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Abstract

The Deep Stock of Beaked redfish (Sebastes Mentella) in the Irminger Sea is a commercial

deep-sea species that mainly inhabits depths between 600 and 900 meters. As is the case for

some other deep-sea-species, biological information on the stock is incomplete. While an-

nual catch data is available, only five biomass assessments have been carried out. The stocks

mortality is unknown and no firm estimates have been put forth for the carrying capacity.

The economic data is as well incomplete. No separate financial statistics exist for the redfish

fleet as such. Data on the Icelandic fleet as whole is the most precise, including annual data

on revenue. However, there is no data on cost solely due to harvesting of Beaked redfish nor

information on effort. A model is presented that takes these data shortcomings into account

by adding distributions to number of variables including mortality, carrying capacity, output

elasticity of effort and the ratio between the catchability coefficient and marginal variable

cost. Given that the model is appropriate it might be used as a gauge for fishery harvesting

policies that have a high degree of uncertainty. This holds in spite of the controversial pa-

rameters of the model, which are given in distributions instead of values. Finally, the model

indicates that the present value of profits yielded by an optimal path of harvest would be be-

tween almost the same to e 116.5 higher than from an optimal path to the MSY equilibrium.

The model further indicates that total allowable catch set by the Northeast Atlantic Fisheries

Commission for the next years should be lower if the goal is to maximise the economic

performance of the fishery.
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1 Introduction

Beaked redfish (Sebastes mentella) is primarily a deep-sea commercial species harvested in the

Atlantic. The main fishing grounds can be found in the Barents Sea, the continental shelf and the

slope west of Norway, the Atlantic waters in the Norwegian Sea and Irminger Sea and adjacent

waters. Scientists differentiate between two stocks of Beaked redfish in the Irminger Sea by

separating them into the Shallow Stock which can be found above depths of 500 meters, and the

Deep Stock which is most abundant at depths of 600-900 meters (Sigurdsson et al., 2006).

The Irminger Sea consists of an area an area both stretching inside national exclusive eco-

nomic zones (EEZs) as well as extending into international waters. The fishery is managed by

the Northeast Atlantic Fisheries Commission (NEAFC) while the International Council of the

Exploration of the Sea (ICES) holds an advisory role. In 2009, most of the nations taking part

in the fishery agreed to ban fishing from the Shallow Stock, but the annual total allowable catch

(TAC) for the Deep Stock was set at 30-40 thousand tonnes in 2011 and 2012 (Jakobsdottir and

Kristinsson, 2010).

In this essay a bioeconomic model for the Deep Stock fishery in the Irminger Sea is de-

veloped. The model used is an aggregate biomass model, where no attempt is made to model

individual fish cohorts. As is the case for some other deep-water species, information on the

stock is incomplete. Although several stock assessments have taken place, the year-to-year vari-

ations in stock size are not well documented. The natural mortality has not been determined, and

no firm estimates have been put forth for the carrying capacity. Annual catch data does however

exist and information on revenue for the Icelandic fleet as a whole is available but, there is no

data available on costs that are solely due to harvesting of Pelagic redfish nor on effort. The

Icelandic fleet is responsible for the biggest share of catches from the beginning of the fishery, or

47% of total recorded landings (see table A.4). The model developed takes these data shortcom-

ings into account. First a simple model is derived and then expanded by allowing for uncertainty
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in mortality, carrying capacity, discount value, price, output elasticity of effort and costs. An

analytic solution of the traditional uncertain optimal path will not be presented because of var-

ious reasons. First of all the aim of this essay is not to propose a specific path of harvest but

rather to address the distribution of possible optimal paths. Secondly, to address one path would

not necessarily be very practical because of the uncertainty. Hence, if one possible optimal path

would be presented it might be far from the true optimal path.

The optimal path of harvests is defined as the path that yields the maximum attainable level of

the present value of profits. The corresponding equilibrium, if it exists, is called the optimal equi-

librium (OE). An attempt will be made to quantify a possible range of the differences between

present values from optimal paths to the maximum sustainable yield (MSY) equilibrium and the

OE equilibrium. Finally, NEAFC recommendations about TAC will be compared with the op-

timal paths of the model and an attempt made to examine whether similar bioeconomic models

may be used as a gauge for harvesting policies in fisheries with a high degree of uncertainty, such

as the Deep Pelagic redfish stock and many other deep-sea fisheries.

This paper is organised in the following manner. Section 2 describes the fishery and the

available data. In the next sections the traditional model without uncertainty is introduced and

its analytical solution. In section 4 the traditional model is extended by adding uncertainty and

parametrisation of the model are discussed. Results are presented in section 5 and section 6 is

the conclusion.
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2 The Fishery

2.1 The Stock

Redfish is a name commonly applied to members of the deep-sea genus Sebastes which contains

hundreds of species. Most of the species are found in the Northern Pacific Ocean, but four species

reside in the North Atlantic, i.e. Golden redfish (Sebastes marinus), Beaked redfish (Sebastes

mentella), Norway redfish (Sebastes viviparus) and Acadian redfish (Sebastes fasciatus).

Beaked redfish consists of various stocks. A demersal stock is found on the Icelandic conti-

nental shelf and slope. A Northeast Atlantic stock inhabits the Norwegian and Barents Seas. The

third component is the Pelagic redfish stock (Jakobsdottir and Kristinsson, 2010). The Interna-

tional Council for the Exploration of the Sea (ICES) has defined Pelagic redfish in the Irminger

Sea and adjacent waters, see figure 2.1, as two different biological stocks, a Deep Pelagic stock

and a Shallow Pelagic stock (Sigurdsson et al., 2006). The two stocks will further be referred to

as the Deep and Shallow stocks, respectively for the sake of simplicity and together as Pelagic

redfish. The Shallow adult stock is found at a depth range above 500 meters, while the Deep

adult stock is most abundant between 600 and 900 meters, but can be found at depths of up to

1000 meters (Jakobsdottir and Kristinsson, 2010). From April to May the stocks in Irminger Sea

concentrate because of larval hatching and from June to July due to the feeding period. Concen-

trations may sometimes be found during the mating period, from August to September. During

the rest of the year, no dense aggregations of the stock are found (Rikhter, 1996).
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Figure 2.1: Geographical distribution of Sebastes mentella in Irminger Sea and adjacent waters.

Source: (Sigurdsson et al., 2006)

Beaked redfish is a long lived, late-maturing species. It has been estimated to reach ages of

up to 75 years, but the maximum age for redfish in the Irminger Sea is uncertain (Campana et al.,

1990). The observed maximum length of individuals from the Deep Pelagic stock is 56 cm,

while the average length for females is 35 cm and the average for males is 29-33.5 cm at 50%

maturity. Age of recruitment to the fishery of the stock in unknown, but is believed to be near

maturity. Recruitment fluctuates greatly, with long periods of very low recruitment. The causes

for this variability are unknown. The natural mortality is unknown but thought to be 0.05-0.1 for

both stocks (Jakobsdottir and Kristinsson, 2010).

Biomass assessments for the Deep stock in the Irminger Sea and adjacent waters, carried out

by Icelandic and German groups, are shown in figure 2.2. Five comparable assessments have

been made, in 1999, 2001, 2003, 2009 and 2011. In the first and last two assessments, in 1999,

2009 and 2011, the biomass was estimated to be close to 500 thousand tonnes. The biomass

estimate in 2001 was more than double the two year earlier estimate. The biomass in 1999 was

estimated to be 497 thousand tonnes while it was estimated to be 1057 thousand tonnes in 2001.

Between 2001 and 2003 the biomass was estimated to have dropped again by almost 40%, or to

678 thousand tonnes.
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Figure 2.2: Biomass assessments for the Deep Pelagic redfish stock in the Irminger Sea and
adjacent waters.

Source: Marine Research Institute of Iceland

2.2 The Fishing

The Pelagic redfish fishery in the Irminger Sea and adjacent waters takes place both inside the

EEZs of Iceland and Greenland, as well as in the regulatory areas of the North East Atlantic

Fisheries Commission (NEAFC). NEAFC is responsible for the management of the species, and

sets the management policies for both stocks, with ICES having an advisory role. Catches from

the Deep Stock are mainly from three ICES areas, Va, XII and XIV, see figure 2.3. In the early

1990’s catches were mainly from areas XII and XIV but since 1997 almost all catches come from

areas Va and XIV. Until 1999 almost all catches from the Shallow Stock were caught in ICES

areas XII and XIV. However, since 2000 catches have been divided between ICES area XII and

NAFO ares 1F and 2J (Jakobsdottir and Kristinsson, 2010). To minimise mixed-stock catches

ICES recommended separate management units based on geographic proxies. The Deep Pelagic

Management Unit is in the northeast Irminger Sea, while the Shallow Pelagic Management Unit

5



is in NAFO areas 1 and 2, and ICES areas Vb, XII and XIV (ICES, 2009).

Figure 2.3: Partition of ICES and NAFO areas in Irminger Sea and adjacent waters.

Source: (Jakobsdottir and Kristinsson, 2010)

The management is based on setting a TAC for each stock, but technical measures (minimum

mesh size) are also used. Additional measures may be introduced by individual nations. Icelandic

vessels are, for instance, subject to the system of individual transferable quotas. Management

in recent years has been severely hampered by the inability of nations taking part in the fishery

to agree on total quota and allocation keys. Russia is not a party to an agreement made by the

EU, Faroe Islands, Greenland, Iceland and Norway in 2009 which bans fishing from the Shallow

Stock and sets a TAC for the Deep Stock of 38 thousand tonnes for 2011 and 32 thousand tonnes

for 2012. Instead Russia has set a unilateral quota of 29.5 thousand tonnes for both stocks in

2011, stating that the stocks are not separated and that their status is not as depleted as otherwise

believed (Jakobsdottir and Kristinsson, 2010).

Catches from the Deep Pelagic redfish stock in the Irminger Sea and adjacent waters are

shown in figure 2.4. First reported catches were in 1989, but catches did not reach a thousand

tonnes until 1992. Catches increased slowly at first, before jumping from 15 thousand tonnes in

1993 to almost 140 thousand tonnes in 1996. Catches then declined but remained between 84

6



and 104 thousand tonnes in the ensuing years. Since 2005, annual catches have been between

30 and 67 thousand tonnes. However, catches are thought to have been underestimated due to

incomplete reporting.
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Figure 2.4: Reported catches from the Deep Pelagic redfish stock in the Irminger Sea and adja-
cent waters.

Source: Marine Research Institute of Iceland

Icelandic trawlers began exploiting the Deep Pelagic stocks in the early 1990s, with other nations

not registering any substantial catches until 1995, see table A.4. The share of Icelandic catches

has since steadily declined and is now down to 20-30% of total annual catches. The fishery is

mainly carried out during the concentration of the stock from April to July (Jakobsdottir and

Kristinsson, 2010).

2.3 The Sample

Data on the economic performance of the fishery is limited because no separate financial statistics

exist for the redfish fleet and there is no data available on cost that is solely due to harvesting of
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Pelagic redfish (IoES, 2010). However, a sample with operating accounts of 429 Icelandic units,

fishing for various species.during the years 1992 to 2010 is available. Each unit consists of one

or more ships a year. Thus if a vessel is participating in the fishery for more than one year it is

more than one unit. Among these, 184 units were harvesting Pelagic redfish. The reduced 184

unit sample contains 52% of the Icelandic Pelagic redfish catches from 1992 to 2010. There is

no information on the partition of catches from the Deep and the Shallow Stock. However, in

1992 to 2010, almost 86% of Icelandic Pelagic redfish catches are believed to have been from

the Deep stock (see table A.3).

In 1992 to 2010 almost 92% of Icelandic Beaked redfish catches were frozen at sea (see

table A.1) and over 98% of catches were harvested by vessels that had Pelagic Trawl (see table

A.2)1. Pelagic trawls are towed through the water above the sea floor but not along or close to

the sea floor as bottom trawls. While bottom trawling can cause destruction on the ocean bottom,

pelagic trawling usually does not. Thus, concerning the sea floor, pelagic trawls can be assumed

to produce less externalities than bottom trawls. Landings are not sold on local market for direct

consumption and only fresh landings are sold on local markets for processing. Exported landings

are mainly to markets in Germany, Japan and Russia (Jakobsdottir and Kristinsson, 2010).

Pelagic redfish is the most harvested species in the reduced sample, about 26.7% of total

catch and it’s value is 19.5% of the total catch value. The share of Pelagic redfish catches has

though decreased. Between 1992 and 2008 Pelagic redfish catches varied from 20% to 40% but

since then they have been lower, or 9% of total catches in 2008 to 2010.

A histogram of the proportion between each unit’s total annual operating expenses (Ci,t) and

catch value (Ri,t) in the years the biomass was estimated is shown in figure 2.5 and summarised

in table A.7. The median value is 0.93 while the mean is 1.15. This is simply because for some

units expenses are way higher than the value of catches. The 25th percentile is 0.88 and the 75th

percentile is 1.06.
1If the data from Statistics Iceland and Marine Research Institude is compared it seems like what Statistic

Iceland defines as Oceanic redfish is Shallow and Deep Pelagic redfish.
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Figure 2.5: Histogram of Ci,t/Ri,t, where Ci,t and Ri,t are each unit’s total annual operating ex-
penses and catch values.

Source: Statistics Iceland

The annual proportion between the fishery’s total operating expenses, CF,t, and total catch values,

RF,t, is shown in figure 2.6a and CF,t/RF,t is in figure 2.6b. The fishery’s total operating expenses

and it’s total catch values is in the range between e 34 million and e 190 million. Catch values

are higher than expenses in all years except 2004 and CF,t/RF,t is in the range between 0.80 and

1.02.
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Figure 2.6: The fishery’s total annual operating expenses, CF,t, catch values, RF,t, and CF,t/RF,t.

Source: Statistics Iceland
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3 Traditional modelling

3.1 The Traditional Model

The model defined is an aggregate bioeconomic model2. Let Xt denote biomass at the time t.

The biomass is the aggregate weight of the stock. The natural growth is defined as the change in

the biomass that is not due to harvest. For each period the natural growth is thus determined by

recruitment, weight gain or loss and mortality that is caused by other factors than fishing. Further,

the natural growth of biomass is described by the Fox function3(Fox, 1970) where growth is

determined by biomass

G(xt) ≡ a · Xt − b · Xt · log(Xt). (3.1)

Jensen (2005) refined the Fox function as

G(Xt) = rmax · Xt

(
log(K) − log(Xt)

)
− Qt · Xt,

where rmax is the intrinsic growth rate, K is the carrying capacity and Qt · Xt is meant to capture

environmental fluctuations. In equation (3.1) environmental fluctuations are not considered and

Jensen’s version may thus be refined as

G(Xt) = rmax · Xt

(
log(K) − log(Xt)

)
. (3.2)

2The bioeconomic model simply integrates biological and economic systems. It is said to be aggregate because
the fleet is treated as one individual.

3The following deraviation leading to equation (3.3) shows that if natural mortality (M) has been predetermined
only one variable, the carrying capacity (K), needs to be parameterised. Other growth functions were considered, for
instance the Logistic growth function. Parametrisation of other considered growth functions yielded values for K that
were outside it’s expected range. Therefore, the Fox function was chosen and K parameterised for predetermined
values of M taken from it’s expected range.

11



If natural factors change the carrying capacity can change and thus a function of time. However,

K is assumed to be a constant and thus the maximum level of biomass, so

0 ≤ X ≤ K.

When the biomass is at its maximum level the natural growth is zero, thus, G(K) = 0. Com-

paring equations (3.1) and (3.2) gives the following equalities, a = rmax · log(K) and b = rmax.

Furthermore, as shown in appendix A.1, in (3.1) rmax is equal to fishing mortality at maximum

sustainable harvest, FMS Y . Finally a proxy for FMS Y is natural mortality, M (Fox, 1970). Equa-

tion (3.1) may thus be refined as

G(Xt) = M · Xt ·

(
log(K) − log(Xt)

)
. (3.3)

Harvest may be described by the Cobb-Douglas production function (Cobb and Douglas, 1928)

Y(Et, Xt)t ≡ q · Eα
t · X

β
t , (3.4)

where E is fishing effort. The parameter q > 0 is referred to as the catchability coefficient

(Arnason et al., 2009) and α > 0 and β > 0 are the output elasticities of effort and biomass

respectively (Cobb and Douglas, 1928). The output elasticity of biomass, β, indicates the degree

of schooling behaviour by the stock (Arnason et al., 2009).

There is only one value of Y for each value of X that keeps X unchanged between t + 1 and t.

That is the value oft Y that is equal to the value of G. The biomass is said to be in a steady state

if it is unchanged between periods. Thus, the maximum sustainable yield (MSY) is equal to the

maximum level of natural growth.

Let Ẋt denote the change in biomass between t and t + 1. The change in biomass between
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period t and t + 1 is the difference between natural growth and harvest at time t

Ẋt ≡ Gt − Yt. (3.5)

Price, p, is assumed to be an exogenous variable. This will hold if catches from the concerned

stock do not affect the market price. For each period t to t + 1, the revenue of the fishery from

catches is the multiple of price and total harvest

R(Yt) ≡ p · Yt. (3.6)

For simplicity, fixed costs is not included and the cost of harvesting is assumed to be a linear

function of effort plus crew shares

C(Et,Yt) ≡ c0 · Et + s · p · Yt, (3.7)

where c0 > 0 is marginal variable cost excluding crew shares, and s is the proportion of revenues

dedicated to the crew. Isolating the effort in the definition of harvest in equation (3.4) gives the

following

E = q−1/α · X−β/α · Y1/α.

The cost (3.7) may thus be refined as

C(Xt,Yt) = c · X−β/α · Y1/α + s · p · Yt, (3.8)

where c = c0 · q−1/α. Now, c > 0 since c0, q > 0. The profit from fishing in the period between t
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and t + 1, is the difference between revenue and cost, Πt ≡ Rt −Ct, or

Π(Xt,Yt) = (1 − s) · p · Yt − c · X−β/α · Y1/α. (3.9)

3.2 The Objective

The objective must be defined before making an attempt to identify the optimal path of harvest.

The price of harvest is assumed to measure the marginal social benefits from consumption, Y .

The social benefit from harvests in each period of time is expressed as

B(Y) =

∫ Y

0
p(y)dy. (3.10)

This is consistent with Clark and Munro (1975). There are not assumed to be any externalities

from harvesting, or at least they are negligible. The consumer cost from harvesting is there-

for zero and the social cost equals the producers cost from harvesting, C(X,Y). The societies

dynamic utility function from harvesting may thus be addressed as

J =

∫ ∞

0

(
B(Y) −C(X,Y)

)
· exp(−r · t)dt. (3.11)

If demand for fish is perfectly elastic the social benefit from harvest can be refined as

B(Y) =

∫ Y

0
pdy

= p · Y,
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and society’s utility function becomes

J =

∫ ∞

0

(
p · Y −C(X,Y)

)
· exp(−r · t)dt

=

∫ ∞

0
Π(X,Y) · exp(−r · t)dt, (3.12)

where Π(X,Y) is the instantaneous profit from harvesting. This is consistent with the Gordon

(1954), Scott (1955) and Clark and Munro (1975). The aim is to find optimal steady state solu-

tions and optimal paths to that solutions. The equilibrium solution of an optimal control problem

with the objective functional J in equation (3.12) is referred to as the optimal equilibrium (OE).

Arnason, Roy, and Schrank (2008) emphasise that fisheries and other natural resources can

easily constitute base industries. The contribution of base industries to GDP play a greater role

in overall economic activity than measured by their value added to GDP because of multiplier

effects. As a result profitable fisheries are a stimulus for higher economic growth. So even

though the demand for fish is not perfectly elastic, societies and producers interest may perfectly

coincide (Arnason et al., 2008).

3.3 The Analytical Solution

The task is to find a path of harvest, Y , that leads to a steady state that maximises the present value

of profits. Functions that describe the optimal dynamic solution can be found analytically with

optimal control theory. The case when the harvest, Y , is the control variable and the biomass,

X, is the state variable is analysed. The objective is to maximise the present value of profits,

formally (Kamien and Schwartz, 1991)

max
{Yt}

J =

∫ ∞

0
Π(Yt, Xt) · exp(−r · t)dt, (3.13a)
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with the constraints

Ẋ = G − Y, , (3.13b)

Yt ∈ [0, Ȳt]. (3.13c)

Here, Ȳt, is an upper constraint on the harvest, either Xt or maximum capacity of the fishery. The

current value Hamiltonian (Kamien and Schwartz, 1991) of the problem is

H(Yt, Xt, t) = λ0 · Π(Yt, Xt) + λt · (G(Xt) − Yt),

where λ0 and λt are Lagrange multipliers. Further λt represents the shadow value of biomass at

time t, λt = ∂J/∂Xt.

The Pontryagin Maximum Principle (Pontryagin et al., 1962) gives conditions that a path of

the control and state variable of an optimal control problem must satisfy to be optimal. Among

these necessary conditions are (Kamien and Schwartz, 1991):

(i) λ0 is a constant, 0 or 1 for all t, λ is a continuous function of time and λ0 and λ are not both

0, (λ0, λ) , 0.

(ii) Y maximisesH for allt t.

(iii) λ̇ − r · λ = −HX.

According to condition (ii),

Yt =


0, ifHY < 0 for all Yt ∈ [0, Ȳt]

Ȳt, ifHY > 0 for all Yt ∈ [0, Ȳt]
(3.14)

If neither of the conditions in (3.14) hold then Yt is determined by HY = 0. Now, if HY = 0 for
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some Y ∈ [0, Ȳt] then

λ0 · ΠY = λ.

If λ0 = 0 then it must hold that λ = 0. Thus, by condition (i) λ0 = 1 and

λ = ΠY . (3.15)

By combining neccesary condition (iii) and equations (3.15) and (3.14) an optimal adjustment

path is achieved

Yt = 0, if GX + ΠX
ΠY

+ λ̇
λ
< r for all Yt ∈ [0, Ȳt],

Yt = Ȳt, if GX + ΠX
ΠY

+ λ̇
λ
> r for all Yt ∈ [0, Ȳt],

GX +
ΠX

ΠY
+
λ̇

λ
= r, else .

The steady state when λ̇ = 0, is perfectly described by the following

Y = 0, if GX + ΠX
ΠY
< r all Y ∈ [0,K] and G = 0,

Y = Ȳ , if GX + ΠX
ΠY
> r for all Y ∈ [0,K] and G = 0,

Y = G and GX +
ΠX

ΠY
= r, else.

The last two equalities

GX +
ΠX

ΠY
= r, (3.16a)

Y = G, (3.16b)

can be analysed further. Equation (3.16b) simply says that harvest should be equal to the natural

growth. Equation (3.16a) can be thought of as a modification of the golden-rule equilibrium
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equation. Clark and Munro (1980) called the left side of equation (3.16a) the resources own

rate of interest. Equation (3.16a) thus states that at the optimum, the owners rate of return of

the resource is equal to the rate of discount. The resources own rate of interest quantifies the

owners rate of return of the resource at steady state. The first component, GX, is the instantanous

marginal product of the stock. The other component of the resources own rate of interest, ΠX/ΠY

is called the marginal stock effect (Clark and Munro, 1975). The marginal stock effect quantifies

the marginal value of biomass relatively to the marginal value of harvest. The rate of discount is

opportunity cost of managing the resource (Baumol, 1968; Arrow, 1999). The owner should thus

harvest at a rate such that the rate of return from the resource is equal to the next best investment

alternative. If equation (3.16a) is applied to the model defined in section 3.1 then

ΠX = c · β · α−1 · X−β/α−1 · Y1/α, (3.17)

ΠY = (1 − s) · p − c · α−1 · X−β/α · Y1/α−1, (3.18)

GX = M · (log(K) − log(X) − 1). (3.19)

Existence and sufficiency are discussed in appendixes A.2 and A.3. Given the assumptions

in section 3.1 and that X > 0 and α ≤ 1 so that the optimal path exists, along with if the steady

state is uniquely determined by 3.16, an approximated optimal path from the initial state to the

optimal equilibrium will be an approximation of the optimal path
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4 Modelling with uncertainty

4.1 The Model Extendend

Many components of the model are uncertain. Thus, some parameters will be given distributions

instead of specific values. These parameters are, M̃, K̃, α̃, c̃, p̃ and r̃, where the tilde indicates that

the parameters now follows a distribution instead of taking one particular value. The distributions

of price, p̃, and discount rate, r̃, are assumed to be independent. However, the distribution of α̃

is used in the estimation of c̃ and the distribution of M̃ is used when K̃ is generated. These

distributions are thus not independently distributed. Therefore, for each i, the pares (α̃i, c̃i) and

(M̃i, K̃i) are stored. If the parameters that are given predetermined distributions are believed to

lie in a specific range, but no value in that range believed to be the most probable, they will be

given an uniform distribution

The path of harvest that maximises the expected present value from the fishery will not be

found. If the goal is to find that path, the distributions of the variables discussed later in section

4.2 would need to be analysed properly since the distributions will probably have a major effect

on the path that optimises the expected value. However, if the parameters are thought to be in the

range of the distributions discussed in section 4.2, even though the shape of the distribution is

not sufficiently precise, given the other model assumptions, the true optimal path may lie within

the range of the 1000 paths.

There is large uncertainty concerning the biology of the system. Neither the carrying capacity,

K, or the mortality, M, of the specific stock has been estimated. The growth function is made

uncertain by adding distributions to K and M. Equation (3.3) is thus refined as

G̃(Xt) = M̃ · Xt ·

(
log(K̃) − log(Xt)

)
. (4.1)

The statistical properties of M̃ and K̃ will be discussed in section 4.2.4. By adding predetermined
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uniform distribution to M̃ the distribution of K̃ will be generated with numerical minimisation.

Since data on effort is lacking, biomass estimates are scarce and harvests are misreported, it

is difficult to estimate the production function. The production function (3.4) becomes uncertain

through the output elasticity, α̃

Ỹ(Et, Xt) = q · Eα̃
t · X

β
t . (4.2)

The uncertain output elasticity α̃ is assumed to follow uniform distribution, further discussed

and justified in section 4.2.3. By combining equations (4.1) and (4.2), the development of the

biomass defined by equation (3.5) may be refined as

˙̃Xt = G̃t − Ỹt. (4.3)

The same limitations plus deficiencies on cost data make estimations of the cost equation (3.8)

difficult to define. This is taken into account by adding distributions to the parameter, c, in the

cost equation (3.8). The distribution of c̃ will then be generated by estimations in section 4.2.3

and price becomes uncertain, p̃, by giving it normal distribution in section 4.2.1 The profit in

equation (3.9) may then be refined as

Π̃(Xt, Ỹt) = (1 − s) · p̃ · Ỹt − c̃ · X−β/α̃ · Ỹ1/α̃. (4.4)

Finally, society’s discount value, r, is not clear and may change. The discount value both

affects the optimal equilibrium and the optimal path to the equilibrium. The distribution of the

uncertain discount rate r̃ will be formed with the justification of a number of references in section

4.2.2. The formal problem (3.13) can now be restated. As mentioned above, the expected present

value will not be optimised. However, for each set of parameters (K̃i, M̃i, α̃i, c̃i, p̃i, r̃i) the present
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value of the fishery is maximised

max
{Yt}

J =

∫ ∞

0
Π̃i(Xt, Ỹt) · exp(−r̃i · t)dt, (4.5a)

where Π̃i(Xt, Ỹt) = (1 − s) · p̃i · Ỹi,t − c̃i · X−β/α̃i · Ỹ1/α̃i
i,t , with the constraints

˙̃X = G̃i − Ỹi, (4.5b)

Ỹt ∈ [0, Ȳt], (4.5c)

X̃0 = X̄. (4.5d)

where X̄ is some fixed, current value of biomass.

4.2 Parametrisation

4.2.1 Price

Figure 4.1 shows Icelandic vessels average price of Pelagic redfish catches in 1992 to 2010 and

the demersal catch index in 1997 to 2010.
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Figure 4.1: Average price of Pelagic redfish catches and demersal catch index.

Source: Statistics Iceland

There seems to been an upward trend in both prices of Pelagic redfish as well as in overall

demersal catches. Since 1992 price has almost tripled. In 1992 price was slightly over e 0.6

per kg but in 2010 the price was approximately e 1.5 per kg. What matters here is how price is

relative to cost. To estimate a trend for cost and price is outside the scope of this text. Price in

the model will be normally distributed with a mean of e 1.50 per kg and a standard deviation of

e 0.35 per kg, formally

p̃ ∼ N(e 1.50 per kg, e 0.35 per kg). (4.6)

4.2.2 Discount Rate

When choosing the optimal path of harvest one has to compare the benefits and costs of actions

that takes place at different times. This comparison may be implemented by the use of a discount

rate. Baumol (1965) argued that the use of an incorrect estimate of the discount value might lead
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to very serious misallocation of resources. Further, Koopmans (1965) described how he found

the problem of optimal growth so complex that one should not make a priori choice of discount

rate before knowing the effects of alternative choices.

In the economic literature the appropriate discount rate for public projects is argued to be

the one which measures the social opportunity cost (Baumol, 1968; Arrow, 1999). However, to

measure the social opportunity cost is neither an easy nor undisputed task. Baumol (1968) argued

that what should be considered, is the welfare loss from not having these instantaneous benefits in

the form of consumption or reinvestment and a premium due to risk. According to Arrow (1999)

the discount rate quantifies societies concerns about intergenerational equity, expectations about

growth of income.

The Ramsey equation, derived in appendix A.4, describes the rate of return on capital in

welfare optimum, formally

r = δ + η · g, (4.7)

where r is the equilibrium real return on capital, δ represents pure time preference, η quantifies

elasticity of the marginal utility of consumption and g is the growth rate of consumption per

generation (Norhaus, 2007; Stern, 2007; Weitzman, 2007). All the variables in equation (4.7)

may vary between, time, individuals and nations. The pure time preference (δ) and the marginal

elasticity (η) describe controversial preferences while g may be easier to measure with empirical

observations (Weitzman, 2007). Further, η measures at what rate the marginal utility from con-

sumption declines with increasing consumption (Arrow et al., 1996) coupled with risk aversion

(Weitzman, 2007). Thus, the more important equity between generations, the higher the value of

η will be (Arrow et al., 1996)

Ramsey was the first economist to address the idea of the pure time preference in his classic

paper A Mathematical Theory of Saving published in 1928. In his paper, Ramsey argues that in
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a social context, by moral reasons, the pure time preference should be zero. This was the gen-

eral view in texts published the following years and decades.(Pigou, 1946; Harrod, 1948; Solow,

1974). Further research on the topic led to arguments for positive values. Both Koopmans (1965)

and Mirrlees (1967), claimed that no time preference would lead to very low levels of consump-

tion. With the same emphasis, Arrow (1999) has explained that by weighting all generations

welfare equally would imply very high savings on the present generation. He states that the pure

rate of time preference, with prejudice, should be 1%, which is the same value Stern (2007) used.

However, Stern’s argument for using positive value is because of the probability of extinction.

Other suggestions have been in the range 0% to 2% (Weitzman, 2007). The distribution of δ in

the following simulations will be uniformly distributed between 0% and 2%, or

δ ∼ U(0%, 2%). (4.8)

Attempts to estimate η indicate a range of values. In his controversial paper about climate

change, Stern (2007) used the value η = 1. Arrow et al. (1996) point out that there seems to be an

harmony about η being in the range of 1 and 2. This is consistent with Fellner (1967) and Scott

(1989) who estimated η to be about 1.5. Wietzman (2007) suggest using higher values, in the

range of 2 to 3 while others suggest using even lower values. Estimates for the United Kingdom

indicated that it should be in the range between 0.8 and 0.9 (Pearce and Ulph, 1995). This is not

far from Brent’s (1994) suggestion of using η between 0 and 1 with 0.5 as a benchmark. With

this in mind a uniform distribution is chosen for η in the range of 0.5 to 2.5, that is

η ∼ U(0.5, 2.5). (4.9)

The growth rate of consumption is generally based on empirical observations of actual con-

sumption growth. Many studies have suggested a value of 2% per year (Arrow, 1999; Baumol,

1968; Weitzman, 2007; Prescott, 2002). Stern (2007) was more pessimistic than his colleagues
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using g = 1.3%. Here, g will be normally distributed with a mean of g = 2% per year and a

standard deviation of σg = 0.25% per year, formally

g ∼ N(2% per year, 0.25% per year). (4.10)

The distribution of the discount rate is generated by taking 1000 combinations (δ̃i, η̃i, g̃i)

from the distributions described in equations (4.8), (4.9) and (4.10) and from each combination

forming the relevant discount rate described in equation (4.7). The histogram of r̃ is shown in

figure 4.2 and summarised in table 4.1. The median value of r̃ is 3.93% while its mean is 4%.

Further, 25% of r̃ are lower than 2.96% and other 25% are greater than 4.99%.
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Figure 4.2: Histogram of r̃.
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Table 4.1: Summary of the uncertain appropriate discount rate, r̃.

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.15 3 3.88 3.96 4.96 7.45

4.2.3 The Cost Function

The cost function depends on both the output elasticity of effort (α) and output elasticity of

biomass (β). Empirical studies indicate that the value of output elasticity of biomass is close to

0.5 in for miscellaneous pelagic fishes (Arnason et al., 2009). The value of β is thus fixed as

0.5, implying declining returns to stock size. Studies further indicate that the output elasticity of

effort is often close to unity. Hence, α̃ will be uniformly distributed between 0.8 and 1.0

α̃ ∼ U(0.8, 1.0). (4.11)

The median value of shares as proportion of total catch value in the sample is 37% while the

mean value is 40% (see table 4.2). The proportion of shares is fixed as, s = 0.4.

Table 4.2: Summary of crew share, s.

Source: Statistics Iceland

Min. 1st Qu. Median Mean 3rd Qu. Max.

0 0.34 0.37 0.4 0.4 2

Let the proportion between each unit’s annual pelagic redfish catch, Yi,t, and total catch, YT
i,t,
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be denoted as

κ ≡
Yi,t

YT
i,t

(4.12)

In an attempt to quantify the solely cost of pelagic redfish harvesting the following equation is

estimated

Ci,t

Ri,t
=

CF,t

RF,t
· exp(θt · κ). (4.13)

Here Ci,t and Ri,t represent each unit’s total annual cost and revenue, while CF,t and RF,t are the

fisherie’s total total annual cost and revenue. Note that if κ = 1, then

Ct = Rt ·
CF,t

RF,t
· exp(θt),

where Ct and Rt are the cost and revenues from harvesting pelagic redfish. The least squares

estimation of (4.13) is summarised in table 4.3. All p-values are relatively high indicating that

the estimates are not statistically significant.

Table 4.3: Summary of θ̂t.

Year θ̂t σ̂θt p-value

1 1999 0.10 0.07 0.21

2 2001 −0.02 0.11 0.86

3 2003 −0.02 0.10 0.81

4 2009 −0.01 0.04 0.89

Now, for each j = 1, . . . , 1000, a pseudo value for cost of pelagic redfish harvesting is gener-
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ated by

C̃ j,t = Rt ·
CF,t

RF,t
· exp(θ̃ j,t · κ),

θ̃t ∼ N(θ̂t, σ̂θt),

For each value of C̃ j,t a value for c̃ j is generated by the ordinary least squares (OLS) estimation

of

C̃ j − s · Rt = c̃ j · X̂−β/α j · Y1/α j , (4.14)

The distribution of c̃ is show in figure 4.3. The median value of c̃ is 11.33 and it’s first and third

quartiles are 10.58 and 12.11.
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Figure 4.3: Histogram of c̃, the uncertain parameter in the cost function.
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Table 4.4: Summary of c̃.

Min. 1st Qu. Median Mean 3rd Qu. Max.

8.18 10.58 11.33 11.37 12.11 14.91

The distribution of the p-values from the OLS estimation of (4.14) is shown in figure 4.4a

and listed in table A.13. The maximum value of the p-values is 0.052. Thus, all estimates of c̃

are statistically significant at the a significance level of 0.052. The corresponding distribution of

the coefficient of determination, R2, is shown in figure 4.4b and listed in table A.14. The first

quartile is 0.93 while the third is 0.98. However, the values regressed, C̃ were generated. Thus,

low p-values and high values of R2 do not necessarily say anything about the real harvesting cost

of the Deep Stock as a function of biomass and harvest.

p−value

F
re

qu
en

cy

0.00 0.01 0.02 0.03 0.04 0.05

0
10

0
20

0
30

0
40

0
50

0
60

0

(a)

R2

F
re

qu
en

cy

0.70 0.75 0.80 0.85 0.90 0.95 1.00

0
50

10
0

15
0

20
0

(b)

Figure 4.4: Histogram of p-values and R2 from the estimation of c̃.
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4.2.4 The Growth Function

The growth function, (4.1) consists of one variable and two parameters. The variable is the

relevant stock size and the parameters are the carrying capacity (K̃) and the natural mortality

(M̃). The natural mortality is unknown but probably between 0.05 and 0.1(Jakobsdottir and

Kristinsson, 2010). Thus, M̃ will be uniformly distributed in the interval [0.05,0.10], formally

M̃ ∼ U(0.05, 0.10). (4.15)

To determine the distribution of K̃, a thousand simulations of the fishery are carried out, with the

corresponding values of M̃ determined by (4.15). For each case, i, initial biomass is K̃i. In each

simulation the value of K̃i is determined by minimising the sum of squares between the simulated

biomass Xt and the estimated values of biomass, X̂t, written as

min
K̃i

∑
t

(X̂t − Xt) for all i and relevant t. (4.16)

Simulations are carried out for three different cases. In case 1 all the biomass assessments are

used. In case 2 the biomass estimate in 1999 is assumed to be underestimated and consequently

left out, whereas in case 3 the biomass estimate in 2001 is assumed to be overestimated. The

distribution of K̃ is then determined by taking 334 values from case 1 and 333 from case 2 and

3. A histogram of K̃ is shown in figure 4.5 and summarised in table 4.5.
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Figure 4.5: Histogram of K̃, the uncertain carrying capacity.

Table 4.5: Summary of the uncertain carrying capacity, K̃.

Min. 1st Qu. Median Mean 3rd Qu. Max.

1180 1267 1317 1321 1368 1480

If the smallest and largest 25% of K̃ are excluded then the rest is distributed in the range between

1267 and 1368 thousand tonnes. Further, the median value of K̃ is 1317 thousand tonnes. By the

definition of the model (see equation (3.5)), each year the carrying capacity should be equal to

the sum of the current biomass and the natural growth since harvesting began minus the sum of

harvest from the beginning of the fishery. If the initial year is denoted as t = 0 and the current
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year as t = κ then

K = xκ +

κ−1∑
t=0

(yt −Gt).

Thus, given that Gt > 0 for all t then

K < xκ +

κ−1∑
t=0

yt. (4.17)

Hence, the carrying capacity should be less than the sum of the current level of biomass and

catches from the beginning of the fishery. The sum on the right side of < in equation (4.17) is

for all years the biomass was estimated greater than the values in the distribution of K̃, except

for 1999. The specific sums are 969.6, 1706.9, 1518.1, 1695.7 and 1827.2 thousand tonnes

respectively for the years estimated.
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Figure 4.6: Simulation of biomass with the parametrised natural mortality, M̃, and carrying
capacity, K̃.

Simulations of the biomass with the corresponding distributions of M̃ and K̃ are shown in
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figure 4.6. The red dotted lines represent the 5th, 50th and 95th percentiles of biomass value.

The interval between the 5th and the 95th percentile is referred to as the 90% interval. The black

squares are the point estimates of biomass and the white squares represent the 20% interval (±

10%) around the point estimate. The point estimates of the biomass estimates in 2003, 2009 and

2011 are included in the 90% interval of the simulations. However, neither the point estimates

or their 20% intervals are included in the 90% interval of the simulations in 1999 and 2001.
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5 Harvesting Policy

5.1 Equilibrium Solutions

From the distributions of the six parameters (p̃, r̃, α̃, c̃, M̃ and K̃) that were parametrised in

section 4.2, 1000 random combinations are picked and the MSY and OE steady state solutions

for each combination calculated. The interval between the 5th and 95th percentile is called the

50% range while the one between the 25th and 75th percentile is called the 90% range.

Histograms of the optimal biomass equilibrium, XOE, and the biomass equilibrium corre-

sponding to MSY, XMS Y , are shown in figures 5.1a and 5.1b, and a histogram of XOE/XMS Y is

in figure 5.1c. The optimal biomass equilibrium, XOE, ranges from being almost the same size

to 1.43 times as large as XMS Y (see table 5.1). Therefore, a harvesting policy leading to the OE

equilibrium would be more effective than one leading to the MSY equilibrium, in avoiding risk

of collapse of the stock or prolonged depression.

The 90% and 50% ranges for XOE are [480, 702] thousand tonnes and [562, 636] thousand

tonnes respectively, while XMS Y’s 90% and 50% ranges are [444, 535] thousand tonnes and [466,

503] thousand tonnes. The biomass estimate in 2011, 475 thousand tonnes, is inside XMS Y’s 50%

range and XOE’s 90% range, but the median value of XMS Y is 485 thousand tonnes, making it 10

thousand tonnes larger than the 2011 estimate.
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Figure 5.1: Histograms of the optimal equilibrium of biomass (XOE), biomass equilibrium corre-
sponding to MS Y (XMS Y) and their proportion (XOE/XMS Y).

Table 5.1: Equilibrium solutions for biomass in thousand tonnes.

X OE MS Y OE/MS Y

5% 480 444 1.00

25% 562 466 1.17

50% 598 485 1.23

75% 636 503 1.30

95% 702 535 1.43

Considering harvesting policy it is useful to realise how the distributions of the corresponding

equilibrium values of harvest, YOE and YMS Y , look like. Their histograms are shown in figures

5.2a and 5.2b, as well as a histogram of YOE/MS Y in figure 5.2c. The optimal equilibrium

harvest, YOE, ranges from being almost the same size to about 92% of MSY. The 90% range for

YOE is [26, 44] while MS Y’s 90% range is [27, 45] thousand tonnes. However, the 50% range for

YOE spans only 9 thousand tonnes, [30, 39] thousand tonnes, while MS Y’s range is a thousand

tonnes bigger, or [31, 41] thousand tonnes (see table 5.2). Reported catches in 2010 were 62
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thousand tonnes, more 1.7 times bigger than the median values of YOE, 36 thousand tonnes, and

MSY, 34 thousand tonnes.
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Figure 5.2: Histograms of the optimal equilibrium of harvest (YOE), maximum sustainable
yield,MS Y , and and their proportion (YOE/MS Y).

Table 5.2: Equilibrium solutions for harvest in thousand tonnes.

Y OE MS Y OE/MS Y

5% 26 27 0.92

25% 30 31 0.96

50% 34 36 0.97

75% 39 41 0.99

95% 44 45 1.00

The instantaneous profit, Π, in the optimal equilibrium, ΠOE, is in all instances higher than

instantaneous profits in the MSY equilibrium, ΠMS Y even though it is in some cases almost the

same. In addition, the median value of the difference between ΠOE and ΠMS Y is e 2.0 million

(see table 5.3). Part of the MSY equilibrium yields negative profits, with 5% yielding e -0.2

million or less. However, the 50% range for ΠMS Y is [6.8, 17.4] emillion, while ΠOE’s 50%
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range is [9.2, 19.0] emillion.
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Figure 5.3: Histograms of the optimal equilibrium of instantaneous profits (ΠOE), equilibrium of
instantaneous profits corresponding to MS Y (ΠMS Y) and their difference (ΠOE − ΠMS Y).

Table 5.3: Equilibrium solutions for instantaneous profits in EURmillion.

Π OE MS Y OE − MS Y

5% 3.6 −0.2 0.00

25% 9.2 6.8 1.20

50% 13.9 12.1 1.97

75% 19.0 17.4 2.85

95% 27.0 25.5 4.58

5.2 Optimal Paths

The main concern is not the instantaneous profit, Π, in equilibrium but the present value, PV ,

that the path to relevant equilibrium yields. For the sake of simplicity the optimal path to the OE

equilibrium is called the optimal path while the optimal path to the MS Y equilibrium is called

the MS Y path. The objective is to find the optimal path of harvest for each set of parameters and
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interpret the corresponding distributions. For each case i, the value of harvest is defined by the

feedback-rule

Y = ω̃1,i · X + ω̃2,i · X2, (5.1)

and the goal is to optimise numerically

max
ω̃1,i,ω̃2,i

J =

∫ T

0
Π(Xt; ω̃i,1, ω̃i,2) · exp(−ri · t)dt, (5.2a)

with the constraints

˙̃X = G̃ − Y, (5.2b)

Yt ∈ [0, Ȳt], (5.2c)

Y∗ = ω̃1,i · X∗ + ω̃2,i · X∗2, (5.2d)

where Y∗ and X∗ represent the relevant equilibrium values, OE or MSY, of harvest and biomass.

Since the objective function is optimised numerically, ∞ is replaced with some terminal time T .

By choosing sufficiently large T this should not affect the outcome. The cases where ΠMS Y < 0

are excluded for two reasons. First, it is odd to maximise the present value of the fishery to

a steady state that yields negative instantaneous profit. Second, some might argue that it is

highly unlikely that the MSY equilibrium yields negative instantaneous profit. Since the newest

numbers on harvest in the dataset are from 2010, the initial year is chosen to be 2011.

The optimal time paths of biomass to the OE and MSY equilibrium are shown in figure

5.4. The red dotted lines represent the 5th and 95th percentiles, while the green broken lines

represent the 25th and 75 percentiles and the black lines the median values. Since the current

value of biomass is most likely closer to the MSY value than the OE value, the MSY paths are

flatter. In some cases the current value of biomass is even greater than the MSY value and the
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decreases (see figure 5.4b). The optimal path of biomass to the OE equilibrium is in more than

95% of the cases increasing, but the steepness depends on the corresponding OE equilibrium

values.
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Figure 5.4: Optimal paths of biomass to the optimal equilibrim (OE) and the equilibrium corre-
sponding to the maximum sustainable yield (MSY).

The paths of harvest, the control variable, to the two equilibrium are shown in figure 5.5. The

optimal paths are shown in figure 5.5a. In all instances the optimal path to the OE equilibrium is

increasing. The optimal paths of harvest to the MSY, are as in the case of biomass, flatter than

the optimal paths. Leaving some paths increasing while others are decreasing (see figure 5.5b).
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Figure 5.5: Optimal paths of harvest to the optimal equilibrim (OE) and maximum sustainable
yield (MSY).

As shown in figure 5.6a the optimal path of harvest yields relatively low instantaneous profits

to begin with. The time paths of instantaneous profits, Π, to the MSY equilibrium are relatively

flatter than those to the OE equilibrium since the current value of biomass is most likely closer

to the MSY equilibrium value (see figure 5.6b). In some cases the path of Π to MSY is even

decreasing. Equilibrium in the fishery is defined to be present when |Π∗ − Πt| < e 0.05 million,

where Π∗ is the relevant equilibrium value of instantaneous profit. In all cases it takes longer

time (T ∗) to reach the OE equilibrium with median value of the difference of 19 years (see table

A.15). This is simply because the fishery is believed to be further away from the OE equilibrium

than the MSY equilibrium. In 50% of the cases it takes longer than 32 years to reach the OE

equilibrium while only 14 years to reach the MSY equilibrium.
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Figure 5.6: Optimal paths of instantaneous profit to the optimal equilibrim (OE) and the equilib-
rium corresponding to the maximum sustainable yield (MSY).

Histograms of the present values from the paths to the two equilibriums and their difference is

shown in figure 5.7. The present value from the optimal paths, PVOE, are in all cases higher than

from the MSY paths, PVMS Y , with a median value difference of e 26.4 million. The 90% range

for the difference is [0.0, 116.5] emillion and the 50% range is [5.4, 54.8] emillion. Therefore,

in 75% of the cases the optimal path yields a present value of profits that is at least e 5.4 million

greater than the present value of profits from the MSY path. Further, the 50% range for PVOE

and PVMS Y are [218.3, 515.8] emillion and [183.1, 489.0] emillion respectively.
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Figure 5.7: Histograms of present value of profits yielding from the optimal paths,PVOE, present
value of profits yielding from the optimal paths to the MSY equilibrium, PVMS Y and their differ-
ence PVOE − PVMS Y .

Table 5.4: Solutions for PV

PV OE MS Y OE − MS Y

5% 110.9 60.2 0.0

25% 218.3 183.1 5.4

50% 341.2 318.2 26.4

75% 515.8 489.0 54.8

95% 915.0 876.4 116.5

5.3 Comparison and Practical Value

In 2011 the NEAFC decided the total annual catch from the stock till 2014 (Sigurdsson and

Magnusson, 2011). The total annual catch in 2011 should sum up to 38 thousand tonnes, but

then decrease by 6 thousand tonnes per year till 2014 when total annual catches will be 20

thousand tonnes. These values of TAC can be compared with the values from feedback-rule

promoted in section 5.2. Table 5.5 shows the 5th, 25th, 50th, 75th and 95th percentiles of the
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optimal harvest from 2011 to 2014 as well as the NEAFC recommendation. The path of the TAC

recommended by the NEAFC is decreasing while the optimal path is in over 95& of the cases

increasing. Further, the NEAFC recommendation for catches in 2011 equates 95th percentile of

the optimal path, and is 1.6 times greater than the median value of the optimal path (18 thousand

tonnes). In 2012 the NEAFC recommendation is less than the 75th percentile of the optimal

path, but is still more than 50% higher than the median value of 24 thousand tonnes. In 2013 the

NEAFC recommendation is thousand tonnes less than the 50th percentile of the optimal path,

and thousand tonnes lower than the 25th percentile in 2014.

Table 5.5: Distribution of feedback rule in 2011 to 2014 and NEAFC recommendation in thou-
sand tonnes.

Year 5% 25% 50% 75% 95% NEAFC

2011 7 18 23 29 38 38

2012 10 19 24 30 37 32

2013 14 20 25 31 38 26

2014 16 21 27 32 39 20

As mentioned above, the NEAFC recommendations for the TAC is greater than the 75th per-

centile values of the optimal paths till 2013. This means that if harvests will be as recommended

by the NEAFC through 2013, the value of biomass in 2014 will most likely be lower than it

would be if the TAC was decided each year by the median value of the optimal paths. The op-

timal path is an increasing function of biomass, so even though the NEAFC recommendation in

2014 is lower than the 25 percentile of the optimal path, in the same year, the true optimal value

may be larger than the true optimal value.

The annual 90% and 50% ranges of harvest by the feed-back rule are shown in table 5.6. The

90% range is decreasing from year to year varying from being 23 to 35 thousand tonnes while
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the 50% range is 11 thousand tonnes in all years, from 2011 to 2014.

Table 5.6: Annual range of the feedback rules in 2011 to 2014 in thousand tonnes.

Year 5% to 95% 25% to 75%

2011 31 11

2012 27 11

2013 24 11

2014 23 11

The ranges in table 5.6 can be put into context by comparing them with their median values.

Table 5.7 shows the ranges from table 5.6 divided by the corresponding median values. Both

proportions are decreasing from year to year. The 90% ranges vary from being 85% of the

median value to 1.52 times greater. However, the 50% ranges are in all cases smaller than the

median values. Varying from being 41% to 49% of the median values.

Table 5.7: Range of feedback rule range divided by median value.

Year 5% to 95% 25% to 75%

2011 1.35 0.48

2012 1.11 0.45

2013 0.94 0.43

2014 0.87 0.41
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6 Conclusions

The present values of profits from the optimal paths are in all cases greater than present values

from the MSY paths. The difference has a median value of e 26.4 million and its 50% range

is [5.4, 54.8] emillion. The optimal path to the MSY equilibrium should yield higher present

values of profits than all other paths to the MSY equilibrium. Thus, an even greater difference

might be expected if the present values of profits from the optimal OE paths would be compared

with present values of profits from catch rules aiming for the MSY equilibrium. Further, XOE

is in all cases greater than XMS Y . Therefore, a harvesting policy leading to the OE equilibrium

would be more effective than one leading to the MSY equilibrium, in avoiding risk of collapse

of the stock or prolonged depression.

Various components of the model might be refined. All parameters distributions and values

could be analysed further. The carrying capacity, K, and the natural mortality, M, both affect

the OE and the MEY equilibrium. Thus, even though their value were under- or overestimated

the effect might have consistent effects on both equilibrium. Other parameters only affect the

OE equilibrium. The parameter, c̃, in the cost function of pelagic redfish harvesting could have

been estimated differently. One way would be to estimate a cost function were total cost would

be a function of total, but separated, harvests and the corresponding biomass. Further, the types

of cost and growth functions were chosen with simplicity in mind. There are certainly some

fixed costs in the fishery, and harvesting costs might not linear in effort. As well, the growth

might be better described by some other function than the Fox function. However, even though

parameters or functions do not perfectly reflect the fishery in reality, the model may be used to

map the relative outcomes of different harvesting policies.

Reaching an desirable equilibrium will not happen over a night. The worse the condition

of the stock and the lower the natural mortality, the longer time it takes to reach both the OE

and MSY equilibrium. In the model presented in this essay the time it takes to reach the OE
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equilibrium with the optimal paths ranges from being 9 to 50 years. Thus, if the stock will be

further researched, conditions for harvesting policies might change on the way to the equilibrium.

Therefore, even though uncertainty concerning the stock may be considered high, it is important

do define the objective of managing the stock.

The NEAFC recommended TAC path is quite different from the optimal path. The optimal

path of harvest increases with biomass. The biomass assessment in 2011 and the model indicate

that biomass in 2011 was lower than the optimal equilibrium value. Thus, if the aim is to achieve

the optimal equilibrium, the optimal path of harvest in 2011 to 2014 should increase from year

to year. However, the TAC recommended by the NEAFC for the same period is decreasing from

year to year. Between 2011 and 2014 the TAC will change from 36 to 20 thousand tonnes. If

the model used with its distributions of parameters is believed to describe the fishery then the

discussion in section 5.2 indicates that the TAC should initially be lower and increasing from

year to year. However, since there is no catch rule in use and catches only recommended until

2014 it is very difficult, or even impossible, to quantify how badly the NEAFC recommendations

will perform compared to the optimal path in terms of present value of profits.

The model might be used as a gauge for harvesting policies for fisheries with a high degree

of uncertainty. This is argued because of two reasons. The first being that at least in one year

NEAFC recommendations equates the 95th percentile of optimal harvest. Therefore, if some of

the 1000 combinations of parameters used in our model can be used to describe the real fishery,

it demonstrates that the recommended TAC in 2011 is likely to high. The second being that the

addressed model addressed strongly indicates that the optimal path of harvests is increasing but

not decreasing as the NEAFC recommendation proposes.
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Appendix

A.1 Intrinsic growth rate

Note that

GX = rmax · (log(K) − log(X) − 1).

Thus, at MSY when GX = 0, the following holds

GX = rmax · (log(K) − log(XMS Y)).

Multiplying both sides with XMS Y gives

rmax · XMS Y = rmax · XMS Y · (log(K) − log(XMS Y)) = G(XMS Y)

Therefore,

rmax =
G(XMS Y)

XMS Y
. (A.1)

Fishing mortality, F, is defined by

Y = F · X.

Since at MSY, Y = G(MS Y), this means that, G(MS Y) = FMS Y · XMS Y . Therefore

FMS Y =
G(XMS Y)

XMS Y
. (A.2)
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Combining equations (A.1) and (A.2) shows that

rmax = FMS Y .

A.2 Existence

The Pontryagin Maximum Principle only gives necessary conditions for the optimal path. It

is possible that there is no optimal path. However, if the objective function, Π · exp(−r · t)

is concave in Y , the state equation, Ẋ is linear in Y and both are continous and bounded with

bounded derivatives then the optimal path exists (Kamien and Schwartz, 1991; Cesari, 1966).

Now, Ẋ is linear in Y (see equation (3.5)). Both Ẋ and Π ·exp(−r · t) are continuous and bounded,

given that X > 0 (see equation (3.9)). Further, ẊX = GX and ẊY = −1. Thus, as long as X > 0,

the derivatives of Π · exp(−r · t) and Y are bounded (see equations (3.17), (3.18) and (3.19)). At

last

ΠYY = c · α−1 · (1 − α−1) · X−β/α · Y1/α−2.

First, since X,Y ≥ 0 then X−β/α · Y1/α−2 ≥ 0. Second, c > 0 so assuming that 0 < α ≤ 1 provides

that c · α−1 · (1 − α−1) ≤ 0 and ΠYY ≤ 0. Thus, given the previous assumptions, Π · exp(−r · t)

is concave in Y assuming that α ≤ 1. Given the following arguments, the optimal path exists as

long as X > 0 and α ≤ 1 in addition to previous assumptions in section 3.1.

A.3 Sufficiency

There are two famous theorems about sufficiency of Pontryagin’s theorem. Mangasarian (1966)

proved that if in (3.13) the set of the control variable is convex and if the Hamiltonian of the

problem is concave in the state and control variables then the necessary conditions in Pontrya-

gin’s theorem are sufficient. Arrow (1968) extended Mangasarian theorem and proved that if the
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maximised Hamiltonian4 is a concave function of the state variable then the necessary conditions

in Pontryagin’s theorem are as well sufficient (Kamien and Schwartz, 1991). Now, if an optimal

path exists, then its equilibrium state will be described by equations (3.16). Because of the com-

plexities of the model the optimal path of harvest will first be derived analytically. Then the the

optimal equilibrium values of biomass and harvest will be found by equations (3.16). Last, the

optimal path to that equilibrium is numerically approximated. However, if given the assumptions

in section 3.1 and that X > 0 and α ≤ 1 so that the optimal path exists, along with if the steady

state is uniquely determined by 3.16, the approximated optimal path from the initial state to the

optimal equilibrium will be an approximation of the optimal path.

A.4 Ramsey Equation

The aim is to maximise society’s utility with consumption, ψ, as a control variable and capital, k,

as state variable. The output of capital is denoted by f (kt). The change in capital is the difference

between it’s output and consumption,

k̇t = f (kt) − ψt.

Society’s instantaneous utility from consumption is U(ψt). The utility is assumed to be and

increasing and concave function of consumption, Uψ > 0, Uψψ ≤ 0. Social welfare is represented

by the intertemporal sum of the instantaneous utility. The objective is thus formally (Kamien and

Schwartz, 1991)

max
{ψt}

J =

∫ ∞

0
U(ψt) · exp(−δ · t)dt, (A.3a)

4The maximised Hamiltonian is the value of the Hamiltonian evaluated at the optimal path of the control vari-
able.
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with the constraint

k̇ = f (kt) − ψt, , (A.3b)

(A.3c)

where δ is the pure time preference. The current value Hamiltonian (Kamien and Schwartz,

1991) of the problem is

F (ψt, t) = µ0 · U(ψt) + µt · ( f (kt) − ψt),

The Pontryagin Maximum Principle (Pontryagin et al., 1962) gives conditions that a path of the

control and state variable of an optimal control problem must satisfy to be optimal. Among these

necessary conditions are (Kamien and Schwartz, 1991):

(i) µ0 is a constant, 0 or 1 for all t, µ is a continuous function of time and µ0 and µ are not both

0, (µ0, µ) , 0.

(ii) ψ maximises F for allt t.

(iii) µ̇ − δ · µ = −Fk.

According to condition ii, Fψ = 0. Thus

µ0 · Uc = µ.

If µ0 = 0 then it must hold that µ = 0. Thus, by condition (i) µ0 = 1 and

µ = Uψ.
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Now, µ̇ = Uψψ · ċ. Combining this with condition (iii) gives

Uψψ · ċ − δUψ = −Uψ · fk.

By defining the social marginal product of capital as r ≡ fk and rearranging

r = δ −
Uψψ

Uψ

· ċ.

Consumption growth is g ≡ ċ/c and the elasticity of the marginal utility of consumption is

η ≡ −Uψψ/Uψ · c. Thus, the rate of return on capital in social optimum is

r = δ + η · g.
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A.5 Figures
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Figure A.1: Histogram of the uncertain price, p̃.
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Figure A.2: Histogram of the uncertain pure time preference, δ̃, elasticity of marginal utility of
consumption, η̃, and growth rate of consumption, g̃.
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Figure A.3: Histogram of the uncertain output elasticity of effort, α̃.
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Figure A.4: Histogram of the uncertain natural mortality, M̃.
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Figure A.5: Histograms of the uncertain carrying capacities, K̃, and simulations of biomass (X)
in cases 1,2 and 3.

A-8



A.6 Tables

Table A.1: Icelandic pelagic redfish cathces by type of processing in thousand tonnes

Year Land Freezing Frozen at Sea Freshly Iced Fish Exported by Air Reduction Freshly Iced Fish Landed Abroad Freshly Iced Fish Exported in Containers Domestic Consumption

1992 13.85

1993 0.08 19.66

1994 5.89 40.95 0.00 0.25

1995 2.45 25.47 1.35 0.01

1996 8.40 43.21 0.12 0.49 0.77

1997 2.07 34.03 0.07 1.06 0.12 1.26

1998 2.94 40.57 0.37 0.12 1.69 1.42 0

1999 1.36 38.79 0.18 0.65 2.02

2000 1.14 40.50 0.61 0.59 2.38

2001 1.27 38.92 0.46 1.79

2002 1.34 42.59 0.02 0.50 0.05

2003 1.20 45.96 0.06 0.76 0.43

2004 0.04 36.44 0.26 0.08

2005 0.02 15.81 0.17

2006 0.00 24.64

2007 19.92

2008 6.79 0.00

2009 0.00 15.14 0.39

2010 0.05 14.41 0.02 0.32

Sum 28.26 557.65 1.91 3.02 4.57 11.34 0
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Table A.2: Icelandic Pelagic redfish cathces by gear in thousand tonnes

Source: Statistics Iceland

Year Bottom Longline Bottom Trawl Pelagic Trawl

1992 13.8

1993 19.7

1994 0.0 47.1

1995 0.0 29.2

1996 0.5 0.0 52.5

1997 38.6

1998 0.3 46.8

1999 43.0

2000 1.5 43.7

2001 42.4

2002 4.3 40.2

2003 1.4 47.0

2004 0.5 36.3

2005 16.0

2006 0.0 24.6

2007 0.0 19.9

2008 0.0 6.8

2009 1.3 14.2

2010 14.8

Sum 0.5 9.5 596.7
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Table A.3: Shallow and Deep Pelagic redfish catches.

Source: Marine Research Institute of Iceland

Year Icelandic Shallow Total Shallow Icelandic Deep Total Deep Sample

1992 12.1 62.6 3.4 3.4 10.8

1993 10.2 100.8 12.7 15.1 9.9

1994 5.9 96.9 47.4 51.8 29.9

1995 8.7 100.1 25.9 75.7 14.3

1996 5.8 41.8 57.1 138.6 38.6

1997 4.4 27.7 36.8 95.1 25.2

1998 2.0 24.2 46.5 92.8 28.7

1999 3.7 25.5 40.3 84.2 30.9

2000 3.8 33.2 41.5 93.1 22.8

2001 14.7 41.8 27.7 87.0 20.4

2002 5.2 43.2 39.3 103.2 19.9

2003 4.3 56.7 44.6 104.3 12.7

2004 5.7 33.9 31.1 92.0 10.8

2005 3.1 28.2 12.9 45.5 12.2

2006 1.3 15.7 20.9 67.3 15.4

2007 0.1 6.1 18.1 58.5 10.9

2008 0.1 2.0 6.7 30.0 5.5

2009 0.4 2.7 15.1 52.5 6.6

2010 0.2 2.4 14.6 62.0 6.3

Sum 91.7 745.5 542.6 1352.1 331.8
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Table A.4: Catches of Deep Pelagic redfish by country.

Source: (Jakobsdottir and Kristinsson, 2010)

Year BG CA EE FO FR DE GL IS JP LV LT NL NO PL PT RU ES UK UA Total

1991 43 43

1992 2615 2615

1993 310 1135 13354 878 15678

1994 2019 47421 523 377 1465 51805

1995 1140 181 5056 1572 68 8271 1579 26197 396 1501 6868 4 3169 2955 15868 2620 956 78399

1996 1654 307 3351 3748 15549 1671 57616 196 512 5031 5161 1903 36400 5558 123 245 139025

1997 9 315 435 11200 36915 3 2849 3307 33237 6895 95164

1998 76 4484 8368 302 46524 1 34 438 4073 25748 2758 92805

1999 53 3466 8218 3271 40223 3337 4240 11419 9885 5 84115

2000 7733 2367 6827 3327 41753 0 3108 3694 14851 9740 93399

2001 878 3377 5914 2360 28901 7515 4275 2488 23810 8649 88166

2002 15 3664 7858 3442 39289 9771 4197 2208 25309 7402 103155

2003 3938 7028 3403 44588 5185 2109 28638 9374 104263

2004 4670 2251 2419 31112 6277 1889 2286 31067 9996 91968

2005 1800 1836 1431 12919 1027 3950 1240 1088 16323 3871 45485

2006 3498 1830 744 20948 1294 5968 1356 1313 23670 6673 67294

2007 2902 1110 1961 18091 575 1394 4628 636 2067 21337 3810 58511

2008 2653 1170 6721 749 571 219 1733 15106 1179 30100

BG=Bulgaria, CA=Canada, EE=Estonia, FO=Faroe Islands, FR=France, DE=Germany, GL=Greenland, IS=Iceland, JP=Japan, LV=Latvia,

LT=Lithuania, NL=Netherlands, NO=Norway, PL=Poland, PT=Portugal, RU=Russia, ES=Spain, UK=United Kingdom, UA=Ukraine

Table A.5: Distribution of catches in the sample in thousand tonnes.

Source: Statistics Iceland

Cod Haddock Saithe G. Halibut P. Redfish Other Total

281.7 73.5 118 79.4 332 358.9 1243.5
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Table A.6: Distribution of catch values in the sample in million euros.

Source: Statistics Iceland

Cod Haddock Saithe G. Halibut P. Redfish Other Total
463.2 112 108.6 192.6 295.3 344.8 1516.5

Table A.7: Summary of the proportion between each unit’s total operating costs and catch values,
Ci,t/Ri,t.

Source: Statistics Iceland

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.27 0.88 0.93 1.15 1.06 4.13

Table A.8: Summary of the uncertain price, p̃.

Min. 1st Qu. Median Mean 3rd Qu. Max.

−0.2 1.25 1.51 1.5 1.74 2.53

Table A.9: Summary of the uncertain pure time preference, δ̃.

Min. 1st Qu. Median Mean 3rd Qu. Max.

0 0.53 1.01 1.02 1.52 2
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Table A.10: Summary of the uncertain elasticity of marginal utility of consumption, η̃.

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.5 1 1.43 1.48 1.95 2.5

Table A.11: Summary of the uncertain consumption growth, g̃.

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.2 1.82 1.99 1.99 2.16 2.73

Table A.12: Summary of c̃.

Min. 1st Qu. Median Mean 3rd Qu. Max.

8.18 10.58 11.33 11.37 12.11 14.91

Table A.13: Summary of p-value in estimations of c̃.

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.776e − 06 0.001295 0.003751 0.006372 0.008651 0.05156

Table A.14: Summary of R2 in estimations of c̃.

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.77 0.93 0.96 0.95 0.98 1

A-14



Table A.15: Solutions for T

T OE MS Y OE − MS Y

5% 9 2 0

25% 27 2 12

50% 32 14 19

75% 41 24 26

95% 50 36 34
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