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Abstract

Powerful mobile devices have quickly become almost a necessity for normal persons

in everyday life. Smart devices such as mobile phones and computer tablets are able

to serve much greater functionality than only communication. Their availability

and multifunctional hardware allows them to be an accessible tool for educational

purposes. For example, signal processing can be used for interval tone training where

audio signals can be recorded, analyzed and presented as graphical data.

The main contribution of this thesis is a new brand of educational and leisure appli-

cation system for mobile devices. It is a system capable of assisting beginners with

learning tone intervals and musical notation. A fully functional prototype system

was developed for the iOS platform. It implements real time musical tone recogni-

tion which enables it to transform stream of tones into presentable musical notation.

The application is easily used to monitor whistling by users in order to see intervals

between tones presented by graphical musical notation. It can further be used to

monitor users playing musical instruments and present graphical musical notation

of simple songs. The system then also o�ers the possibility of inspecting presented

notes for further information. The application system runs on any devices that

supports iOS 5.1 including iPhone 4, iPad 2 and later iOS devices.

Keywords

Musical tone recognition, interval tone training, Fourier transform, musical nota-

tion, mobile devices, smart devices, iOS, programming, development, optimization,

testing, interface design, iPad, iPhone, Labview, Xcode,
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Útdráttur

Ö�ug smátæki hafa á skömmum tíma orðið nánast nauðsynleg í lí� fólks. Farsímar

og lófatölvur eru meðal svokallaðra snjall tækja sem þjóna orðið mun meiri tilgangi

en aðeins samskiptum. Framboð þeirra og fjölhæfni gerir þau aðgengileg og nýtast

vel til menntunar. Sem dæmi má nefna að hægt er að nota merkjafræði til að greina

hæð tóna þar sem boðið er uppá upptöku, vinnslu og framsetningu á hljóðmerkjum

sem grafísk gögn.

Helsta framlag þessarar ritgerðar er ný tegund ker�s til menntunar og tómstunda

fyrir smærri tæki. Ker�nu er fært að aðstoða byrjendur við að læra að greina tónbil

ásamt því að lesa nótnaskrift. Fullkomlega virk frumgerð ker�sins var þróuð fyrir iOS

grunn. Ker�ð notfærir sér rauntíma tóngreiningu sem gerir því kleift að umbreyta

straumi tóna í frambærilega nótnaskrift. Auðvelt er að nota ker�ð til að greina

tónabil blísturs og setja fram nótur þess á grafísku formi. Það getur enn fremur

fylgst með notanda spila einfalt lag á hljóðfæri og skrifað út nótnaskrift þess. Að

auki býður ker�ð uppá möguleikan á því að skoða betur hverja nótu fyrir sig fyrir

frekari upplýsingar. Ker�ð keyrir á öllum tækjum sem styðja iOS 5.1, þar á meðal

iPhone 4, iPad 2 og nýrri tæki.

Leitarorð

Tóngreining, tónhæð, Fourier umbreyting, nótnaskrift, farsímar, smátæki, smart

tæki, iOS, forritun, þróun, bestun, prófun, viðmóts hönnun, iPad, iPhone, Labview,

Xcode,
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1. Introduction

Analyzing frequencies from sampled sound waves utilizes the same mathematical

functions and theories as are used to analyze all types of physical objects that can

be considered having waveforms. Heat, light and sound are examples of these objects

which are waves that travel through a medium. Being able to analyze these objects

is important for the whole of physics, engineering, electronics and even medical

science. Using these mathematical functions and theories, various software appli-

cations have been developed with the task of analyzing and gathering information

from sound-waves.

With the fast pace of technology growth, handheld devices have become almost a

necessity for people living in most parts of what is called the �rst and second world.

These devices are becoming more and more powerful and their usage in form of

communication, education, work and leisure activities has broadened very fast. All

manufacturers and developers compete to keep their devices and platforms updated

with big changes and improvements made each year. Alongside this growth a huge

market emerged for small application development which relies on these speci�ed

devices and their platforms.

From this advance of computational devices which have vastly increased in com-

putation power, their power drain per arithmetic operation reduced, and not to

mention their increase in memory size, an opening was made for power-hungry ap-

plications to be developed and deployed on smaller devices. Devices that were too

computationally slow and small in memory have become powerful enough to per-

form complicated mathematical functions and rich graphics.

1



1. Introduction

Tone recognition using mathematical computation and theories has been explored

in much detail and can be solved in multiple di�erent ways which o�ers many ap-

proaches to compute valuable information from sampled sound-waves. It was only

a few years ago that the �rst tone recognition software application, that was devel-

oped for a multifunctional hand-held device, was released and o�ered to an open

user market. Since then tone recognition software applications for various handheld

platforms have become more and more widely spread among various handheld com-

putation platforms. Today most multifunctional handheld devices, that can process

sound input and give graphical output from the device to the user, o�er some soft-

ware for tone recognition. Among these devices are the very common smartphones

and computer tablets. A few popular handheld devices are shown in Figure 1.1.

Figure 1.1: Popular handheld devices and platforms [25]

1.1. The Research Problem

The research problem is to design and optimize a musical tone recognition system

for interval tone training on mobile appliances. Furthermore the system should be

able to recognize musical tones and distinguish tones from silence and even �lter

out unwanted low amplitude environmental sounds. The system's task is to work

2



1.1. The Research Problem

with an input, analyze it and give an output that would help its user play the same

notes on an instrument. The output should be displayed to users in a format that

is easily understood by beginners learning to play an instrument. While designing

the system it should be carefully considered that its deployment is strictly meant

for mobile small and middle size handheld devices. The resulting system could serve

as an helpful tool that does not just o�er an activity leisure but also an interesting

experience that helps the user reading and writing musical notation and playing

notes on an instrument.

The problem is split up into few small parts. With most of the larger mathematical

problems already having been explored by other researches and theories, there was

not as much research to be found which described how the system should be set

up to give the best results to its users. It should also be noted that most of those

mathematical research mentioned is not particular to the purpose of this project.

What is meant by that is that the system has its computation and power limita-

tion and interface restrictions which have to be taken into consideration. A tradeo�

between a well performing user friendly system and a high accuracy system has to

be developed to �t the system pro�le. In conclusion, already known good math-

ematical computations theories will be used perform the basic frequency analysis,

which then will be tweaked to perform well with tone training, and then the output

will be developed and changed rapidly with small iterations throughout the system

development to improve its usability.

Below is the list of research questions to be answered in detail in chapters 3, 4, and

5.

• Is the frequency analysis problem feasible and is the analysis able to output

useful information for tone training?

• Are devices among embedded platforms such as common hand-held smart-

phones and tablet devices able to perform real-time tone detection?

• Are the devices able to give usable and accurate feedback to users in spite of

their limitations?

3



1. Introduction

• How can we achieve the best results via optimization.

� Functions and libraries.

� Mathematics and transformation.

� Interface and restrictions.

1.2. Embedded platforms

While the tone recognition concept has been thoroughly examined, the same prob-

lems have to be dealt with again and again on the many various platforms available.

Not only the problem that di�erent platforms for embedded devices use di�erent

standards such as code languages, speci�cations, inputs and outputs from devices

but also the problem with hardware limitation among embedded devices. Hardware

limitations such as processing power, battery life and available memory. Since it is

necessary to take these problems into consideration it can not be expected that the

same mathematical functions in an application that will run well on a octal-core pro-

cessor Unix platform desktop computer with 8-16 gigabytes of fast memory which

is plugged into home electricity will also run as well on a embedded device even if

the embedded device o�ers new technology such as mobile dual- or even quad-core

processors and other speci�cations.

In tone recognition it would of course in most cases be recommended to use the

most accurate software available without adding tremendous computing demands.

This is however not entirely the case when the desired application is real-time tone

recognition on a embedded platform. The limitations have to be dealt with and one

solution can often be arguably superior to another if it o�ers less latency or requires

less computation power at the cost of some accuracy.

4



1.3. Reusable code

1.3. Reusable code

A smart way to work around the various platforms coding problems is to develop

code which can be reused throughout di�erent platforms. Since standards do not

have to be the same from one device platform to the next we note that only functions

that take input from a device in a certain format, work with that input, and then

give output in a certain format to the device again can be used. For each platform

and device which the application system is expected to run on, a new set of code

must be developed which feeds the reusable code among the platforms with inputs

of the right format and accepts again certain output. The interface to the user also

has to be redone.

Most multifunctional embedded mobile devices are able to use and work with the

common C/C++ programming language after it is compiled with its development

suite which is why this project uses that programming language as well as the na-

tive platform programming language which the application is developed on. The

native platform programming language is mostly used to service the interface and

user actions as well as performing the main loop function and controlling the process.

1.4. Optimization

The act of optimizing o�ers the possibility of big improvements to the systems soft-

ware and is never an easy task. The power of optimization is used to make some

aspects of the software work more e�ciently in terms of using less resources, o�ering

less latency to users and improving stability as well as making the interface to the

user simple and comfortable.

Optimization of the system should involve two parts. Firstly the system should be

optimized for the mobile embedded platform to work well with the limitations set

by the chosen platform and chosen embedded device. Secondly that the idea behind

5



1. Introduction

the system is to especially recognize whistle and humming by its users as well as

a few set of chosen instruments. That's why the second part of the optimization

process of the system is to reduce the computation required by the embedded device

by narrowing down the input frequency range with �lters and lessen the possibilities

of outputs to users.

For applications that use complex mathematical functions it is very important that

they are well optimized for the platforms and devices they are to be run on. Fast

Fourier Transform as well as other transformations and functions have been opti-

mized by many platform developers. This helps smaller application developers de-

velop stable and fast applications which if done well might become popular among

users. These popular applications will then increase sales of applications and devices

that run said platform which again means more users that expect further applica-

tions development.

6



2. Background

This project can be said to span more than one �eld of work. It can for example be

related to signal processing, math, computer programming, software development,

embedded technology and music. The main purpose of the project is to develop

fully functional software, customized and optimized for its users which runs on an

embedded platform. It should also answer the main research hypothesis mentioned

earlier in chapter 1.

2.1. How music works

For one to understand the basics of this project it is required to have a certain

amount of understanding of music and how it works. In this section all the necessary

basics related to music which are considered of value for the project are mentioned

and discussed.

2.1.1. Frequencies

Starting with the very basics, frequency is used to tell how many times an occurring

event repeats itself per unit time. In SI units hertz(Hz), 1 Hz equals that a certain

event repeats itself 1 times a second which is then the frequency of that event.

Changes in air pressure in form of waves are what make up sound that humans and

other animals hear. These waves are of crucial importance here, throughout the

project their frequency will be mentioned in hertz.

The range of human hearing spans roughly from 20 Hz to 20 kHz, although there can
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be considerable di�erence between individuals [3]. With age it is considered normal

for the higher end limit to gradually decline. Sounds that exceed these boundaries

are not noticed by humans.

More than hearing is of importance to the project, it is also important to take a

look at vocal frequency generated by humans. The combined frequency of typical

male and female voice is about 80 to 1100 Hz. Further investigation shows that the

fundamental voice frequency for men is around 120Hz and for women around 210Hz

though with age the mean values change slightly[21]. The fundamental frequency

concept will be explained in more detail later in this section.

Attention is also directed at whistling and humming frequencies of humans which dif-

fer from the vocal frequency range. Most humans are capable of whistling and often

use it to grab attention from others while many people whistle songs for entertain-

ment. A whistle is generated with constant air�ow from the lungs and moderation

of air by the tongue, lips, teeth or �ngers to create turbulence where the mouth acts

as a resonance chamber. Figure 2.1 shows an average power spectral density analysis

that was performed to �nd the lower and upper frequency limits of a human whistle

using Welch's method [14]. What Welch's method does is that it estimates power

of a signal at di�erent frequencies by converting a signal from the time domain to

the frequency domain. The y and x axis of Figure 2.1 therefore represent magnitude

in decibels (DB) and frequency in kHz. DB is given as a ratio in relation to the

reference pressure level of 20 micro pascals (µPa) which is the limit of sensitivity of

the human ear in most sensitive range of frequency [23].

From Figure 2.1 it can be easily noted that after around 4.5 kHz to 5 kHz the mag-

nitude starts to rapidly fall. One assumptions that can be easily drawn from this is

that the human whistle is typically inside the range of 500 - 4.5 kHz although some

might exceed these limits. By also adding that whistles above a certain threshold

start to sound less like tones but rather more like high noises it can be used to further

iterate and shorten the range that needs has to be considered of value to the project.
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Figure 2.1: WhistleDetection [14]

2.1.2. Major factors of sound

Let's look into how some major factors that make up sound are classi�ed and are to

be considered for this project. The factors can be classi�ed in many ways but not

all are as relevant to this project as others. The three major relevant factors are:

Height, depth and length of sound.

To begin with it is often said that a pitch is the height of sound, that a tone can be

high or low pitched. Pitch can be easily confused with frequency, frequency is the

cycle rate of the sound wave while pitch is how high or low it sounds when you hear it.

The sound equivalent of depth is harmony. A group of related tones played simulta-

neously, a chord, gives sound a depth like quality. Tones more related to each other

provide a clearer sense of depth than tones less related to each other. Completely

unrelated tones combine into noise[3]. This is a major factor of sound and an even

greater factor of what is classi�ed as music. Music with only one tone at each time

might sound rather dull but it is exactly what is of interest in this project. Going

beyond that scope is not of concern here since that would require more than limited

time allotted to solve this project.
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It is said that the sound equivalent of length is beat or rhythm. Beat measures time,

the duration or length of a piece of music. Each whistle by the user has its own timed

duration. It could be the same as the last whistle or completely di�erent. These

various whistles together add up to a rhythm. The projects system is intended to

be able to track if one note is longer than another and the notation and tabs will

have a way of telling the user how long they should last.

Other factors which can also be used to classify tones and sound such as loudness,

duration, color and more are not required to be analyzed by the system for it to

perform as intended.

2.1.3. Notes and notation

"Music skill is normal in the human species. Not a rare talent. Most people have

the potential to sing and play an instrument with reasonable competence, even if

they've never tried. Ability to read or write music notation has nothing to do with

it"[3, p.4]. Composing and playing music by ear doesn't require skills in reading

and writing notation. It probably wouldn't hurt to know a thing or two but these

abilities do not necessary make you a better songwriter. This argument has a good

and a valid point but one way or another is needed for an individual to write down

the song he's composing, for him to remember it correctly later and/or for others

to play. To accomplish this task one needs to have a way of writing the notes down.

They don't have to be written down in notation, it can for example simply be noted

down as tablature or tab for short. Tab is a more simple form for many beginners

who haven�t learned how to read and write notation and instead of writing notes

as musical pitches a musical notation indicating instrument �ngering is used. An

example of this form can be seen in Figure 2.2.

In this project some indication is needed to tell the user what note he's whistling.

The idea is for indication to be both in notation and tablature simply to let the user
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Figure 2.2: One way of tablature for guitar instrument(guitar tabs) [10]

choose which one he wants to use and also for the beginners to get to know them

both. The notation and tablature are to be shown to the user so he can easily learn

to play each note.

Notation performed in this project aims to help users read and write notes by seeing

them in their right notation on the sta� in the the project. Figure 2.3 shows all the

notes as well as 2 out of the 3 clefs used in modern music notation on a piano sta�.

The clefs joined together form a grand sta� and are used to indicate the name and

pitch of the notes in that line. The G or G-glef sets the G4 note as the line that

passes through its curl while I or F-clef sets the line as F3 that passes between

the two dots of the clef.

Figure 2.3: 2 di�erent staves which together form a grand sta� [16]
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Additionally there are half steps between notes that raise notes by a semitone or half

a step. When a note is raised it is written with a sharp, see Figure 2.4. The reason

why not all notes have the sharp notation is that having more than one writing for

the same pitch makes things more complex. Since for example raising B to B sharp

is equal to the note C. When all such equivalences are assumed the whole complete

chromatic scale adds up to 12 notes whereas the 13th note completes one octave,

see Figure 2.5.

Figure 2.4: C sharp note shown on a sta�

Figure 2.5: Whole chromatic scale with the 13th note that completes one octave [2]

2.1.4. Tone length

The same notes can have a di�erent appearance when written in the most common

form of notation. The di�erence tells the duration of each note which should not be
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confused with an absolute value. The duration value is speci�ed in relation to the

speed of the beat which is indicated with a time signature which is described in the

next subsection. Each note duration is always a simple whole number or a fraction

like half or quarter of the beat.

The simplest form of a note is the whole note. The whole note is a hollow circle, then

there are eight di�erent durations of basic notes which all have relative durations

in the power of 2 in-between them. The �rst 3 notes are shown in Figure 2.6. The

�rst one is the whole note as described earlier, next one is the half note which is

just the whole note with a stem and the last one is the quarter note which has its

circle �lled up. All these 3 di�erent durations are used in this project to describe

how long a note should last in relation to a certain beat.

(a)
Whole
Note

(b)
Half
Note.

(c)
Quarter
Note

Figure 2.6: Notes Duration

2.1.5. Time signature

The time signature often follows clefs on a sta� to specify beats in a measure.

Measures are set by these time signatures as a given number of beats that each

measure holds, typically of the same length and how many measures are on a sta�.

The time signature has 2 numbers, one on top and one on below. The top number

tells how many beats are in each measure and the lower number how many beats

each length of note gets in a measure in relation to the number on the top. As

shown in Figure 2.7 a whole note gets 4 beats out of 4 so it's the only note that gets

written inside a measure, the same goes for 2 half notes and 4 quarter notes.
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Figure 2.7: Sta� with time notations and notes shown in 3 measure

2.1.6. Frequency note mapping

All frequencies that are monitored are mapped to notes. The frequency map showed

in Figure 2.8 is created using equation 2.1 [19]

fn = f0 ∗ (a)n (2.1)

Where f0 is the frequency of one �xed note which is de�ned, n can both be positive

and negative and is used to tell how many steps the equation is placed from the

�xed note, fn is the frequency of the note n steps away and a is the twelfth root of

2 as 12
√
2 or (2)1/12.

In this system the common f0 = 440Hz is used which places the A above middle

C(A4).

2.1.7. Harmonics and overtones

A vibrating string on a passive oscillator such as a guitar splits itself so that a

fundamental tone and it's harmonics form a single tone to the ear of a listener.

Overtones are thus notes produced from di�erent parts of a string which vibrate at

di�erent frequencies. These overtone frequencies are always whole-number multiples

of what is called the fundamental frequency of a note, making them higher pitched.

They're also usually lower in volume. When an untrained listener listens to a single

note these overtones are sorted out by the brain and the untrained listener should

only hear that single note. Figure 2.9 shows how a vibrating string splits itself and

produces a fundemental note along with harmonics.
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Figure 2.8: Frequencies for an equal-tempered scale [19]

Harmonic and overtones are very related and di�er most when it comes to counting

of harmonics or overtones. Even numbered harmonics are odd numbered overtones

and vice versa. The fundamental tone is called the 1st harmonic while the 1st

overtone is the 2nd harmonic.
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Figure 2.9: Harmonic partials on strings [24]

2.2. iOS and Xcode

iOS is a mobile operating system from the company Apple Inc. iOS was originally

released for the iPhone and iPod Touch devices but has now been extended to other

Apple devices such as the iPad and Apple TV. Apple does not permit the operating

system to be run on other non-Apple devices. iOS is build on Mac OS X which it

shares the Darwin foundation with and is therefore a Unix operating system.

Applications for iOS are usually written in the Xcode development environment

which is a powerful integrated development environment for creating apps for both

Mac OS X and iOS. It includes the instruments analysis tool, iOS simulator and the

latest software development kits(SDKs). Xcode enables developers to quite easily

design user interfaces for their applications which is integrated with the application

code. It also o�ers testing and debugging of the application in run-time.

Apple`s Mac OS X and iOS applications are written in the Objective-C program-

ming language. It is a simple computer language designed to enable sophisticated

object-oriented programming. Objective-C is an extension to the standard ANSI C

language and it is mostly based on the �rst object-oriented programming language

Smalltalk. iOS does also support code written in C and C++ and can compile it
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alongside its Objective-C code. The application programming interface(API) for the

Mac OS and iOS are Cocoa and Cocoa Touch respectively. Cocoa touch is used in

this project to implement GUI for the application to its user. It provides powerful

�base objects� which can be used to place all kinds of objects in the GUI like labels

and buttons with strings and even images.

2.3. Hardware

A few sets of di�erent hardware were bought/borrowed and used in this project. For

ease of development and deployment of the project written for iOS a MacMini was

used with the latest update of Mac Os X(10.7.4). It supported the latest Xcode(4.3)

development environment which enabled easy access to all tools to create, run and

test the application on an emulator for iOS(5.1). The computer had an Intel Core

i5 2.3 Ghz processor and 2GB 1333 Mhz DDR3 memory.

2.3.1. iPhone and iPad

iPhone and iPad devices were used when the application had progressed and further

tests were desired.

• iPad2 with 1Ghz dual core A5 CPU, 512 MB DDR2 1066 Mhz memory and

the display resolution of 1024x768 pixels.

• iPhone4 with 1Ghz A4 CPU, 512MB eDRAM and 960×640 display

The main di�erence between them being the large screen size di�erence shown in

Figure 2.10 which enforces most application developers to create unique set of in-

terfaces for each device.
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Figure 2.10: iPhone and iPad screen size [4]

2.4. Fourier

Jean Baptiste Joseph Fourier (1768 - 1830) was a brilliant mathematician who be-

lieved in the usefulness of mathematics to society. His theory of heat �ow lead to

a new understanding of not only heat but also light and sound. Fourier knew that

if he could answer the question how heat varies over time, the answer would be

groundbreaking, it would not only add valuable knowledge about unknown proper-

ties of heat but expand our knowledge of physics. Joseph Fourier predicted: "Heat,

like gravity, penetrates every substance of the universe, its rays occupy all parts

of space. The object of our work is to set forth the mathematical laws which this

element obeys. The theory of heat will hereafter form one of the most important

branches of general physics " [8]. He was not wrong, his mathematical understand-

ing of heat varies helps understanding more about all things that can be described as

waves, which includes heat, light and sound. His theory proposed that every wave,

however complex it was could be broken up and expressed as the sum of sin waves.

The same theory can also be used to create complex waveforms where sin waves are

added up using Fourier's mathematics.

The Fourier series and Fourier transform will be brie�y described in next sections.
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2.5. The Fourier Series

A periodic signal can be described by a Fourier decomposition as a Fourier series,

i.e. as a sum of sinusoidal and cosinusoidal oscillations. By reversing this procedure

a periodic signal can be generated by superimposing sinusoidal and consinusoidal

waves [27]. What it means is that Fourier series can be used to create any periodic

signal f(t) in the time domain. This can be done using the sum of an in�nite number

of sinusoids that are integer multiples of the fundamental frequency f0.

Fourier series representation of a periodic function is de�ned as:

f(x) =
a0
2

+
∑
n∈N

an cosnx+
∑
n∈N

bn sinnx (2.2)

where f(x) is a periodic function of period 2π for the real variable x which is of-

ten written as t to represent time domain, a0 the amplitude of the direct current

component and an and bn are the amplitude of the nth sine and nth cosine function

respectively.

The even part is denoted in (2.3) and the odd part in (2.4) and (2.5)

an =
1

π

∫ π

−π
f(x) cosnx dx, n ∈ N, (2.3)

bn =
1

π

∫ π

−π
f(x) sinnx dx, n ∈ N, (2.4)

bn =
1

π

∫ 2π

0

f(x) cosnx dx, n ∈ N, (2.5)
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2.6. The Fourier Transform

The Fourier Series is only applicable to periodic signals. For other non-periodic

signals the Fourier Transform which comes from the study of Fourier series is used

instead. The Fourier Transform is a mathematical transformation used to transforms

one function into another. It is often used to transform a function from time domain

to the frequency domain. The Fourier Transform is de�ned as: [9]

Ff(ξ) =

∫ +∞

−∞
f(x)e−2πixξdx, (2.6)

where x is a real number and the function Ff is called Fourier form of function

f. The variable t is often used instead of the independent variable x to represent

time(in seconds), then the transform variable ξ represents frequency (in hertz).

As said earlier, the Fourier Transform is often used to transform a function from

time domain to the frequency domain, while it is also often used the other way

around. So under suitable conditions called the Dirichlet conditions, f(x) can be

reconstructed from Ff(ξ) by the inverse transform de�ned as: [9]

f(x) =

∫ +∞

−∞
Ff(ξ)e2πiξxdξ. (2.7)

Up till now both The Fourier Transform and Fourier Series have only addressed

continuous and in�nite signals and are only applicable to them. The system which

is described by this thesis works on a limited hardware which does not o�er storing

continuous amount of signal information in its memory nor can the system listen for

in�nite time to the signals it wants to analyze. The next section therefore describes

a transformation for �nite discrete signals that can easily be stored in computer

memory and the length of each sample broken up and chosen accordingly.
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2.7. The Discrete Fourier Transform(DFT)

The Discrete Fourier Transform(DFT) like The Fourier Transform is often used to

transform function from time domain to the frequency domain. The DFT requires

an input function that is discrete and �nite. Discrete functions are usually created

by sampling continuous functions. The function being �nite means it has to have

a limited duration, that it can be a one period of a periodic function or even a

windowed segment of a longer sequence.

This means that 2.6 needs to be changed to work with discrete rather than contin-

uous time and frequency domains.

The Fourier integral is replaced by a discrete sum over N samples as:

∫ +∞

−∞
f(x)⇒

N−1∑
n=0

x[n ∗ Ts] (2.8)

and the continuous domains are replaced by a sampled equivalent as:

f(ξ)⇒ X[k ∗ fs
N
], (2.9)

where n and k from (2.8) and (2.9) represent the sample index for discrete time do-

main and discrete spectral index respectively. Equation (2.6) then can be rewritten

as:

FX[k ∗ fs
N
] =

N−1∑
n=0

x[n ∗ Ts]e−i∗2π(k∗
fs
N

)∗(n∗Ts). (2.10)

Sampling frequency fs and accordant period Ts have the relationship:

Ts = 1/fs (2.11)
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so equation 2.10 can be simpli�ed to:

FX[k ∗ fs
N
] =

N−1∑
n=0

x[n ∗ Ts]e−i
2π
N
kn (2.12)

N, fs and Ts are �xed and can be considered as constants so the equation can be

shortened to a easier form to read as: [17]

F (x)k =
N−1∑
n=0

xne
−i2π k

N
n (2.13)

And the relation that allows to recover the sequence x(n) from the frequency samples

is written as: [17]

x(n) =
1

N

N−1∑
k=0

Xke
−i2π k

N
n (2.14)

Which is called the inverse DFT(IDFT).

2.8. Fast Fourier Transform(FFT)

DFT plays an important role in applications of digital signal processing. This in-

cludes linear �ltering, correlation analysis, and spectrum analysis. Computing DFT

directly from its de�nition often demands great computation time which is not de-

sired when dealing with real time digital signal processing. To solve this problem

the Fast Fourier Transform(FFT) was developed as a way to compute these same

results much more quickly. A major reason for DFT importance is the existence of

e�cient algorithms to compute it.

A Fast Fourier Transform is not an independent time domain to frequency domain
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transform like DFT but instead an e�cient algorithm to compute DFT and its in-

verse transform. There exists numerous distinct FFT algorithms which involve wide

range of mathematics. The di�erence between computation time can be very sig-

ni�cant, for N points using DFT de�nition it takes O(N2) operations to compute

results while FFT can compute the results in only O(NlogN) operations.

2.9. vDSP and Fourier transform

Fourier transformation in this project using the iOS platform are processed using

the vDSP API. The vDSP API provides mathematical functions for computer appli-

cations such as speech, sound, audio, and video processing and many other analysis

and/or data processing.

The vDSP API provides Fourier transforms for transforming one-dimensional and

two-dimensional data between the time domain and the frequency domain. To boost

performance, vDSP functions that process frequency-domain data expect an array

of complex exponentials (sometimes called twiddle factors) to exist prior to calling

the function. Once created, this FFT weights array can be used over and over by

the same Fourier function and can be shared by several Fourier functions.

2.10. MATLAB and LabVIEW

2.10.1. MATLAB

MATLAB is a programming environment for algorithm development, data analysis,

visualization, and numerical computation. The creators of Matlab even assure users

that Matlab can be used to solve technical computing problems faster than with

traditional programming languages, such as C, C++ and Fortran. It can be used

in a wide range of applications, including signal and image processing, communica-
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tions, control design, test and measurement, �nancial modeling and analysis, and

computational biology [20].

A lot of software that can be found related to this project is written in MATLAB.

This software is mostly intended for research purposes and is not ready to be pub-

lished commercially on a platform.

2.10.2. LabVIEW

LabVIEW is a system design software that provides tools needed to create and de-

ploy measurement and control system through unprecedented hardware integration.

LabVIEW o�ers comprehensive system design environment, unique graphical pro-

gramming language, built-in engineering-speci�c libraries of software functions and

hardware interfaces and many other features [5].

2.11. Related Work

Real-time tone recognition has been developed for many kinds of systems and plat-

forms for various purposes. Purpose ranging from displaying frequency spectrum

and spectrograms to detecting tones played by a musician to assist in instrumental

adjustments.

2.11.1. Guitar Tuners and Related Applications on Mobile

Platforms

One very common purpose for real-time pitch detection applications on mobile plat-

forms today is to assist in tuning guitars and/or other instruments. These applica-

tions can simply be downloaded, some for free and others for a small price via the

devices platform market and can often replace the former guitar tuner embedded
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device. The conventional former embedded device had to have an internal mic or a

line in and a speaker, LCD screen or other gadgets to give accurate feedback to the

user and even more gadgets only to ful�ll this single purpose for the user. Yes of

course it might be better for some users to have the accuracy that a device specially

made for a singular purpose has to o�er but it might be more convenient for a lot

of other users to spend less and not have to carry around a device that's usually

similar in size of mobile devices such as mobile phones today.

2.11.2. Other Related Software

Real time pitch detection has been programmed in many di�erent programming

languages and in common software such as Matlab and LabVIEW. Most of these

applications use the Fast Fourier Transform function to transform from time domain

to frequency domain where the frequency of a pitch is determined. Other applica-

tions have also explored tone recognition using di�erent mathematics such as the

Wavelet transformation to see if better approximations can be achieved using less

computational power.

Tone Recognition Matlab and LabVIEW Software

Real-Time Time-Domain Pitch Tracking Using Wavelets [11] was done by Eric Lar-

son and Ross Maddox. The outcome was a pitch tracker based on the fast lifting

wavelet transform(FLWT) using Haar wavelet transform, in Matlab and C++. They

developed their software with emphasis on low latency, high time resolution, and

accuracy. The implementation used approximations in combination with intelligent

peak detection to determine the pitch of vocal samples.

2.12. Musical Instruments

The de�nition of musical instruments is nothing else than devices created or adapted

for the purpose of making musical sounds. All objects that can produce sound could
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serve as a musical instrument in theory but how well they sound and how easily they

can be used to play di�erent sets of sounds may di�er a lot between classes of dif-

ferent objects.

To complete the system that's in design a notation that easily and directly tells the

user how to play each note o� the standard notation on a musical instrument is

needed. The musical instruments that were chosen to be presented with the �rst

results were piano and guitar. The reasoning being simply that that they are pop-

ular and rather common instruments and have a broad user base as well as being

popular �rst instrument that people play on. Other instruments for example the

�ute were also considered but will be kept until later development.

Both chosen instruments are classi�ed as string instruments. String instruments

produce sounds by vibration of strings. They do have di�erent construction where

the guitar has strings that are supported by a neck and is therefore in the lute group

while the piano has strings that are mounted on a body and is in the zither group.

2.12.1. Piano

The piano is one of the most common instruments in the world. The common

modern piano has a multiple keys, 52 white and 36 black to be precise, which all

have di�erent strings related to them. Pressing a key on the piano causes a hammer

to strike on a string which makes it start to vibrate. When these strings vibrate

they play notes from over seven octaves from A0 to C8.

Mapping the piano keys to notes can be rather easily done and Figure 2.11 shows

how a little over 3 octaves are mapped. This is repeated in both directions for all 88

keys. The black keys are the sharp notes in-between which were mentioned earlier

in section 2.3(Notes and Notation).
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Figure 2.11: Piano keys mapped to notes [16]

2.12.2. Guitar

Guitar is a plucked string instrument which consist of a body with a rigid neck which

usually has six nylon or steel strings attached. There exist two primary families of

guitars which are acoustic and electric. Both are used in the same way by a user to

create sound but each family does it in its own way.

Acoustic guitars have a hollow body that act as a resonating chamber which ampli-

�es tones produced by the vibration of their strings. Electric guitars on the other

hand create very low tones by the vibration of their strings since their body is solid

instead of hollow. Electric guitars therefore rely on ampli�ers that electronically

manipulate tones from the guitar.

Mapping �nger placement on a guitar neck to notes as the strings are plucked is

a little bit more complicated compared to the piano. Figure 2.12 shows a basic

set of this mapping. The topmost notes show which notes are played when strings

are plucked with open strings(no �nger placement). Beneath the open strings frets

are counted down the guitar neck which represent half-steps between octaves. 12

half-steps equal to one octave and it should be easy to see that the notes on fret 12

are the same as played on open strings.
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2. Background

Figure 2.12: Guitar Notes [12]

Figure 2.13 shows how the open string notes and notes half-step away from them

relate to the notes on a sta�. Inspecting Figure 2.13 can help understanding Figure

2.12, for example it can easily be seen that note E which can be played by the �rst

open string can easily be changed to note F by placing a �nger on it's �rst fret, one

half-note up.
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Figure 2.13: Guitar notes on a sta� [26]
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3. Experimental Design

This chapter goes through the process of creating, designing and implementing the

system that is described in Chapter 1. In short:

• To design an application on a mobile hand-held system that processes sound

input from users and produces results that assists users in producing the same

sound/notes on a musical instrument.

Section 1.1 described a few research problems that were put forth when outlines

for the project were being set up. Each problem will be individually explained and

solved here in it's own section.

3.1. Proof of Concept: Deriving Tones from

Sampled Data

To obtain some kind of proof of concept for the �rst problem described in Section

1.1 and see if the system that this project describes is really feasible, the �rst tests in

deriving a tone from a sampled data using FFT were done in the system design soft-

ware called LabVIEW. A program was written using already made program blocks

that were connected together to test and see the predicted theory work in action.

A �nite sample was taken from both a computer data �le and a mic recording and

used as input in a FFT function. The output from the FFT function was then

put through a few mathematical blocks to �nd the highest amplitude value of its

frequency domain representation. This value was then the frequency value of the

loudest tone being played in the sample which was the system's task to analyze.

Figure 3.1 shows the system setup screen while Figure 3.2 shows the interface and
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output screen.

Figure 3.1: LabVIEW system setup screen

3.1.1. A sample of the process

A few samples of piano notes being played without much extra noise were sampled

for testing to �nd out if this rather simple version of the system could indeed tell

what note was being played. Let's walk through the process of processing one of

those piano notes. The note E was used as a test input which was sampled for

roughly 1.5 seconds. The input signal is shown in Figure 3.3

The sampled input was then transformed from the time domain to the frequency

domain with a Fourier transform in LabVIEW. The Fourier transformed sample of

Figure 3.3 is shown in Figure 3.4 where the concept of amplitude value is not meant

in its strict sense as amplitude should not contain negative values. What can be

seen on the plot are negative and positive real numbers that the FFT returns. These

values are then squared to give only positive values which is then considered as the

strict amplitude value.

The main di�erence between Figure 3.3 and 3.4 being that the former �gure shows

the sampled time to amplitude on the x and y axis while the latter shows frequency
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3.1. Proof of Concept: Deriving Tones from Sampled Data

Figure 3.2: LabVIEW interface and output screen

to amplitude. The data used to plot the latter image can be utilized to derive the

frequency of the sampled note.

In Figure 3.4 harmonics or so called overtones can clearly be noted. These overtones

are described in section 2.1 as the whole multiplication of the fundamental frequency

of the note in question. By looking closely at the �gure it can be con�rmed that

these overtones are at least pretty close to where they should be taking their theory

into consideration. These overtones don't say much but they can still be of value.

The fundamental tone and all the overtones can be analyzed and used to �nd out

what note is being played. Each overtone as well as the fundamental tone is enough

on it�s own to �nd which of the 12 notes were sampled. Here it has to be noted
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Figure 3.3: Time domain plot of sampled note E

though that this way of thinking can only give the accuracy of which note in an

octave was sampled instead of which note of the multiple octaves that exists which

is what is desired at completion of the project. What needs to be added later is

a way to tell if a frequency with the greatest amplitude in a signal is really the

fundamental tone or if it might be a overtone.

A math block in the system scans over Figure 3.4 data for the frequency with the

highest amplitude value. If both negative and positive sides of the amplitude are

taken into consideration it can be noted from Figure 3.4 that this frequency is around

600-700 Hz where the amplitude goes under -0.06. Figure 3.5 shows a closer look at

the highest amplitude of Figure 3.4.

The system then de�nes this newly found frequency as the frequency value of the

fundamental tone. The process that is left is only to calculate the right note from
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Figure 3.4: Frequency domain plot of sampled note E

this given frequency.

3.1.2. Note Derived from given Frequency

In an octave there are 7 lettered whole notes (C,D,E,F,G,A and B) with additional

�ve lettered half notes (C#,D#,F#,G# and A#). Knowing this, equation 3.1 can

be used to identify a note in relation to frequency.

f = 2(n/12)∗N , (3.1)

where f is the analyzed frequency, n is the distance of our note in the chromatic

scale from N which is the frequency of a note used for comparison.
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Figure 3.5: Frequency domain plot of sampled note E zoomed on X axis for closer
inspection

Using (3.1) with a given constant N , the note for a certain given frequency can

easily be derived as n with some small o�set. Here 16.35 Hz is used which is the

frequency of the �rst note in the chromatic scale, C0, and from there an equation

for n can be derived as

n = (f/16.35) ∗ 12/(ln(2)). (3.2)

After that it's easy to see which note is being sampled using the frequency that was

derived from the frequency representation.

For example the piano sound �le, used earlier, which plays the note E gives the

36



3.1. Proof of Concept: Deriving Tones from Sampled Data

resulting 664,72 Hz frequency which is substituted for f in (3.2)

n = (664, 72/16.35) ∗ 12/(ln(2)) = 64.1446. (3.3)

Again, knowing that there are 12 notes in each chromatic scale, we can perform

modulus 12 on the resulting number which gives the remainder of 4.1446. This

means that the note sampled is 4.1446 seats above the �rst C note in an octave,

which is E with a small o�set.

What has been solved here is but only a small part of the problem that has been

outlined. A note has been derived from a sampled input using a FFT function.

Only one note could be sampled per input and no noise �ltering or threshold was

implemented to see if there was no real input to analyze. Note that this is also not

a real time tone analysis.

3.1.3. Completing the test System

A time function was later added to the LabVIEW program which decided when it

had sampled enough input values to send them to the FFT function block. With a

22.050 kHz/s sample rate, after 100ms the input had sampled: 22.050∗0.100 = 2.205

samples or with a 44.100 kHz/s sample rate: 44.100 ∗ 0.100 = 4.410 samples. The

sample rate could easily be adjusted for di�erent results. With this minor add-on

the system had been turned into a real-time tone recognition system which gave

feedback to the user every time it had processed new data, telling what note was

sampled.

After completing a test system which proved that the idea was indeed feasible a

decision had to be made regarding which development platform was to be used.
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3.2. Deciding on the Development Platform

Before choosing a platform, multiple factors had to be considered. For example,

what kind of audience was being targeted by the application and what the system's

basic requirements were. Before development the application was thought of as

something for everyone that had at least a small interest in learning to play notes

on a musical instrument. Other basic needs for the application were powerful spec-

i�cations, sound inputs that could be processed and the means to represent a slick

looking interface for its users. This meant that the application needed a platform

that o�ered a wide audience and impressive graphics.

Today most of the platform giants o�er all of the necessities for the application to

be made on their platform. What truly di�ers between releasing the project on

the di�erent platforms could be the numbers of sales and downloads since the user

database and how users access the application along with the feasibility of promo-

tion for the application are not the same from one platform to another.

It was relatively easy to narrow the platforms down to only Apple's iOS and Google's

Android. The main reasons for other platforms being ruled out are RIM's BlackBerry

being mainly targeted to business users, Nokia's Symbian platform development be-

ing cancelled and rapidly losing users on the smartphone market and Microsoft's

Windows mobile being new and unfamiliar to the developer.

The choice between Google's Android and Apple's iOS was not as easy. Both o�er

a large user base, powerful devices and really advanced platforms. Android on one

hand is free and an open source platform which is taking the lead as the best selling

mobile platform among smartphones and also recently started to participate in the

tablet platform �ghting, and iOS on the other hand which is a closed source plat-

form with a large lead in market share especially if both smartphones and tablets

are combined.
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A closer look at the application stores, sales and downloads over the last years

among these two platforms shows a bigger di�erence. Android's market share is

rising in application availability, sales and downloads but iOS is clearly dominating

these statistics and has been doing that since it's launch. Considering this, Apple's

iOS was chosen as the development platform.

3.3. Planning

Before starting the whole development process of the system on a mobile platform

it was necessary to organize and plan. Creating and maintaining some kind of a

plan could really improve development, keeping it rapid and consistent. Planning

involved listing and writing down the steps required to carry out the desired goal of

the product.

As a result of planning a use case diagram, �ow chart and then a little more detailed

product backlog containing a prioritized features list were created.

3.3.1. Use Case Diagram and Flow Chart

A use case diagram was made to list up the few actions that a user should be able to

perform. The use case diagram is shown in Figure 3.6. As can be seen the actions

are somewhat limited but should still include all tasks needed for the system to work

as intended.

A �ow chart can often simplify complex processes and help with visualizing what is

happening at each point in a process and what should happen next. Not to mention

that they can also be used to �nd bottlenecks and �aws. A simple �ow chart

was done using processing steps (activity) denoted as rectangular boxes, decisions

denoted as diamonds and arrows connecting these two. The �ow chart is shown in

Figure 3.7.
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Figure 3.6: User diagram

3.3.2. Product Backlog

The product backlog is a list of features which contain a little description and infor-

mation about all functionality desired to be implemented in the �nal product. The

product backlog was not meant to be used for SCRUM iterative and incremental

agile software development for which it is often used but instead to be used as a

guideline to help manage the software project. This was because the product was

only being developed by one developer which also was the product owner. No sprints

were assigned and risk management was managed internally without being added

to the backlog by the solo developer.

Each function is furthermore described in smaller tasks that needed to be performed

to implement it. Following some functions are also comments where there was

more information and description needed. Also included in the product backlog

was the importance of each feature ranging from 1 to 3, 1 being necessary, 2 being

important while 3 was thought as more of a fun to have feature in later versions of

the product than something that had to be implemented from the beginning. The

more important functions of the product backlog are shown in the list below and

the full backlog can be found in the appendix.
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Figure 3.7: Flow chart
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1. Listen to input (Imp: 1)

• Setup audio listener/bu�er and audio streams
• Set sample rate
• Start the listener

Comments: Listener should always be active and starts up with the
program

2. Transform input with FFT (Imp: 1)

• Fill bu�er with sampled data
• Run FFT using vDSP function on bu�ered data

Comments: When desired amount of input has been sampled: perform
FFT

3. Analyze FFT transformed signal (Imp: 1)

• Find the dominant frequency in bu�er

Comments: "Magnitude squared"

4. Store analyzed inputs (Imp: 1)

• Create an array for analyzed data and �ll it up as the process proceeds

Comments: Possibly store both frequency and note

5. Map dominant frequency to note or silence (Imp: 1)

• Create "frequency to notes" map of all desired frequencies/notes
• Create a search function that �nds the closest note to frequency in map
• Disregard small noise
• Treat silence di�erently

6. Design main interface (Imp: 1)

• Come up with ideas for the interface
• Discuss their pros and cons

Comments: Interface involving: Sta�, notes, tablature and instruments

7. Check for duplicate notes (Imp: 2)

• Compare the note with earlier note
• Create a �ag that counts how many times the note was repeated
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• Create an array that stores multiplecations of notes (how many and what
note)

Comments: If more than 2 of the same note are together then they
should be drawn as a single note with a longer duration

8. Draw notes on GUI (Imp: 1)

• Create and place image holders for each note that can be displayed on
screen
• Create graphical note and a sharp note
• Position note images on the GUI in relation to their mapped note (move
them up and down)

Comments: Di�erent notes have di�erent position on the sta�

9. Draw note length (Imp: 2)

• Create graphics for 3 di�erent length of notes
• Change note image to represent the length of the note
• Position note images on the GUI in relation to their mapped note (move
them up and down)

Comments: Whole/Half/Quarter notes have a di�erent picture depend-
ing on their length (how many times they were repeated in a row)
Duplicate notes are used to �nd out length of notes

10. Draw vertical lines between measures (Imp: 2)

• Add a bar after every 4 notes

Comments: After one Whole, 2xHalf or 4xQuarter notes there should
be a bar (vertical line) that tells where a measure starts/ends (when
beat 4/4 is used)

11. Choose a note to inspect and display its value (Imp: 1)

• Create a GUI note picker that user can use to pick a note to inspect from
the list of sampled notes
• Create GUI display which displays more detailed information about the
inspected note

Comments: Users should be able to choose which note they want to
inspect from notes on the GUI sta�

12. Draw helper points on piano/guitar (Imp: 2)

• Draw a dot that displays how to play inspected note on a piano

43



3. Experimental Design

• Create guitar tabs for oneoctave and display them for inspected notes
(iPhone)
• Draw dots that display how to play inspected note on a guitar(iPad)

Comments: Users should be able to choose which note they want to
inspect from notes on the GUI sta�

13. Pan the sta� for more notes (Imp: 2)

• Create gesture recognizer
• Adjust movements
• Update the notes drawn in the GUI and also the note picker

Comments: Create gesture recognizer so the list can easily be panned
with �nger movements and adjust movements so they scroll the list
in a user friendly manner

14. Clear values (Reset) (Imp: 2)

• Creata a clear/reset GUI button
• Clear values/lists/arrays and bu�ers and hide image holders

15. Upgrade iOS (Imp: 2)

• Upgrade the project to newest iOS
• Create a new project
• Import all �les and libraries
• Resolve ARC issues

Comments: Upgrade the project from iOS 4.0 to 5.1

3.4. The Development

Instead of bulding an iOS XCode project directly from scratch it was decided to

build on top of another open project written by Demetri Miller which uses iOS

Accelerate framework's FFT function for frequency analysis. The project is a good

proof of concept for pitch detection and in more details it uses the same functions

and mathamatics as are described and used earlier in Chapter 3.1. From this the

project would be built up on and expanded [13].

44



3.4. The Development

3.4.1. Startup

Demetri Millers [13] project had a basic real time pitch detection that had the in-

terface shown on Figure 3.8. A listener could be started that would sample input

from a mic (mic that was connected to a personal computer running the emulator

or a mic on a real mobile device if it was sandboxed there) and it would process

and display the frequency of the sampled data when enough data had been sampled.

As can be noted, Demetri's project relates to the �rst functionalities that the project

described by Section 3.3 Product Backlog wants to o�er. The �rst 3 functions from

the Product Backlog are solved and might just need some tweaks regarding sample

speed, bu�er size, re�ned frequency analysis algorithm and other minor changes.

Figure 3.8: First interface
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As well as re�ning, next steps were adding more functionality to the project.

3.4.2. First Tests and Changes

Whenever a new frequency was processed the old one was dropped. An array was

created to hold information on old frequencies to be able to display more than one

frequency at each given time if more than one frequency had been sampled.

In the beginning the interface was not intended to be used by anyone else than

the developer so the original interface was changed to a new test interface for the

development system. It was implemented to be able to get the required feedback

from an emulator or a device.

Figure 3.9: Testing interface
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Figure 3.9 shows the �rst testing environment. The �rst tests of the system were

implemented by using begin and stop listening buttons (the Begin Listening button

changes to Stop Listening button after being pressed). This is not in line with the

original design as the system should always be listening and know the di�erence

from noise and tones. These changes were implemented a little later in the develop-

ment of the system and its interface. The �gure then shows a few labels which were

meant to hold sampled frequencies and display them as decimal values in Hertz.

These labels point to and show the value of a position in the array that was created

to hold old frequencies.

A function to search for the note closest to each frequency value was then imple-

mented. This was achieved by mapping each note to a frequency after the scale of

frequencies for the equal-tempered scale, then performing a rather simple search to

see what note had the closest frequency value to the sampled one.

The toggle On-O� button in Figure 3.9 changes the labels from displaying sampled

frequencies in Hertz to displaying the actual note corresponding to the frequency

for each label. The Clear button clears all labels and the UI button takes the user

to a new interface view.

Figure 3.10 shows the interface and the system in emulation on an emulator. The

system has picked up a few sampled frequencies which were whistled by a user after

the Begin Listening button had been pressed and then stopped again. A threshold

was implemented so that frequencies below that threshold were discarded as noise

and not added to the array.

Figure 3.11 shows another run of the application where the toggle button is turned

On, the frequency labels are now displayed as notes.
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(a) First. (b) Second �gure.

Figure 3.10: Test interface on iOS emulator

3.4.3. Interface Ideas

After some improved functionality and the �rst interface testing it was time to start

working on how the fully designed application interface should look and feel like for

the user. What had been an idea up till now needed to be implemented into some

kind of slick design that would be easy to understand and utilize for di�erent users.

Simplicity was the number one priority, to minimize buttons that had to be pressed,

settings to be set and actions that were required by the user.

Figure 3.12 shows the �rst interface idea for a small screen estate phone device that

was designed for the application. The application would start up and show the

screen that can be seen on Figure 3.12(a). It would right away start listening and

after picking up some tones the interface would start to look more like Figure 3.12(b).
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Figure 3.11: Test interface with note

The interface can be described rather easily, at the top there is a placeholder for

the application logo. Next there is a slider to indicate what note the user is in-

specting. Then there are two note sta�s with notes that have been analyzed and

mapped. These notes should be in their right place considering correct musical

notation. Next there are three guitar tabs, the middle one showing how the note

that is being inspected is played on a guitar and the other two show the next and

previous note from the array holding the notes. Finally on the bottom there is a

simple piano that shows what piano key corresponds to the inspected note.
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(a) First. (b) Second �gure.

Figure 3.12: Proposed interface

3.4.4. Bringing the Idea to Life

The idea had taken form, something that could be worked with and used as a

guideline. This was not a very re�ned form but it was a beginning.

Improvements and changes were made as well as the addition of new functionalities

to the project. The work in development is shown on Figure 3.13.

A list showing short description of changes that were made:

• Figure 3.12(a) was set as interface background.

• Image holders for note images were added to the interface.

• Images for notes were added to the project.

• Notes were displayed on the background sta� after they were sampled, pro-

cessed and mapped.
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Figure 3.13: Interface idea in development running on iPhone emulator

• Notes were moved up and down the sta� in relation to their mapping process.

• A selector was added that could be used to perform a selection inside the list

of notes.

• A new label was added to indicate what note was selected (being inspected)

• Gesture recognizer was added to pan the list of notes when more notes than

image holders had been added.

• Three labels for notes were kept and others were removed. These labels were

coded to show the note that was being inspected as well as the next and

previous note in the list.
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• A dot was shown on the piano background when a note was being inspected.

The circle was placed in relation to the mapped note.

• Begin/Stop Listening button was removed and instead the listener was started

(never stops) as soon as the program had performed setup and was ready.

• UI button was removed (for now there was only going to be a single interface).

• ON/OFF Switch was removed.

• Sharp notes were shown with a di�erent image than normal note.

This was the status of the project in mid development. The notes on the sta� were

still far o� from having correct musical notation. No beat/tempo had been added

and notes were only put on the sta� in relation to one octave. This lead to for

example C5 and C6 having the same place on the sta� without anything telling the

user, except inspecting it further if it was C5 or C6. Also no bars between measures

were being created. Without these improvements to the project it would be more

confusing then helpful for new users which was obviously not the intention.

3.4.5. Adding Tempo, Measures and Bars

The musical notation had to be improved, it was incorrect and confusing. Adding

a tempo could improve it a lot by giving each note a meaning. The decision was

made to add a simple tempo of 80-160 BPM(beats per minute) with
4

4
to the system

where each measure would count 4 beats. This meant that 4 quarter notes would

get placed inside one measure between two bars and 80-160 quarter notes would

be written per minute. 80 notes showing only 1.333 updates per second while 160

shows 2.666 updates per second.

The system sample speed and bu�er size used for FFT had to be considered here

as they directly a�ected the tempo. Common sample speed for systems like this are

11.025 kHz/s, 22.050 kHz/s or 44.100 kHz/s depending mainly on what frequencies
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need to be sampled. The Nyquist frequency is the highest frequency that can be

expected to be found in a presented sample which can only be half of what the

sample speed is. Therefore the frequencies to be sampled can not surpass 5.5125

kHz, 11.025 kHz and 22.050 kHz in relation to the former mentioned sample speeds.

Nyquist frequency of 11.025 kHz is considered to be enough for this system to work

and to be used for most notes so sample speed of 22.050 kHz/s or 44.100 kHz/s

could both be used.

The amount of frames in a bu�er that is then fed to the FFT function has to be

in the power of two and can be used to give the system a tempo in relation to the

sample speed. This of course also a�ects the accuracy of the system but in terms of

such great sample speed and a bu�er that is not too small the accuracy should not

be too low for the system to perform well. The formula for this accuracy is simply

the sample speed divided by frames.

To achieve roughly around 80-160 BPM, a frame size of 8192 and 16384 (both in

power of 2) could be used for the 22.050 kHz sampling speed. This resulted in

22050/8192 ≈ 2.617 which gives 60 seconds ∗2.617 beats ≈ 161.499 BPM while

22050/16384 ≈ 1.346 which gives 60 seconds ∗1.346 beats ≈ 80.750 BPM. Both

could be used and gave each a very di�erent experience to the user. The former

resulting in a rather slow update of notes on the interface while the latter was 2x as

fast and felt like a better setting for now.

A tempo and a time signature had now been picked which set rules that the rest

of the system must follow to achieve correct musical notation. Every four beats (a

measure) should be separated by a bar (a vertical line). The measure should never

hold more or less than these 4 beats, be they 4 quarter notes, 2 half notes, 1 whole

note or other part notes.

The bar got implemented by adding extra "Bar Note" after every fourth sampled

note. It was then drawn on the screen with the same function as all other notes but

as a vertical line over the sta�. With this rather easy implementation the bars get
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treated just as a note which simpli�ed things for coding and without inducing any

extra problems.

3.4.6. Improving Notation

Whistling a long note which kept it's frequency roughly would result in 2 or more

quarter notes of the same note being shown after another. A better notation would

be to take two quarter notes together inside the same measure and write them out

as one half note. Then if 2 half notes of the same note had been sampled inside a

single measure they'd be combined and written as one whole note.

This was achieved by implementing a function that checked for duplicate notes and

stored how many duplicates each note had in a vector. The function simply checked

if the note that was analyzed was the same as the one analyzed before it. If it was

the same it gave a �ag that indicated that a new note should not be added but

instead a value in the duplication vector should be increased. Duplication could not

occur right after a bar was placed since the sampled note could of course not be a

duplicate of a "Bar Note" that got added after every fourth note. The duplicate

vector was then used to know how long a duration each note should have ranging

from 1 to 4.

Up until here in the development process only a small portion of notes had been

mapped. Adding more notes could improve the functionality of the product. A

lot more notes were therfore added to the note map to achieve a much bigger note

range that could be sampled and analyzed. The system could then analyze notes

ranging from C4 to C8(261hz - 4186 Hz). Inside this range are for example the most

common whistle frequencies.

Since so many more notes were added the musical notation had to be changed in

some way. Only around 2 octaves could �t on a single sta� on the interface. This

is where treble and bass clefs came in. By implementing 2 sta�s, one for treble

clef and one for the bass clef more than 4 octaves could sit rather comfortably on
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these 2 sta�s. This meant that notes with very di�erent frequencies could still sit

together on the same interface without having special representation for each of

them detailing their di�erence. This is often used in piano notation whereas one

hand plays the bass while the other plays the treble.

3.5. Improved Instrument Interface

The �rst idea to display guitar notation for users was to display a simple guitar

chord for the note that was being inspected. It looked good since it used up so little

screen estate and could therefore also, for example, be used to show the guitar chord

for the next and previous note of the inspected note. After a little bit of inspection

the idea of having a guitar chord did both not �t well into the concept of learning

basic notes on a guitar, as well as how would the application know which chord

should be picked with each note. This would only lead to more misunderstanding

and problems.

A new idea developed instead which was to display a guitar neck that could hold a

whole octave of notes (12 half notes or 12 frets). Then each note could be displayed

as a dot on the guitar neck which would indicate users where to put their �nger and

what string to pluck. An indicator could then be used to tell if the note was a whole

octave lower on the guitar neck to save screen estate. A proposed visual can be seen

in Figure 3.14.

Figure 3.14: Guitar neck with 6 strings
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3.5.1. Advancing the Product

The code that was built upon from Demetri Miller [13] was written and updated

more than year from when the development of this project started. It was written

for earlier versions of iOS (4.0) and only with emphasis for the iPhone device. To

continue even further with the project it was thought to be ideal to update the

project and include full support for both iPhone and iPad devices.

A new fresh iOS 5.1 project was created with full support and a di�erent interface

storyboard for both iPhone and iPad devices. All necessary �les from the old project

were then copied over to the new project and all vital libraries linked. The biggest

problem that came up was that the old code had done all memory management

manually. In iOS 5.0 ARC (Automatic Reference Counting) was introduced which

made memory management a job that the compiler did. Having manual memory

management in the code along with ARC trying to work with memory management

brought up a lot of con�icts. Either the code had to be �xed in many cases or ARC

disabled.

It was decided that ARC could improve much of code that was added by this project

to Demetri Millers project. Not much e�ort was spent thinking about retains and

releases of calls mostly since no re�nement had been done on the code. The manual

memory management was therefore discarded and changed/�xed to work with ARC.

3.5.2. iPad Improvements

Much larger screen estate on iPad called for changes to the interface for that device.

The best possible solution was to have 2 di�erent interfaces for the same project,

one for iPhone devices and one for iPad devices. From the experience collected so

far it was decided to only change it a little from what it had already evolved into

for the iPhone, this was also positive since users would still feel like they were using

the same application if they had already learned to use one of the interfaces and
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changed to the other.

The same program code was still handling the interface so all former functions were

included. Since the iPad did not have the same very limited horizontal screen size as

the iPhone, rotating the interface to a landscape orientation felt like the right thing

to do and made the sta� much longer, �tting more notes on it. The instruments

could also be made bigger and 2 octaves could easily be shown on the piano. Then

the idea came up that the interface would show either piano or guitar and o�er

notation for them, but not both at once. Showing both at the same time made the

interface just more crowded. To swap between the piano and guitar a simple swipe

up or down was su�cient. The new interface is shown on Figure 3.15.
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(a) iPad interface with piano

(b) iPad interface with guitar

Figure 3.15: iPad interface
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4. Results and Analysis

Chapter 4 will be used to present improvements and re�nements as well as results

and analysis of the application system which was described, designed, implemented

and advanced in Chapter 3. This chapter will state why further improvements which

were not planned from the start of development, were necessary for the system

output to be as was desired. How the the system was re�ned to �x issues that were

not thought of until they were noticed during the testing phase, and then the system

will be thoroughly tested and documented and its usage demonstrated. Accuracy,

performance and usability of the system will be described as well as compared to

other applications. Di�erent performance and functionality will also be discussed

which results from tweaking computation factors and changing the user interface.

4.1. Improvement and Re�nement

The design and development of the system had been done and the result was a sys-

tem that seemed to work as intended. It was an application that listened to sound

which was then analyzed and output in the form of notes on a sta�. It could tell

apart 4 octaves of notes (48 notes) and from what simple test had been performed

by whistling and playing single notes on instruments, the system seemed to work

well. Notes were being drawn in their right place on the sta�, they could be in-

spected to see their detailed information as well as to see how they could be played

on instruments, the sta� could be panned back and forth for more notes and all

seemed well. A few optimizations and adjustments could do the system good but

were not considered necessary at this point.

But some further user tests led to light very unfavorable results. A few issues came
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up which clearly had not been thought of until they were encountered during larger

test cases. When notes were played back to back some very noticeable faults could

occur as well as other minor problems. These faults will be described in the next

subsections as well as how they were addressed.

4.1.1. Determing Silence

Determining if a sampled batch of input should be treated and analyzed as a note

had been implemented in a very simple manner. Firstly a sample was treated as a

silence when no input was monitored and secondly if it was cut o� by a high pass

�lter with a low frequency threshold. The �lter cut o� all low frequencies (below

250Hz) and treated them as if there was silence. It was considered as a very simple

and quick way to solve this problem but of course it was likely that it might have

not been the most e�cient one.

The former described method worked well and was acceptable when the system was

being testing and played with while it was run on a emulated device with a headset

mic as the input sampler. What had not been taken into consideration was that dif-

ferent sets of devices pick up di�erent noises and low sounds. For example, the mic

connected to the personal computer that sand-boxed the application on a emulator

clearly already had some noise canceling implemented as it did not pick up much

environment sounds and provided very nice results with only the high pass �lter.

Then when the application was deployed on an iPhone device or an iPad device they

proved to be much more sensitive to picking up environment sounds. Sounds that

were not meant for the application to process such as speech from a small distance

and other environmental sounds were being analyzed and shown as notes. This was

not a desired functionality and rendered the application almost unusable unless it

could be improved by developing a noise �lter and/or using the application in a

more quiet place.

It was not acceptable that the user had to be in a very quiet room well away

from other sounds and that the application could not be running without sampling
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and analyzing every low amplitude sound it could pick up. It had to be �xed.

The quick �x which was added to improve usability on the mobile devices was a

check in amplitude value. Basically another high-pass �lter was implemented after

�nding the dominant frequency which checked if its amplitude was high enough to

be considered as something that should be analyzed. Instead of cutting out low

frequency valued samples like the former �lter, it cut out samples that were low in

amplitude. Hence these two �lters mentioned were the new determination of samples

that were considered as silence.

4.1.2. Maintaining Perfect Tempo

If inputs were at a faster or slower tempo than the application's system tempo a

few very noticeable faults could occur. Change from sound to silence inside the

same bu�er feed to the Fast Fourier Transform would result in silence not being

registered. Therefore if two to four tones with the same pitch were whistled fast

with small silences in between they could still get turned into a longer single note

just as would happen if a long single note had been whistled instead. Also, if a fast

change in tone pitch was being monitored, two or more frequencies could be inside

the same bu�er feed and result only in having the frequency with more amplitude

being shown as a resulting note. This had not been treated as a high risk until

it was shown having too big of an impact on results. This had to be tweaked one

way or another. By holding the right tempo these faults could be minimized but

it proved to be a very hard thing to do. It often made small songs result in a very

poor output of notes that didn't �t as they should.

Possible �xes for these faults that came to mind were that the system could be

improved by �nding silences inside bu�ers that also contained higher amplitude val-

ues which could possibly also give two or more tones as a result. Or could maybe

the easy possibility of adjusting the tempo be enough? Results from tweaking the

tempo were that no matter what tweaks and changes were made the results only

came out similar or worse. The tempo speed went to being too fast or too slow and

was always hard to follow without faults.
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Completely analyzing the bu�er for low time gaps that could possibly be silences

was not considered a possibility here as it required a big set of calculations, tests and

tweaks for di�erent factors which could take too long to design and could have some

impact on system performance. While not surrendering to these usability faults an-

other possible idea was born. What if the underlying tempo of the system was speed

up while the output to the user was still given at the same tempo? This meant a

few FFTs were done for each note that was displayed as a result. Each FFT could

hold di�erent notes and/or silences. Then they would all be analyzed together and

turned into one single note output.

The idea was implemented by speeding up the system analysis by the factor of four.

Each four results were then monitored and the new output took all these values

into consideration. By doing this, short silences in between notes could hopefully

be monitored as well as fast change in frequency.

A small sample of the new process which results in an output of two notes:

• Four samples give an array of [74, 74, silence, silence]

� 74 representing the 74th note on the frequency list for equal-tempered

scale and silence tells that whatever input was monitored got cut out by

either one of the implemented �lters. The array is then analyzed and the

corresponding note for it is D6 with a raised �ag indicating that silence

was also monitored.

• Next four samples give an array of [74, 74, silence, silence]

� again the output should be D6 but since there are silences monitored the

older D6 note does not just get longer but instead a new note is drawn

which means that the user should play two shorter notes instead of a

longer one.
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4.1.3. Harmonics Greater in Amplitude than Fundamental

Frequency

Harmonics with a greater amplitude than the fundamental frequency cause the ap-

plication system to display notes octaves higher than they are. For example C4

could be displayed as C5 or higher. The system would still always show C but a

higher C could get analyzed instead if it had greater amplitude than the fundamen-

tal frequency.

A �x could be implemented by always checking if there was a clear but smaller am-

plitude monitored in half the frequency of what was analyzed. If there was indeed

some amplitude value there it should be further checked if it also had amplitude in

half of the new frequency value and so on until a decisive fundamental frequency

had been found.

This problem did not a�ect the test results as much as the previous problems and

is kept as is until further advancement of the system.

4.2. The Application

The application had been developed with its original intended functions and its two

di�erent sets of interfaces, one for iPad devices and another for iPhone devices.

The underlying source code for both interfaces is as said before the same Object C

source code which implements and uses libraries and other code classes to perform

mathematical operations, mapping, drawing and other functions.

In the main Object C class that represents the interfaces are functions that detect

which hardware it is being deployed on and in each case de�ne a few constants and

run a few di�erent setup con�gurations as well as displaying the right interface.

Both interfaces will now be discussed as well as their usability monitored. The

source code will though only be addressed as a single application.
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4.2.1. Usability and Functionality

Usability and functionality of the application which was run on an emulator and

two di�erent mobile devices were tested and monitored by noting down outputted

results by the application which were results from whistling and playing both single

notes and then well known songs on instruments.

The application had mostly been tested during the design phase for single notes

which didn't really add up to any greater meaning. Silences could be detected as

the amplitude faded away or was stopped and both short and long notes were output

at the right times. Whistling detection had been tested and performed as intended

by giving higher and higher notes as the user whistled higher frequencies as well as

piano and guitar tones which could be analyzed and shown on a note sta� as their

corresponding notes. A short test involving a full high in pitch whole-note octave

played on a piano was monitored on both an emulated iPhone device and an iPad

device and are the results shown on Figure 4.1.

Figure 4.1 shows 8 notes C, D, E, F, G, A, B and another C which is one octave

higher than the former C. These �rst tests including the results from Figure 4.1 gave

promising results and it was decided that from here the tests could be scaled up and

were moved on to simple songs.

Going from short single notes to songs introduced many new possible faults, espe-

cially if the songs were played by a not so experienced musician. The song's tempo,

and duration of each note could vary each time a song was played. Users are not

always consistent and duration of notes which make up a song almost always change

in some way from one play-through to another. Let's also not forget di�erent in-

struments and that their �ne-tuning might also possibly give di�erent results. Many

di�erent paths to test the application were open and at least one had to be explored.

The path taken was to play a song with a piano keyboard hooked up with a line into

a PC. The tones which summed up a song were recorded and could be monitored
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4.2. The Application

(a) Application running
on a emulated iPhone de-
vice

(b) Application running on iPAD device

Figure 4.1: Whole-note octave test

with the computer program Reason which is a music recording and production stu-

dio program and comes with instruments and mixing tools[1]. The same song could

be played over and over to see if the application would be consistent, and Reason

made it easy to move tones up or down an octave for reference. Reason also made

it possible to change the output so it would behave as a di�erent instrument.

The �rst song test started with the very basic and well known song Mary had a

Little Lamb. Its full song sheet music is shown in Figure 4.2(a).

The �rst test cases which included playing the song and gathering information was

done using an emulated iPhone device on a PC. The input to the device was as

mentioned before a played sound �le which had been recorded with the program

Reason. The sound �le could be visualized in Reason and is shown in Figure 4.2(b)

The orange boxes in Figure 4.2(b) represent what key (y axis) on the keyboard was

struck at each time and also show the duration (x axis). The song was played ac-

cording to and should be in somewhat good relation to the music sheet shown on
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(a) Music sheet [7] (b) Recorded with Reason [1]

Figure 4.2: Mary had a Little Lamb

Figure 4.2(a). A better look at the useful information from Figure 4.2(b) is shown

in Figure 4.3.

Figure 4.3: Closer look at Figure 4.2(b)

The results from four independent test cases which all used the same setup, settings
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and same sound �le as input on a emulated device are shown in Figure 4.4

.

(a) Test case 1 �rst half (b) Test case 1 second half

(c) Test case 2 �rst half (d) Test case 2 second half

(e) Test case 3 �rst half (f) Test case 3 second half

(g) Test case 4 �rst half (h) Test case 4 second half

Figure 4.4: Emulator output of Mary had a Little Lamb input

Test case 2 and 3 gave exactly the same output which can also be said about test

case 1 and 4. Lets bear in mind that the �rst note of the second part of test case

1 and 4 is the same note as their ending note of the �rst half since those test cases

were one note shorter than the others. The di�erence between the two di�erent test

cases is then only three notes, two very closely placed to the di�erent outcome and

one extra added note. The close notes are the �rst two notes of the �rst part and

the extra note is in the second part in test case 2 and 3 (note 5-8, one extra E). For

ease of comparison the results from �gure 4.4 were overlaid over each other and are

shown in Figure 4.5.

The consistency test had been completed and was considered a good success. Re-

ceiving only two outcomes from four di�erent tests which were only three notes or

3/26 = 12% apart from each other. Next up was to see how correctly placed the
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(a) First half (b) Second half

Figure 4.5: Overlaid output from four test cases

notes were, how many notes were missed, how many notes were a direct hit and so

on. To further analyze the correctness of the output from the input, the Reason

visualization of the sound �le used in the test cases was cut up and matched with

Figure 4.5 and the results shown in Figure 4.6.

(a) First half (b) Second half

Figure 4.6: Overlaid output from four test cases and Reason visualization

Now everyone can judge for themselves but the application developer was mildly

happy with these test results. The application was never intended to fully succeed

100% in analyzing and tracking the notes of a song but what matters the most was

that it could be very close and could be further improved and optimized for better

results. If the �rst two notes of the �rst half of Figure 4.6 are removed it leaves all

the rest of the songs notes at their right height on the note sta� when compared

to the sound �le visualization except for one extra sharpened note which should be

half an octave higher. Each of these notes was placed in their right place and even

better, all orange boxes have a note which represents them if they are allowed to

be moved around a little since no accurate time scale between the compared �gures

was available.

The duration of notes might not be as consistent to the input �le and the music

sheet as some might have wanted. Each test case could have improved a little with

tone duration sampling, for example added a longer duration of a note in the end,
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but like everything else it has a good reason for being so. While each test case

could have improved a little it can not solely be blamed on the application. Other

variables such as the user playing the song having not held the right duration of

a note or possibly the amplitude of a tone not being powerful enough to stay over

the set threshold of an implemented �lter. Some factors and changes here and there

could drastically change the outcome. For clarity the sound �le was played again

where every tone was ampli�ed to a much higher amplitude and the results shown

in Figure 4.7.

(a) First quarter (b) Second quarter

(c) Third quarter (d) fourth quarter

Figure 4.7: Emulator output of Mary had a Little Lamb input with increased ampli-
tude

It can easily be seen that there exists a large relation between test cases shown in

Figure 4.4 and the single test case shown in Figure 4.7. The main di�erence being

that in the latter mentioned test, notes lasted much longer since their amplitude of

dying notes were being pushed over the set amplitude �lter when in the earlier tests

they had already been �ltered out. This resulted in the latter test having around 2x

more notes and multiple half notes instead of only quarter notes. Was this a better

output? While being a more detailed output it had way to many notes and could

easily cause confusion among users.

Another single test withMary had a Little Lamb was performed with the application

system running on an iPad device to see if it would result in similar output as on the

emulator, hoping that equipment such as speakers and mic and their software would

not a�ect the outcome too much. The results from the test are shown in Figure 4.8
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(a) First part (b) Few extra notes

Figure 4.8: iPad Application output of Mary had a Little Lamb input

The results were close to perfect, almost each note was a direct hit. A few monitored

di�erences between the former tests and this one: Two strange extra silences were

added as well as one extra note and one note got lengthened. This test case could

even be argued to have a better output than the former test cases on the emulator

due to how well it follows the Reason visualization of the sound �le and the sheet

music itself.

The tests were �nalized with one extra song. A similar test case was performed

again with the song The Legend of Zelda theme. Results compared to the Reason

visualization of the sound �le input are shown in Figure 4.9

(a) First part (b) Second part

(c) Third part

Figure 4.9: Emulator output of The Legend of Zelda theme input with Reason visu-
alization
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The test shown in Figure 4.9 spanned more notes, and a much larger note range

which also had a lot of sharp notes. The application did a little worse in analyzing

this test than the tests before but can still be considered to have done well. Only a

few notes were half a note away from where they should have been and only the �rst

note was further away than that. A few very short duration tones went undetected

(small orange boxes) which might have been played to fast for the analysis but it

kept a good track overall.

Running these tests and working on their outcome gave useful information which

can be used to further improve the system's analysis. Apparently the �rst note of

each test was not very accurate. Something was wrong with the �rst note analysis

which shall be addressed in improvements to the application.

4.2.2. Computation, Accuracy and Resolution

Accuracy and resolution changed as the sample rate and sample bu�er size was

changed. Their relation can simply be described by the formula

Resolution =
SampleRate

BufferSize
, (4.1)

The resolution had been set in subsection 3.4.5 which was decided from achieving the

system tempo of 80-160 BPM. In development these constants were set as Sample

Rate = 22050 and Bu�er Size = 8192. These constants lead to the system having 80

BPM which was not too fast and not too slow. By putting these constants in (4.1)

resolution of 2.692 was achieved. This meant that since more than the resolution

constant was between notes that were being analyzed the analysis should be mostly

right. A larger resolution percentage of the gap between notes meant worse accuracy

performance, since even if the gap between notes was large enough the frequency

could still be analyzed as just around the edges of a note and the resolution not be

good enough to tell the right note.
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C4 is the lowest note that can be analyzed as the system is set up and the frequency

gap between C4 and the next half note of C#4 is 15.55. After that the gap increases

with each note and with a resolution of only 2.692 the resolution is well within ac-

ceptable limits.

In subsection 4.2.1 the system analysis was however sped up by a factor of four,

which had to be done by decreasing the sample bu�er size and/or increasing the

sample rate. This could simply be achieved by decreasing the bu�er size by factor

of four and increasing the resolution by the same amount or by decreasing the bu�er

size by factor of two and increasing the sample rate by same amount. No matter

which route was taken the resulting resolution value was increased by the factor of

four to 10.77.

The changes meant less resolution and more computation but gave valuable infor-

mation that had to be used to increase the system's usability. At higher notes the

resolution is well within limits but at the lowest frequencies better resolution is de-

sirable. Since both can not be achieved here the option of having more information

to work with was taken.

4.3. Comparison

The resulting application system which has been tested and monitored in earlier

sections can be said to have a relation to and be compared to many other systems

which include some kind of frequency analysis and/or tone training on mobile ap-

pliances. It was much harder though to �nd another product that o�ered all of the

above together in one package to compare with. That is, o�ering tone training based

on the frequency analysis for mobile appliances.

There exist many kinds of frequency analysis and tone training products for all kinds

of platforms. Let's not forget that this is a huge market and today many people's
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work depends on income from application sales of products such as this one. A few

will be mentioned here which all run on the iOS platform and were considered pop-

ular and to be in a similar category and related to the system designed in this thesis.

• SpectrumView helps users visualize frequencies that the device can pick

up in its environment. It has a really high frequency range and enables its

user to set their own sample rate and frequency resolution. It is a freeware

application developed by Oxford Wave Research Ltd. for the iOS platform

[15]. Screenshots from the application are shown in Figure 4.10.

(a) Real-time Spectrogram (b) Spectrum Analyser

Figure 4.10: SpectrumView [15]

• FFT is a high-resolution audio analysis tool which uses the Fast Fourier Trans-

form to analyze incoming audio, and displays a very detailed graph of ampli-

tude vs. frequency. It is only one of many commercial application developed

by Studio Six Digital and can be purchased in the iTunes store for $24.99 for

the iOS platform [6]. Screenshots from the application are shown in Figure

4.11.

SpectrumView and FFT do the same analysis as this thesis system but instead of

focusing on turning the analyzed output into notes they focus on giving accurate
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(a) FFT analyzer (b) FFT setup

Figure 4.11: FFT analyzer and setup screen [6]

spectrum and spectrograms as well as allowing many kinds of tuning of the instru-

ment.

• Pro Tuner is a tuner application especially designed for guitar and bass play-
ers. It can be used to give reference sounds when tuning the instrument as

well as having input-level indicator support for line in and mic. It is a com-

mercial software developed by Xiao Yixiang which can be purchased for 2.99$

at the iTunes store for iOS platforms [22]. Screenshots from the application

are shown in Figure 4.12.

There exist many tuners for all kinds of instruments today. The most basic ones

o�ering only references for tuning notes and more advanced ones o�ering impressive

accurate analysis by using line-in or mic as samplers, o�ering di�erent tuning modes

and support for more than one instrument. The thesis system is not that di�erent

from a tuner which tells which note is being played and if a string should be tuned

lower or higher. It might not give the same accuracy as a tuner tool which can tell

accurate tuning inside note boundaries and also not o�er tuning of tones lower than

250 Hz since they would not even show up but that's mostly since the focus of the

these projects are very di�erent. Tuners usually take much larger samples for high

resolution outputs while not focusing on fast response as well as not saving older

notes in history. The interface is also in no way useful if a user wants to track a

whole song.
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Figure 4.12: Pro tuner on iOS [22]

• SoundHound is a music recognition application. It only needs singing or

humming as an input to perform music recognition which should return more

information along with lyrics for the song. SoundHound by SoundHound, Inc.

can be downloaded free or bought with extra features and no commercials

for $6.99 at the iTunes store for the iOS platform [18]. Screenshots from the

application are shown in Figure 4.13.

SoundHound is probably by far the largest application, most downloaded and used

amongst the applications mentioned. It's one of a kind whereas no other applica-

tion has its enormous database which it uses to compare songs with its analysis. Its

analysis is not shown in detail and its only output to the user is a song that matches

the input in some way. The output focus here is very di�erent compared to this

thesis project but if SoundHound can �nd the right song it should also be able to

present the user with a note sheet that could be used to play the song. These note

sheets could easily be part of their database and o�er sheets for di�erent instru-

ments. SoundHound could therefore easily be a competitor in a similiar market for

users that are not creating their own songs but trying to �nd music sheets for songs

that already exist by whistling or playing a few notes.

All the above applications perform sound analysis and even more they all use some
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(a) LiveLyrics (b) Playback

Figure 4.13: SoundHound on iOS [18]

Fast Fourier Transform algorithm to do it. These parts of the programs are similar

to this thesis project but what di�ers is what is done with the analysis. The FFT re-

turns valuable information that can be used in many ways. What this thesis project

o�ers which none of the above have implemented so far is gathering information

from the FFT and representing them as helpful notes on a sta�. The notes are kept

in history and can be inspected for more detailed information.The accuracy may

not be as detailed or the user as free to change settings as in some of the above

applications mentioned but instead its settings and setup are meant to be optimized

for its purpose. Further iterations of the application could of course improve many

of its lacking features to compete with the above mentioned applications as well

as other applications on the market. Some improvements which have already been

thought of are mentioned in the next chapter.
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A fully functional musical tone recognition system for interval tone training has

been designed, developed and tested. It was developed with emphasis on higher

frequency (250 Hz+) inputs for useful and accurate analysis of fast and rapid changes

in frequency. The inputs to the system are only limited by the mentioned frequency

threshold and an amplitude �lter, apart from that any tone input ranging from

whistles to di�erent instruments is su�cient to produce a valid output. The system

performed well in tests done by analyzing inputs played by a sampled piano keyboard

sound �le. Most tones that were monitored were analyzed and registered as their

corresponding note on a musical sta� with only a few exceptions. The outputs from

each test were then compared to the original sound �le which could be visualized

with a more sophisticating recording studio tool to evaluate the performance of the

system.

The two interfaces performed similarly except that the iPad interface o�ered a much

larger sta� for notes which proved to be a very useful advantage. Both interfaces

worked well and were consistent in their outputs. Both o�ered the same functionality

such as panning the sta� for more notes as well as showing two instruments and

some small helpful information and notation of how to play each note. The interfaces

then also o�er useful information that can be used to assist users in learning the

basics of musical notation. It can further assist users learning di�erent pitches of

tones and see how they correspond in a note on a musical sta�.
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5.1. Future Work

Below is a list of ideas for future work

• Some users might want to dive into the technical details and settings of the

program. Those who have learned Fast Fourier Transform might want to set

their own sample bu�er size and even change the sampling speed of the appli-

cation, resulting in changing the application tempo. Other less knowledgeable

about FFT might want to change the tempo which could automatically change

the sampling speed and/or sample bu�er size to result in the desired tempo

change for its user.

• Playing the recorded notes in history could add tremendous usability to the

system. Users who had the chance of trying out the application all mentioned

that they would like to be able to make the application play back all the notes

it had recorded. The application could play the sound �le it recorded as well

as the notes it had analyzed. This could prove convenient for many users

and help displaying how accurate the analysis is without having to go through

much extra e�ort.

• Being able to save and load a song from memory as well as to store it on a

public server to exchange with other users.

• A line drawn in real time could be turned on and o� showing the FFT analysis

in some useful way. It could help with debugging as well as give the user more

detailed and useful output of data.

• Di�erent settings for di�erent purposes. A few predesigned settings could

be o�ered to users. These settings would have optimized parameters that

would perform better in case of certain purposes such as usage of analysis with

di�erent instruments. Di�erent instruments, whistling and further inputs may

di�er a lot in frequency range and some might need more accuracy and more

calculations regarding outputs than others.

• The �rst note analysis in many test cases were worse than their following
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note analysis. How the �rst note is analyzed, processed and mapped should

be rethought and redone. It is programmed to not wait for a full array of

sampled values but instead use the �rst sampled value and analyze it for quick

response. This has proven unsuccessful and could be improved by waiting for

more samples and respond a little later.

• Use silences and pauses to give accurate musical timing. If an analyzed sound

didn't meet the requirement of a �lter it was not kept as information but

instead trashed. It was mainly at a certain time in development that it seemed

not useful to monitor pauses. It was thought as to only make the system save

a lot of information in memory regarding empty pauses for a song which were

unintentional pauses. In early testing this made notes often be far from each

other and whenever the user was viewing the system outputs, more empty

notes were being added at the back of the list. By implementing user controlled

settings which would set how long a maximum pause of silence should be we

could add valuable information to the outputs. This could make the system

have an accurate timing diagram of the notes, so users could play songs at

their right tempo while playing after the systems presented musical notation.
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Figure A.1: Product Backlog
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Figure A.2: Product backlog
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