λ Iterations Standard Error Variance
Mean number
of clusters

Range

Figure 4.2(a) 0 100 5.58 31.13 10.11 17
Figure 4.2(a) 0 200 5.33 28.41 10.01 17
Figure 4.3(a) 1 200 0.64 0.40 2.28 3
Figure 4.3(b) 1 300 0.54 0.29 2.21 3
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Figure 4.4: Results for the pre-clustering process with the Enron data, λ = 0, and
200 iterations
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collection since the true value is hard to estimate. The setup had λ = 0 and the
sample portion set to 0.1% which would make the sample size around 200 emails per
iteration. The Number of iterations was 200 even though the test results from the
Newsgroups indicated that only a few iterations were needed, it was decided to err
on the side of caution. The results are shown in �gure 4.4 and the standard error,
variance, mean and range are 5.16, 26.64, 10.77 and 17 consecutively. It is apparent
that no more than 50 to 60 iterations are needed to get a reasonable estimate since
in iteration 50 the mean is already 10.54 which rounds up to the same as the mean
for the entire 200 iterations.

4.3. Feature Selection

The K-means algorithm employs k-select for feature selection while CURE uses c-
select. They are in essence the same, both start with a set of features and then
reduce the set with the method shown in �gure 3.3. One di�erence is the size of
the initial feature set where k-select begins with all the features while c-select starts
with a user initiated set. Another di�erence is the stopping criterion, k-select iterates
once through the whole feature set while c-select iterates until a user de�ned upper
bound on the dimensionality is reached.

The quality of the features will only be fully tested when the clustering is performed.
It is never the less interesting to see what measures must be taken to reduce the
dimensionality reliably, if it can be done at all with this simple method. Also if
there are signi�cantly many feature pairs that are mutually inclusive and therefore
redundant in such large datasets.

4.3.1. Results

The maximum possible number of features is not known explicitly but a reasonable
guess for large datasets is that it could correspond to the number of documents,
since a single word within a document could represent a topic.

Without applying the DTM and the �lter method, the number of features to select
from was 95,470 for the Newsgroups data and 127,157 for Enron. Using the DTM
to eliminate only the less frequent features, results in a very steep reduction as can
be seen in �gure 4.5 where features that have less than 1.4% total frequency make
up around 80% of the total feature space. By lower cuto� value of only 2% of the
document count, around 1000 plus features remain for either dataset albeit a bit
more for Enron than Newsgroups as can be seen in �gure 4.6.
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(a) The 20 Newsgroups data
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(b) The Enron corpus

Figure 4.5: Cumulative distribution of the features based on frequency.

This one sided DTM can aid the observer in choosing a suitable interval by visually
estimating a threshold value pair that would give a reasonable amount of features.
Three arbitrary boundary pairs for both datasets were selected to form a small pool
of feature sets. Table 4.3 lists them along with their size and antecedent boundaries.
A boundary of 500 and 3000 means that only words that appear at least 500 times
in the whole dataset and at most 3000 times are considered as features.

Table 4.3: Feature sets extracted for further investigation

20 Newsgroups
nr. Size Bounds
1 690 500 3000
2 253 1000 3000
3 138 1500 3500

Enron
nr. Size Bounds
1 867 3500 10000
2 998 4000 20000
3 1006 5000 ∞

The evaluation of the �lter method and subsequently c-select revealed that the �lter
model did not work well due to capacity restriction for the memory. When applied
to the full Enron feature set it crashed both computers it was tested on and with
the full Newsgroups set it managed to only reduce it by a handful of features for a
medium correlation coe�cient threshold and a long execution time. It is reasonable
to assume that an even lower benchmark will probably not only remove redundant
features but also quite relevant ones. The Newsgroups nr. 3 feature set from table 4.3
was the one that the method managed to reduce the most but only by 20 features
with the benchmark value of 0.3 which is too low. Thus it was concluded that the
ad hoc methods would have to do for now and that CURE would have to be tested
on some manually chosen subsets of the features in table 4.3.
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Figure 4.6: Feature reduction with only a lower cuto� value.

One thing that is worth mentioning is that the feature gathering, i.e. iterating
through the central data�le to construct the sparse matrix text �le, is computation-
ally by far the most expensive process of the whole framework, except for the �lter
method.

4.4. Clustering

When testing a clustering method on large datasets it is preferable to de�ne a good
measure of quality to be able to evaluate methods and con�gure parameter values.
In this thesis two very di�erent clustering methods were considered, K -means and
CURE. The only thing they have in common is the Euclidean distance measure.
They are applied to feature spaces with a very large di�erence in dimensionality, for
K -means the dimensions are in the region of 105 while CURE has an upper bound
of 50 and both have various adjustable parameters.

To determine what outcome is best could be done by manually reading through the
documents, classifying them and checking which clustering outcome makes the most
sense. However the Newsgroups data is sorted into categories as seen in table 4.1, and
it is therefore simple to compare the outcomes to that categorization and see which
algorithm and con�guration can match that better. To recognize the better match
some values are de�ned. If the number of clusters is K and the number of known
categories is M , some categories are likely to overlap so M ≥ K. Therefore one
easily obtained and descriptive value is the total number of clusters the categories
are split over, S, i.e. the sum of the number of cluster every category is registered
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in. If an outcome matches the categorization perfectly then S = 20, i.e. the total
number of categories, a greater value indicates worse match.

For uncategorized data a direct comparison of two outcomes is the simplest way
of weighing the two clustering methods against each other, whether it is the same
method with di�erently set parameters or two completely distinctive methods. For
this experiment it is assumed that the pre-clustering estimates are accurate enough.
It also has to be taken for granted that the features are optimally selected and
therefore in an optimal world two dissimilar but equally good clustering methods
should place documents in identical clusters. The dissimilarity measurement in (4.1)
of the two outcomes, θK and θC , is de�ned as the sum of all pairwise discrepancies.

∆(θK , θC) =
∑

{(ωi,ωk)∈Ω|i 6=k}

δ(ωi, ωk) (4.1)

where

δ(ωi, ωk)

{
1 if both outcomes agree of the pair
0 otherwise

(4.2)

For every conceivable pair of documents, {(ωi, ωk)|i 6= k}, in the whole dataset, Ω,
a discrepancy, δ, equals 1 if the documents share a cluster in one outcome but not
the other and 0 otherwise. The best case scenario would be ∆B = 0 and worst case
scenario ∆w for n documents would be:

∆w =
n2 − n

2
(4.3)

For two outcomes, K and C, the relative dissimilarity ∆K,C on dataset Ω is de�ned
as the proportion of total discrepancy with respect to the worst case scenario

∆K,C =
∆(θK , θC)

∆w

(4.4)

4.4.1. Results

Similar to the feature selection experiments the clustering was only moderately
successful. CURE failed completely on the full datasets, it managed to complete
one execution on the Newsgroups data with a feature set of 19 manually selected
words out of 95,470, with the �nal number of clusters set to 10, α = 0.1 and 10
representative points for each cluster. The outcome resulted in S = 184 which
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makes the average topic being split over about 9 clusters. No other performance
data of CURE could be retrieved since all other executions of it failed due to full
memory.

K -means did a better job and while some results are questionable it never failed
to terminate. Table 4.4 summarizes the average performance of 20 executions of
the K -means for the feature sets from table 4.3. The �rst column indicates what
feature set was being used, 20N for the Newsgroups data and En for Enron, the
second column how many clusters were input to the algorithm, the third the number
of iterations it took to reach convergence, next what the �nal residual sum of squares
was and �nally the S value where applicable.

Table 4.4: K-means performance data.

Feature set Clusters Iterations RSS S
20N 1 10 20 2.43 81.4
20N 2 10 18 0.49 88.3
20N 3 10 19 0.17 110
En 1 11 12 0.52 n/a
En 2 11 10 0.46 n/a
En 3 11 12 0.33 n/a

K -means did not require many iterations to reach a small residual sum of squares.
Around twenty iterations for Newsgroups and twelve for Enron. The lowest �nal
RSS for the Newsgroups results gives the highest S value. That could indicate that
either of those measurements are not suitable for this kind of clustering problems.
There is no S value for the Enron data since it is not previously categorized.

The S values of 81.4 and 88.3 are reasonable for the �rst two sets and suggest
that the average topic is being divided among about 4 clusters. The last value of
110 is a bit high where the average topic is put in nearly 6 di�erent clusters. A
manual inspection of the results also indicates that the two �rst outcomes are partly
reasonable. There is one huge cluster containing 70-90% of all documents but the
rest of the clusters seem fairly good, albeit not optimal. Although the Newsgroups
data is known to have equally many documents in every topic, the clustering does not
re�ect that, indicating an unsuccessful clustering. The initial centers are probably
to blame since they are random and the end result is highly dependent on them.
Also the number of centers are probably too few as the number of topics are likely
to be more than 10 and closer to 15.

Manual inspection of the Enron results reveal that, similar to the Newsgroups data,
there is always this one very large cluster but additionally, an intermediate size
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cluster which also overshadows the smaller ones. Some of the smaller clusters though
are very promising, containing only a handful of emails but they are all of the exact
same type.

When comparing the performance of K -means on di�erent feature sets, the ∆K,C

measure (4.4) was calculated three times between every outcome for the Enron
dataset. The results are listed in table 4.5. The values in that table suggest that
it does not seem to matter which feature set is used, K -means delivers very similar
results each time.

Table 4.5: ∆ comparison of k-means with di�erent feature sets on Enron

Feature sets ∆K,C

En 1 vs. En 2 0.0696
En 1 vs. En 3 0.1012
En 2 vs. En 3 0.0957

4.5. Visualization

Figure 4.7: A word cloud to better envisage the topic of a particular cluster.

The evaluation of the visual processing was as much a test of the researcher's insight
of the data as it was a test of the visualization program. This is a test of the aesthetic
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Figure 4.8: The full network involving the topic from �gure 4.7

nature or in other words, an endeavor to make a good looking picture from the
provided data which in this case is the Enron corpus and the clustering information
from the previous section. First it is necessary to inspect the contents of the formerly
mentioned clusters and take into account the frequency of newsletters, number of
participants versus number of mails and other details which can be quickly estimated
by skimming over the groups. It is also a good idea to make a word cloud from the
clusters and to see if that gives a better idea of what they contain. Figure 4.7 shows
one such cloud for a cluster from the results of clustering with the Enron feature set
number 2 which has been chosen to demonstrate the visualization process. From this
particular cloud it could be inferred that the topic is related to some kind of projects
with words like project, �nancial, o�, bill, companies etc. A manual inspection of
the content reveals that it is a topic mainly involving oil and gas pricing regarding
diverse projects by Enron and competitive �rms. Visualizing the network connected
with that topic, might reveal hidden in�uences or power struggles.

Before importing the network into Gephi, decisions must be made regarding the
time intervals when the participants and emails are visible as nodes and edges, to
best represent the dynamic in the network. For this experiment nodes will appear
simultaneously as the �rst edge they are connected with and be visible for one week
after its last connection if the communications occur with intervals shorter than a
week. In any interval between communications that is longer than a week the nodes
disappear. Edges will be visible only for the day they occur.

The network is assigned a random layout when it is �rst imported and does not
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make much sense. After applying layout algorithms implemented in the program
and manipulating the size and color of the nodes the network will look like what
can be seen in �gure 4.8. The size of a node is proportional to the number of edges
connected to it. As can be seen, Je� Dasovich is a dominant person in the topic,
right above Mona Petrochko and Susan Mara. Dasovich is a government relations
executive within Enron [68], Petrochko is a trader [15] and Mara is Enron's California
director of Regulatory A�airs [66]. Mara was one of the executives informed about
Enron's traders stealing from California and on wiretaps from September 2000 she
is heard talking about it [1]. By inspecting node and edge frequency with respect
to time in �gure 4.9, the time around September that year might be of interest for
investigators when there is a one edge spike of many and the number of nodes drops
signi�cantly.
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(b) Edges in the year 2000

Figure 4.9: Timelines for the frequency for nodes and edges of the Network

By subsequently playing out the dynamic network for this speci�c topic shows how
Mara is not involved in it until around that same time and stays constantly involved
throughout the remainder of that year. Even though Mara appears as one of the
dominating persons in �gure 4.8 for the whole year, she does not seem to contribute
that much in each time slice as seen in �gures 4.10 to 4.11 where a fraction of the
network from late September to early October is depicted in four pictures. What
contributes to her status as one of the top contributers over the whole year, is that
from the moment she appears she is evenly connected until December 31st. Mara
has been con�rmed as a person that knew what was going on and her involvement
and status as the one of three to four most in�uential persons of this topic does
not come as a surprise. The �gures suggest that Petrochko's and Dasovich's might
have had some knowledge about Enron's illegal manipulation of the electrical power
market. The time of Mara's �rst involvement in this topic, in September 2000 in the
wake of the drop in the number of participants as seen in �gure 4.9(a) in addition
to the information from the wiretaps could indicate the timeline and the level of her
involvement in the fraud.

40



4.5. Visualization

As has been suggested, such pictures and corresponding videos in addition to other
data and reasonable assumptions could bene�t investigators in inferring otherwise
unattainable information about the structure under investigation, in this case the
Enron employees. More information might be readily available through these images
but deeper knowledge about relevant laws, the investigation and parties involved is
needed to infer more.
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(a) Mid September

(b) Late September

Figure 4.10: Two, 10 day long time slices of a dynamic network drawn from a topic
within Enron in the year 2000.
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(a) Early October

(b) Mid October

Figure 4.11: Two, 10 day long time slices of a dynamic network drawn from a topic
within Enron in the year 2000.
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4.6. Summary

Both successes and failures were observed while evaluating the implementation. Hav-
ing two di�erent sets of data to experiment with was very useful. The categorized
and orderly 20 Newsgroups dataset, was valuable in testing the clustering methods.
Without it the cluster quality could have been harder to judge. The unsorted En-
ron corpus provided peer to peer communication data for dynamic social network
analysis.

The �rst success of the evaluations was the pre-clustering process. It was fast and
able to estimate quite closely the number of topics even though the mean value
was slightly o�. One may suggest when it comes to clustering the whole set to
try also to partition it according to the maximum value of obtained clusters in the
pre-clustering.

The feature selection experiments were partly successful. The intuitive methods of
elimination worked well by reducing the feature space by nearly 98% while the new
�lter method did very poorly and can not be recommended for further use in its
present form.

The clustering was, similar to the feature selection experiments, only partly success-
ful. K -means executed swiftly and without a hitch, albeit the results were not par
excellence they can serve their purpose, which is to aid forensic investigators. The
CURE algorithm only terminated successfully once and with doubtful results but
that can be attributed to computational limitations and lack of better features.

Dynamic social network analysis was successfully used by a non-expert to produce
aesthetically and informative images, revealing some suggestive, o�cially unknown
information about executive employees of Enron. Therefore this should be a very
powerful tool in the hands of an expert.

While developing the implementations and subsequent tests, large amount of data
was produced, scripts, programs, �gures, data �les and results. All this as well as a
detailed step by step user guide are available on the accompanying DVD disc.
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SALTeD is a framework for aiding forensic detectives in their work, so even though
the evaluation revolves around testing individual parts of the process it must be
looked at from a broad perspective. Some individual parts did not live up to expec-
tations but they can be replaced and/or enhanced. Overall the framework works
and has the potential to work very well. The methods that were implemented and
tested are only a small fraction of available methods from information retrieval, ma-
chine learning, statistics, computer sciences, mathematics, etc. The performance of
the SALTeD framework can be enhanced by using more problem speci�c knowledge
about the communication at hand. For example, they may be language speci�c,
prior knowledge about the subject and so on. This framework is hopefully, a �rst
step in the right direction of making use of digital forensic investigation in the future.

5.1. Pre-clustering

The pre-clustering method, with bootstrapping worked well, it managed to estimate
the number of clusters quite nicely but not accurately. The mean converged within
50 iterations but to a number of clusters below what was expected. Looking at
�gures 4.2, 4.3 and 4.4 it is possible that with a full feature set and only a handful
of data points the method is over�tting.

If the only problem is to �nd how many clusters any dataset contains this kind
of pre-clustering would work quite well but one should also consider the maximum
number of clusters it �nds.

5.2. Feature selection

This part of the framework was tested only on a simple implementation but it is
a vital part of the whole process. The outcome of all that follows relies on what
features are chosen. By choosing bad features the best pattern �nders will struggle
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or fail to �nd anything that resembles a cluster. So it is of the outmost importance
to chose them carefully. Choosing all available features would at best skew the
outcome and more likely ruin it completely.

The two methods that were tested, and hoped to complement each other in reducing
the dimensionality, were a simple document threshold method and a simple corre-
lation based �lter method. Surprisingly the former worked well by eliminating a
large part of the feature space while the latter was unsuccessful. The �lter method
was very time consuming since its function is to iterate over every possible pair of
features and calculate their correlation coe�cient. If the feature space is Rn the
computations will be n2−n

2
calculations of a correlation coe�cient for the worst case

scenario. Given that n =95,470 for the Newsgroups and 127,157 for Enron, the
calculations could and did take a very long time. It is worth further inspection why
this simple �lter method fails for the Newsgroups data, where n is so much greater
than the number of emails. By reasonable assumptions there should be signi�cantly
many pairs of features, that appear often enough in the same documents, to make
one of the pair redundant. This might suggest that the implementation is in some
way faulty.

While the document threshold method eliminates successfully many features it is
highly likely that it could have missed popular slang, abbreviations, and/or very
common mistypings. Therefore it should be used with caution.

5.3. Clustering

The partitioning of documents into topics is a central part of the framework. It
enables the investigator to exclude irrelevant documents and examine the general
conversation within an organization or a group. For this thesis two clustering algo-
rithms were tested, the K -means algorithm and CURE.

The K -means algorithm was partly successful and was able to divide the Newsgroups
data into reasonable clusters, although not perfectly. The very large clusters it
produced were likely caused by the hyperspherically shaped clusters that limit the
usefulness of the method and the number of clusters was less than the number of true
topics. Each smaller cluster contained a speci�c topic and by excluding the larger
clusters the outcome could be considered successful. Apart from being able to match
the Newsgroups data reasonably as seen by the S values in table 4.4, the K -means
algorithm was also fast and terminated correctly every time. Another interesting
result for the K -means algorithm was that when comparing di�erent feature sets for
the Enron dataset, it did not matter much what set was used, discrepancies were
within 10% of what they possibly could be.
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Unlike the K -means algorithm, CURE was not successful. For very small fraction of
the datasets and two to four �nal clusters it worked well, albeit not perfectly. When
tested on the full datasets it did not work, took days to run and crashed both test
computers by �lling their memory before terminating. It is strange that CURE did
not work since it was originally developed to cluster large datasets. A reasonable
explanation for this behavior is that the program that implements the algorithm
takes an input of a full matrix instead of a sparse one and that limits the potential
feature space to only a small number of dimensions. Although too many features can
cause some complications, choosing too few features for clustering topics that might
span several other topics and sub-topics is also considered a bad practice. Since the
feature reduction methods were not e�ective in choosing 15-30 features out of many
thousands it had to be done manually. Never the less, this is an implementation
for forensic investigation so the person choosing the features manually must have
extensive knowledge of the data and especially the language used in it to be able to
identify dis-ambiguous words.

5.4. Visualization

Visualizing individual clusters in a network is a simple routine which can, however,
be made complicated. In the hands of those that can master it and with the right
tools the visualization process can become a powerful weapon in any prosecutors
arsenal. Choosing the cluster to draw is a simple method of look and see, maybe
using word clouds, or something similar, if the clusters are big and drawing them
all is not favorable. Timelines of the frequency of participants and connections for
each topic could also help in the choice of topics if the time of the o�ense is known
prior to the network analysis. Drops or tops of the frequency that coincide in time
with the alleged o�ense could indicate a topic of interest to the investigators.

The imaging itself demands delicate dexterity in the hands of a professional. To work
properly it requires patience and insight. The choice of attributes such as visibility,
ranking and position of nodes and edges in the network is rather problem speci�c.
What clearly reveals hidden and novel information for one case might not work at
all for another problem. The time of visibility is related to how long one connection
of a node has in�uence in the network, is it a day, a week or weeks? That choice
must be made with good understanding of the dynamic communication within the
organization under investigation. Node ranking demands the same knowledge since
there are multiple ranking parameters for the time being displayed to choose from,
such as:

• Degree, the number of total connections each node has.
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• Indegree, the number of ingoing connections for each node.

• Outdegree, the number of outgoing connections for each node.

Is a person considered more in�uential if she is informed of everything that happens
and does not contribute to the conversation as much or is the person doing the
informing the more in�uential? In section 4.5 the ranking was done by degree
for each timeslice in �gures 4.10, 4.11 and the whole network in �gure 4.8. By
that ranking Je� Dasovich seemed the most in�uential in a topic closely related
to Enron's illegal electrical market manipulation even though he was not directly
connected to that by prosecutors during the trials.

With deeper knowledge and insight to the investigation these information might
prove valuable, either for the prosecution or the defendants. Maybe not as evidence
but at least as a means to drive a point home to the jury or the judge. With
future research and the ongoing development of the open source programs, similar
to Gephi, dynamic social network analysis will play an increasing role in criminal
forensic investigations.
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As stated before SALTeD is only a framework providing a general way of aiding
the investigation of digital forensic evidence. This framework can and should be
developed further as a fully functional program. It has potential, if correctly used
and if improved methods will be implemented in each step. Even in its infantile state
it was successfully used to infer interesting information from the Enron email corpus
about some executive employees. Even if the information is not incriminating, it
might point the investigation in the right direction. Clustering with the simplest
of algorithms, K-means, and with respect to automatically chosen words from the
email body successfully revealed a topic that was used to infer these information.
Of course the framework had some shortcomings, notably:

• The computational complexity, making it ine�cient on personal computers
(pc).

• The results from section 4.4.1 suggest that, most likely, some documents that
belong to a speci�c topic have been overlooked since they were clustered with
one of the larger clusters.

• One of the two suggested automatic feature selection methods is rough and
messy, and the other is time consuming and ine�ective.

By improving the steps of the framework with further research and development,
these kind of problems could be overcome. Future research should at least include
the following questions and projects:

• With better access to supercomputers and availability of computer clouds, is
it necessary to continue developing the framework with the pc in mind?

• Since investigators are usually looking for a problem speci�c information from
a network is an e�cient automatic feature selection feasible?

• What happens if the feature selection is moved to the front of the process
so that the pre-clustering would have fully reduced features to work with?
Would information be lost so that the pre-clustering can not estimate the
right amount or close enough to the right amount of clusters or would it stop
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potential over-�tting?

• Enhancing K-means to a divisive hierarchical method by using it with only
2 clusters recursively until the clusters are as many as the documents or a
stopping criterion has been reached.

• Improve and shape the implementation of CURE for large sparse data.

• Does the �eld of forensic investigation have any special needs regarding visual
analysis?

50



References

[1] Rafael Azul. Enron tapes expose blatant criminality of corporate America. In
World Socialist Web Site, 2004. The International Committee of the Fourth In-
ternational. June 14. 2012, http://www.wsws.org/articles/2004/jun2004/
enro-j15.shtml

[2] G.H. Ball and D.I. Hall. Some Fundamental Concepts and Synthesis Procedures
for Pattern Recognition Preprocessors. In Proc. Int'l Conf. Microwaves, Circuit
Theory, and Information Theory, pages 281�297, 1964.

[3] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. Gephi: An Open
Source Software for Exploring and Manipulating Networks. In International
AAAI Conference on Weblogs and Social Media, 2009.

[4] Vladimir Batagelj and Andrej Mrvar. Pajek-program for large network analysis.
Connections, 21(2):47�57, 1998.

[5] Richard E. (Rand Corporation) Bellman. Dynamic Programming. Princeton
University Press, 1957.

[6] A. Ben-Dor, R. Shamir, and Z. Yakhini. Clustering gene expression patterns.
Journal of computational biology : a journal of computational molecular cell
biology, 6(3-4):281�97, 1999.

[7] S Bender-deMoll. The art and science of dynamic network visualization. Journal
of Social Structure, 7(2), 2006.

[8] J.L. Bentley and J.H. Friedman. Data structures for range searching. ACM
Computing Surveys (CSUR), 11(4):397�409, December 1979.

[9] Manasi Bhattacharyya, S Hershkop, and E. Eskin. Met: An experimental
system for malicious email tracking. In Proceedings of the 2002 workshop on
New security paradigms, pages 3�10. ACM, 2002.

[10] A.L. Blum and Pat Langley. Selection of relevant features and examples in
machine learning. Arti�cial intelligence, 97(1-2):245�271, 1997.

[11] Rich Caruana and Dayne Freitag. Greedy attribute selection. In 11th interna-
tional conference on machine learning, pages 28�36. Citeseer, 1994.

51

http://www.wsws.org/articles/2004/jun2004/enro-j15.shtml
http://www.wsws.org/articles/2004/jun2004/enro-j15.shtml


REFERENCES

[12] KG Co�man and A.M. Odlyzko. The size and growth rate of the Internet. First
Monday, 3(10):l�25, 1998.

[13] Enron Email Dataset William W. Cohen. 2009. Carnegie Mellon, School of
Computer Science, March 23. 2012, http://www.cs.cmu.edu/~enron/

[14] James S. Coleman. The adolescent society. New York: Free Press, New York,
NY., 1961.

[15] The state of California, California Public Utilities Commission. Proceeding
A9702022, 1997.

[16] Sanmay Das. Filters, wrappers and a boosting-based hybrid for feature se-
lection. In 18th International Conference on Machine Learning, pages 74�81.
Morgan Kaufmann, 2001.

[17] M. Dash and H. Liu. Feature selection for classi�cation. Intelligent data anal-
ysis, 1(3):131�156, 1997.

[18] Manoranjan Dash, K. Choi, P. Scheuermann, and H. Liu. Feature selection for
clustering-a �lter solution. In Proceedings of 2002 IEEE International Confer-
ence on Data Mining, pages 115�122. IEEE, 2002.

[19] R. Davidson and D. Harel. Drawing graphs nicely using simulated annealing.
ACM Transactions on Graphics (TOG), 15(4):301�331, 1996.

[20] O. de Vel, A Anderson, M Corney, and G Mohay. Mining e-mail content for
author identi�cation forensics. ACM SIGMOD Record, 30(4):55, December
2001.

[21] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from in-
complete data via the EM algorithm. Journal of the Royal Statistical Society.
Series B (Methodological), pages 1�38, 1977.

[22] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classi�cation. John Wiley &
Sons, Inc., New York, NY., 2 revised edition, 2004.

[23] Jennifer G Dy. Unsupervised Feature Selection. In Huan Liu and Hiroshi
Motoda, editors, Computational Methods of Feature Selection, Data Mining
and Knowledge Discovery Series, chapter 2, pages 19�39. Chapman & Hall,
2008.

[24] Jennifer G. Dy and Carla E. Brodley. Feature subset selection and order identi-
�cation for unsupervised learning. In 17th international conference on machine
learning, pages 247�254. Morgan Kaufmann, 2000.

[25] S.T. Eick. Aspects of network visualization. Computer Graphics and Applica-
tions, IEEE, 16(2), 1996.

52

http://www.cs.cmu.edu/~enron/


REFERENCES

[26] John Ellson, Emden Gansner, Lefteris Koutso�os, Stephen North, and Gordon
Woodhull. Graphviz - Open Source Graph Drawing Tools. In Graph Drawing,
pages 594�597. Springer, 2002.

[27] M.L. Fredman, R. Sedgewick, D.D. Sleator, and R.E. Tarjan. The pairing heap:
A new form of self-adjusting heap. Algorithmica, 1(1):111�129, 1986.

[28] L.C. Freeman. Visualizing social networks. Journal of social structure, 1(1):4,
2000.

[29] Linton C Freeman, Cynthia M Webster, and Deirdre M Kirke. Exploring so-
cial structure using dynamic three-dimensional color images. Social Networks,
20(2):109�118, April 1998.

[30] Thomas M J. Fruchterman and Edward M. Reingold, Graph drawing
by force [U+2010]directed placement. Software: Practice and Experience,
21(NOVEMBER):1129�1164, 1991.

[31] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. CURE: an e�cient clus-
tering algorithm for large databases. SIGMOD Record, 27(2):73�84, 1998.

[32] Rachid Hadjidj, Mourad Debbabi, Hakim Lounis, Farkhund Iqbal, Adam Sz-
porer, and Djamel Benredjem. Towards an integrated e-mail forensic analysis
framework. Digital Investigation, 5(3-4):124�137, March 2009.

[33] Mark A. Hall. Correlation-based feature selection for discrete and numeric
class machine learning. In 17th International Conference on Machine Learning,
pages 359�366. Morgan Kaufmann, 2000.

[34] Eui-Hong Han, 2005. CURE Computer program, February 6. 2012, http:

//www.msdnproject.com/code/97954.htm

[35] David Harel and Yehuda Koren. Graph Drawing by High-Dimensional Embed-
ding Drawing Graphs in High Dimension. Journal of Graph Algorithms and
Applications, 8(2):195�214, 2004.

[36] J.A. Hartigan. Clustering algorithms. John Wiley & Sons, Inc., New York,
NY., 1975.

[37] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction. Springer Series
in Statistics. Springer New York, New York, NY., 2nd edition, 2009.

[38] M. Himsolt. Comparing and evaluating layout algorithms within GraphEd.
Journal of Visual Languages and Computing, 6(3):255�273, 1995.

[39] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM
Computing Surveys, 31(3):264�323, September 1999.

53

http://www.msdnproject.com/code/97954.htm
http://www.msdnproject.com/code/97954.htm


REFERENCES

[40] A.K. Jain and R.C. Dubes. Algorithms for clustering data. Prentice-Hall, Inc.,
Engelwood Cli�s, NJ., February 1988.

[41] A.K. Jain and P.W. Duin. Statistical pattern recognition: a review. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(1):4�37, 2000.

[42] Anil Jain and Douglas Zongker. Feature Selection: Evaluation, Application,
and Small Sample Performance. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19(2):153�158, 1997.

[43] George H. John, Ron Kohavi, and Karl P�eger. Irrelevant features and the sub-
set selection problem. In Proceedings of the 11th Int'l Conf. Machine Learning,
pages 121�129. Morgan Kaufmann, 1994.

[44] Tomihisa Kamada and Satoru Kawai. An algorithm for drawing general undi-
rected graphs. Information processing letters, 31(1):7�15, 1989.

[45] T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman, and a.Y.
Wu. An e�cient k-means clustering algorithm: analysis and implementation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7):881�
892, July 2002.

[46] Y.S. Kim, W.N. Street, and Filippo Menczer. Feature selection in unsupervised
learning via evolutionary search. In Proceedings of the sixth ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 365�
369. ACM, 2000.

[47] Bryan Klimt and Yiming Yang. Introducing the Enron corpus. In First con-
ference on email and anti-spam (CEAS), 2004.

[48] Ron Kohavi and G.H. John. Wrappers for feature subset selection. Arti�cial
intelligence, 97(1-2):273�324, 1997.

[49] Daphne Koller and M. Sahami. Toward optimal feature selection. In 13th
International Conference on Machine Learning, volume 1996, pages 284�292.
Citeseer, 1995.

[50] Lothar Krempel. Visualizing networks with spring embedders: Two-mode and
valued graphs. In International Sunbelt Social Network Conference. Charleston,
SC, pages 36�45, 1999.

[51] Chris Lattner and Vikram Adve. Data structure analysis: An e�cient context-
sensitive heap analysis. Technical report, UIUC, 2003.

[52] Edda Leopold and Jörg Kindermann. Text categorization with support vector
machines. How to represent texts in input space? Machine Learning, 46(1):423�
444, 2002.

54



REFERENCES

[53] Hua Li, Dou Shen, Benyu Zhang, Zheng Chen, and Qiang Yang. Adding Se-
mantics to Email Clustering. In Sixth International Conference on Data Mining
(ICDM'06), pages 938�942. Ieee, December 2006.

[54] Huan Liu and Hiroshi Motoda, editors. Computational methods of feature selec-
tion. Data Mining and Knowledge Discovery Series. Chapman & Hall, August
2008.

[55] Huan Liu and Rudy Setiono. A probabilistic approach to feature selection-
a �lter solution. In 13th INTERNATIONAL CONFERENCE on MACHINE
LEARNING, pages 319�327. Morgan Kaufmann, 1996.

[56] Huan Liu and Lei Yu. Toward Integrating Feature Selection Algorithms for
Classi�cation and Clustering. IEEE Trans. on Knowledge and Data Engineer-
ing, 17(4):491�502, 2005.

[57] J.J. Luczkovich, S.P. Borgatti, J.C. Johnson, and M.G. Everett. De�ning and
measuring trophic role similarity in food webs using regular coloration. Journal
of Theoretical Biology, 220:303�321, 2003.

[58] J. MacQueen. Some methods for classi�cation and analysis of multivariate
observations. In Proceedings of the �fth Berkeley symposium on mathemati-
cal statistics and probability, volume 1, page 14, Berkley, 1967. University of
California Press.

[59] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. An In-
troduction to Information Retrieval. Cambridge University Press, Cambridge,
England, draft edition, 2009.

[60] Tom M. Mitchell. Machine learning. McGraw-Hill, inc., New York, NY., May
1997.

[61] Pabitra Mitra, C A Murthy, and Sankar K Pal. Using Feature Similarity.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(3):301�
312, 2002.

[62] James Moody, Daniel McFarland, and Skye Bender-deMoll. Dynamic Network
Visualization. American Journal of Sociology, 110(4):1206�1241, January 2005.

[63] Christopher Z. Mooney and Robert D. Duval. Bootstrapping: a Non Parametric
Approach to Statistical Inference. Sage publications, 1993.

[64] Andrew Y. Ng. On feature selection: learning with exponentially many ir-
relevant features as training examples. In 15th International Conference on
Machine Learning, pages 404�412. Morgan Kaufmann, 1998.

55



REFERENCES

[65] K. Nigam, A.K. McCallum, S. Thrun, and T. Mitchell. Text classi�cation from
labeled and unlabeled documents using EM. Machine learning, 39(2):103�134,
2000.

[66] JS Okolica and GL Peterson. Using PLSI-U to detect insider threats by
datamining e-mail. International Journal of Security, 3(2):114�121, 2008.

[67] T.N. Pappas. An adaptive clustering algorithm for image segmentation. IEEE
Transactions on Signal Processing, 40(4):901�914, April 1992.

[68] Carey E. Priebe, John M. Conroy, David J. Marchette, and Youngser Park.
scan statistics on enron graphs, 2010.

[69] 20 newsgroups data set Jason Rennie. 2008. MIT, CSAIL, March 07. 2012,
http://people.csail.mit.edu/jrennie/20Newsgroups/

[70] J.B. Rosenberg. Geographical data structures compared: A study of data struc-
tures supporting region queries. Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 4(1):53�67, 1985.

[71] Thomas P. Runarsson and Sæmundur Ó. Haraldsson, 2010. K-means Computer
program December 2. 2011, http://notendur.hi.is/~soh9

[72] J. Skvoretz and K. Faust. Relations, species, and network structure. Journal
of social structure, 3(3), 2002.

[73] S Stolfo, Shlomo Hershkop, and Ke Wang. Behavior pro�ling of email. In 1st
NSF/NIJ Symposium on Intelligence & Security Informatics(ISI 2003), Tucson,
Arizona, 2003.

[74] Salvatore J. Stolfo, Germán Creamer, and Shlomo Hershkop. A temporal based
forensic analysis of electronic communication. Proceedings of the 2006 national
conference on Digital government research, pages 23�24, 2006.

[75] Salvatore J. Stolfo, Shlomo Hershkop, Ke Wang, Olivier Nimeskern, and Chia-
Wei Hu. A behavior-based approach to securing email systems. InMathematical
Methods, Models and Architectures for Computer Networks Security, pages 57�
81. Springer Berlin / Heidelberg, 2003.

[76] S.J. Stolfo and S. Hershkop. Email mining toolkit supporting law enforcement
forensic analyses. In Proceedings of the 2005 national conference on Digital gov-
ernment research, pages 221�222. Digital Government Society of North Amer-
ica, 2005.

[77] M.C. Su and C.H. Chou. A modi�ed version of the K-means algorithm with a
distance based on cluster symmetry. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 23(6):674�680, 2001.

56

http://people.csail.mit.edu/jrennie/20Newsgroups/
http://notendur.hi.is/~soh9


REFERENCES

[78] D.L. Swets and J.J. Weng. E�cient content-based image retrieval using auto-
matic feature selection. In Computer Vision, 1995. Proceedings., International
Symposium on, pages 85�90. IEEE, 1995.

[79] EDRM Enron Email Data Set v2, 2012, The Electronic Discovery Ref-
erence Model(EDRM). June 16. 2012, http://www.edrm.net/resources/

data-sets/edrm-enron-email-data-set-v2

[80] The Gephi Team. Gephi, an open source graph visualization and manipulation
software, 2008.

[81] M Trier. Towards a social network intelligence tool for visual analysis of vir-
tual communication networks. Virtuelle Organisationen und Neue Medien,
(Cmc):331�342, 2006.

[82] Jean Vuillemin. A data structure for manipulating priority queues. Communi-
cations of the ACM, 21(4):309�315, 1978.

[83] Chun Wei, Alan Sprague, Gary Warner, and Anthony Skjellum. Mining spam
email to identify common origins for forensic application. In Proceedings of the
2008 ACM symposium on Applied computing - SAC '08, pages 1433�1437, New
York, New York, USA, 2008. ACM Press.

[84] Eric P. Xing, Michael I. Jordan, and Richard M. Karp. Feature selection for
high-dimensional genomic microarray data. In Proceedings of the Eighteenth
International Conference on Machine Learning, pages 601�608. Morgan Kauf-
mann, 2001.

[85] C.T. Zahn. Graph-Theoretical Methods for Detecting and Describing Gestalt
Clusters. IEEE Transactions on Computers, C-20(1):68�86, January 1971.

57

http://www.edrm.net/resources/data-sets/edrm-enron-email-data-set-v2
http://www.edrm.net/resources/data-sets/edrm-enron-email-data-set-v2




A. Gephi importation �les

Importing into Gephi can be accomplished by multiple means, this thesis uses �les
with the extension .csv (comma separated values). Listings A.1 and A.2 give an
example of how these �les look like. Columns are actually separated by a tab
character and not a comma because the time interval reserves the comma with the
format <[start,end]>. Every value of the Id column in the node �le must be
unique but labels can be the same. Source and target values in the arc �le must be
identical to one of the Id values.� �
Id Label Time I n t e r v a l
. . .
. . .
. . .
g s u l l i v a n g s u l l i v a n <[87 ,237]>
mbal lases mbal lases <[304 ,306]>
robe r t . badeer robe r t . badeer <[176 ,348]>
frank . o ldenhu i s f rank . o ldenhu i s <[175 ,248]>
kent . m i l l e r kent . m i l l e r <[175 ,248]>
marty_mcfadden marty_mcfadden <[324 ,349]>
j u l i e . sarnowski j u l i e . sarnowski <[346 ,348]>
s t eve . kean s t eve . kean <[248 ,250]>
tk . lohman tk . lohman <[175 ,298]>
. . .
. . .
. . .� �

Listing A.1: An example of a node �le ready for importation to Gephi.� �
Source Target Time In t e r v a l
. . .
. . .
. . .
drew . fossum martha . benner <[18 ,19]>
drew . fossum martha . benner <[213 ,214]>
martha . benner maria . pavlou <[344 ,345]>
martha . benner drew . fossum <[344 ,345]>
drew . fossum martha . benner <[126 ,127]>
drew . fossum b i l l . co rdes <[202 ,203]>
drew . fossum mary . m i l l e r <[202 ,203]>
drew . fossum sh e l l e y . corman <[202 ,203]>
drew . fossum martha . benner <[213 ,214]>
. . .
. . .
. . .� �

Listing A.2: An example of an edges �le ready for importation to Gephi.
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