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Abstract
The CEDER project aims to provide more accurate and timely information on catches, 
effort, landings, discards, quota and TAC (Total Allowed Catch) uptake and to assess the 
benefits of this information for fisheries management.

This  thesis  is  part  of  a  CEDER  work-package  dedicated  to  the  development  of 
classification algorithms and statistical  models to identify and categorise vessel activity 
through analysis of positional data, estimate the fishing effort and predict the vessel catch. 
The data used was collected from the Atlantic Pelagic Redfish fishery on the Reykjanes-
ridge.

A  linear  discriminant  classifier  on  vessel  speed  is  capable  of  identifying  high-speed 
cruising  activity,  but  no  measure  or  alternative  classifier  is  found  to  adequately 
differentiate between fishing and non-fishing activity at lower speeds based on the data 
provided. A case is made for using higher resolution data with a maximum of 15 minutes 
between position reports.

An estimate of fishing effort is derived from the classifier results and used in a multivariate 
linear regression model to predict the expected catch for individual vessels and trips within 
any given year. The model is found to return reasonable predictions for known years, but 
has a higher error rate for unfitted years.

Using a simpler effort measure of days at sea with the same model is shown to give at least 
as good or better results than the more complicated effort estimate from positional data. 

A pilot-system is presented with features such as current fleet activity, total TAC uptake, 
alerts for suspect activity, and area fishing load. 

Útdráttur
CEDER  verkefnið  miðar  að  því  að  þróa  aðferðir  til  nákvæmari  og  hraðari  miðlunar 
upplýsinga um afla, sókn, landanir, brottkast, kvóta og nýtingu hans og meta kosti þeirra 
við stjórnun og eftirlit fiskveiða.

Þessi ritgerð er hluti af CEDER vinnupakka um þróun flokkunaralgríma og tölfræðilíkana 
til að greina og flokka aðgerðir skipa út frá staðsetningargögnum, meta sókn og spá fyrir 
um afla. Gögnunum sem notuð eru var safnað á karfaveiðum á Reykjaneshrygg.

Flokkunaralgrím sem byggir á línulegum aðskilnaði eftir hraða skips getur borið kennsl á 
stím á  mikilli  ferð,  en  engin  mælistærð  eða  aðrir  flokkarar  fundust  sem gátu  aðskilið 
fullnægjandi milli fiskveiði og annarra aðgerða á minni ferð, byggt á gögnunum sem lögð 
eru til grundvallar. Færð eru rök fyrir að nota gögn með hærri upplausn, eða í mesta  lagi 
15 mínútna milli staðsetninga.

Mat  á  sókn  er  byggt  á  niðurstöðum  flokkunaralgrímsins  og  notað  í  margvítt  línulegt 
aðhvarfslíkan til að spá fyrir um væntan afla fyrir ákveðin skip og veiðiferðir innan hvers 
árs. Líkanið skilar ásættanlegri spá fyrir þekkt ár, en er ónákvæmara fyrir ómátuð ár.

Sýnt er fram á að notkun einfaldari mælinga á  dögum til sjós með sama líkani skilar að 
minnsta kosti jafn góðri eða betri spá en flóknara mat á sókn út frá staðsetningargögnum.

Sýnd er frumgerð að hugbúnaðarkerfi með möguleikum á að sýna aðgerðir flotans, nýtingu 
heildarkvóta, svæðisbundið veiðiálag og gefa viðvaranir um grunsamlega hegðun.
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Quis custodiet ipsos custodes?
Who will watch the watchmen?

– Juvenal, "Satires"
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Glossary
An alphabetical reference of terms and abbreviations commonly used throughout this thesis.

CARFI CEDER Atlantic  Redfish  Fisheries  Information  system,  a  prototype  system 
built using the algorithms and models developed in this thesis.

CART Classification and Regression Trees, a type of classification algorithm.

Catch (is. afli) Usually reported catch, the total catch of the target species (redfish) 
during one haul or trip of a vessel.

CEDER Catch, Effort and Discard Estimation in Real-time, the EU project under which 
this study was carried out.

CPUE /
Catch Per Unit 
Effort

(is. afli  á sóknareiningu) Calculated from the catch and effort,  this measure 
gives an indication of the fishing power of the vessel and gear in question, and 
the stock catchability. Usually given as tonnes per hour trawling, but may also 
be given as tonnes per mile trawled. In this work the former is always used.

DF Degrees of Freedom.

EEZ Exclusive Economic Zone, a sea zone within which a state has exclusive rights 
to exploitation of natural resources.

Effort (is. sókn) Measure of the work required to catch fish, usually the time spent 
fishing is used.

Estimated catch The catch of a vessel estimated by the catch model, usually applies for one trip.

Estimated effort The effort  of  a  vessel  estimated  by the effort  estimation  algorithm,  usually 
applies for one trip.

Gap One or more missing VMS reports from a track.

GPS Global Positioning System.

GRT Gross Register Tonnes, a measure of a vessel's size.

Haul / Trawl One fishing action, e.g. one trawl of a vessel from the time the gear is deployed 
until it is retrieved.

IDF Icelandic Directorate of Fisheries.

ITQ Individual Transferrable Quota.

ISS University of Iceland Institute for Sustainability Studies.

IUU Illegal, unregulated and unreported. Refers to fishing activity or vessels that are 
known to participate in illegal fishing in NEAFC-controlled areas.

JRC Joint Research Centre, The European Union's scientific and technical research 
laboratory and an integral part of the European Commission.

k-NN k-Nearest Neighbour, a type of classification algorithm.

Knots Speed of a vessel, nautical miles per hour.

KW Kilowatts, a measure of a vessel's engine power in kilowatts.

Landed catch Sum of vessel catches for one trip, as per the official landing reports of the 
Icelandic Directorate of Fisheries.

xvii



Latitude The angular distance north or south from the equator.

LDA Linear Discriminant Analysis, a type of classification algorithm.

Leg The vessel's movement between one VMS-position to the next, represented by 
a straight line.

LMSE Log Mean Squared Error, a measure of model performance.

LOA Length Over All, a measure of a vessel's size.

Longitude The angular distance east or west of Greenwich, England.

MCS Monitoring,  control  and  surveillance,  one  of  the  three  pillars  of  fisheries 
management .

MLP Multilayer Perceptron, a type of classification algorithm.

MLR Multivariate Linear Regression.

MSE Mean Squared Error, a measure of model performance.

NEAFC North  East  Atlantic  Fisheries  Commission,  an  international  governing  body 
that manages fisheries in the North East Atlantic.

Nml Nautical miles, one nautical mile equals 1852 m.

PCA Principal Components Analysis, a method of variable transformation.

Reported catch A measurement given in a vessel's catch logbook, indicating the amount of fish 
in kg caught during one haul.

Reported effort A measurement given in a vessel's catch logbook, indicating the amount of time 
the gear was deployed during one haul.

RSS Residual Sum of Squares.

TAC Total Allowed Catch.

Track The vessel's movements during one trip, represented by VMS-points from start 
to finish.

Trip The period between landings, from when the vessel leaves port until it makes a 
declared landing.

VMS Vessel Monitoring System, a system onboard vessels that sends positional data, 
as well as catch reports while at sea.

WEKA Waikato  Environment  for  Knowledge  Analysis,  a  software  environment  for 
machine learning applications.
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Chapter 1 - Introduction Introduction

Chapter 1 - Introduction

1.1 Fishing for sustainability
Fishing has been one of the mainstays of man's food supply throughout history. The waters 
and oceans have provided a seemingly endless supply of food and man has naturally taken 
advantage of it, confident that the incredible vastness of this blue planet was impervious to 
anything he might do to it.

Now mankind is becoming a victim of it's own success. Through advances in technology 
and ever increasing population size, human civilisation is pushing limited natural resources 
towards the edge. Fleets of powerful fishing vessels are taking fish out of the sea faster 
than nature can replenish them, with the result that fish stocks plummet and many species 
are now in serious trouble.

The  idea  of  sustainability  was  born  as  a  solution  to  this  problem;  to  exploit  natural 
resources  in  a  balance  with  nature,  seeking  wherever  possible  to  utilise  renewable 
resources  at  a  rate  that  gives  them time to replenish.  In  this  way the  resource can  be 
sustained  indefinitely,  preserving  both  the  livelihoods  of  humans  and  the  biological 
diversity of the planet.

1.2 The Tragedy of the Commons
The problem of overfishing is in fact a manifestation of "The Tragedy of the Commons" 
(Hardin, 1968), the tendency for commonly held resources to be overexploited and wasted, 
because individuals benefit directly from using the resource while the costs are shared by 
all. 

In ocean fisheries this appears as excessive fishing fleets and effort, overexploited (small) 
fish stocks, poor profitability, low personal incomes, little or no contribution to GDP, a 
threat  to  biological  sustainability  and  a  threat  to  economic  (habitation)  sustainability 
(Árnason, 2006).

1.3 Quota systems
Attaining a state of sustainable fishing requires some means of control over the total catch 
from each fish stock. This can be accomplished in many different ways, such as through 
biological management (area closures, seasonal closures, total allowed catch restrictions, 
gear restrictions), direct economic restrictions (limited fishing effort, limited vessel size or 
power,  investment  restrictions),  taxation on landings (an attractive option,  but nowhere 
used as a fisheries management  method)  and property rights (licenses,  sole ownership, 
turfs, individual quotas, communal property rights) (Árnason, 2006). 

The tool  of choice for many countries,  including Iceland, has been to introduce quasi-
property rights in the form of individual  transferable quotas (ITQs). Under this  system 
vessels are granted a fishing license and tonnage quota from a specific fish stock, but their 
owners are free to rent or sell their quota to others, having met certain prerequisites. 

1



Chapter 1 - Introduction The role of monitoring

1.4 The role of monitoring
Monitoring, control and surveillance (MCS) make up one of the three pillars of any proper 
fisheries  management  regime,  the  others  being  the  fisheries  management  system 
(providing a regulatory framework) and the fisheries judicial system (processing violations 
and issuing sanctions) (Árnason, 2006). All three have to work in conjunction to achieve 
effective and efficient fisheries management.

The role of the MCS is twofold; firstly to gather data for use in management decisions 
(monitoring  and  surveillance),  and  secondly  to  enforce  the  rules  of  the  fisheries 
management  system  (monitoring  and  control).  However,  the  costs  of  maintaining  an 
acceptable level of MCS has been found to be significant, between 3%-28% of the gross 
value of landings (Árnason, 2006). During the first eleven months of the year 2009, direct 
costs  of  in-field  monitoring  were  estimated  at  237  million  ISK (Alþingi,  2010).  It  is 
obviously highly desirable to optimise the MCS to reduce costs, without sacrificing its 
effectiveness.

Icelandic  economy  relies  heavily  on  fisheries  with  exports  of  fish  and  fish  products 
representing some 57% of total  exports  in 2005 (Hagstofa Íslands, 2006). This has led 
Iceland  to  seek  to  become  a  leader  in  fisheries  management,  monitoring,  control  and 
surveillance.

Iceland has a unique advantage in this area. By law, every kilogramme of landed fish is to 
be weighed by officials at one of 62 designated landing ports around the coast. In addition, 
the Icelandic Coast Guard conducts on-board inspections at sea and aircraft surveillance, as 
well  as  monitoring  vessel  activity  through  the  mandatory  Vessel  Monitoring  System 
(VMS). The Iceland Directorate of Fisheries sends inspectors on board fishing vessels and 
controls each vessel's catch logbook, which is completely electronic since October 2008. 
Finally,  the  Iceland  Marine  Research  Institute  runs  several  research  and  monitoring 
programmes each season. Few if any nations have more comprehensive MCS activities and 
complete fisheries data than Iceland.

1.5 CEDER
Not  all  nations  go  to  such  lengths  to  monitor  their  fisheries  as  the  Icelanders,  but 
recognising  the  need  for  improvement  in  this  field,  the  EU  has  shown  interest  in 
technological advances to support MCS. This is at the heart of the CEDER project. The 
acronym stands for "Catch,  Effort and  Discard  Estimation in  Real-time" and has as its 
primary goal (CEDER consortium, 2006) to:

"provide more accurate and more timely information on catches, effort, 
landings, discards and quota and TAC [Total Allowed Catch] uptake and 
to assess the benefits of this information for fisheries management".

The  project  proposed  to  do  this  through  utilisation  of  the  widespread  deployment  of 
modern  data  gathering  technologies  such  as  the  Vessel  Monitoring  System  (VMS), 
electronic logbooks and landing reports, to improve the accuracy of such data available to 
stakeholders (e.g vessel owners, fish processing plants, authorities and scientists), increase 
its spatial precision and reduce the delivery time (lag). 

During the project lifetime, three prototype systems for such data gathering, analysis and 
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Chapter 1 - Introduction CEDER

dissemination  were  developed  and  tested,  one  by  Correlation  Systems  Israel,  one  by 
SiriusIT  Greenland,  and  one  by  the  University  of  Iceland  Institute  for  Sustainability 
Studies (ISS).

This thesis deals with one specific part of the prototype system developed by ISS, namely 
the  task  of  analysing  VMS, logbook and landing  report  data  to  construct  a  prediction 
model for vessel effort, catch, discard and landings.

The prototype system “CARFI” that utilises these algorithms for fisheries monitoring is 
presented in appendix A.

1.6 The Atlantic Pelagic (Oceanic) Redfish
One of the fisheries focused on under CEDER and the subject of this study was that of the 
North-Atlantic  Redfish.  The Atlantic  pelagic  redfish (is.  karfi,  lt.  Sebastes  mentella)  is 
primarily caught on the Reykjanes ridge south-west of Iceland at a depth of 600-800m 
during the period of April to July. A secondary dataset is provided for the period of July to  
November south of the Greenland EEZ, when the redfish is caught at a depth of 200-400m.

The favoured spawning grounds of redfish are on the steep slopes of the Reykjanes ridge, 
just on the perimeter of the Icelandic EEZ. This is where most of the fishing takes place in 
the high season as seen in Figure  2. The figure shows the Atlantic redfish fishing areas 
studied, with the colour indicating the amount caught in the area (heat map). The red box 
marks the main fishing area during the period of April to July, and the black lines the 
perimeters of the Icelandic and Greenlandic EEZs respectively. 
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Figure 1: The Atlantic Pelagic Redfish
Source: Jón Baldur Hlíðberg, (www.fauna.is)
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The  redfish  fishery  is  a  relatively  simple  one,  which  helps  the  analysis  and  model 
construction.  There  is  no  secondary  catch  species,  i.e.  fish  of  other  species  than  the 
targeted one being unavoidably caught in the net, resulting in a mixed catch. Discard is 
negligible, both because it is illegal by Icelandic law (with the exception of diseased fish 
unfit for human consumption) and perhaps more importantly, because the vessels simply 
do not exhaust their quotas and have no economic incentive to discard. The discard in the 
study period has been estimated at less than 1%, except in 2003 when it was between 5% 
and 7%. The discard is always due to  Sphyrion lumpi (is. karfaorða) infection,  a small 
crustacean parasite.

1.7 NEAFC and quotas
The North-East Atlantic Fisheries Commission (NEAFC) regulates the redfish fisheries, 
with vessels from the European Union, Faeroe Islands, Greenland, Iceland, Norway and 
the Russian Federation under its jurisdiction. 

An important constraint is that only Icelandic vessels are allowed to catch redfish in the 
Icelandic EEZ. The EEZ perimeter  lies directly  across the most fertile  fishing grounds 
where the redfish spawn, the schools condense and become easily catchable. Quotas are 
allocated separately inside and outside the EEZ; quota allocated inside the EEZ can only be 
caught there, while quota allocated outside can be caught either inside (applies only to 
Icelandic vessels) or outside the EEZ.

This results in the so-called "line-dance", where non-Icelandic vessels try to fish the most 
fertile grounds possible, right on the perimeter. The Icelandic coast guard generally has to 
keep a vessel in the area during the high season to prevent foreign vessels from fishing 
inside the EEZ.
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Figure 2: The Atlantic redfish fishing area
Source: Hafrannsóknarstofnun
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There is an on-going scientific debate concerning whether the redfish in the area belong to 
one or two stocks (oceanic and pelagic deep-sea) (Thomson, 2002). Icelandic authorities 
have issued quotas  for  each  separately,  but this  has  not  been adopted by NEAFC and 
remains controversial.

Both the allocated quotas and catch have declined sharply in recent years, and in fact the 
allocated quotas have seldom been filled. Table 1 breaks down the quota and catch for the 
study years, showing the total allocated (TAC) Atlantic redfish quotas for Icelandic vessels 
2001-2006, actual catch and TAC uptake (total percentage of allocated quota caught).

Table 1: Quota allocation and catch

Year
Allocation 

(TAC) Catch TAC uptake

2001 45.000 tonnes 41.969 tonnes 93,26%
2002 45.000 tonnes 44.397 tonnes 98,66%
2003 55.000 tonnes 47.655 tonnes 86,65%
2004 55.000 tonnes 35.802 tonnes 65,09%
2005 34.470 tonnes 16.005 tonnes 46,43%
2006 28.610 tonnes 24.354 tonnes 85,12%

Source: Icelandic Directorate of fisheries (Fiskistofa)

For comparison, the total  reported redfish catch of NEAFC member states for the year 
2005 is shown in Table 2.

Table 2: Catch by NEAFC members 2005

Country Catch
Percentage of 

total
European Union 1.904 tonnes 3,11%
Faeroe Islands 5.123 tonnes 8,35%
Greenland 857 tonnes 1,40%
Iceland 16.005 tonnes 26,10%
Norway 5.546 tonnes 9,04%
Russian Federation 31.885 tonnes 52,00%
Total 61.320 tonnes 100%

Source: NEAFC

1.8 The Pirates
Although the fishing is regulated by NEAFC, it is conducted in international waters which 
makes  it  difficult  to  take  direct  action  against  vessels  that  do not  recognise  NEAFC's 
jurisdiction. These vessels generally sail under the flag of states where regulation is lacking 
and enforcement is difficult, including Panama, Togo, Guinea and the Russian Federation. 
This activity is termed illegal, unreported and unregulated (IUU) fishing (NEAFC, 2010), 
but often these vessels are simply called pirates (Greenpeace, 2006).

NEAFC maintains  a  list  of  IUU vessels  (http://www.neafc.org/illegalfishing)  which  all 
member states have agreed to deny access to ports and services. In 2006 the Icelandic coast 
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guard counted nine pirates (Landhelgisgæsla Íslands, 2006) fishing on the Reykjanes-ridge, 
but  in  the  year  2007 there  were  none (Sjávarútvegs  og  landbúnaðarráðuneytið,  2007), 
which is attributed to more decisive actions on behalf of NEAFC based on the IUU list.

Since  the  vessels  do  not  participate  in  NEAFC's  reporting  scheme by submitting  data 
through the Vessel Monitoring System (VMS), it is difficult to monitor them or assess their 
impact.  Both  NEAFC  and  the  European  Joint  Research  Centre  in  Ispra  have  studied 
remote-sensing programmes to gather data on vessels that do not report their activities via 
the VMS-system. According to two such studies, the illegal catch was estimated up to 25% 
higher than the legal catch reported to NEAFC, or some 15.000 tonnes in 2004 (OECD, 
2005).

Figure 3 shows redfish trawlers lining up like pearls on a string on the Reykjanes-ridge on 
May 12th 2006. The well-known pirate vessel EVA is in front. 
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Figure 3: Vessels lining up on the Reykjanes-ridge
Source: © Greenpeace/Martin Norman



Chapter 1 - Introduction Research Objectives

1.9 Research Objectives
In order to facilitate monitoring and control it is desirable to construct a tool capable of 
delivering  real-time  catch  estimates  based  on  available  data,  as  stated  in  the  primary 
objectives of CEDER.

Formally stated, the aim of this study was:

– To  construct  an  algorithm  capable  of  identifying  and  categorising  vessel  activity 
through  analysis  of  positional  data  (VMS).  Specifically,  to  differentiate  between 
fishing and non-fishing activities with the aim of estimating fishing effort.

– To construct a model capable of predicting the total catch of a vessel from its estimated 
effort. The model will be based on the analysis of fishing effort, catch logbooks and 
official landing reports.

– To verify the accuracy of the model predictions and establish a prediction interval.

The algorithms and models are based on a case study of the Atlantic Pelagic Redfish.

1.10 Structure of the thesis
After this current Chapter 1 - Introduction, Chapter 2 - Literature review outlines previous 
studies of interest and the work of other CEDER partners. Chapter 3 - The data introduces 
an analysis of the datasets used for the construction of algorithms and prediction models.

The bulk of the thesis work is then presented in Chapter  4 -  Methodology and results, 
which  starts  out  with  the  construction  of  a  classification  algorithm  to  identify  vessel 
activities and estimate fishing effort, before moving on to construct a multivariate linear 
regression model to predict catch, based on the estimated effort.  The chapter concludes 
with a discussion on the model performance.

In Chapter 5 - Discussion an outline of the work and the results is discussed, with Chapter 
6 - Conclusions and future work presenting the main results and possible future work based 
on the study. 
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Chapter 2 - Literature review

2.1 Prior work
Extensive work has been done on predictive models for fishing in specific areas, and such 
models are commonly used in real-world implementations. These models however do not 
apply directly to the problem at hand, since they approach it from an a-priori standpoint, 
forecasting expected catch before the vessel has sailed. In contrast, this study is concerned 
with an a-posterior scenario, estimating the vessel's catch based on where it has been, how 
long it has been there, and what its behaviour (VMS track) has been.

Forecasts using landings data as determined in port on the return of each vessel have been 
made (Czerwinski et al. 2007 and Gutierrez-Estrada et al. 2007) , but do not attempt to 
estimate  the  individual  vessel  effort  or  connect  the  forecasts  with  their  geographical 
movement.

Estimating fishing effort with VMS data from beam trawling in the North Sea has been 
done in a study (Mills  et  al.  2007) closely related to the CEDER project,  utilising 15-
minute resolution data with instantaneous reported speeds (each VMS-record includes the 
actual recorded vessel speed at that point). The authors found that in most cases, trawls 
were represented by a single (2-hour resolution) VMS record, and in some cases a haul 
would fall entirely between VMS records, and so would not have been represented at all. 
The resolution of VMS position reporting was therefore found to be lower than required to 
adequately represent  the trawl tracks.  However,  the algorithms could correctly  identify 
trawling and steaming VMS points in over 95% of cases . This study did not attempt to 
forecast catch based on the  effort estimate.

An attempt at this was made (Deng et al. 2005) using VMS data and high-frequency GPS 
data  from  Australia's  northern  prawn  fishery,  but  found  that  VMS  data  with  polling 
intervals  longer  than  30 min  could  not  accurately  estimate  trawl  tracks  for  the  prawn 
trawlers.

2.2 Work of other CEDER partners
The comparable work of other CEDER partners concluded that 2 hour resolution VMS 
data was insufficient for accurate estimation of effort and forecasting of catch therefrom.

Specifically, a system prototype developed by Correlation Systems can classify behaviour 
of fishing vessels with accuracy, if it is provided with GPS positional data for each boat at 
least every 15 minutes. It is then able to identify fishing and cruising behaviour with less 
than 20% type I and II errors. The prototype can also guess landings, given recent effort, 
historical landings, observer figures, and historical logbook contents. 

Sirius IT developed a system that is able to combine information from VMS, hail messages 
(logbook substitute), transcribed logbooks, and sales notes, in order to calculate a more 
accurate amount of catch on any given trip, but found that 2 hour VMS data was too coarse 
to reliably achieve the goal of effort estimation and catch forecasting from this.

The Joint  Research Centre  (JRC) developed a prototype  that  uses  a  set  of  time series 
models to predict quota uptake (or landings) using past quota uptake (or landings).
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Chapter 3 - The data
In this chapter:

– Collection
– Preprocessing
– Identifying trips
– Overview of the data
– Visualisation of the data
– Vessels
– Fishing behaviour and features
– Summary

This chapter starts  with a discussion of the collected data and what preprocessing was 
required to make it acceptable for analysis. Then the identification of individual trips and 
grouping  together  of  VMS  positions  to  form  tracks  is  described,  and  how  erroneous 
position reports were filtered out.

A numerical overview of the datasets is given, as well as selected illustrated examples, 
before the vessels included in the study are described and analysed for attributes that are 
important for model building.

The chapter concludes with a discussion of the fishing behaviour in the North Atlantic 
Redfish fisheries and how its features might be expected to manifest in the data.

3.1 Collection
The datasets used in this study were collected by the  Icelandic Directorate of Fisheries 
(IDF) in the years 2001-2006 and stems from four sources:

– VMS tracking data

– Catch Logbook data

– Official catch landing reports

– Vessel attributes

For privacy and legal reasons the IDF encoded the names of the vessels before releasing 
the data, essentially making them unidentifiable. This has no bearing on the study, since 
the identity of specific vessels is of no consequence to the analysis or model building.

3.1.1 VMS

The tracking data from the automatic  Vessel Monitoring System (VMS) includes time, 
latitude and longitude of the vessel with a 2 hour interval. It can be considered accurate to 
within  ±100 meters although instances of erroneous positions have been reported. This 
resolution has  evolved as the industry standard simply because  this  is  the accuracy of 
uncorrected GPS. The European Union has set its regulatory requirement at a slightly more 
relaxed ±500 meters (Avanti  Communications, 2007).
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Note that because of the long reporting interval, the first and last VMS positions of each 
vessel trip are almost never in harbour, but on the way to or from it.

3.1.2 Catch logbooks

Catch logbook data is generally collected from hand-written logbooks aboard vessels (only 
a few vessels were fitted with electronic logbooks at the time of the study), recording time, 
latitude  and longitude when the vessel  starts  towing, and estimated weight  of the haul 
when on board. 

Some discrepancies are present in this data, such as inaccurate or wrong position.

The estimated haul weight is either produced by the on-board processing line or by the 
captain visually estimating the catch on deck, in which case it  is  recorded only to the 
nearest metric ton.

Note that the catch logbook data only records the date of the catch but not the time. This 
requires the implementation of a rule-based method to connect the catch and positional 
data before analysis.

3.1.3 Official catch landing reports

All catch landed at Icelandic harbours is weighed by officials. This weighing is the basis 
for  the  quota  system  and  can  be  considered  accurate  to  within  a  few  kilogrammes. 
Although fish is occasionally landed illegally, bypassing the harbour scales, it is generally 
assumed that Icelandic landing data is among the most accurate worldwide.

3.2 Preprocessing
Prior  to  analysis,  the  data  format  has  to  be  standardised,  ensuring  that  datatypes  and 
formats are consistent throughout, e.g. that dates are all represented the same way, and 
latitude and longitude are in a decimal format. Also obviously erroneous data is removed, 
such as duplicate position reports that have no time difference,  i.e. they have the same 
timestamp,  and  VMS positions  that  are  clearly  wrong  (see  Section  3.2.1 -  Erroneous
position reports).

The  data  preprocessing  is  part  of  the  CARFI  prototype  system,  (see  script  1, 
clean_positions. Note that this script needs to run recursively, i.e. multiple times until it 
finds  no  further  problems),  as  well  as  scripts  for  manual  corrections  (see  script  2, 
fix_positions). This resulted in a total of 616 VMS datapoints being disqualified due to 
erroneous positions.

Also  excluded  at  this  stage  are  VMS-positions  for  timeperiods  that  do  not  have 
corresponding catch  reports,  and vice  versa (see  script  3,  exclude_messy_data).  This 
mainly applies to trips which start and finish in the VMS position data and catch logbooks 
do not coincide, e.g. where entries in the catch logbook start several days before the first 
VMS  positions  for  that  vessel.  This  constitutes  the  bulk  of  the  disqualified  VMS 
datapoints, or 45.633.

The  reason  for  this  high  number  of  disqualified  datapoints  is  that  the  datasets  were 
delivered with both data for the fishing area on the Reykjanes ridge that is of primary 
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interest  to  this  study,  and  data  for  the  fishing  area  south  of  Greenland,  which  is  of 
secondary interest. Most of the inconsistencies stem from this secondary area.

3.2.1 Erroneous position reports

The VMS-system is at times somewhat fickle, and can send strange reports for various 
reasons. Most commonly the system may send position values close to 0, indicating the 
equator (latitude 0°) or the prime meridian (longitude 0°). This can be caused by power 
surges or the system switching to a difference reporting format, in which case it reports the 
difference in degrees from the previous position, rather than the instantaneous position. 
Other strange readings may be observed, but are generally easily filtered with a visual 
inspection of the track data,  or calculating  the speed of the vessel  and limiting it  to a 
sensible number such as less than 50 knots.

An unfortunate feature of the VMS is that in some cases, when the system cannot send a 
report at the appropriate time, the report is stored and sent as soon as the system regains 
contact. The timestamp on these reports in the dataset is however not when the positional 
information was recorded, but rather when the report is actually sent. This results in a 
string of reports being sent within minutes or seconds, with large differences in the 
positional information. These reports must be excluded since otherwise the calculated 
mean speed lies in the hundreds of knots!

3.3 Identifying trips
The aim is to analyse and predict the catch of each vessel during one trip, i.e. from the time 
the vessel leaves harbour until it returns and lands its catch. 

The catch logbook provides the date of each haul and landing. The position datapoints are 
grouped into trips by comparing the date and time with the catch logbook and applying a 
few simple rules. In the simplest terms, each trip includes all the positions between the first 
catch entry after a reported landing in the logbook, to the next reported landing. 

This leaves out the position data while the vessel was steaming from and back to port. To 
include this data in the trip, the algorithm searches for gaps before and after in the VMS-
data. Most vessels send VMS-data at 2-hour intervals while active, but generally not while 
in port, so missing VMS-entries indicate a change between trips. 

A gap in VMS-reports is defined as:

• 1,5 times the previous interval (i.e. 3 hours in most cases), to account for reports 
being a few minutes late

• a minimum of 1,5 hours to account for extra reports sometimes being transmitted 
just minutes after the previous one

• more than 8 hours since a report

If no gaps are found, the algorithm applies a second rule and searches for the position 
closest to shore (actually closest to the centerpoint of Iceland), and split the trips there. 
This may happen e.g. when a vessel steams in to port and back out within a short period of  
time, transmitting VMS just before entering and/or leaving the port. 
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These  rules  effectively  define  the  trips  that  are  interesting,  deal  with  the  added 
complication of matching the catch logbook with VMS-positions only on dates and not 
times, and filter out any position data that was not part of an Atlantic Redfish fishing trip.  
An example of the resulting pairing can be seen in Figure 4. The figure shows the results 
from the trip identification algorithm for one vessel in the year 2001. The blue columns 
represent trips (a total  of four trips,  the height  of each column corresponds to the trip 
number 1, 2, 3 and 4), while the gray columns represent individual trawls as reported in the 
vessel's catch logbook. Where the blue line is at 0 means that the algorithm found VMS 
position data, but determined that it  did not belong to a valid trip. Where the blue line 
drops to -1 there are no VMS data available. 

In addition, the CARFI prototype system includes features to validate the trip identification 
algorithm, and manually apply fixes where it fails to correctly identify trips (see script 4, 
fix_trips).

3.4 Overview of the data
Having explained how the data is preprocessed and trips identified, a numerical overview 
of the datasets available for analysis follows. See Tables 3 and 4.

Table 3: Dataset overview, all data

Data 2001 2002 2003 2004 2005 2006 Total

Vessels in VMS 18 18 21 22 18 17 22
VMS positions 7.473 8.300 8.844 15.365 11.545 26.910 78.437
Vessels in 
logbooks

23 24 23 22 17 17 24

Number of 
Catches

2.000 1731 1639 1539 905 1030 8.844

Catches in Tonnes 41.969 44.397 47.655 35.801 16.005 24.354 210.181
Trips 111 99 103 81 51 63 508
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Figure 4: Trip identification algorithm results
Source: The CARFI system
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Table 4: Dataset overview, valid data

Data 2001 2002 2003 2004 2005 2006 Total

Vessels in VMS 18 18 20 21 16 15 21
VMS positions 5.473 5.315 4.221 6.883 5.277 5.019 32.188
Vessels in 
logbooks

16 24 22 21 15 16 24

Number of 
Catches

1.061 1.624 1.441 1.009 308 595 6.038

Catches in Tonnes 22.122 41.998 42.851 23.501 4.914 13.067 148.453
Trips 57 94 93 46 20 39 349

As previously  discussed,  a  number of  datapoints  were  disqualified  due to  data  quality 
problems,  originating  mostly  from  the  secondary  fishing  area  south  of  Greenland. 
However, a sufficient number of measurements were retained to construct the model.

3.5 Visualisation of the data
In  order  to  better  understand  the  datasets  provided,  it  is  useful  to  examine  them 
graphically. Figure 5 shows an example of the VMS track data features discussed above. 
The blue circles are VMS-position reports with 2 hour resolution, and the red X-marks are 
positions of catch reports from the vessel logbook.

As expected, the track is mostly concentrated around the reported catch positions. The long 
diagonal line from the upper area to the lower left is an example of where the track splits  
into distinct trips.
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Figure 5: Vessel VMS track
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A couple of data quality problems are evident; a single position report is given far away 
from the main concentration (in fact close to the Greenwich meridian), and the lower left 
catch positions are all at the same longitude, indicating a data entry error. These problems 
were corrected  where possible,  or in  cases  where the data  was deemed too unreliable, 
excluded altogether from further analysis. Mostly this is data from the secondary dataset 
south of the Greenland EEZ.

Figure 6 shows the same vessel track as the previous figure, overlayed on a satellite image 
of the area. The fishing area on the Reykjanes ridge can be clearly seen.

Calculating the mean speed for each leg using the reported time of the VMS-reports and 
Vincenty's  formulae2 (Vincenty,  1975)  produces  Figure  7.  The figure  shows the  same 
vessel  track  as  the  previous  figures,  with  the  height  of  the  columns  indicating  the 
calculated speed at each point. Red crosses represent positions of reported catches.  This 
figure shows how the basic idea of using vessel tracks to predict catch came about, since 
legs with low speed are concentrated around the reported catch points.

2 Vincenty's formulae are used to calculate the distance between two points on the Earth, and is accurate to 
within 0.5mm
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Figure 6: Vessel VMS track with satellite image 
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Jumping slightly ahead, the same data can be plotted with the added leg classification, to 
produce Figure 8. The figure shows the same vessel track as the previous figure, with the 
leg classification added. Blue columns represent cruising legs, while red columns represent 
trawling  legs.  Black  crosses  represent  positions  of  reported  catches.  The classification 
criterion used here is a speed cut-off at 8 km/hr, or about 4,3 knots.

The lower speed legs are in red, and concentrate neatly around the catch points.
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Figure 7: Vessel track and calculated speed

Figure 8: Vessel track, speed and leg classification 
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Finally for the VMS data, Figure 9 shows a histogram of the leg mean speed for all vessels, 
i.e. the number of legs by calculated speed at 0,5 knot intervals. It seems to indicate that 
there is indeed a divide at about 5 knots.  

Looking at the catch data, it is evident from Figure  10a and  10b that the most common 
catch  size  is  about  25  tonnes,  which  fits  nicely  with  information  from  experienced 
captains.  The figures  show a  histogram of  reported  catch,  i.e.  the  number  of  reported 
catches at 5 ton and 500 kg intervals respectively. Note that using the smaller bin size of 
500 kg, a clear tendency to report catch in half-ton quantities is seen, leading to a discrete  
effect in the plot. This is almost certainly due to catch logbooks not being electronic and 
automated as discussed before.

The catch logbook also gives the reported effort for each haul, and thus the distribution of 
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Figure 10a: Catch size with 5000 kg bins Figure 10b: Catch size with 500 kg bins
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the haul length in Figure 11. The figure shows a histogram of haul length, i.e. the number 
of reported hauls at 60 min intervals. The most common haul duration is around 12 hours.

Finally,  Figure  12 shows  a  plot  of  reported  effort  vs.  reported  catch.  This  is  the 
relationship needed to model to predict catch from effort, and a definite suggestion of a 
linear relationship can be seen.
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Figure 11: Reported effort

Figure 12: Reported effort vs. reported catch for each vessel trip
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3.6 Vessels
At the height of the season, over 60 vessels of various nationalities are trawling for redfish 
on the Reykjanes-ridge, up to 10 of which are pirate vessels (Greenpeace, 2006). A total of  
28 distinct Icelandic vessels have participated in the fishing at one time or another during 
the study period, 22 of them providing both VMS and catch logbook data of sufficient  
quality for analysis. These vessels are the main focus of this study and the source of the 
datasets provided.

Figure 13 shows two Russian examples of the vessels used in the redfish fisheries. 

When analysing the catch and effort of individual vessels, the degree of variability between 
vessels must be assessed, and decided if the models need to take this into account.

The most  important  factors  in  this  respect  are  vessel  size (tonnage)  and engine  power 
(kilowatts), as they are the best indicators of how large a gear the vessel is capable of 
towing behind it.

Figure  14 is a scatterplot matrix for the three measures of  gross register tonnes (GRT), 
length over all  (LOA) and  engine power  (KW),  and the calculated  catch per unit effort 
(CPUE), i.e. reported catch divided by the reported effort for all vessels and trips.

The plot  reveals  (unsurprisingly)  a linear  relationship between vessel  size in  GRT and 
engine power KW, and a somewhat less distinct relationship to vessel length LOA.

The column on the far left also shows that CPUE is not directly related to vessel size or 
power, at least not for other than the largest and most powerful vessel classes. 
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Figure 13: Russian trawlers on the Reykjanes-ridge
Source: Jón Páll Ásgeirsson



Chapter 3 - The data Vessels

The conclusion is that in terms of catching power, most of the vessels in the study are 
similar, and the vessel attributes are not likely to be a helpful factor in predicting catch. 
What little variability there is in the vessel's catching power will however be accounted for 
in the catch model parameters.

3.7 Fishing behaviour and features
It is useful to give a short account of the fishing activities the algorithms aim to detect, and 
consider what features it is possible to capture, based on the resolution of the datasets. This 
description  is  to  a  large extent  based  on interviews  with one of  the  most  experienced 
Icelandic captains in the area  (Captain Kristinn Gestsson. Interview, 1. march 2007).

Due  to  the  crowded  conditions  and  tight  schools  of  redfish,  the  trawlers  organise 
themselves into two lines (see Figure 3, page 6), trawling in both directions. A vessel that 
reaches the end of the line will turn around and join the other line back. 

The vessels keep a clearance of about 2 nml, and the gear extends up to 1 nml behind each  
vessel. This is to allow the redfish school to reform, since the gear of the preceding vessel 
will leave a fish-free gap that will settle in the meantime.

The vessels normally trawl at around 3 knots, possibly up to 4 knots, and cruise at more 
than 10 knots. Below a speed of 2,5 knots it becomes tricky to keep the gear open, but this 
also depends on depth. If the vessel is trawling at less depth, it needs more speed to keep 
the gear open. The currents in the area are about 0,5 knots that add or subtract from the 
vessel's  speed in  the water.  There  are  occasional  underwater  peaks in  the area,  so the 
captain may need to temporarily pull the gear higher in the water to avoid them.

The duration of each trawl depends on the catch, but can easily be around 8-9 hrs (the most 

21

Figure 14: Scatterplot matrix for vessel attributes



Chapter 3 - The data Fishing behaviour and features

common haul duration is 12 hrs, see Figure 11, page 19), and they last at least 2-3 hrs. If 
the vessel's factory is full and cannot receive more fish at the moment, the captain may on 
purpose allow the gear to go higher or lower in the water to slow the catch. Alternatively,  
the vessel is allowed to drift while processing catch. The optimal process is to haul 2-3 
times every 24 hrs, and the optimal haul size would be around 40 tonnes. Most of the time 
spent in the area is used trawling.

Hauling the gear and resetting it takes about one hour, with the ship often coming to a 
standstill while pulling in the wire. The Icelandic vessels sometimes refuel for 4-6 hrs, but 
do not often transfer their catch to another vessel (transshipment), which e.g. the Russian 
trawlers commonly do.

There is no discard, unless the fish is seriously infected and unsuitable for consumption.

The points of most relevance here are that the hauls are relatively long, around 12 hrs, 
compared to the data resolution of 2 hrs. The shorter hauls however are actually at around 
the same length as the resolution, and this may cause problems in detection. 

Similarly, picking out detailed features such as a vessel setting or hauling gear, which takes 
around 30 min or a quarter of the data resolution, is unlikely.

Refuelling or drifting for extended periods of time should be possible to detect.

3.8 Summary
This  chapter  has  focused  on  the  raw data  and  features  of  the  North-Atlantic  Redfish 
fishery, solving data-quality problems and preparing the data for analysis. The attributes of 
the vessels were analysed, and the fishing activities the algorithms are expected to be able 
to detect in the data were described.

In the next chapter, the methods applied to estimate vessel effort and build the models that 
use this estimate to predict the vessel catch are introduced.
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Chapter 4 - Methodology and results
In this chapter:

– General approach
– Classification of vessel activities
– Estimating effort from classification
– Estimating catch from effort
– Model performance

First the general approach is outlined, i.e. how the classification of vessel activities at each 
point in time will give an estimate of the effort, which then is used as input to a catch 
estimation model. The use of the datasets as a driving factor in the algorithm development 
and their subsequent use is described.

The  chapter  then  focuses  on  the  analysis  of  an  appropriate  classification  algorithm, 
followed by the comparatively simple estimation of effort.

Having  produced  the  necessary  effort  variable,  the  catch  estimation  model  is  then 
constructed and validated, and its accuracy assessed.

The chapter concludes with a discussion of potential improvements.

4.1 General approach
Since the idea is to estimate catch, it is natural to turn to traditional fishery statistics and 
stock analysis for a suggestion of the initial model. The simplest and most commonly used 
approach  is  to  assume  a  linear  relationship  between  effort  (trawling  time)  and  catch 
(Stefánsson, 1997). This kind of model also makes immediate intuitive sense; the more 
time you spend fishing, the more you catch3.

Catch = Catch per unit effort · Effort

In order to be able to estimate the catch, the effort must first be estimated. Effort in this 
sense is simply the total time the vessel spent trawling. When plotting the reported effort of 
the vessels vs. the reported catch as in Figure 15, a suggestion of a linear relationship can 
indeed be seen. The figure shows the reported catch vs. reported effort, based on catch 
logbooks of all the study vessels from 2001-2005. A simple linear regression model has 
been superimposed on the data.

3 Of course more sophisticated models exist that take into account a multitude of other variables, such as 
environmental and biological factors. For a discussion of such models developed under the CEDER 
project, see e.g. Cotter et al. [COT06]
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To be able to calculate this effort, the vessel activity at each point in the trip must first be 
classified,  i.e.  what  the  vessel  is  doing  during  each  leg of  the  vessel  track  must  be 
predicted, as either cruising or trawling. The timeperiods the vessel spent trawling can then 
simply be added together, to produce a measure of the estimated effort.

The process of building the models is pictured in Figure 16, showing each step in building 
the proposed activity classifier and catch estimation model. To construct the classification 
algorithm both VMS and catch logbook data are used to produce a predicted activity and 
an  estimated  effort.  To  construct  the  catch  estimation  model  both  catch  logbooks  and 
landing reports are used in conjunction with the estimated effort to produce the final catch 
prediction.

Subsequently, when building the catch estimation model both the catch logbook entries 
and the official landing reports are used in conjunction with the estimated effort to arrive at 
suitable model parameters and finally the estimated catch.
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Figure 15: Reported catch vs. reported effort 2001-2005
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After calibrating the algorithms with the datasets, they should then be able, given only a 
vessel's VMS track, to estimate its effort and thus its catch, see Figure 17. Feeding VMS 
data for a vessel into the classifier gives the probable activities and estimated effort for that 
vessel. The activities can be compared with the catch logbook, while the estimated effort is 
fed into the catch estimation model, producing an estimated catch which can be compared 
with  official  landing  reports.The  vessel's  activities  can  also  be  compared  to  the  catch 
logbook, and the estimated catch with the landed catch to look for discrepancies, such as 
fishing activity when no catch is reported, or unusually high or low catch compared with 
the estimated effort.
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Figure 16: Strategy for building the activity classifier and catch estimation model

Figure 17: Step-by-step use of the algorithms to predict effort, activity and catch  
from VMS-data
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4.2 Classification of vessel activities
In this section:

– Supervised vs. unsupervised classification
– Finding the “actual” activity from the catch logbook
– Expert classifier based on speed
– Calibrating the classifier
– Adding more predictor variables
– Alternative classifiers
– Cluster analysis

First the general  approaches to classification and how to validate  the activity  classifier 
against  the  vessel  actual  activity  are  discussed.  Then  a  classifier  based  on  expert 
knowledge is explored, where the vessel speed is used to separate the activity classes. 

Reversing  this  approach,  the  prediction  of  the  actual  activity  is  used  to  calibrate  the 
classifier so that  erroneously classified legs are minimised.

More measures are then added to the classifier and the improvement analysed, if any.

This  section concludes  by exploring five other  classifiers,  Fisher's  Linear  Discriminant 
Analysis, the Naïve Bayes classifier, k-NN classifier, CART, the Multilayered Perceptron 
and the unsupervised k-means clustering algorithm.

4.2.1 Supervised vs. unsupervised classification

There are essentially two approaches to classification; supervised and unsupervised. The 
former  approach  requires  knowledge  of  the  actual  activity  to  compare  the  results  to, 
whereas  the  latter  approach  tries  to  identify  “natural  groupings”  in  the  data,  without 
knowing  if  they  correspond to  real  phenomena  or  not.  This  is  also  known as  cluster  
analysis.

It is tempting to try supervised classification, since this approach gives a clear measure of 
success, an error rate.

4.2.2 Finding the “actual” activity from the catch logbook

The first problem is how to measure success in classifying the vessel activity and validate 
the classification algorithm. The obvious method is to compare the classification algorithm 
results with the actual activity of the vessel.

Even  though  the  VMS  is  capable  of  sending  vessel  activity  messages,  this  is  not  a 
widespread practice, and the datasets in this study do not include such reports. The catch 
logbooks must thus be used to match the actual vessel activity to the VMS positions. They 
have one entry for each haul of the vessel, with information on the gear type, position of 
the vessel when the trawl began, date, catch, and time trawled.

The logbooks  in  use  for  the  redfish  fisheries  are  not  electronic  and automated,  which 
would increase their accuracy and reliability, but pen and paper versions. This introduces 
the possibility of errors in position, date and catch reporting. For example, some captains 
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“eyeball”  the catch on deck, whereas others rely on the vessel's processing line for an 
accurate catch weight, and it is easy to make errors in noting the position, or misreading 
when the logbook data is digitised.

A problem arises here from the apparently innocuous fact that the logbook datasets do not 
record the precise time of the haul start and end, only the date. Including the time would 
make it easy to take all VMS positions during this period and declare them as trawling 
activity  with  great  confidence.  Since  this  is  not  the  case,  the  reconstruction  of  this 
information requires the use of an algorithm which will be called Midpoint.

Midpoint

This  algorithm  (see  script  5,  actual_activity_midpoint)  calculates  the  midpoint 
position  of  each  leg  and selects  the  leg  with  a  midpoint  closest  to  the  reported  catch 
position as the haul starting leg (within the same day as the catch entry, or last leg of 
previous day).

The logic behind this approach is explained in Figure 18. First, in the timeperiod between 
two VMS reports  a vessel can actually  move anywhere within an ellipse with the two 
known VMS positions as its vertices (Figure  18a), even though the vessel movement is 
represented with a straight line. There are then two possible cases; the catch point falls 
“outside” of the leg (Figure  18b), or the catch point falls somewhere “between” the two 
VMS points (Figure 18c). If the algorithm was simply to take the closest VMS position to 
the catch point as the start of the haul, it would not include the first leg in the trawl, during 
which this activity actually started.

Some uncertainty has to be accepted in this matching, since it is not always clear which of 
two possible legs is the actual starting leg. 

It is important to note that even though the whole leg is classified as trawling activity, in 
fact only a portion of the first (and last) leg is actual effort. Therefore the distances from 
the catch point to the leg start and endpoints are calculated, the proportion of the leg that 
should be included as  effort  is  estimated.  This  proportion is  then  used to  pinpoint  the 
starting time of the haul.

When the haul starting time has been reconstructed in this way, the reported haul duration 
from the catch logbook is added to arrive at the haul end time. In the case of many catches 
within the same day, the algorithm requires that the next haul never starts until the previous 
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one is finished.

The algorithm was implemented in the CARFI prototype system, and its source code is 
available from the author by request.

The actual activity of the vessels has now been reconstructed based on the catch logbook, 
by connecting the legs with an activity with the midpoint algorithm. From here on, when 
discussing the supervised classifiers and their error rates, it is always in comparison with 
the actual activity as guessed by this algorithm. 

To achieve a more accurate representation of actual vessel activity would require more 
precision in catch logbook entries, VMS activity messages, and/or higher VMS resolution.

4.2.3 Expert classifier based on speed

From the  VMS positions  the  vessel  mean speed  during  the  leg  can  be  calculated.  As 
previously mentioned, VMS reporting interval is most commonly 2 hrs.

From interviews with fisheries experts, coast-guard officials, and most importantly one of 
the  most  experienced  captain  participating  in  the  redfish  fisheries  [Captain  Kristinn 
Gestsson. Interview, 1. march 2007], it was concluded that a vessel needs to maintain a 
speed of 2-4 knots while trawling. The lower bounds are determined by the need to keep a 
minimum speed for the gear to open fully. In addition to this relative speed, the vessel may 
drift at as much as 1 knot. Thus the classification rules are:

– A vessel with mean speed above or equal to 5 knots is cruising
– A vessel with mean speed below 5 knots is trawling
– A vessel with mean speed below 0,1 knot is stopped

Plotting a histogram of the leg mean speed for all vessels, i.e. the number of legs at 0,5 
knots speed intervals, gives the distribution in Figure 19. This figure shows that the vessels 
spend most of their time below 5 knots, at trawling speeds.
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Using this 5 knots limit, the resulting classification of legs is illustrated in Figure 20.  

The figure shows a histogram of leg mean speed for all vessels by predicted activity, i.e. 
the number of legs at a specific speed classified by discriminant classifier as cruising (blue) 
or trawling (red). Above 5 knots all legs are classified as cruising, while below they are 
classified as trawling.

The details  of what is happening are shown in Figure  21. The figure shows the speed 
profile of vessel 3, year 2001. The leg mean speed is the blue line, overlayed with trawling 
periods from the catch logbook in gray. The red line represents the 5 knot limit. Note that 
the VMS data is not completely continuous (gaps when the vessel is in port, or targeting 
other species), hence the distinctive jumps from the end of one trip to the start of the next. 
Any legs with speed below the limit will be classified as trawling, and legs with speed 
above the limit  will  be classified  as  cruising.  Ideally,  the vessel  should be at  trawling 
speeds during the gray periods, and cruising speeds in between.
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Figure 21: Simple linear discriminant classifier with 5 knots decision boundary

Figure 20: Number of legs by speed and predicted activity
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This type of classifier is known as a  discriminative classifier, and the 5 knot limit as a 
decision boundary. In this case, there is only one predictive variable, mean leg speed, and 
one class variable, activity, which can take on three values; stopped, trawling or cruising. 

From this,  it  is  evidently  impossible  to  accurately  discriminate  between  trawling  and 
cruising activities using only the mean leg speed, since the speed does not always cross the 
decision boundary during the non-trawling gaps between the gray trawling periods. Above 
5 knots it is quite certain that the activity is not trawling, but below 5 knots there is actually 
a mixture of cruising and trawling activity.

This is reflected in the  error rate of the classifier when compared to the actual activity, 
which is shown in Table 5. The table shows counts and percentages of correctly and falsely 
classified legs. The Actual activity of the leg is in the first column, followed by the Result 
of  the  classification.  The  Total  count column  shows  the  number  of  legs  classified  as 
indicated by the preceding columns, and the Proportion of total the percentage of the total 
legs. The Class count columns show the number of legs classified in each dataset, training 
and validation and the  Proportion of class columns show the percentage of correctly or 
falsely classified legs within the same activity  class. The error rate for each class then 
corresponds to the “false” result  rate. The total  success and error rate as well  as some 
notable numbers mentioned in the text have been highlighted for convenience.

This table shows that 97,6% of the trawling legs are captured, and also 27,0% of cruising 
legs are correctly classified. However, the vessels apparently still spend about 2/3 of their 
cruising time below 5 knots, resulting in the high misclassification rate for that activity 
(see histogram in Figure  22 of leg mean speed for all vessels by actual activity, i.e. the 
number of legs at a specific speed classified by the midpoint algorithm as cruising (blue) or 
trawling (red).  Above 5  knots,  there  are  mostly  cruising  legs,  while  below there  is  a 
mixture of cruising and trawling legs.). 
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Figure 22: Number of legs by speed and actual activity
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All in all,  there is still a 74,6% chance of correctly identifying the leg activity, but the 
algorithm ends up classifying too many legs as trawling, resulting in an overestimate of the 
effort. The total error rate from this classifier  with this speed parameter is  25,4%. It is 
important to note that the error rates stay consistent across both training and validation 
sets.

Essentially,  when calculating the effort,  the algorithm is adding both the gray trawling 
periods in Figure 21 and a majority of the gaps between them to the total effort estimate, 
only leaving out those legs that are clearly not trawling legs since their speed is higher than 
5 knots.

Table 5: Classification results – Simple linear discriminant at 5,0 knots

Actual 
activity Result

Total 
count

Proportion 
of total

Class count 
2001-2005

Training set

Proportion 
of class

Class count 
2006

Validation 
set

Proportion 
of class

Cruising Correct 2.486 9,1% 2.001 27,0% 485 32,2%
Cruising False 6.431 23,6% 5.410 73,0% 1.021 67,8%
Trawling Correct 17.515 64,2% 15.061 97,6% 2.454 97,0%
Trawling False 443 1,6% 368 2,4% 75 3,0%
Stopped Correct 358 1,3% 329 83,3% 29 90,6%
Stopped False 69 0,3% 66 16,7% 3 9,4%
Total Correct 20.359 74,6% 17.391 74,9% 2.968 73,0%
Total False 6.943 25,4% 5.844 25,2% 1.099 27,0%
Total All 27302 100% 23235 100% 4067 100%

The conclusion from the above is that the results of this classifier can be used to identify 
periods of trawling activity, although it can not provide a highly accurate prediction of the 
activity during a specific leg. It should then arrive at an estimate of effort which is closer to 
the actual effort than e.g. using days at sea as a measure, since it can exclude legs where it 
is certain the vessel is cruising. Typically, the algorithm would be certain to exclude legs 
where the vessel is steaming to and from port or from one fishing grounds to the next, as  
can be seen in Figure 23. The figures show a track where the legs have been colour coded 
according to the classified activity, according to the simple mean leg speed classifier. Blue 
legs are cruising, red legs are trawling. The trawling legs coincide nicely with reported 
catch-points from the catch logbook, shown as pink stars superimposed on the right side. 
The classifier  correctly  excludes  legs where the vessel  is  cruising to  or from port  and 
between fishing grounds, but cannot pick out individual hauls at this resolution.
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4.2.4 Calibrating the classifier

In the previous section expert advice was used to “guess” at the decision boundary for the 
classifier. But was this guess in fact accurate? Can the classifier be calibrated to improve 
the results? 

The error rate was mentioned, also known as the misclassification rate, i.e. the proportion 
of incorrectly classified legs of the total. This measure of the classifier accuracy is known 
as the scoring function4, and can be used to evaluate the performance of the classifier. It 
can also be used to optimise the parameters used in the classifier, that is control where the 
decision boundaries lie so that the number of incorrectly classified legs is minimised.

Suppose there is a collection of N vectors of predictor variables xi (in the previous section 
the  mean  speed  of  each  leg  in  the  vessel  track  was  the  predictor  variable)  and 
corresponding observations yi of the actual activity. A classifier is a function that predicts 
the class based on the predictor variable vector xi and a classifier parameter vector θ. If the 
i-th prediction is denoted as f̂ (x i ;θ ) then the scoring function can be formally written 
as (Hand et al. 2001)

S 0 /1=
1
N
∑

1

N

I ( f̂ ( x i ;θ ) , y i)

where the function  I is 1 if the prediction and actual observations match, and 0 if they 
don't. 

In the simple case of one predictor variable it is easy to visualise the optimal decision 
boundary. Figure 24 shows the results of the actual activity algorithm, with the mean leg 
speed coloured according to actual  activity  class;  blue is cruising,  red is trawling.  The 
decision boundary should then lie somewhere around 4 knots. Above this speed there are 

4 For a discussion on classifiers, search and scoring functions, see e.g. Principles of Data Mining (Hand et 
al. 2001)
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Figure 23: Track with predicted activity for vessel 2, year 2003
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mostly cruising legs, while below there is a mixture of legs where the vessel is trawling or 
cruising at low speed. If the decision boundary  speed is raised, the algorithm will start to 
falsely classify more cruising legs  as  trawling,  raising the misclassification  rate.  If  the 
decision boundary speed is lowered, it will falsely classify more trawling legs as cruising, 
but it will also include more correctly classified cruising legs. The optimal boundary lies 
where these two errors are balanced.

Trawling at much higher speeds than 5-6 knots would in fact be physically impossible for 
any normal fishing vessel. The few trawling points seen above this are an artifact of the 
algorithm used to reconstruct the vessel's actual activity,  and reflect  the definition of a 
trawling leg. A leg is defined as trawling if any part of it contains trawling activity, but the 
vessel may be starting or ending its trawl and part of it contain cruising activity at high 
speed, thus pushing it up on the graph.

The leg classes do not have different weights in the scoring function, i.e. there is not a 
greater penalty to misclassification of either cruising or trawling legs, since they are of the 
same timescale and would contribute equally to the final calculation of estimated effort.

To  find  the  optimal  decision  boundary  requires  a  search  of  the  solution  space  for  a 
combination  of  parameters  that  minimise  the  misclassification  rate.  Since  the  solution 
space is small (the speed interval of about 0-8 knots) a simple linear brute-force search 
algorithm can be employed to search the whole space down to a precision of 0,1 knots.

With Matlab (see script 6, calibrate_simple), it is quickly found that the optimal speed 
is slightly lower that the initial assumption of 5 knots, or 4,4 knots. This lowers the total 
error rate given by the script only slightly, from 25,43% down to 25,36%, so the initial 
parameter was not very far off from the optimum.
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Running the classifier again with the new parameter settings gives the more detailed results 
in Table 6, now with a decision boundary of mean leg speed at 4,4 knots. Comparing with 
the previous results in Table  5, the change in decision boundary speed slightly improves 
the classification of cruising legs (28,2% correct, compared to 27,0% before), but lowers 
the  success  with  trawling  legs  (from 97,6% to  96,5%).  This  is  as  expected  from the 
preceding  discussion  of  the  decision  boundary.  Also,  incorrectly  classifying  the 
proportionately few cruising legs has less of an impact  than incorrectly  classifying the 
more numerous trawling legs. Keep in mind that the optimisation is moving the decision 
boundary through a mix of cruising and trawling datapoints.

Table 6: Classification results – Simple linear discriminant at 4,4 knots

Actual 
activity Result

Total 
count

Proportion 
of total

Class count 
2001-2005

Training set

Proportion 
of class

Class count 
2006

Validation 
set

Proportion 
of class

Cruising Correct 2.596 9,5% 2.093 28,2% 503 33,4%
Cruising False 6.321 23,2% 5.318 71,8% 1.003 66,6%
Trawling Correct 17.425 63,8% 14.984 97,1% 2.441 96,5%
Trawling False 533 2,0% 445 2,9% 88 3,5%
Stopped Correct 358 1,3% 329 83,3% 29 90,6%
Stopped False 69 0,3% 66 16,70% 3 9,4%
Total Correct 20.379 74,6% 17.406 74,9% 2.973 73,1%
Total False 6.923 25,4% 5.829 25,1% 1.094 26,9%
Total All 27.302 100% 23.235 100% 4.067 100%

4.2.5 Adding more predictor variables

It is now time to consider if the simple classifier of the preceding sections can be improved 
with the addition of more predictor variables. Some measures that are likely to be helpful 
in the classification are listed below, and the reasoning behind each is given. Including the 
vessel mean leg speed from the previous sections the variables are:

– Mean leg speed
– Derivative of mean leg speed
– Course change
– Running average of course change
– Distance from last VMS position
– Running average of distance from last VMS position
– Distance to closest vessel
– Average distance to other vessels

The first two measures reflect speed and changes in speed with the next two reflecting 
course changes. Then two measures monitor the density of the VMS positions, and lastly 
two measures monitor the fleet density or dispersal, for a total of 8 dimensions.

First is the mean leg speed, which has been dealt with extensively in the preceding sections 
and will not be discussed further here.

The  reasoning  behind  trying  the  derivative  of  mean  leg  speed is  that  the  vessel  will 
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decrease  speed  before  deploying  its  gear,  and  when  retrieving  it  come  to  an  almost 
complete stop before speeding up again. In other words, the suggestion is that both the 
current speed and the change in speed (acceleration) are predictors of the vessel behaviour. 
Even though this type of behaviour cannot be distinguished in detail at a resolution of 2 
hrs, the effect will still be one of reducing the mean leg speed from the previous leg, thus 
giving a chance of detection.

When  fishing,  vessels  tend  towards  much  more  extreme  course  changes  than  when 
cruising towards a specific goal. If the vessel has come about 180° for example, it might be 
reasonable to assume that it is repeatedly trawling the same area. If the vessel has changed 
course  several  times  during  the  last  few legs,  it  is  even  more  likely  this  is  the  case. 
Therefore, the course change from the last leg and running average of course change for 
the last five course changes are possible predictor variables.

If a vessel were to cruise at low speed between fishing grounds, or in a relatively straight  
line  while  processing  the  catch  between  hauls,  monitoring  speed  alone  would  not 
differentiate this behaviour from fishing activity. But when trawling, the vessel will stay in 
a more confined area and thus the VMS positions will be bunched closer together. So the 
VMS position density, or  distance from last VMS position is examined  as a predictor, as 
well as the  running average of distance from last VMS position in order to catch slower 
trends and reduce the impact of single VMS points. 

Finally, note that the vessel will seldom be alone fishing, but rather in close proximity to 
other vessels while trawling, but apart from the group when cruising. Thus two measures 
can  be  added to  reflect  the  fleet  dispersal,  distance  to  the  closest  vessel and  average 
distance to the fleet as a whole.

There are essentially two ways to proceed from here; variable transformation or variable  
selection. 

The  first  approach  seeks  to  transform the  dataset  into  a  more  manageable  number  of 
derived variables, before letting loose with a classifier. The latter approach is simply to 
choose a subset of the predictor variables that gives the best classifier performance, and 
dropping  those  that  yield  no  significant  improvement.  Both  approaches  are  presented 
below for the sake of thoroughness.

Variable transformation with Principal Components

The Principal Components Analysis technique5 can best be thought of as rotating the data 
in all dimensions, trying to find the orientations that show  maximum variance  from that 
perspective,  giving  the  best  representation  of  the  data.  These  vectors  are  called  the 
principal components.

As  an  intermediary  step  before  transforming  the  dataset  into  the  axis  of  the  principal 
components, they can be ranked by how much of the variance they explain to examine 
what  dimensions  compose  each  of  the  most  important  ones.  When  the  principal 
components that explain e.g. 95% of the dataset variance are composed overwhelmingly of 
a  subset  of  the  dimensions,  the  dataset  can  actually  be  transformed  using  only  these 
dimensions and the rest dropped. This is in effect a form of lossy compression technique, 

5 For a discussion on Principal Component Analysis, see e.g. Principles of Data Mining (Hand et al. 2001)
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since some of the information in the original dataset will be lost.

It is important to note that PCA is not necessarily well-suited to finding the best predictor 
variables,  but  rather  how  to  best  represent  the  data  and  transforming  it  to  a  lower-
dimensional space (Duda et al. 2001). In some cases, it may actually give vectors that are 
orthogonal to the best linear discriminants. However, the dimensions chosen in this way 
may  give  an  indication  of  what  measures  to  use  in  classification,  and  is  therefore 
interesting for the sake of comparison.

Note  also that  there  is  a  difference  between PCA results  derived from the  correlation 
matrix and the covariance matrix. For analysis of data with dimensions with different units 
of measure (as in this case) or very different variability sizes, the correlation matrix should 
form the basis  of the PCA, since this  is  equivalent  to  normalising the data  before the 
analysis.

Running  Principal  Components  Analysis  (see  script  7,  classifier_analysis)  on  the 
dataset indicates (using the correlation matrix) that at least seven principal components are 
needed to  represent 96,7% of the variance in the data. This combination of the principal 
components is composed of all the dimensions (a smaller subset of the dimensions that 
explains  the  data  adequately  cannot  be  chosen),  and  the  PCA  is  thus  not  helpful  in 
determining which variables are more interesting than others. 

Table  7 shows the principal components (eigenvectors) in order of importance, and the 
relative explanatory power of each principal component (percentages of variance explained 
by each respective eigenvalue) is illustrated in the scree6 plot in Figure 25. The table shows 
the principal components vectors from correlation coefficients representing 96,7% of the 
dataset variance with the vectors ranked in order of significance, that is how much of the 
dataset variance they explain. Note that none of the elements in the vectors are notably 
most influential (close to ± 1,0, with the others close to 0,0).

Table 7: Principal components vectors from correlation coefficients

 V1
28,6%

 V2
17,4%

 V3
13,7%

 V4
12,6%

 V5
11,1%

 V6
8,2%

 V7
5,1% Dimension

 0,4366 -0,0779  0,2198 -0,1386 -0,2178  0,8096 -0,09  speed

 0,0282 -0,0952  0,4707 -0,7624  0,3958 -0,1709 -0,0133 speed_derivative

-0,3811  0,4553  0,3038 -0,0809 -0,2975  0,1732  0,6383 course_change

-0,4542  0,4152  0,2033 -0,0371 -0,1588  0,0547 -0,6993
course_change_running
_average

 0,4651  0,5004  0,0199  0,0045 -0,0454 -0,1139 -0,2384 distance_from_last

 0,461  0,4845 -0,0133 -0,0019  0,0322 -0,2968  0,1858
distance_running
_average

-0,0191 -0,0196 -0,5814 -0,6124 -0,5279 -0,0843 -0,0197 distance_closest_vessel

 0,1667 -0,3459  0,5079  0,1286 -0,6328 -0,4173 -0,059 distance_fleet_average

6 The term “scree” means “a steep mass of detritus on the side of a mountain“ and refers to the sudden 
leveling off of the plot, with the most important eigenvalues forming the “mountain” at the left, and the 
less important forming the rubble at the bottom right.
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Variable selection

Because of the relatively few predictor variables, is is actually preferable to take the direct 
approach and have the classifier try each combination in turn (for the 8 measures, there are 
just  28 –  1  =  255   possible  combinations  that  a  classifier  might  use),  evaluating  the 
improvement in the classification error rate. This is simple to do using Matlab or an Open 
Source software package called WEKA7.

Using WEKA's subset selection algorithms with exhaustive search indicates that there is in 
fact no better combination of the predictor variables than using only vessel speed as input 
into the classifier (see printout 1, weka_variable_selection).

Similarly,  using  Fisher's  Linear  Discriminant  Analysis  (LDA,  discussed  in  the  next 
section)  to  test  all  the  combinations  and  rank  them  by  the  error  rate  (see  script  8, 
classifier_loop_fisher_lda,) gives the same results. Using speed as the only variable 
is the best option and adding more variables does not increase the accuracy. The results are 
displayed in Table  8,  showing success and error  rates for the 10 best combinations  of 
predictor variables using Fisher's LDA. Rates are calculated on the validation dataset.

7 http://www.cs.waikato.ac.nz/ml/weka/ [Last retrieved september 2010]

37

Figure 25: Scree plot of eigenvalues from the correlation coefficient matrix



Chapter 4 - Methodology and results Classification of vessel activities

Table 8: Predictor variable subsets with the ten lowest error rates using Fisher's LDA

Variables used
Success 

rate
Error 
rate

speed 72,4% 27,6% 
speed, course_change 72,1% 27,9% 
speed, course_change, course_change_running_average, 
distance_from_last, distance_fleet_average 72,1% 27,9% 
speed, course_change, distance_from_last, distance_fleet_average 72,2% 27,8% 
speed, course_change_running_average, distance_from_last, 
distance_fleet_average 72,2% 27,8% 
speed, distance_from_last, distance_fleet_average 72,3% 27,7% 
speed, course_change, distance_from_last 72,2% 27,8% 
speed, course_change, course_change_running_average, 
distance_from_last 72,3% 27,7% 
speed, course_change_running_average, distance_from_last 72,3% 27,7% 
speed, distance_from_last 72,4% 27,6% 

4.2.6 Alternative classifiers

To get some sense of how well the simple discriminant classifier in the preceding sections 
is  performing,  and  in  an  attempt  to  improve  upon  the  result,  a  comparison  to  some 
common classifiers is made:

• Fisher's Linear Discriminant

• Naïve Bayes classifier

• k-NN classifier

• CART classifier

• Multilayer Perceptron

Note that although a general description of the workings of each algorithm is given, an in-
depth coverage of them is beyond the scope of this thesis. Interested readers are referred to 
e.g. Principles of Pattern Classification (Duda et al. 2001).

Fisher's Linear Discriminant

Linear Discriminant Analysis (LDA), or more specifically Fisher's Linear Discriminant8, is 
similar to Principal Components Analysis in that it rotates the data in the solution space, 
but seeks to find axis that are efficient for discrimination rather than representation of the 
data. It does this by maximising the distance between the class midpoints, and minimising 
the variance within each class.

Using Matlab (see script 9, classifier_fisher_lda), all the variants available are tried, 
settling  on  the  quadratic,  which  fits  multivariate  normal  densities  to  each  group  with 

8 The terms Fisher's linear discriminant and LDA are often used interchangeably, although technically 
there are some differences.

38



Chapter 4 - Methodology and results Classification of vessel activities

covariance estimates for each, rather than a pooled estimate as in the linear variant.

Table  9 displays  the  results,  which  are  just  slightly  worse  than  the  simple  linear 
discriminant.  Notably,  the  Fisher  linear  discriminant  fails  to  identify  the  stopped class 
altogether.

Table 9: Classification results – Fisher's Linear Discriminant

Actual 
activity Result

Total 
count

Proportion 
of total

Class count 
2001-2005

Training set

Proportion 
of class

Class count 
2006

Validation 
set

Proportion 
of class

Cruising Correct 2.593 9,5% 2.091 28,2% 502 33,3%
Cruising False 6.324 23,2% 5.320 71,8% 1.004 66,7%
Trawling Correct 17.428 63,8% 14.986 97,1% 2.442 96,6%
Trawling False 530 1,9% 443 2,90% 87 3,4%
Stopped Correct 0 0% 0 0% 0 0%
Stopped False 427 1,6% 395 100% 32 100%
Total Correct 20.021 73,3% 17.077 73,5% 2.944 72,4%
Total False 7.281 26,7% 6.158 26,5% 1.123 27,6%
Total All 27.302 100% 23.235 100% 4.067 100%

Naïve Bayes classifier

This  classifier  is  based  on  Bayes'  theorem  of  conditional  probability,  expressing  the 
(posterior)  probability  a data  point  belongs to a  particular  class in  terms of the (prior) 
probabilities of  observing the datapoint and it belonging to the class, and the conditional 
probability of observing this point, given that it actually belongs to the class. The “naïveté” 
of  the  classifier  stems  from  the  strong  assumption  that  the  predictor  variables  are 
independent. In other words, the presence of a particular feature independently contributes 
to the probability that the object belongs to a particular class. Despite this, these classifiers 
can  perform  quite  well  on  real-world  problems,  and  can  easily  handle  a  high 
dimensionality of inputs.

Although some of the predictor variables are clearly not independent, this does not exclude 
the use of the Naïve Bayes classifier. One reason is that the absolute values of the posterior 
probabilities are not of interest, only their ranked order (to which class is the point most 
likely to belong). Thus some bias in the values can be tolerated.

Using WEKA, the Naïve Bayes classifier was run for all the predictor variables, as well as 
for speed only (see printout 2, weka_naive_bayes). The results are displayed in Table 10. 
As is evident, using all the variables results in a terrible performance (23,4% success rate), 
while speed alone gives comparable accuracy to, or only slightly better than the simple 
linear discriminant. 

k-Nearest Neighbour classifier

The k-NN classifier puts each datapoint in the same class as the majority of its  k nearest 
neighbours, where k is a user-defined constant. 
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Using Matlab (see script 10, classifier_knn) and iterating for k=1...5,  this turns out to 
be by far the slowest classifier tried in this work.

The results are displayed in Table  10. The best performance is worse than for the other 
classifiers, peaking at 69,4% success for the speed variable and k=4.

CART classifier

CART  is  an  acronym  for  Classification  And  Regression  Trees,  and  is  a  binary-tree 
algorithm.  It  works  by creating  rules  (decision  boundaries)  for  each  variable,  splitting 
datapoints  into  two.  At the  next  level  of  the  tree  the  datapoints  are  split  again,  using 
another rule, and so on down the tree.

WEKA can easily run CART (see printout 3, weka_cart) and gives the resulting decision 
tree. As before, all variables were tried as well as speed only.

The rule-trees can be seen in Figures 26 and 27. They are interesting to compare with the 
linear classifiers on speed, since they could be construed as simpler versions of the CART 
with a more heavily pruned rule-tree. 

Figure  26 shows part of a CART binary-tree pruned from all  predictor variables using 
WEKA. The full tree is 101 nodes (rules). In this CART tree with all variables present, the 
first  rule  is  indeed  based  on  mean  leg  speed,  although  with  slightly  different  speed 
boundaries. The next variables used are the  distance to closest vessel, distance from last  
VMS position, and the speed derivative.

The CART algorithm sets the decision boundaries for cruising/trawling at 4,75 knots, and 
for trawling/stopped at 0,0003 knots, not too far off from the linear classifiers.
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For comparison, figure 27 shows a CART binary-tree pruned from the speed variable only 
using WEKA. 

The results of the classifier are displayed in Table 10.

41

speed < 4.75277736034 

|  speed < 0.02717077489555 

|  |  distance_closest_vessel < 22.1854433045355 

|  |  |  speed < 3.05960787782E-4: stopped(227.0/173.0) 

|  |  |  speed >= 3.05960787782E-4 

|   |   |   |   speed_derivative  <  -0.650667025934865: 
cruising(13.0/7.0) 

|   |   |   |   speed_derivative  >= 
-0.650667025934865:trawling(24.0/14.0) 

|   |   distance_closest_vessel  >=  22.1854433045355: 
stopped(84.0/20.0) 

|  speed >= 0.02717077489555 

|  |  distance_from_last < 20.030060475162 

|  |  |  course_change_running_average < 37.9 

|  |  |  |  distance_fleet_average < 160.54285064795 

|   |   |   |   |   speed_derivative  <  -1.788458335731: 
cruising(25.0/15.0) 

|  |  |  |  |  speed_derivative >= -1.788458335731 

|  |  |  |  |  |  speed < 3.601921508385 

|  |  |  |  |  |  |  distance_fleet_average < 4.08810454913605 

Figure 26: Partial CART classification tree for all variables

speed < 4.75277736034 

|  speed < 0.02717077489555 

|  |  speed < 3.05960787782E-4: stopped(305.0/188.0) 

|  |  speed >= 3.05960787782E-4: trawling(29.0/40.0) 

|  speed >= 0.02717077489555: trawling(17273.0/6424.0) 

speed >= 4.75277736034: cruising(2533.0/510.0)

Figure 27: CART classification tree for speed
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Multilayer Perceptron

The  MLP is  a  simplified  model  of  a  biological  neuron,  with  “neurons”  organized  in 
multiple  layers,  which  are  fully  interconnected  to  the  next  layers  on either  side.  Each 
neuron then incorporates a non-linear sigmoid activation function, which determines if it 
fires upon receiving input from the previous layer.

WEKA can run MLP (see printout 4, weka_mlp). The results are in Table 10.

4.2.7 Cluster analysis

The  classification  algorithms  discussed  so  far  are  supervised,  i.e.  their  results  can  be 
compared  to  what  is  actually  known  to  be  true  and  improvements  made  (such  as 
identifying the speed limit that minimises classification error). 

As  previously  mentioned,  there  exists  a  second  type  of  classifiers;  the  unsupervised. 
Unsupervised classification algorithms are also called  clustering algorithms,  since their 
aim is to identify “clusters” in the datasets without knowing what those clusters actually 
represent in reality.

One reason the results of such algorithms are interesting is that they can give an idea of the 
features  of  the  datasets,  and  thus  what  variables  might  be  of  most  interest  to  use  in 
classification. This is actually what principal components analysis attempts to do, so one 
unsupervised approach has in fact already been presented, in trying to do identify variables 
for the supervised classification.

Also, in using the supervised classification approach, an educated guess was made as to 
what the vessel actual activity at each point is, and the results of the classification based on 
this assumption must be confirmed. 

The clustering algorithm will attempt to find natural groupings in the dataset. Since the 
guess of actual class is available from the midpoint algorithm, an error rate based on this is 
calculated.  If  the  supervised  algorithms  used  earlier  are  indeed  delivering  the  same 
classification, they should result in comparable error rates as the unsupervised.

As one of the more popular unsupervised clustering algorithms, the k-means algorithm was 
used to compare with the previous results.

k-Means clustering

In k-means clustering, the datapoints are iteratively sorted into k number of clusters. Each 
datapoint is placed into the cluster that has the closest mean value. The means for each 
cluster  are  then  recalculated,  and the  algorithm reiterated.  When no datapoints  change 
clusters between iterations, the loop is stopped.

Using  WEKA  (see  printout  5,  weka_kmeans),  some  of  the  most  promising  variable 
combinations  were  tried.  The results  were  also  compared  to  the  guess  of  actual  class 
values. The results are displayed in Table 10.

An error rate of 27,0% (or 73,0% success rate)  was reached, a comparable rate to the 
supervised classifiers, and  confirms that they are not missing some other groupings in the 
dataset because of the  guess at the true activity.
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4.2.8 Summary

Several classifiers were built and tested to identify fishing behaviour from vessel tracks. 
Different measures were examined and how combinations of these affect the classification 
success.

Comparison of the classifier performance is displayed in Table  10, showing success and 
error rates for the tested classifiers. Rates are calculated on the validation dataset. The best 
performance is very comparable for most, from 73,1% to 75,0%, with Naïve Bayes on all 
variables scoring worst by far (23,4% success rate).

Table 10: Comparison of classifier performance

Classifier Variables used Success rate

Simple Linear Discriminant speed 73,1%
Fishers' LDA speed 73,5%
Naïve Bayes speed 74,1%
Naïve Bayes9 all 23,4%
k-NN speed, k=1 62,5%
k-NN speed, k=2 68,5%
k-NN speed, k=3 66,4%
k-NN speed, k=4 69,4%
k-NN speed, k=5 67,9%
k-NN all, k=4 68,6%
CART speed 74,4%
CART all 75,5%
Multilayer Perceptron speed 74,2%
Multilayer Perceptron all 74,5%
k-means clustering all 53,4%

k-means clustering
speed 
speed_derivative 
distance_closest_vessel

72,2%

k-means clustering speed 
speed_derivative

73,0%

k-means clustering speed 73,0%

k-means clustering speed 
distance_from_last

73,0%

The final  choice of classifier  should be a combination of the best performance,  fewest 
necessary variables and simplest  implementation.  In the subsequent chapters the simple 
linear discriminant algorithm developed first will be used, since it does almost as good as 
the CART, MLP and Naïve Bayes, but is much simpler and easier to integrate into the 
prototype system code.

Also,  the  classification  was  compared  to  unsupervised  clustering  results,  with  no 
significant difference between the approaches being found, justifying the assignment of 
actual activity using the midpoint algorithm.

9 The numbers for this application of the Naïve Bayes have not been interchanged by mistake.
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Four factors prevent an improvement in the classification; relatively coarse resolution of 
vessel tracks, lack of data on the vessel's actual activity at all times, imprecise positions of 
catch reports, and the fact that below the decision boundary of 4,4 knots, trawling and 
cruising  legs  tend  to  mix  up,  and  no  measures  have  been  identified  that  can  reliably 
differentiate between the two.
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4.3 Estimating effort from classification
As discussed before, having classified the vessel activities during each of the trip legs, it 
should now be straight forward to estimate the effort. For each leg classified as “trawling”, 
its duration is added to the total effort during the trip. The accuracy is dependent on the 
resolution of the VMS data, i.e. the leg duration, which is most commonly 2 hrs.

Note that the objective here is not to predict the fishing effort itself, since that is a rather 
loosely defined concept,  but rather the landed catch.  The construction a full  regression 
model for the effort is therefore not within the scope of this study. The effort measure is 
however used as an input into a catch prediction model, whose regression constants will 
take the effort variability and scale into account.

4.3.1 Comparison to reported effort

The source datasets include a measure of reported effort (also known as linetime), which is 
the time the vessel spent with its gear deployed (i.e. trawling), as reported in the catch 
logbook. The following analysis will include how well the estimated effort corresponds to 
this measure, but it is important to keep in mind that the classification algorithms are not 
designed to minimise this error, but rather to correctly classify each leg of the vessel VMS-
track. If they were optimised to minimise the error between the  reported effort and the 
estimated effort directly, the classification algorithms would respond by forcing more legs 
into a different class, even if they clearly did not belong there. The proper way of handling 
this error is in the effort or catch estimation models.

Examining the errors in effort estimation from this reported effort as shown in Figure 28 
below, the  algorithm tends to  overestimate  the effort  using the  classifier  by the direct 
addition of intervals classified as trawling. The conclusion is that the effort estimate most 
likely includes time that the vessel spends on fishing-related activity that is not strictly 
trawling  and which  is  not  included  in  the  reported  effort.  This  time  might  be  termed 
turnaround, the time spent readying the vessel for a second deployment of the gear.

Using the effort estimate in comparison with other studies must then be done with this 
difference  in  mind,  and  noted  that  it  is  incompatible  with  official  statistics  using  the 
reported effort. 

In Figure  28, showing (estimated effort - reported effort) / reported effort, not all years 
display the same error proportion,  notably 2005 has much lower error rates than other 
years. This stems from differences in the reported effort vs. reported catch as seen in the 
following Figure 29, which shows reported effort vs. reported catch for each trip, all years. 
The datapoints for 2005 are plotted in green, and 2006 in red for comparison. Note the 
apparent difference in catch per unit effort (slope) of the two years. where reported effort 
for 2005 is significantly greater (the fishing in 2005 was notoriously bad, with great effort 
needed to catch the redfish, thus the decrease in proportional error), and problems with the 
source data where the reported effort and catch periods do not coincide with any of the 
supplied VMS-tracks.
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Figure 28: Trip effort proportional errors

Figure 29: Trip reported effort vs. reported catch
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4.4 Estimating catch from effort
In this section:

– General approach and terms
– The true effort, errors and bias
– Variance of catch model
– Least squares formulation in matrix form
– Maximum likelihood estimation of α and σ2

ε 

– Unequal variances in estimated effort Ujk and reported effort Vjk

– Standardised residuals and treatment of outliers
– Student's-t distribution
– Curvilinear model
– Prediction intervals on new observations with a fitted year-effect
– Prediction intervals on new observations with an unknown year-effect
– Usage examples for the final model

This  section  opens  with  definitions  of  some terms  essential  for  the  development  of  a 
statistical  model  for  catch.  The  differences  between  true  effort,  estimated  effort  and 
reported effort are discussed and how the models correct for bias in these measures.

A multivariate linear regression (MLR) model is presented and its parameters estimated 
with the maximum-likelihood approach. The model is refined with more robust treatment 
of errors in estimated and reported effort, followed by an analysis of outliers.

The  use  of  the  log-Student's-t  distribution  rather  than  the  log-normal  distribution  is 
explored, and then shown that an extended model that assumes a curvilinear relationship 
between effort and catch yields a better fit to the data.

The  prediction  intervals  based  on  the  model  are  formulated,  and  the  estimation  of 
parameters for the validation dataset is discussed.

Finally, simple examples on how the final model can be used on the datasets are presented.

4.4.1 General approach and terms

This section describes the second main research objective, i.e. predicting the landed catch 
of  a  vessel  from  each  trip,  given  the  previously  calculated  effort  estimate  from  the 
preceding sections.

A regression model is constructed based on the supplied data, and as before part of the data 
is used for model validation.

Before starting the analysis, the definition of some key concepts and variables that will be 
used extensively in this section follows:

Reported catch: the total catch from one trip as reported in the landing report. This 
data can be considered very accurate, since it is the result of an independent 
weighing of the landed catch when the vessel comes to port.

Reported effort: the total effort from one trip as reported in the catch logbook. This is 
the recorded trawling time, and can be subject to errors. Usually it is recorded 
to within the hour, but can also be accurate to within 15 minutes.
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Estimated catch: the estimated catch as calculated by the model, based on a supplied 
effort. This is essentially the prediction the statistical models deliver for some 
given effort.

Estimated effort: the total effort from one trip as estimated by the classifier algorithm. 
This effort is usually higher than the reported effort, since the classification 
algorithms tend to include time periods when the vessel is hauling or setting 
gear or performing other activities  that  cannot  be distinguished from actual 
fishing activity by the algorithm.

Days at sea: the total effort from one trip as calculated from the total time spent at 
sea. This effort is higher than either the reported effort or the estimated effort 
from the classifier, since it includes time periods when the vessel is cruising or 
performing other non-fishing activities.

True effort: the real-world effort involved, without measurement error. This variable 
is a statistical entity, and can never be directly observed.

The measures are defined as:

Ujk = estimated effort for trip j of vessel k
Vjk = reported effort for trip j of vessel k
Xjk = true effort for trip j of vessel k
Wjk = true catch for trip j of vessel k
Djk = days at sea for trip j of vessel k

Referring to the very beginning of this chapter, the model will assume a linear relationship 
between effort and catch (see Figure 15), and as a starting point it is reasonable to assume 
that the  true catch,  dependent  upon the  true effort is such that the expected value and 
variance are

E [W jk ]=X jkμ jk

var (W jk)=α X jkμ jk
2

where μjk is a measure of the catching power (catch per unit effort, CPUE) during trip j of 
vessel k, and α is a variance (or scaling) parameter.

4.4.2 The true effort, errors and bias

The fact is that the measure of true effort in the model is unknown. However, there are two 
measures of the effort that both include some unknown measurement error, namely the 
reported effort and the estimated effort (writing the errors in exponential form here makes 
the subsequent notation easier to work with)

U jk=X jk eε jk

V jk=X jk e
e jk

or taking the natural logarithm 
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log U jk = log X jk + ε jk

log V jk = log X jk + e jk

Using these measures together can give some idea of the true effort, and plotting both on a 
log-log scale results in Figure 30. 

Each datapoint on this plot has uncertainty in both dimensions, resulting in a circular or 
elliptical area where the true value is believed to be, as shown in Figure  31. The figure 
shows an example of a datapoint from the previous graph, plotted with errors.  εjk is the 
error in estimated effort, log(Ujk),  ejk is the error in reported effort, log(Vjk) and djk is the 
shortest distance to the true effort on the straight line for trip j and vessel k.
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Figure 30: log of the estimated effort vs. log of the reported effort for each trip

Figure 31: Example of a datapoint with uncertainty
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In this figure the  true effort actually lies on the straight line where log(Vjk) = log(Ujk) (if 
both measures had no error in them, they would in fact be measuring the true effort, and 
result in exactly the same value). 

Assuming  the  errors  have  equal  variances  in  both  dimensions  (see  Section  4.4.6 for 
treatment of unequal errors), simple geometry gives the true effort by using the orthogonal 
projection of the point onto the straight line log(Vjk) = log(Ujk) (this is the shortest distance 
between the point and the line). If Q1 and Q2 are points on the line and P is the datapoint, 
the errors are then10

ε jk=e jk=
∣(Q2−Q1 , P−Q1)∣

∥(Q2−Q1)∥

Looking at the data in Figure 30, a slight bias towards larger values of estimated effort can 
be detected. This is to be expected, since the measurement is built from classification of 
track legs, and the classifier tends to incorporate cruising activity as well as trawling, as 
described in earlier sections. Estimated effort thus includes all parts of the fishing activity 
detected from changes in vessel speed, while the  reported effort  only measures the time 
which the vessel's gear is actually deployed.

This is evident by plotting the distance to the line as in Figure 32. 

Based on the above arguments a bias term is added to the measures

log U jk = log X jk + ε jk + bias
log V jk = log X jk + e jk

log U jk − logV jk = bias + ε jk − e jk

10 Note that the vertical lines in the numerator signify the determinant and the double vertical lines in the 
denominator the vector norm or magnitude
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Figure 32: Distance djk from datapoints to the line 
log(Vjk) = log(Ujk)
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A reasonable estimator of the bias is

̂bias = median (log U jk−log V jk )

Incorporating this into the calculations, Figures 30 and 32 are redrawn as Figures 33 and 
34, taking the bias estimator into account

log U jk− ̂bias = log X jk+ε jk

log V jk = log X jk+e jk

The  estimated effort  measures have now been corrected for bias, and the model can be 
designed based on this measure and the estimated bias.

The variances of estimated effort and reported effort are denoted by

σε
2
= var (ε jk )

σ e
2
= var (e jk )
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Figure 33: Corrected log of the estimated effort vs. log of the reported effort, with  
bias estimator
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4.4.3 Variance of catch model

The attention now turns to the variance in the catch. Based on inspection of the data in 
Figure  15 a variance model of the form 

var (W jk)=α X jkμ jk
2

is proposed.

Since the catch is positive and accumulates with higher effort, then a reasonable model is 
based on a log-normal assumption, that is

log W jk∼N ( log(μ jk X jk ) ,σ00
2
)

The expected value is

E (W jk)=(μ jk X jk )eσ00
2
/2

and the variance can be derived with a little algebra

var (W jk) = e
2 log(μ jk X jk)[e

2σ00
2

−e
σ 00

2

]

= (μ jk X jk )
2 eσ00

2

[eσ00
2

−1]

= X jkμ jk
2 X jk [e

2σ00
2

−eσ 00
2

]

To solve for σ2
00, the following substitutions are made

α = X jk [e
2σ 00

2

−e
σ00

2

]

z = eσ00
2

z2
= e2σ00

2

to write
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Figure 34: Distance from datapoints to the corrected line 
log(Vjk) = log(Ujk)
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α
1

X jk

=[e2σ 00
2

−eσ00
2

]

z2
− z− α

X jk

=0

and so

z=
1
2
(1±√1+4 α

X jk

)

or

σ00
2
=log (

1
2
(1±√1+4 α

X jk

))

Restating the model in these terms, let  Zjk ~ N(0,1) be a (standard) normally distributed 
random variable. Then

log W jk = log(μ jk X jk )+σ00 Z jk

= logμ jk+ log X jk+σ00 Z jk

Substituting log Xjk with log U jk−
̂bias+ε jk yields

log W jk = logμ jk+(log U jk−
̂bias+ε jk )+σ00 Z jk

= log U jk−
̂bias+ logμ jk+ε jk+σ00 Z jk

Now the model can be presented as

log W jk =∼N ( logU jk−
̂bias+log(μ jk) ,σ ε

2
+σ00

2
) (1)

Some potential models for log μjk are

log(μ jk) = μ0 (constant )
log(μ jk) = μk k=1...K
log(μ jk) = μk+βt k=1...K , t=1...T

The first model corresponds to all the vessels having the same catching power.

In the second model, each vessel k has its own catching power independent of the others.

In the third model, the catching power is composed of the  k individual vessels catching 
power, and a year effect for each year t. This model can accommodate the intuitive notion 
that in some years the fishing is simply better than in others, which is confirmed when 
plotting effort and catch for individual years, such as in Figure 29, Section 4.3.1.

The third model will be used, in order to take the year effect into consideration, or 

log W jk∼N ( logU jk−
̂bias+μk+βt ,σε

2
+σ00

2
)

with the expected value of

E [W jk ]=U jk e
̂bias eμk eβ t e(σε

2
+σ00

2
)/2
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4.4.4 Least squares formulation in matrix form

Now that a reasonable model has been set up, its parameters can be estimated based on the 
data. This is done by fitting the model to the data using least squares.

In matrix notation, the linear regression model is

Y=Z β+ε

where Z is termed the design matrix,  β is the parameter vector and ε are the observation 
errors. The elements yi of the Y vector are calculated from Equation (1) for each vessel k 
and trip n in year t

y jk = log (W jk) − log (U jk ) +
̂bias

Each  vessel  and  year  combination  can  thus  have  multiple  rows  corresponding  to  the 
number of trips of the vessel in that year. Let N denote the total number of measurements.

The errors are assumed to be independent with unequal  variance,  and follow a normal 
distribution

ε∼N (0,Σε)

where Σε is a diagonal matrix of the model variances

Σε=diag(σ̂ ε
2
+σ00

2
(α , X jk) ,... , σ̂ε

2
+σ00

2
(α , X jk ))

Then a least squares estimator of the parameter vector is (Gelman et al. 2004, p. 374)

β̂=(Z T Σε
−1 Z )−1Z T Σε

−1Y

and the covariance matrix is (Gelman et al. 2004, p. 374)

cov (β̂)=(Z T Σε
−1 Z )−1

The  design  matrix  Z is  constructed  so  that  the  columns  correspond  to  the  respective 
vessels, followed by columns for each year, excluding one reference year (this is to avoid 
calculation problems in making the matrix singular. 2005 is selected as the reference year). 
A row then references a particular vessel and year if the value in the respective columns is 
1 (otherwise 0).

The parameter  vector  β is  similarly  constructed,  except  that  the  parameters  μk for  the 
vessels are organised in rows from top to bottom, followed by βt parameters for years. 

A 95% confidence interval for the parameters is calculated as

β̂±1,96√(diag(Z T Σ ε
−1 Z )−1

)
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See Figure 35 for reference, which shows the construction of the linear regression model in 
matrix form. The elements of the Y vector are calculated in Equation (1) for a total of N 
measurements, the design matrix  Z is a matrix of ones and zeros, divided into columns 
corresponding to vessels 1...K, and years 1...T. The elements of the parameter vector β are 
unknown and need to be estimated, the μk elements representing vessels and βt representing 
years (with respect to the reference year).

4.4.5 Maximum likelihood estimation of α and σ2ε

The  above  formulation  depends  on  two  meta-parameters  α and  σ2
ε which  need  to  be 

estimated in conjunction with the model parameters  β themselves. This is achieved with 
maximum-likelihood  estimation  or  profile  likelihood  estimation,  where  the  likelihood 
function of the parameters to be maximised (α and  σ2

ε) depends on a given value of the 
other parameters (β).

The normal probability density function is of the form (Gelman et al. 2004, p. 574)

f (x ;μ ,σ2
)=

1

√2 π
[σ2

]
−1 /2 exp(−1

2
[σ2

]
−1
(x−μ)2)

Substituting  and  writing  for  n observations,  a  likelihood  function  for  α and  σ2
ε  is 

constructed as
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Figure 35: Matrix construction for the linear regression model
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L(α ,σ ε
2
)=∏

i=1

n

{ 1

√2 π
[σ ε

2
+σ00

2 ]
−1/2

exp [−1
2

[σε
2
+σ00

2 ]
−1
( y i−(Z β̂)i)

2]}
=∏

i=1

n

{ 1

√2 π [σ ε
2
+log( 1

2
+

1
2 √1+4 α

U jk
)]

−1/2

exp [−1
2 [σε

2
+ log( 1

2
+

1
2 √1+4 α

U jk
)]
−1

( y i−(Z β̂)i)
2]}

where the true effort Xjk has been approximated by the estimated effort Ujk .

The true effort could have been replaced by U jk e− ̂bias due to the relationship between Xjk 

and Ujk , but this is not necessary since the term e− ̂bias would be multiplied by α .

It is actually more convenient to work with the logarithm of the likelihood function

l (α ,σε
2
)= log(L (α ,σε

2
))

=−
n
2

log(2π)−
1
2 ∑i=1

n

{log(σ ε
2
+ log(...)−

1
2∑i=1

n

[σ ε
2
+ log(...)]−1

( yi − (Z β̂)i)
2)}

The function  fminsearch in Matlab is used to find the maximum-likelihood estimation 
following these steps (see script 11, calculations, and script 12, logLikelihoodCeder):

1. Select valid initial values for α and σ2
ε , call them α0 and σ2

ε0

2. Estimate β and Σε,ii with

β̂=(Z T ̂Σε
−1 Z )−1Z T Σε

−1 y

̂Σε , ii
−1 =[σ̂ ε0

2 + log(12 +
1
2 √1 + 4

α̂0

U jk
)]

−1

̂Σε , ij
−1

=0 , i≠ j
y jk = log(W jk)− log(U jk ) +

̂bias

3. Run fminsearch to find the values of α and σ2
ε that maximise l(α , σ2

ε)

4. If the values for α and σ2
ε have changed very little from last iteration, 

stop here

5. Else, use the resulting values α and σ2
ε and repeat from step 2

The resulting parameter estimates for each vessel μk and year βt (with respect to the 
reference year 2005, the year 2006 is used as a validation dataset and is discussed in a later 
section on model validation) are detailed in Tables 11 and 12 and Figures 36 and 37 below. 
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For a discussion of these results, see Section 4.4.7 - Standardised residuals and treatment 
of outliers.

The meta-parameters were estimated as α = 1411,1 and σ2
ε = 0,31856

Table 11: Estimated vessel parameters μk

Vessel μk 95% confidence interval
1 5,10 ±1,40 [3,71;6,50] 
2 3,91 ±0,52 [3,39;4,44] 
3 3,39 ±0,40 [2,99;3,79] 
4 3,68 ±0,48 [3,21;4,16] 
5 2,51 ±0,40 [2,11;2,90] 
6 3,39 ±0,47 [2,92;3,85] 
7 3,27 ±0,42 [2,85;3,69] 
8 3,56 ±0,39 [3,17;3,94] 
9 3,43 ±0,47 [2,96;3,89] 
10 3,44 ±0,45 [3,00;3,89] 
11 3,82 ±0,42 [3,39;4,24] 
12 3,59 ±0,58 [3,02;4,17] 
13 3,16 ±1,40 [1,76;4,57] 
14 3,60 ±0,41 [3,18;4,01] 
15 3,64 ±0,42 [3,22;4,05] 
16 3,42 ±0,43 [2,99;3,85] 
17 3,49 ±0,50 [2,99;4,00] 
18 3,74 ±0,63 [3,11;4,37] 
19 3,58 ±0,38 [3,20;3,96] 
20 3,76 ±0,41 [3,35;4,17] 
21 3,60 ±0,62 [2,98;4,22] 
22 3,65 ±0,52 [3,12;4,17] 
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Figure 36: Estimated vessel parameters, μk



Chapter 4 - Methodology and results Estimating catch from effort

Table 12: Estimated year parameters βt

Year βt 95% confidence interval
2001  -0,51 0,34 [-0,85;-0,18] 
2002  -0,32 0,33 [-0,66;0,01] 
2003 -0,06 0,33 [-0,39;0,27] 
2004 -0,08 0,35 [-0,43;0,27]
2005 0 Reference year -

4.4.6 Unequal variances in estimated effort Ujk and reported 
effort Vjk

In the preceding section, the errors in Figure 31 were treated as equal, but this is perhaps 
not an accurate  assumption.  The above procedure is  modified  to take into account  the 
possibility of unequal errors in the measurements. The same search algorithm is used to 
determine the maximum-likelihood estimator for the proportion between the errors.

As before,

log U jk − ̂bias = log X jk + ε jk

log V jk = log X jk + e jk

var (ε jk)=σε
2 , var(e jk )=σ e

2

Taking the difference

d jk = log U jk −
̂bias − logV jk

= log X jk + ε jk − log X jk − e jk

= ε jk − e jk

so the joint variance is
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Figure 37: Estimated year parameters βt
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var (ε jk − e jk)= σε
2
+ σ e

2
=σ ε ,e

2

The proportion between the errors is defined as γ

σ ε
2
= γσe

2 , σ e
2
=

1
γ σ ε

2

var (ε jk − e jk) = σ ε
2 + σ e

2

= σ ε
2
+

1
γ σε

2
=σ ε

2(1+ 1
γ )

=
γ+1
γ σ ε

2

An estimator for the joint variance (σε
2
+σe

2
) denoted by σ̂ε , e

2 is

σ̂ε , e
2

=
1

n−1
∑
i=1

n

(d jk−d̄ )2

so

σ̂ε
2 =

γ

γ+1
σ̂ε ,e

2

This estimator can be constrained somewhat. Since the joint variance is composed of the 
variances in estimated effort  and reported effort  it will always be larger than σ2

ε and σ2
e . 

Using a logistic function that takes values between 0,5 and 1 (assuming  σ2
ε >  σ2

e ), the 
estimator σ2

ε in the search algorithm is replaced with

σε
2
= f (ϕ)σε , e

2
=

1+2 eϕ

2+2 eϕ σ̂ε ,e
2

The Matlab search algorithm is then adapted to look for values of α and φ rather than σ2
ε 

directly. Rewriting the maximum-likelihood function gives

l (α ,ϕ) = −
n
2

log(2π)

−
1
2∑i=1

n

{log( 1+2 eϕ

2+2 eϕ σ̂ε ,e
2

+ log(...)−
1
2∑i=1

n

[1+2 eϕ

2+2 eϕ σ̂ ε , e
2

+ log(...)]
−1

( y i − (Z β̂)i)
2)}

and  the  calculation  steps  (see  script  11,  calculations,  and  script  13, 
logLikelihoodCeder2):

1. Select valid initial values for α , φ and σ2
ε , call them α0 , φ0 and σ2

ε0

2. Estimate β and Σε,ii with

β̂=(Z T ̂Σ ϵ
−1 Z )−1Z T Σε

−1 y

̂Σε , ii
−1 =[σ̂ ε0

2 + log(12 +
1
2 √1 + 4

α̂0

U jk
)]

−1

̂Σε , ij
−1

=0 , i≠ j
y jk = log(W jk)− log(U jk ) +

̂bias

σ̂ ε
2 =

1+2eϕ

2+2eϕ σ̂ ε ,e
2
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3. Run fminsearch to find the values of α and φ that maximise l(α , φ)

4. If the values for α and φ have changed very little from last iteration, 
stop here

5. Else, use the resulting values α and φ and repeat from step 2

Adding  this  procedure  to  the  algorithm actually  does  not  result  in  any  change  in  the 
estimators of the model parameters, indicating that the original assumption of equal errors 
was not unreasonable.

The meta-parameters were estimated as α = 1411,1 and φ =  0,83522 

4.4.7 Standardised residuals and treatment of outliers

In examining Table 11 (estimated vessel parameters μk) and the plot of the parameters in 
Figure 36, two parameters immediately stand out, those for vessels 1 and 5. Since all the 
vessels can be assumed to be similar (see Section 3.6), their parameters are not expected to 
differ as much as these do.

Looking at the source data, the cause for the first outlier was quickly determined to be that 
in the dataset there is only one trip reported for this vessel. This is not enough data to 
reliably construct a statistical  model on, and this vessel must consequently be removed 
from the calculations. In fact the parameter is more than three standard deviations from the 
mean.

As for the second parameter, for vessel 5, no obvious inconsistencies can be found in the 
data and it must be concluded that this vessel simply has done worse than the others. This 
parameter  is  2,4 standard  deviations  from the  mean,  and cannot  be excluded on those 
grounds alone.

The standardised residuals of the dataset were calculated for search of other outliers. A 
residual of  y,  denoted by  ry is  the difference between the measured datapoint,  and the 
estimated function value

r y = y−Z β̂

Standardised residuals of y, denoted by wy are simply scaled so that they will have a mean 
of zero and standard deviation of one

w y =
r y−r̄ y

stdev (r y)

As a rule-of-thumb, any standardised residuals falling outside of three standard deviations 
should be examined as possible outliers.

Both the normal probability plot of εjk – ejk in Figure 38 and standardised residual plot in 
Figure 39 show one clear outlier marked with red. When the source data is examined for 
this measurement (vessel 3, trip 1 in year 2005), it is discovered that the report is highly 
suspect,  with  very  low effort  compared  to  the  reported  catch.  This  datapoint  must  be 
removed from the dataset so that the parameter estimation will not be affected by faulty 
data.
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The interpretation of a normal probability plot is that if the points fall on a straight line the 
model  adequately  describes  the  data.  Some deviation  is  generally  allowed towards  the 
ends.

It can be seen that the normal model is a good fit in the centre,  but some deviation is 
evident  towards the ends.  Possibly a Student's-t  distribution would be a more accurate 
representation of the data.
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Figure 38: Normal probability plot of εjk – ejk

Figure 39: Standardised residuals of εjk – ejk
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A possible explanation is that the measurements are coming from two normal distributions 
rather than one. This would make the tails of the resulting combined distribution fatter, and 
manifest  in the way seen in the plot.  The source of the two distributions might be the 
discrete  effect described in Section  3.5 -  Visualisation  of the data,  where in effect  the 
datasets would be drawing measurements from one distribution for automated logbooks 
and another for pen-and-paper versions.

The outliers were removed and the search algorithm run again. The parameter estimate 
results are in Tables 13 and 14 below, and displayed in Figures 40 and 41.

The meta-parameters were estimated as α = 998,01,  σ2
ε = 0,3252 and  φ = 3,8273

Table 13: Estimated vessel parameters μk without outliers

Vessel μk 95% confidence interval
1 - - -
2 3,83 ±0,52 [3,31;4,35] 
3 3,23 ±0,41 [2,82;3,64] 
4 3,60 ±0,47 [3,13;4,08] 
5 2,45 ±0,39 [2,06;2,84] 
6 3,31 ±0,46 [2,85;3,78] 
7 3,21 ±0,41 [2,79;3,62] 
8 3,49 ±0,38 [3,11;3,87] 
9 3,35 ±0,46 [2,89;3,81] 
10 3,36 ±0,44 [2,92;3,80] 
11 3,74 ±0,42 [3,32;4,16] 
12 3,52 ±0,57 [2,95;4,09] 
13 3,08 ±1,36 [1,73;4,44] 
14 3,52 ±0,41 [3,11;3,94] 
15 3,56 ±0,41 [3,15;3,98] 
16 3,35 ±0,43 [2,92;3,77] 
17 3,43 ±0,5 0 [2,93;3,93] 
18 3,65 ±0,63 [3,03;4,28] 
19 3,51 ±0,38 [3,13;3,88] 
20 3,69 ±0,41 [3,28;4,10] 
21 3,52 ±0,61 [2,90;4,13] 
22 3,58 ±0,52 [3,06;4,10]
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Table 14: Estimated year parameters βt without outliers

Year βt
2001  -0,42 ±0,34 [-0,76;-0,09]
2002  -0,23 ±0,33 [-0,56;0,10]
2003 0,03 ±0,33 [-0,30;0,36]
2004   0,00 ±0,35 [-0,34;0,35]
2005 0 Reference year -
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Figure 40: Estimated vessel parameters, μk without outliers

Figure 41: Estimated year parameters, βt without outliers
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4.4.8 Student's-t distribution

As  indicated  by  Figure  38,  a  Student's-t  distribution  might  describe  the  data  more 
appropriately. To determine the parameters of the t-distribution which would give the best 
fit, the measure

log t v =∑
jk

log(tpdf (stdres( y jk ) , v ))

is calculated for degrees of freedom v from 1 to 30 and plotted in Figure  42. Here, tpdf 
signifies  the  probability  density  function  for  the  t-distribution,  and  stdres(yjk)  are  the 
standardised residuals of yjk. 

What is essentially being done here, is fitting t-distributions with progressively thinner tails 
to the data. The plot indicates that a t-distribution with v = 10 degrees of freedom would be 
appropriate. The low number for the degrees of freedom indicates that it would be worth 
using the t-distribution,  since when the degrees  of freedom approach infinity,  the data 
approaches the normal distribution, and inversely when the degrees of freedom are low it 
moves further away from the normal and the t-distribution is a better fit.

It should be noted that the standardised residuals used here are calculated from a normal 
distribution, and are not in fact accurately estimating the degrees of freedom, but are useful 
in doing a quick check to see if it produces a low or high value. A more accurate treatment 
follows.

Student's-t probability density function with location parameter μ and scale parameter σ is 
of the form (Gelman et al. 2004, p. 576)
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Figure 42: Log-t plot of standardised residuals of y
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f ( y ;μ ,σ , ν)=
1
σ

Γ( ν+1
2 )

√ν πΓ (
ν
2 )

(1+ 1
ν ( y−μ

σ )
2

)
−(ν+1

2 )

Substituting and writing for n observations, a likelihood function for α , σ2
ε and v is

L(α ,σ ε
2 ,ν) =∏

i=1

n { Γ( ν+1
2 )

√ν πΓ(
ν
2 )

[σ ε
2+σ00

2 ]
−1 /2

[1+ 1
ν [σ ε

2
+σ00

2 ]
−1
( y i−(Z β̂)i)

2 ]
−(ν+1)

2 }

=∏
i=1

n { Γ( ν+1
2 )

√ν πΓ(
ν
2 ) [σ ε

2
+log( 1

2
+

1
2 √1+4 α

U jk
)]

−1 /2

[1+ 1
ν [σε

2
+ log(12 +

1
2 √1+4 α

U jk
)]

−1

( y i−(Z β̂)i)
2]

−(ν+1 )
2 }

where, as before, the true effort Xjk has been approximated with the estimated effort Ujk .

The logarithm of the likelihood function is then

l (α ,σε
2 ,ν) = log(L(α ,σ ε

2 , ν))

= n logΓ(ν+1
2 )− n

2
log(νπ)− n logΓ (

ν
2 )

−
1
2
∑
i=1

n

{log(σε
2
+ log(...))}

−
(ν+1)

2
∑
i=1

n

log (1+1
ν (σ ε

2
+ log(...))−1

( y i − (Z β̂)i)
2)

Recalling Equation (1) in Section  4.4.3, the model is restated in terms of the Student's-t 
distribution.

Let tjk be a t-distributed random variable with v degrees of freedom. Then

logW jk = log U jk−
̂bias+ logμ jk+ε jk+σ00 t jk , ν

∼t( logU jk−
̂bias+logμ jk , σ̂ ε

2
+σ00,

2 ν)
(2)

where t signifies Student's-t distribution.

Incorporating the model for vessels and years then gives

log W jk∼t (log U jk−
̂bias+μk+βt ,σ̂ ε

2
+σ00,

2 ν)

with the median value of
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median [W jk ]=U jk e− ̂bias eμk eβ t

The function  fminsearch in Matlab is used to find the maximum-likelihood estimation 
following  these  steps  (see  script  14,  calculations_t,  and  script  15, 
logLikelihoodCeder2_t):

1. Select valid initial values for α , φ , v and σ2
ε , call them α0 , φ0 , v0 and 

σ2
ε0

2. Estimate β and Σε,ii with

β̂=(Z T Σ̂ε
−1 Z )−1Z−1Σε

−1 y

̂Σε , ii
−1

=[σ̂ ε0
2
+ log(12 +

1
2 √1 + 4

α̂0

U jk
)]

−1

̂Σε , ij
−1

=0 , i≠ j
y jk = log(W jk)− log(U jk ) +

̂bias

σ̂ ε
2 =

1+2 eϕ

2+2 eϕ σ̂ ε ,e
2

3. Run fminsearch to find the values of α , φ and v0 that maximise l(α , 
φ , v)

4. If the values for α , φ and v have changed very little from last iteration, 
stop here

5. Else, use the resulting values α , φ and v and repeat from step 2

Running the search algorithm gives the results in Tables 15 and 16 below, and are similar 
to the  previous parameter results.

The meta-parameters were estimated as α = 798,04 ,  σ2
ε = 0,16783 ,  φ = -3,8337 and v = 

4,3314 
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Table 15: Estimated vessel parameters μk without outliers using Student's-t distribution

Vessel μk 95% confidence interval
1 - - -
2 3,83 ±0,38 [3,45;4,21]
3 3,23 ±0,30 [2,93;3,53]
4 3,60 ±0,35 [3,25;3,95]
5 2,41 ±0,29 [2,12;2,70]
6 3,31 ±0,34 [2,97;3,65]
7 3,19 ±0,31 [2,89;3,50]
8 3,48 ±0,28 [3,20;3,76]
9 3,34 ±0,34 [3,00;3,68]
10 3,36 ±0,33 [3,03;3,69]
11 3,74 ±0,31 [3,43;4,05]
12 3,49 ±0,42 [3,07;3,92]
13 3,08 ±1,04 [2,03;4,12]
14 3,52 ±0,30 [3,22;3,82]
15 3,56 ±0,30 [3,25;3,86]
16 3,33 ±0,32 [3,02;3,65]
17 3,42 ±0,37 [3,05;3,78]
18 3,66 ±0,46 [3,20;4,12]
19 3,51 ±0,28 [3,23;3,79]
20 3,68 ±0,30 [3,38;3,98]
21 3,52 ±0,45 [3,06;3,97]
22 3,57 ±0,38 [3,19;3,96]
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Figure 43: Estimated vessel parameters μk without outliers using 
Student's-t distribution
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Table 16: Estimated year parameters βt without outliers using Student's-t distribution

Year βt 95% confidence interval
2001  -0,42 ±0,25 [-0,67;-0,17]
2002  -0,24 ±0,25 [-0,48;0,01]
2003 0,02 ±0,24 [-0,22;0,26]
2004   0,01 ±0,26 [-0,25;0,26]
2005 0 Reference year -

The low value for the degrees of freedom confirms that the t-distribution is indeed a better  
choice than the normal distribution.

The standardised residuals for the t-distribution are similar to the ones from the normal 
distribution

w y =
r y−r̄ y

stdev (r y)
=

r y− r̄ y

√σ ε
2
+σ00

2

A log-t plot of the standardised residuals is displayed in Figure 45, showing the maximum 
value at v = 4,3314.
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Figure 44: Estimated year parameters βt without outliers using 
Student's-t distribution
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In Figure  46, plotting the empirical CDF11 of the standardised residuals (in blue) vs. the 
theoretical  CDF  for  the  t-distribution  (in  magenta)  shows  the  very  close  fit  of  the 
standardised  residuals,  as  does  the  plot  of  the  sorted  standardised  residuals  vs.  the 
probability number in Figure 47 (this figure is analogous to the normal probability plot in 
Figure 38, only for the t-distribution).

11  The Cumulative Distribution Function constructed from the sample data
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Figure 45: log-t plot of standardised residuals of y from the t-distribution
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Figure 46: Empirical CDF vs. theoretical CDF of standardised residuals y from the  
t-distribution

Figure 47: Sorted standardised residuals of y vs. probability number for the t-
distribution
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However, when looking at the residual plot vs. the log of estimated effort in Figure 48, the 
whole group of residuals seems slanted downwards to the right. The red lines represent 
99,5%  and  0,5%  probability  numbers  from  the  t-distribution,  while  the  green  lines 
represent 97,5% and 2,5%. Most of the residuals should fall within the green limits, with 
only a few in the red zone. 

There is really only one reason this can be explained; that the model of the catch being 
linearly dependent upon estimated effort is too strict.

4.4.9 Curvilinear model

At the higher end of estimated effort in Figure 48 the residuals are all negative, that is the 
model is always higher than the measurements, overestimating the catch. This behaviour 
implies that a more realistic model would be some kind of a curve that flattens out to the 
right, resulting in lower catch predictions for very high estimated effort. Looking back, a 
suggestion of this effect can actually be seen in Figure 12, Section 3.5.

An  explanation  for  this  is  that  the  classification  and  effort  estimation  algorithms  are 
capturing more than pure trawling effort, especially where the vessel stays for very long 
periods at sea. The algorithms then overestimate the actual trawling time by including track 
legs that are actually cruising legs.

To give the model  a  curve to  fit  this  behaviour,  the  parameter  κ1 is  added.  Note  that 
although  technically  the  parameter  also  appears  with  the  error  term  εjk ,  this  term  is 
estimated separately to simplify the calculations.

Amending the model in Equation (2) gives
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Figure 48: Standardised residuals vs. log of estimated effort
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log W jk = κ1(log U jk−
̂bias)+logμ jk+κ1ε jk+σ00 t jk

∼t(κ1(log U jk− ̂bias)+log(μ jk) ,κ1
2 σ̂ε

2
+σ00,

2 ν)
(3)

where t signifies Student's-t distribution.

Incorporating the model for vessels and years gives 

log W jk∼t (κ1( logU jk−
̂bias)+μk+βt ,κ1

2 σ̂ε
2
+σ00,

2 ν) (4)

with the median of the catch being

median [W jk ]=(U jk)
κ1 e

−κ1
̂bias

e
μk e

β t (5)

In order for the curve to flatten out, the value of κ1 is expected to be between 0 and 1.

A column for  κ1 is added to the design matrix Z, with elements log U jk−
̂bias , which 

also changes the  yjk.  As before, the function  fminsearch in Matlab is used to find the 
maximum-likelihood estimation of the parameters following the same steps (see script 16, 
calculations_t_ext4, and script 17, logLikelihoodCeder2_t_ext4):

1. Select valid initial values for α , φ , v and σ2
ε , call them α0 , φ0 , v0 and 

σ2
ε0

2. Estimate β and Σε,ii with

β̂=(Z T Σ̂ε
−1 Z )−1Z T Σε

−1 y

̂Σε , ii
−1

=[κ0
2 σ̂ε0

2
+ log(12 +

1
2 √1 + 4

α̂0

U jk
)]

−1

̂
Σϵ ,ij

−1
=0 , i≠ j

y jk = log (W jk)

σ̂ ε
2 =

1+2 eϕ

2+2 eϕ σ̂ ε ,e
2

3. Run fminsearch to find the values of α , φ and v0 that maximise l(α , 
φ , v)

4. If the values for α , φ and v have changed very from last iteration, stop 
here

5. Else, use the resulting values α , φ and v and repeat from step 2

Running the  search  algorithm gives  the  results  in  Tables  17 and  18 below,  plotted  in 
Figures 49 and 50.

The meta-parameters were estimated as α = 2680,1 ,  σ2
ε = 0,3187 ,  φ = 31,083 and v = 

5,2372  and the new curve-parameter was estimated as κ1 = 0,23191 with a 95% 
confidence interval of ±0,09 or [0,15;0,32].
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Table 17: Estimated vessel parameters μk without outliers using Student's-t 
distribution and a curve parameter

Vessel μk 95% confidence interval
1 - - -
2 11,38 ±0,90 [10,49;12,28]
3 10,88 ±0,89 [9,98;11,77]
4 11,10 ±0,88 [10,21;11,98]
5 9,51 ±0,84 [8,67;10,34]
6 10,92 ±0,89 [10,03;11,81]
7 10,53 ±0,87 [9,66;11,39]
8 10,78 ±0,85 [9,92;11,63]
9 10,78 ±0,88 [9,90;11,65]
10 10,59 ±0,85 [9,74;11,44]
11 11,09 ±0,86 [10,23;11,95]
12 10,64 ±0,88 [9,76;11,51]
13 9,53 ±1,32 [8,22;10,85]
14 11,01 ±0,88 [10,14;11,89]
15 11,13 ±0,88 [10,24;12,01]
16 10,55 ±0,85 [9,70;11,41]
17 11,00 ±0,91 [10,09;11,91]
18 10,90 ±0,90 [10,00;11,79]
19 10,85 ±0,85 [10,00;11,70]
20 11,21 ±0,88 [10,34;12,09]
21 11,15 ±0,92 [10,23;12,07]
22 11,30 ±0,92 [10,39;12,22]
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Figure 49: Estimated vessel parameters, μk without outliers,  
curvilinear model
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Table 18: Estimated year parameters βt without outliers using Student's-t 
distribution and a curve parameter

Year βt 95% confidence interval
2001 -0,37 ±0,21 [-0,58;-0,17]
2002 -0,18 ±0,20 [-0,38;0,02]
2003 0,01 ±0,20 [-0,19;0,21]
2004 0,04 ±0,21 [-0,18;0,25]
2005 0 Reference year -

Even though a numerical interpretation of the vessel and year parameters is somewhat 
difficult, it can be useful to compare them relatively. The vessel parameter μk is a measure 
of the vessel's catching power (CPUE), and from Figure 49 it can be seen that most of the 
vessels are similar as expected, with the exception of vessels 5 and 13, which seem to have 
lower catching power than the others. This might indicate a problem with the data-quality 
from these vessels, or indeed warrant a closer examination of the vessel's catch and effort 
reports. The year parameter βt  is more difficult to relate to a physical quantity, but 
indicates how productive a given year was for the fleet, i.e. how much effort was needed in 
relation with the reference year 2005. As most of the confidence intervals include the zero, 
we cannot be certain the parameters are significant.

Again plotting the sorted standardised residuals and the residuals vs. estimated effort in 
Figure 51 and 52 shows that the introduction of the κ1 parameter has indeed improved the 
behaviour of the residuals.
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Figure 50: Estimated year parameters, βt without outliers,  
curvilinear model
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Figure 52: Standardised residuals vs. log of estimated effort

Figure 51: Sorted standardised residuals of y vs. probability number for the t-
distribution
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4.4.10 Prediction intervals on new observations with a fitted 
year-effect

The  fitted  values  of  the  model  can  now  be  calculated,  and  subsequently  prediction 
intervals12 for new values. For new observations in a year which has been used for the 
model fit, i.e. where a new observation is made for a vessel that already has been observed 
within that year, the year-effect parameter βt is already estimated by the model.

Using Equation (3) from the previous section to calculate the fitted values and prediction 
intervals on the composite variable yjk

y jk = logW jk

then the fitted values are

ŷ = Z β̂

where  Z is the design matrix (remember that  κ1 is now included in  β and a column with 
corresponding elements to κ1 has been added to the design matrix).

Since  the  primary  interest  is  actually  in  predicting  new  values  of  catch  based  on  an 
estimated effort measurement for a given vessel and year, the error associated with new 
observations  must  also  be  taken  into  account,  along  with  the  sampling  error  of  the 
estimators for the model parameters, in order to arrive at a formulation that can be used in 
practice.

The estimator for the log-mean of vessel k and year t is 

κ̂1( logU jk−
̂bias)+μ̂k + β̂t

The variance for this estimator is denoted by 

σ̂κ ,μ k ,βt
2

Let 

aT
= [(log U jk−

̂bias)0⋯0 1 0⋯∣0⋯0 1 0⋯]

↑ ↑

k th element t th element
= Z n

that is, the row vector in the design matrix Z that corresponds to vessel k and year t. 

Then

σ̂κ ,μ k ,βt
2

= aT ̂cov (β̂)a

= aT
(Z T ̂Σε

−1 Z )−1 a

12 A note on terminology: a confidence interval is calculated on the regression parameters or the mean for 
particular values of the explanatory variables and indicates how well they have been estimated. Thus, 
calculating 95% confidence intervals on the mean from multiple samples will result in 95% of the 
intervals containing the true mean. A prediction interval indicates where to expect the next sampled 
datapoint, i.e. they tell us about the distribution of values, not the uncertainty in determining the 
population mean. Prediction intervals must account for both the uncertainty in knowing the value of the 
population mean, plus the variability in the data and thus, they are always wider than the confidence 
interval on the mean when the same values of the explanatory variables are used.
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This sampling error is then added to the prediction interval. 

The 95% prediction interval for a new log-value is thus

ŷ ± t ν ;0.025√ κ̂1
2σ̂ ε

2
+σ̂00

2
+σ̂κ ,μ k ,β t

2

However,  the measure that is most interesting is the median catch,  which according to 
Equation (5) is

median [W jk ]=(U jk)
κ̂1 e

−κ̂1
̂bias

e
μ̂k e

β̂ t

and the 95% prediction interval on the catch is then

(U jk)
κ̂1 e−κ̂1

̂bias e μ̂k eβ̂ t e(±tν ;0.025√ κ̂1
2 σ̂ε

2
+σ̂ 00

2
+σ̂ κ ,μk ,βt

2
)

Figure 53 shows the fitted values of the modelled catch and prediction intervals along with 
the  actual  datapoints.  The  figure  shows  the  estimated  catch  as  red  circles,  with  the 
corresponding prediction intervals as red bars. The reported catch is plotted as blue dots.

A note on the interpretation of the prediction intervals in the above plots: The true value of 
the measured variable lies within the given interval with 95% confidence13. Having some 
of the reported measurements fall outside of this interval is not unexpected. In fact it leads 
directly from the formal formulation; if the experiment was repeated one hundred times, 
the true value (and thus the measurement) would be expected to fall outside of the interval 
in about five cases. Having 262 measurements, about 13 values are then expected outside 

13 It would not be correct to claim that the probability of the true value being within the interval is 95%. 
This is because in each case, the true value actually lies either within or outside the interval with a 
probability of 100%.
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Figure 53: Reported catch and modelled catch with 95% prediction intervals
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the interval. See 4.5 - Model performance for a further discussion.

Also keep in mind that there is a measurement error involved in each case, and the blue 
dots do not represent the  true  value of the variable.  The measurements  could even be 
plotted with their own error bars. The prediction intervals take the measurement error into 
account.

4.4.11 Prediction intervals on new observations with an 
unknown year-effect

To use the model  on the validation  dataset,  the year  effect  parameter  β6 must  first  be 
estimated for the year 2006. Since in this case the assumption is that no data from that year 
is available to build the model, this parameter cannot be estimated along with the others.

One reasonable choice of an estimator for the year effect when there is no data for the year, 
would  be  the  sample  mean  of  the  other  year  parameters  βt and  the  variance  of  βt is 
estimated with the sample variance, that is

β̂6 =
1
5
∑
i=1

5

β̂i

σ̂β 6
2
=

1
4
∑
i=1

5

(βi−β̂6)
2

This yields a value for β6 = -0,12689 and σ2
β6 = 0,030922

llustration 54 shows the estimated year-effect parameters. The figure shows a comparison 
of the estimated values of the year-effect parameters β1 to β6, corresponding to years 2001-
2006. The parameter for 2005 is set at 0, and the others are defined as deviations from this  
reference year. The year 2006 is validation data.

The prediction intervals now must take into account the uncertainty of this estimate in 
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Figure 54: Estimation of year-effect parameters βt 
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addition to the uncertainty associated with the other parameters.

For y the prediction interval becomes

ŷ ± t ν ;0.025 √ κ̂1
2σ̂ ε

2
+σ̂00

2
+σ̂β6

2
+σ̂κ ,μ k

2

and for the catch Wjk

(U jk)
κ̂1 e−κ̂1

̂bias e μ̂k eβ̂ t e(±tν ;0.025√ κ̂1
2
σ̂ε

2
+σ̂00

2
+ σ̂β6

2
+σ̂ κ ,μk

2
)

The modelled catch with prediction intervals  for the training and validation datasets  is 
depicted  in  Figure  55.  The  figure  shows  the  estimated  catch  as  red  circles,  with  the 
corresponding prediction intervals as red bars. The reported catch is plotted as blue dots for 
the training dataset, and green points for the validation dataset.

4.4.12 Usage examples for the final model

To show how the model might be used, the model results and reported data for vessel 5 in 
year 2003 are presented in Figure 56. The figure shows the predicted catch vs. estimated 
effort as a solid red line. This is the catch that the model would expect to see for the given 
effort. The red dots are the reported catch for the corresponding estimated effort of a single 
trip. The dotted lines are the prediction intervals.
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Figure 55:  Reported catch and modelled catch with 95% prediction intervals and  
validation data
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Figure 57 shows same vessel for all years. The figure shows the predicted catch from the 
model as red circles and the corresponding  reported catch as blue dots. The prediction 
intervals on the model estimate are shown as red error-bars.

The two figures show how the model might be used. For example, the effort estimation 
algorithm might give an effort estimate for a vessel. Figure 56 can then be used to find the 
model prediction for the catch along with a 95% prediction interval.
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Figure 56: Model results for vessel 5 in year 2003 – Reported catch vs. Estimated  
effort

Figure 57: Model results for vessel 5, all years – Reported catch vs. Estimated catch
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The model could also be used to check if the vessel landing reports are reasonable, or if the 
reporting  should  be  examined  in  more  detail,  possibly  calling  for  extra  data  or  plan 
inspections for this vessel. For example, in Figure  57 trips 4 and 16 fall outside of the 
prediction interval, indicating that the vessel reported higher or lower catch than the model 
expected from the predicted effort. This usually simply indicates a problem with reporting 
of either the catch or effort, but is nevertheless valuable in improving data quality.

Note that the same principles apply when predicting values for a year for which there is no 
data yet available, such as the validation year 2006, but with slightly expanded prediction 
intervals to account for the uncertainty in the model parameter estimators.

4.5 Model performance
Several approaches are available to evaluate the performance of the final model. A visual 
confirmation  of  the model  fit  is  made by examining the  standardised residual  plots  in 
Figures 51 and 52 and the reported data vs. model predictions with prediction intervals in 
Figures 53, 53, 56 and 55.

As can be seen in Figure 51 the t-distribution is not a perfect fit to the data, especially for 
low values of  estimated effort. In Figure 52 there are 4 residuals falling outside the 99% 
prediction interval  or 1,5% of the 262 total  measurements,  and 8 fall  outside the 95% 
prediction interval (but still inside the 99% interval), or 3% of the 262 total measurements.

Also, the model errors from fitted data are examined directly, the model fit for the training 
and  validation  datasets  are  compared,  and  finally  the  model  can  be  compared  with 
alternative  models   using  Mean  Squared  Error  (MSE)  and  Log-Mean  Squared  Error 
(LMSE) measures.

A count of predicted values of catch falling inside vs. outside of the prediction intervals in 
Figure  53 reveals  34 values  outside  the  95% prediction  interval,  or  about  13% of  the 
predictions.  Most  of  these  are  concentrated  at  the  lower  end  of  estimated  effort.  As 
previously  mentioned,  for  a  95% prediction  interval  and  262  measurements,  about  13 
values  would  be  expected.  The reason lies  in  the  model  fit  which  is  still  a  little  off, 
especially for low effort measurements as shown in Figure 51.

Consider the variances that stem from the measurement of the catch and the fitted data,
σ00

2
= 0,12271 and κ1

2σ ε
2
= 0,231912 ·0,017678 = 0,0009508 respectively.

The variance from the measurements of the catch is much greater than that of the model fit, 
with the latter less than 1% of the total. Assuming a 5% prediction interval, this translates 
into an increase from an error of 5% to 6%  caused by unfitted data. 

This fit of the final model, although not perfect, can be classed as “good enough” for the 
practical purposes of this project. The predictions of the model are to be used to highlight 
vessels  and trips that  may need closer inspection,  predict  landed catch for the fleet  on 
specific days and predict the Total Allocated Quota (TAC) takeup, i.e. when the fleet will 
finish their allowed catch. For these goals the error is acceptable.
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4.5.1 Validation data

The mean squared error (MSE), here defined as the residual sum of squares (RSS) divided 
by the  number of  degrees  of  freedom (DF) is  a convenient  way to compare the fit  of 
models

MSE =
RSS
DF

=

∑
i=1

n

(W jk−Ŵ jk)
2

n−p

The residuals are the difference between the model estimated catch and the reported catch, 
while the degrees of freedom are the difference between the number of observations n and 
the number of estimated  population parameters  in the model  p.  In the final  model  the 
number of  μ parameters for vessels is 21, the number of  β parameters for years is 4, in 
addition to the curvature parameter κ.

A problem with the MSE is it's sensitivity to outliers, as it gives greater weight to large 
values compared to small values. A more reasonable comparison can be made using the 
log-mean squared error (LMSE)

LMSE =

∑
i=1

n

( logW jk−logŴ jk )
2

n− p

One final year of data (2006) was reserved for validation of the model, and not used in the 
model building. As a general rule, the expected value of the MSE for a training set should 
be

n− p−1
n+ p+1

<1

times the expected value of the MSE for the validation set, or

MSE training=
262−26−1
262+26+1

MSE validation=0,8131 · MSE validation

Comparison of MSE and LMSE for the training and validation datasets gives an MSE of 
4,3223 · 1010 and LMSE of 0,2974 for the training period, and an MSE of 1,5749 · 1012 and 
LSME of 7,7155 for the validation period. 

The calculated MSE ratio is actually closer to 2,7% than 81% as expected. This essentially 
indicates that the validation dataset is drawn from a different population than the training 
set.  In fact,  cross-validation only yields meaningful  results  for stable  systems,  whereas 
features of the fishing process evolve over time with different CPUE and year parameters. 
Indeed, similar checks with 2-fold cross-validation (where the datasets are split into two 
equal  parts)  and repeated random sub-sampling validation (where the datasets  are split 
randomly) which do not depend on the years used gives an MSE ratio between 30% and 
70%, depending on how the datasets are split.

These results indicate that the model will do much worse when used to predict the fleet 
performance for a completely unknown year. One factor in this is that without any prior 
knowledge, the year parameter  β6 must be guessed. At least some data should be present 
for the year for a more reliable prediction.
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4.5.2 Comparison to Days at Sea

A model that is particularly interesting for comparison is one that uses the coarser measure 
of days at sea as an estimate of effort. This will indicate if the the algorithm is doing any 
better by going through the procedure of classification and effort estimation, than could be 
done simply by taking the vessel's days at sea as a measure of effort

Recalling the final model Equations (4) and (5), a model that uses days at sea directly as its 
predicting  variable  is  proposed.  Assuming it  is  a  continuous  variable,  i.e.  the effort  is 
calculated in fractions of days, this model is identical to the model given by Equation (4)

log(W jk )∼t (κ1( log(D jk )−
̂bias)+μk+βt , κ1

2σ̂ ε
2
+σ00,

2 ν) (6)

with the median value of the catch then being

median [W jk ]=(D jk)
κ 1e

−κ1
̂bias

e
μk e

βt (7)

where Djk is the effort in days at sea. 

Running the search algorithm gives the results in Tables 19 and 20 below.

The meta-parameters were estimated as α = 2746,6 ,  σ2
ε = 0,049076 ,  φ = 27,317 and v = 

8,6493 

The curve-parameter was estimated as κ1 = 0,61349 with a 95% confidence interval of 
±0,12 or [0,50;0,73].

Table 19: Estimated vessel parameters μk without outliers using Student's-t 
distribution and a curve parameter using days at sea as effort estimate

Vessel μk 95% confidence interval
1 - - -
2 7,84 ±1,20 [6,64;9,03]
3 7,35 ±1,18 [6,17;8,53]
4 7,58 ±1,18 [6,4;8,76]
5 6,35 ±1,08 [5,27;7,43]
6 7,21 ±1,21 [6,00;8,42]
7 7,19 ±1,15 [6,04;8,33]
8 7,47 ±1,14 [6,33;8,60]
9 7,41 ±1,17 [6,24;8,59]
10 7,24 ±1,14 [6,10;8,38]
11 7,62 ±1,15 [6,47;8,78]
12 7,23 ±1,15 [6,08;8,39]
13 6,58 ±1,44 [5,14;8,01]
14 7,57 ±1,16 [6,41;8,73]
15 7,63 ±1,17 [6,46;8,80]
16 7,14 ±1,14 [6,00;8,28]
17 7,48 ±1,18 [6,30;8,66]
18 7,36 ±1,19 [6,18;8,55]
19 7,31 ±1,15 [6,15;8,46]
20 7,69 ±1,18 [6,52;8,87]
21 7,55 ±1,22 [6,34;8,77]
22 7,72 ±1,21 [6,51;8,93]
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Table 20: Estimated year parameters βt without outliers using Student's-t 
distribution and a curve parameter using days at sea as effort estimate

Year βt 95% confidence interval
2001 -0,32 ±0,19 [-0,51;-0,13]
2002 0,04 ±0,19 [-0,15;0,24]
2003 0,14 ±0,19 [-0,04;0,33]
2004 0,00 ±0,19 [-0,19;0,19]
2005 0 Reference year -
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Figure 58: Estimated vessel parameters μk without outliers using 
Student's-t distribution and a curve parameter using days at sea  

as effort estimate

Figure 59: Estimated year parameters βt without outliers using 
Student's-t distribution and a curve parameter using days at sea  

as effort estimate
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Again plotting the sorted standardised residuals and the residuals vs. estimated effort in 
Figure 60 and 61 shows that the t-distribution fits the residuals reasonably well.
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Figure 61: Standardised residuals vs. log of estimated effort using days at sea as  
effort measure

Figure 60: Sorted standardised residuals of y vs. probability number for the t-
distribution, using days at sea as effort measure
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Using days at sea as an effort measure, the MSE is 6,0784 · 1010 and the LMSE is 0,33286. 
Comparing  this  to  the  model  using  the  effort  estimate  from  the  classifier  discussed 
previously, the MSE and LMSE are slightly higher, but not drastically so. In Figures  60 
and 61 the residuals also behave much better. The conclusion is that using days at sea is at 
least not a worse choice. The likely reason is that even though the  days at sea measure 
includes a lot of time known to be non-fishing activity, the classifier is introducing extra 
variability to the effort measure that confuses the results.

4.6 High-resolution GPS-data
One concern for the study has been the relatively low14 resolution of the VMS data as 
mentioned at several points. Obviously, a resolution of one position every 2 hours cannot 
be expected to reliably pick up activities lasting only 30 minutes, such as deploying the 
gear, and with an average trawling period of about 13 hrs the uncertainty of the actual 
trawling time could be as much as 15%, just  based on the low resolution of the VMS 
points. For example, registering a VMS point 30 minutes after the actual trawling activity 
has ended, where the vessel is now moving at cruising speed could result in the algorithm 
classifying that whole leg as cruising activity,  essentially  underestimating the effort  by 
some 11,5%

But what is the real effect of the resolution on the classifier and effort estimation? And can 
an optimal or minimum resolution be recommended for reasonable accuracy?

High-resolution GPS positions for one vessel involved in the study has been graciously 
supplied, with as little as 3 second resolution. Selected portions of the vessel tracks are 
displayed in Figures 62 and 63. 

Figure 62 shows the difference between a selected VMS track and a high-resolution GPS 
track  for  vessel  14,  year  2003.  On  the  left  is  the  track  from VMS data  with  6  hour 
resolution, and on the right is the GPS track with 43 second resolution.

Figure 63 shows an example of a trawl that is not visible using 6 hour resolution VMS data 
on the left, but obvious using the higher resolution GPS data at 43 seconds on the right. 

14 Note that "low resolution" means longer periods between position reports, and "high resolution" shorter 
periods
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Figure 62: Example of VMS and high resolution GPS tracks
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Track is for vessel 14, year 2003

The above figures show the more detailed features in the high-resolution data.

The classification algorithm and effort estimation were run on both the original VMS-track 
and  the  high-resolution  GPS  track,  where  the  data  was  sampled  at  several  different 
resolutions to simulate reporting periods from 60 seconds to 6,5 hours. The results can be 
seen in Table  19. The table shows the estimated effort at several chosen resolutions of 
VMS and GPS data,  as  well  as  the  effort  calculated  by  the  actual  activity  (midpoint) 
algorithm, and the reported effort for the selected track. 

A  more  extensive  set  of  resolutions  are  plotted  in  Figure  64.  The  figure  shows  the 
estimated effort as calculated by the classification and effort estimation algorithms, when 
the resolution of the data is as shown on the x-axis.

Table 21: Estimated effort comparison between 
VMS and high-resolution GPS data

Source data and resolution
Effort 
[min]

Actual activity (midpoint) 2.339
Reported effort 2.520
Estimated effort 2.815
GPS at 60 sec resolution 2.694
GPS at 900 sec (15 min) 2.713
GPS at 1800 sec (30 min) 2.761
GPS at 7200 sec (2 hrs) 2.744
GPS at 21600 sec (6 hrs) 2.864
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Figure 63: Example of missed features
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It is evident that at high resolutions (1-30 min) the effort estimate steadily increases, then 
becomes a curiously stair-like decreasing function at resolutions between 1 and 2 hrs, and 
finally attains a constant value at the lowest resolutions above 2,5 hrs. There are in fact 
three effects observed here and these are discussed below.

First, the increasing effort estimate at the higher resolution end of the plot. The higher the 
resolution the closer the algorithm is to calculating the vessel's instantaneous speed. Due to 
a smoothing effect of averaging over the longer resolution windows, this results in more 
legs  being  classified  as  cruising  than  for  lower  resolutions,  thus  decreasing  the  effort 
estimate. This is perhaps best shown by looking at the speed plots in Figure 65. The figure 
shows vessel mean speed during legs calculated at progressively coarser resolutions, from 
60 sec to 2 hrs. Ideally the 14 reported hauls should be detectable during this track.

The classifier is in fact dependent on the resolution it was optimised for, and in this case 
the classifier's decision boundary of 4,4 knots is optimised for a resolution of 2 hrs. Legs 
with  speed over  4,4 knots  are  thus  classified  as  cruising.  At  lower resolutions,  as  the 
timeperiod between position reports increases, the calculation of the mean speed tends to 
smooth out any spikes and fewer legs reach this speed.

This is also reflected in the fact that both the  reported effort  and the guess at the  actual  
effort from the midpoint algorithm are lower than that estimated at the highest resolution 
(see Table  19). To use the classifier  at the higher resolutions it  would be necessary to 
optimise it again and find a new decision boundary. A quick check reveals that lowering 
the decision boundary to 3,4 knots would result in an estimated effort of 2,513 minutes, 
very close to the reported effort. Looking at the speed plots for the higher resolutions in 
Figure  65, it  can also be seen that this would indeed seem to be a reasonable decision 
boundary to capture the trawling activity.
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Figure 64: Estimated effort at different resolutions
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Figure 65: Leg speed by resolution
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The  second  feature  is  the  curious  stair-like  effect,  caused  by  an  offset  effect  of  the 
resolution windows. As the windows grow, they may from time to time suddenly start or 
end at a position report where the vessel was speeding up considerably. This may cause the 
leg to suddenly be classified as cruising, where it was previously classified as trawling. 
Coupled with the fact that as the windows get larger, each is more influential in the effort 
estimate,  this results in a downwards trend with increasing steps. This indicates that at 
resolutions above about 1 hrs, the classification algorithms become vulnerable not only to 
the large timeperiod between position reports, but also to the relative time of the position 
reports with respect to the start of a haul. Depending on when the leg start and endtimes are 
reported, the leg may be classified differently, even if it is of the same length of time.

Finally, at the very low resolutions above 2,5 hrs, the algorithm finally stops detecting any 
difference between the legs, and simply classifies them all as trawling activity.

A final note on the speed plots in Figure  65.  In order to get an idea of the minimum 
resolution required to have any hope of detecting trawling activity, it is sufficient to follow 
the signal degradation from one resolution to the next. Ideally it should be possible to 
count the 14 reported hauls for this period, and it is no problem at the highest resolution of 
60 seconds. As the resolution lowers, this gets progressively more difficult, although some 
beneficial reduction in noise is also seen. An ideal compromise seems to be at a resolution 
of 300 sec (5 minutes), while it is starting to get more difficult to identify hauls at 600 sec 
(10 minutes) and 900 sec (15 minutes), and the signal seem to be definitely lost by 1800 
sec (30 minutes). 

From these examinations it can be concluded that, above a data resolution of about 15 
minutes, any algorithm will have significant trouble detecting trawling activity with any 
accuracy, and using a resolution of 5 minutes would be recommended. At the 2 hrs 
resolution provided by the VMS system trawling activity cannot be reliably detected. Also 
note that the classifier dependence on the resolution should be taken into account when 
using data with widely differing resolutions.
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Chapter 5 - Discussion
In this work, an algorithm to identify and categorise vessel activity through analysis of 
positional data (VMS) is developed. The algorithm is capable of identifying high-speed 
cruising track legs, but no measure is found to adequately differentiate between fishing and 
non-fishing vessel activity at lower speeds, based on the data provided.

The data resolution of one VMS position every 2 hrs is found to be insufficient to detect 
the necessary features in vessel activity, and a case is made for a minimum resolution 15 
minutes to be able to differentiate between fishing and non-fishing activity based on speed 
or other measures.

A  statistical  model  to  predict  the  total  catch  of  a  vessel  from  its  estimated  effort  is 
presented, with prediction intervals. The model does reasonably well at prediction when 
partial data for the year is available, but has more inaccuracy when the year parameters are 
completely unknown a-priori.

Using a simpler effort measure of days at sea with the same model is shown to give at least 
as good or better results than the more complicated and calculations-intense effort estimate 
from VMS tracks.

In addition,  Appendix  A  presents  a  pilot-system based on the  algorithms,  with  several 
interesting features such as current fleet activity, total TAC uptake, alerts for effort and 
reported catch that do not match (falling outside of the 95% prediction intervals) and a 
heat-map showing a more realistic area fishing load using vessel tracks and activity, than 
using only single reported catch-points.

91



Chapter 5 - Discussion Discussion

92



Chapter 6 - Conclusions and future work Conclusions and future work

Chapter 6 - Conclusions and future 
work
Reviewing the research objectives,  the conclusions of this thesis can be summarised as 
follows:

• A classification algorithm (linear discriminant) based on calculated speed from 2 
hour  VMS position  reports  reaches  75% classification  accuracy.  The algorithm 
cannot sufficiently differentiate between cruising and fishing at low speeds, but still 
returns a reasonable estimate of effort.

• A  multivariate  linear  regression  model  based  on  the  t-distribution  with  an 
additional  curve  parameter  gives  an  adequate  prediction  of  catch,  given  an 
estimated effort measurement.

• 95% prediction intervals were established on the model.

Other conclusions were:

• Using a simpler effort measure of  days at sea with the same prediction model  is 
shown to give at least as good or better results.

• VMS  reports  with  a  resolution  of  15  minutes  between  positions  is  likely  the 
minimum required resolution to adequately identify and classify vessel activity.

As suggestions for future work, the main points of interests would be

• using high-resolution GPS tracks and fully electronic catch logbooks with precise 
start and end times for hauls to classify activity.

• allowing vessel  parameters  to  change between years  to  give more  flexibility  in 
fitting the data.

• using measures of distance to the nearest vessel to explore an effect on catch, i.e. if 
a vessel trawling in line after another experiences lower catch than expected.

• using measures to detect the pattern of vessels, such as when three or more vessels 
line up, indicating fishing activity.

• using more sophisticated  stock models  to  predict  catch,  rather  than  assuming a 
linear relationship. An example would be “catch-at-length” curves.

• using catch  logbooks of  nearby vessels  as  input  into the  catch  prediction  for  a 
vessel, or as comparison with the predicted catch.

• using high-resolution position data to detect and count number of hauls, and then 
using this measure as intput into the prediction model
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Appendix A - Prototype system CARFI

In  this  appendix  a  prototype  software  system  developed  in  conjunction  with  the 
classification algorithms and prediction models is presented . The aim of the system is to 
demonstrate the feasibility of bringing real-time information on fisheries to stakeholders . 
It illustrates the use of the algorithms developed in a real-world environment.

A general description of the system is given, with special emphasis on illustrating practical 
use cases for the developed algorithms. The particulars of the system design are however 
outside  of  the  scope  of  this  work,  interested  readers  are  referred  to  the  workpackage 
deliverables of the CEDER project. 
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Figure A-1: Main screen of the prototype system CARFI
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A.1 - System overview
The name of the system is ”CARFI” (Ceder Atlantic Redfish Fisheries Information system) 
and is comprised of three parts:

• Data collection module 
• Processing module 
• Analysis module 

Figure A-2 shows how data in the form of VMS-reports, catch-reports (logbooks) and 
landing reports are collected under the data collection module and stored in a database, 
where they are available to the processing and analysis modules.

A-3

Figure A-2: System components of the CARFI prototype system.
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A.2 - Data collection 
The system collects data delivered from the already implemented systems of the Icelandic 
Oceanographic Institute and the Icelandic Directorate of Fisheries and stores in a database 
for analysis. 

The data collected includes
• VMS data 

◦ Date and time 
◦ Position (longitude, latitude) 
◦ Target Species 
◦ Gear type 

• Logbook / eLogbook 
◦ Date and time of gear deployment 
◦ Position of gear deployment 
◦ Catch weight (green weight) 

• Landing reports 
◦ Trip dates and times 
◦ Landed catch 

A.3 - Processing 
The system includes a processing module whose purpose is mainly to run classification 
algorithms on the VMS-data to determine when a vessel is trawling (gear deployed) and 
when it is cruising. The result is an estimate of effort. A secondary purpose of this module 
is to provide various functionality required during the development of the models in this 
thesis.

A.3.1 - Clean positions
Purpose: To do initial cleaning and sanity checks on incoming positional data.
Description:  Using  this  page  will  show  positions  with  impossible  speeds,  short  time 
intervals  between VMS reports  or large distances  between points.  It  will  automatically 
invalidate  one  of  any  duplicate  positions  where  the  time  difference  is  zero  and  the 
coordinates are unchanged. Other positions can be cleaned manually. 

A.3.2 - Run trip identifier
Purpose: To group VMS-positions into trips.
Description:  Using this  page  will  run  an  algorithm to  identify  fishing  trips  in  VMS-
position data, based on landings from catch logbooks. The trips are labelled numerically 
within each year.

A.3.3 - Run activity classification
Purpose: To classify legs by vessel activity.

Description: Using this page will run an algorithm to classify legs in VMS-position data, 
based on speed.
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A.3.4 - Run actual activity and catch/leg 
connection using midpoint
Purpose: To determine the actual activity of vessels and connect legs to catch-points, 
using the midpoint algorithm.
Description: Using this page will run an algorithm to connect each catch entry to all legs 
during the haul. The algorithm assigns actual_activity to each leg based on this connection. 
This algorithm calculates the midpoint of each leg and selects the midpoint closest to the 
catch as the haul starting leg (within same day or last position of previous day). Also, 
maximum distance from first position is 30 nml .

A.3.5 - Run actual activity using 30 nml 
proximity
Purpose:  To determine  the actual  activity  of  vessels  and connect  legs  to  catch-points, 
using the 30 nml proximity algorithm.

Description: Using this page will run an algorithm to find all VMS-positions within 30 
nml of any catch point. The algorithm assigns actual_activity to each leg based on this 
distance, and connects the leg to the catch-point. This algorithm calculates the proximity of 
each leg to any catch and assigns it to that catch if the discance is less than 30 nml.

A.3.6 - Run alarms check
Purpose: Check if any predefined alarms have been triggered

Description: Using this page will run an algorithm to check predefined alarms and store 
results in the database. Some alarms allow a sensitivity setting. 
The currently defined alarms are:

• EFFORT_HIGH:  The  estimated  effort  is  very  high  compared  to  the  vessel's 
reported catch, i.e. it falls outside of the upper prediction interval.

• EFFORT_LOW: The estimated effort is very low compared to the vessel's reported 
catch, i.e. it falls outside of the lower prediction interval.

• TRAWLING_NO_CATCH: The activity classifier  has assigned a leg activity as 
"trawling", but there was no reported catch-point found within the sensitivity limits. 
Default sensitivity limits are within 18 hrs and 20 nml.

• CATCH_NO_TRAWLING:  The  activity  classifier  has  not  found  any  legs 
classified as "trawling" connected to a reported catch-point within the sensitivity 
limits. Default sensitivity limits are within 18 hrs and 20 nml.

A.3.7 - Calculate Additional Predictor Variables
Purpose: Used during development to calculate additional predictor variables for analysis
Description: Using this page will run an algorithm to calculate additional predictor 
variables for classifier analysis. The variables are: 

• Derivative of mean leg speed 
• Course change 
• Running average of course change 
• VMS position density 
• Fleet dispersal 
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A.4 - Analysis
The system includes an analysis module to display the results of the prediction models and 
classification algorithms. This includes vessel tracks, activity classification, fleet positions, 
area load, catch and TAC uptake. In the next section we will show some examples of these.

To predict individual vessel and total fleet catch based on effort, the analysis module 
includes the SLR and MLR models developed in the preceding chapters. The design of the 
module is such that it is easy to add further models for this purpose.

A.4.1 - Alarms

Purpose: Show automatic alarms for particular behaviour 
Description: This page displays results of automated alarms.
The active alarms are:

• EFFORT_HIGH  -  Vessel  reports  catch  ABOVE  the  effort  model  prediction 
interval, indicating unusually high catch for the estimated effort 

• EFFORT_LOW  -  Vessel  reports  catch  BELOW  the  effort  model  prediction 
interval, indicating unusually low catch for the estimated effort 

• TRAWLING_NO_CATCH - Vessel shows trawling behaviour, but fails to report 
any catch in the area or within a reasonable timeframe 

• CATCH_NO_TRAWLING - Vessel reports catch where no trawling behaviour in 
the area or within a reasonable timeframe 

 

Looking  at  the  list  of  alarms  shown  in  Figure  A-3,  the  first  group  labelled 
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TRAWLING_NO_CATCH lists instances where a vessel has been detected trawling, but 
reported no catch. The second group lists instances where a vessel has not been detected 
trawling, but nevertheless reported catch. Both of these groups are likely to be indicative of 
data-quality issues, rather than actual infractions, but such activities might include fishing 
outside of quota or transshipment between vessels (not common in the Icelandic North-
Atlantic fisheries fleet, but very common among other national fleets and pirate vessels).

The  groups  labelled  EFFORT_HIGH  and  EFFORT_LOW  are  particularly  interesting, 
since there we see an example of the catch prediction models in action. The alarms are 
triggered when the vessel reported catch falls outside of the prediction intervals. E.g.  here 
the predicted catch is 3315.46 tons, but the reported catch is 441.19 tons, for an estimated 
effort of 1726.8 hrs during the trip.

Each alarm can be clicked to examine the vessel track for the area and timeperiod using the 
Vessel predicted activity page described in a following section.

A.5 - Vessel tracks
Purpose: Explore vessel tracks and catch data for a single trip or one year. 
Description: This page displays the vessel tracks as delivered from the data sources. The 
page uses Google Maps to plot vessel VMS-points in tracks, grouped by trip, and Timeplot 
from MIT's SIMILE project to show vessel speed and trawls. 
As illustrated in Figure A-4 and A-5, the user can select a vessel and year, zoom in and 
click specific points for further information. They can also select the option of displaying 
the reported catch-points from the vessel's catch logbook as pink stars, seen in Figure A5.
 

Below the map of the vessel track is the timeplot, showing the vessel speed in blue 
overlayed with gray columns representing reported trawling. In figure A-5 a VMS-point 
towards the end of the vessel's trip has been selected, and highlighted the corresponding 
time in the timeplot. It is obvious that indeed, as the vessel approaches the end of it's trip 
and heads to port, it's speed increases.
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Figure A-4: Vessel Tracks page
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Google maps gives us the interesting option of showing the oceanographic features of the 
sea floor, where we can pick out the Reykjanes-ridge in Figure A-6.

A.5.1 - Vessel speed

Purpose: Explore vessel speed profiles and haul durations 
Description: This page displays only the speed profiles for each vessel, and is the same as 
the bottom plot from the Vessel tracks page described in the preceding section.
 

A.5.2 - Vessel predicted activity

Purpose: Explore tracks with predicted activity classification 
Description: This page displays the vessel tracks similarly to the Vessel tracks page, but 
with the added classification of track legs. Blue legs are classified as cruising, while red 
legs are classified as trawling. 
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Figure A-5: Vessel Tracks page detail

Figure A-6: Vessel Tracks with oceanographic features

Figure A-7: Vessel speed page
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As before the user can select the option of displaying the reported catch-points.
In addition, they can select the option of displaying any alarms raised for this vessel, which 
then show up as red triangles seen in Figure A-9. Clicking the alarm sign brings up further 
details, such as in the illustrated example, where the vessel has reported higher catch than 
the estimated effort would seem to allow. All alarms for the vessel are listed to the right of 
the screen.
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Figure A-8: Vessel predicted activity page

Figure A-9: Vessel predicted activity page detail
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A.5.3 - Vessel actual activity

Purpose: Explore tracks with actual activity classification 
Description: This page is essentially the same as the preceding Vessel predicted activity 
page, with the important difference that here we are examining the actual activity of the 
vessel, as determined by the system algorithms and shown in Figure A-10.

A.5.4 - Fleet positions

Purpose: Explore fleet positions over time 
Description: This page shows the fleet positions at any given time. Each vessel in Figure 
A-11 is depicted on the map in blue if it has been determined to be cruising, or red if it is 
trawling. This information comes from the classification algorithms. The user can select 
the option of displaying the Icelandic EEZ, and vessel wake (last leg) to better identify 
vessel movements.

Note that the slider at the bottom of the map can be moved to examine the vessel positions 
in time, creating an interesting time-lapse graphic.

A previously mentioned feature of the Atlantic Redfish fishery can be seen in Figure A-11, 
where the (red) vessels line up in a row to trawl. 

Another feature can be seen in Figure A-12, where some vessels are engaged in what is 
known as the "line-dance", where they are required to stay out of the Icelandic EEZ (red 
line), but try to trawl as close as possible. 
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Figure A-10: Vessel actual activity page

Figure A-11: Fleet positions page
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Finally,  wake marks  can be turned on as  seen in Figure A-13 to show the vessel  last 
movements.

A.5.5 - Area load

Purpose: Heat map showing area load 
Description: This page shows a heat-map of the area load on a cell grid of 0.1 degrees 
square (this precision can be adjusted in the source code). The user can select either catch 
reports or estimated effort as the basis for the map. 

Usually, catch-points have been used to generate this type of estimate of area load, but 
with  the  effort  estimation  algorithms  we  believe  we  can  approach  something  more 
reasonable. With catch reports as the basis for the map as in Figure A-14 each trawl only 
applies  to  one map cell,  while  with the effort  estimation  as in  Figure A-15, each cell  
containing a trawling leg is affected resulting in a wider distribution of load.  

A-11

Figure A-12: Vessels doing the line-danceFigure A-13: Vessels on the move with wake marks

Figure A-14: Area load page from catch-reports
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A.5.6 - Vessel Catch

Purpose: Vessel reported catch (landings, estimated) compared to prediction 
Description: This page displays reported catch and predicted catch for each vessel and 
trip, according to the selected prediction model. The graph also shows the prediction 
interval for each prediction point.

In Figure A-16 a simple linear regression model (SLR) has been selected for all years and 
all vessels. The figure shows the simple linear regression model (SLR) for all years and all 
vessels. The blue line indicates the model prediction, the red lines represent confidence 
intervals on the regression parameter and the green lines are prediction intervals. The red 
dots represent reported catch.
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Figure A-15: Area load page from estimated effort

Figure A-16: Vessel Catch page – SLR.
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In Figure A-17 we select the multivariate linear regression model (MLR) for one year an 
all vessels. The figure shows the multivariate linear regression model (MLR) for the year 
2002 and all vessels. The black circles indicate the model prediction, with the red error 
bars representing the prediction interval for each. The red dots are the reported catch.

For this combination we cannot draw a linear plot, since the model parameters are 
dependent on the year and vessel. 

In Figure A-19 we have further constrained the model to one vessel, and this means we can 
plot the predicted linear relationship between estimated effort and catch.
The figure shows the multivariate linear regression model (MLR) for the year 2002, further 
constrained on vessels 8. The blue line indicates the model prediction, with the red lines  
representing the prediction interval. The red dots are the reported catch.
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Figure A-18: Vessel Catch page – MLR, all vessels, year 2002.
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A.5.7 - Vessel TAC uptake

Purpose: Proportion of TAC used by vessel over time
Description: This page displays reported catch and predicted catch for the fleet over time, 
according to the selected prediction model. This enables the user to predict when a certain 
TAC (Total Allowed Catch) level is likely to be reached.
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Figure A-19: Vessel Catch page – MLR, vessel 8, year 2002. 

Figure A-20: TAC uptake. The figure shows the cumulative  
reported (landed) catch each day and the MLR model prediction.
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A.6 - Other features
In addition, the system includes some administrative and secondary features.

A.6.1 - Dataset overview

Purpose: Overview of all data currently in the database
Description: This page lists basic statistics of the data in the database, number of vessels, 
total catch, catch-reports, landing reports, and VMS-points for each year.

A.6.2 - Validate trip identifier

Purpose: Overview of all data currently in the database
Description: This page shows in a visual way the results of the trip identifier algorithm 
and validation, so as to confirm that the algorithm is working properly and enable the user 
to make corrections.

A.6.3 - Activity classification accuracy

Purpose: Accuracy of the activity classification algorithm
Description: This page gives an overview of the accuracy of the activity classification 
algorithm.

A.6.4- Leg activity classification comparison

Purpose: Activity classification leg by leg
Description: This page lists each leg and shows it's actual activity and the predicted 
activity from the classification algorithm.

A.6.5 - High resolution GPS tracks

Purpose: High resolution GPS tracks for comparison
Description: This page shows high-resolution GPS tracks provided for one vessel for 
comparison.

A.6.6 - Create database

Purpose: Create the database and it's tables from scratch
Description: This page enables the user to set up the system database initially.

A.6.7 - Import dataset

Purpose: Import data
Description: This page enables the user to import catch logbooks, landing reports and 
VMS data files in .csv format to the database.

A.6.8 - Export dataset

Purpose: Export data
Description: This page enables the user to export various datasets for use in the 
development of the models.
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