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Abstract

The object of this study is to propose a Bayesian hierarchical model for observed
monthly precipitation that incorporates predictors based on an output from a me-
teorological model. The observed data come from forty sites across Iceland. Each
month is modeled separately with a Gaussian �eld with Matérn correlation function
and measurement error at the data level. The location and scale parameters at the
latent level are also modeled with Gaussian �elds with Matérn correlation function.
The observed data were collected and corrected for wind, wetting and evaporation
loss by the Icelandic Meteorological O�ce (IMO). The IMO also provided an output
from a linear model of orographic precipitation de�ned on a kilometer by kilometer
grid over Iceland. The output from this model is used to construct predictors for
the latent parameters on the grid. These predictors are then projected onto each of
the observed sites for each month and incorporated into the Bayesian hierarchical
model. Markov chain Monte Carlo (MCMC) was used for posterior inference for the
parameters. Bayesian kriging is used to predict the latent parameters on the grid.

The model developed is quite detailed and accurate in describing the monthly pre-
cipitation even though, due to computational di�culties, some parameters had to
be estimated outside the MCMC scheme. The results indicate that the output from
the meteorological model is well suited to describing the mean monthly precipita-
tion �eld over Iceland. The meteorological model is not as accurate in describing the
variability of the monthly precipitation and generally underestimates it in the North-
East part of Iceland and overestimates it in the South-West corner. The results also
indicate that no long-term temporal trend is present in the monthly precipitation
over the period examined.



Útdráttur

Markmið þessa verkefnis er að setja fram lagskipt Bayesískt líkan fyrir mælingar
á mánaðarlegri úrkomu sem notar skýribreytur unnar úr útkomu veðurfræðilíkans.
Mældu gögnin koma frá fjörutíu veðurstöðvum sem dreifast y�r Ísland. Hver mánuður
er greindur út af fyrir sig með því að lýsa gögnunum með Gaussískum �eti sem lýst
er með Matérn fylgnifalli ásamt mæliskekkju. Stikunum fyrir meðalgildi og dreifni
mánaðarlegrar úrkomu, í öðru lagi líkansins, er einnig lýst með Gaussískum �eti
með Matérn fylgnifalli. Gögnunum var safnað og þau leiðrétt fyrir vind, vætun og
uppgufun af Veðurstofu Íslands (VÍ). Frá VÍ fengust einnig hermd úrkomugögn úr
veðurfræðilíkani fyrir sérhvern punkt á kílómetra sinnum kílómetra neti y�r Íslandi.
Hermda úrkoman úr þessu líkani er notuð til að útbúa skýribreytur fyrir Gaussísku
�etina sem lýsa meðalgildi og dreifni mánaðarlegrar úrkomu á áðurnefndu neti. Þes-
sum skýribreytum er varpað niður á veðurstöðvarnar fyrir hvern mánuð og þær
innleiddar inn í lagskipta Bayesíska líkanið. Markov keðju Monte Carlo hermun er
notuð til að fá eftirámat á stikum líkansins. Bayesíska útgáfan af aðferð Krige er
notuð til að meta Gaussísku �eti meðalgildis og dreifni, í öðru lagi líkansins, í öllum
punktum á netinu.

Líkanið sem sett var fram er margþætt og lýsir á sannfærandi hátt mánaðarlegri
úrkomu, þrátt fyrir að nokkra stika ha� þurft að meta fyrir utan Markov keðju Monte
Carlo reikniritið. Niðurstöðurnar sýna að hermdu úrkomugögnin úr veðurfræðilíkan-
inu lýsa vel meðalgildi mánaðarlegrar úrkomu á Íslandi. Veðurfræðilíkanið er ekki
eins nákvæmt þegar kemur að dreifni mánaðarlegrar úrkomu. Það vanmetur almennt
dreifnina á Norðausturlandi en ofmetur hana á Suðvesturhorninu. Niðurstöðurnar
sýna einnig að engin langtímaleitni er til staðar í mánaðarlegri úrkomu y�r tímabilið
sem skoðað var.

vi



Contents

List of Figures ix

List of Tables xiii

Acknowledgments xv

1 Introduction 1

1.1 Overview of the project . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Possible applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The Data 5

2.1 Rain gauge data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Distributional properties . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Meteorological covariates . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Model 27

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 A Bayesian hierarchical model . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Posterior distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Results 39

4.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Conclusions 79

5.1 Modeling conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Comparison with the meteorological model . . . . . . . . . . . . . . . 81
5.3 Future studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Bibliography 85

vii





List of Figures

2.1 Location of rain gauge sites across Iceland. . . . . . . . . . . . . . . . 5

2.2 Time series for selected stations in January and July. . . . . . . . . . 6

2.3 Boxplot of the data in January and July. . . . . . . . . . . . . . . . . 7

2.4 Correlation of the data in January and July as a function of distance
between sites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Q-Q plot of the data from selected sites in January. . . . . . . . . . . 9

2.6 Q-Q plot of the natural logarithm of the data from selected sites in
January. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.7 p-values from the Anderson-Darling test for the data and the loga-
rithm of the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.8 The log-likelihood function for the Box-Cox parameter λ for selected
sites in January and July . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.9 The log-likelihood function for the Box-Cox parameter λ with all the
sites and all the months taken together . . . . . . . . . . . . . . . . . 13

2.10 Q-Q plot of the Box-Cox transformed data from selected sites in Jan-
uary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.11 p-values from the Anderson Darling test for the transformed data
from all the sites in January and July. . . . . . . . . . . . . . . . . . 15

2.12 Construction of the meteorological covariates for the rain gauge sites. 17

2.13 Meteorological covariate for the spatial mean for January-March. . . . 18

2.14 Meteorological covariate for the spatial mean for April-June. . . . . . 19

ix



LIST OF FIGURES

2.15 Meteorological covariate for the spatial mean for July-September. . . 20

2.16 Meteorological covariate for the spatial mean for October-December. . 21

2.17 Meteorological covariate for the spatial variance for January-March. . 22

2.18 Meteorological covariate for the spatial variance for April-June. . . . 23

2.19 Meteorological covariate for the spatial variance for July-September. . 24

2.20 Meteorological covariate for the spatial variance for October-December. 25

4.1 Posterior density and the MCMC chains for the parameter β for
January-June. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Posterior density and the MCMC chains for the parameter β for July-
December. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Posterior density and the MCMC chains for the parameter η for
January-June. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Posterior density and the MCMC chains for the parameter η for July-
December. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Posterior median and 95% posterior interval for the parameter ~γ for
all months. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6 Posterior median and 95% posterior interval for the parameter ~γ for
all the months taken together in correct temporal order. . . . . . . . 50

4.7 Spatial �eld for median precipitation in January. Posterior estimate,
meteorological covariate and the di�erence between them. . . . . . . . 51

4.8 Spatial �eld for median precipitation in February. Posterior estimate,
meteorological covariate and the di�erence between them. . . . . . . . 52

4.9 Spatial �eld for median precipitation in March. Posterior estimate,
meteorological covariate and the di�erence between them. . . . . . . . 53

4.10 Spatial �eld for median precipitation in April. Posterior estimate,
meteorological covariate and the di�erence between them. . . . . . . . 54

x



LIST OF FIGURES

4.11 Spatial �eld for median precipitation in May. Posterior estimate, me-
teorological covariate and the di�erence between them. . . . . . . . . 55

4.12 Spatial �eld for median precipitation in June. Posterior estimate, me-
teorological covariate and the di�erence between them. . . . . . . . . 56

4.13 Spatial �eld for median precipitation in July. Posterior estimate, me-
teorological covariate and the di�erence between them. . . . . . . . . 57

4.14 Spatial �eld for median precipitation in August. Posterior estimate,
meteorological covariate and the di�erence between them. . . . . . . . 58

4.15 Spatial �eld for median precipitation in September. Posterior esti-
mate, meteorological covariate and the di�erence between them. . . . 59

4.16 Spatial �eld for median precipitation in October. Posterior estimate,
meteorological covariate and the di�erence between them. . . . . . . . 60

4.17 Spatial �eld for median precipitation in November. Posterior estimate,
meteorological covariate and the di�erence between them. . . . . . . . 61

4.18 Spatial �eld for median precipitation in December. Posterior estimate,
meteorological covariate and the di�erence between them. . . . . . . . 62

4.19 Spatial �eld for ~τ in January. Posterior estimate, meteorological co-
variate and the di�erence between them. . . . . . . . . . . . . . . . . 63

4.20 Spatial �eld for ~τ in February. Posterior estimate, meteorological co-
variate and the di�erence between them. . . . . . . . . . . . . . . . . 64

4.21 Spatial �eld for ~τ in March. Posterior estimate, meteorological co-
variate and the di�erence between them. . . . . . . . . . . . . . . . . 65

4.22 Spatial �eld for ~τ in April. Posterior estimate, meteorological covari-
ate and the di�erence between them. . . . . . . . . . . . . . . . . . . 66

4.23 Spatial �eld for ~τ in May. Posterior estimate, meteorological covariate
and the di�erence between them. . . . . . . . . . . . . . . . . . . . . 67

4.24 Spatial �eld for ~τ in June. Posterior estimate, meteorological covari-
ate and the di�erence between them. . . . . . . . . . . . . . . . . . . 68

4.25 Spatial �eld for ~τ in July. Posterior estimate, meteorological covariate
and the di�erence between them. . . . . . . . . . . . . . . . . . . . . 69

xi



LIST OF FIGURES

4.26 Spatial �eld for ~τ in August. Posterior estimate, meteorological co-
variate and the di�erence between them. . . . . . . . . . . . . . . . . 70

4.27 Spatial �eld for ~τ in September. Posterior estimate, meteorological
covariate and the di�erence between them. . . . . . . . . . . . . . . . 71

4.28 Spatial �eld for ~τ in October. Posterior estimate, meteorological co-
variate and the di�erence between them. . . . . . . . . . . . . . . . . 72

4.29 Spatial �eld for ~τ in November. Posterior estimate, meteorological
covariate and the di�erence between them. . . . . . . . . . . . . . . . 73

4.30 Spatial �eld for ~τ in December. Posterior estimate, meteorological
covariate and the di�erence between them. . . . . . . . . . . . . . . . 74

xii



List of Tables

4.1 Final estimates of the parameters ψ, κ and ρ. . . . . . . . . . . . . . 40

4.2 Parameters β1, β2, β3 and β4 in the spatial mean �eld ~α for January-
June. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Parameters β1, β2, β3 and β4 in the spatial mean �eld ~α for July-
December. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Posterior statistics for the parameters β, η, σ2
α, σ

2
γ, σ

2
τ and φ for

January-June. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Posterior statistics for the parameters β, η, σ2
α, σ

2
γ, σ

2
τ and φ for July-

December. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

xiii





Acknowledgments

This M.Sc. project was carried out at the Department of Mathematics, which is
under the Faculty of Physical Sciences, at the University of Iceland and was partially
funded by the University of Iceland Research Fund.

First of all, I would like to specially thank my advisor, Birgir Hrafnkelsson, for his
guidance, support and patience throughout this project. I also thank my co-advisor,
Sven Þ. Sigurðsson, for proofreading the thesis and providing insightful comments.

I would like to thank Philippe Crochet at the Icelandic Meteorological O�ce for
providing the corrected rain gauge data and the output from the linear model of
orographic precipitation.

A special thanks go to my friend and fellow student, Óli Páll Geirssons, for the use
of his method to project the covariates onto the rain gauge sites.

I want to express my gratitude to my family, which has always supported me and
taken interest in my studies. Finally, I would like to thank my girlfriend, Elín, for
her loving support and encouragement over the last months of this project.

Reykjavík, May 2013.

Atli Norðmann Sigurðarson.

xv





1 Introduction

1.1 Overview of the project

There are two main goals of this project. The �rst one is to propose a realistic
Bayesian hierarchical model for the accumulated monthly precipitation in Iceland.
The second one is to incorporate an output from a linear model of orographic precip-
itation, into the Bayesian model, both to bene�t the statistical model and to assess
the accuracy of the meteorological model.

The Bayesian hierarchical model incorporates all available scienti�c knowledge about
precipitation as well as all reasonable assumptions that could be made. To that end
the model assumes a complex distribution for the data which incorporates both
a spatial and temporal component in the mean structure and a complex correla-
tion structure, which incorporates site speci�c variance, correlation between data
and measurement error. Of course, due to the problem of dimensionality and other
problems associated with simulations, the model presented in this thesis is not as
complete or complex as one would want, but it is a realistic model and more elab-
orate than most statistical models generally used in analysis of climatological data
of this type.

The linear model of orographic precipitation is a purely meteorological model. It
does not include a statistical component or incorporate observed data. This model,
explained in [1], was found to be in good agreement with observations. It is a part
of this project to get a more detailed comparison between the output from the
meteorological model and the observed data.

1.2 Possible applications

Good understanding of the distributional properties of precipitation is very im-
portant for understanding and modeling the hydrological cycle. Associated with the
hydrological cycle are phenomena such as �oods, droughts, landslides and avalanches
which are of vital importance for public safety. A good understanding of the cycle

1



1 Introduction

aids in the understanding and explanation of these phenomena. It can also help with
predicting reservoir levels in dams linked to hydrological power stations. A better
knowledge of the hydrological cycle is also important in various scienti�c �elds such
as hydrology, glaciology, climatology and meteorology. A realistic statistical model
adds to the understanding of the cycle and related phenomena as well as providing
information about regional climate and climate change.

Detailed meteorological models and their development play an important role in
tasks such as weather forecasts and describing the distribution of meteorological
variables over various timescales. It is therefore important that these models are
as accurate as possible. A comparison between the output from such models and
observed values and an assessment of their accuracy can give information about
how to best implement these meteorological models and aid in the development of
more sophisticated models.

1.3 Literature review

Since Wikle et al. [2] proposed the use of hierarchical spatio-temporal models for
the analysis of environmental data distributed in time and space, these models have
been developed for usage in environmental sciences to describe various processes.

Many climatological models are being used as well to describe the distribution of
variables such as precipitation and temperature. The output of these climatological
models are often combined (see e.g. [3]), but there is a reason to expect that not all of
these models can be trusted equally well and that some should receive more weight
than others in the combination of their results. Therefore, a comparison between the
output from these models and observed data with statistical methods is important.
Tebaldi and Sansó [4] tackle this problem and show that the Bayesian approach is
well suited to quantifying the uncertainty that shows up in the varying results of the
various models. Their study focused on analyzing past and future trends jointly for
precipitation and temperature. A number of general circulation models were used
in the study, which they regarded as a biased and noisy versions of the true climate
process. Their approach provides an estimate of the overall bias for an ensemble of
model simulations. Often only a simple statistical approach is used for comparing
outputs from climatological models and observed data. In [5] and [1] an inspection
by eye and a simple regression analysis, which does not take into account any spatial
correlation, is used. The Bayesian model presented here is well suited to describing
the variable being analyzed and thus well suited to comparing the observed data
to the output from the meteorological model. It not only allows for site by site
comparison as in [5] and [1] but also evaluates the distributional properties of the
whole �eld. The method presented here could also be used to compare observed data

2



1.4 Structure of the thesis

to outputs from meteorological models other than the linear model of orographic
precipitation used here.

Due to sparsity of rain gauge sites, good methods for spatial predictions are im-
portant. For such predictions several kinds of information sources can be used [6].
Digital maps of climate parameters at a �ne resolution are required for example to
run models of ecosystem carbon and water cycling [7]. Various means have been pro-
posed for these spatial predictions. The ordinary kriging method is the most widely
used but there are also other methods such as elevationally detrended kriging, eleva-
tional cokriging and the PRISM (Precipitation-elevation Regression on Independent
Slopes Model) method developed in [8]. Kriging methods bene�t greatly from a set
of highly relative covariates on a �ne grid. In this project we have access to such
covariates and are therefore in the position to obtain good spatial predictions.

Combining statistical methods and meteorological model output is an active area
of research. Cooley et al. [9] presented a method to predict the distributional prop-
erties of extreme precipitation by using a geographical covariate (elevation) and a
climatological covariate (mean precipitation) on a grid. We use a similar approach to
theirs, in modeling monthly precipitation, in that we use spatial latent �elds for the
location and scale parameters, which incorporate both geographical and climatolog-
ical covariates. The advantage of our method over theirs lies in the quality of our
covariate, which takes into account more complex factors such as topology, air�ow
dynamics, condensed water advection and downslope evaporation and is available
on a �ner grid.

The novelty of our approach lies in incorporating a meteorological covariate, based
on a linear model of orographic precipitation (see [1]), into a statistical model. Also,
we assume a correlation structure, as well as measurement error, at the data level
and include a spatially varying variance at the latent level. Finally, distributional as-
sumptions of the observations are handled with a Box-Cox transformation (see [10])
to achieve normality.

1.4 Structure of the thesis

The thesis is structured in the following way. In Chapter 2 the observed precipitation
data and the output from the linear model of orographic precipitation are presented.
The data from rain gauge sites are examined and its distributional properties ex-
plored. The output from the meteorological model is presented and it is explained
how it was used to create covariates for the rain gauge sites. In Chapter 3 a novel
Bayesian hierarchical model for monthly precipitation is introduced. The motivation
behind the data distribution and the prior distributions is given and their details

3



1 Introduction

described. There is a section about the derivation of the conditional posterior dis-
tribution of the parameters in the model, which are used for posterior inference.
The chapter concludes with a discussion about the complications of the model and
how the sampling scheme was �nally set up. In Chapter 4 we present the main re-
sults of the Bayesian hierarchical model, predict the location and scale parameters
on a 1-km grid over Iceland and compare the output from the aforementioned me-
teorological model to these predictions. Chapter 5 concludes the thesis with some
discussion about the model and its implementation and the comparison with the
meteorological model. Finally, there is a section about ideas on future studies.

4



2 The Data

2.1 Rain gauge data

The data analyzed in this project were supplied by Philippe Crochet at the Icelandic
Meteorological O�ce (IMO). They consists of accumulated monthly precipitation at
40 di�erent sites, corrected for wind, wetting and evaporation loss, over the period
from 1958 to 2006. The correction method can be found in [1]. The sites are mostly
located at low elevation and scattered across Iceland. Most are close to the coast
but some are more inland (cf. Fig. 2.1). The decision to work with this corrected
data, as opposed to completely raw rain gauge data, is natural since the intention
is to compare the data to an output from a linear model of orographic precipitation
developed in [1]. The simulated precipitation output from this model is not subject
to errors due to wind, wetting and evaporation and therefore it should be compared
to data corrected for such errors. The output from the linear model of orographic
precipitation was also provided by Philippe Crochet at the IMO.
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Figure 2.1: Location of rain gauge sites across Iceland.
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2 The Data

The IMO also provided some site speci�c data, such as latitude, longitude and height
above sea as well as xy-coordinates on the ISN93 grid for Iceland. The xy-coordinates
as well as height above sea were used as covariates in the model.

A decision was made early to analyze each month separately. This removes the ne-
cessity of incorporating temporal correlation in the model and also alleviates the
problem of dimensionality. A �rst look at the data suggests that there is substan-
tial di�erence between months and also between stations (cf. Fig. 2.2). It appears
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Figure 2.2: Time series for selected stations in January and July.

necessary to incorporate site speci�c mean and variance in the model (cf. Fig. 2.3).
Figure 2.2 does not show a clear temporal trend so there does not seem to be a
reason to incorporate that in the model. Figure 2.3 indicates that at very few sta-
tions the precipitation follows a symmetric distribution so it doesn't seem plausible
to assume a normal distribution for the data. The data also exhibits a clear spatial
correlation (cf. Fig. 2.4) which will be incorporated in the model.
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2.1 Rain gauge data
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Figure 2.3: Boxplot of the data in January and July.
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Figure 2.4: Correlation of the data in January and July as a function of distance
between sites.
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2 The Data

2.2 Distributional properties

In general when modeling data, it is convenient to assume normality for the observed
values. Of course this assumption should be evaluated and tested. To get an idea
about the data distribution normal and log-normal quantile-quantile plots were made
for the data. The Anderson-Darling test for normality (see e.g. [11] and [12]) was
also performed on both the data and on the log transformed data. Each station
for each month was examined and although in some cases a normal, or log-normal,
distribution might be adequate, neither of these were deemed good enough to be
used as the distributional form for all the data.

Figure 2.5 shows the Q-Q normal plot for the data from selected stations in January
and 2.6 show the Q-Q normal plot for the natural logarithm of the data from the
same stations in January. As can can be seen in the �gures neither the normal
distribution nor the log-normal distribution �t the data adequately.

Figure 2.7 shows the p-values from the Anderson-Darling test for the data and the
natural logarithm of the data from all the stations in January as well as the Q-Q
uniform plot for the p-values. If the composite hypothesis of normality were true the
p-values from the Anderson-Darling test would roughly follow a uniform distribution.
It is clear from Figure 2.7 that this is not the case.

Since transforming the data with the natural logarithm was unsuccessful other trans-
formations had to be considered. To that end it was decided to use the Box-Cox
transformation [10] which is given by

ỹ =


yλ − 1

λ
if λ 6= 0,

ln(y) if λ = 0.
(2.1)

The problem then arose, which value of the Box-Cox parameter λ would be suitable.
It was preferred, for simplicity, to use the same value of λ for all the sites in all
the months. To determine the most suitable value of λ, the Box-Cox log-likelihood
function for the power transformation was plotted for the data at each site in each
month, for values of λ in the interval (−2, 2). Figure 2.8 shows these plots for sites
no. 1-4 in January and sites no. 13-16 in July. All of the �gures showed the top of
a concave function, and therefore there was no need to consider values of λ outside
of the interval (−2, 2) [13]. The value λ = 0.4 was in the 95% con�dence interval for
most of the stations for all of the months. The log-likelihood function for λ was also
examined when using the data from all the sites together in each month and �nally
it was examined when all the months had been taken together. The value for λ
which then maximized the function was λ = 0.4. Figure 2.9 shows the log-likelihood
function for the power transformation when all the sites in each month and all the
months had been taken together. Based on this aforementioned examination of the
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2.2 Distributional properties

Figure 2.5: Q-Q plot of the data from selected sites in January.
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2 The Data

Figure 2.6: Q-Q plot of the natural logarithm of the data from selected sites in
January.
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2.2 Distributional properties
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Figure 2.7: p-values from the Anderson-Darling test for the data (left) and the nat-
ural logarithm of the data (right) from all the stations in January.
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2 The Data

Figure 2.8: The log-likelihood function for the Box-Cox parameter λ for sites no. 1-4
in January (upper) and sites no. 13-16 in July (lower).
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2.2 Distributional properties

data it was decided to use the value λ = 0.4 to transform the data for all the stations
in each month.
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Figure 2.9: The log-likelihood function for the Box-Cox parameter λ with all the sites
in each month and all the months taken together.

Figure 2.10 shows the normal quantile-quantile plot for the data from the same sites
in January, as before, after the Box-Cox transformation with λ = 0.4. The �gure
clearly shows that the transformed data is closer to following a normal distribution
than the untransformed data or the data transformed with the natural logarithm.
Figure 2.11 shows the Anderson-Darling p-values for the data from all the stations
in January and July after the Box Cox transformation. For July the �t is very good
and it is save to assume that the transformed data for July is adequately described
by the normal distribution. The �t for January is not as good as for July, and this
was also the case with a few other months. However, most of them showed a good
�t, and in any case a much better �t than with the untransformed data or the data
transformed with the natural logarithm. Since it was desired to use the same value
of λ for each month it was expected that not all of them would exhibit a perfect
�t. The Box-Cox transformed data �tted the normal distribution much better than
both the untransformed data and the data transformed with the natural logarithm.
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2 The Data

Figure 2.10: Q-Q plot of the Box-Cox transformed data, with parameter λ = 0.4,
from selected sites in January.
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Figure 2.11: p-values from the Anderson Darling test for the transformed data from
all the sites in January (left) and July (right).
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2 The Data

2.3 Meteorological covariates

As already mentioned, one of the goals of this project was to compare the corrected
rain gauge data with the simulated precipitation output from the meteorological
model developed in [1]. This output was provided by Philippe Crochet at the IMO.
The simulated precipitation consisted of gridded simulated daily values on a 1-km
grid over Iceland for the period 1958-2002.

The simulated precipitation is contained in 6 netCDF �les. Since the data being
analyzed is monthly accumulated precipitation the simulated daily values in the
netCDF �les needed to be added together within each month to be comparable to
the data. This was done for all the years 1958-2002 and all the months, taking special
care of leap years by adding over 29 days for February of those years. The monthly
accumulated simulated precipitation was stored in 12 arrays, one for each month.
Each of these arrays contained the simulated monthly value for one month in each
of the grid points on the 1-km grid over Iceland, over the whole period 1958-2002.
Since the observed data was to be transformed with the Box-Cox transformation
with parameter λ = 0.4 (2.1), the simulated monthly values were transformed with
the same transformation, to be comparable to the data. The intention was to use a
statistic based on the simulated precipitation as a covariate in the spatial mean and
variance of the data. To that end the mean and variance of the transformed simulated
monthly values were calculated for each grid point over the period 1958-2002 and
stored in an array for each month.

Figures 2.13 to 2.16 show the meteorological covariate used for the spatial mean on
the 1-km grid over Iceland for all the months. They show the mean in each grid
point transformed back with the inverse of the Box-Cox transformation to have the
scale in millimeters and to be comparable to the median predicted precipitation
from the model (see Chapter 4, Figures 4.7 to 4.18). Figures 2.17 to 2.20 show the
meteorological covariate used for the spatial variance on the 1-km grid over Iceland
for all the months. They show the natural logarithm of the square root of the variance
in each grid point since that was how the covariate was used in the model, as the
mean of the parameter ~τ (see Section 3.2).

With the mean and variance of the Box-Cox transformed simulated monthly precip-
itation available in each grid point it was possible to construct a covariate based on
those values for each of the 40 sites across Iceland. To accomplish that we applied
a method developed by doctoral student, Óli Páll Geirsson, for his Ph.D. project.
This method is such that for each site we �nd which grid points are contained in
a circle around the site with radius r = 1 km. These grid points are then given
weights according to the 1−FBeta(d/r |α = 10, β = 10) function, where FBeta is the
cumulated distribution function of the Beta distribution, d is the distance to the
grid point from the site and α and β are the parameters in the Beta distribution (cf.
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2.3 Meteorological covariates

Fig. 2.12). Finally, the weighted mean of the values in the grid points is calculated,
with the given weights.

The values r = 1 and α = β = 10 were found by minimizing the mean square
error of the variables produced and the monthly mean and variance of the data. The
constraint α = β was imposed in the minimization.
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Figure 2.12: Construction of the meteorological covariates for the rain gauge sites.

After applying this method, covariates, based on the transformed simulated monthly
precipitation, were readily available for the spatial mean and variance of the trans-
formed data for each of the 40 rain gauge sites.
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Figure 2.13: Meteorological covariate for the spatial mean on the 1-km grid over
Iceland for January-March.
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Figure 2.14: Meteorological covariate for the spatial mean on the 1-km grid over
Iceland for April-June.
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Figure 2.15: Meteorological covariate for the spatial mean on the 1-km grid over
Iceland for July-September.

20



2.3 Meteorological covariates

400

500

600

300 400 500 600 700
X (km)

Y
 (

km
)

0

100

200

300

400

500

600

700

800

900

1000
Precipitation

400

500

600

300 400 500 600 700
X (km)

Y
 (

km
)

0

100

200

300

400

500

600

700

800

900

1000
Precipitation

400

500

600

300 400 500 600 700
X (km)

Y
 (

km
)

0

100

200

300

400

500

600

700

800

900

1000
Precipitation

Figure 2.16: Meteorological covariate for the spatial mean on the 1-km grid over
Iceland for October-December.
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Figure 2.17: Meteorological covariate for the spatial variance on the 1-km grid over
Iceland for January-March.

22



2.3 Meteorological covariates

400

500

600

300 400 500 600 700
X (km)

Y
 (

km
)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50
τ

400

500

600

300 400 500 600 700
X (km)

Y
 (

km
)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50
τ

400

500

600

300 400 500 600 700
X (km)

Y
 (

km
)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50
τ

Figure 2.18: Meteorological covariate for the spatial variance on the 1-km grid over
Iceland for April-June.
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Figure 2.19: Meteorological covariate for the spatial variance on the 1-km grid over
Iceland for July-September.
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Figure 2.20: Meteorological covariate for the spatial variance on the 1-km grid over
Iceland for October-December.
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3 Model

3.1 Motivation

Examination of the raw data and some consideration motivated a large part of the
model that was proposed. The spatial structure of the data called for a three level
Bayesian hierarchical model with data level, latent level and hyperparameter level.

First, by looking at Figure 2.3 it looks like sites located close to one another have
a similar precipitation distribution. It is also clear from Figure 2.4 that the data is
spatially correlated. One is therefore inclined to use a spatial correlation structure
at the data level. Due to how scattered the correlation is as a function of distance
there seems to be a need to include a measurement error as well. Both, a spatial
correlation structure and measurement error were incorporated at the data level in
the model.

It is apparent that each rain gauge site should have its own mean and variance at
the latent level. Also since there seems to be a spatial correlation in the data, such
a correlation structure should be incorporated for the spatial mean and variance at
the latent level, as well as on the data level. To try to explain the spatial di�er-
ence between stations it was decided to use the centered xy-coordinates, from the
ISN93 grid over Iceland, and height above sea level (in 100 m.) as covariates for
the spatial mean, along with the meteorological covariate discussed in Section 2.3.
These covariates were only used for the spatial mean at the latent level. They were
not used for the spatial variance as less is known about how it might be a�ected
by these covariates and also to get a better comparison between the data and the
meteorological covariate discussed in Section 2.3.

Recall from Section 2.1, that it was decided to analyze each month separately and
to ignore any temporal correlation. Still the model should be able to account for
the fact that some years are dryer, or wetter, than others. Therefore, it was decided
that although there would be no temporal correlation, each month would have its
own time main e�ect. According to the aforementioned lack of correlation these
parameters should be independent and since there was no apparent temporal trend
in the data these parameters should not contain a trend.
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3 Model

With all the above considered, the model in the next section was proposed.

3.2 A Bayesian hierarchical model

After preliminary data manipulation, the data for each month was contained in a
49x40 matrix (49 year and 40 sites). The matrix was then transformed with the
Box-Cox transformation with parameter λ = 0.4 (2.1). After the transformation the
matrix was turned into a data vector where the �rst 40 entries were the data from
all the 40 stations for year no. 1, the next 40 entries were the data from all the
stations for year no. 2. etc. In what follows this data vector will be denoted by ~y.

The following Bayesian hierarchical model was applied to analyze the Box-Cox trans-
formed monthly accumulated precipitation.

~y | ~α, ~γ, ~τ , ψ, κ ∼ N(Z1~α+ Z2~γ, Q(~τ )(Rν(ψ) + κE)Q(~τ ))

~α | ~β, σ2
α, φ ∼ N(X~β, σ2

αRν(φ))

~γ |σ2
γ ∼ N(0, σ2

γI)

~τ | η, σ2
τ , ρ ∼ N(V η, σ2

τRν(ρ))

ψ |µψ, σ2
ψ ∼ Log-N(µψ, σ

2
ψ)

κ | aκ, bκ ∼ Unf(aκ, bκ)

~β |µβ,Σβ ∼ N(µβ, Σβ)

σ2
α | να, s2α ∼ Inv-χ2(να, s

2
α)

φ |µφ, σ2
φ ∼ Log-N(µφ, σ

2
φ)

σ2
γ | νγ, s2γ ∼ Inv-χ2(νγ, s

2
γ)

η |µη, σ2
η ∼ N(µη, σ

2
η)

σ2
τ | ντ , s2τ ∼ Inv-χ2(ντ , s

2
τ )

ρ |µρ, σ2
ρ ∼ Log-N(µρ, σ

2
ρ).

The spatial dependence of the transformed rain gauge data is modeled with a Gaus-
sian �eld with Matérn correlation, Rν(ψ), with smoothness parameter ν = 1.5 and
range parameter ψ (see e.g. [14]). The measurement error is a scalar multiple of the
point estimate of each sites' median times the model variance e2τi , κ is the scalar
and the matrix E is 1960x1960 dimensional and contains the 40 point estimates,
repeated 49 times, on the diagonal, if we assume that no measurements are missing.
The matrix Z1 and Z2 are index matrices. If we again assume that no measurements
are missing then Z1 is a 1960x40 dimensional, Z2 is 1960x49 dimensional and Z1
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3.2 A Bayesian hierarchical model

and Z2 have the following forms.

Z1 =



1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
...

...
. . .

...
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1



, Z2 =



1 0 . . . 0
1 0 . . . 0
...

...
. . .

...
1 0 . . . 0
0 1 . . . 0
0 1 . . . 0
...

...
. . .

...
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
0 0 . . . 1
...

...
. . .

...
0 0 . . . 1


Still under the assumption that no measurements are missing, the matrix Q is
a 1960x1960 dimensional diagonal matrix. It contains the 40 dimensional vector
exp(~τ ) = ~σ on the diagonal, repeated 49 times, where ~σ = (σ1, . . . , σ40) is the
spatial standard deviation of the transformed rain gauge data.

The latent �eld ~α is a spatial mean and the latent �eld ~τ is the natural logarithm of
the square root of the spatial variance. The latent process ~γ is the time main e�ect.

The latent �eld ~α is modeled as a Gaussian random �eld with Matérn correlation
with smoothness parameter ν = 1.5 and range parameter φ. The 40x4 dimensional
matrix X is a matrix of covariates. X·1 is the meteorological covariate for the spatial
mean, discussed in Section 2.3, X·2 is the centered x-coordinate from the ISN93 grid,
X·3 is the centered y-coordinate from the ISN93 grid and X·4 is height above sea
level in 100 m.

The latent �eld ~τ is modeled as a Gaussian random �eld with Matérn correlation
with smoothness parameter ν = 1.5 and range parameter ρ. The 40x1 dimensional
matrix V contains the natural logarithm of the square root of the meteorological
covariate for the spatial variance, see Section 2.3.

The latent process ~γ is modeled as an independent Gaussian process with mean zero
and variance σ2

γ.

The hyperparameters for the latent �elds ~α and ~τ and the latent process ~γ are given
prior distribution as listed above. Other parameters in the model are set as suitable
constants.
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3 Model

3.3 Posterior distributions

Let ~θ = (~α, ~γ, σ2
η, ψ,

~β, σ2
α, φ, σ

2
γ). Here Markov Chain Monte Carlo (MCMC) based

on the Gibbs sampler (see e.g. [15]) is used to sample from the posterior distribution
of ~θ.

The prior distribution of ~θ is

p(~θ) = p(~α, ~γ, ~τ , ψ, κ, ~β, σ2
α, φ, σ

2
γ, η, σ

2
τ , ρ)

= p(~α | ~γ, ~τ , ψ, κ, ~β, σ2
α, φ, σ

2
γ, η, σ

2
τ , ρ) · p(~γ | ~τ , ψ, κ, ~β, σ2

α, φ, σ
2
γ, η, σ

2
τ , ρ)

· p(~τ |ψ, κ, ~β, σ2
α, φ, σ

2
γ, η, σ

2
τ , ρ) · p(ψ |κ, ~β, σ2

α, φ, σ
2
γ, η, σ

2
τ , ρ)

· p(κ | ~β, σ2
α, φ, σ

2
γ, η, σ

2
τ , ρ) · p(~β |σ2

α, φ, σ
2
γ, η, σ

2
τ , ρ) · p(σ2

α |φ, σ2
γ, η, σ

2
τ , ρ)

· p(φ |σ2
γ, η, σ

2
τ , ρ) · p(σ2

γ | η, σ2
τ , ρ) · p(η |σ2

τ , ρ) · p(σ2
τ | ρ) · p(ρ)

= p(~α | ~β, σ2
α, φ) · p(~γ |σ2

γ) · p(~τ | η, σ2
τ , ρ) · p(ψ) · p(κ) · p(~β) · p(σ2

α) · p(φ)

· p(σ2
γ) · p(η) · p(σ2

τ ) · p(ρ).

The posterior distribution of ~θ is

p(~θ | ~y) ∝ p(~θ)p(~y |~θ)

where

p(~y |~θ) = p(~y | ~α, ~γ, ~τ , ψ, κ) = N(Z1~α+ Z2~γ, Q(~τ )(Rν(ψ) + κE)Q(~τ )).

Therefore the posterior distribution of ~θ is given by

p(~θ | ~y) ∝ p(~θ)p(~y |~θ)

= p(~y | ~α, ~γ, ~τ , ψ, κ) · p(~α | ~β, σ2
α, φ) · p(~γ |σ2

γ) · p(~τ | η, σ2
τ , ρ) · p(ψ) · p(κ)

· p(~β) · p(σ2
α) · p(φ) · p(σ2

γ) · p(η) · p(σ2
τ ) · p(ρ)

= N(~y |Z1~α+ Z2~γ, Q(~τ )(Rν(ψ) + κE)Q(~τ )) ·N(~α |X~β, σ2
αRν(φ))

·N(~γ | 0, σ2
γI) ·N(~τ |V η, σ2

τRν(ρ)) · Log-N(ψ |µψ, σ2
ψ)

· Unf(κ | aκ, bκ) ·N(~β |µβ, Σβ) · Inv-χ2(σ2
α | να, s2α) · Log-N(φ |µφ, σ2

φ)

· Inv-χ2(σ2
γ | νγ, s2γ) ·N(η |µη, σ2

η) · Inv-χ2(σ2
τ | ντ , s2τ ) · Log-N(ρ |µρ, σ2

ρ).

The Gibbs sampler consists of the posterior conditional distributions of ~α, ~γ, ~τ , ψ,
κ, ~β, σ2

α, φ, σ
2
γ, η, σ

2
τ and ρ.
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3.3 Posterior distributions

These conditional distributions are

p(~α | rest) ∝ p(~y | ~α, ~γ, ~τ , ψ, κ) · p(~α | ~β, σ2
α, φ)

p(~γ | rest) ∝ p(~y | ~α, ~γ, ~τ , ψ, κ) · p(~γ |σ2
γ)

p(~τ | rest) ∝ p(~y | ~α, ~γ, ~τ , ψ, κ) · p(~τ | η, σ2
τ , ρ)

p(ψ | rest) ∝ p(~y | ~α, ~γ, ~τ , ψ, κ) · p(ψ)

p(κ | rest) ∝ p(~y | ~α, ~γ, ~τ , ψ, κ) · p(κ)

p(~β | rest) ∝ p(~α | ~β, σ2
α, φ) · p(~β)

p(σ2
α | rest) ∝ p(~α | ~β, σ2

α, φ) · p(σ2
α)

p(φ | rest) ∝ p(~α | ~β, σ2
α, φ) · p(φ)

p(σ2
γ | rest) ∝ p(~γ |σ2

γ) · p(σ2
γ)

p(η | rest) ∝ p(~τ | η, σ2
τ , ρ) · p(η)

p(σ2
τ | rest) ∝ p(~τ | η, σ2

τ , ρ) · p(σ2
τ )

p(ρ | rest) ∝ p(~τ | η, σ2
τ , ρ) · p(ρ).

A detailed description of the conditional distributions is given below.

In what follows let

Σy = Q(~τ )(Rν(ψ) + κE)Q(~τ ),

Σα = σ2
αRν(φ) and

Στ = σ2
τRν(ρ).

The conditional distribution of ~α is such that

p(~α | rest) ∝ p(~y | ~α, ~γ, ~τ , ψ, κ) · p(~α | ~β, σ2
α, φ)

= N(~y |Z1~α+ Z2~γ, Σy) ·N(~α |X~β,Σα)

∝ exp

(
−1

2
((~y − Z1~α− Z2~γ)TΣ−1

y (~y − Z1~α− Z2~γ))

)
· exp

(
−1

2
((~α−X~β)TΣ−1

α (~α−X~β))

)
∝ exp

(
−1

2
(~αT (ZT

1 Σ−1
y Z1 + Σ−1

α )~α

− ~αT (ZT
1 Σ−1

y ~y − ZT
1 Σ−1

y Z2~γ + Σ−1
α X~β))

)
.

It follows that

p(~α | rest) = N(~α |µα,post,Σα,post)
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where

µα,post = (ZT
1 Σ−1

y Z1 + Σ−1
α )−1(ZT

1 Σ−1
y ~y − ZT

1 Σ−1
y Z2~γ + Σ−1

α X~β),

Σα,post = (ZT
1 Σ−1

y Z1 + Σ−1
α )−1.

Similarly it can be seen that

p(~γ | rest) = N(~γ |µγ,post,Σγ,post),

where

µγ,post = (ZT
2 Σ−1

y Z2 + σ−2
γ I)−1(ZT

2 Σ−1
y ~y − ZT

2 Σ−1
y Z1~α),

Σγ,post = (ZT
2 Σ−1

y Z2 + σ−2
γ I)−1.

It is also apparent by similar reasoning that

p(~β | rest) = N(~β |µβ,post,Σβ,post),

where

µβ,post = (XTΣ−1
α X + Σ−1

β )−1(XTΣ−1
α ~α+ Σ−1

β µβ),

Σβ,post = (XTΣ−1
α X + Σ−1

β )−1,

and that

p(η | rest) = N(η |µη,post, σ2
η,post),

where

µη,post = (V TΣ−1
τ V + σ−2

η )−1(V TΣ−1
τ ~τ + σ−2

η µη),

σ2
η,post = (V TΣ−1

τ V + σ−2
η )−1.

We also have that

p(σ2
α | rest) ∝ p(~α | ~β, σ2

α, φ) · p(σ2
α)

= N(~α |X~β, σ2
αRν(φ)) · Inv-χ2(σ2

α | να, s2α)

∝ (σ2
α)−nα/2 exp

(
−1

2
((~α−X~β)T (σ2

αRν(φ))−1(~α−X~β))

)
· (σ2

α)−(να/2+1) exp

(
−ναs

2
α

2σ2
α

)
= (σ2

α)−((να+nα)/2+1) exp

(
− 1

2σ2
α

(ναs
2
α + (~α−X~β)TRν(φ)−1(~α−X~β))

)
.
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3.3 Posterior distributions

It can therefore be seen that

p(σ2
α | rest) = Inv-χ2(σ2

α | να,post, s2α,post),

where

να,post = να + nα,

s2α,post =
ναs

2
α + (~α−X~β)TRν(φ)−1(~α−X~β)

να + nα
and

nα = 40.

Similarly we have that

p(σ2
τ | rest) = Inv-χ2(σ2

τ | ντ,post, s2τ,post) and

p(σ2
γ | rest) = Inv-χ2(σ2

γ | νγ,post, s2γ,post),

where

ντ,post = ντ + nτ ,

s2τ,post =
ντs

2
τ + (~τ − V η)TRν(ρ)−1(~τ − V η)

ντ + nτ
,

nτ = 40,

νγ,post = νγ + nγ,

s2γ,post =
νγs

2
γ + ~γT~γ

νγ + nγ
and

nγ = 49.

As can be seen above, the parameters already mentioned all have a conjugate prior
distribution and therefore their conditional posterior distributions all have known
form and can easily be sampled from. That is not the case with the parameters which
follow. Their posterior conditional distribution are not of any known distributional
form. Therefore, to sample from their distribution the Metropolis Hastings algorithm
(see e.g. [15]) is used or other methods explained later in this text.

The conditional distribution of ~τ is such that

p(~τ | rest) ∝ p(~y | ~α, ~γ, ~τ , ψ, κ) · p(~τ | β, σ2
τ , ρ)

= N(~y |Z1~α+ Z2~γ, Q(~τ )(Rν(ψ) + κE)Q(~τ )) ·N(~τ |V η,Στ )

∝ |Q(~τ )(Rν(ψ) + κE)Q(~τ )|−
1
2

· exp

(
−1

2
((~y − Z1~α− Z2~γ)T (Q(~τ )(Rν(ψ) + κE)Q(~τ ))−1(~y − Z1~α− Z2~γ))

)
exp

(
−1

2
((~τ − V η)TΣ−1

τ (~τ − V η))

)
.

(3.1)
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The conditional distribution of (ψ, κ) is given by

p(ψ, κ | rest) ∝ p(~y | ~α, ~γ, ~τ , ψ, κ) · p(ψ) · p(κ)

= N(~y |Z1~α+ Z2~γ,Σy) · Log-N(ψ |µψ, σ2
ψ) · Unf(κ | aκ, bκ)

∝ |Q(~τ )(Rν(ψ) + κE)Q(~τ )|−
1
2

· exp

(
−1

2
((~y − Z1~α− Z2~γ)T (Q(~τ )(Rν(ψ) + κE)Q(~τ ))−1(~y − Z1~α− Z2~γ))

)
· ψ−1 exp

(
− 1

2σ2
ψ

(log(ψ)− µψ)2

)
.

(3.2)

Finally

p(φ | rest) ∝ p(~α | ~β, σ2
α, φ) · p(φ)

= N(~α |X~β, σ2
αRν(φ)) · Log-N(φ |µφ, σ2

φ)

∝ |σ2
αRν(φ)|−

1
2 exp

(
−1

2
((~α−X~β)T (σ2

αRν(φ))−1(~α−X~β))

)
· φ−1 exp

(
− 1

2σ2
φ

(log(φ)− µφ)2

) (3.3)

and

p(ρ | rest) ∝ p(~τ | η, σ2
τ , ρ) · p(ρ)

= N(~τ |V η, σ2
τRν(ρ)) · Log-N(ρ |µρ, σ2

ρ)

∝ |σ2
τRν(ρ)|−

1
2 exp

(
−1

2
((~τ − V η)T (σ2

τRν(ρ))−1(~τ − V η))

)
· ρ−1 exp

(
− 1

2σ2
ρ

(log(ρ)− µρ)2
) (3.4)

3.4 Execution

As mentioned in the previous section the Gibbs sampler was used to draw samples
from the joint posterior distribution of ~θ. However, due to problems with dimen-
sionality and correlation between parameters, not all the unknown parameters could
be included in the sampler. To start with, it was not feasible to include the param-
eters ψ and κ because that would have made it necessary to update and invert the
1960x1960 (ignoring missing data) dimensional matrix (Rν(ψ) + κE). Even though
this is a block diagonal matrix of 49 blocks of size 40x40, each step would have been
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too time consuming for the sampler to be practical . Instead these parameters were
estimated by minimizing the negative of the natural logarithm of their posterior
conditional distribution (3.2) with other parameters set equal to estimates which
are explained below.

The parameter ρ was introduced relatively late in the development of the model.
Since it was already needed to use the Metropolis Hastings algorithm for the param-
eter ~τ and since ρ turned out to be highly correlated with τ they would have needed
to be sampled together by using a block updating scheme. Instead of doing that
it was decided to estimate this parameter similarly to what was done with ψ and
κ. Therefore, ρ was estimated by minimizing the negative of the natural logarithm
of it's posterior conditional distribution (3.4) with other parameters set equal to
estimates which are explained below.

Now, the parameter ~τ was a bit troublesome to deal with. It is multidimensional
and needed the Metropolis Hastings algorithm to be sampled from. To start with
the proposed value of ~τ , ~τ ∗, was sampled from independent normal distributions
with the previous value of ~τ as the mean. This resulted in a poor proposed value,
�rstly because the acceptance ratio was di�cult to tweak and secondly, the sample
produced was highly correlated and therefore converged quite slowly towards the
target distribution. To get a better proposed value of ~τ we estimated the covari-
ance matrix of the posterior distribution of ~τ , Στ , and used a multivariate normal
distribution with the previous value of ~τ as the mean and the estimated covariance
matrix. This improved the sampling scheme and the resulting chain for ~τ converged
reasonably fast. The estimate of the covariance matrix was obtained by minimizing
the negative of the natural logarithm of the posterior conditional distribution of ~τ ,
�nding the Hessian matrix at this minimum and then inverting it. This was done
with other parameters set equal to estimates which are explained below.

All parameters, other than ψ, κ and ρ, were included in the Gibbs sampler. In
each run, four chains were sampled, all with 10,000 iterations with 3,000 as burn-in.
The parameters ~α, ~γ and ~τ were sampled using vector updating. Two Metropolis
Hastings steps were needed. ~τ was sampled by using a proposal from a multivariate
normal distribution with the aforementioned estimated covariance matrix. The pa-
rameter φ was sampled simply by using a proposal from a normal distribution with
the previous value of φ as the mean and the variance tweaked to get a reasonable
acceptance rate.

Since the parameters ψ, κ, and ρ needed to be estimated outside of the Gibbs
sampler it was decided to run the sampler a few times and update their estimates
after each run. After some consideration it was decided to use the following scheme
to get reasonable estimates of all the parameters.
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Sampling scheme

1. Estimate the parameters.
First ψ and κ were estimated. For that, estimates for the parameters ~α, ~γ and
~τ were needed. ~α was estimated with the sample median for each station, ~γ
was estimated with the sample median for each year minus the sample median
of all the data and ~τ was estimated with the natural logarithm of the sample
standard deviation for each station.
Next ρ was estimated. For that, estimates for the parameters η and σ2

τ , as well
as ~τ , were needed. An estimate for η was found by linear regression on the
estimate of ~τ , previously found, and the matrix V and σ2

τ was estimated with
the variance of the estimate of ~τ . This �rst estimate for ρ was quite di�erent
for di�erent months, with values ranging from around 0.3 to around 23. It
was decided to use the maximum of these values as a �rst estimate for all the
months since a value of around 23 seems more reasonable as the range of the
correlation than a smaller value.
Finally an estimate Στ was obtained by using all the other aforementioned
estimates.

2. Run the Gibbs sampler with the values of ψ, κ and ρ �xed as the estimates
obtained in the previous step and the estimate of Στ as the covariance matrix
of the proposal distribution for ~τ .

3. Update the estimates of ψ, κ, ρ and Στ by using posterior medians, obtained
from the Gibbs sampler, as point estimates of other parameters.

4. Run the Gibbs sampler with the updated estimates of ψ, κ, ρ and Στ .

5. Update the estimates of the parameters again.

6. Examine which of the ~β parameters, corresponding to the covariates for the
spatial mean, contain zero in their 95% posterior intervals and remove the ones
which do.
It turned out that all the ~β parameters contained zero in their 95% poste-
rior interval except for β1, which corresponds to the meteorological covariate
discussed in Section 2.3.

7. Run the Gibbs sampler for the last time with the remaining covariate, using
the updated estimates of ψ, κ, ρ and Στ .

8. Get the �nal estimates of the values of the parameters ψ, κ and ρ by using
posterior medians, obtained from the �nal run of the Gibbs sampler, as point
estimates of other parameters.
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This sampling scheme resulted in convincing samples of the parameters in the Gibbs
sampler and reasonable point estimates of the parameters ψ, κ and ρ.
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4 Results

4.1 Description

In this section the main results from the Bayesian hierarchical model are presented
with a short description. A more involved discussion about the results can be found
in Section 4.2.

As was said in Section 3.4, it was examined which covariates could be removed from
the spatial mean �eld, ~α, before the last run of the Gibbs sampler. It turned out
that all the covariates, except for the meteorological covariate discussed in Section
2.3, could be removed for all the months, with the exception of July, where the
parameter corresponding to height above sea level turned out to have most of its
posterior probability mass above zero. Despite this, it was decided to remove the
three covariates from the model for all the months. Tables 4.2 and 4.3 contain the
posterior median, 2.5% quantile and 97.5% quantile for the parameters β1, β2, β3
and β4, corresponding to the covariates in the spatial mean �eld, ~α, for all the
months before being removed from the model. After removing the three covariates,
the Gibbs sampler was run for the �nal time with the meteorological covariate only.

The �gures and tables that follow show various statistics and estimates for the
parameters of the model after the �nal run of the Gibbs sampler. Figures 4.1 and
4.2 show the posterior density and the mixture of the 4 chains, based on the Gibbs
sampler, for the remaining covariate e�ect β = β1 in the spatial mean �eld. Figures
4.3 and 4.4 show the same for the parameter η, corresponding to the meteorological
covariate in the spatial �eld for ~τ . Table 4.1 contains the �nal estimates of the
parameters ψ, κ and ρ based on point estimates of other parameters obtained from
the �nal run of the Gibbs sampler. Tables 4.4 and 4.5 show posterior statistics for
all the univariate parameters, included in the Gibbs sampler, for all the months,
after the �nal run of the sampler. Figure 4.5 shows the posterior median along
with the 95% posterior interval for the parameter ~γ for each month and Figure
4.6 shows the same for all the months taken together in correct temporal order.
Figures 4.7 to 4.18 show the estimated median precipitation �eld over Iceland along
with the corresponding meteorological covariate and the di�erence between the two
(posterior estimate minus covariate). The estimated median precipitation is based
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on the posterior median of ~α, the covariate at unobserved sites and the kriging
method explained in [16]. Both the posterior median of ~α and the covariate at
unobserved sites are transformed with the inverse of the Box-Cox transformation
(2.1) so that the scale of the �gures can be in millimeters. Figures 4.19 to 4.30
show the estimated ~τ �eld over Iceland along with the corresponding meteorological
covariate and the di�erence between the two (posterior estimate minus covariate).
The �gures for the estimated ~τ �eld are made the same way as the corresponding
�gures for the median precipitation, except that neither the posterior median of ~τ
nor the covariate at unobserved sites are transformed in any way.

Table 4.1: Final estimates of the parameters ψ, κ and ρ. Note that ψ and ρ are in
km.

Month ψ κ ρ
January 139.625 0.022 199.460

February 133.647 0.018 309.492

March 102.222 0.022 176.148

April 85.492 0.030 234.135

May 150.796 0.026 247.693

June 143.506 0.023 158.264

July 97.881 0.022 101.621

August 113.890 0.014 274.103

September 113.008 0.014 140.453

October 95.611 0.012 249.614

November 120.915 0.021 230.886

December 113.152 0.021 165.616

40



4.1 Description

Table 4.2: Parameters β1, β2, β3 and β4 in the spatial mean �eld ~α for January-June.

January 2.5% quantile Median 97.5% quantile

β1 1.001 1.074 1.149

β2 -0.005 -0.001 0.004

β3 -0.006 0.001 0.008

β4 -0.648 -0.254 0.143

February 2.5% quantile Median 97.5% quantile

β1 1.000 1.079 1.158

β2 -0.006 -0.001 0.004

β3 -0.005 0.001 0.008

β4 -0.440 -0.065 0.305

March 2.5%-quant median 97.5%-quant

β1 0.983 1.054 1.124

β2 -0.006 -0.001 0.003

β3 -0.004 0.002 0.009

β4 -0.469 -0.094 0.288

April 2.5%-quant median 97.5%-quant

β1 0.979 1.043 1.107

β2 -0.004 -0.001 0.003

β3 -0.006 -0.001 0.005

β4 -0.479 -0.140 0.195

May 2.5%-quant median 97.5%-quant

β1 0.898 0.980 1.062

β2 -0.005 -0.001 0.003

β3 -0.007 -0.002 0.003

β4 -0.382 -0.099 0.182

June 2.5%-quant median 97.5%-quant

β1 0.916 0.991 1.065

β2 -0.006 -0.002 0.001

β3 -0.008 -0.002 0.003

β4 -0.076 0.220 0.510
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Table 4.3: Parameters β1, β2, β3 and β4 in the spatial mean �eld ~α for July-
December.

July 2.5%-quant median 97.5%-quant

β1 0.914 0.976 1.039

β2 -0.005 -0.001 0.002

β3 -0.008 -0.003 0.002

β4 0.052 0.348 0.645

August 2.5%-quant median 97.5%-quant

β1 0.892 0.965 1.038

β2 -0.006 -0.002 0.002

β3 -0.006 -0.000 0.005

β4 -0.040 0.274 0.591

September 2.5%-quant median 97.5%-quant

β1 0.983 1.045 1.106

β2 -0.007 -0.003 0.001

β3 -0.003 0.003 0.009

β4 -0.365 -0.038 0.285

October 2.5%-quant median 97.5%-quant

β1 0.989 1.051 1.113

β2 -0.006 -0.001 0.003

β3 -0.005 0.001 0.006

β4 -0.488 -0.155 0.182

November 2.5%-quant median 97.5%-quant

β1 1.025 1.094 1.162

β2 -0.005 -0.001 0.004

β3 -0.004 0.002 0.009

β4 -0.618 -0.259 0.101

December 2.5%-quant median 97.5%-quant

β1 1.012 1.078 1.142

β2 -0.005 -0.000 0.004

β3 -0.008 -0.002 0.005

β4 -0.613 -0.226 0.163
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Figure 4.1: Posterior density and the MCMC chains for the parameter β for
January-June.
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Figure 4.2: Posterior density and the MCMC chains for the parameter β for July-
December.
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Figure 4.3: Posterior density and the MCMC chains for the parameter η for January-
June.
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Figure 4.4: Posterior density and the MCMC chains for the parameter η for July-
December.
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4.1 Description

Table 4.4: Posterior statistics for the parameters β, η, σ2
α, σ

2
γ, σ

2
τ and φ for January-

June.

January Median Stand. dev. 2.5%-quantile 25%-quantile 75%-quantile 97.5%-quantile

β 1.06 0.02 1.02 1.05 1.08 1.11
η 1.23 0.08 1.07 1.18 1.28 1.37

σ2
α 2.64 0.69 1.71 2.25 3.11 4.36

σ2
γ 2.29 1.20 0.67 1.61 3.13 5.31

σ2
τ 0.05 0.02 0.02 0.04 0.06 0.10
φ 0.49 2.35 0.03 0.18 1.34 8.56

February Median Stand. dev. 2.5%-quantile 25%-quantile 75%-quantile 97.5%-quantile

β 1.08 0.03 1.02 1.06 1.09 1.13
η 1.08 0.10 0.87 1.01 1.15 1.28

σ2
α 2.07 0.54 1.32 1.76 2.44 3.43

σ2
γ 5.02 1.78 2.43 3.97 6.23 9.39

σ2
τ 0.08 0.03 0.04 0.06 0.10 0.15
φ 0.47 1.91 0.03 0.18 1.28 6.84

March Median Stand. dev. 2.5%-quantile 25%-quantile 75%-quantile 97.5%-quantile

β 1.05 0.02 1.00 1.03 1.06 1.09
η 1.02 0.08 0.84 0.96 1.07 1.18

σ2
α 2.23 0.59 1.42 1.90 2.65 3.70

σ2
γ 3.62 1.25 1.80 2.89 4.48 6.64

σ2
τ 0.08 0.03 0.04 0.07 0.10 0.15
φ 0.46 1.78 0.02 0.17 1.26 6.44

April Median Stand. dev. 2.5%-quantile 25%-quantile 75%-quantile 97.5%-quantile

β 1.04 0.02 1.00 1.03 1.05 1.08
η 0.90 0.10 0.70 0.83 0.96 1.08

σ2
α 1.75 0.46 1.11 1.49 2.06 2.89

σ2
γ 1.79 0.65 0.86 1.42 2.24 3.38

σ2
τ 0.06 0.02 0.03 0.05 0.08 0.12
φ 0.46 1.89 0.02 0.17 1.23 6.95

May Median Stand. dev. 2.5%-quantile 25%-quantile 75%-quantile 97.5%-quantile

β 0.99 0.03 0.94 0.97 1.01 1.05
η 0.82 0.09 0.65 0.76 0.88 0.98

σ2
α 1.20 0.34 0.74 1.01 1.43 2.06

σ2
γ 3.08 1.13 1.38 2.41 3.85 5.83

σ2
τ 0.07 0.02 0.04 0.06 0.09 0.13
φ 0.47 2.38 0.02 0.17 1.33 8.74

June Median Stand. dev. 2.5%-quantile 25%-quantile 75%-quantile 97.5%-quantile

β 1.01 0.02 0.96 1.00 1.03 1.06
η 0.78 0.09 0.61 0.72 0.84 0.95

σ2
α 1.51 0.41 0.95 1.28 1.79 2.52

σ2
γ 1.54 0.71 0.57 1.13 2.03 3.28

σ2
τ 0.10 0.03 0.06 0.08 0.12 0.18
φ 0.49 2.17 0.03 0.18 1.40 8.17
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4 Results

Table 4.5: Posterior statistics for the parameters β, η, σ2
α, σ

2
γ, σ

2
τ and φ for July-

December.

July Median Stand. dev. 2.5%-quantile 25%-quantile 75%-quantile 97.5%-quantile

β 1.01 0.02 0.97 0.99 1.02 1.04
η 0.70 0.06 0.57 0.66 0.74 0.83

σ2
α 1.77 0.46 1.14 1.51 2.09 2.92

σ2
γ 0.84 0.39 0.33 0.62 1.11 1.86

σ2
τ 0.05 0.02 0.03 0.04 0.07 0.11
φ 0.50 2.39 0.03 0.18 1.41 9.01

August Median Stand. dev. 2.5%-quantile 25%-quantile 75%-quantile 97.5%-quantile

β 0.98 0.03 0.93 0.96 1.00 1.03
η 0.82 0.08 0.67 0.77 0.87 0.97

σ2
α 1.80 0.48 1.13 1.52 2.13 3.00

σ2
γ 3.53 1.17 1.82 2.84 4.33 6.39

σ2
τ 0.08 0.03 0.04 0.06 0.09 0.14
φ 0.48 2.09 0.03 0.17 1.31 7.86

September Median Stand. dev. 2.5%-quantile 25%-quantile 75%-quantile 97.5%-quantile

β 1.04 0.02 1.00 1.02 1.05 1.08
η 1.00 0.08 0.84 0.95 1.06 1.17

σ2
α 1.80 0.48 1.15 1.53 2.14 3.00

σ2
γ 1.76 0.64 0.84 1.39 2.21 3.31

σ2
τ 0.08 0.02 0.05 0.06 0.09 0.14
φ 0.43 1.42 0.03 0.17 1.12 5.11

October Median Stand. dev. 2.5%-quantile 25%-quantile 75%-quantile 97.5%-quantile

β 1.05 0.02 1.00 1.03 1.06 1.09
η 1.09 0.09 0.92 1.03 1.15 1.27

σ2
α 1.78 0.47 1.12 1.51 2.10 2.95

σ2
γ 3.52 1.14 1.89 2.88 4.33 6.33

σ2
τ 0.07 0.02 0.04 0.06 0.09 0.13
φ 0.44 1.81 0.02 0.16 1.19 6.30

November Median Stand. dev. 2.5%-quantile 25%-quantile 75%-quantile 97.5%-quantile

β 1.08 0.02 1.04 1.06 1.10 1.12
η 0.96 0.08 0.79 0.90 1.01 1.11

σ2
α 2.15 0.58 1.37 1.83 2.55 3.61

σ2
γ 2.47 1.12 0.88 1.82 3.25 5.22

σ2
τ 0.05 0.02 0.03 0.04 0.07 0.11
φ 0.48 2.78 0.02 0.18 1.38 10.42

December Median Stand. dev. 2.5%-quantile 25%-quantile 75%-quantile 97.5%-quantile

β 1.08 0.02 1.03 1.06 1.09 1.12
η 0.95 0.12 0.71 0.87 1.03 1.17

σ2
α 2.42 0.62 1.56 2.07 2.86 3.94

σ2
γ 2.23 0.86 1.01 1.74 2.82 4.37

σ2
τ 0.12 0.04 0.07 0.10 0.14 0.22
φ 0.46 1.86 0.03 0.17 1.23 6.54
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4.1 Description
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Figure 4.5: Posterior median and 95% posterior interval for the parameter ~γ for all
months.
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4 Results
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Figure 4.6: Posterior median and 95% posterior interval for the parameter ~γ for all
the months taken together in correct temporal order.
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4.1 Description
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Figure 4.7: Spatial �eld for median precipitation in January. Posterior estimate,
meteorological covariate and the di�erence between them.
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4 Results
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Figure 4.8: Spatial �eld for median precipitation in February. Posterior estimate,
meteorological covariate and the di�erence between them.
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4.1 Description
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Figure 4.9: Spatial �eld for median precipitation in March. Posterior estimate, me-
teorological covariate and the di�erence between them.
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4 Results
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Figure 4.10: Spatial �eld for median precipitation in April. Posterior estimate, me-
teorological covariate and the di�erence between them.
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Figure 4.11: Spatial �eld for median precipitation in May. Posterior estimate, me-
teorological covariate and the di�erence between them.
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Figure 4.12: Spatial �eld for median precipitation in June. Posterior estimate, me-
teorological covariate and the di�erence between them.
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Figure 4.13: Spatial �eld for median precipitation in July. Posterior estimate, me-
teorological covariate and the di�erence between them.
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Figure 4.14: Spatial �eld for median precipitation in August. Posterior estimate,
meteorological covariate and the di�erence between them.
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Figure 4.15: Spatial �eld for median precipitation in September. Posterior estimate,
meteorological covariate and the di�erence between them.
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Figure 4.16: Spatial �eld for median precipitation in October. Posterior estimate,
meteorological covariate and the di�erence between them.
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Figure 4.17: Spatial �eld for median precipitation in November. Posterior estimate,
meteorological covariate and the di�erence between them.
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Figure 4.18: Spatial �eld for median precipitation in December. Posterior estimate,
meteorological covariate and the di�erence between them.
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Figure 4.19: Spatial �eld for ~τ in January. Posterior estimate, meteorological co-
variate and the di�erence between them.
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Figure 4.20: Spatial �eld for ~τ in February. Posterior estimate, meteorological co-
variate and the di�erence between them.
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Figure 4.21: Spatial �eld for ~τ in March. Posterior estimate, meteorological covariate
and the di�erence between them.
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Figure 4.22: Spatial �eld for ~τ in April. Posterior estimate, meteorological covariate
and the di�erence between them.
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Figure 4.23: Spatial �eld for ~τ in May. Posterior estimate, meteorological covariate
and the di�erence between them.
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Figure 4.24: Spatial �eld for ~τ in June. Posterior estimate, meteorological covariate
and the di�erence between them.
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Figure 4.25: Spatial �eld for ~τ in July. Posterior estimate, meteorological covariate
and the di�erence between them.
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Figure 4.26: Spatial �eld for ~τ in August. Posterior estimate, meteorological covari-
ate and the di�erence between them.
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Figure 4.27: Spatial �eld for ~τ in September. Posterior estimate, meteorological co-
variate and the di�erence between them.
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Figure 4.28: Spatial �eld for ~τ in October. Posterior estimate, meteorological co-
variate and the di�erence between them.
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Figure 4.29: Spatial �eld for ~τ in November. Posterior estimate, meteorological co-
variate and the di�erence between them.
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Figure 4.30: Spatial �eld for ~τ in December. Posterior estimate, meteorological co-
variate and the di�erence between them.
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4.2 Discussion

In this section we will discuss the model output, �gures and tables. Since the results
for all the months are quite similar, we will discuss the main model aspects for all the
months together instead of discussing each month separately. First we shall discuss
the spatial mean �eld, then the spatial �eld for ~τ and �nally the temporal process
~γ along with the parameters ψ and κ.

The spatial �eld for the mean monthly precipitation, ~α, is controlled by three pa-
rameters, β, σ2

α and φ. β is the e�ect of the meteorological covariate and controls
the mean of the �eld. σ2

α and φ control the amplitude and range of the spatial corre-
lation, respectively, of the mean zero �eld ~εα, where ~α = Xβ+~εα. Firstly, it can be
seen in Figures 4.7 to 4.18 that there is more precipitation during the winter than
the summer. The values for the parameter β in the spatial mean �eld can be seen in
Tables 4.4 and 4.5. The interpretation of the values of β is such that when it is larger
than 1.0, the meteorological model is underestimating the mean monthly precipita-
tion, and when β is smaller than 1.0 the model is overestimating the mean monthly
precipitation. As can be seen in the tables the point estimate for β (the posterior
median) is generally above the value 1.0. It is largest 1.08 in February, November and
December but smallest 0.98 in August and 0.99 in May. In case of the winter months
November to February the value 1.0 is not contained in the 95% posterior interval
for β, and for March, April, September and October the value 1.0 is exactly at the
2.5% quantile. On the other hand, for the summer months, May to August the point
estimate is very close to the value 1.0 (1.01 for both June and July) and the 95%
posterior interval for all these months contain the value 1.0. This means that the
output from the meteorological model describes the mean precipitation quite well
for the months May to August. However, it underestimates the precipitation in the
winter months, November to February and also gives a slight underestimation for
the months in spring and autumn. The point estimate for the parameter σ2

α ranges
from 1.2 in May to 2.64 in January. Its value is higher for the winter months than
the summer months. This shows that not only is the mean monthly precipitation
greater during the winter than the summer, but also the variability of the mean zero
�eld, ~εα, is greater as well. The estimate for the parameter φ is very similar for all
the months. Its value ranges from 0.46 to 0.5. This value is quite low and maybe
not what one might expect. It means that the range of the spatial correlation of the
mean zero �eld, ~εα, is very short. One might have expected that this range would
turn out to be larger, since sites close in space should exhibit a similar error term.
This small value can probably be explained by the quality of the covariate being
used.

The spatial �eld for ~τ describes the variability of the monthly precipitation. It
has the same structure as the �eld for ~α, the mean monthly precipitation, and
is controlled by the parameters η, σ2

τ and ρ. The parameter η in the spatial �eld

75



4 Results

for ~τ is the e�ect of the meteorological covariate. The same goes for η as it does
for β, i.e. when it is larger than 1.0, the meteorological model is underestimating
the variability of the monthly precipitation and when η is smaller than 1.0 it is
overestimating the variability of the monthly precipitation. As can be seen in Tables
4.4 and 4.5 the point estimate for η (the posterior median) di�ers quite a lot from
1.0 with values ranging from 0.7 to 1.23. The fact that the range of values for η
is larger than for β shows that the meteorological model does not give as good a
result when describing the variability of monthly precipitation as it does in case of
the mean. The posterior 95% intervals for η are wider than those for β. That is to
be expected since the parameters ~τ , and therefore η, are more di�cult to estimate
than the parameters ~α and β. The 95% posterior intervals that do not include the
value 1.0 are those of January and May to August. In January the meteorological
model is underestimating the variability and for the summer months May to August
it is overestimating the variability. The estimates for the parameter σ2

τ are quite
low. They range from 0.05 to 0.12 between the months. They are quite similar for
all the months and there is no clear pattern to be seen e.g. between summer and
winter. These low values indicate that the amplitude of the mean zero �eld ~ετ , where
~τ = V η+~ετ , is relatively small. The �nal estimates of the parameter ρ can be found
in Table 4.1. They di�er somewhat between the months and range from around 140
km to around 309 km. Note that the Matérn smoothness is ν = 1.5 and the spatial
correlation at 3ρ is around 0.2. The values obtained for ρ are much higher than those
for the parameter φ in the spatial �eld for ~α. There is of course some di�erence in
how these estimates are obtained. φ was included in the Gibbs sampler but ρ was
estimated separately based on numerical methods and the posterior estimates of
other parameters. Nevertheless, we are reasonably con�dent in these estimates for
ρ. These high values that are obtained for ρ indicate that the range of the spatial
correlation is quite long in the mean zero �eld ~ετ . This means that sites close to
one another are highly correlated when it comes to the error term in the ~τ �eld for
monthly precipitation.

The temporal process ~γ serves to raise or lower the spatial �eld ~α within each month
to best describe the mean of the monthly precipitation. As can be seen in Figures
4.5 and 4.6 it's not identically zero and therefore it appears to have clear purpose
in describing the data. Figure 4.6 show the parameter ~γ for all the months taken
together in correct temporal order. The �gure shows no apparent temporal trend
in monthly precipitation over the years 1958-2006. However, by looking at Figure
4.5 it can be seen that some months appear to be more stable when it comes to
monthly precipitation than others. In April, June, July and September there is little
�uctuation in the parameters ~γ meaning that these months are quite stable. This
means that the spatial �eld for mean monthly precipitation, ~α, describes it quite
well, in these months, with relatively small adjustments made over the years. Other
months exhibit more �uctuation, especially February and October. In these months
the monthly precipitation seems to vary greater over the years than in the more
stable months.
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The �nal estimates of the parameter ψ can be found in Table 4.1. They range from
around 85 km. up to around 150 km. between months. The parameter ψ is the range
parameter of the Matérn spatial �eld describing the correlation at the data level.
This spatial �eld and the parameter ~γ describe the deviation from the expected
�eld ~α. Note that, as with ρ, the Matérn smoothness is ν = 1.5 and the spatial
correlation of the data at 3ψ is around 0.2.

Table 4.1 also shows the �nal estimates of the parameter κ. They are quite similar
between months with values ranging from 0.014 to 0.03. The purpose of the pa-
rameter κ is to account for measurement error. The values of the estimates indicate
that the standard deviation of the measurement error is from around 5.2% to around
28.8% (calculated according to 100

√
κeτi/

√
Eii) of the point estimate for the median

precipitation at each site.
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5.1 Modeling conclusions

In this section we will discuss the model being used in this project and re�ect on its
structure, application, and pros and cons.

The model used in this project is not a standard one and developed for the two data
sources described here. It incorporates some things not widely used when modeling
similar kinds of data, but which are however intuitive to use. The nonstandard
parts of the model are the use of data level correlation, as well as measurement
error, spatially varying variance and last but not least the use of an output from a
meteorological model as a covariate. There were of course some simpli�cation that
had to be made. Firstly, not all of the parameters could be included in the Gibbs
sampler. Secondly, it was decided to analyze each month separately, which makes
the analysis simpler.

Data level correlation structure is a natural modeling aspect when it comes to me-
teorological data taken at sites located close to one another. With Iceland being
relatively small, most weather systems passing by a�ect the whole country, there-
fore it is natural to assume that measurements of phenomena such as monthly pre-
cipitation are quite correlated over a large part of Iceland. Including a correlation
parameter in the model does come with its problems though. The dimensionality of
the data is quite large. In this project we examined 40 sites over 49 years (assuming
no missing data) which adds up to 1960 data points for each month. Including a
correlation parameter at the data level in the Gibbs sampler would have resulted in
manipulations of rather large matrices in each iteration of the sampler. Even though
these matrices are relatively sparse these manipulations are quite time consuming
and it may be next to impossible to run the Gibbs sampler for long enough in a
reasonable amount of time. This problem could of course be avoided by paralleling
the sampler and running it on multiple processors but that task was to big a feat for
this project. Therefore we opted to evaluate this parameter outside of the sampler
according to the method described in Section 3.4. Even though we were not able to
include this parameter in the sampler we feel that the model is better with it than
without and we are quite con�dent in its estimates.
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Including a measurement error is a natural modeling assumption. At �rst the mea-
surement error parameter, κ, was not included in the model. In that setup the
parameter ~τ was ill-behaved and converged slowly to its target distribution. After
introducing κ in the model things ran much more smoothly and ~τ started to con-
verge at a reasonable rate. It seems as in the absence of κ, ~τ was trying to take on
its role with little success.

The incorporation of site speci�c variance is natural when modeling precipitation.
Modeling the variance with a spatial �eld with some correlation structure is even
more natural since one would expect sites close to one another to exhibit simi-
lar characteristics when it comes precipitation. The problem with including such a
�eld in the model is mainly the way it enters into the likelihood at the data level.
This parameter does not have a known conjugate prior distribution and therefore
a Metropolis Hastings step is needed for it in the sampler. This parameter is also
multidimensional (40 dimensional in this project) and thus, in the Metropolis Hast-
ings algorithm, one needs to update a vector and not just a univariate parameter.
This makes it more di�cult to �nd a usable proposal distribution, one which moves
enough around the target mode and has a reasonable acceptance rate, and it is very
probable that independent proposals will not work very well. The scheme that we
used gave quite good results but it needed a separate algorithm to be used to es-
timate the covariance matrix of the target distribution. Also, since the Metropolis
Hastings algorithm is used for this parameter, its sample tends to be highly cor-
related which means that it converges slower than other parameters, which results
in the need to run the sampler with longer chains which can be time consuming.
Also, one can run into trouble with the hyperparameters for the spatial variance
�eld, like we did with the parameter ρ. The range parameter, ρ, has no known con-
jugate priors so it too needed to be sampled using a Metropolis Hastings algorithm.
Including ρ in the sampler would have resulted in the need for some sort of block
updating scheme since its draws would have been highly correlated with the draws
of ~τ . This was outside the scope of this project and therefore we opted for other
methods. Estimating ρ outside of the Gibbs sampler makes it harder to judge the
accuracy of the estimate, but we are reasonably con�dent in its estimated values.

Using an output from an advanced meteorological model as a covariate in a statis-
tical model has two bene�ts. Firstly, the covariates extracted from such an output
are probably quite good, as turned out to be the case in this project. Meteorological
models usually incorporate other covariates such as height above sea level, wind
direction and topological factors that a�ect the weather and therefore there is less
need to include such other covariates in the statistical model. Also since the mete-
orological model takes these factors into account one gets a good covariate, which
incorporates the necessary factors, without having a to have detailed knowledge of
meteorology.

The decision to analyze each month separately was taken quite early in the develop-
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ment of this project. This simpli�ed the problem at hand. Firstly the dimensionality
of the data was reduced extensively and much fewer parameters were needed in the
model, as there was no need to include a temporal correlation structure or a seasonal
component. Despite this simpli�cation, we feel that the analysis in this project is
quite extensive and that the model performs well in describing the monthly precip-
itation and its various aspects.

Overall our conclusion is that the model presented in this project is quite detailed
and accurate in describing the data at hand. It incorporates most of which one
can imagine is needed in the analysis of monthly precipitation when it is analyzed
separately for each month. However using such a model is not straight forward and
results in various di�culties and problems to be solved. The time it takes to run the
model is also quite long, one run of the Gibbs sampler for all the months takes around
13 hours. Thus, the setup of this model is not ideal if one needs fast computations.

5.2 Comparison with the meteorological model

In this section we will discuss the comparison between the output from our statistical
model and the output from the meteorological model, which can be seen in Chapter
4.

The output from the meteorological model discussed in Section 2.3 gives a good
description of the mean monthly precipitation. This can be seen in Figures 4.7 to
4.18. The estimated median precipitation �elds seem to have a very similar shape
as those for the meteorological covariate and generally the meteorological model
is in fair agreement with the data. The values of the parameter β, discussed in
Section 4.2, show that the output from the meteorological model describes the mean
precipitation very well for the months May to August. However, it underestimates
the precipitation in the winter months, November to February, and also gives a
slight underestimation for the months in spring and autumn, though there is less
discrepancy there than in the winter months. It can also be seen in Figures 4.7 to
4.18 that the underestimation of the model is greater at the more extreme parts
of the �eld i.e. where there is more precipitation. Recall from Chapter 4 that the
estimated values for φ were quite small. This result further indicates the accuracy
of the meteorological model as an estimate for the mean monthly precipitation, as
these small values can probably be explained by the fact that the meteorological
covariate describes the ~α �eld very well, i.e. the �eld can be adequately estimated
by the covariate corrected by the factor β and there is little need for further spatial
correction.

The output from the meteorological model does not describe the variability of the
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monthly precipitation as well as it describes the mean. This can be seen in Figures
4.19 to 4.30. When looking at the di�erence between the output from our statis-
tical model and the meteorological model one can see that there is always some
discrepancy and this generally is displayed in big chunks. For most of the months
the meteorological model underestimates the variability in the North-East part of
Iceland and overestimates it in the South-West corner. The values of the parameter
η, discussed in Section 4.2 also show the inaccuracy of the meteorological models
estimation of the variability. Both the range of the values of η, across the months, is
greater than that of β and also the 95% posterior intervals are wider, although that
can probably be attributed to the fact that η is more di�cult to estimate than β.
The values of η show that in January the meteorological model is underestimating
the variability and for the summer months May to August it is overestimating the
variability. Overall, the posterior estimates and intervals for η show that the mete-
orological model does not describe the variability in monthly precipitation as well
as it does the mean. The values of the parameter ρ in the spatial �eld for ~τ are
much higher than those of φ in the spatial �eld for ~α. This is further indication of
the inaccuracy of the meteorological covariate in describing the ~τ �eld. The reason
for these large values of ρ is probably that the meteorological covariate being used
is not adequately describing the ~τ �eld and thus the discrepancy is corrected with
error �eld with high spatial correlation.

5.3 Future studies

In conjunction with previous sections it is natural to list a few extensions of the
model to be considered for future studies.

What �rst comes to mind is to try to incorporate all the parameters in the Gibbs
sampler, i.e. to include the range parameter ψ of the data level correlation, the
measurement error parameter κ and also the range parameter ρ for the correlation of
~τ . Including ψ and κ will result in manipulations of large matrices in each iteration
of the sampler and therefore a way has to be found to do this rapidly to get a
reasonable runtime. Including ρ will most likely result in some updating problems
of ρ and ~τ and therefore some specialized updating scheme will be needed.

In this project we opted for using the same Box-Cox parameter λ to transform all
the data to normality. Perhaps it gives better results to use di�erent λ for di�erent
months and maybe even also for di�erent sites. It could also be possible to include
the parameter λ in the Gibbs sampler.

By looking at the �gures for the spatial �eld for ~τ (see Figures 4.19 to 4.30), espe-
cially examining the di�erence between the output from our statistical model and
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the output from the meteorological model, it seems that it might be interesting to
include longitude and latitude, or other grid variables, as covariates, together with
the meteorological covariate, for the parameter ~τ .

An obvious extension of the analysis in this project is to analyze all the months
together in correct temporal order. That would result in a spatio-temporal model
with much higher dimensionality, which on its own is problematic. For such an
analysis one would need a seasonal component to adjust the mean of the temporal
process. This seasonal component could be modeled with trigonometric functions or
perhaps B-splines. A correlation structure in the temporal process would be needed
as well. An analysis, of that kind, would result in many additional parameters for
the model, needed to describe the temporal process. One would probably have to
�nd a clever way to estimate all these parameters since it might be quite di�cult to
include them all in a Gibbs sampler.
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