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Abstract 
Complex gene regulatory networks are central to the development of multicellular 
organisms. Trancriptional regulation is considered the most common mechanism of gene 
regulation. cis – elements are parts of DNA that proteins (transcription factors) bind to and 
activate and repress transcription. These regulatory elements are composed of a multiple 
short binding sites for more than one factor. Changes in gene regulation has been proposed 
to be the main contributor to evolution. Characterized binding sites within enhancers are 
generally well conserved and few mutations have been documented. Preliminary data show, 
two separate deletions of two conserved binding sites for Hunchback (HB) in an enhancer 
for even-skipped in Drosophila melanogaster.  

To explain these deletions we proposed a model of co-evolution. We hypothesized that the 
concentration of HB had changed, the expression shifted or the timing of expression had 
changed and the deletions are a response to such a shift of the protein. We also expect to 
see higher incidence of mutations in HB sites genome-wide. We used population genetic 
and bioinformatic methods to study this, namely genome wide ChIP-chip data and 
sequences of ~200 inbred strains of Drosophila melanogaster. There is no excess of HB 
sites affected by SNPs compared to reference factors. We did however, see a higher 
fraction of deletions in HB binding sites. In sum the evidence are not conclusive on our 
hypothesis but confirms that a lot of predicted binding sites are affected by mutations. 

Útdráttur 
Stjórnraðir í erfðamenginu gegna hlutverkum við að kveikja og slökkva á genum á réttum 
stað og tíma, bæði í þroskun og yfir æviskeið fjölfruma lífvera. Rannsóknir sýna að 
stjórnraðir eru vel varðveittar í þróun, og jafnvel má finna samsvarandi raðir í fjarskyldum 
tegundum eins og manni og fiski. Sérstaklega eru bindiset innan stjórnraða vel varðveitt, 
en við þau bindast prótín sem stýra virkni gena. Oft bindast mörg mismunandi prótín á 
hverja stjórnröð og sem ræður tjáningu gensins, á vefjasérhæfðan hátt eða í þroskun. 

Náttúrulegar stökkbreytingar í bindisetum stjórnraða eru sjaldgæfar, t.d. þegar bornir eru 
saman margir einstaklingar sömu tegundar. Enn er sjaldgæfara að finna úrfellingar í sömu 
stjórnröð, hvað þá tvær sem báðar fjarlægja skilgreind bindiset fyrir sama stjórnprótín. 
Vitað er um eitt slíkt tilfelli. Í einni stjórnröð even-skipped gensins í Drosophila 
melanogaster eru tvær náttúrulegar úrfellingar sem fjarlægja tvö bindiset fyrir Hunchback 
stjórnprótínið. Rannsóknin miðaði að því að kanna hvort að þessar úrfellingar væru 
staðbundið fyrirbæri (einungis í þessu geni) eða hvort vísbendingar væru um fleiri áþekka 
atburði í genamengi ávaxtaflugunnar. Markmiðið var að prófa tilgátur um samþróun 
stjórnprótínsins Hunchback og stjórnraða. Aðferðir lífupplýsingafræði voru notaðar til að 
greina stór gagnasett úr nýlegum stórum rannsóknum sem sækja má af netinu. Einnig var 
sameindaerfðafræði beitt til að kanna breytileika í hunchback geninu sjálfu. 



 

 

  



   

v 
 

 

Contents!
Abstract ................................................................................................................................. iii!
Útdráttur ............................................................................................................................... iii!
List of figures ..................................................................................................................... viii!
List of tables ......................................................................................................................... ix!
Abbreviations ........................................................................................................................ x!
Acknowledgements .............................................................................................................. xi!
1. Introduction ....................................................................................................................... 1!

1.1 Gene Regulation .......................................................................................................... 1!
1.2 Eukaryotic development .............................................................................................. 5!
1.3 Segmentation of the fly ............................................................................................... 5!
1.4 Maternal mRNA determines anterior-posterior specialization .................................... 7!
1.5 Interaction of transcription factors .............................................................................. 9!
1.6 Population genomics ................................................................................................. 11!
1.7 Evolution of gene regulation ..................................................................................... 13!
1.8 Genomic distribution of TFs in early Drosophila development ............................... 18!

2. Foundations of the project and working model ............................................................... 21!
2.1 Degeneration of HB binding sites ............................................................................. 21!
2.2 Specific questions ...................................................................................................... 23!
2.3 Hypotheses and approach .......................................................................................... 24!

3. Materials and Methods .................................................................................................... 27!
3.1 Screen for polymorphism in hunchback region ......................................................... 27!

3.1.1 Flies and isolation ............................................................................................... 27!
3.1.2 PCR to DNA sequencing .................................................................................... 27!
3.1.3 Editing and sequence analysis ............................................................................ 27!

3.2 TF binding in the genome .......................................................................................... 28!
3.2.1 ChIP-chip and SNP Datasets .............................................................................. 28!
3.2.2 Finding binding sites using PWM’s ................................................................... 29!
3.2.3 SNPs within binding sites and deletions ............................................................ 29!
3.2.4 SNPs in binding sites with function in anterior-posterior patterning ................. 30!
3.2.5 Effects and location of SNPs within binding site ............................................... 31!
3.2.6 Statistical analysis using R ................................................................................. 31!

3.3 3+7 enhancer mutations ............................................................................................. 33!
3.4 Comparison of hb protein between species ............................................................... 33!



   

vi 
 

3.5 Binding sites for Pumilio ........................................................................................... 33!
3.6 hb promoter between and within species .................................................................. 33!

4. Results ............................................................................................................................. 35!
4.1 Other HB binding sites are deleted/mutated ............................................................. 35!
4.2 Polymorphisms in TFBS in developmental gene regions ......................................... 38!
4.3 hunchback protein ..................................................................................................... 41!
4.4 Hunchback promoter between species ...................................................................... 44!
4.5 Changes in 3’ UTR .................................................................................................... 47!
4.6 Polymorphism and tests for selection in the area surrounding hb ............................. 47!
4.7 3+7 enhancer mutations, other binding sites within eve ........................................... 48!
4.8 Other results .............................................................................................................. 49!

4.8.1 LD between eve and Hb ..................................................................................... 49!
4.8.2 Factors influencing frequency of SNPs in binding sites .................................... 49!
4.8.3 Fraction of binding sites on major or minor allele ............................................. 50!
4.8.4 Correlation between information content and frequency of SNPs ..................... 51!

5. Discussion ....................................................................................................................... 53!
5.1 Evaluating predictions about excess of SNPs and deletions in HB binding sites ..... 53!

5.1.1 The number of, and the frequency of SNPs in three types of binding sites ....... 53!
5.1.2 Do SNPs in binding sites affect function? ......................................................... 54!
5.1.3 Test of a relationship between information content and number of mutations at a 
specific position within a binding site ......................................................................... 55!
5.1.4 Deletions of/within HB binding sites ................................................................. 55!

5.2 Change in HB activity ............................................................................................... 56!
5.3 Tests for selection in HB and LD of eve and Hb ...................................................... 57!

5.3.1 Positive selection of Hb ...................................................................................... 57!
5.3.2 LD between eve and Hb ..................................................................................... 58!

5.4 Other possible scenarios ............................................................................................ 58!
5.5 General results and future work ................................................................................ 59!

Bibliography ........................................................................................................................ 61!
Appendix A ......................................................................................................................... 67!

Receipts and Protocols .................................................................................................... 67!
DNA Isolation ............................................................................................................. 67!
PCR reaction ............................................................................................................... 67!
Exo Sap ....................................................................................................................... 68!
Sequencing reaction .................................................................................................... 68!
Ethanol precipitation ................................................................................................... 69!
HiDi dissolving ........................................................................................................... 69!



   

vii 
 

Appendix B .......................................................................................................................... 71!
List of all primers ............................................................................................................ 71!

Appendix C .......................................................................................................................... 73!
Snapshot of all input and output files for Python ............................................................ 73!

Appendix D ......................................................................................................................... 79!
All Python algorithms ...................................................................................................... 79!

Appendix E .......................................................................................................................... 89!
Additional tables and figures ........................................................................................... 89!



   

viii 
 

List of figures 
Figure 1.1: The Drosophila developmental hierarchy. ………………………………..….. 6 

Figure 1.2: Hunchback concentration in the embryo at late stage four. …….…………….. 8 

Figure 1.3: Relationship between the gap genes. ………………..…………………...…… 9 

Figure 1.4: Expression of eve in the embryo. ……………………………………....……. 10 

Figure 1.5: Expression of hunchback, eve, and knirps. ..………………………………… 11 

Figure 1.6: Phylogeny of 12 Drosophila species. ………………………………………... 14 

Figure 2.1: The two deletions of HB binding sites. ……………………………………... 21 

Figure 2.2: Model to explain deletions of HB binding sites. ……………………………. 25 

Figure 4.1: The effect on the PWM score by a mutation in a binding site. ……………... 36 

Figure 4.2: Distribution of SNPs in HB, KR and SNA binding sites. ……….………….. 37 

Figure 4.3: Distribution of SNPs within TFBS in the genomic regions. ..………………. 39 

Figure 4.4: Frequency of SNPs at each position (1-10) within TFBS. …...……………... 40 

Figure 4.5: Mean and median frequency for SNPs in TFBS. ………………………...…. 41 

Figure 4.6: Alignment of closely related Drosophila species of Hunchback. …………... 43 

Figure 4.7: The alignment of the maternal hb promoter between D. mel.  ….…………… 45 

Figure 4.8: The alignment of the zygotic hb promoter. ………………………………….. 46 

Figure 4.9: Sliding window of π for DGRP data of 162 individuals. …………………… 47 

Figure 4.10: Fraction of binding sites that are found on minor allele.  ………………….. 51 

Figure 4.11: The correlation between information content and SNPs. …………..……… 52 

 

 

 

 

  

 



   

ix 
 

List of tables 
Table 1.1: Major genes affecting segmentation in Drosophila (GILBERT 2006). …………. 7 

Table 3.1: Overlap between ChIP-chip bound regions. …………………………………. 28 

Table 3.2: The motifs and PWM scores used to score and predict binding sites. ……….. 29 

Table 3.3: List of developmental genes and their chromosomal location. .…………….... 31 

Table 3.4: How many SNPs are removed by removing those with a count below 30. ….. 32 

Table 4.1: Binding sites within the TF bound regions affected by indel. ……...………... 38 

Table 4.2: Regions affected by deletions or duplications within the TF bound areas. ….. 38 

Table 4.3: Count over what factor has the highest frequency of SNPs. ………..………... 39 

Table 4.4: Ratio of total SNPs and ratio of all SNPs within BS. ………………….…….. 39 

Table 4.5: Insertions and deletions in the eve region. …………………………………… 49 

Table 4.6: Statistical analysis of factors contributing to the frequency of SNPs. …...…... 50 

Table 4.7: Statistical analysis of factors contributing to the frequency of SNPs. ...……... 50 

Table 4.8: Chi-square tests for ratio of binding sites on minor allele. …………………... 51 

 

 

 

 

 



   

x 
 

Abbreviations 
BS binding site 

CRM cis regulatory module 

DGRP Drosophila Genetic Reference Panel 

ENCODE The Encyclopedia of DNA Elements 

eve even-skipped 

GRN gene regulatory network 

HB Hunchback 

HMM hidden Markov model 

indel insertion and deletion 

kb kilo bases 

KR Krüppel 

LD linkage disequilibrium 

modENCODE The Model Organism Encyclopedia Of DNA Elements 

MSE minimal enhancer 

PWM position weight matrix 

PCR polymerase chain reaction 

SNA Snail 

SNPs single nucleotide polymorphism 

s2e stripe 2 enhancer 

s3+7e stripes 3 and 7 enhancer 

TFBS transcription factor binding site 

TF transcription factor 

UTR untranslated region 

UCSC University of California Santa Cruz 



   

xi 
 

Acknowledgements 
First and foremost I would like to thank my advisor Arnar Pálsson. He has been very 
patient with me pursuing other dreams and having taken this long time in finishing this 
paper. I will certainly miss our talks in the office.  

I would also like to thank Zophonías O. Jónsson for his help and advise. 

For all the help in the lab and long and fun coffee breaks I wish to thank Sigrún 
Reynisdóttir. It was always nice to come to the lab and see and converse with her during 
our days in the lab.  

I also wish to thank the guys under Arnar’s supervision and all the programming help from 
Daníel Óskarsson, Jóhannes Guðbrandsson and Hlynur Bárðason. 

I would also like to thank my family and friends for having endured my complaints this 
whole time.  

I wish to thank Rannís for their contribution to this project. 

 

 

 

 

 





   

 
 

1 

1. Introduction 
1.1 Gene Regulation 
Most multicellular organisms develop from a single cell. That cell has the genetic 
instructions to guide the formation of the different tissues found in an organism. Each cell 
type expresses a subset of genes that varies between cell types. In humans there are over 
200 different cell types that are encoded for by approximately 25.000 genes. Fruit flies 
have considerably fewer cell types and about half the number of genes (WATSON 2008). It 
has become easier to observe which genes are expressed in which tissues with microarrays 
and RNA sequencing. The expression profiles of cell types contains a combination of 
housekeeping genes that are also to be found in other the expression profiles in other genes. 
Each cell type also has a unique signature of expressed genes. It is remarkable how 
different cell types that are derived from the same progenitor cell can show such diversity 
in expression. What are the reasons for why a certain cell goes in one developmental 
direction and the adjacent cell becomes a completely different tissue? And how are cellular 
decisions made at the exact developmental time they are needed? Many developmental 
events, signaling adhesion, growth, migration at the cellular level and differential gene 
expression come down to gene regulation. There are several mechanisms for gene 
regulation such as chromatin condensation, transcriptional initiation, DNA methylation, 
alternative splicing of RNA, mRNA stability, translational control, intracellular trafficking, 
protein degradation, post-translational modification and more (WRAY et al. 2003). 
However, among the most common mechanism of regulation is transcriptional initiation. 
Usually there are either activators and/or inhibitors that regulate what genes are active at a 
particular time and place. Many of these regulators are DNA-binding proteins that 
recognize short sequences in the vicinity of each gene. Activators have several 
mechanisms to direct transcription, for instance, they can assist the binding of RNA 
polymerase to the promoters. The function of repressors is for example to inhibit 
transcription by binding to regions overlapping the promoter and makes binding of the 
polymerase impossible (WRAY et al. 2003). 

Gene regulation through regulatory proteins is quite elaborate in eukaryotes. Two main 
categories of regulatory agents are associated with gene regulation, cis-elements and trans-
factors. cis-elements, such as enhancers or silencers, are located close to the gene they act 
on, however, trans-factors are proteins that can sometimes be found on separate 
chromosomes and operate over distances (CHEUNG and SPIELMAN 2009; LATCHMAN 2010). 
A transcription factor (TF) affects transcription by binding to the DNA. There can be 
several binding sites, in the same cis-element, for a regulatory protein to bind to in order to 
turn on/off the gene. Some of these binding sites are located far from the promoter and 
therefore function in a different way than facilitating binding of the polymerase (CHEUNG 
and SPIELMAN 2009). The binding may be close to the promoter or several kilo-bases from 
it. There are reported cases of binding sites for activators, located many kb from the gene 
they regulate and their span can be considerable, up to hundreds of kb. The TF can recruit 
the polymerase, a mediator or other proteins associated with the transcriptional complex 
after the polymerase has bound to DNA. Another class of proteins recruited by activators 
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are nucleosome modifiers. Tightly packed chromatin is inaccessible and the transcriptional 
machinery cannot be recruited. Possible function of theirs might be modification of the 
nucleosomes that make the DNA accessible (WATSON 2008). In some cases several 
regulatory binding sites are grouped together and form an enhancer. About 10-50 binding 
sites that can bind about 5-15 transcription factors are often seen in enhancer. They can 
often bind a few types of activators or repressors at different times which results in 
differential transcription of a single gene (WRAY et al. 2003). Enhancer function can be in 
both orientations in respect to the promoter, upstream or downstream. There have been two 
different mechanisms suggested for enhancer function. One is the direct communication 
with the transcriptional machinery, the other is through remodeling of chromatin. 
Segregating mutations in enhancers that affect single binding sites are rarely detected 
(ARNOSTI 2003). 

It is thought that transcription factors operate over distances via DNA bending so that the 
binding site and promoter are close enough for the transcription factor to assist binding of 
the polymerase. In other cases there are proteins that mediate the binding. Some activators 
bind to enhancers close to more than one gene, if only one of those genes is to be activated 
insulators bind and insure correct regulation of genes. The insulator physically blocks 
communication between the promoter and the activator (WRAY et al. 2003). Regulatory 
proteins bind to the DNA. There are several different types of DNA binding domains that 
recognize the DNA, one such group is the zinc finger proteins. There the DNA is 
recognized through an α-helix placed in the grove of the DNA helix. A zinc atom has a 
structural role essential for recognizing the DNA. Some proteins have more than one zinc 
finger domain (WRAY et al. 2003; LATCHMAN 2010). 

During development the communication between transcription factors, insulators, 
repressors and promoters is extremely complex where the result is different expression 
patterns in tissue types found in a single organism. Most of the gene regulation in 
development is at the level of transcription initiation or elongation (LATCHMAN 2010). 
There transcription factors are the key players. Three mechanisms have been identified 
during development that play the main role in gene regulation of two identical cells where 
the end result is different. One of them is maternal mRNA at different locations within the 
embryo. Polarity of the embryo causes mRNA to be unevenly distributed so gradients of 
regulatory proteins are expressed at specific locations. Another regulatory control 
mechanism is cell-to-cell contact. A cell can express extracellular signals that neighboring 
cells pick up and respond to. The third mechanism for different gene regulation during 
development is gradients of secreted signaling molecules (LATCHMAN 2010). Wolfram’s 
morphogen model claims that a single cell’s location within a gradient defines what that 
cell will develop into where different concentration produces sharp boundaries. This was 
called the French Flag model and was revised by Jaeger. The revised model states that it is 
impossible to predict dynamics and regulatory behavior of systems based on general 
geometric arguments. There the boundaries are a bit more vague and allow for corrections 
at later stages of development (JAEGER and REINITZ 2006). Factors such as morphogens 
affect cells differently depending in their dose. Morphogens are mobile chemical 
substances that form spatial gradients affecting development of inducible target cells in a 
concentration-dependent manner. Morphogens are able to diffuse and act over long 
distances in developing tissues. According to the definition of morphogen, it must also be 
responsible for threshold dependent responses of the affected cell. A small group of cells 
produce morphigenetic signals (TFs, ligands, etc.) that can act as morphogens and produce 
and secrete a signal molecule that forms an extracellular gradient. The cells in close 
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proximity to the secreting cells get a high dose and develop into a certain cell type. The 
further away from the secreting cells, the smaller the dose and different genes are turned 
off and on. The processes that take place in early development form a complex cascade of 
activation and repression of gene expression (JAEGER and REINITZ 2006).  

With emerging technologies the focus on gene regulation has increased. Numerous 
questions have to be answered, such as what factors are at play? How do they interact? 
What are the consequences of a factor wrongly expressed? In what order do things occur? 
Identifying the transcription factors, binding sites and all the key players is simply the first 
step in understanding gene regulation. With the invention of microarrays the possibilities 
for measuring the quantitative gene expression and the capacity for identifying general 
trends has multiplied (CHEUNG and SPIELMAN 2009). Without a decent picture of a gene 
regulatory network it is hard to predict and make assumptions on how systems are affected 
by tweaks and changes. One of the best resources we have to understand complex 
transcriptional behavior from the DNA strand alone is using in silico models based on 
actual measures in vivo (JAEGER and REINITZ 2006). Mapping human transcriptional 
networks is complex since many players are unidentified and, for ethical reasons, there are 
many limitations on direct measurements of concentrations. However, for the fly, worm, 
and yeast, such studies are being conducted and once we understand those networks better 
we gain more insight into the human network.  

cis-regulatory modules (CRMs) are the focus of immense interest. CRMs are usually 
enhancers that are composed of several binding sites, usually for more than one factor. 
Binding sites for individual factors have been characterized and described for transcription 
factors, inhibitors and silencers in yeast, fly, mouse, human as well as other model 
organisms. One transcription factor, and corresponding binding sites, that has been well 
characterized is the Drosophila melanogaster Hunchback. Stanojevic et al. (1989) 
characterized 11 binding sites for HB in the enhancer of even-skipped for stripes 3 & 7. 
DNaseI assays were used to find where on the DNA a hunchback protein was bound. The 
exact 7-14 base recognition sequence was identified. There are usually some differences 
between the binding sequences for an individual factor, however, there is a pattern that is 
almost always the same. Each factor has a consensus site that refers to the “best” version of 
the binding site or to the sequence that captures most of the binding site matrix. For HB it 
is TTTTTTATG C/T (STANOJEVIC et al. 1989). Position weight matrixes (PWM) are a 
useful method to describe binding sites for specific factors, and can be used to find both 
novel and previously described binding sites, such as TATA box or homeodomains, in 
genomic sequences (BERMAN et al. 2002). A method based on using PWMs to find 
conserved CRMs has been developed and its accuracy is high in locating known enhancers 
(SOSINSKY et al. 2007). PWM for a transcription factor is built by using known active 
binding sites for a specific TF and create a matrix with a score for each location in the 10-
14 base sequence. For each site in the sequence a score between 0 and 1 is given based on 
how often a particular base is found at a certain location. If it shows up in 10 out of 10 
binding sites it gets the score 1, if it is only seen once it gets the score 0.1. By adding up 
the scores for each base in a 7-10 base sequence, each 7-10 base window in a given 
sequence is assigned a score that reflects the similarity of the sequence to the TF PWM. 
There is no optimal score for all transcription factors. The highest possible score varies 
depending in the transcription factor. In the case of Hunchback the highest possible score 
is 14 where the six T’s (or A’s in the reverse complement) are almost always seen and 
these bases have a score between 0.95 and 1 which is very high (STORMO 2000). Another 
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way to use PWMs is by their information content. Information content takes into account 
the other allele, so that a base with the PWM score of 1 has the information content of 2.  

Binding sites for activators and repressors sometimes overlap where there is competition 
for binding between activators and repressors. Some repressors act via quenching and 
cause repression of a gene (LUDWIG et al. 1998; LATCHMAN 2010). Each enhancers 
function differently, and in order to gain full knowledge of them each one would have to 
be studied. Some of the questions would be how much binding is required? What are the 
consequences of deletions of single binding sites? What are the effects of poorer binding of 
one factor as a result of mutations in binding sites? Are all binding sites within an enhancer 
for one factor equal, or are there some that have to be bound in order for transcription to 
occur? The eve stripe 2 enhancer is among the best studied enhancers and yet not all those 
questions have been answered (LUDWIG et al. 1998; ARNOSTI 2003). Enhancers are well 
conserved between species as well as the binding sites within them, however, some 
variation of individual binding sites seems to be tolerated (LI et al. 2008). Flux of binding 
sites in enhancers is sometimes allowed during evolution without affecting the 
transcriptional output. It is know that changes in single sites can disrupt regulatory output 
but it is hard to identify which changes affect the regulation and which are tolerated. There 
arises a new question of how many (or how severe) changes an enhancer can undergo until 
its function or gene expression output has shifted or become severely affected? 

Out of the most popular model organisms a gene regulatory network (GRN) for yeast is 
easiest to establish. For each gene there is usually a single regulatory region located close 
to it. GRNs in yeast can provide useful identifying principles but since the fly is a 
multicellular animal many of the genetic features are shared with the human genome. 
Considerable understanding can come from studies with flies in the hope of uncovering 
human GRNs. Early development of the fly is the most studied gene network of a 
multicellular organism up to date but is far from complete. Even though most factors are 
known we can only predict with limited accuracy what actually occurs if there is a defect 
somewhere at a certain time-point in the fly’s development. For example eve has at least 14 
regulatory inputs which have the potential to give rise to 216384 Boolean regulatory 
combinations and identifying which one applies at a certain moment is tricky (WILCZYNSKI 
and FURLONG 2010). In order to understand an entire cis-regulatory system many different 
types of data have to be collected. There has to be a comprehensive map with all cis-
regulatory modules (CRMs) for the system. All transcription factors that bind those CRMs 
have to be known as well as their spatio-temporal expression pattern. Similarly the spatio-
temporal output of each CRM must be known and finally, an understanding of the 
regulatory function of each of the CRMs. The process of understanding GRNs is quite 
laborious and requires many different datasets, such as information on what factors are 
bound, at what time-points, what is the input and output of the network. For humans, most 
transcription factors are uncharacterized. Once a decent GRN has been established for 
human development it will hopefully be useful in developing theraputic drugs or gene 
therapy when something goes wrong during development (WILCZYNSKI and FURLONG 
2010). 

Data on genetic defects influencing human disease is quite extensive. Many known disease 
genes have been sequenced along with their surrounding regions. Rockman and Wray 
(2002) searched the literature for polymorphism in regulatory regions of genes known to 
influence disease. They found more polymorphisms in relatively high frequency than 
previously was thought to exist. Another point of interest was how much the effects 
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seemed to be from a single nucleotide polymorphism (SNP), the increase or decrease in 
protein output was up to 10-15 fold. The researchers were surprised to see how much 
polymorphism there actually is and especially that they are common pleiotropic 
polymorphisms. They categorized the mutational effects into 5 categories; gain and loss of 
activation site, gain and loss of repressor site and switching of a site. Early human genetics 
focused predominantly on variation in protein coding parts of genes where as modern 
human genetics put equal, if not more, emphasis on regulatory DNA (ROCKMAN and 
WRAY 2002). However, in relation to transcription factors and disease, Farnham (2009) 
found evidence that about 164 transcription factors contribute to 277 diseases (FARNHAM 
2009). 

1.2 Eukaryotic development 
Eukaryotic development is a complex topic and has kept researchers busy for some time 
and will most likely continue to be a popular subject in the future. Among the most popular 
model organisms are, sea urchins, the worm C. elegans and the fly D. melanogaster 
(DAVIDSON 2001). The first steps of fruit fly development have been studied in great detail 
(GILBERT 2006). The fly is a popular model organism along with yeast, mice, frogs and C. 
elegance. The advantage of using the fly as a model is that it is small, easy to breed and 
has a relatively short lifespan. Another characteristic of fruit fly development is the 
syncytium which is a stage after fertilization where 14 synchronized nuclear divisions 
occur without cellularization. After 9 cell divisions most of the nuclei become localized to 
the periphery of the embryo surrounding the yolk sac. This occurs before cellularization 
takes place and gastrulation starts. In the syncytium transcription factors and morphogens 
can diffuse freely and local expression results in gradients with an easy access to cells and 
make their mark on differential transcription through gene regulation that give rise to the 
different segments of the fly (LATCHMAN 2010). All the mechanisms discussed above 
come together in the embryogenesis of the fruit fly to produce sharp seemingly on-off 
signals for expression of different genes (WATSON 2008). Use of computational models as 
well as traditional measurements of concentration has provided a detailed boundary 
establishment model for the gap genes of early embryogenesis (JAEGER and REINITZ 2006). 
In order to characterize in detail what occurs in the fly during development, four things 
have to be achieved: (1) formulation of mathematical modeling framework, (2) gene 
expression data for a number of factors in the system of study, (3) coordination of the 
model to the expression data and (4) biological analysis and tests of the gene circuits. This 
is possible in the fly because the pattern formation is a result of interaction between 
segmental genes only where they are known and have been studied extensively. Among the 
things they saw are that the effects of a transcription factors studied are potent, either 
positive or negative in correlation with their quantity or concentration. The interaction of 
genes is by reciprocal repression or activation that produces sharp segmentation of the 
embryo (JAEGER et al. 2004). 

1.3 Segmentation of the fly 
The genes expressed during the fly’s early development have roughly been divided into 6 
categories; maternal, gap, pair-rule primary, pair rule secondary, segment polarity, and hox 
genes (Table 1.1). These systems of development are well conserved between species, 
although, not equally well conserved. The hourglass model of development states that early 
in development there is considerable variation between species that gets narrower during 
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mid-embryogenesis (RAFF 1996). During late embryogenesis the differences in 
conservation increases again. This was tested between six closely related Drosophila 
species and the finding showed that this occurs not only on the morphogenetic level but 
also on the gene level. In the maternal genes there is most diversity that gets progressively 
less, through gap, pair rule, segment polarity to the hox genes. Of the 6 gene categories of 
the fly’s development the expression differences of the hox genes is the most between 
species. After that the diversity in gene expression increases again (KALINKA et al. 2010). 
One suggestion for this pattern of conservation is that during mid-embryogenesis the 
embryo is not in direct contact with the environment, compared to adult flies, and are 
therefore less likely to be subject to evolutionary forces of adaption (DOMAZET-LOSO and 
TAUTZ 2010). Manu et al. (2009) carried out a study to see if there is canalization of the 
gene expression of the gap genes in an in silico model. He found that there are activators 
that are stable against small perturbations. These activators are locally stable that affect 
their immediate surroundings and are responsible for trajectories of the gap gene system 
(MANU et al. 2009).  

 

 

Figure 1.1: The Drosophila developmental hierarchy (see table 1.1 for genes active at 
specific stage). (1) Maternal bicoid mRNA gradient, (2) bicoid protein gradient, (3) gap 
genes, (4) pair-rule genes, (5) segment polarity genes, (6) homeotic selector gene 
(BIOPAUKER 2008). 
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Table 1.1: Major genes affecting segmentation in Drosophila (GILBERT 2006). 

Category Gene name 
Maternal genes bicoid 
 caudal 
 nanos 
Gap genes Krüppel 
 knirps 
 hunchback 
 giant 
 tailless 
 huckebein 
 buttonhead 
 empty spiracles 
 orthodenticle 
Pair-rule (primary) hairy 
 even-skipped 
 runt 
Pair-rule genes (secondary) fushi tarazu 
 odd-paired 
 odd-skipped 
 sloppy-paired 
 paired 
Segment polarity genes engrailed 
 wingless 
 cubitus interruptusD 
 hedgehog 
 fused 
 armadillo 
 patched 
 gooseberry 
 pangolin 
Hox genes labial 
 proboscipedia 
 deformed 
 sex combs reduced 
 antennapedia 
 ultrabithorax 
 abdominal A 
 abdominal B 
 

1.4 Maternal mRNA determines anterior-
posterior specialization 
At the time of fertilization the fly has at least two distinct mRNAs from mother at each end. 
bicoid is located at the anterior pole and oskar is located at posterior end of the embryo. 
Oskar codes for a RNA-binding protein that is responsible for assembly of polar granules 
that result in development of posterior tissues. The polar granules are macromolecular 
complexes composed of many proteins and RNAs. Oskar is localized in the posterior end 
of the embryo. Bicoid is synthesized and diffuses after fertilization to form a gradient 
along the embryo toward the posterior part. hunchback codes for a transcription factor and 
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is activated through high and medium concentrations of Bicoid (WATSON 2008). 
Hunchback is highly expressed in the anterior part of the embryo and forms a steep 
gradient around the center of the embryo and has a small expression domain in the 
posterior end (Figure 1.2). The mechanism that keeps the gradient precise is unknown. 
Patel and Lall (2002) checked the effects of changing the Bicoid gradient. It was both 
increased and decreased, however, the Hunchback gradient shows no response to the 
change in Bicoid indicating that Bicoid is not the only regulator of hunchback and that the 
Hunchback gradient is very precise (PATEL and LALL 2002). There is variation between 
individuals in the Bicoid gradient where there is little variation in the Hunchback gradient 
between individuals (HOUCHMANDZADEH et al. 2002). Hunchback affects eve, a pair rule 
gene that is responsible for the first steps in the fly’s segmentation. hunchback has two 
promoters, one is activated by the Bicoid gradient in the embryo, the other regulates 
expression in the developing oocyte. The latter promoter leads to synthesis of hunchback 
mRNA, which is evenly distributed throughout the cytoplasm of unfertilized eggs 
(WATSON 2008). To activate hunchback translation Pumilio binds to 3’ UTR of hunchback 
mRNA. In the posterior part a RNA-binding protein, Nanos, binds Pumilio and blocks the 
translation of hunchback (MURATA and WHARTON 1995). In the anterior half of the 
embryo Bicoid gradient activates zygotic transcription of hunchback and through these two 
separate regulators of hunchback a steep protein gradient is formed where the 
concentration is high in the anterior and almost non-existing in the posterior half, apart 
from a small domain at the very end (Figure 1.3.1) (LATCHMAN 2010). 

 

 

Figure 1.2: Hunchback concentration in the embryo at late stage four. Anterior to right, 
posterior to left, ventral is down and dorsal is up (LI et al. 2008). 

Jaeger et al. (2006) presented a detailed model of how the transcription factors of the gap 
and segmental genes interact and work together in the embryo as a response to the 
maternal, morphogen Bicoid gradient. The determination of the effect Bicoid has on the 
gap genes and the activation/repression effects they have on each other is among the best 
characterized networks of gene regulation interaction during development. This was 
discovered using computational models based on real concentrations measured in 
individual cells along the embryo during a few hours in early development. This lead to 
characterizing the relationship between the gap genes hunchback, Krüppel, knirps, and 
giant (Figure 1.3) (JAEGER and REINITZ 2006).   
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Figure 1.3: Relationship between the gap genes, the arrows indicate repression and 
thickness the strength of repression (JAEGER and REINITZ 2006). 

Hunchback functions as a transcription factor for at least three gap genes, Krüppel, knirps 
and giant and possibly other genes as well. It has dual function as both an activator of 
transcription but also as a repressor. High levels of HB results in repression of Krüppel and 
intermediate levels suppress giant and knirps. Hunchback and Knirps are mutual repressors, 
if Knirps is lacking then Hunchback extends into the posterior part of the embryo and if 
Hunchback is missing then Knirps stretches into the anterior part. These four genes all 
code for transcription factors (LATCHMAN 2010). Hunchback’s gradient is not responsible 
for the different levels of repression, however, what is considered to be more important is 
the number of binding sites in the regulatory region of each gene and their affinity (weak 
or strong) for the protein (WATSON 2008). Along with Bicoid, Hunchback is a transcription 
factor that is required to bind to and activate enhancers of head-genes (GILBERT 2006). 
Hunchback is well conserved between species. Comparison of HB between Drosophila 
and Tribolium revealed that there was not much difference between the function of the two 
species. That was not expected prior to the experiment because of long versus short germ 
band embryogenesis of the two species (WOLFF et al. 1995). 

1.5 Interaction of transcription factors 
The first indication of the fly’s segmentation is the expression of the pair-rule gene even-
skipped (eve). eve is expressed in seven alternate stripes that are the precursors to the fly’s 
segmentation. Each stripe is approximately four cells wide where eve is highly expressed 
and in the space between, also four cells wide, there is little or no expression of eve is 
found (Figure 1.4) (WATSON 2008).  
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Figure 1.4: Expression of eve in the embryo in 7 distinct stripes, each approximately 4 
cells wide as well as the space between them is about 4 cells wide (SMALL et al. 1996). 

eve encodes a transcription factor composed of 376 amino acids. The transcribed region is 
rather small, only 2 kb. However, the flanking regulatory sequences surrounding eve is 12 
kb with 4 kb upstream and 8 kb downstream of the gene. The upstream region contains the 
regulatory sequences for stripes 2, 3, 7 and auto regulatory element, where the regulatory 
sequences for stripes 1, 4, 5, 6, as well as neuronal enhancer are found within the 
downstream region. A total of 5 enhancers have been characterized in the 12 kb regulatory 
region where each enhancer affects one or two stripes (WATSON 2008). The 5 enhancers 
comprise 4 kbp of bound DNA and 7 transcription factors are known to bind to eve’s 
regulatory region (ARNOSTI 2003). 

The four gap-genes TFs, Hunchback, Krüppel, Knirps, and Giant, are involved in 
regulating eve by binding to the different enhancers (Figure 1.5). Stripe 2 is mainly 
regulated by an enhancer located 500 bp upstream of the protein coding part (LUDWIG et al. 
2005). It contains five binding sites for Bicoid and one for Hunchback that serve as 
activators and three Krüppel and three Giant repressor sites. Stripes 3 and 7 share an 
enhancer with 11 characterized Hunchback binding sites as well as and 5 Knirps binding 
sites (STANOJEVIC et al. 1989). Stripe 3+7 minimal enhancer is 500 bp long and is located 
3.3 kb upstream of the transcription start site. This region is described as the minimal 
enhancer (MSE) because if any part of the sequence is missing, the expression will be 
incorrect (SMALL et al. 1996). If any piece of a characterized MSE for a gene is missing 
the gene is not expressed properly, or might not be expressed at all in the designated place 
and time of development. When that piece of DNA is reintroduced into the genome, in 
proximity of the promoter and a reporter gene, the expression is rescued (LUDWIG et al. 
2011). The individual binding sites within the minimal enhancer for stripe 3+7 were 
identified with DNaseI footprint assay which is a good indicator of their functionality 
(STANOJEVIC et al. 1989). Recent studies have provided new insights into the stripe 3+7 
enhancer. Zelda is a transcription factor that is also necessary in order for correct 
expression of eve, no stripes are seen when zelda has been knocked out (STRUFFI et al. 
2011). Among unknowns is how many binding sites have to be bound in order for 
transcription to be activated at any moment and the correct protein output to be produced. 
Hunchback and Knirps function together to form the boundaries of stripes 3, 4, 6, and 7. 
Hunchback demarcates the anterior border of stripe 3 and posterior border of stripe 7 
where Knirps controls the expression of the posterior border of stripe 3 and anterior border 
of stripe 7 (WATSON 2008).  



   

 
 

11 

 

Figure 1.5: Expression of hunchback (blue), eve (red), and knirps (green). The expression 
of hb drops after stripe 2. There is one HB binding site for stripe 2 but there are 11 for 
stripe 3+7 (KOSMAN 1999). 

Multiple experiments have been carried out to test the mechanism of stripe formation in the 
embryo. Clyde et. al. (2003) used the snail promoter to mis-express hunchback and knirps 
on the ventral side of the embryo. When hunchback was over-expressed, stripes 4, 5, and 6 
disappeared. Stripe 3 showed anterior weakening and posterior expansion. The results 
show that eve 3+7 and eve 4+6 enhancers respond to different amounts of Hunchback and 
in order to have correct segmentation the exact spatial and temporal expression of HB and 
Knirps is essential (CLYDE et al. 2003). It has been suggested that the repressor sites are 
responsible for defining the boundaries of the stripes (LUDWIG et al. 1998). Hunchback 
contains two zinc-finger domains (PAPATSENKO and LEVINE 2008). The central domain 
mediates DNA binding and the C-terminal domain causes dimerization of HB molecules. It 
has been proposed that the purpose for the second DNA binding domain is to form dimers 
and thereby regulate Krüppel (HULSKAMP et al. 1994). With the help of computer 
simulations it has been shown that the binding of HB to stripe 3+7e is stronger than to 
stripe 4+6e. That is in concordance with the fact that the concentration of HB is 
considerably lower at the location of stripe 4+6e than stripe 3+7e. When the concentration 
of HB is low the DNA bound monomers act as activators and when there are high 
concentrations of HB, dimers are formed that repress transcription or block activation 
(PAPATSENKO and LEVINE 2008; BIELER et al. 2011). 

1.6 Population genomics 
Population genomics is the study of the genomic variation within species. Drosophila is a 
convenient model organism for such studies for instance because the genome has been 
fully sequenced as well as many close relatives (CLARK et al. 2007). With the expanding 
field of genomics the applications for population or evolutionary genetics are increasing as 
well. Population genomics needs more than one reference sequence and there have to be at 
least the genotypes of SNP’s scattered around the genome or ideally several fully 
sequenced individuals, in order to compare the differences between them. It has been 
shown that polymorphisms are not at fully random locations in genomes (HARTL and 
CLARK 2007). Different levels of polymorphism within a genome can give some indication 
about the history of the species or populations. Another clue might be different levels of 
recombination. Areas where there is very low or no polymorphism found in long stretches 
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of DNA can give evidence of recent positive selection or purifying selection (HARTL and 
CLARK 2007).  

Recombination rate affects polymorphism at certain locations where recombination is high 
or where it is low. Recombination between sites close on the chromosome are infrequent 
and therefore it is likely for those sites to segregate together. Forces maintaining diversity 
or reducing it, act within a region that will be correlated with the level of polymorphism of 
closely linked sites (HARTL and CLARK 2007).  

There are several types of natural selection at work in genomes, natural selection, positive, 
negative (purifying), balancing, and stabilizing selection. Darwin in 1859 stated that 
organisms are i) variable, ii) the variation is heritable and therefore iii) they are differently 
able to survive and reproduce leading to natural selection. In genetic terms, the alleles that 
lead to increased fitness of individuals will increase in frequency in the population. Once 
that allele has become fixed in the population it is maintained through purifying selection. 
In stabilizing selection the individuals in the middle of the range, as opposed to the 
extremes, are favored (HARTL and CLARK 2007). The environment affects which attributes 
are advantageous. For different populations the environment can be extremely variable and 
therefore the signatures of selection might be totally different (BAMSHAD and WOODING 
2003). Advantageous mutations in one population might be neutral in another. It has been 
proposed that most mutations that are segregating in populations are neutral or nearly 
neutral (KIMURA 1979) and that essentially all genes are subject to the force of maintaining 
their function (BAMSHAD and WOODING 2003). Harmful mutations are eliminated or kept 
at low frequency through purifying selection (HARTL and CLARK 2007). 

Reduction in polymorphism can be a consequence of positive selection and to lesser extent 
background selection or hitchhiking. Selection leads to the fixation of favorable mutations 
or the elimination of harmful mutations, respectively. Selective sweep, is when an 
advantageous mutation is favored and becomes the predominant allele in the population. 
Hitchhiking is when a neutral mutation in close proximity to the advantageous one is 
pulled along for the ride. SNPs in the region surrounding the positively selected mutation 
will be in excess in the genome after, or close to fixation and the region will have low 
polymorphism because the recombination rate is limiting. An unusually long undisrupted 
haplotype on a chromosome at high frequency in the population is an indicator of positive 
selection where a mutation is selected for in a short amount of time (HARTL and CLARK 
2007). This method is commonly used to test for recent selection. It was used for example 
by Sabeti et al. (2007) when searching the human genome for signs of positive selection. 
Another way to test for selection is by using cladograms where odd structures can indicate 
a selective sweep in the a population (BAKKER et al. 2006). 

Several measures on polymorphism within species have been developed and one of those 
is Pi (π). Pi is the probability that nucleotide samples from two individuals will differ. It 
takes into account the number of and frequency of the mutation as well as the length of the 
sequence. Linkage disequilibrium (LD) is frequently used to see if genes are in random or 
in associated linkage. LD is often seen between closely linked SNPs. However, LD can 
also be seen between SNPs that are located far away, even on separate chromosomes. 
Compensatory mutations can show LD because of functional relationships (HARTL and 
CLARK 2007).  
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There are many unanswered questions regarding selection and how it operates on DNA 
sequences. In an attempt to answer these questions we have to study the patterns of 
variation within and between species. What we do know is that mutations can roughly be 
divided into neutral, deleterious, and advantageous. According to theories neutral and 
deleterious mutations are more common than advantageous ones (SELLA et al. 2009). We 
also know that random mutations occurring in functionally important locations are more 
likely to be deleterious and mutations in non-functional regions that do not participate in 
important processes are more likely to be neutral. Deleterious mutations arise often, 
however, they rarely become widespread in a population. They are purged by purifying 
selection and therefore not seen in polymorphism and almost never in divergence between 
species unless other factors, such as the environment, change. The opposite is true for 
beneficial mutations. They are often seen in divergence between species. They are very 
rare but are more likely to reach high frequency in the population. Polymorphism within 
species is often due to neutral mutations. The neutral theory states that molecular evolution 
occurs simply by random genetic drift, not through selection. This theory has been tested 
and only recently has it been questioned. Sella et al. (2009) studied polymorphism in the 
Drosophila genome. They found the fraction of deleterious new mutations in coding 
regions was 94%, 81% in untranslated regions, 56% in introns and 61% in intergenic 
regions. Also, it is estimated that about 40-50% of amino acid substitutions are adaptive. 
These numbers indicate that adaptive polymorphism is more common than previously 
believed. Because of this, researchers argue that positive selection cannot be ignored as 
one of the major reasons behind divergence (SELLA et al. 2009). 

1.7 Evolution of gene regulation 
Many studies have shown support for the hypothesis that non-coding regulatory DNA is 
what drives species divergence. Several studies have been done, both between closely 
related species and distantly related species such as the worm, C. elegans and D. 
melanogaster. Ruvinsky and Ruvkun (2003) used transgenic experiments to study 
enhancers of homologous genes, the transcription factors binding to the enhancers were 
homologous between the two species. They tested if they remained functional. In most 
cases they were not. However, when they moved enhancers between C. elegans and C. 
briggsiae the enhancers were functional despite considerable sequence difference. This 
finding indicates there is co-evolution between transcription factors and enhancers where 
the enhancers are subject to more rapid changes than the transcription factors, in other 
words regulatory DNA evolves faster than proteins (RUVINSKY and RUVKUN 2003). 

Difference in gene regulation is one component of phenotypic divergence. The differences 
can arise from changes in cis-elements and other factors that affect transcription initiation, 
elongation, transcriptional rate and stability. trans-factors that interact with cis-factors can 
also cause changes in gene regulation. The effects of such changes are largely unknown. 
Only recently have researchers been able to identify changes in regulatory DNA that 
contribute to species divergence (WITTKOPP 2010). One argument for cis-factors being the 
main contributors to species divergence is the pleiotropy argument. It states that mutations 
that have less pleiotropic effects are favored over those that cause widespread effects. That 
is natural selection favors cis-regulatory mutations since they have smaller effects than 
coding mutations. Mutations in cis-elements should have more specific effects whereas a 
change in a protein might have more drastic affects at multiple locations (STERN and 
ORGOGOZO 2008).  
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Pigmentation in Drosophila is regulated by different cis-elements. The expression of 
yellow in different body parts is controlled by different cis-regulatory elements. Several 
transgene experiments moving enhancers between species have demonstrated different 
expression of the yellow gene (CARROLL et al. 2001). Carroll et al. (2001) claim four 
reasons for why cis-element evolution is powerful. One is that regulatory evolution enables 
pleiotropy of several toolkit genes, such as transcription factors. The regulatory sequence 
may evolve so that the response can change at different developmental stages. Second, 
regulatory evolution allows for developmental modularity through changes in gene 
regulation at the sequence level. Third, regulatory evolution is a source of rich and 
continuous variation both at the species level and within species. Without changing the 
protein sequence the effects on morphology are subtle, but changes in the regulatory 
sequence contribute to variation with the potential of affecting the morphology. Fourth, 
regulatory evolution causes novel structures to arise. New morphologies are created 
through novel combination of gene expression without affecting protein structures 
(CARROLL et al. 2001). 
 

  
Figure 1.6: Phylogeny of 12 Drosophila species (GILBERT 2005). 
 
The sequence coding for Hunchback has been moved between the species D. virilis and D. 
melanogaster. The proteins are fully functional within the other species (LUKOWITZ et al. 
1994) and the same antibody can be used on both HB versions, however, the D. virilis 
protein has a few extra amino acids. The DNA binding motifs, two zinc fingers, are 
completely conserved between the two species. In the regions surrounding the protein 
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coding region there are conserved blocks as well as stretches that are highly diverged 
(TREIER et al. 1989). The maternal enhancer in D. virilis lacks two of the 3 low affinity 
binding sites for Bicoid but the 3 high affinity binding sites are conserved between the 
species. Even though D. virilis has a broader stripe of eve expression that separates into 
two stripes later, the stripe in D. melanogaster is not affected at all (LUKOWITZ et al. 1994). 
The main function of HB in the two species, as a gap gene, is conserved where as some 
secondary functions seem to be somewhat diverged. Small changes that affect secondary 
processes are therefore considered to contribute to evolution between species (TREIER et al. 
1989). 

 
Among the most studied developmental enhancers is the stripe 2 enhancer of eve. The 
enhancer is well conserved between species, even though some claim the expression of eve 
has shifted slightly between the species (FOWLKES et al. 2011). The functional binding 
sites in the s2e have been characterized. It contains 12 ‘strong’ binding sites, 6 for 
activation (Bicoid and Hunchback) and 6 for repression (Krüppel and Giant). Using 
recombination and transgenes researchers identified a minimal enhancer (MSE) for stripe 2 
containing the 12 characterized binding sites that are vital for correct expression of eve at 
stripe 2 location. However, flanking regions of the MSE have additional binding sites for 
both Hunchback and Krüppel and those binding sites were not essential for the expression 
of eve, but when missing, effects on the fly’s viability was found (LUDWIG et al. 2011). 
 
Researchers were interested in testing enhancer conservation between closely related 
species. Stripe 2 enhancer is functionally conserved between closely related Drosophila 
species but has undergone considerable chances with regard to distances between binding 
sites with insertions and deletions, single nucleotide polymorphism (SNP) mutations in 
individual binding sites and gains and losses of whole binding sites. Comparison of 
regulatory output of a reporter gene, regulated by eve stripe 2 enhancer, between D. 
melanogaster and D. pseudoobscura showed that it was functionally identical in both 
species (LUDWIG et al. 1998). The same result was obtained when enhancers from four 
closely related Drosophila species were used to express a reporter gene in a D. 
melanogaster background. No differences in expression of eve were found, but the stripes 
were slightly lighter than in the wild type. Analysis on the enhancer sequence showed 
considerable difference. Most difference was seen in spacing of characterized binding sites. 
The function of the whole enhancer therefore seems to be under stabilizing selection to 
maintain its expression. Two binding sites, one for Bicoid and one for Hunchback were 
found in D. melanogaster but not in other related species. That suggests that they are new 
and are possibly a response to some change that might have occurred sometime in the D. 
melanogaster lineage, and can possibly explain why the stripes were lighter when the 
enhancer was placed in the D. melanogaster background (LUDWIG et al. 1998). When a 
chimeric enhancer, half from D. melanogaster and half from D. pseudoobscura was 
replaced in D. melanogaster the regulatory output was incorrect. This is evidence of 
changes in enhancer design between closely related species (ARNOSTI 2003). Ludwig et al. 
(2002) put out four hypotheses to explain evolutionary changes in cis-elements. (1) Neutral 
evolution of non-functional segments such as spacers between binding sites. (2) The 
consensus motif for binding allows for neutral or nearly neutral changes within binding 
sites. (3) Accumulation of new binding sites that have become functionally important and 
essential for the enhancer to maintain its function. (4) Functional co-evolution of the whole 
element and not individual binding sites (LUDWIG 2002).  
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Ludwig et al. (2005) expanded is studies and the same enhancer, eve stripe 2, was used to 
test evolution of cis-regulatory element between D. melanogaster, D. pseudoobscura, D. 
yakuba and D. erecta. The enhancer from the 3 other species was introduced as a transgene 
into a D. melanogaster background driving eve to see if the enhancer could rescue the 
expression of eve. When enhancer from 2 of the species was inserted into D. melanogaster 
viability was restored and the spatio-temporal expression was not affected. However, D. 
erecta enhancer was unable to rescue flies even though the sequences are orthologous. The 
enhancer’s function was equivalent between D. melanogaster and D. pseudoobscura 
despite considerable changes in many binding sites. The D. erecta enhancer has changed, 
possibly with increased sensitivity. This shows co-evolution of the cis-regulatory elements 
and the dose or amount of trans-factors expressed. This finding is in concordance with the 
same structures in D. melanogaster are shifted posteriorly in D. erecta (LUDWIG et al. 
2005). This suggests that the functional conservation of enhancers is substantial between 
species. However, there is still considerable structural change that might be one of the 
main drivers in species divergence.  

Stripe 7 is regulated by Hunchback and this regulation is conserved between closely 
related Drosophila species. Expression differences of the stripe between three closely 
related Drosophila species can be linked to changes in the cis-regulatory element (CRE). 
Wunderlich et al. (2012) used transgenic lines differing only in the CRE to measure the 
expression differences in the HB posterior stripe. They found that subtle differences in the 
CRE did affect the stripe expression. The change was seen in how the regulators for hb 
alter sensitivity to the regulating transcription factors. Another thing they found was that 
compensatory evolution has occurred outside the CRE to maintain correct expression of hb 
(WUNDERLICH and DEPACE 2011).  

Several experiments using hybrids of two closely related species has been carried out to 
characterize the divergence between them. When carrying out hybrid experiments 
Drosophila species are a convenient organism. D.melanogaster and D.simulans diverged 
about 2.5 million years ago. Hybrids of two species, can give indications of how the 
species diverged through changes in gene regulation. Wittkopp et al. (2004) tested 29 
genes of F1 hybrids where 28 had changes in cis-regulatory elements. About half of these 
changes were enough to explain the difference in regulation where the other half showed 
changes in both cis- and trans-factors. The results indicate that widespread cis-changes, 
such as enhancers, are largely responsible for driving gene expression differences between 
species (WITTKOPP et al. 2004).  

Landry et al. (2005) did a similar study with hybrids. There the emphasis was on testing for 
cis-trans co-evolution in a set of 31 genes. They generated D. melanogaster and D. 
simulans hybrids and looked at the expression in the parents versus an F1 hybrid. Similar 
allele expression differences the parents and hybrid indicates that changes in cis-elements 
are responsible. When the allele expression differs to a larger extent than in the parents, 
change in trans-factors might be the cause. When cis-regulatory differences of the hybrid 
are higher than the divergence between the parents then possibly trans-regulatory 
differences have changed to compensate for the high level of expression differences to 
bring it closer to that of the parents. Another way to test this experimentally is by 
characterization of the genetic regulatory elements and measurement of gene expression of 
each allele in the parental background. One example of previously characterized co-
evolution of regulatory elements is the eve s2e between D. melanogaster and D. 
pseudoobscura (LUDWIG et al. 1998). The results from this study indicate that co-evolution 
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of regulatory elements, regulatory DNA and transcription factors, is more common and 
widespread than previously thought. About 40% of the 31 genes examined, showed signs 
of cis-trans compensatory changes or co-evolution between them (LANDRY et al. 2005).  

As discussed above, numerous studies have been carried out on individual enhancers or 
genes, the technology now allows researchers to carry out genome-wide scans of the 
effects of specific CRMs or trans-factors. Despite interest in the evolution of 
transcriptional regulation, much is unknown about the molecular mechanisms. Evidence 
shows that most regulatory sequences, such as cis-regulatory elements, are under strong 
purifying selection to preserve their function, possibly to maintain stable transcriptional 
output. Despite this, binding sites are lost and gained over time. A study where D. 
melanogaster and D. yakuba were compared in respect to sequence divergence, with 
special emphasis on binding sites of 6 factors (Bicoid, Hunchback, Krüppel, Giant, Knirps, 
and Caudal) responsible for A-P patterning, was carried out. They isolated DNA from 
whole embryos and obtained net affects of the whole genome. These species diverged 
approximately 25 million years ago and their genomes can be aligned. There is little 
difference in their spatial expression pattern. Differences in amino acid sequences of the 
six factors tested turned out to be small. When the binding of the factors was compared 
there was only about 1-5% change of the chip peaks intensity (BRADLEY et al. 2010), 
however the relative affinity was different (WITTKOPP 2010). The results show that there is 
a difference in binding between closely related species which can explain some of the 
differences in gene regulation between the two species. Binding differences for the 
transcription factors was explained in part by gains and losses of short sequence motifs 
(approximately 7 bp long), 12 separate motifs were identified for Hunchback and 10 for 
Krüppel (BRADLEY et al. 2010). An interesting observation for the current study is that the 
fraction of binding site gains and losses is highest for Hunchback, both for bound areas 
know to be significant in A-P determination and those not as significant. That indicates 
that HB binding sites may be in more flux in comparison to the other A-P determining 
factors.  

Another gene regulation divergence experiment was carried out in yeast. There the 
objective was to quantify how much cis- and trans-factors contribute to the divergence and 
how much is caused by changes in both. Tirosh et al. (2009) created a hybrid from 
Saccharomyces cerevisiae and S. paradoxus and measured the allele-specific expression 
with microarrays. From this study they came to three main conclusions. First, most 
divergence comes from changes in cis-elements. Second, trans-factor changes are more 
conditional on the environment. The third conclusion is that the hybrid strains inherit 
compensatory mutations, which is an indicator for purifying selection that accounts for 
about 20% of the transcriptional differences (TIROSH et al. 2009). 

Through several different types of studies (discussed above) researchers have characterized 
and come to many conclusions about the evolution of regulatory DNA. Between closely 
related species there are many conserved regions but also other highly diverged. Despite 
sequence divergence many regions are the functionally conserved. Among the things those 
studies have revealed is that that cis-elements are among the main contributors to species 
divergence, co-evolution between cis- and trans-factors to maintain function, enhancers 
allow considerable flux of binding sites, and cis-element changes occur at a faster rate than 
changes in proteins. This knowledge we have gained is only the tip of the iceberg when it 
comes to regulation of genes. Each enhancer works differently so therefore there is great 
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work ahead in learning more about their operations. One of those things is learning why so 
many non-conserved regions are bound by transcription factors (BIRNEY et al. 2007). 

1.8 Genomic distribution of TFs in early 
Drosophila development 
Since 1974 when Sanger first developed his method for DNA sequencing, many technical 
advantages have occurred. New methods for sequencing that are both faster and cheaper 
have become available (GIBSON and MUSE 2009). Sequencing whole genomes with 
considerable accuracy and coverage can now be done in days as opposed to months, years 
or even decades. D. melanogaster was the first higher eukaryote to be sequenced (GIBSON 
and MUSE 2009). Not only have many close relatives of D. melanogaster been sequenced 
(ASHBURNER 2007) but also around 200 inbred strains, in a collaboration of Trudy Mackay 
and the Baylor College of Medicine (DGRP). 

ChIP-chip or chromatin immunoprecipitation followed by a microarray is one method to 
test binding of a certain transcription factor in the genome. One transcription factor is 
tested each time. This method can also be used to measure the quantity of the binding as 
well as location of other epigenetic markers (VISEL et al. 2009). That allows for 
identification of regions in the genome bound by this factor at a specific developmental 
time and stage, and of sequence motifs in high frequency in bound regions that have the 
highest affinity for the transcription factor. This is an effective and fairly accurate method 
of comparing binding of specific transcription factors between species. This has been done 
in comparing yeast species, human and mouse, and Drosophila species as was mentioned 
above (WITTKOPP 2010). This method accurately predicts enhancers and suggests which 
genes are active in vivo. It has also been shown that if binding between transcription 
factors and DNA is detected then many of those locations are active in directing 
transcription (VISEL et al. 2009). 

With the development of ChIP-chip and ChIP-seq detailed mapping of factors bound 
genome wide has become a tool for researchers interested in early development and those 
interested in gene regulation comparison between species. Since most players involved in 
Drosophila A-P development are known it is ideal to use the fly to find all the factors 
bound at a certain time-point in development. Li et al. (2008) performed ChIP-chip for six 
gap gene transcription factors Bicoid, Caudal, Hunchback, Knirps, Krüppel, and Giant. In 
the following year the study was expanded by MacArthur et al. (2009) to 15 more 
transcription factors known to participate in A-P determination of the embryo. They used 
material from whole embryos and thus the binding represents average binding of 
transcription factors at that time-point in development. With this study they are unable to 
see any tissue specific or localized binding. They saw that these factors are highly bound to 
all previously characterized cis-regulatory motifs as well as other unknown ones and 
weakly bound to areas spread throughout the genome. The areas of highly bound regions 
can roughly be split into five different groups: (1) several hundred of highly bound factors 
were found bound to previously characterized CRM’s for genes known to be A-P genes, (2) 
most highly bound regions are close to genes known to have function in early development 
whereas poorly bound regions were found closer to housekeeping genes or metabolic 
enzymes, (3) majority of factors are highly bound close to genes active at this stage and 
poorly bound to regions not active at all or not at this state, however, a few of the factors 
show a different trend and are bound relatively highly at other locations, (4) some of the 
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poorly bound regions of a few factors are found in protein coding regions of genes, and (5) 
those regions highly bound are more conserved than poorly bound regions, however, the 
individual binding sequences seem not to be more conserved than the whole bound region 
(LI et al. 2008; MACARTHUR et al. 2009).  

The biggest problem in interpreting such results is determination of which of the bound 
regions are functional in vivo. The authors state with confidence that the highly bound 
regions are functional at this time in the embryo and directly influence transcription of 
nearby genes. Many of those regions are known to be functional in early development. 
These highly bound regions show higher conservation in comparison to other random, non-
coding regions in the genome. The highly bound regions tend to be located in intergenic 
and intronic sequences. The poorly bound sequences are found closer to genes not active at 
this time-point of development indicating that they have other functions or none at all. For 
instance, HB functions as a transcription factor for development at stage 9 in development. 
At stage 5 embryos, binding of HB to enhancers is poorly detected. However, it is quite 
possible that the poorly bound regions have no function at all and represent background 
binding of TFs to available TF binding sites. Another possible reason for their binding is 
that they may have a function as buffers for the available molecules for binding to 
enhancers that directly regulate transcription. The poorly bound regions were often found 
in or near housekeeping genes or genes not transcribed in the blastoderm. Their conclusion 
is that developmental fates of cells are not only determined by what factors are bound, but 
also the quantitative differences of a set of factors that determines cellular fates (LI et al. 
2008; MACARTHUR et al. 2009). Evolutionary constraints are usually correlated with 
function. For the regions bound by the 21 transcription factors, the sequences in the 
flanking non-coding regions of the genes known to be bound by transcription factors, are 
more conserved than other random non-coding sequences (LI et al. 2008; MACARTHUR et 
al. 2009). Li et al. (2008) and MacArthur et al. (2009) use PWM’s for each factor within 
highly bound regions of each factor and found that recognition sequences for each 
transcription factor were enriched within an area bound by that factor. This is consistent 
with previous data (MOSES et al. 2006).  

Transcription factors are bound at a quantitative level. This quantitative range is correlated 
with gene type, degree of gene regulation, and transcriptional state. However, most recent 
studies have ignored this correlation. They use either bound or not bound to classify the 
gene regulation relationship between factors and genes. In the study the relative level of 
transcription factor binding is significant in studying the complex range of regions bound 
by transcription factors genome wide (LI et al. 2008).    

The findings of Li et al. (2008) and MacArthur et al. (2009) suggest that the highly bound 
regions are functional targets of transcriptional regulation of early A-P patterning genes. 
The poorly bound regions may play a role later in development or regulate housekeeping 
genes and many of the regions may have no function at all. The regions that are likely to 
have no function are possibly not preserved by selection to the same effect because they do 
not affect transcription. There is evidence for selection against sites that may interfere with 
transcription. Therefore weak binding that has little or no effect on transcription may be 
tolerated and possibly even preferred. Therefore there should be more emphasis on 
measuring and evaluating the different effects on transcription from different levels of 
binding (MACARTHUR et al. 2009).  
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The work of both Li et al. (2008) and MacArthur et al. (2009) is typical of genomic studies 
they detect broad strokes and patterns. However, ENCODE (RANEY et al. 2011), 
ModENCODE (CELNIKER et al. 2009) and the studies of Li et al. (2008) and MacArthur et 
al. (2009) have given good indicators on what to expect when studying genome wide 
binding of transcription factors. Their data is available to smaller groups to validate or 
study in more detail some patterns or hypothesis. Among the things that need to be studied 
is why there is so much binding to locations that seem to have no transcriptional 
importance, what the role of the widespread binding is? The ChIP-Chip data can be used to 
answer this question and many more. 
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2. Foundations of the project and 
working model 
2.1 Degeneration of HB binding sites 
The enhancers responsible stripes 2 and 3+7 of eve have been studied in great details by 
several groups dissecting different aspects of the TF action, cooperation and interaction of 
these enhancers (LUDWIG et al. 1998; CLYDE et al. 2003; LUDWIG et al. 2011). In enhancer 
3+7 11 HB binding sites have been characterized with DNaseI assay (STANOJEVIC et al. 
1989). The current study is based on the observation that two separate deletions of 
individual HB sites are segregating at relatively high frequency in populations of D. 
melanogaster at different locations in the US and elsewhere (Arnar Palsson unpublished). 
This finding is at odds with previous results showing conservation of cis-regulatory 
elements and lack of polymorphism in enhancers (LUDWIG et al. 1998). The two deletions 
are found on separate haplotypes. The larger one is 71 bp in length and the other one is 45 
bp. There is no indication that the deletions affect the fly's viability or development (Arnar 
Palsson unpublished). No other compensatory binding site was found within the sequenced 
portions of eve. Despite the deletions the regulatory output seems to remain the same and 
the loss of one binding site shows no measurable effects on the fly (Figure 2.1) (see Figure 
1.6 p.14 for phylogeny) (Arnar Palsson unpublished).  

  



   

 
 
22 

 

Figure 2.1: The two deletions of HB binding sites in eve and the conservation between 
Drosophila species. A is eve upstream region. B deletion of a HB and the frequency in the 
North Caroline sample. C the smaller deletion of HB binding site and frequency in the 
North Caroline sample. D the alignment of the closest relatives and characterized binding 
sites in stripe 3+7 enhancer for eve (A Palsson unpublished). 

Binding of transcription factors between closely related species has been compared. What 
is usually seen is when there is binding in one species, binding in the other is also 
documented. However, the level of binding varies between the two species (LUDWIG 2002; 
MOSES et al. 2006; BRADLEY et al. 2010). Conservation of cis-regulatory elements is 
higher than other non-coding regions (MACARTHUR et al. 2009) therefore mutations in 
enhancers, especially indels, are expected to be infrequent. It is quite unusual to find one 
deletion of well conserved binding site of moderate frequency, let alone two affected 
binding sites for the same transcription factor. This could be due to chance, but the most 
plausible explanation for these observations is positive selection (A Palsson unpublished).  

Intraspecific changes in cis-regulatory sequence of early developmental genes in flies have 
been characterized before. Goering et al. (2009) found a deletion in an enhancer of otx and 
proposed two explanations. One is high local mutation rate and the other is an extreme 
shape of local genealogy as a result of a bottleneck (GOERING et al. 2009). 

Several models have been proposed for enhancer function. One proposition is that 
enhancers operate as a unit. Drastic changes, such as loss of a binding site, would disrupt 
the function of the whole enhancer. However, recent experiments have indicated that this is 
not so. For the s2e it has been shown that the enhancer has undergone considerable 
rearrangement during evolution. Therefore Arnosti (2003) proposed the billboard model, 
which states that enhancers function as a billboard, showing information on what is bound 
and the basal transcriptional unit then interprets the message from enhancers (ARNOSTI 
2003). Under this model, the loss of one binding site could simply be because of random 
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drift. It is possible that only chance and nothing else is causing the two HB binding site 
deletions to be at such high frequency. But seeing two separate deletions in different 
haplotypes indicates that something is going on and the deletions are a response to that 
change.  

He et al. (2011) set out to investigate what forces drive binding site turnovers, which is part 
of the questions we have proposed. They used D. melanogaster and D. simulans and 
studied SNPs in transcription factor binding sites (TFBS) in well characterized CRM. They 
only used TFBS that have been confirmed as functional with DNaseI footprint verification. 
One previous assumption has been that a unidirectional fitness function of SNPs in TFBS, 
or that selection always favors affinity-increasing mutations. Their data indicated that there 
is purifying selection against affinity-decreasing mutations segregating in the population as 
well as signs showing that positive selection both drive TFBS loss and gains. He et al. 
(2011) propose three reasons for why TFBS loss occurs at a fairly high rate, (1) the 
constrains are lost, (2) tightly linked compensatory mutation is created, and (3) positive 
selection drives the loss of the site (HE et al. 2011). 

2.2 Specific questions 
Based on our model I set out several specific predictions and hypotheses. 

1. If positive selection is favoring deletions of HB binding sites in s3+7e we predict: 
a. More deleterious mutations in HB binding sites compared to other reference 

TFs.  
b. Higher frequency of mutations found in HB binding sites than in TFBS for 

reference TFs. 
c. On average larger effects of mutations in HB binding sites than by 

mutations in TFBS for reference TFs. 
d. Negative correlation between PWM information content per base and 

counts of mutations in each position. 
e. Deletions are more common in HB sites than reference TFs. 

 
2. If there was a change in Hunchback activity, we would predict: 

a. Amino acid changes in the HB protein, that would change its function. 

b. It was due to increased concentration of HB and the deletions were 

responding to this change in concentration. 

c. The spatio-temporal expression pattern has changed or shifted because of: 

i. change (mutations) in hb regulatory region. 

ii. change (mutations) in 3’ UTR. 

3. If Hunchback function had changed because of positive selection, we might predict 
a. evidence of selection in nearby region (with HB changing because of 

hitchhiking). 

b. evidence of selection in HB itself. 
 

4. If there was on going co-evolution between HB and eve, we would predict: 
a. LD between variation in eve and hb. 
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2.3 Hypotheses and approach 
We put forth several hypotheses to explain why these HB binding site deletions in eve have 
not been selected against. Binding sites and enhancers are usually well conserved between 
species and therefore it is very unusual to see deletions of characterized binding sites. The 
first prediction is that other HB binding sites in enhancers for other genes are also 
damaged and include more mutations than other transcription factors. To test this I used 
whole genome sequences of different strains of D. melanogaster. DGRP (Drosophila 
Genetic Reference Panel) was done by Trudy MacKay and the Baylor College of Medicine 
and involves sequencing of 162 inbred strains, available online are both the sequences and 
a SNP file from alignment of all the strains. The second piece of the puzzle, as described 
above, Li et al. (2008) performed ChIP-chip for HB and other gap gene factors. He 
identified all the regions in the genome HB binds to (LI et al. 2008). These two datasets 
together and designing algorithms that use PWMs to locate binding sites can give us a list 
of all possible HB binding sites known to be bound by HB and therefore likely to be 
functional. We will use other transcription factors to compare if mutations in HB binding 
sites are more frequent than mutations in other transcription factor binding sites. We expect 
to find more mutations and deletions in HB sites and them to be more frequent, in other 
words more events and more common. Positions within binding sites contribute differently 
to the affinity of transcription factor to the binding site. Therefore positions that are less 
important within the binding sites should be subject to less conserved. However, that does 
not suggest that each position evolves independently but rather that the whole binding sites 
are single evolutionary units despite single mutations. It has also been suggested that 
binding sites work at a level of affinity and both stronger and weaker binding sites are not 
preferred (KIM et al. 2009). Therefore it is possible that either mutations do not have 
considerable affect on binding or that deletion of a whole site really does not matter for the 
enhancer to remain functional. Combining two different kinds of data has been found 
especially useful when investigating, at a genome wide scale, transcriptional networks. 
Several articles have been published where it was feasible to combine datasets 
(WUNDERLICH and DEPACE 2011), similar to what we have done. 

The second hypothesis is that the hb protein itself has changed or is undergoing change. 
Sequences from 12 closely related Drosophila species exists, so the amino acid sequence 
can simply be aligned and compared. If the hb protein in D. melanogaster has undergone 
any changes the alignment will reveal them. It is most likely that the DNA binding domain 
will be changing between them. Single amino acid substitution can result in the protein 
being a bit more stable or having slightly higher affinity for the DNA. That affects the 
degradation of the protein and perhaps leads to a lower or increased equilibrium 
concentration. Therefore each amino acid change is subject to its context. A slightly 
deleterious mutation in one background can be slightly advantageous in another (SAWYER 
et al. 2007). Another possibility for the deletions is that the spatio-temporal expression of 
HB has shifted or the level increased and mutations in HB sites are preferred to counter the 
shift. 

The deletions might be preferred by selection as a response to increased concentration of 
HB at the exact time and location where stripe 3 element is biologically active (Figure 2.2). 
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The reason for increased concentration of HB could be because the hb gene was positively 
selected for. There could also be that selection is acting on a gene close by and hb is 
hitchhiking along. Positive selection acting on a region would result in a long haplotype 
with low polymorphism (HARTL and CLARK 2007). To test this we sequenced the area 
surrounding hb.  

 

 

Figure 2.2: Model of co-evolution of hb and its target genes. In this version, we postulate a 
change in HB concentration. 
 
If there is functional interplay between HB and eve then possibly LD between hb and eve 
can be seen. Mutations in Pumilio binding sites affect the binding of Pumilio to the hb 
mRNA (MURATA and WHARTON 1995) and therefore transcription of the protein. Another 
possibility might be that the Pumilio binding site is changing in D. melanogaster. 
Alignment of the 3’ UTRs of the species can show if this is the case. 

 

2 Hunchback binding sites in 
eve are damaged. 
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3. Materials and Methods 
3.1 Screen for polymorphism in hunchback 
region 

3.1.1 Flies and isolation 

Flies were kindly provided by Ian Dworkin. They were caught in the summer of 2004 in 
North Carolina (see Goering et al. 2009 for description). The 32 lines had been bred to 
isogenicity through 15-20 generations of full sib-mating. Flies were kept on 12hr light–
dark cycles in vials with 10 mL standard cornmeal medium supplemented with yeast. The 
strain was sustained for 3 years until they were put in ethanol and kept at -20°C. A single 
fly’s DNA was isolated from each strain, one individual per strain, using Sigma DNA 
isolation Kit (see Appendix A). 
 

3.1.2 PCR to DNA sequencing 

All sequences were obtained by direct sequencing of PCR products amplified from 
genomic DNA of a single fly. Primers were designed using Primer3 
(http://frodo.wi.mit.edu/primer3/ (ROZEN and SKALETSKY 2000) and the fly’s genome 
sequence, version 3, from the University of California Santa Cruz Genome Browser 
(http://genome.ucsc.edu/ (KENT et al. 2002)). Primer pairs were designed in total to sample 
diversity around hb, spanning a 72,268 base pair region (see Appendix B, Table B.1). Each 
amplicon was designed to be 400-600 bases in length. The same PCR recipe was used for 
the amplification and the same PCR program (see Appendix A, Table A.1). 

Each product was run on a 1% agarose gel to evaluate the PCR amplification success. The 
PCR product was then cleaned using Exonuclease enzyme and sap (see Appendix A, Table 
A.3). The next step was BigDye sequencing reaction (see Appendix A, Table A.4) 
followed by ethanol precipitation (see Appendix A, Table A.5). After that the pellet was 
dissolved in HiDi (see Appendix A) and run on an Applied Biosystems 3500xL Genetic 
Analyzer (Hitachi). Most fragments were sequenced unidirectionally (forward). Those that 
turned out to be problematic were also sequenced in reverse for verification. (Sequence 
data will be submitted to genebank). 

3.1.3 Editing and sequence analysis 

Raw sequencing data was base-called by Sequencing Analysis Software v5.4 with KB TM 

Basecaller v1.41 (Applied Biosystems). Phred, Phrap and Consed were used to edit the 
sequences (EWING and GREEN 1998; GORDON 2003). The primer sequences were removed 
and the ends trimmed. After editing, insertion of ambiguity codes for heterozygous bases, 
and alignment using Clustal W (LARKIN et al. 2007), sequences were analyzed with Tassel 
(BRADBURY et al. 2007). Tassel calculates population genetic statistics for sequences like 
Pi. 
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To further test if there are any signs of positive selection around hb I used published 
sequence data of 162 lines of different Drosophila strains (retrieved from: 
http://www.hgsc.bcm.tmc.edu/project-species-i-Drosophila_genRefPanel.hgsc, Drosophila 
Genetic Reference Panel (DGRP)) (MASSOURAS et al. 2012). I downloaded the raw 
sequence data set and used a python algorithm to extract the sequences for the same areas 
as I sequenced. The data has not been manually edited and therefore it is likely that it 
contains false SNPs, especially surrounding areas that are difficult to sequence and are 
represented with N at the low end of the quality spectrum. I therefore wrote an algorithm to 
extend all N areas of seven N’s in each direction. By doing this, many false positive SNPs 
will be excluded. Next I ran a sliding window for Pi over the area using Tassel (BRADBURY 
et al. 2007). I used a window of 1000 bases sliding every 200 bases. 

3.2 TF binding in the genome 

3.2.1 ChIP-chip and SNP Datasets 

For this part I used two separate datasets available online, one is the DRPG data previously 
described (MASSOURAS et al. 2012) and the ChIP-chip data from Li et al. (2008) 
(Hunchback and Krüppel) and MacArthur et al. (2009) (Snail). From the ChIP-chip I got 
coordinates of locations that HB, KR and SNA bind to in the genome (Li et al. 2008), 
Table S.1 downloaded from Plos website in January 2010 (MACARTHUR et al. 2009). 
There were 1762 chip-bound regions for HB, 3028 chip-bound regions for Krüppel and 
595 chip-bound regions for Snail. Krüppel and Snail are used as reference transcription 
factors because they all have the same DNA binding domain as HB namely a C2H2 zinc 
finger. I then wrote a Python algorithm that extracts these exact locations from the 
sequencing data (see Appendix D Algorithm D.1). The chip areas span from 1 kb and up to 
10 kb. I downloaded the genomic locations of those regions for each transcription factor 
from the Drosophila reference genome, release dm3, from the UCSC genome browser 
(http://genome.ucsc.edu/ (KENT et al. 2002)). Some of the regions overlap and some span 
more than two regions from a region bound by another factor. Therefore the total number 
of chip-regions is higher than when each factor is considered individually (Table 3.1). 

Table 3.1: Overlap between ChIP-chip bound regions. 

 Hunchback Krüppel Snail 
HB only 470   
HB and Kr 1004 1004  
HB and Sna 13  13 
HB, KR and 
Sna 

319 319 319 

KR only  1735  
SNA only   589 
KR and Sna  104 104 
Total 1806 3162 1025 
 

The other large dataset used were sequencing data from the collaboration of Trudy 
MacKay and Baylor College of Medicine called DGRP (MASSOURAS et al. 2012). 162 
separate Drosophila inbred lines from a single population in North Carolina were 
sequenced with an Illumina shotgun method to reveal the SNPs in the genomes of all the 
strains. The DGRP team then used algorithms to align and make contigs for each strain. 
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They then made available SNP files split up by chromosome arm (see example file 
Appendix C Figure C.6) from alignment of all the strains. The file, Final_Variants_2L, 
Final_Variants_2R, Final_Variants_3L, Final_Variants_3R and Final_Variants_X was 
downloaded from the Baylor College website. However, many of these SNPs are 
singletons and possibly due to sequencing errors but the data is too extensive to be 
manually verified. The data also includes the frequencies of SNPs in the sample and how 
many reads are behind each SNP. Thus all the singletons can be removed with appropriate 
filtering. I extracted all the SNPs that were located within the regions bound by each factor 
(see in table example Appendix C Figure C.1).  

3.2.2 Finding binding sites using PWM’s 

Next I identified all putative binding sites for each of the three factors (HB, KR and Sn) in 
the areas bound by the three factors, a total of 9 different sets of possible binding sites. The 
reference genome sequence was used for finding all possible binding sites. I used position 
weight matrixes (PWM) to predict and calculate a score for each TFBS (downloaded from: 
http://www.danielpollard.com/bergman2004_matrices.html) (Table 3.2). Using PWM’s to 
predict change in affinity to the DNA has shown to be quite accurate, especially if the 
change is not close to zero (LI et al. 2008; STRUFFI et al. 2011). A cutoff of 7 was used for 
the predicted binding sites. If the score for a site is higher than 7, then I deemed it a 
putative binding site and it is reported in a table (see Example of reporting Appendix C 
Figure C.6). There are three separate tables, one for each transcription factor. I found all 
binding sites, both from major and minor alleles. That enables me to also find most of the 
binding sites segregating in the population not only those that are present in the published 
genome sequence. 

Table 3.2: The motifs and PWM scores used to score and predict binding sites. 

   
Positions 

     Hb 1 2 3 4 5 6 7 8 9 10 
A 0.32 0.17 0 0.01 0 0 0.01 0.57 0.19 0.04 
C 0.25 0.13 0 0.05 0.01 0 0.04 0.07 0.17 0.16 
G 0.31 0.07 0.03 0.01 0 0 0 0.28 0.14 0.48 
T 0.12 0.64 0.97 0.93 0.99 1 0.95 0.08 0.5 0.31 
Kr 

          A 0.84 0.75 0.45 0.05 0.09 0.14 0.02 0.18 0.64 0.36 
C 0 0.14 0.25 0 0.02 0.07 0.07 0.09 0.14 0.18 
G 0.09 0.02 0.2 0.91 0.84 0.8 0.09 0.09 0.11 0.11 
T 0.07 0.09 0.09 0.05 0.05 0 0.82 0.64 0.11 0.34 
Snail 

          A 0 0.36 0.91 0.09 0.09 0 0 0.09 0 0.27 
C 0.64 0.45 0.09 0.91 0.45 0 0 0.55 0.18 0.18 
G 0.27 0.09 0 0 0 0 0.91 0 0.18 0.27 
T 0.09 0.09 0 0 0.45 1 0.09 0.36 0.64 0.27 
 

3.2.3 SNPs within binding sites and deletions 

Next step was to find SNPs within binding sites for each factor. I wrote a Python algorithm 
that takes the SNP location for each chromosome and goes through all the binding sites. 
The first criterion is to match the correct chromosome arm (2L, 2R, 3L, 3R, and X) and if a 
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SNP is found in the 10 base long binding site sequence it is reported. I first did a simple 
count where all the SNPs within a binding site for each transcription factor are located. 
There are a total of 45 (5 chr. arms x 3 TF bound regions x 3 TFBS within each regions) 
runs. Possible binding sites for the 3 TF are found in each of the three chip-bound regions. 
This is only a count of all the SNPs within the binding sites but gives no information about 
where each SNP lands within the site or its frequency.  

We wanted to be able to remove all singletons since they are likely to be sequencing errors 
and not true SNPs, or do analysis with and without singletons. To do that I designed a new 
algorithm that reports each SNP found in a binding site in a table. That table lists the 
location of each SNP, major and minor alleles and the frequency of minor allele, the score 
of binding site, the coverage of the sequence and the sequence of the binding site itself (see 
example of output in Appendix C Figure C.6). Once the tables listing all the SNPs within 
binding sites for each factor of separate chromosomes has been written, all the singletons 
can be removed. That gives a more accurate count for SNPs found within binding sites. 

In solving the problem of finding deletions of HB TFBS we collaborated with Thomas 
Zichner at EMBL (ZICHNER et al. 2012). He wrote an algorithm that finds indels and 
deletions in the DGRP data. He both scanned all our ChIP-chip bound areas as well as eve, 
including the 12 kb flanking regulatory region, and found all insertions and deletions. We 
provided him with the same files we had been working with. The data files Zichner ran for 
us were 3 ChIP-chip data files, or HB predicted binding sites within HB bound regions, 
KR predicted binding sites in KR-bound regions and SNA predicted binding sites in SNA-
bound regions. 

3.2.4 SNPs in binding sites with function in anterior-posterior 
patterning 

I selected 21 developmental genes from a list of 54 listed in Bradley et al. (2010). I 
downloaded the sequences from UCSC genome browser dm3 version 
(http://genome.ucsc.edu/ (KENT et al. 2002)), the genomic locations for 21 anterior-
posterior (A-P) determining genes (Table 3.2.1) and looked for all possible binding sites 
for the three factors using appropriate PWM as before. The protein coding part of the gene 
and non-coding sequence around it was studied. The surrounding sequences are included 
where known enhancers for the genes are located. I then used this dataset as an additional 
dataset and processed it the same way as the other larger datasets. These developmental 
genes are used because they are known to be regulated by those factors during A-P 
development of the fly. 

  



   

 
 

31 

Table 3.3: List of developmental genes and their chromosomal location according to dm3 
in genome browser. 

Chr. arm Start Stop Name Name abbr. 
2L 3767904 3789896 brother of odd with entrails limited bowl 
2L 20767027 20786675 caudal cad 
2L 2432599 2464944 decapentaplegic dpp 
2L 3814824 3863077 sloppy paired 1+2 slp1+2 
2L 15470168 15483951 snail sna 
2R 5859697 5878050 even-skipped eve 
2R 21101483 21127593 Krüppel kr 
2R 18929970 18940833 twist twi 
3L 14161159 14179469 dachs D 
3L 20677356 20695169 knirps kni 
3R 4506583 4532807 hunchback hb 
3R 165720 180579 huckebein hkb 
3R 2669573 2715812 fushi tarazu ftz 
3R 658543 697678 odd paired opa 
3R 26673989 26684347 tailless tll 
X 7189206 7217933 brinker brk 
X 9577781 9596312 buttonhead btd 
X 2314004 2338741 giant gt 
X 20548045 20573726 runt run 
X 15493496 15543292 short gastrulation sog 
X 468578 502624 ventral nervous system defective vnd 

 

3.2.5 Effects and location of SNPs within binding site 

I next ran an algorithm (see Appendix D Algorithm D.2) that takes each SNP and 
calculates a new score including the mutated SNP and subtracts the old score of the 
binding site. The delta score change is then reported in a table that lists all the SNPs (see 
example table Appendix C Figure C.6). We noted for each SNP if they were a major allele 
SNP or minor allele. The effects of changing a single base in the binding site will either 
strengthen the binding site or weaken it. In some cases a binding site was created that had a 
PWM score higher than 7. That binding site was then reported in the table as well. 
Strengthening or weakening of a site will be reflected in the score calculated from the 
PWM. The score for the mutated binding site was calculated and compared to the old score. 
The SNPs that increased and decreased the score were counted.  

3.2.6 Statistical analysis using R 

The data was statistically analyzed with R (www.R-project.org version 2.15.2). The first 
thing I did was to throw out all SNPs where the count of sequences was below 30 because 
where only 30 strains had sequencing data out of 162 strains indicates an unreliable 
sequencing at that area (Table 3.4).  
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Table 3.4: How many SNPs are removed by removing those with a count below 30. 

TF Total Removed Used for analysis % removed 
Hb 30558 181 30377 0.006 
Kr 63569 321 63248 0.005 
Sn 11531 59 11472 0.005 
 

I then checked where within binding sites the SNPs resided for each factor, HB, KR and 
SNA. I calculated a Chi-square value to see if the SNPs were found randomly in a binding 
site or if the constraints are different depending on where in the 10 base long sequence they 
are located. I also checked if the signal was different depending on the strength of a 
binding site by using different PWM scores as a cut off and noting if the pattern was 
different. The binding site scores ranged from 7-14. I also split up the dataset by reverse 
and forward sequences. That simply reflects the orientation of the genes, not a biological 
difference, and serves as two independent data sets. To test whether the strength of TFBS-
prediction (measured with the PWM score) affected the evolutionary constraints I 
calculated Pearson correlation coefficient in R (cor and cor.test) for counts of SNPs in 
each location within the TFBS, in 5 different TFBS strength categories (sites with scores 
above 12, between 10 and 12, 8 and 10 etc). I used R program to plot up the mean and 
median frequency for the SNPs at each location within the binding sites and also permuted 
the data using bootstrap to test for outliers (data not shown).  

In order to better understand our data we did further analysis. We wanted to identify what 
factors could possibly explain the frequency of major and minor allele of the SNPs within 
the binding site. We ran generalized linear model (glm) in R on different factors, as well as 
the interaction between factors. Our dataset is very large, therefore we have to split up our 
data table in half for R to be able to run analyses we are interested in. We ran the data files 
that have HB binding sites in HB bound areas, KR binding sites in KR bound areas and 
SNA binding sites in SNA bound areas. We used a binomial response variable that reflects 
the frequency of major and minor allele, and studied them with increasingly complex linear 
models. The equation had the general form:  

Frequency = area + delta + sequence + score + position + error 

We tested most of the variables that we imagined could provide signal. The four factors 
(see equation above) were those that could best explain the frequency. The area that was 
bound by a TF, the change in score when a new score with the mutation was calculated, the 
sequence of the binding site, the original score of the binding site and the position of the 
SNP within the 10 bp binding site. We are aware that possibly some of those variables are 
confounded, like the score and the delta score. To evaluate the additional contribution of 
each variable (or interaction of variables), we used Chi-square test of full vs. reduced 
models, and ascertained appropriate p-values.  

Another idea we tested with R was how many or what fraction of predicted binding sites 
were found on the minor allele as opposed to the major allele. We scanned each TF-bound 
area and the predicted binding sites in each of them.  
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3.3 3+7 enhancer mutations 
I looked more closely at the eve enhancer region in the 162 sequenced strains. I aligned the 
eve area, using Genedoc (NICHOLAS et al. 1997), where the five enhancers for the stripes in 
the embryo are found. I compared every sequence at every Hunchback binding site to see if 
there are any SNPs or other deletions found in them. Research shows that enhancers are 
well conserved (LUDWIG 2002) and therefore it would be interesting to see if mutations in 
hb binding sites are found that are at a different haplotype than where the deletions are 
found.  

3.4 Comparison of hb protein between species 
One of the hypotheses was that the hb protein itself has changed between D. melanogaster 
and D. simulans. The amino acid sequence for the protein and the 12 closely related 
Drosophila species was retrieved through UCSC genome browser (http://genome.ucsc.edu/ 
(KENT et al. 2002)) and aligned for comparison. Pfam (http://pfam.sanger.ac.uk/ (FINN et 
al. 2010)), a protein database, was used to find the DNA binding domains. Then I could 
check specifically if any amino acid changes are found in the DNA binding domains. The 
reference TFs Snail and Krüppel were also studied with Pfam. Hunchback and Snail have 
three DNA binding domains and Krüppel has five.  

3.5 Binding sites for Pumilio 
Pumilio is a protein that binds to hb mRNA in the posterior portion of the embryo and 
inhibits translation of hb (MURATA and WHARTON 1995). To see if there are any mutations 
of the Pumilio binding sites I downloaded the 3’ UTR region of HB and looked at the 
alignment for the 4 closest relatives of D. melanogaster. The exact Pumilio binding sites 
have been characterized (MURATA and WHARTON 1995). 

 

3.6 hb promoter between and within species 
The zygotic and maternal promoter locations were downloaded from UCSC genome 
browser (http://genome.ucsc.edu/ (KENT et al. 2002)). I then used the locations to extract 
the sequences from DGRP data for the zygotic and maternal promoters to see if any 
polymorphisms are seen in them. I then used genome browser to find the sequences of 
individual binding sites previously characterized, to see if any SNPs are seen in them. I 
also downloaded the sequences of the closest relatives to D. melanogaster and aligned the 
promoter sequences to see if any of the binding sites for either Hunchback itself or Bicoid 
had changed between Drosophila species. 
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4. Results 
4.1 Other HB binding sites are deleted/mutated 
The main hypothesis of the thesis was that if the concentration of Hunchback had increased 
then the deletions observed in eve were a response to that. Testing for a change in the 
concentration of a transcription factor this early in development within a population or 
between species is beyond the scope of this project, but we can pursue this hypothesis in 
other ways. It is possible that the concentration of HB had increased (for instance through 
changes in the regulation of the gene or the product stability). We hypothesized that other 
Hunchback binding sites in developmental genes would be affected as well, either by 
severe mutations, reflected in a negative change in the PWM score, or even abolished 
binding site, or more deletions of areas containing binding sites for Hunchback genome 
wide. However, deletions and point mutations can be expected by chance (GOERING et al. 
2009; HE et al. 2011), then we need to establish a point of reference. Specifically, is a 
higher fraction of HB sites damaged, than binding sites for other TFs? Are more severe 
mutations found in HB compared to sites for other factors? When testing if other HB 
binding sites are damaged I used two transcription factors that have the same type of DNA 
binding domains, zinc finger domains (C2H2), for reference (Snail and Krüppel). In order 
to test this I used SNPs from the DGRP data and ChIP-chip data (LI et al. 2008; 
MACARTHUR et al. 2009; MASSOURAS et al. 2012) and extracted the sequence of the 
regions where these factors bind in the Drosophila genome. I then ran an algorithm to 
search for all possible binding sites that each factor can potentially bind to according to the 
PWM. I calculated the PWM scores for each site, for both the minor and major allele, to 
estimate the effects of a single mutation on the site. The changes in PWM were 
consolidated into 3 categories (Figure 4.1), positive (blue), mildly harmful (green), 
extremely harmful (red). If our prediction was true, one might expect a higher fraction of 
harmful mutations in HB sites, than in binding sites for the other two TFs (KR and Snail). 
The results do not corroborate our hypotheses, the ratio of severely mutated HB binding 
sites seems not to be higher than for the comparison factors on a genome wide scale 
(Figure 4.1). According to the data the fraction of mutations that increased the score was 
highest in HB binding sites. The highest ratio of mutations with severe effects on the score 
was seen for KR. Snail binding sites showed the highest ratio of slightly negative effects 
on the PWM score. These findings are not in concordance with our hypothesis, quite the 
contrary actually. The high effects on KR binding sites indicates that possibly something is 
affecting KR. It could also be that the PWM for KR is not accurate or that changes in KR 
binding sites do in general have detrimental effects on the score of the site.  
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Figure 4.1: The effect on the PWM score by a mutation in a binding site. Blue bars 
represent increased in score of a binding site. Red bars represent slight negative effects 
and green extremely negative effects on the PWM score of the binding site. The bound 
regions look very similar depending on what factor is bound.  

The analyses have, for the most part ignored the subtleties of binding site structure. I 
wanted to document where mutations were hitting within the 10 base pair binding sites. Is 
it random or are there some constrains on where and which SNPs are tolerated? The 
location of each SNP within each binding site was retrieved and I summed up all SNPs 
depending on position within the TFBS. The analysis was handled in R. The number of 
mutations is not uniform among positions within the binding sites (Figure 4.2, see 
appendix E Figure E.5 for statistical results). The SNPs within binding sites are not 
randomly distributed, for the three factors (HB, KR, Sn). The data is split up according to 
which factor they are bound by of the extracted areas. When the distribution of the SNPs 
within the binding site is compared the pattern looks very similar for each TF (Figure 4.2) 
and also for forward and reverse. That indicates that the SNPs are not randomly distributed 
within the binding site. There seem to be some constraints on where within the binding site 
mutations hit. 
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Figure 4.2: Distribution of SNPs in HB, KR and SNA binding sites TFBS in 1762 
Hunchback bound regions (top), 3028 Krüppel bound regions (middle), 595 Snail bound 
regions (bottom). See appendix E Figure E.5 for statistical analysis. 

One hypothesis was that more deletions of HB binding sites would be in higher frequency 
than for the reference factors, KR and SNA. We collaborated with Thomas Zichner at 
EMBL that had been looking at insertions and deletions in the DGRP data (ZICHNER et al. 
2012). He looked for indels in the chip-chip areas and in TFBS within them, using the 200 
sequenced DGRP lines.  

For the large dataset, Zichner found numerous deletions. He both scanned all the chip-
bound regions for all the factors and all the binding sites within them. Then he limited the 
run for the corresponding factor, or all binding sites for HB within HB-bound areas, KR 
binding sites within KR-bound areas and SNA binding sites within SNA-bound areas 
(Table 4.1). Chi-square tests show that a higher fraction of HB sites is damaged by 
deletions, compared to KR and SNA TFBSs (see Appendix E Tables E.1-E.4). A 
statistically significant difference between areas was not seen and neither the test of 
significance for difference in duplications between both areas and TFBS (Tables 4.1 - 4.2). 
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These results are the strongest indicator we have for the prediction that HB binding sites 
are subject to more deletions than the reference factors KR and SNA.  

Table 4.1: Binding sites within the TF bound regions affected by deletion or duplication. 
Statistically significant that there is difference between factors. 

TF Number of TFBS Affected by 
deletion 

% Affected by 
duplication 

% 

Hunchback 19421 1346 6.9% 661 3.4% 
Krüppel 27284 1711 6.2% 988 6.3% 

Snail 2494 100 4.0% 95 3.8% 
 

Table 4.2: Regions affected by deletions or duplications within the TF bound areas. 

TF Number of Regions Affected by 
deletion 

% Affected by 
duplication 

% 

Hunchback 1760 580 32.9% 130 7.3% 
Krüppel 3028 1113 36.7% 277 9.1% 

Snail 595 100 16.8% 31 5.2% 
 

4.2 Polymorphisms in TFBS in developmental 
gene regions  
The preceding data did not suggest a genome wide signal of more mutations in HB sites 
than the reference transcription factors. But it is still possible, that a more restricted 
tendency for loss of HB sites exists. Therefore, to test for a localized signal I randomly 
chose 21 developmental genes that are known to be regulated by transcription factors early 
in development (BRADLEY et al. 2010) at the same time/stage as eve is expressed and 
possibly under HB regulation. There is similar pattern of polymorphism in the 
developmental genes dataset as there is in the large dataset (Figure 4.3). Some constrains 
seem to be on where within the binding site mutations are likely to hit. The difference 
between this dataset and the genome wide datasets is that binding in the proximity of 
developmental genes is known to have real effects on gene regulation, whereas binding 
genome wide like the larger ChIP-chip dataset, includes many weakly bound less 
conserved and characterized regions which may reflect “background” or random binding 
(LI et al. 2008; MACARTHUR et al. 2009).  

I performed the same analysis on the 21 developmental genes as the DGRP data and ChIP-
chip data. I extracted the sequences for the 21 developmental genes, including the 
regulatory DNA around them. I then ran an algorithm to search for all possible binding 
sites that each factor can potentially bind to according to the PWM. I counted how many of 
the binding sites found had a SNP within the 10 base pair long sequence and how many did 
not contain SNPs. The counts were summed up in table 4.3 and did not show a distinct 
signal for HB compared to the other factors, however, it is KR predicted binding sites 
within the genes that have binding sites that are most often hit by SNPs. 
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Table 4.3: Count over what factor has the highest frequency of SNPs within binding site 
(see Table 4.3 and full table in Appendix E table E.7 for counts of each gene). 

TF BS 
Hb 7 

Krüppel 11 
Snail 3 
Total 21 

 

Table 4.4: Ratio of total SNPs and ratio of all SNPs within BS for the three factors HB, KR 
and Sn. 4 of the 21 developmental genes (see full table in Appendix E table E.7).  

Chr Gene TF Within BS SNPs in that gene Total BS in gene Ratio of total Ratio of all BS 
2L bowl HB 29 1061 63 0.027 0.460 

  KR 24 1061 54 0.023 0.444 
    SNA 27 1061 62 0.025 0.435 

2L caud HB 10 475 58 0.021 0.172 

  KR 16 475 47 0.034 0.340 
    SNA 5 475 46 0.011 0.109 

2L dpp HB 23 999 87 0.023 0.264 

  KR 15 999 53 0.015 0.283 
    SNA 28 999 103 0.028 0.272 

3R hb HB 26 454 107 0.057 0.243 

  KR 9 454 67 0.020 0.134 
    SNA 9 454 60 0.020 0.150 

 

The data from TFBS in the developmental gene regions confirmed what I had seen for the 
ChIP-chip areas. It is not random where the mutations hit within binding sites (Figure 4.3).  

 

Figure 4.3: Distribution of SNPs within TFBS in the genomic regions of 21 developmental 
genes. (See statistical analysis in Appendix E Table E.6).  

The developmental gene data, was smaller and contained much fewer TFBS and therefore 
it was possible to plot the data using different methods than for the larger dataset. Figure 
4.4 does not indicate a distinct pattern of the frequency distribution of SNPs within the 
binding site. However an interesting result is in how many SNPs in high frequency are 
seen at position with high information content.  
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Figure 4.4: Frequency of SNPs at each position (1-10) within TFBS in the genomic regions 
of 21 developmental genes in binding sites for HB, KR and SNA.   

I calculated the mean and median frequencies for HB binding sites of the developmental 
genes. The results are rather baffling, both the mean and the median are non-consistent 
with evolutionary predictions. The fact that bases number 4, 5, and 6 within the HB 
binding site, which have a PWM score of ~1 have the highest median frequency (Figure 
4.5). That suggests that in those specific locations, there are quite a few SNPs at high 
frequency. 
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Figure 4.5: Mean (above) and median (below) frequency for SNPs in TFBS in 
Developmental gene regions. 

4.3 hunchback protein 
One of the predictions from our central model was that the hb protein may have changed. 
The possibilities include: 

• Changes in DNA binding affinity and/or domain 
• Changes in activation strength and/or domain 
• Change in the stability of protein 

To see if this was the case, I used comparative genomics. Alignment of the hb proteins 
from distinct species can reveal changes that might have occurred on the Drosophila 
melanogaster lineage. In the study I used two TFs for reference, chosen because they have 
the same DNA binding domain as HB (zinc-finger C2H2). Many things regarding the 
structure and function of those DNA-binding domains are unknown, for example i) if there 
is more than one functional domain in each protein, ii) are they all functioning at the same 
time, and iii) if there are multiple domains per TF, do they all have the same purpose or is 
one more commonly that is predominantly bound to the DNA? Perhaps the different 
domains are not all accessible and are more than one in a protein because of evolutionary 
history? Also, each protein functions differently and what seems to be a poor binding for 
one protein may be the optimal for another. It is beyond the scope of this study to answer 
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those questions, but I wanted to see if there were any obvious signs of possible functional 
changes. I therefore compared the proteins using amino acid sequences of Hunchback, 
Snail and Krüppel and ran them through Pfam protein database. Pfam predicts, using 
HMM scores, what type of domains are found in the protein. For all the proteins, zinc-
finger C2H2 DNA binding domains were found. Hunchback and Snail had three domains 
each, where Krüppel has four.  

An interesting fact is that the scores for both Snail and Krüppel domains were higher than 
all the Hunchback domains, indicating that Hunchback might possibly be evolutionary less 
related or less constrained than the other two. The calculated HMM scores for Hunchback 
where 11-13, Krüppel domains scored 17-20 and Snail 21-29.  

Figure 4.6 shows the alignment of HB from the 11 closest relatives of the D. melanogaster 
downloaded from UCSC genome browser in March 2010. The most diverged species D. 
grimshawi, is separated by 40-50 million years from D. melanogaster (RUSSO et al. 1995; 
CLARK et al. 2007). Comparison of the protein between the species shows that it is fairly 
similar structure in the species inspected. A closer comparison of only the DNA binding 
motifs (blue lines below the alignment in Figure 4.6) shows that they are identical in all 
species, except a single amino acid in the first motif shows some variation but not in the 4 
closest relatives to D. melanogaster. Certainly there are some changes in the less 
characterized parts of the protein and functionally those regions cannot be ruled out to have 
significance for the protein function. However, the amino acid sequence is extremely 
similar between the 5 closes relatives, D. melanogaster, D. simulans, D. sechelia, D. 
yakuba and D. erecta. Furthermore, if the whole protein is studied there is not a single 
amino acid change on the D. melanogaster branch that is not seen in any of the other 
species. The amino acid sequence for D. melanogaster does not stand out as being different 
from its closest relatives. It is only the more distant ones that do show some diversity in the 
protein sequence. 
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Figure 4.6: Alignment of closely related Drosophila species of Hunchback. The blue lines give the location of DNA binding domains according to 
Pfam. Their exact locations are: 269- 291, 297-319 and 705-727. The species are from top D. melanogaster, D. simulans, D. sechelia, D. yakuba, 
D. erecta, D.ananassae, D.pseudoobscura, D. persimilis, D. willistoni, D. virilis, D. mojavensis, and D. grimsawi. 
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4.4 Hunchback promoter between species 
To look for other differences that might have lead to changes in the transcription of 
hunchback in the D. melanogaster linage we looked at the two characterized HB 
promoters and compared them between the close relatives of D. melanogaster or D. 
erecta, D. yakuba, D. sechelia and D. simulans. We checked both the zygotic and 
maternal promoters (WATSON 2008). When the sequences are aligned some differences 
are seen between the species (Figure 4.7 and 4.8). However, when the characterized 
binding sites for Bicoid or Hunchback in the promoter are examined, they are found to 
be conserved between the species. In the maternal promoter changes in two binding 
sites are found (Figure 4.7), for the zygotic promoter no SNPs are found between the 
species in the two characterized HB binding sites (Figure 4.8). However, those changes 
sit on the D.sechelia branch and indicate that divergence on that lineage, not the D. 
melanogaster lineage. I also checked patterns of polymorphism in the promoter within 
the D. melanogaster and used the SNPs from the 162 DGRP lines for that. The 
alignment showed that there are no SNPs in the characterized binding sites for either 
Bicoid or Hunchback in the HB promoters, which further supports the notion that these 
binding sites are under strong purifying selection to maintain their function.  
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Figure 4.7: The alignment of the maternal hb promoter between D. melanogaster and its closest relatives D. sechelia, D. simulans, D. yakuba, 
and D. erecta. All characterized (8) Bicoid binding sites in blue, one characterized HB binding site in red. 
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Figure 4.8: The alignment of the zygotic hb promoter between D. melanogaster and its closest relatives D. sechelia, D. simulans, D. yakuba, and 
D. erecta. Characterized HB binding site in red. 
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4.5 Changes in 3’ UTR 
One possibility is that HB dose has changed, for instance through changes in mRNA 
stability or half-life. To evaluate this we looked for changes in functional elements in the 3’ 
UTR of hunchback mRNA. A few binding sites for proteins that are known to regulate HB 
expression in the embryo. Among them is a binding site for Pumilio, which is essential for 
translational regulation of hunchback (MURATA and WHARTON 1995). One of our 
hypotheses was that the expression of HB had shifted and the deletions in eve s3+7e were a 
response to that. Alignment of the 3’ UTR between the most related Drosophila species 
showed no change in the characterized Pumilio binding site. Another known 
developmentally important structure in the 3’UTR is a binding site for miRNA-8 (ROY et 
al. 2010). The multiple alignment revealed no change in that binding site on the branch 
leading to D. melanogaster (data not shown). 

4.6 Polymorphism and tests for selection in the 
area surrounding hb 
In order to look for signs of recent positive selection in the hb area we sequenced parts the 
gene and the surrounding regions. Recent positive selection leaves a mark of unusually 
long undisrupted haplotype(s), at high frequency or fixed, in a given region. In other words 
little polymorphism in a region, along with such haplotype structure can indicate positive 
selection (SABETI et al. 2007). I analyzed the polymorphism (measured by π) in 15 regions 
spanning 20 kb, 10 kb downstream and 7 kb upstream from hb (Figure 4.1). The results do 
not indicate positive selection in the area surrounding hb. In the proximity of the promoter 
and the protein itself there was a drop in polymorphism. However, that drop is normal and 
is usually seen in proximity to functionally important proteins due to purifying selection. 
At this point in the study the DGRP where released. For comparison I extracted the entire 
hb (23,746 bases) area from the DGRP data and also calculated the polymorphism 
(measured by π) in Tassel. A sliding window analysis of average pair wise polymorphism 
on the DRGP sequences was similar to my results (Figure 4.9). The promoter is located 
between 4519 kb and 4520 kb on chromosome 3R. The sequences showed no 
polymorphism in the promoter which is what is to be expected, however, directly upstream 
from it the value for π increased considerably. There is no evidence of long haplotypes, 
which would signal positive selection, in the genomic region around hb (data not show). 

 

Figure 4.9: Sliding window of π in the HB region. For DGRP data of 162 individuals 
(blue) and the North Carolina data 15 regions (red, from 32 individuals). The window ran 
for the DGRP data is 1000 bases, sliding every 200 bases. 
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4.7 3+7 enhancer mutations, other binding sites 
within eve 
As was described in the introduction, a sequencing survey of eve enhancers revealed two 
deletions taking out HB binding sites. In the study only a portion of the eve region was 
surveyed. I wanted to know if other mutations are affecting HB sites within the eve region. 
By aligning the regulatory region for eve from of the 162 DGRP strains and predicting 
Hunchback binding sites, I could see if any SNPs or other deletions are observed in TFBS. 
I found a HB binding site within the 3+7 enhancer that has the highest score possible for 
each base in the PWM. There was a SNP located at a site number 6 within the 10 base pair 
motif that has a PWM score of one. That means that in all binding sites examined, that 
base is always the same. I found 7 individuals that had that SNP which is about 4.3% 
frequency. The mutation sits on a different haplotype than the deletion ∆hb8. In the dataset 
there were 22 individuals, or 13,6% of 162 that had the ∆hb8. In the dataset I did not see 
the other mutation, ∆hbS1, (Palsson unpublished) because it is not in the D. melanogaster 
reference genome. The algorithms that are used to edit the sequences and build the DGRP 
SNP file throw out the section that spans the deletion. I wanted to see if there was a 
possibility if the deletion of the site was possibly creating a new binding site. When I 
scored the possible new site using PWMs the score was only around 4 that is not a high 
score and below my cutoff (data not shown). 

Zichner scanned the eve region for deletions and insertions. For the eve region we only saw 
the previously characterized deletions that Palsson (unpublished) found, which confirms 
his findings (Table 4.5). The smaller deletion, 45 base pairs long, is documented as an 
insertion rather than deletion. The reason for that is it is not found in the D. melanogaster 
reference genome even though the 5 closest relatives of D. melanogaster have the deletion. 
Other deletion events in the eve regions did not hit within binding sites with the exception 
of two small insertions in Snail binding sites. 
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Table 4.5: Insertions and deletions in the eve region.  

Location on 
chromosome 2R 

Number of deleted 
bases 

Number of inserted 
bases 

Number of 
samples 

5857929-5857931 1 0 20 
5858473-5858484 10 14 20 
5858668-5858670 1 0 66 
5860495-5860497 1 0 56 
5860574-5860583 8 0 28 
5862205-5862208 2 0 51 
5862449-5862451 1 0 50 
5862449-5862457 7 6 42 
5863472-5863535 62 0 27 
5868513-5868522 8 0 67 
5868944-5868949 4 0 47 
5868961-5868964 2 0 24 
5869107-5869115 7 23 55 
5870850-5870852 1 7 33 
5871409-5871417 7 0 110 
5872003-5872005 1 0 31 
5873269-5873277 7 9 94 
5858471-5858472 0 4 152 
5862672-5862673 0 1 23 
5863526-5863527 0 10 53 
5863532-5863533 0 10 48 
5863775-5863776 0 45 36 
5865068-5865069 0 14 32 
5866508-5866509 0 2 154 
5868593-5868594 0 1 29 
5872003-5872004 0 1 74 

 

4.8 Other results 

4.8.1 LD between eve and Hb 

One of our predictions (4) was co-evolution between HB and eve. If there is some 
functional interplay between any SNPs in eve and hb they would be linked together in a 
LD block. We tested that using Tassel (BRADBURY et al. 2007) on the 162 DGRP lines. 
There were no interesting signals seen when we were testing for LD between them (data 
not shown).  

4.8.2 Factors influencing frequency of SNPs in binding sites 

We ran generalized linear model (glm) analysis to see what factors were affecting the 
frequency of SNPs within transcription factor binding sites. Each SNP was represented by 
the frequency of the major allele or minor allele. No information was provided on which 
allele was ancestral and which was derived. I built an increasingly more complex linear 
model, testing for the addition of each term. The most complex model we saw that 
explained the SNP frequency in HB TFBS in HB regions is composed of 5 factors (Tables 
4.6 and 4.7). We saw that there was a difference between areas, in other words it matters in 
what area the binding site and SNP were found in. The change in score (as a consequence 
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of the mutation) and the original score (of the TFBS) also contributed significantly. 
Beforehand we did imagine that the delta score would be a contributing factor but since the 
score is somewhat integrated into the delta score we were surprised to see that it also 
affected SNP frequency. Curiously, the primary sequence of the binding site also seemed 
to contribute. The one factor we were certain, before the analysis, that would be a 
contributing factor was the position of the SNP within the binding site. This was confirmed 
by the linear model. The best model that explains the frequency of SNPs in HB TFBS in 
HB regions were those 5 factors and in a biological context that makes considerable sense. 
Very comparable results were seen for KR sites in Kr-bound regions (data not shown). 

Table 4.6: Statistical analysis of factors contributing to the frequency of SNPs in HB TFBS 
in Hb-bound regions. Here the addition of original score of the binding site as a 
contributing factor is tested. 

Model Equation Resid - Df Resid - 
Deviation 

Df Deviance P-value 

Reduced Freq = area +  
delta + position 

3437 81046    

Full Freq = area + 
delta + position +  

score 

3436 81015 1 30.407 3.502e-08 

 

Table 4.7: Statistical analysis of factors contributing to the frequency of SNPs in HB TFBS 
in Hb-bound regions. Here the addition of original sequence of the binding site as a 
contributing factor is tested. 

Model Equation Resid - Df Resid - 
Deviation 

Df Deviance P-value 

Reduced Freq = area +  
delta + score +  

position 

3436 81015    

Full Freq = area + 
delta + score +  

sequence + position 

2497 52438 939 28577 2.2e-16 

 

4.8.3 Fraction of binding sites on major or minor allele 

During the processing of the SNP and binding site data we came across an interesting 
observation. To appreciate this result it is crucial to highlight the principles of the 
algorithm. First we edited in all the major alleles of all SNPs in a chip region, into the 
primary sequence for that region. Then we predicted binding sites, and classified them as 
TFBS on the major allele. Then we edited in the minor allele, and ran the prediction again, 
yielding TFBS that where essentially abolished by the major allele. When we did the 
bookkeeping we found that a significantly higher fraction of total predicted HB sites sit on 
minor allele (see Figure 4.10 and Appendix E for statistical analysis), compared to KR and 
SNA sites on the minor allele (Table 4.8). The same pattern was seen for the three types of 
chip regions, Hb-bound, Kr-bound and Sna-bound, only more pronounced in the HB 
region.  
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We have two possible explanations for this pattern, i) new HB binding sites are being 
created at a higher fraction then for the other TFs (perhaps via unknown primary sequence 
or mutational distance mechanism), or ii) binding sites that used to reside on the major 
allele are being selected against but are still seen on the minor allele. The latter explanation 
is consistent with our predictions. But it is a weak signal, and does not lend concrete 
support to our model. 

 

  

Figure 4.10: Fraction of binding sites that are found on minor allele in HB-bound areas.  

Table 4.8: Chi-square tests for ratio of binding sites on minor allele. 

Factors tested Chi-square Degrees of freedom p-value 
Hb-bound 249.5323 2 2.2e-16 
Kr-bound 420.1387 2 2.2e-16 
Sna-bound 48.6761 2 2.692e-11 

 

 

4.8.4 Correlation between information content and frequency of 
SNPs 

Based on evolutionary theory, a negative correlation between the PWM information 
content per base and the SNPs at each position within the TFBS is expected. Information 
content is another way to interpret PWMs for transcription factors. If a PWM score for a 
base at a certain position then the information content is 2, in other words, in all observed 
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binding sites (for instance from functionally characterization using DNase I digestion). 
When we tested the correlation coefficient using t-test we saw a positive correlation signal 
for KR (t = 3.77, df = 8, p-value = 0.0054, corr =0.799). This is in the opposite direction to 
what we expected to see. We saw no signal for HB (t = -1.48, df = 8, p-value = 0.17) or 
SNA (t = 1.10, df = 8, p-value = 0.29) (Figure 4.11). The positive signal for KR is an 
interesting observation and indicates that there is something going on in KR binding sites. 
However, lack of a negative correlation in HB sites, is a weak indicator that we are seeing 
abnormally many SNPs in high frequency at well conserved positions within the binding 
site with high information content. The reason why no signal was found in SNA sites, 
might be that the predicted sites are fewer than for the other two factors as there are 
considerably fewer SNA-bound areas. If we had seen a negative correlation for KR and 
SNA we could put more faith in this result, however, seeing as we are unable to see this for 
the reference factors this result might simply be a fluke. 

 

 

Figure 4.11: The correlation between information content (x-axis) and number of SNPs 
within position in binding sites. HB binding sites in Hb-bound areas (top), KR binding 
sites in Kr-bound areas (middle) and SNA binding sites in Sna-bound areas (bottom). (See 
statistical analysis in Appendix E Table E.9). 



   

 
 

53 

5. Discussion 
5.1 Evaluating predictions about excess of SNPs 
and deletions in HB binding sites 
The central hypothesis of this project is that there is/was co-evolution between the HB 
transcription factor and its target regulatory elements. This was based on preliminary 
evidence, outlined in the introduction. To reiterate, it was observed that two highly 
conserved HB binding sites in the s3+7e of eve are removed by two deletions, segregating 
at moderate frequency in D. melanogaster populations. Several more specific predictions 
follow from this general hypothesis. I wanted to know why this was happening; i) are the 
two deletions a local event, ii) is there a genome wide response – with a high fraction of 
HB binding sites in the genome being affected or iii) is there a chance that these deletions 
are simply an example of binding site turnover (LUDWIG et al. 1998; MOSES et al. 2006; LI 
et al. 2008; MACARTHUR et al. 2009). To evaluate these hypotheses, I used two genomic 
datasets. First, a polymorphism data from 162 fully sequenced D. melanogaster strains, 
DGRP (MASSOURAS et al. 2012) and ChIP-chip data for three zinc-finger TFs, surveyed 
between hours 2 and 3 of early D. melanogaster development (LI et al. 2008; MACARTHUR 
et al. 2009). I used bioinformatic and statistical methods to evaluate these specific 
predictions, both the entire set of Chipped regions as well as a focused set of 
developmental genes. 

5.1.1 The number of, and the frequency of SNPs in three types of 
binding sites 

We hypothesized that positive selection has or is favoring deletions of HB binding sites. 
The first prediction (1a) that there are more SNPs in HB binding sites than in binding sites 
for other factors. I chose two zinc finger TFs (Krüppel and Snail) as reference factors. The 
data did not give us any indications of such a signal. We performed the analysis on both 
TFBS sites predicted in chip-bound regions for the three separate factors (HB 1762, KR 
3028 and SNA 595). The data do not indicate an excess of SNPs in HB sites compared to 
the two reference TFBS.  

But the occurrence of a SNP in site is only a part the story. The frequency of mutations in 
populations can be a strong indicator of their fitness and molecular effects. Generally, 
common mutations are either neutral or even beneficial, and deleterious mutations tend to 
be rare (HARTL and CLARK 2007). Thus I also looked at the frequency of point mutations 
within HB, KR and SNA sites. Surprisingly, a comparison of the frequency of SNPs 
among positions within each TFBS, did not reveal a difference. This may be in part, 
because I only looked at frequency of all mutations, and did not take the impact of the SNP 
into question. This issue was addressed further via linear models (see below). 

Thus the data did not suggest that SNPs are more commonly found in, or on average more 
frequent, in HB sites compared to the reference factors in this genome wide survey. But it 
is possible that a signal is found in more narrow set of candidate genes, for instance 
characterized developmental genes known to function around the same time in 
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development as eve (Table 1.1). Thus we may be more likely to see a response as HB is 
known to affect the expression of some of those genes.  

The data from the developmental genes did however echo the results from the genome 
wide survey. There was no evidence of more SNPs in HB sites overall or higher frequency 
of mutations in HB sites. There are several weaknesses to the approach as we implemented 
it. Perhaps the most crucial one is that we did not take evolutionary conservation or 
clustering of predicted TFBS into account in the study. Previous work has suggested that 
clustered TFBS are more likely to constitute functional enhancers (MURAKAMI et al. 2004), 
also in Drosophila species (BERMAN et al. 2004). One option to make this part of the study 
more focused would be to test for conservation. Also, we were using a dataset where each 
of these factors was bound genome wide. By doing so, we could possibly be drowning a 
localized signal, or the signal that is limited to a specific time in development or part of the 
embryo. Even though there was binding of the TF at that time-point in development the 
binding might be significant later in development or perhaps in adult life.  

5.1.2 Do SNPs in binding sites affect function? 

Transcription factor binding sites are generally 5-20 bp motifs, recognized by the TF factor. 
The central hypothesis can also be evaluated by looking for a relationship between SNPs 
and the information content in a binding site. Another of our predictions, is that HB sites 
may be more severely affected by SNPs with detrimental effects on the function of the 
binding site. I studied this by using PWMs to calculate the score for the binding site before 
and after it was affected by a mutation. The dataset was scanned for SNPs in binding sites 
and the impact of each exact substitution on PWM score was calculated. We predicted that 
the SNPs found in HB binding sites would have more negative effects on the binding site 
score than SNPs in TFBSs for the two reference factors. The results for this part of the 
study did not corroborate this prediction. What was noted was that a large fraction of SNPs 
in Krüppel binding sites did have more deleterious effects on the PWM score (~80%). In 
contrast, only ~55% of SNPs in HB sites decreased the PWM score this drastically. Oddly, 
more SNPs in HB binding sites did, increase the score of the site than for the reference 
factors. This result is somewhat puzzling. One possibility is that this just reflects noise in 
the data. Another is that the SNPs were only categorized as major vs. minor, not on 
whether they where ancestral or derived. Furthermore, those analyzes did not take 
frequency of the mutations into account (more on that later). Finally, the reason for this 
pattern might be in the PWM for the TFs used in the study. The prediction of TFBS 
depends on a good PWM for that site. Many studies have documented, and refined PWM 
for major TFS. A recent study examined the PWM of several TFs, and found that the HB 
PWM did give a fairly accurate prediction of HB affinity to the DNA (HE et al. 2011). The 
same study showed that the PWM for Knirps was not very reliable, and that further 
molecular and bioinformatic work greatly improved the PWM. It may be possible that the 
PWMs for the three factors used here were not all optimal, or at least equally good. He et 
al. (2011) also observed that using PWMs calculated from D. mel and D. sim did not 
matter, they showed the same result. This further supports the idea that transcription 
factors and binding sites are generally well conserved (HE et al. 2011). 
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5.1.3 Test of a relationship between information content and 
number of mutations at a specific position within a binding site 

General evolutionary principles suggest that there should be a negative correlation between 
PWM information content per base and the number of segregating mutations in a 
population at each position within TFBS. It is somewhat puzzling that such a relationship 
was not seen for none of the factors (Figure 4.11). A couple of reasons could explain this 
lack of signal. One option is that the PWMs are not good enough. Also, it is possible that 
the data is insufficiently large to detect such pattern. Studies have confirmed that the HB 
PWM is accurate in predicting the effects of a mutation (HE et al. 2011), but similar 
studies are lacking for the other two factors. Furthermore, we had a limited number of 
SNA sites in the data. There were only about 600 bound SNA regions, compared to over 
3000 for KR and 1700 for HB. The lack of relationship between SNP occurrence and 
information content at each position could possibly be explained by our model. However, 
such reasoning fails to account for the lack of correlation for the SNA sites and the 
opposite results that were seen for KR binding sites. Therefore, such reasoning from 
negative evidence is at best corroborative but at worst a fluke.  

The analyses presented above only looked at one or two features at a time. I also did more 
systematic analyses, using a linear model in R with the frequency of major and minor 
alleles as a response variable. Thus I could ask which factors had significant impact on the 
frequency of the SNPs. By using a regression framework, one can simultaneously evaluate 
the impact of several factors, and using stepwise addition of terms, to test the influence 
impact of each factor. This was summarized above (Tables 4.6 and 4.7), it is clear that the 
factors that matter for the frequency of SNPs are the ChIP-chip area, the change in score, 
position of the SNP within binding site and the sequence of the binding site. To conclude 
from this model we have further indications that there seem to be some constraints on 
which positions tolerate more mutations which is consistent with some positions in TFBS 
being more important than others.  

5.1.4 Deletions of/within HB binding sites 

In the original outline of the project, we were most interested in studying the distribution of 
indels in chipped regions and TFBS. However, at the time only SNP predictions where 
available for the 162 DGRP lines. Predicting indels from scratch was beyond the scope of 
this study. However, through a series of fortunate events we got in contact with Thomas 
Zichner, a Ph.D. Student with Jan Korbel in EMBL Heidelberg. He has just recently 
published a paper documenting insertions and deletions, segregating in the DGRP lines 
(ZICHNER et al. 2012). He volunteered early access to his supplemental table and ran some 
bioinformatic analyses for us, on the HB, KR and SNA chipped regions and TFBS 
predictions generated in this project. Through this collaboration with Zichner we were able 
to scan our dataset for deletions affecting chipped regions, and binding sites. These results 
corroborate our central hypotheses. We did see that there are significantly more deletions 
in HB binding sites than for the reference factors. The data for insertions points in the same 
direction, though it must be stressed that a statistical support is lacking for a difference 
among TFBS classes. We also scanned the whole ChIP-chip areas to see if there was a 
difference between areas depending on which of the three factors (HB, KR and Sna) was 
bound. The difference between the areas also showed the same pattern even though it is not 
statistically significant. Note however, that a weaker pattern was found in chipped regions 
for KR and SNA, than in HB regions, was expected from our hypothesis; if the main force 
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affecting the frequency of HB deletions was co-evolution of HB concentration and HB 
binding sites. 

An interesting and general result of this work is that numerous deletions in the genome 
affect regions bound by TF and quite a large fraction of them (3-7%) takes out TFBS. The 
DGRP data opens up many possibilities in studying the distribution and impact deletions in 
the genome, on TFBS as was done here or other biological features. We can expect to see 
many investigations trying to understand why so many deletions are tolerated by the 
species.   

The DGRP data along with Zichners method of scanning for deletions allows for studies of 
localized and specific deletion events. We wanted to further examine the eve area for 
deletions. A scan of the eve region 18379 bp did find the two deletions knocking out HB 
sites in the eve s3+7e described previously. No deletions hitting other HB binding sites 
were observed, suggesting very circumscribed effects. The only other indels affecting 
predicted sites, are two small insertions in two predicted Snail binding sites. We do not 
anticipate those to be of major relevance. An interesting follow up would be to run all the 
known developmental genes, active at this time-point in development and see if there are 
deletions of binding sites in their regulatory regions. Not only could we possibly find more 
HB binding site deletion, events but also add more pieces to what we know of gene 
regulatory networks. It is possible that we might see deletions of binding sites for known 
and characterized transcription factors, which would indicate that the HB deletions in eve 
s3+7e is simply allowed flux of binding sites and not a specific response to changes in 
expression or concentration of affected/affecting factors or genes. 

5.2 Change in HB activity 
We hypothesized that the hb protein or the gene might have been changed in some way, 
thus triggering a co-evolutionary response. We postulated that the protein structure or 
concentration had changed, or that the spatial expression of the gene had been altered. 
Among the features that make Drosophila melanogaster such a good model organism is 
the fact that it belongs to a rich phylogeny of close relative, and many of its closest 
relatives have had their genomes sequenced. This allows comparative genomic studies, 
alignments of species genomes and delineation of new changes on specific lineages. We 
made use of the available genomes for the close relatives of D. melanogaster. We aligned 
the protein sequence of 12 species, D. melanogaster and its 11 closest relatives with 
sequenced genomes. We had predicted the DNA binding motifs in Hunchback, Krüppel 
and Snail using HMM and wondered if there would be changes in the amino acid sequence 
affecting the function of the protein, the most serious ones would be seen in the DNA 
binding motif. Some changes are seen in the alignment, but not between the 4 closest 
relatives of D. melanogaster. The predicted DNA binding motifs are very well conserved 
between the species.  

Other parts of the protein are however, different between D. melanogaster and its closest 
relatives, but as the function of the hunchback protein has not been studied in detail, it is 
very hard to predict their impact. Amino acids changes from a charged to a neutral, or 
bulky to a small, or switching of charges could alter the protein function quite profoundly. 
Such predictions, and experimental dissections of their effect, would be interesting but 
only, if sufficient data suggest that co-evolution did indeed occur. One could for instance 
replace the D.melanogaster hb with the D. simulans hb gene, and study the potential 
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effects on development and biological function. This piece of data is far from sufficient to 
disprove the notion that the protein function or stability has changed.  

If the HB concentration has changed, then the cause could possibly be found in the 
promoters for hb. One possibility in changed expression of HB could change in the Bicoid 
gradient. That is something that could be further pursued. Alignment of both the zygotic 
and maternal promoters did not reveal any clear functional candidate changes to explain 
changes in transcription of hb. However, when we were processing the 21 developmental 
genes we came across an interesting observation on hb genomic region. There are 
numerous HB binding sites in the regulatory region for hunchback. Self-regulation or auto-
regulation, is a common theme in regulatory networks (DAVIDSON 2001). Most curiously, 
many of those predicted HB binding sites had SNPs in them. An interesting question is 
how many of those SNPs have detrimental effects on a binding site.  

Testing for change in HB concentration in D. melanogaster, is somewhat complicated by 
the spatio-temporal dynamics of its expression and the fact that HB is transcriped both by 
the mother and the embryo. We would need information about the mRNA and protein 
concentration at specific time points, at specific locations in the embryo in a large number 
of individuals and the concentration is a localized signal. However, it is possible to 
perform a qPCR to measure the amount of mRNA and try to get some information on the 
difference in concentration both between D. melanogaster individuals and between 
Drosophila species.  

Other known factors that could affect the function of HB, would be Pumilio and 
characterized miRNAs which impact translation of HB mRNA. The data did not give us 
any indication that there was something going on in HB translation, in the D. melanogaster 
lineage in comparison with the closest relatives.  

5.3 Tests for selection in HB and LD of eve and 
Hb 

5.3.1 Positive selection of Hb 

Among the first ideas we proposed was that a gene in the proximity to hb had experienced 
(or was under) positive selection and that hb had been or was hitchhiking along. Thus, 
changes in HB function, admittedly undescribed would have been a side effect of some 
other selection effect. Strong positive selection can be detected if unusually long, 
undisrupted haplotypes are found in a genomic region, as time to fixation is so short that 
recombination is unable to break it up (SABETI et al. 2002; SABETI et al. 2007). We both 
sequenced areas surrounding hb and looked at the DGRP data for corresponding area. The 
data did not reveal long extended haplotypes in the HB region, nor was π unusually low in 
the proximity to hb. Thus there are no indications of a recent positive selection in either the 
hb gene itself or on a gene nearby. Positive selection is always interesting to study. 
Researchers have been trying to identify positive selection for quite some time and have 
developed programs that can run such tests on a small set of genomic regions but these 
programs were not used here.  
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5.3.2 LD between eve and Hb 

Among our least likely hypothesis was that if there was co-evolution between eve and HB 
one could detect LD between the two genes. We tested this but we did not see a distinct 
signal linking eve and HB. What we concluded was that if the function of HB had changed 
then it was most likely evolutionarily older event. 

5.4 Other possible scenarios  
The data does not provide a clear confirmation of a genome wide selection against HB 
binding sites. What can explain the occurrence of the two deletions removing HB sites 
from eve? One possibility is simply, that those changes are there by chance. Maybe 
polymorphism in HB is acceptable. According to Fowlkes et al. (2008) differences in HB 
concentration did affect the expression and location of stripe 3 but not stripe 7 (based on 
imaging data to study patterns of expression in TFs) (FOWLKES et al. 2008). The result 
from the imaging data indicates that concentration of HB matters for stripe 3 to be 
expressed correctly. If we had seen one deletion of one binding site, that explanation might 
have been very plausible. However, we have observed two unrelated events, both taking 
out TFBS for HB. Another possibility is that they reflect a localized event. In other words 
we might be observing co-evolution within an enhancer, or with a cis-regulatory regions or 
the whole locus. 

To elaborate other transcription factors that are known players in regulating eve stripe 3+7 
that might be of relevance are DSTAT, Zelda and Knirps. The two former are activators 
and Knirps is a repressor. It would therefore be interesting to document any changes in the 
TFBS of those factors. More detailed investigation of eve s3+7e, like Ludwig et al. (2011) 
carried out for eve s2e where he used transgenes to study the enhancer, would be an 
interesting avenue of research (LUDWIG et al. 2011). Knowing more about the enhancer 
might provide us with answers to our questions. One might postulate that the effects of 
variations and the deletions in the s3+7 enhancer, might be favored in a response to a loss 
of activation capacity because of other TF, either abundance of TFs acting directly on the 
s3+7e or other functionally related sequences. Such spillover effects from other cis-
elements were found for the s2e in detailed transgene experiments, whereby the deletion of 
s2e minimal enhancer, still retained a faint stripe 2 expression (LUDWIG et al. 2005). 
Furthermore, several shadow enhancers have been described in Drosophila. Those are 
elements, localized elsewhere in the cis-environment, which provide support for localized 
cis-regulatory modules (HONG et al. 2008; FRANKEL et al. 2010). Thus co-evolution within 
the entire regulatory region of a gene is quite possible, not only co-evolution within an 
enhancer (LUDWIG et al. 1998). 

It is also possible that the enhancer is responding to changes in other regulatory 
mechanisms, like translation, localization or protein stability. We find this rather unlikely, 
except possibly for translational regulatory agents – which may have temporal and spatial 
capacity that corresponds to the function of the s3+7e. Recall, we found no other large 
deletions of HB sites in other eve enhancers. Other interesting screens could be for 
example only genes that HB is known to directly regulate. It would also be intriguing to 
scan the whole genome for deletions and then study which of the deletions do carry HB 
binding sites and cross reference those with regions that HB is known to regulate. 
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In my opinion the three most plausible explanations are i) co-evolution within the eve gene, 
ii) co-evolution between HB concentration and a subset of HB targeted cis-elements, or iii) 
the evolutionarily allowed flux of binding sites within species on a genome wide scale. On 
this last possibility, one could ask are SNPs in binding sites functionally or more severe as 
deletions of entire TFBS? One could also ask, how much variation can a binding site 
tolerate and what kind of mutations are acceptable? This varies between transcription 
factors and we need to characterize as many as we can to have an easier time predicting 
regulatory output. However, if that were done we could better predict what the effects of 
mutations will have. This is important work in the future especially for human transcription 
factors.  

With the increasing technologies especially in genomic studies, more frequently large 
groups with the resources to do genome wide broad studies publish data that others can 
access. Their work paves the way for smaller groups to investigate more specific questions 
such as the one we were curious about. For the present study, we combined two large 
datasets and did a genome wide scan when trying to cast a light on a peculiar observation, 
namely the two HB deletions. Even though we did not see the pattern we expected we did 
see indications that deletions hit HB binding sites more commonly, then the TFBSs for 
Krüppel or Snail.  

5.5 General results and future work 
Even though we were unable to firmly confirm our predictions, the study does yield some 
general conclusions. There are plenty of SNPs in predicted binding sites segregating in 
wild populations of flies. This is even found for TFBS where the information content is 
very high. Why that is so is yet to be answered. Also, some of the numerous indels in the 
genome, affect chipped regions and TFBS, both in areas known to be functional as well as 
others not characterized as functional, at least not yet. For studies of Drosophila GRN 
(JAEGER and REINITZ 2006), like the interactions of the gap TFs, the fact that many 
enhancers have segregating variation must bring about a rethink. Jaeger and Reinitz (2006) 
showed that quantity of a TF plays a major role in the gap gene network and ultimately in 
deciding cell fates. In creating quantitative models of development the topology of the 
network is pivotal where changes in input quantity affect output.  

The data we used for the study is an almost endless resource for questions like ours. Even 
though we were unable to get a distinct answer to our questions we did see other potential 
problems that the data could provide insight into. We only screened three transcription 
factors and their possible binding sites in a limited set of regions. It would be very 
interesting to both screen the whole genome as well as a more focused set. Future work 
could involve expanding the study and add more reference factors. Possible candidates are 
for example Huckebein and Schnurri that are also TFs with a C2H2 zinc finger motif. They 
might be a better reference than KR and SNA that possibly function very differently from 
HB, though the opposite could also be true, that they in fact have a similar function. 
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Appendix A 
Receipts and Protocols 
DNA Isolation 

A GenElute Mammalian Genomic DNA Miniprep Kit from Sigma-Aldrich was used for 
the isolation. Whole flies were in freezer in ethanol. The ethanol was washed off with 
water and then an individual fly placed in a ependorf test tube. 

1. A single fly is minced with a rod as much as possible. 
2. 180 µl of Lysis solution followed by 20 µl of Proteinase K. 
3. Sample then kept at room temperature and vortexed occationally for about 2 hours. 
4. 200 µl of Lysis solution is then added and the mix is vortexed thoroughly. 
5. Then incubation for 10 mins in 55°C waterbath. 
6. Column preparation with column preparation solution and centrifuged at 12.000 x g 

for 1 min and liquid discarded. 
7. 200 µl of ethanol (95-100%) to lysate. Vortex 5-10 sec. 
8. The entire content is moved to a binding column and centrifuged for 1 min at 6500 

x g. The fluid is discarded and binding column put in a new tube. 
9. 500 µl of wash solution concentrate with ethanol added to the binding column then 

centrifuged at max speed 12.000 for 3 mins. 
10. 100 µl of elution solution is pipette directly into the center of the binding column. 

Then centrifuged for 1 min at 6500 x g and incubated for 5 mins at room 
temperature. 

 

PCR reaction 

Table A.1: PCR recipe. 

 Taq  Teq 
 Amount (µL) Amount (µL) 
DNA 3 3 
Buffer 2 2 
dNTP 0,1 2 
Primer F 0,2 0,4 
Primer R 0,2 0,4 
Polymerase 0,1 0,4 
H2O 12,5 11,8 
Total 20 20 
 

I used either Taq polymerase and the matching ThermoPol buffer from BioLabs or Teq 
polymerase from Prokarya and Reaction buffer provided. The units of Teq are lower than 
Taq so therefore there is a different receipt for that. 
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The same PCR program was used for every PCR run. 

 

Table A.2: PCR program. 

Step Temperature (°C) Time (mins) 
1 94 3:00 
2 94 1:00 
3 52 0:30 
4 72 1:00 

Steps 2-4 repeated 35 times 
5 72 7:00 
6 4 Forever 

 

 

Exo Sap 

Table A.3: Exo sap cleaning step. 

 Amount (µL) 
H2O 3,7 
Phosphate buffer 1 
Antartic phosphatase 0,2 
Exonuclease 1 0,1 
Total 5 
 

Both the Exo1 and Ant. Phospatase are from BioLabs. 

 

 

Sequencing reaction 

Table A.4: Receipt for the sequencing reaction. 

 Amount (µL) 
dH2O 5,25 
Big dye buffer 2,75 
BigDye 0,5 
Primer (1pm/ µ) 1,5 
Total 10 
 

The BigDye that is used is 3.1 and comes from Applied Biosystem. 

 



   

 
 

69 

Ethanol precipitation 

Table A.5: Solution 1 for Ethanol precipitation made for each tray of sequencing. 

Solution 1 for 2 full trays Amount 
dH2O 9 mL 
Natriumacetat 3M ( NaOAc)  1 mL 
Glycogen 50 µL 
  

Ethanol precipitation protocol: 

1. 45 µl of solution 1 in each well. 
2. 125 µl of 95% -20°C ethanol, mix carefully. 
3. Centrifuge for 30 mins at 4000 RPM 
4. Discard immediately. 
5. Place tray upside down on 3 kim wipes and centrifuge on 300 RPM for 2 mins. 
6. 250 µl 70% ethanol in each well, centrifuge for 5 mins on 4000 RPM. 
7. Place tray upside down on 3 kim wipes and centrifuge on 300 RPM for 5 mins. 
8. Place the trays in a dark place for drying for 15-20 mins.  

The Glycogen used is from Fermentas. 

 

HiDi dissolving 

10 µL of HiDi are put in each well. The tray is then sealed extremely well and shaken for 
one minute. Then the tray is ready for the sequencer. The HiDi is from Applied Biosystems. 
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Appendix B 
List of all primers  
 
Table B.1: List of all primers. 
Primer name Sequence 
CE1014a_f ACGCCGTAAAATTGGCTATG 
CE1014a_r AGAAGATCGCGGCTTGTAAA 
CE1014b_f TTACAAGCCGCGATCTTCTT 
CE1014b_r ATTTCGCTGGCGACTTAGTG 
Hb1_F TCGAACTGGCACTGGTATTG 
Hb1_R CAATCTTCTGCCTCCTCTGG 
Hb25k_F GCAAACTGACCAAACGAGTC 
Hb25k_R AAACAAAATGCGTCCATCGT 
mRpL19_F GACTGGACATGCTGGATCG 
mRpL19_R AGCTGCGGTAGTCCTTCATC 
Hb50k_F TGGGTGGCAATAAAAATGTC 
Hb50k_R AGCCGAAATTAAAGCTCACG 
hb56k_F TGTTATCGCTGCACGTATCG 
hb56k_R TTAAGTACATGCGTTCACGTTT 
Dhod_f TGCAGCACTTGCTTCAAATC 
Dhod_r AGAGCTCCTGGAACAGGTCA 
p_f CAGCGCCTAACAATTTCCTC 
p_r GCCAGCATGTCCGATATTTT 
CG8032_f GTGTAGCAATGGGCGACAAG 
CG8032_r GGCAAATAGAGGGAACAGGA 
CG9773_2_f AGCAGACGTCGCAGGTATTT 
CG9773_2_r CGGATGAGTTCTCGATTTCC 
cg9773_f ATGGACATCGAAGGCATAGC 
cg9773_r CGGAAACAGACCAAGTCACA 
Hb35_f TGCGCTTTTCTCTGGATTCT 
Hb35_r TGGCACATTTAACACCTCCA 
Hb30_f TTGAGATCGCTGGCAATATG 
Hb30_r1 CGAGGAGTGGGAGAAGTACG 
Hb30_r2 CATTTAGGGACTTCGGCAAA 
Hb15_f CCCTGGCATTCTAGGCATAA 
Hb15_r ATGGTGGCCATTTTTAGCAG 
Hb10_f ATGCTGGGGTTCTGTTGAAG 
Hb10_r TCGAATCGAACGAAATCAAA 
Hb2_f GGGCTTGTGACCATACTTGC 
Hb2_r GAGCACGATCAGATGTCGAA 
Hb3_f AGATTGCCGCCATAGAAGTG 
Hb3_r GACCAACTACGAGCAGCACA 
Hb4_f GCAGGCTGTTTTGATCGTTT 
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Hb4_r AGCCACCCCTGACGTATTTT 
Hb5_f TTTTCCGCTTGTTTTTCATTTT 
Hb5_r TCTGCCCATCTAATCCCTTG 
Hb6_f GGATGATCCGGGAGCTTAG 
Hb6_r AAAATGCAGCAACTGCACAA 
Hb7_f TGCACCACACAAAATGAAGC 
Hb7_r CTGCGTTTTCGAATTTTTCC 
Hb8_f GTGCCGAACTATTTGCCATT 
Hb8_r ATCGAGTGCTTCTTTTTCTGTC 
Hb9_f CCGCGGCACGGTTACCGTTAGAC 
Hb9_r TGTTGTGAGGAGCAGTGAGG 
Hb11_f TACGCAGTACGCAGGATCAC 
Hb11_r GCTTGGCTGCACATCTTACA 
Hb12_f GAAAATCGCGAGAAACTTCG 
Hb12_r AACGAGGCTCAAAGGACAAA 
Cyp313b1_f TATCGATGCCGATCTGAGTG 
Cyp313b1_r CCATCTTCCGACAGCTTCTC 
Cyp313b1_f2 GTTCCTTGTGCAGCTTCTCC 
Cyp313b1_r2 TGCCTTTAGCTTGACCGAAG 
bel1_f AGACCCACAGGATTGTCTGC 
bel1_r GCCGATTCTCAACCAGATGT 
bel1_f2 ATGTGGCCGAGAACATAAGC 
bel1_r2 TATCAATGGCCGGGATCTAA 
CG8036_f GGACAACCTTTGCGTGATCT 
CG8036_r GGTCGAGGTTCTTCAGCTTG 
CG8036_f2 ATGTGGGCAAGAACTTCGAC 
CG8036_r2 TCTCCGTCTAGGGCAACAAC 
CG8043_f ACGCCCATTTTCTCAACAAG 
CG8043_r GTTAGCTCCTGGCCCACATA 
CG8043_f2 TCTTGTACCGCACCAACAAC 
CG8043_r2 GTTACGTCCTGGCTGGAACC 
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Appendix C 
Snapshot of all input and output files for Python 
 

 

Figure C.1: Example of a SNP file published by DGRP. The first line lists all the inbred 
strains. Each 7 lines give information on the location of the SNP on a certain chromosome 
(this case X). Additional information is the coverage, the frequency (not seen in this figure) 
and from what strains the readings are coming from. 

 



   

 
 
74 

 

Figure C.2: List of all possible binding sites for each ChIP-chip area (this case 
chromosome 2R of Hunchback bound regions). The first column gives the chromosome, the 
second is the start of the area and chromosome. Third and fourth column give the start and 
stop of a ten bp binding site. Fifth column is what transcription factor that binding site 
belongs to. Sixth column is the score calculated from PWM and last column gives the 
sequence for the binding site. 
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Figure C.3: List of all areas bound by each transcription factor (this case Hb). First 
column gives the chromosome, second and third give the start and stop of the area. Fourth 
column is what is used for each alignment file of each area (total of 1762 for Hb). Fifth 
column is simply the count of each area.  
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Figure C.4: An example of the output from the above input file. Each file contains the 
alignment of all 162 lines for a particular Hb-bound area. 1762 total for HB, 595 for Snail 
and 3028 for Krüppel. These files are used as input files for extended N and when they 
have gone through that an N is added at the end of the name. 
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Figure C.5: An example of an alignment file from one Hb-bound area on chromosome X 
(Hb0043.X). 
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Figure C.6: All SNPs found within binding sites for each transcription factor and the 
change in score (this case HB regions chromosome 2L). Second column gives the location 
of the SNP. Third is the start of the chip-chip area that was bound. Fourth and fifth show 
the major and minor allele and sixth column is the frequency of minor allele. Seventh 
column is coverage (how many individuals have reads at that location). Eigth column gives 
the name of the transcription factor of the SNP. Ninth column is the start of the binding 
site. Tenth is the original score. Eleventh cloumn is the sequence.Tvelfth is the allele the 
binding site is located on. Last column is the delta score of the binding site.  
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Appendix D 
All Python algorithms 
 
Algorithm D.1: Algorithm that extracts all areas from ChIP-chip data 
(Hb_areas_alignment). 
 
############################### 
# Create new folders from a table folder and sequence folder 
####################################### 
# - this code does not clean up. it appends to each file. 
# - Before it is ran again old files have to be removed. 
############################## 
import os 
fasta_dir =os.getcwd()+ "\\"+"170_fa" 
fasta_list = [] 
#chr_dir = =os.getcwd()+ "\\"+"CHR_areas" 
######################## 
#-Read fasta to array 
####################### 
raw_fasta_dir = os.listdir(fasta_dir) 
for item in  raw_fasta_dir: 
  out =item.split('.') 
  if (len(out) >1): 
    if (out[1] == "fa"): 
      fasta_list.append(item) 
#------------------------- 
######################## 
#-Read Chr's to seperate arrays  
####################### 
f = open('hX.chr', 'r') 
chr_hX = f.readlines() 
chr_hX = [item.rstrip() for item in chr_hX] 
f.closed 
f = open('h2L.chr', 'r') 
chr_h2L  = f.readlines() 
chr_h2L = [item.rstrip() for item in chr_h2L] 
f.closed 
f = open('h2R.chr', 'r') 
chr_h2R  = f.readlines() 
chr_h2R = [item.rstrip() for item in chr_h2R] 
f.closed 
f = open('h3L.chr', 'r') 
chr_h3L  = f.readlines() 
chr_h3L = [item.rstrip() for item in chr_h3L] 
f.closed 
f = open('h3R.chr', 'r') 
chr_h3R  = f.readlines() 
chr_h3R = [item.rstrip() for item in chr_h3R] 
f.closed 
#f = open('eve_area.chr', 'r') 
#chr_eve_area  = f.readlines() 
#chr_eve_area = [item.rstrip() for item in chr_eve_area] 
#f.closed 
#f = open('Hb_area.chr', 'r') 
#chr_Hb_area  = f.readlines() 
#chr_Hb_area = [item.rstrip() for item in chr_Hb_area] 
#f.closed 
ChrX  = chr_hX[1:]                                            #removes first line in tables 
Chr2L = chr_h2L[1:] 
Chr2R = chr_h2R[1:] 
Chr3L = chr_h3L[1:] 
Chr3R = chr_h3R[1:] 
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#chr_eve_area = chr_eve_area[1:] 
#chr_Hb_area = chr_Hb_area[1:] 
##################################### 
#Creating new folders for each are with all individuals together in same file 
##################################### 
os.chdir(os.getcwd()+ "\\"+"Hb_areas_alignment_170")              #Destination file 
for fileX in fasta_list: 
  f = open(fasta_dir+"\\"+fileX, 'r') 
  active_file = f.readlines() 
  active_file = [item.rstrip() for item in active_file] 
  active_file = active_file[1:] 
  chr_total ="" 
  for item in active_file: 
    chr_total = chr_total+item 
  fname_front,trash=  fileX.split(".") 
  SP_line,chrome = fname_front.split("_") 
  for item in eval(chrome):                                        #what table is being used to extract areas 
     chrs,start,stop,region,counter = item.split()           #what is in each line 
     start = int(start) 
     stop = int(stop) 
     sequence = chr_total[start:stop] 
     outfile = open(region, 'a') 
     entry_to_write=">"+SP_line+"."+str(chrs)+"."+str(start)+"\n"                           #the file is made in fasta format. each 
sequence with same name as the folder it was taken from. 
     outfile.write(entry_to_write+sequence+"\n")              #how the new file is made 
     outfile.close() 
  f.closed 
 
Algorithm D.2: Algorithm that finds all possible binding sites, scores them and writes them 
in a table (Binding_sites). 
 
from math import log 
##################################### 
class Matrix: # Encapsulates one sequence matrix 
#################################### 
  def __init__(self,line): 
    self.name = line[0].lstrip(">") 
    self.A = [float(item) for item in line[1].split()[1:] ] 
    self.C = [float(item) for item in line[2].split()[1:] ] 
    self.G = [float(item) for item in line[3].split()[1:] ] 
    self.T = [float(item) for item in line[4].split()[1:] ] 
    self.motif_length=len(self.A) 
    if abs((self.A[0]+self.C[0]+self.G[0]+self.T[0])-100) <10: 
      #we have percentages,convert 
      # and change 0 to 0.0000000001 so that we do not get crass for log2(0) 
      self.A = [(item/100) for item in self.A] 
      self.C = [(item/100) for item in self.C] 
      self.G = [(item/100) for item in self.G]  
      self.T = [(item/100) for item in self.T] 
    # and change 0 to 0.0000000001 so that we do not get crass for log2(0) 
    self.A = [max((item),0.00000000000001) for item in self.A] 
    self.C = [max((item),0.00000000000001) for item in self.C] 
    self.G = [max((item),0.00000000000001) for item in self.G]  
    self.T = [max((item),0.00000000000001) for item in self.T]  
    #lets find first perfectly conserved base. 
    self.A_score = [log(item/0.25,2) for item in self.A] 
    self.C_score = [log(item/0.25,2) for item in self.C] 
    self.G_score = [log(item/0.25,2) for item in self.G] 
    self.T_score = [log(item/0.25,2) for item in self.T] 
    self.col_score = [] 
    self.tot_score =0 
    counter = 0 
    while counter <len(self.A_score): 
      #print [self.A_score[counter]*self.A[counter],self.C_score[counter]*self.C[counter],self.G_score[counter]*self.G[counter], 
self.T_score[counter]*self.T[counter]] 
      #print self.C[counter] 
      #print self.C_score[counter] 
      self.col_score.append(self.A_score[counter]*self.A[counter]) 
      self.col_score[counter]+= self.C_score[counter]*self.C[counter] 
      self.col_score[counter]+= self.G_score[counter]*self.G[counter] 
      self.col_score[counter]+= self.T_score[counter]*self.T[counter] 
      self.tot_score = self.tot_score+self.col_score[counter] 
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      counter+=1 
  #def Report(self): 
    #print self.name 
    #print "model length = " + str(len(self.A)) + " Cols"   
    #print "total information content = " +str(self.tot_score) + " bits"  
    #print [str(a) for a in self.A_score] 
    #print [str(a) for a in self.A] 
    #print [str(a) for a in self.C] 
    #print [str(a) for a in self.G] 
    #print [str(a) for a in self.T] 
    #print [str(a) for a in self.col_score] 
  def score(self,sequence,chrome,start,stop): #Optional index 
    #sequence=sequence[500:]  
    sequence= sequence.upper() 
    offset = 0 
    score = 0 
    len_seq = len(sequence) 
    mc = 0 #motif counter   
    while offset + self.motif_length <  len_seq: 
      mc = 0 
      while mc < self.motif_length: 
        if sequence[offset+mc] == 'A': 
          score += self.A_score[mc] 
        elif sequence[offset+mc] == 'C': 
          score += self.C_score[mc] 
        elif sequence[offset+mc] == 'G': 
          score += self.G_score[mc] 
        elif sequence[offset+mc] == 'T': 
          score += self.T_score[mc]      
        mc+=1         
        #sort out long sequence of same bases 
        a_counter = c_counter = g_counter = t_counter = 0 
        match = sequence[offset:offset+self.motif_length] 
        for letter in match: 
          if letter == "A": 
            a_counter += 1 
          elif letter == "C": 
            c_counter += 1 
          elif letter =="G": 
            g_counter += 1 
          elif letter == "T": 
            t_counter += 1 
        non_major = 100  
        if a_counter >= len(match)-3: 
          non_major =  len(match)  -a_counter  
        if c_counter >= len(match)-3: 
          non_major =  len(match) -c_counter  
        if g_counter >= len(match)-3: 
          non_major =  len(match)  -g_counter  
        if t_counter >= len(match)-3: 
          non_major =  len(match)  -t_counter  
        if non_major < 2: 
          score = 0 
        if non_major == 2: 
           score = score * .75 
        if non_major == 3: 
           score = score * 0.8 
       #End of penalizing long same base sequences 
      if score>5: #Choose threshold of reporting here 
        rep_line = chrome+ "\t" 
        rep_line = rep_line+chrome+"_"+str(start)+"\t" 
        rep_line = rep_line+str(offset+start)+"\t" 
        rep_line = rep_line+str(offset+start+10)+"\t" 
        rep_line = rep_line+self.name+ "\t" 
        rep_line = rep_line+ str(round(score, 4))+ "\t"       
        rep_line = rep_line+sequence[offset:offset+self.motif_length].lower() 
        #print self.name 
        #print float(score) 
        #print offset+start 
        #print sequence[offset:offset+self.motif_length].lower() 
        print rep_line 
      score = 0 
      offset+=1 
      #print score 
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f = open('motifs_all.txt', 'r') 
matrix_data = f.readlines() 
matrix_data = [item.rstrip() for item in matrix_data] 
f.closed 
matrix_list = [] 
active =[] 
while matrix_data: 
  current = matrix_data.pop(0) 
  if len(current) == 0: 
    continue 
  if current[0] in [" ","#"] : 
    continue 
  if current[0] == ">": 
    current == current 
    #print "processing "+current.lstrip(">") 
  active.append(current) 
  active.append(matrix_data.pop(0)) 
  active.append(matrix_data.pop(0)) 
  active.append(matrix_data.pop(0)) 
  active.append(matrix_data.pop(0)) 
  temp = Matrix(active) 
  matrix_list.append(temp) 
  active=[] 
#for matrix in matrix_list: 
  #matrix.Report() 
#print "going into score" 
#print "forward" 
#matrix_list[0].score(AB004572) 
#print "reverse" 
#matrix_list[1].score(AB004572) 
import re 
f = open('AA_freq_table.txt', 'r')  
read_data = f.readlines() 
f.closed 
f = open('fasta.txt', 'r')  
read_fasta = f.readlines() 
f.closed 
string = "" 
#Parsing header## 
#header = read_fasta[0] 
#(h1,h2) = header.split("species") 
#(chrome,loc)=  h1.split(":") 
#chrome = chrome[1:] 
#(start,stop)= loc.split("..") 
#read_fasta[0] = "" 
string ="" 
for line in read_fasta: 
  if line[0] == ">": 
    (h1,h2) = line.split("species") 
    (chrome,loc)=  h1.split(":") 
    chrome = chrome[1:3] 
    (start,stop)= loc.split("..") 
    start =int(start) 
    stop = int(stop) 
    if string: 
      for mat in matrix_list: 
        mat.score(string,chrome,start,stop) 
    string = "" 
  else: 
    line = line.rstrip() 
    string = string +line.upper() 
  #DNA = string 
#complement_map = {'C': 'G', 'G': 'C', 'A': 'T', 'T': 'A'}           # map for use in finding reseverse sequence 
#def reverse_complement(DNA):                                        # defining the action of finding reverse sequence 
    #complist = map(complement_map.get, DNA) 
    #complist.reverse() 
    #return ''.join(complist) 
#DNArev = reverse_complement(DNA)                                 # repeate commands for reverse sequence 
#DNArev = DNArev[0:] 
#for mat in matrix_list: 
#  mat.score(string) 
#for mat in matrix_list: 
  #mat.score(DNArev) 
ammino = {} 
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for line in read_data: 
   line = line.rstrip()  
   Char,Name,Codon,Protein_Freq,Codon_usage_Freq = line.split() 
   sub_dict = {} 
   sub_dict['AA'] = Name 
   sub_dict['AA_Freq'] = Protein_Freq 
   sub_dict['Codon_Rel_Freq'] = Codon_usage_Freq 
   sub_dict['Char'] = Char 
   ammino[Codon] = sub_dict  
 
Algorithm D.3: Algorithm that counts all SNPs within a binding site of total SNPs in 
area(SNP_call_extract).  
 
import os,fileinput 
f = open('FV2L.txt', 'r') 
SNP_FV2L = f.readlines() 
f.closed 
#f = open('Final_2L_HB.txt', 'r') 
#F_2L_HB = f.readlines() 
#f.closed 
#f = open('Final_2L_Snail.txt', 'r') 
#F_2L_Sn = f.readlines() 
#f.closed 
#f = open('Final_2L_Krüppel.txt', 'r') 
#F_2L_KR = f.readlines() 
#f.closed 
#joke = SNP_FV2L[1].split(',') 
#print joke[0] 
f = open('dummypos.txt', 'r') 
dummy = f.readlines() 
dummy = [item.rstrip() for item in dummy] 
f.closed 
 
 
#print dummy 
#f = open('Hunchback_new_7.txt', 'r') 
#chr_hb = f.readlines() 
#f.closed 
#f = open('Snail_new_7.txt', 'r') 
#chr_sn = f.readlines() 
#f.closed 
#f = open('Krüppel_new_7.txt', 'r') 
#chr_kr = f.readlines() 
#f.closed 
#for item in chr_hb:                                                   #what table is being used to extract areas 
#  chrs,chr_start,start,stop,tf,score,bs_seq = item.split()         #tf-transcription factor, bs_seq-binding site sequence 
#  start = int(start) 
#  stop = int(stop) 
#for item in chr_sn:                                                   #what table is being used to extract areas 
#  chrs,chr_start,start,stop,tf,score,bs_seq = item.split()         #tf-transcription factor, bs_seq-binding site sequence 
#  start = int(start) 
#  stop = int(stop) 
#for item in chr_kr:                                                   #what table is being used to extract areas 
#  chrs,chr_start,start,stop,tf,score,bs_seq = item.split()         #tf-transcription factor, bs_seq-binding site sequence 
#  start = int(start) 
#  stop = int(stop) 
counter_hb = 0 
line_counter = 0 
SNP_FV2L = SNP_FV2L[1:] 
#chr_hb = chr_hb[1:] 
#chr_kr = chr_kr[1:] 
#chr_sn = chr_sn[1:] 
#print(dummy) 
nr2 = [] 
for line in SNP_FV2L: 
  items  = line.split(',') 
  if len(items) >0 and len(items[0])>0 : 
    if items[0][0] in  ['0','1','2','3','4','5','6','7','8','9']: 
      items[0] =int(items[0]) 
      nr2.append(line) 
 
for line in nr2: 



   

 
 
84 

  items  = line.split(',') 
  line_counter = line_counter + 1 
  for line in dummy: #dummy is array of binding sites location 
    chrs,chr_start,start,stop,tf,score,bs_seq = line.split() 
    start = int 
    stop = int 
    if str(chrs) == "2L" and (str(tf) == "hb" or str(tf) == "hb_rev"): 
      if ((int(items[0]) >= start) and (int(items[0]) <= stop)): 
          counter_hb = counter_hb+1 
print counter_hb 
print line_counter 
 
Algorithm D.4: Algorithm that extracts all SNPs found within bound regions from original 
released SNP file (SNPs_reduced).  
 
import os,fileinput 
TRUE =1 
FALSE = 0 
#f = open('FV2L.txt', 'r')#SNP_FV2L = f.readlines(6) 
#print SNP_FV2L 
#for line in fileinput.input(['Final_Variants_X.txt']): 
#  print (line) 
f = open('h3L.chr', 'r') 
chr_h3L = f.readlines() 
chr_h3L = [item.rstrip() for item in chr_h3L] 
chr_h3L = chr_h3L[1:] 
f.closed 
loc_list = [] 
for step in chr_h3L: 
  chrs,start,stop,region,counter = step.split() 
  start = int(start) 
  stop = int(stop) 
  loc_list.append([start,stop]) 
def check_area(loc): 
  loc =int(loc) 
  for item in loc_list: 
    if (loc >= item[0] and loc <= item[1]): 
      return(TRUE) 
  return(FALSE) 
line = "XXX" 
line_nr =1 
f = open('Final_Variants_3L.txt', 'r') 
f_out = open('Final_3L_HB.txt', 'w') 
line =f.readline() 
f_out.write(line) 
while line : 
  line = f.readline() 
  if line_nr==1: 
    fields=line.split(",") 
    loc = fields[0] 
    if check_area(loc): #THIS IS WHERE YOU TEST FOR AREA 
      TO_USE = TRUE 
    else: 
      TO_USE = FALSE 
  if TO_USE == TRUE: 
    f_out.write(line)   
  line_nr = line_nr+1 
  if line == "\n" : 
     line_nr = 1 
f.closed 
f = open('Final_Variants_X.txt', 'r') 
SNP_FVX= f.readlines(8) 
#print SNP_FVX 
f.closed 
f = open('Hunchback_new_7.txt', 'r') 
chr_hb = f.readlines() 
f.closed 
f = open('Snail_new_7.txt', 'r') 
chr_sn = f.readlines() 
f.closed 
f = open('Krüppel_new_7.txt', 'r') 
chr_kr = f.readlines() 
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f.closed 
for item in chr_hb:                                                 #what table is being used to extract areas 
  chrs,chr_start,start,stop,tf,score,bs_seq = item.split()           #tf-transcription factor, bs_seq-binding site sequence 
  start = int(start) 
  stop = int(stop) 
for item in chr_sn:                                                 #what table is being used to extract areas 
  chrs,chr_start,start,stop,tf,score,bs_seq = item.split()           #tf-transcription factor, bs_seq-binding site sequence 
  start = int(start) 
  stop = int(stop) 
for item in chr_kr:                                                 #what table is being used to extract areas 
  chrs,chr_start,start,stop,tf,score,bs_seq = item.split()           #tf-transcription factor, bs_seq-binding site sequence 
  start = int(start) 
  stop = int(stop) 
counter_hb = 0 
line_counter = 0 
#print line_counter/7 
 
Algorithm D.5: Algorithm that extends N of 7 more N‘s from the sequence alignment files 
(extended_N). 
 
################################# 
# What files are being used 
############################### 
import os 
chrom_dir =os.getcwd()+ "\\"+"Hb_EVE"       #folder containing alignment files 
chrom_list = [] 
############################# 
# Loop for extending N areas 
######################### 
TRUE = 1 
FALSE =0 
def extend_N(nr,string): 
# nr = number how many N to add to each side 
# string = the string to pad the N in. 
 array = list(string) 
 length = len(string) 
 counter =0 
 in_N = FALSE 
 while counter < length: 
   if (array[counter] == "N" and (in_N == FALSE)):                      #finds N and extends front 
     #Extend front 
     in_N =TRUE 
     for i in range(nr+1): 
       to_change = counter-i 
       to_change = max(to_change,0) 
       array[to_change] = "N" 
   elif (array[counter] <>"N" and (in_N == TRUE)):                      #finds not N and extends back 
      #Extend back 
      in_N =FALSE 
      for i in range(nr): 
        to_change = counter+i 
        to_change = min(to_change,length-1) 
        array[to_change] = "N" 
      counter =counter + nr                                             #jumps forward as many N's as were extended 
   #print ''.join(array) 
   counter = counter+1 
 #print array 
 return(''.join(array)) 
############################# 
#-Read area files to array 
############################# 
raw_chrom_dir = os.listdir(chrom_dir)                                   #list of files read in 
for item in  raw_chrom_dir: 
  out =item.split('.')                                                  #split on a . 
  if (len(out) >1): 
    #if (out[1] == ".X" or ".2L" or ".2R" or ".3L" or ".3R"):            #what files are used (the ending) 
      chrom_list.append(item) 
chrom_list = ['primer_area.e'] 
#------------------------------------- 
os.chdir(os.getcwd()+ "\\" + "Hb_EVE")                            #destination file 
for fileX in chrom_list: 
  f = open(chrom_dir+"\\"+fileX, 'r')                                       #File X is the active file 
  active_file = f.readlines() 
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  #active_file = [item.rstrip() for item in active_file] 
  line_counter = 0 
  while line_counter < len(active_file): 
    #print active_file[line_counter] 
    #print "X------------------------X" 
    if active_file[line_counter][0] <> ">":                                     #skips lines beginnin with > 
      active_file[line_counter] = extend_N(7,active_file[line_counter])         #how many N's are changed 
    #print active_file[line_counter] 
    line_counter=line_counter+1 
  outfile = open(chrom_dir+ "\\" + "N_"+fileX, 'w')                                #what is in outfile 
  #print active_file  
  outfile.writelines(active_file) 
  outfile.close() 
  f.closed 
 
Algorithm D.6: Algorithm that writes out SNPs within binding sites and lists minor allele 
frequencies and the genotypes for major and minor alleles (SNP_merge). 
 
import os,fileinput,sys 
FALSE = '' 
 
#loc_file = sys.argv[1]          #file containing binding sites 
#snp_file = sys.argv[2]          #file containing SNP locations 
 
f = open("Hunchback_new_5.txt", 'r')         #open binding sites file 
LOC_raw = f.readlines() 
f.closed 
 
f = open("Final_2L_HB.txt", 'r')         #open SNP file 
SNPs = f.readlines() 
f.closed 
SNPs = SNPs[1:]                 #removing 1st line 
 
#f = open('Final_2L_HB.txt', 'r') 
#F_2L_HB = f.readlines() 
#f.closed 
#F_2L_HB = F_2L_Hb[1:] 
 
#f = open('Final_2L_Snail.txt', 'r') 
#F_2L_Sn = f.readlines() 
#f.closed 
#F_2L_Sn = F_2L_Sn[1:] 
 
#f = open('Final_2L_Kruppel.txt', 'r') 
#F_2L_KR = f.readlines() 
#f.closed 
#F_2L_KR = F_2L_Kr[1:] 
 
 
#f = open('Hunchback_new_5.txt', 'r') 
#chr_hb = f.readlines() 
#f.closed 
 
#f = open('Snail_new_5.txt', 'r') 
#chr_sn = f.readlines() 
#f.closed 
 
#f = open('Kruppel_new_5.txt', 'r') 
#chr_kr = f.readlines() 
#f.closed 
 
loc_list = []                   #modify binding site file 
for item in LOC_raw: 
  item = item.rstrip() 
  line = item.split() 
  loc_list.append(line) 
 
 
#Now lets loop 
reduced = [] 
while len(SNPs) >5:             #as long as there are more than 5 lines 
  data1 = SNPs[0].split(",")    #what is in each line and split on comma 
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  pos   = data1[0]              #this is the loc and what each individual's genotype 
  coverage = (len(data1)- 2 - data1.count('N') ) 
  data4 = SNPs[2].split(",")    #this is A 
  data5 = SNPs[3].split(",")    #this is C 
  data6 = SNPs[4].split(",")    #this is G 
  data7 = SNPs[5].split(",")    #this is T 
  count_A = float(data4[-2])                #use the second last number of this line which is the frequency for A 
  count_C = float(data5[-2])                #use the second last number of this line which is the frequency for C 
  count_G = float(data6[-2])                #use the second last number of this line which is the frequency for G 
  count_T = float(data7[-2])                #use the second last number of this line which is the frequency for T 
  if (count_A > 0) and (count_A <= 0.5):    #defining of a nucleotide is minor og major allele 
    minor = "A" 
    minor_freq = count_A 
  if (count_A >= 0.5): 
    major = "A" 
   
 
  if (count_C > 0) and (count_C <= 0.5):    #defining if a nucleotide is minor og major allele 
    minor = "C" 
    minor_freq = count_C 
  if (count_C >= 0.5): 
    major = "C" 
 
  if (count_G > 0) and (count_G <= 0.5):    #defining if a nucleotide is minor og major allele 
    minor = "G" 
    minor_freq = count_G 
  if (count_G >= 0.5): 
    major = "G"   
 
  if (count_T > 0) and (count_T <= 0.5):    #defining if a nucleotide is minor og major allele 
    minor = "T" 
    minor_freq = count_T 
  if (count_T >= 0.5): 
    major = "T" 
 
### Missing is coverage - how many are genotyped at each position 
  #coverage=sum(count((data4[4:10]))) 
  #(data4[4:15]) 
   
  string = str(pos)+" " + major+ " " +minor+ " " + str(minor_freq) +" " +str(coverage) 
  line = [pos,major,minor,minor_freq,coverage] 
  reduced.append(line) 
  SNPs = SNPs[7:] 
del SNPs 
 
def check_area(SNPs): 
  loc = int(SNPs[0])      
  for item in loc_list: 
    if item[0] == "2L": 
      if (loc >= int(item[2]) and loc <= int(item[3])): 
        SNP_item = item[0]+ "\t"                            #chromosome 
        SNP_item = SNP_item + str(SNPs[0])+ "\t"            #SNP location 
        SNP_item = SNP_item + SNPs[1]+ "\t"                 #Major allele 
        SNP_item = SNP_item + SNPs[2]+ "\t"                 #Minor allele 
        SNP_item = SNP_item + str(SNPs[3])+ "\t"            #minor allele frequency 
        SNP_item = SNP_item + str(SNPs[4])+ "\t"            #Coverage 
        SNP_item = SNP_item + item[4]+ "\t"                 #name of TF 
        SNP_item = SNP_item + item[2]+ "\t"                 #location of start of binding site 
        SNP_item = SNP_item + item[5]+ "\t"                 #score of binding site 
        SNP_item = SNP_item + item[6]+ "\n"                 #sequence of binding site 
        return(SNP_item) 
  return(FALSE)  
 
os.chdir(os.getcwd()+ "\\"+"Large_tables")              #Destination file 
 
outfile = open("test.txt",'a')                          #opening the outfile that has to be previously made 
 
for item in reduced: 
  ret = check_area(item)                                #ret gives all the SNPs found within a site 
  outfile.write(ret)                                    #in outfile is written ret 
#  if ret: 
#    print ret 
outfile.close()
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Appendix E 
Additional tables and figures 
 

 

Figure E.1: Change in score when a SNP affects a binding site. 

 

Table E.1: Pearsons Chi-sqare test on deletions within binding sites. 

Factors tested Chi-square Degrees of freedom p-value 
All 33.5696 2 5.134e-08 

HB vs. KR 7.9612 1 0.004779 
KR vs. SNA 20.0662 1 7.48e-06 
HB vs. SNA 33.5696 2 5.134e-08 

 

Table E.2: Pearsons Chi-sqare test on insertions within binding sites. 

Factors tested Chi-square Degrees of freedom p-value 
All 2.1087 2 0.3484 

HB vs. KR 1.5145 1 0.2185 
KR vs. SNA 0.1799 1 0.6715 
HB vs. SNA 2.1087 2 0.3484 
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Table E.3: Pearsons Chi-sqare test on deletions within binding sites. 

Factors tested Chi-square Degrees of freedom p-value 
All 89.2467 2 2.2e-16 

HB vs. KR 6.8754 1 0.00874 
KR vs. SNA 87.9771 1 2.2e-16 
HB vs. SNA 89.2467 2 2.2e-16 

 

Table E.4: Pearsons Chi-sqare test on insertions within binding sites. 

Factors tested Chi-square Degrees of freedom p-value 
All 12.2864 2 0.002148 

HB vs. KR 4.2172 1 0.04002 
KR vs. SNA 9.4138 1 0.002154 
HB vs. SNA 12.2864 2 0.002148 

 

Table E.5: Statistical analysis for distribution of SNPs within binding sites. 

Region TFBS Chi-square Degrees of freedom p-value 
HB-bound Hb 300.9493 9 2.2e-16 

 Kr 204.3143 9 2.2e-16 
 Sn 174.372 9 2.2e-16 

KR-bound  Hb 607.5041 9 2.2e-16 
 Kr 425.3733 9 2.2e-16 
 Sn 258.9042 9 2.2e-16 

SNA-bound Hb 48.2955 9 2.249e-07 
 Kr 178.3244 9 2.2e-16 
 Sn 32.2284 9 0.0001818 

 

Table E.6: Statistics for distribution of SNPs within binding sites. 

Factors tested Chi-square Degrees of freedom p-value 
HB 46.4883 9 4.887e-07 
KR 36.1776 9 3.687e-05 

SNA 15.9667 9 0.06758 
 

Table E.7: Counts for all SNPs in binding sites in 21 developmental gene regions. 

Chr Gene TF Within BS SNPs in that gene Total BS in gene Ratio of total Ratio of all BS 
2L bowl HB 29 1061 63 0.027 0.460 

  
KR 24 1061 54 0.023 0.444 

    SNA 27 1061 62 0.025 0.435 
2L caud HB 10 475 58 0.021 0.172 

  
KR 16 475 47 0.033 0.340 

    SNA 5 475 46 0.010 0.109 
2L dpp HB 23 999 87 0.023 0.264 

  
KR 15 999 53 0.015 0.283 

    SNA 28 999 103 0.028 0.272 
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Table E.7: Continued. 
 
Chr Gene TF Within BS SNPs in that gene Total BS in gene Ratio of total Ratio of all BS 
2L slp1+2 HB 64 2521 134 0.025 0.478 

  
KR 58 2521 107 0.023 0.542 

    SNA 63 2521 123 0.025 0.512 
2L sna HB 26 522 43 0.050 0.605 

  
KR 17 522 32 0.033 0.531 

    SNA 8 522 37 0.015 0.216 
2R eve HB 12 402 55 0.030 0.218 

  
KR 5 402 50 0.012 0.100 

    SNA 12 402 38 0.030 0.316 
2R kr HB 42 736 130 0.057 0.323 

  
KR 27 736 92 0.037 0.293 

    SNA 15 736 59 0.020 0.254 
2R twi HB 18 553 35 0.033 0.514 

  
KR 10 553 23 0.018 0.434 

    SNA 17 553 23 0.031 0.739 
3L D HB 31 699 74 0.044 0.419 

  
KR 15 699 52 0.021 0.288 

    SNA 17 699 42 0.024 0.405 
3L kni HB 7 267 70 0.026 0.100 

  
KR 8 267 55 0.030 0.145 

    SNA 5 267 36 0.019 0.139 
3R hb HB 26 454 107 0.057 0.243 

  
KR 9 454 67 0.020 0.134 

    SNA 9 454 60 0.020 0.150 
3R hkb HB 1 83 52 0.012 0.019 

  
KR 4 83 31 0.048 0.129 

    SNA 3 83 34 0.036 0.088 
3R ftz HB 23 951 158 0.024 0.146 

  
KR 23 951 119 0.024 0.193 

    SNA 20 951 111 0.021 0.180 
3R opa HB 13 380 110 0.034 0.118 

  
KR 15 380 78 0.039 0.192 

    SNA 3 380 86 0.008 0.035 
3R tll HB 17 417 35 0.040 0.486 

  
KR 9 417 30 0.022 0.300 

    SNA 13 417 31 0.031 0.419 
X brk HB 18 472 83 0.038 0.217 

  
KR 14 472 54 0.030 0.259 

    SNA 7 472 57 0.015 0.123 
X btd HB 8 371 55 0.022 0.145 

  
KR 7 371 34 0.019 0.206 

    SNA 6 371 46 0.016 0.130 
X gt HB 32 620 187 0.052 0.171 

  
KR 24 620 100 0.039 0.240 

    SNA 15 620 55 0.024 0.273 
X run HB 25 751 113 0.033 0.221 

  
KR 26 751 84 0.034 0.310 

    SNA 9 751 56 0.012 0.161 
X sog HB 35 1191 137 0.029 0.255 

  
KR 21 1191 80 0.018 0.262 

    SNA 19 1191 108 0.016 0.176 
X vnd HB 7 356 67 0.020 0.104 

  
KR 5 356 76 0.014 0.066 

    SNA 4 356 90 0.011 0.044 
  


