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Abstract

Satellites provide very valuable data about the Earth, e.g., for environmental
monitoring, weather forecasting, map-making and military intelligence. But
satellites are expensive, both to build and operate. Therefore it is important
to make the best use of the data obtained from available satellites, e.g., by
combining the output from different sensors.

A good example of this is the fusion of multispectral satellite images of low
spatial and high spectral resolution with panchromatic images of high spatial
and low spectral resolution. This kind of image fusion is called pansharpening
and it is the topic of the thesis.

The thesis is comprised of three parts. In the first part, an observational model
for the pansharpening process is derived. A new pansharpening method is de-
veloped that involves solving an ill-posed inverse problem dictated by the ob-
servational model. The solution is based on a convex optimization problem
that is regularized by total variation. The performance of the method is evalu-
ated using quantitative quality metrics for pansharpening using two well-known
datasets and the results are compared to existing state-of-the-art methods. The
proposed method is shown to give excellent results.

In the second part of the thesis, the solution of the inverse problem for pan-
sharpening using sparsity regularization is investigated. These methods exploit
the sparsity of the coefficients of multi-scale overcomplete transforms. Methods
based on the two main paradigms of sparsity optimization, i.e., the analysis and
synthesis formulations, are derived and the two approaches are then compared
in a number of experiments.

In the final part, the classification of pansharpened remote sensing imagery is
addressed using two kinds of unsupervised classifiers. Images produced using
several pansharpening methods are classified and the results compared and an-
alyzed with the complementary nature of the spectral and spatial quality of
the pansharpened images in mind. Furthermore, it is investigated how the use
of techniques based on mathematical morphology can be used to increase the
classification accuracy.
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Part I

Pansharpening Using Total
Variation Regularization





Chapter 1

Introduction

Satellites provide very valuable data about the Earth, e.g., for environmental
monitoring, weather forecasting, map-making and military intelligence. But
satellites are expensive, both to build and operate. Therefore we are obliged
to make the best use of the data obtained from available satellites, e.g., by
combining the output from different sensors.

A good example of this is the fusion of multispectral satellite images of low
spatial and high spectral resolution with panchromatic images of high spatial
and low spectral resolution.

A multispectral sensor captures light of several distinct wavelengths or bands for
each spatial element or pixel. Hence, a multispectral image can be considered
to consist of several layers where each layer contains the recorded intensity of
light of a specified wavelength, or rather, a tight band of wavelengths. On the
other hand, a panchromatic sensor captures the total intensity of light from a
broad continuous range of wavelengths.

Due to cost and complexity issues, the multispectral sensor has much smaller
aperture than the panchromatic sensor thus reducing the spatial resolution of
the sensed multispectral image [1]. For a typical modern multispectral satellite
sensor, this ratio is 1 to 16, i.e., a single multispectral image pixel translates to
4 by 4 panchromatic pixels.

Since the multispectral image contains information about light of specific and
narrow bands of wavelengths, it has a high spectral resolution while the panchro-
matic image has low spectral resolution since it represents light of a broad spec-
trum of wavelengths. On the other hand, the multispectral image has low spatial
resolution while the panchromatic image has a high spatial resolution.
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Pansharpening is the fusion of the images captured by the multispectral and
panchromatic sensors. The output is an image that has the high spectral res-
olution of the multispectral image and also the high spatial resolution of the
panchromatic image. One can say that the spatial resolution of the multispec-
tral image has been increased using the information contained in the panchro-
matic image. This means that the pansharpened image has the same number
of pixels as the panchromatic image and also the same number of bands as the
multispectral image, hence pansharpening can be regarded as an image or sensor
fusion process.

Pansharpening is a typical under-determined inverse problem. If e.g., the mul-
tispectral image is 256 × 256 × 4 pixels then the corresponding panchromatic
image is 1024× 1024 pixels. These two images are the observed data. The pan-
sharpened multispectral image that we would like to estimate has 1024×1024×4
pixels. The number of pixels that have to be estimated is 3.2 times the number
of pixels that make up the observed data.

In part I we begin by developing a model that describes the pansharpening
process using a classical observational model. The key element of this model
is the model matrix M which will end up having 3.2 times more columns than
rows so the underlying system of equations that needs to be solved is under-
determined.

To solve this ill-posed problem additional constraints are needed, i.e., the so-
lution needs regularization. We investigate the use of total variation (TV) [2]
regularization to solve this inverse problem. The TV norm has been shown to be
very effective for denoising signals, especially those that are piece-wise smooth.
Most natural images are piece-wise smooth so this choice of regularization is
well justified.

In order to evaluate the quantitative quality of pansharpened imagery, various
quality metrics have been proposed. There are two aspects to the quality of
a pansharpened image. One is the spectral quality, sometimes referred to as
spectral consistency and the other is the spatial quality, i.e. how much spatial
detail has been transferred from the PAN image. This is sometimes measured as
the correlation of the panchromatic image with the bands of the pansharpened
image. In this study, we evaluate the proposed methods using a number of
spectral and spatial quality metrics and also compare our results with several
other pansharpening methods that represent the main paradigms in the field.

In the second part of this thesis, the pansharpening inverse problem is tackled
in a different way. Instead of using the TV norm, we will investigate spar-
sity regularization techniques. Sparse representations of signals and systems,
and methods that exploit sparsity are currently a very active research topic in
modern signal-processing and related fields.
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There are two dominant paradigms that are studied in this work. These are
the so called analysis and synthesis approaches which are two different formula-
tions for sparsity regularization of the coefficients of overcomplete transforms.
This involves solving an optimization problem where the non-sparsity of the
coefficients of the transformed solution is penalized.

The analysis formulation sparsifies the forward coefficients as the signal is an-
alyzed by the forward transform operator, while the synthesis formulation is
based upon sparsifying the linear combination of columns of the reconstruction
operator, as the signal is reconstructed from the coefficients.

These two methods are compared using three different multi-scale overcomplete
transforms to see if there is potential for sparsity regularization in pansharpening
based on the previously defined model.

In the final part of the thesis, the classification of pansharpened imagery is
studied. Unsupervised classification is a very important topic in remote sensing
but very little has been published in the literature regarding the benefits to
classification when using pansharpened images instead of the low-resolution MS
image.

The classification of pansharpened images produced using several different meth-
ods will studied extensively in a number of experiments, with particular atten-
tion to the effects of spectral and spatial quality on the classification accuracy.
Furthermore, the extraction of additional spatial information using techniques
derived from mathematical morphology that can be used to increase the classi-
fication accuracy, is investigated. These techniques are based on the so called
Morphological Profile and its derivative.
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Chapter 2

Overview of Pansharpening
Paradigms

Over the years, a number of different pansharpening methods have been pro-
posed and many of these methods are either based on Multiresolution Analysis
(MRA) or Component Substitution (CS). There are also hybrid methods based
on both MRA and CS. Then there are methods based on variational techniques,
such as the P+XS method. The MRA methods are usually based on methods
such as the Undecimated Discrete Wavelet Transform (UDWT) or other kinds
of pyramidal or multi-scale representations. Typically, the MS image is up-
scaled and a multiresolution representation is calculated for this image along
with the PAN image. The idea is to use some kind of injection model to replace
or enhance the detail of the MS image with details from the PAN image.

The CS methods typically make use of transformations such as Principal Com-
ponent Analysis (PCA) or a spectral transformation such as Intensity Hue Sat-
uration (IHS) transformation, where a component derived from the MS image is
substituted for a component derived from the PAN image and then the fused or
pansharpened image is obtained from the inverse transformation. There are also
methods that do not fit either of these categories such as the method proposed
in this letter.

The remainder of this chapter is devoted to give a short overview of those
different methodologies.
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Figure 2.1: Basic wavelet based pansharpening.

2.1 MRA methods

The multi-resolution analysis approach to pansharpening is widely used and
there are numerous techniques today based on it. The basic idea is to take the
discrete wavelet transform (DWT) [3] of both the MS and Pan images. The next
step is to retain the approximation coefficients for the MS image but replace
the detail coefficients with those from the Pan image. Instead of just replacing
the coefficients, some fusion rule can be used. This is shown in figure 2.1.

The main drawback to this approach is that there will be substantial artifacts in
the fused image due to the nature of the DWT, i.e., it is not shift-invariant and
lacks directionality, thus the spatial quality of the final fused image is reduced.
One approach to overcome this problems is to use the undecimated DWT [4]
or other overcomplete transforms such as the curvelet transform or the non-
subsampled contourlet transform.

2.2 CS methods

2.2.1 PCA method

A good example of a this kind of method is the PCA method of pansharpening
[5]. First, the mutually correlated bands of the upscaled MS image (i.e., the
MS image is upsampled so it has same size as PAN image) are transformed
using PCA into a set of uncorrelated components whose number is the same
as number of bands in the MS image. The first principal component has the
highest variance and is similar to the Pan image itself. The next step is to
replace this component with the actual Pan image and finally take the inverse
transform to get the fused image. Figure 2.2 illustrates this.
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Figure 2.2: PCA based pansharpening.

2.2.2 IHS fusion

The IHS method [6–9] is a frequently used method, especially when working
with LANDSAT and SPOT imagery. The basic idea is to first transform the MS
image into intensity (I), hue (H) and saturation (S) components (IHS colorspace)
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The next step is to scale the Pan image so that it has the same mean and
variance as the intensity component of the MS image

P = σI
σP

(P − µ(P )) + µ(I).

The intensity component is then replaced with the appropriately scaled Pan
image and finally the inverse IHS transformation is taken to get the fused image

F (R)
F (G)
F (G)

 =

R+ P − I
G+ P − I
B + P − I

 .
The IHS method produces images that typically have high spatial fidelity but
suffer from spectral distortion.
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Chapter 3

Image Formation Model

In this chapter an image formation model for pansharpening will be developed.
This model can also be called an observational model since it relates the pan-
sharpened image to the observed data. This model is not new and has been
used in several methods [10] [11].

The model is derived from two assumptions about the true pansharpened im-
age. The first assumption is that downgrading (decimation) the pansharpened
image gives the observed low resolution MS image. This is based on the spec-
tral consistency property proposed by Lucien Wald [12], which states that the
degraded pansharpened image should give an image similar to the original MS
image. However, the exact type of filter used in the degradation is not specified.

The exact choice of this filter is important and it will affect the quality of
the fused image, both the spectral and spatial quality, as will be shown later.
However, to keep the derivation of the model simple, a 4 tap moving average
filter will be used in this chapter, while the actual implementation of algorithm
based on this model will use a more advanced filter.

The other assumption is that a linear combination of the bands of the pansharp-
ened image gives the observed PAN image. This is based on the fact that for
a typical 4 band MS sensor, the wavelengths of the R, G, B and NIR bands
are within the range of wavelengths of the PAN sensor. The relative spectral
response of the IKONOS sensor is shown in Figure 3.1. In the figure it is seen
that the PAN band overlaps the R, G, B and NIR bands.

The main criticism of this assumption is that it is an over-simplification and
does not hold if there are bands in the MS image that do not overlap with
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Figure 3.1: Relative Spectral Response of the IKONOS sensor for the panchro-
matic, R,G,B and N bands.

the PAN band, as is the case with new sensors which have more than 4 MS
bands. Also, that the constraint this imposes on the pansharpened image, is
too limiting for the eventual solution. However, when there is overlap for all MS
bands, this assumption can be justified as a reasonable approximation, and by
carefully selecting the coefficients of the linear combination, very good results
can be achieved.

Thus, the model is based on the following assumptions

• Decimation of the fused image gives the observed MS image.

• Linear combination of the bands of the fused image approximates the PAN
image.

The dataset consists of a high spatial resolution PAN image, denoted by yPAN
and the low spatial resolution MS image, denoted by yMS. The PAN image has
dimensions four times larger than the MS image so the ratio in pixels is 1 to 16.
The MS image contains 4 bands, RGB and near-infrared (NIR).

The PAN image is of dimension M × N and the MS image is of dimension
m × n where m = M/4 and n = N/4. The vectors yPAN and yMS are the
vectorized PAN and MS images, respectively and yMS is arranged as yMS =
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[1, · · · ,mn︸ ︷︷ ︸
R

, 1, · · · ,mn︸ ︷︷ ︸
G

, 1, · · · ,mn︸ ︷︷ ︸
B

, 1, · · · ,mn︸ ︷︷ ︸
NIR

]T where mn is the number of pixels

in each band. The vectorized pansharpened image x has this same arrangement
where there are MN pixels in each band.

The assumption that the low spatial resolution MS image can be described as
a degradation (decimation) of the pansharpened image x is described in matrix
notation as yMS = M1x + ε where

M1 = 1
16I4 ⊗

(
(In ⊗ 1T4×1)⊗ (Im ⊗ 1T4×1)

)
(3.1)

is a decimation matrix of size 4mn× 4MN , I4 is an identity matrix of size 4 by
4, ⊗ is the Kronecker product and ε is zero mean Gaussian noise.

The second assumption, that the PAN image is a linear combination of the
bands of the pansharpened image with some additive Gaussian noise is written
in matrix notation as yPAN = M2x + ε where ε is zero mean Gaussian noise
and

M2 = [ω1IMN , ω2IMN , ω3IMN , ω4IMN ], (3.2)

where ω1, · · · , ω4 are constants that sum to one. These constants determine the
weight of each band in the PAN image.

Now M1 and M2 have the same number of columns and thus we can combine
the expressions for yMS and yPAN into a single equation which is the classical
observational model,

y = Mx + ε, (3.3)

where y = [yTMS,yTPAN]T and M = [MT
1 ,MT

2 ]T .
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Chapter 4

Majorization-Minimization

Majorization-Minimization (MM) is an important technique in optimization the-
ory. The idea behind MM can be traced back to the work of J. M. Ortega and
W. C. Rheinboldt in 1970 [13] while it appeared more fully developed under the
name MM in the paper [14] by Hunter et al. MM can be used to turn a difficult
optimization problem into a sequence of easier ones, by the use of surrogate
functions. A surrogate function is a function that majorizes (minorizes) the ob-
jective function being minimized (maximized). In the following discussion it is
assumed that we are minimizing the objective function and hence the surrogate
function will be called a majorizer.

If we denote the objective function to be minimized by J(x) and suppose that
this function is not necessarily convex nor differentiable, it is obvious that the
minimization of J(x) is a difficult problem using conventional convex optimiza-
tion techniques.

The central idea of MM is that if we have a guess for the minimum of J(x),
assuming that J is vector valued, denoted by the vector xk, we would like to find
a new xk+1 that further minimizes J(x) therefore getting closer to the actual
minimum of J(x), i.e., we want to find a xk+1 such that J(xk+1) < J(xk).

But how do we find the new vector xk+1? This is done by finding a function
that majorizes J(x), denote this function by Q(x). For Q(x) to be a majorizer
of J(x) it has to be chosen such that Q(x) ≥ J(x) for all x and such that
Q(xk) = J(xk). The next step is to find xk+1 by minimizing Q(x).

For this method to be effective, the function Q(x) should be a function that
can be easily minimized. This is repeated until the minimum of J(x) is found.
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Figure 4.1: Majorization-Minimization

Since the majorizer function Q(x) will be different for each iteration, it will be
denoted by Qk(x).

The steps required to find the minimum of J(x) can be summarized as

1. Set k = 0. Initialize xk.

2. Choose Qk(x) such that

(a) Qk(x) ≥ J(x) ∀ x
(b) Qk(xk) = J(xk)

3. Set xk+1 as minimizer of Qk(x).

4. Set k = k + 1 and go to step 2.

An iteration of the MM algorithm is shown in Figure 4.1.



Chapter 5

Total Variation Regularization

Total Variation (TV) denoising is an important technique in the literature and
the use of TV for regularization is currently an actively researched topic. TV
regularization was first proposed by Rudin et al. in [15]. It encourages noise
removal while preserving edges. By penalizing solutions with high TV, the
estimate is forced to be smooth without necessarily penalizing sharp boundaries
since the estimated boundary or edge is decided by the observed data. The TV
for 1D discrete signal x is defined

TV(x) =
∑
i

|xi+1 − xi|. (5.1)

From this it is seen that the TV is the sum of all variations of the signal, hence
the name. For a 2D signal x the TV norm is defined by

TV(x) =
∑
i

√
(∆h

i x)2 + (∆v
i x)2, (5.2)

where ∆h
i x and ∆v

i x are the horizontal and vertical first order difference at
pixel i, respectively. The TV norm is clearly not differentiable. Using matrix
notation one can write

TV(x) =
∥∥√(Dhx)2 + (Dvx)2

∥∥
1, (5.3)

where the matrices Dh and Dv are defined such that when multiplied by a
vectorized image they give the first order differences in the horizontal direction
and vertical direction, respectively.

Using the above, the TV of the 4-band MS image can be written

TV(x) =
∥∥√(DHx)2 + (DV x)2

∥∥
1, (5.4)
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where x is the vectorized 4 band MS image, DH = (I4 ⊗Dh), DV = (I4 ⊗Dv).
The cost function of the TV regularized problem can now be formulated as

J(x) = ‖y−Mx‖22 + λTV(x). (5.5)

Minimizing this cost function is difficult because the TV functional is not differ-
entiable. However, MM techniques can be used to replace this difficult problem
with a sequence of easier ones

xk+1 = arg min
x

Q(x,xk), (5.6)

where xk is the current iterate and Q(x,xk) is a function that majorizes the cost
function J(x). This means that Q(x,xk) ≥ J(x) for x 6= xk and Q(x,xK) =
J(x) for x = xk. By iteratively solving (5.6), xk will converge to the global min-
imum of J(x). (The cost function (5.5) was minimized in [16] using a different
algorithm.)

A majorizer for the TV term [17] can be written using matrix notation as

QTV(x,xk) = xTDTWkDx + c (5.7)

where we define
ωk =

(
2
√

(DHxk)2 + (DV xk)2
)−1

(5.8)

and Wk = diag(ωk,ωk) and the matrix D is defined as D = [DT
H DT

V ]T . When
the the data fidelity term, ‖y−Mx‖22, is expanded, it is evident that we end up
with the term MTM in the solution. In order to avoid having to find the inverse
of this term later in the solution, it is necessary to introduce the function

QDF(x,xk) = (x− xk)T (αI−MTM)(x− xk), (5.9)

where α > max eig(MTM). This ensures that QDF(x,xk) is positive definite
and Q(x,xk) is still a majorizer for J(x). The function to minimize becomes

Q(x,xk) = ‖y−Mx‖22 +QDF(x,xk) + λQTV(x,xk). (5.10)

Differentiating this function w.r.t. x, setting to zero and subsequently solving
for x gives

(αI + λDTWkD)x = b, (5.11)

where
b = αxk + MT (y−Mxk). (5.12)

The matrix inversion lemma gives

(αI + λDTWkD)−1 = 1
α

(I−DT (α
λ

W−1
k + DDT )−1D). (5.13)
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This gives x = 1
α (b−DT z) where we have defined

z = (α
λ

W−1
k + DDT )−1Db. (5.14)

From (11.13) we have (αλW−1
k + DDT )z = Db and by adding cz, where the

constant c > max eig(DDT ), and by subtracting DDT z from both sides of this
equation we obtain

(α
λ

W−1
k + cI)z = Db + (cI−DDT )z, (5.15)

which leads to the update rule

zk+1 = (α
λ

W−1
k + cI)−1(Db + (cI−DDT )zk) (5.16)

xk+1 = 1
α

(b−DT zk+1). (5.17)

We can see that finding the inverse in (5.16) is trivial since it is a diagonal
matrix.

The implementation of the above algorithm becomes straightforward once it
is realized that all the matrix multiplications involving the operators D, DT ,
M and MT can be implemented as simple operations on multispectral images.
This significantly reduces computation time and memory requirements due to
the enormous size of the matrices involved.

However, there is one important thing to note. Bearing in mind the structure of
the model matrix M, it is clear that the multiplication with MT in (5.12) indi-
cates nearest neighbor interpolation (the inverse of decimation) of an MS image.
By using bilinear decimation and interpolation instead gives better results, both
according to quality metrics and visual inspection.
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Chapter 6

Quantitative Quality Metrics

For the evaluation of the quality of the pansharpened image, visual inspection
alone is obviously not sufficient. Many different metrics have been proposed to
evaluate or measure the quantitative quality of pansharpened images. There are
metrics to evaluate both spectral and spatial quality. This is further complicated
by the fact that the spectral and spatial quality tend to be complementary.
Images of very high spatial fidelity are often lacking in spectral quality and
vice versa. This complementarity is probably exaggerated by the design of the
metrics themselves.

However, accurate quantitative quality assessment is difficult since a reference
high resolution MS image is not available. There exist datasets where a simu-
lated reference image is available but this is very rare.

There are two approaches to this problem. One is to use metrics that do not
need a reference image. Another approach is to make use of Wald’s consistency
property [12] which states that the pansharpened image degraded to the reso-
lution of the MS image should be very similar to the original MS image. The
spectral metrics without reference attempt to measure this spectral consistency.

There is a similar property related to the spatial consistency, i.e., the idea is that
the inter correlation of the bands of the MS image and the degraded PAN image
should be the same as the the correlation between the bands of the pansharpened
image and the PAN image.

This approach is often not very accurate since the choice of filters used for the
decimation is important and not all researchers agree on the exact choice of these
filters. However, recent papers in the literature propose to use the Modulation
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Transfer Function (MTF) of the sensor itself to design these filters. The PAN
and MS images are degraded in resolution such that the resulting pansharpened
image has the same size as the original MS image and which can then be used
as the reference.

In light of the above discussion, the types of metrics used can be assigned to
two categories. Metrics that need reference and those without reference. And
within these categories there are metrics that attempt to measure spectral and
spatial quality.

The remainder of this chapter is a description of the different metrics used for
quality assessment used in this thesis.

6.1 Metrics that need reference

6.1.1 Root Mean Square Error (RMSE)

The RMSE is defined as

RMSE =
√∑

x

∑
i(Xi(x)− Yi(x))2

n×m× d
,

where X is the MS image, Y is the pansharpened image, x is the pixel and i is
the band number. Finally, n is the number of rows, m is the number of columns
and d is the number of bands.

6.1.2 Relative average spectral error (RASE)

RASE [18] computes the average performance in terms of the RMSE of the
bands in the pansharpened image.

RASE = 100
M

√√√√ 1
N

N∑
i=1

RMSE2(Bi).

6.1.3 ERGAS

ERGAS [19] is an acronym in French for ”Erreur relative globale adimension-
nelle de synthese” which translates to ”relative dimensionless global error in
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synthesis”. This metric calculates the amount of spectral distortion in the fused
image and is given by

ERGAS = 100h
l

√√√√ 1
N

N∑
n=1

(
RMSE(n)
µ(n)

)2
,

where N is the number of bands, RMSE is the root mean square error, hl is the
ratio of pixels in the Pan image to the MS image and µ(n) is the mean of the
n-th band.

6.1.4 Universal Image Quality Index : UIQI

Qave [20] is a metric that attempts to model the spectral distortion as a combi-
nation of three factors. These factors are loss of correlation, luminance distortion
and contrast distortion. The metric is given by

Q = 4σxyx̄ȳ
(σ2
x + σ2

y)[(x̄)2 + (ȳ)2] ,

where x = {xi|i = 1, 2, · · · , N} and y = {yi|i = 1, 2, · · · , N} are the original
MS and fused image vectors, respectively, and

x̄ = 1
N

∑N
i=1 xi ȳ = 1

N

∑N
i=1 yi

σ2
x = 1

N−1
∑N
i=1(xi − x̄)2 σ2

y = 1
N−1

∑N
i=1(yi − ȳ)2

σxy = 1
N−1

∑N
i=1(xi − x̄)(yi − ȳ)

This metric is used by the QNR spectral and spatial metrics described in the
next section and also by the Qave metric which is defined as the mean UIQI
between the bands of the pansharpened image and the reference image.

6.1.5 Q4

The Q4 metric is an extension of the UIQI metric to images with 4 bands. This
is done by considering the 4 values for each pixel as a quaternion, hence this
metric can be viewed as the hypercomplex extension of UIQI. Further details
can be found in [21]. It is given by

Q4 = |σz1z2 | · |z1| · |z2|
(σ2

z1
+ σ2

z2
)(|z1|2 + |z2|2) , (6.1)
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where z1 = a1 + ib1 + jc1 + kd1 and z2 = a2 + ib2 + jc2 + kd2 are quaternions
representing the 4-band reference MS image and the 4-band pansharpened im-
age. The operator | · | is the hypercomplex modulus, |z| =

√
(a2 + b2 + c2 + d2)

and σz1z2 is the hypercomplex covariance between z1 and z2.

Both the UIQI and Q4 metrics use a sliding window for the calculations. The
size used in this work is 64 by 64 pixel window for high resolution images and
16 by 16 pixel window for low resolution images, as was done in [22].

6.1.6 Spectral Angle Mapper (SAM)

The Spectral Angle Mapper (SAM) [23] is a metric that calculates the spectral
similarity between two spectral vectors as a spectral angle,

cosα =

N∑
i=1

xiyi

N∑
i=1

x2
i

N∑
i=1

y2
i

,

whereN is the number of bands and x = (x1, x2, · · · , xN ) and y = (y1, y2, · · · , yN )
are two spectral vectors at some pixel location in the original MS image and the
fused image, respectively. The value of SAM for the entire image is the average
of all the α values for every pixel.

6.1.7 Spectral Information Divergence (SID)

SID [24] originates from information theory. Each pixel spectrum is viewed
as a random variable and SID measures the difference or discrepancy of the
probabilistic behaviors between two spectral vectors, taken from the MS image
and final fused image, respectively. Let the vector x = (x1, · · · , xN )T be taken
from the MS image and the vector y = (y1, · · · , yN )T be taken from the final
pansharpened image. The range of these vectors needs to be normalized to the
range [0, 1] so we define

pj = xj∑N
i=1 xi

qj = yj∑N
i=1 yi

,

where N is the number of bands. SID is defined by

SID(x, y) = D(x||y) +D(y||x),

whereD(x||y) is called the relative entropy and is given byD(x||y) =
∑L
i=1 pi log(pi

qi
).

Similar for the term D(y||x).
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6.1.8 Correlation coefficient (CC)

The correlation coefficient (CC) between the original MS image (X) and the
pansharpened image (Y ) is defined as

CC(X,Y ) =
∑
mn(Xmn − X̄)(Ymn − Ȳ )√

(
∑
mn(Xmn − X̄)2)(

∑
mn(Ymn − Ȳ )2)

,

where X̄ and Ȳ are the mean values of the corresponding images.

6.1.9 Spatial

The spatial metric used in Part III is based on computing the correlation coeffi-
cent between the high-frequency data of each MS band and the high frequency
data of the Pan image. To extract the high-frequency data of a band, it is
convoluted with the following mask

mask =

−1 −1 −1
−1 8 −1
−1 −1 −1

 .
The metric value is the average of the CCs for each band of the MS image.

6.2 Metrics without reference

6.2.1 QNR spectral metric

The QNR Dλ spectral distortion metric is given by

Dλ = 1
NB(NB − 1)

NB∑
l=1

NB∑
r=1,r 6=l

∣∣∣Q(Fl, Fr)−Q(F̂l, F̂r)
∣∣∣, (6.2)

where NB is the number of bands, F is the pansharpened image and F̂ is the
MS image and Q is the Universal Image Quality Index (UIQI) [25].
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6.2.2 QNR spatial metric

The QNR Ds spatial distortion is given by

Ds = 1
NB

NB∑
l=1

∣∣∣Q(Fl, P )−Q(F̂l, P̂ )
∣∣∣, (6.3)

where P is the PAN image and P̂ is the degraded PAN image of same size as
the MS image. UIQI is a metric that attempts to model the spectral distortion
as a product of three factors, i.e., loss of correlation, luminance distortion and
contrast distortion.
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Experimental Results

7.1 Datasets

We present experimental results using simulated Pléiades data [22] and Quick-
bird data [22]. The Pléiades dataset consists of a 0.8m resolution PAN image
of dimension 1024 by 1024 pixels and a 3.2m resolution 256 by 256 pixel MS
image. There is also a simulated high-resolution MS image of same size and
resolution as the PAN image. This makes it possible to use the metrics that use
a reference for this dataset.

The other dataset is a high resolution Quickbird image of the Mississippi State
University campus. The PAN image is 2048 by 2048 pixels and of resolution
0.7m and the MS image is 512 by 512 pixels and of resolution 2.8m. For this
dataset there is no high resolution reference image available.

In order to to be able to use the low spatial resolution MS image as a reference,
we perform experiments using degraded MS and PAN images. This gives a
pansharpened image of the same size as the original low spatial resolution MS
image. The images are degraded using bilinear interpolation which is consistent
with the use of bilinear decimation and interpolation in the implementation of
the proposed method. We also present results using the Quickbird dataset at
full scale using QNR metrics only.
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7.2 Comparison to other methods

We compare the proposed method to three state-of-the-art pansharpening meth-
ods. The method called UDWT [26] uses the undecimated wavelet transform
to decompose the PAN image and the bicubic expanded MS image into their
coarse (LL) and detail parts (HH). The LL part of the PAN decomposition is
replaced with the LL part of the MS image and finally the inverse transform
yields the pansharpened image. This method produces images with excellent
spatial quality. Because of its simplicity there are no tuning parameters other
than number of levels of decomposition, which was set to 2 and the type of filter,
where we use the Daubechies filter of length 2.

The Principal Component Analysis (PCA) method [5] is a method which belongs
to the CS family of methods and finally the P+XS [11] method is based on a
variational model. The PCA method implementation we used has no parameters
to tune and the number of components is fixed at 4.

The P+XS method is more complex and there are several parameters to tune.
However, most of them were left at their default values. The parameters that
matter most are the weights for each multispectral band in the fused image
and the regularization term λ. We used the same weights as for the proposed
method and we chose λ = 5 which was shown to give optimal results based on
sensitivity analysis.

7.3 Choice of parameters

There are several parameters that affect the performance of the proposed method.
The constants α and c affect the convergence of the algorithm and in all the
experiments they were chosen as 0.75 and 8, respectively. Sensitivity analysis
of λ shows that for imagery at full scale, the performance of the algorithm is
very good for small values of λ. Based on this we choose λ = 2 for imagery at
full scale. When using degraded imagery, the ERGAS metric, which is based on
the mean square error, has a global minimum at λ = 1.5, which is the value we
choose.

The constants ωi that determine the weights of the bands of the pansharpened
image are important for spectral quality. Choosing the value of 0.25 for each
ωi gives good results, but there is room for improvement, since in reality the
PAN image is not the average of the bands. These constants were selected for
each dataset by doing a grid search over the parameter space, evaluating each
possible combination of the parameters using the ERGAS metric. The values
chosen for the Pléiades dataset are 0.30, 0.26, 0.22 and 0.22 for the red, green,
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blue and NIR bands, respectively and for the Quickbird dataset as 0.21, 0.21,
0.21 and 0.37, respectively.

7.4 Quantitative Quality Assessment Results

The results of the quantitative quality evaluations of the different pansharpening
algorithms are shown in Tables 7.1-7.3. The last row in these tables, called
Expanded is where the expanded or upsampled (using bicubic interpolation)
MS image is used as the fused image. This image is used as a baseline reference,
i.e., this is the most basic method for pansharpening.

The results for the Pléiades data are shown in Table 7.1. Since a high resolution
MS image is available for this dataset, the pansharpened image can be evaluated
at full scale using all the metrics discussed in Chapter 6. The table shows that
the proposed method gives best results in every metric using reference, while
the P+XS and UDWT methods give slightly better results for QNR spectral
and spatial metrics. The high values of the CC, Qave and Q4 metrics indicate
good spatial detail as well as good spectral quality. The CPU time in seconds
for each algorithm, in the same order as they appear in the table, is 1.8, 0.2,
83.4 and 15.4, respectively. The computer specification is i5-2400, 3.1 Ghz CPU
with 12GB of memory. All methods are implemented in Matlab.

The results for the degraded Quickbird data are shown in Table 7.2. Note
how similar values are for the QNR spectral and spatial metrics. This is very
probably a result of the degradation process. The proposed method gives the
best results for all metrics except the QNR spectral metric, where surprisingly,
PCA gives slightly better result. The CPU time for the experiments in Table
7.2 is 0.3, 0.1, 20.3 and 3.2, respectively and in the same order as before.

Finally, the results using the Quickbird dataset at full scale are shown in Table
7.3. At this scale, no reference image is available and thus we only use the QNR
metrics to assess the quality of the pansharpened image. The proposed method
is shown to give better results for both the spectral and spatial QNR metrics
than the other methods. The CPU time in seconds for the experiments in Table
7.3 is 6.1, 0.9, 335.2 and 57.7, respectively.

In Table 7.3 we see that the best results for QNR Dλ are for the expanded
image. This seems to indicate that the QNR metrics are not very reliable.
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Table 7.1: Comparison of pansharpening methods using the simulated Pléiades
data at full scale. The best results are denoted using bold font.

SAM ERGAS CC Qave Q4 Dλ Ds

Reference 0 0 1 1 1 0.011 0.040
UDWT [26] 5.178 4.424 0.947 0.913 0.890 0.044 0.020

PCA [5] 6.964 7.681 0.853 0.678 0.670 0.073 0.201
P+XS [11] 5.108 4.965 0.951 0.912 0.894 0.017 0.024

Proposed 4.213 3.119 0.972 0.960 0.945 0.039 0.044
Expanded 4.905 6.345 0.869 0.792 0.799 0.002 0.122

Table 7.2: Comparison of pansharpening methods using the degraded Quickbird
data. The best results are denoted using bold font.

SAM ERGAS CC Qave Q4 Dλ Ds

Reference 0 0 1 1 1 0.020 0.029
UDWT [26] 5.038 3.411 0.933 0.885 0.912 0.100 0.102

PCA [5] 4.821 4.835 0.930 0.784 0.818 0.071 0.097
PXS [11] 4.513 2.982 0.950 0.914 0.931 0.117 0.113
Proposed 3.520 2.448 0.965 0.942 0.960 0.073 0.086

Expanded 4.439 4.444 0.893 0.813 0.812 0.006 0.119

Table 7.3: Comparison of pansharpening methods using the Quickbird data at
full scale. The best results are denoted using bold font. Only metrics that don’t
need reference are used.

Dλ Ds

UDWT [26] 0.048 0.055
PCA [5] 0.093 0.113

P+XS [11] 0.060 0.079
Proposed 0.027 0.042

Expanded 0.002 0.045
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(a) Reference (b) UDWT (c) PCA (d) P+XS (e) Proposed

Figure 7.1: Pansharpening results for the Pléiades data. Note that only a subset
of the pansharpened images is shown.

(a) Reference (b) UDWT (c) PCA (d) P+XS (e) Proposed

Figure 7.2: Pansharpening results for the full scale Quickbird data. Note that
only a subset of the pansharpened images is shown. The reference image shown
is the upscaled MS image.

7.5 Visual Comparison

A visual comparison of the results for the Pléiades data using all methods is
shown in Fig. 7.1. Only a subset of the data is shown in order to display more
detail. The images have been gamma corrected in order to make them more
visually pleasing. Visual inspection shows that all the methods show good level
of detail while the PCA results look very spectrally distorted. In Figure 7.3,
the Pleiades dataset is shown along with the pansharpened image using the
proposed method and in Figure 7.4, the Quickbird dataset is shown.

In Figure 7.2, a subset of the pansharpened images using the Quickbird data at
full scale is shown for all methods. Again the PCA method shows considerable
spectral distortion while the proposed and P+XS method give best results.
The UDWT image shows some noticeable spectral distortion while the spatial
resolution is excellent which is the primary strength of this method.
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(a) Pleiades PAN image (1024 × 1024)

(b) Pleiades MS image (256 × 256)

(c) Pansharpened image using the proposed
method (1024 × 1024)

Figure 7.3: This image shows the Pleiades dataset and the pansharpened image
produced using the proposed method. The images have been adjusted for better
contrast and gamma corrected.
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(a) Quickbird PAN image (2048 × 2048)

(b) Quickbird MS image (512 × 512)

(c) Pansharpened image using the proposed
method (2048 × 2048)

Figure 7.4: This image shows the Quickbird dataset and the pansharpened
image produced using the proposed method. The images have been adjusted
for better contrast and gamma corrected.
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Chapter 8

Conclusions

In this work we have proposed a new pansharpening method based on an ob-
servational model which is regularized using TV. The fact that the model is
applied to the whole dataset results in computations involving very large ma-
trices. However, since these operations can be implemented as operations on
images, the resulting algorithm is quite fast.

We performed experiments using datasets from two different sensors, Pléiades
and Quickbird and compared our method to three other well known state-of-
the-art methods, representing three important paradigms in pansharpening, and
evaluated the results using a number of quantitative quality metrics.

The results show that the proposed method consistently outperformed the other
methods used in virtually all experiments for all quality metrics used. Visual
inspection shows that the method produces pansharpened images that have
excellent spatial and spectral quality. The results obtained using the Pleiades
dataset are among the best in the literature.
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Part II

Pansharpening using
Analysis and Synthesis
based Regularization of

Overcomplete Transforms





Chapter 9

Introduction

Pansharpening is the process of synthesizing a high resolution multispectral
(MS) image from a low spatial resolution multispectral image and a high spatial
resolution panchromatic (PAN) image. As was shown in Part I of the thesis, the
pansharpening process can be described using the classic observational model

y = Mx + ε, (9.1)

where y is the observed data, M is the model matrix previously defined in part
I of the thesis, x is the pansharpened image we are estimating and ε is zero
mean Gaussian noise. This is an ill-posed image restoration problem (inverse
problem) where we want to restore an underlying image that has been degraded
and transformed in some way as described by the linear operator M. The typical
way to solve this kind of problem is by minimizing cost function of the form

J(x) =
∥∥y−Mx

∥∥2
2 + λR(x) (9.2)

where the first term is a data fidelity term, λ is the regularization parameter
and the function R(x) is the regularizer or penalty function.

In the past decade, regularization methods based on the `1-norm of the coef-
ficients of the transform of the underlying image have gained much attention.
The key idea behind these methods is that the image being estimated has a
sparse approximation under the given transform, which can be a basis, a frame
or some general overcomplete dictionary. Here, the focus will be on transforms
which are overcomplete, so-called tight-frames [27].

Overcomplete systems have been shown to be superior to the orthonormal basis
when it comes to sparsely approximating signals, since a signal is more likely to
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have a sparse approximation under an overcomplete system. We will study three
kinds of overcomplete systems. These are the Undecimated Discrete Wavelet
Transform (UDWT) [28], the Non-Subsampled Contourlet Transform (NSCT)
[29] and the Fast Discrete Curvelet Transform (FDCT) [30]. What is important
here is that these transform are all tight-frame systems.

If we denote the system/transform using the linear operator W, then for a
tight-frame system we have WTW = I, where the the operator W is called
the analysis (forward) operator since the signal under study x is analyzed by
ω = Wx. The coefficients ω are the projections of x on the rows of W.

The signal can be restored from the coefficients ω by the synthesis operator
WT , as a linear combination of some atom signals (the columns of WT ), i.e.,
x = WTω. The exact nature of the system W is not the topic here, suffice it
to say, we are interested in these systems or transforms since they are known to
give sparse representations of many types of natural signals.

A sparse representation is a representation that accounts for all or most of
the information of a signal using a linear combination of a small number of
elementary signals called atoms. These atoms come from a so called dictionary,
here the dictionary is the columns of WT . Usually, this dictionary is over-
complete, which means that the dimension of the dictionary, i.e., the number of
atoms, is considerably greater than the dimension of the signal space.

Today, one can identify two main paradigms in `1-norm sparsity optimization.
One is the use of an analysis prior and the other is the use of a synthesis prior.

The analysis prior formulation is given as

J(x) =
∥∥y−Mx

∥∥2
2 + λ‖Wx‖1, (9.3)

where W is the transform (analysis) operator. In this setting the regularization
term enforces a solution whose forward transform coefficients Wx are sparse.
The prior information utilized about the coefficients is that they are sparse.

On the other hand, the synthesis prior formulation is given by

J(ω) =
∥∥y−MWTω

∥∥2
2 + λ‖ω‖1, (9.4)

where ω are the transform coefficients. We see that the underlying image x is
being restored or synthesized by x = WTω in the data fidelity term.

It is important to note that for orthonormal transforms like the critically sam-
pled discrete wavelet transform (DWT), we have WTW = WWT = I and thus
the analysis and synthesis formulations are the same.

Another key aspect of the tight-frame system W is that it is a Multiresolution
Analysis (MRA) system. In short, this means that W decomposes the signal
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under study into a space that is composed of a sequence of nested subspaces.
We have a coarse representation (the low pass coeefficients) and a hierarchy of
detail or fine scale representations (the high-pass coefficents).

The high-pass wavelet coefficients are sparse while the low-pass coefficients of
most natural signals are far from sparse. This means that in the implementation
of these methods, the low-pass coefficients are not included in the penalty term.
In all our experiments, the same value of the regularization parameter λ is used
for all the high-pass subbands of the transform coefficients.

The focus of the work presented here is the comparison of the analysis and
synthesis approaches for sparsity optimization for the solution of the inverse
problem of pansharpening. These two approaches give different results for many
types of inverse problems. For some problems, the analysis formulation gives
better results while for other problems, the synthesis formulation is better. In
the application of denoising, the analysis and synthesis methods are known to
give significantly different results with the analysis method giving better results
[31].

Experiments are performed using simulated Pleiades data [22] and Quickbird
data [22]. The Pleiades dataset includes a high resolution reference image which
is very useful when evaluating the quality of the pansharpened image using qual-
ity metrics. In order to evaluate the results for the Quickbird image, the data is
degraded using bilinear interpolation such that the resulting pansharpened im-
age is of the same size as the original MS image, which can then be used as the
reference MS image. This method has the obvious drawback that information
is lost during the degradation of the data, but it can still give a good indication
of the performance of the method being evaluated.

The metrics used in the experiments are ERGAS [26], SAM [26] and Qavg [32],
which all need a reference image. Qave is defined as the mean UIQI between
the bands of the pansharpened image and the reference image. While there are
metrics that do not need a reference image such as the QNR [33] spectral and
spatial metrics, they usually do not give a good estimate of the mean square
error (MSE).

The outline of the work is as follows. Chapter 10 gives an overview of sparse
representations and overcomplete transforms. In Chapter 11 the algorithms
based on the analysis and synthesis priors are derived, Chapter 12 describes the
experiments and their results and finally, conclusions are drawn in Chapter 13.
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Chapter 10
Sparse Representations and

Overcomplete Transforms

As shown previously we can state the process of pansharpening as an ill posed
inverse problem. To keep the discussion simple we will neglect the presence of
noise. This problem is stated as

y = Mx, (10.1)

where y is the observed data, the MS and PAN image in this case, M is the
linear operator that models the process and x is the high resolution MS image
we are seeking. As was shown in Part I of the thesis, the matrix M has more
columns than rows, i.e., we have M ∈ Rm×n where n > m. The exact ratio is
n = 3.2m, to be specific. According to fundamental results in linear algebra,
this system of equations is under-determined and has infinitely many solutions.

We want to narrow the number of solutions to one and therefore we need more
information, i.e., some additional constraints. The choice of this constraint
affects not only the nature of the desired solution but also the computational
complexity and feasibility of the required computations. E.g., if we want to
obtain the solution with the smallest energy or `2-norm, there exists a closed
form solution, the minimum norm solution given by

x = M+y = MT (MMT )−1y, (10.2)

where M+ = MT (MMT )−1 is the Moore-Penrose pseudoinverse.

If we want to find the most sparse solution to the under-determined system
y = Ax we need to solve

min
x
‖x‖0 subject to y = Ax, (10.3)
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where ‖x‖0 is the `0-norm of x. This norm is simply the number of non-zero
elements of x and hence is a measure of sparsity. This problem is in general NP-
hard and therefore not computationally feasible. However, it has been shown
that under certain conditions [34] the solution is unique and can be found by
using the `1-norm instead of the difficult `0-norm. Since the `1-norm is convex,
the problem can be solved using standard convex optimization tools and even
linear programming.

Multi-scale transforms such as the critically sampled DWT is an example of
a representation that is sparse. This transform can be described by a linear
operator W. The DWT is orthonormal which means that the dimension of
the transformed signal is the same as the dimension of the signal itself and we
have W−1 = WT . The atoms of the dictionary are the columns of W and the
number of atoms is the same as the number of elements in the signal.

One overcomplete version of DWT is UDWT. In the overcomplete case, the
analysis operator W has more rows than columns while the synthesis operator
WT has more columns that rows. In contrast with the orthonormal case, the
columns of WT no longer form an orthonormal basis but an overcomplete frame.

Overcomplete transforms are sometimes referred to as redundant transforms,
since the W has more rows than columns. As an example, the 2-level UDWT of
an image with N pixels contains 7N coefficients. The redundancy is 7-fold. The
inverse or synthesis transform is a projection from R7N -the transform space to
RN -the image space.

The transform space of the synthesis matrix WT ∈ R7N×N is composed of the
N -dimensional range space and the 6N -dimensional null space of the transform
which is orthogonal to the range space. Changes in the coefficients within the
range space result in changes in the synthesized image while changes in the
coefficients that lie in the null space produce no changes in the synthesized
image because it is orthogonal to the range space.

This means that an infinite number of different configurations of the coefficients
in the null space produce the same image. This is where sparsity comes in.
The best configuration of the coefficients is the one where as few coefficients as
possible contain the energy of the image and most of the coefficients are zero.
Overcomplete systems allow for sparse representations of the coefficients and
this is what we are exploiting in this part of the thesis.

It has been shown repeatedly that for a number of applications in signal and
image processing such as compression, coding and denoising, the best exploita-
tion of transform sparsity leads to better and more practical solutions of those
problems [34]. The sparse representations result in faster and more efficient
computations.
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The main difference between the two approaches to `1-norm sparsity regular-
ization, i.e., analysis and synthesis approaches, is to be found in the way the
sparsity of the coefficients of the overcomplete transforms is exploited. Consid-
ering the analysis formulation

J(x) =
∥∥y−Mx

∥∥2
2 + λ‖Wx‖1, (10.4)

we see that the forward projection of the signal on the basis elements (rows of
W) is being sparsified, i.e., the assumption is that the analyzed coefficients can
be sparsely approximated. The important thing here is that the optimization
is performed in the signal or image-space where x resides. The problem solved
in Part I of the thesis is of the exactly same form. There, the operator W is
the TV operator. Piece-wise smooth signals are sparse under this operator and
thus the best solution is the one where TV(x) is sparse.

The synthesis approach is formulated as

J(ω) =
∥∥y−MWTω

∥∥2
2 + λ‖ω‖1. (10.5)

Here, the representation being sparsified is the linear combination of the atoms
(columns of WT ). There are essentially an infinite number of representations
that give rise to the same reconstructed signal WTω, i.e., the probability of
finding a sparse representation is high. The optimization is being performed in
the coefficent space, i.e., in the same space as the transformed signal ω resides
in.

Many papers have been written dealing with the nature of these two formula-
tions, such as [31], [35]. This is an active research topic and is still open to
debate.
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Chapter 11
Solutions of the Analysis and

Synthesis Problems

11.1 Analysis Prior Formulation

The cost function using the analysis prior is stated as

J(x) = ‖y−Mx‖22 + λ‖Wx‖1, (11.1)

where λ is the regularization parameter and W is the wavelet analysis (forward)
operator. Minimization of this cost function is problematic because after we
have differentiated it and solved for x we will end up having in the solution the
inverse of a term containing the matrix MTM. This matrix is of enormous size
and inverting it is not practical.

However, using Majorization-Minimization techniques this can be avoided by
adding the term QMT M(x,xk) = (x−xk)T (αI−MTM)(x−xk) to the objective
function (11.1). The constant α is chosen as α > max eig(MTM) such that
(x− xk)T (αI−MTM)(x− xk) is positive.

The cost function to minimize becomes

Q(x,xk) =
∥∥y−Mx

∥∥2
2 +QMT M(x,xk) + ‖Wx‖1 (11.2)

=
∥∥y−Mx

∥∥2
2 + (x− xk)T (αI−MTM)(x− xk) + ‖Wx‖1. (11.3)

Differentiation of the first term gives

∂

∂x
∥∥y−Mx

∥∥2
2 = −2MTy + 2MTMx. (11.4)
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Differentiation of the second term gives
∂

∂x (x−xk)T (αI−MTM)(x−xk) = 2αx−2αxk−2MTMx+2MTMxk. (11.5)

The term −2MTMx will cancel out the same term in (11.4). Differentiation of
the third term gives

∂

∂xλ‖Wx‖1 = λWTΛWx, (11.6)

where Λ is defined as the diagonal matrix Λ = diag(1./|Wx|) where ./ denotes
element-wise division and | · | denotes element-wise absolute value.

Adding all terms, setting to zero and rearranging gives

αx + λ

2 WTΛWx =αxk + MTy−MTMxk (11.7)

(αI + λ

2 WTΛW)x =αxk + MT (y−Mxk) (11.8)

Now define b = αxk + MT (y−Mxk) and we have

x =
(
αI + λ

2 WTΛW
)−1b. (11.9)

The matrix inversion lemma gives(
αI + λ

2 WTΛW
)−1 = 1

α

(
I−WT

(2α
λ

Λ−1 + WWT
)−1W

)
. (11.10)

Substituting this into (11.9) gives

x = b
α
− 1
α

WT
(2α
λ

Λ−1 + WWT
)−1Wb. (11.11)

Define a new variable z as

z =
(2α
λ

Λ−1 + WWT
)−1Wb (11.12)

=
(2α
λ

diag(|Wx|) + WWT
)−1Wb (11.13)

so that now we have
x = b

α
− 1
α

WT z. (11.14)

This suggests the iteration

z(k+1) =
(2α
λ

diag
(
|Wx(k)|

)
+ WWT

)−1
Wb (11.15)

x(k+1) =b
α
− 1
α

WT z(k). (11.16)
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There is a problem with this formulation. It is evident that the term WWT will
require solving a very large system of equations in the matrix inversion term in
(11.15). However, a little trick can be used to arrive at a feasible solution. To
find z in (11.13) we need to solve(2α

λ
Λ−1 + WWT

)
z = Wb. (11.17)

By subtracting the term WWT z from both sides and adding cz to both sides
we arrive at (2α

λ
diag

(
|Wx(k)|

)
+ cI

)
= Wb + (cI−WWT )z, (11.18)

which suggests the iteration

z(k+1) =
(2α
λ

diag
(
|Wx(k)|

)
+ cI

)−1(
Wb + (cI−WWT )z(k)). (11.19)

This is trivial to compute because the matrix
( 2α
λ diag(|Wx(k)|)+cI

)
is diagonal.

We have now shown that the analysis problem (11.1) can be solved using the
following iterative algorithm

z(k+1) =
(2α
λ

diag
(
|Wx(k)|

)
+ cI

)−1(
Wb + (cI−WWT )z(k)), (11.20)

x(k+1) = 1
α

b− 1
α

WT z(k), (11.21)

where α > max eig(MTM) and c > max eig(WWT ).

To initialize the algorithm, z(0) and x(0) are simply chosen as zeros.

11.2 Synthesis Prior Formulation

The formulation using the synthesis prior is

J(ω) =
∥∥y−MWTω

∥∥2
2 + λ‖ω‖1, (11.22)

where WT is the synthesis (inverse) transform operator and x is reconstructed
by WTω.

In order to solve this problem we will first look at a simpler problem, considering

J(x) = ‖y− x‖22 + λ‖x‖1. (11.23)

What is important here is that the variables are in fact uncoupled, meaning we
can expand (11.23) as

J(x) = (y1−x1)2 +λ|x1|+(y2−x2)2 +λ|x2|+ · · ·+(yN−xN )2 +λ|xN |. (11.24)
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This means that in order to minimize J(x) we can minimize each (yi−xi)2+λ|xi|
term individually for 1 ≤ i ≤ N , thus the problem is reduced to the minimization
of a scalar function

f(x) = (y − x)2 + λ|x|. (11.25)
We proceed to finding the derivative w.r.t. x,

f ′(x) = −2(y − x) + λsign(x), (11.26)

setting to zero gives
y = x+ λ

2 sign(x). (11.27)

The graph of this function is shown in Figure 11.1. This is called soft-thresholding
and it is defined as

soft(x, T ) =


x+ T x ≤ −T
0 |x| < T

x− T x ≥ T
(11.28)

It has now been shown that the minimization of (11.23) is given by x =
soft(y, λ/2). Now we can consider the minimization of (11.22). Similar to
what was done in the analysis case we begin by finding a majorizer for (11.22)
that is easy to minimize.

Qk(ω,ωk) =
∥∥y−MWTω

∥∥2
2 + (ω−ωk)T

(
αI−WMTMWT

)
(ω−ωk) +‖ω‖1,

(11.29)
where α ≥ maxeig(WMTMWT ) in order to keep Qk non-negative. Expanding
the function gives

Qk(x,xk) =yTy− 2yTMWTx + xTWMTMWT (11.30)
+(ω − ωk)T

(
αI−WMTMWT

)
(ω − ωk) + ‖ω‖1

=α
∥∥ωk + 1

α
WMT

(
y−MWTωk

)
− ω

∥∥2
2 + λ‖ω‖1 + C, (11.31)
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where C is a constant w.r.t. x. We observe that minimizing this function is the
same as minimizing

Qk(x,xk) =
∥∥ωk + 1

α
WMT

(
y−MWTωk

)
− ω

∥∥2
2 + λ‖ω‖1, (11.32)

which has the same form as (11.23), therefore ω(k+1) is obtained by the soft-
thresholding equation

ω(k+1) = soft
(
ωk + 1

α
WMT

(
y−MWTωk

)
,
λ

2α

)
. (11.33)

To initialize the algorithm ω(0) is calculated by taking the given transform, e.g.
UDWT, NSCT or FDCT, of x that has been filled with zeros. When then the
algorithm has converged, the estimated pansharpened image is reconstructed
by using the inverse transform on the solution of (11.33), i.e., x̂ = WTω.
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Chapter 12

Experiments & Results

Experiments are performed using three overcomplete transforms, i.e., the Un-
decimated Discrete Wavelet Transform (UDWT) [28], the Non-Subsampled Con-
tourlet Transform (NSCT) [29] and the Fast Discrete Curvelet Transform (FDCT)
[30]. Two levels of decomposition are used in all experiments.

For the both dataset, results are evaluated for 41 values of λ ranging from 0 to
20 at intervals of 0.5. We use the ERGAS, SAM and Qave metrics to evaluate
the quality of the pansharpened images.

The results for the Pleiades dataset are shown in Figures 12.1-12.3 and the
results for the Quickbird dataset are shown in Figures 12.4-12.6. For the ERGAS
and SAM metrics, lower values are better, while for the Qave metric, higher
values are better with 1 being optimal.
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Figure 12.1: Results for Pleiades dataset with the NSCT for both analysis and
synthesis for the ERGAS, SAM and Qave metrics
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Figure 12.2: Results for Pleiades dataset with the UDWT for both analysis and
synthesis for the ERGAS, SAM and Qave metrics
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Figure 12.3: Results for Pleiades dataset with the FDCT for both analysis and
synthesis for the ERGAS, SAM and Qave metrics
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In Figures 12.1-12.3 the results for the Pleiades dataset are presented. Beginning
with the NSCT in Figure 12.1 (a) we that the the analysis method gives better
results for the ERGAS metric. The same is true for the SAM metric in Figure
12.1 (b). Here, the relative difference for the SAM metric is much greater than
for the ERGAS metric. We also see that the first value for the analysis results
are missing. This is because the algorithm does not converge for λ = 0. This
applies to all the figures.

In Figure 12.1 (c) the results for the Qave metric are shown. For this metric,
higher is better. Again the analysis method gives better results although the
difference is quite small.

The results for the UDWT are shown in Figure 12.2. Things are similar to the
NSCT results. The results for the Qave metric are the same for both methods.

Figure 12.3 shows the results for the FDCT. These results are very different
from what we saw using the other transforms. Now the synthesis method gives
better results for the ERGAS metric while the results for the other metrics are
practically the same.
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Figure 12.4: Results for Quickbird dataset with the NSCT for both analysis and
synthesis for the ERGAS, SAM and Qave metrics
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Figure 12.5: Results for Quickbird dataset with the UDWT for both analysis
and synthesis for the ERGAS, SAM and Qave metrics



60 Experiments & Results

0 5 10 15 20
2.5

2.55

2.6

2.65

2.7

2.75

λ

E
R

G
A

S

FDCT

(a) ERGAS

0 5 10 15 20
3.6

3.65

3.7

3.75

3.8

λ

S
A

M

FDCT

(b) SAM

0 5 10 15 20
0.93

0.932

0.934

0.936

0.938

0.94

0.942

0.944

λ

Q
av

g

FDCT

(c) Q4

Figure 12.6: Results for Quickbird dataset with the FDCT for both analysis
and synthesis for the ERGAS, SAM and Qave metrics
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In Figures 12.4-12.6 the results for the Quickbird dataset are presented. Al-
though the curves look different from the Pleiades results, they exhibit the same
general behavior as we saw in the Pleiades case. For the NSCT and UDWT the
analysis method gives better results than synthesis, while for the FDCT the dif-
ference between the two methods is small, with synthesis giving better results
for the SAM metrics.

A notable difference between the two datasets is that in Figures 12.4 (b) and
12.5 (b), the SAM metric does not have a global minimum for the range of λ
chosen, i.e., 0 ≤ λ ≤ 20. However, we can see that the curve is relatively flat
at the largest value of λ thus the global minimum should not be significantly
smaller than the value at λ = 20.

In Table 12.1, the best results for each metric in each experiment are shown. The
table gives a general idea of the relative performance of the methods. For the
NSCT and UDWT, the analysis approach gives better results in all experiments,
while for the FDCT, the two approaches give very similar results. Overall, the
UDWT gives best results.

Table 12.1: Best results obtained for each experiments. Bold font indicates best
result obtained for analysis vs. synthesis.

Pleiades
NSCT UDWT Curvelet

Analysis Synthesis Analysis Synthesis Analysis Synthesis
ERGAS 3.215 3.237 3.178 3.186 3.255 3.255

SAM 4.199 4.361 4.093 4.197 4.377 4.379
Qavg 0.958 0.957 0.959 0.959 0.956 0.956

Mississippi
ERGAS 2.440 2.504 2.328 2.380 2.526 2.527

SAM 3.459 3.620 3.228 3.411 3.653 3.642
Qavg 0.946 0.939 0.953 0.949 0.939 0.938
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Chapter 13

Conclusions

In this part of the thesis we have proposed two kinds of methods to solve the
ill-posed inverse problem of pansharpening based on exploiting the sparsity of
overcomplete multi-scale transforms. These transforms are the UDWT, NSCT
and the FDCT.

One implementation was based on the analysis approach while the other was
based on the synthesis approach. For overcomplete transforms these two ap-
proaches give different results while for orthogonal transforms they are the same.
Experiments were performed for two datasets and three quality metrics, a total
of 36 combinations.

The results, as measured by the three metrics used, indicate that the analysis
approach gives better performance than the synthesis approach. In 34 out of
36 experiments, analysis gives better results. However, the relative difference
between the two approaches never exceeded 5.7%, with the average relative
difference being 0.83% for the Pleiades dataset and 1.78% for the Quickbird
dataset.

The assumption in the model matrix M in (9.1), that a linear combination of
bands gives the PAN image (see eq. (3.2)), is one possible reason for appar-
ent similarity of the analysis and the synthesis method. This assumption sets
strong constraints on the solution and thus limits the effectiveness of the sparsity
regularization.

Thus, with this in mind, the most important conclusion to draw here is that we
have reached the end of the road with the current model, used in parts I and
II of this thesis. Future work is to relax the linear assumption constraint and
then revisit the regularization methods discussed here and in Part I.
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Part III

Classification of
Pansharpened Satellite

Images





Chapter 14

Introduction

Several pansharpening techniques have been proposed during the past two decades
[36]. For the majority of those techniques there is a compromise between the de-
sired spatial enhancement and the spectral consistency. Achieving good spatial
resolution usually compromises the spectral consistency and vice versa. Spec-
tral consistency is an important property since spectral distortion can produce
unreliable results in many applications such as classification.

There are few papers that address classification of pansharpened data. Pan-
sharpened images are commonly not used directly for classification, rather, pan-
sharpening is used to improve the image visually.

The classification of high resolution urban remote sensing imagery is a challeng-
ing research problem. Here we look at the classification of such data by both
considering the classification of panchromatic imagery (single data channel) and
spectral image (multiple data channels) obtained by image fusion. Obviously,
both the spatial and spectral quality of the pansharpened image are inherently
important in order to be able to correctly classify the pixels. Low spatial qual-
ity means missing details and low spectral quality, i.e., spectral distortion, can
result in mis-classified pixels.

In this part of the thesis, we will investigate the classification of images that have
been pansharpened using several different methods. Some of these methods have
good spectral consistency while lacking spatial quality and for some methods,
the opposite is true. We will also, try to assess the relative importance of
spectral consistency vs spatial quality for classification.

In order to estimate the spectral and spatial quality of a pansharpened image,
several metrics have been formulated, such as ERGAS [19], SAM [23], SID [24],
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Qave [20], RASE [18] and more (see Chapter 6). To gain more insight into what
qualities of the pansharpened image are important for classification, we will not
only classify the multispectral pansharpened image but also add the original
Pan image as well as morphological profiles (MP) and their derivatives (DMP),
as proposed in [37, 38].

Panchromatic images are characterized by high spatial resolution. This high
spatial resolution allows the identification of small structures in a dense urban
area. However, the analysis of a scene by considering the value of a single pixel
only will produce very poor classification results compared to the fine resolution.
To solve this problem, some local spatial information is needed.

An interesting approach to provide local spatial information is based on the
theory of Mathematical Morphology [39], which provides tools to analyze spatial
relationship between pixels. The Morphological Profile (MP) was proposed
in [37, 38] for segmentation of high-resolution satellite images. An MP is made
up of an Opening Profile (OP) and a Closing Profile (CP) and we will also use the
Derivative of the Morphological Profile (DMP) [38, 40]. Only the panchromatic
data are used to build the morphological profile and its derivative.

For classification purposes, the MP and the DMP are regarded as feature vectors,
where each class has a typical MP-DMP. Hence each MP (or DMP) is considered
as a channel of a multispectral image. In this way, classification methods applied
to multispectral images can be applied [38, 40].

Of the pansharpening methods used, one is our model-based method derived
from the imaging sensor’s physical properties. This method has the nice fea-
ture of being spectrally consistent [41] by design. The Intensity-Hue-Saturation
(IHS) method has been widely used [6–9]. Another popular method is the
Brovey [5] sharpening method. The IHS and Brovey methods suffer from spec-
tral distortions. An important class of pansharpening methods are those based
on multi-resolution analysis (MRA). In our experiments we will be using two
such methods, one based on the Discrete Wavelet Transform (DWT) [3] and an-
other based on the undecimated DWT [4]. Finally, we will use a pansharpening
method based on Principal Component Analysis (PCA).

For the experiments, we have three different datasets along with ground truth
data. There are 2 different IKONOS images of an urban area (Reykjavik, Ice-
land) with multispectral images with four bands (R, B, G and Near Infrared
(NIR)) and panchromatic images which are of higher resolution (4 by 4 to 1
pixel) as compared to the multispectral images. Third experimental dataset is
a QuickBird image of an urban area (Rome, Italy) [42] where the ratio of the
pan and MS images is the same as for the IKONOS images and the MS image
has also four bands. Thus we have data from two different sensors.

The work flow of the experiments is as follows. We begin by pansharpening
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the data from each dataset using the different methods. For all datasets we
classify the pan image and the MS data separately. The next step is to add
the Pan image to the MS data and classify the resulting multi-channel image.
Finally, we add an MP and a DMP. As noted before, the MP or DMP can be
thought of as multispectral images on their own, where, of course, the different
bands do not contain any spectral information, only spatial information. The
classification is performed using Support Vector Machines (SVM) and Random
Forests (RF).

The outline of this part of the thesis is as follows. In the next chapter, we will
give a brief overview of the different pansharpening methods. Chapter 16 gives
a brief review on mathematical morphology and Chapter 17 reviews the two
types of classification methods used, SVM and RF, respectively. Experimental
set up and results are given in Chapter 18 and finally, conclusions are drawn in
Chapter 19.
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Chapter 15

Image Fusion

Image fusion can be done at several levels, e.g., at pixel, feature and decision
levels. Here, we will only be concerned with pixel level fusion. The next sections
give a brief overview of the pansharpening methods used in the experiments.

15.1 IHS fusion

The IHS method [6–9] is a frequently used method, especially when working
with LANDSAT and SPOT imagery. The basic idea is to first transform the MS
image into intensity (I), hue (H) and saturation (S) components (IHS colorspace) IH
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The next step is to scale the Pan image so that it has the same mean and
variance as the intensity component of the MS image

P = σI
σP

(P − µ(P )) + µ(I).

The intensity component is then replaced with the appropriately scaled Pan
image and finally the inverse IHS transformation is taken to get the fused image

F (R)
F (G)
F (G)

 =

R+ P − I
G+ P − I
B + P − I

 .
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The IHS method produces images that have high spatial resolution and low
spectral quality.

15.2 Brovey Fusion

The Brovey transform is a simple method for pansharpening and similar to
the IHS method, produces images that have good spatial resolution and poor
spectral quality. Each channel of the fused image is computed as

F (n) = NPan ◦ MS(n)∑N
k=1 MS(k)

where ◦ means element-wise multiplication, F (n) and MS(n) are the n-th chan-
nels of the fused and MS images, respectively, and N is the number of channels
in the MS image. So N is either 3 or 4.

15.3 Model Based Fusion

Several fusion methods have been proposed that take into account the physics
of the imaging sensor [41, 43]. The model based image fusion method [41] is
derived from a model of the imaging sensor’s underlying physics. This approach
ensures spectral consistency of the resulting fused image. Spectral consistency
can be measured as the cross correlation between the low resolution RGB image
and the downsampled fused image. In our case the low resolution spectral image
consists of four bands: R,B,G and Near Infrared (NIR).

The method of image fusion presented in [41] creates a high resolution multi
band image [Rhigh, Ghigh, Bhigh, Nhigh] from a high resolution panchromatic
image Phigh and a low resolution multi band image [Rlow, Glow, Blow, N low].
The first part of the method calculates a correlation matrix, Σ, between the
five channels, [R,G,B,N, P ]. This is done by considering the inner product, or
spectral overlap, of the respective channels. The relative spectral response of
the IKONOS sensor can be seen in Figure 15.1.

The high resolution image is then grouped into blocks, where each block exactly
corresponds to a low resolution pixel [Rlowi , Glowi , Blowi , N low

i ]. Assuming a per-
fect overlap between low and high resolution pixels, spectral consistency, which
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Figure 15.1: Relative Spectral Response of the IKONOS sensor for the panchro-
matic, R,G,B and N bands.

is enforced, has the form


Rlowi
Glowi
Blowi
N low
i

 = 1
16

n∑
j=1


Rhighij

Ghighij

Bhighij

Nhigh
ij

 , (15.1)

where j runs over the n high resolution pixels corresponding to the low resolu-
tion pixel i. It is then assumed that these blocks follow a multivariate normal
distribution, with a variance of Σ, and a mean value computed via conditional
means utilizing that the Phighij and [Rlowi , Glowi , Blowi , N low

i ] are known. This is
used in a Bayesian setting, where this normal distribution is used as the data
term.

To complete the Bayesian setting, a prior (or model of a likely image) is also
needed. For that, a piecewise smooth model is used. The model is specifi-
cally formulated by penalizing deviation between neighboring high resolution
pixel values, except for when the panchromatic image P has edges. The data
term and the prior are combined into a Markov Random Field (MRF) frame-
work. The additional constraint on this MRF framework is that the result-
ing [Rhigh, Ghigh, Bhigh, Nhigh], must be spectrally consistent. That is accom-
plished by observing that (15.1), describes a hyperplane (i.e., a linear con-
straint), and then only allowing solutions located on that hyperplane. The
resulting optimization problem is a large sparse least squares function - which
has the nice quality that it is convex.
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Figure 15.2: Basic wavelet based pansharpening.

15.4 MRA Method

The multi-resolution analysis approach to pansharpening is widely used and
there are numerous techniques today based on it. The basic idea is to take the
discrete wavelet transform (DWT) [3] of both the MS and Pan images. The next
step is to retain the approximation coefficients for the MS image but replace
the detail coefficients with those from the Pan image. Instead of just replacing
the coefficients, some fusion rule can be used. This is shown in figure 15.2.

The main drawback to this approach is that there will be substantial artifacts
in the fused image due to the nature of the DWT, i.e., it is not shift-invariant
and lacks directionality so there is bound to be some aliasing, thus the spatial
quality of the final fused image is reduced. One approach to overcome this
problems is to use the undecimated DWT [4].

15.5 PCA Method

Similar to the MRA method, the PCA method for pansharpening [5] is a so
called spatial detail injection method. First, the mutually correlated bands of
the MS image are transformed using PCA into a set of independent components
whose number is the same as number of bands in the MS image. The first
principal component has the highest variance and is similar to the Pan image
itself. The next step is to replace this component with the actual Pan image and
finally take the inverse transform to get the fused image. Figure 15.3 illustrates
this.
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Figure 15.3: PCA based pansharpening.
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Chapter 16

Mathematical Morphology

Mathematical Morphology (MM) is a theory that provides mathematical tools
to analyze spatial relationship between pixels [37, 39, 44]. Matheron and Serra
originally introduced MM to study binary porous media in the 1960s [45].

When working with MM, one is usually interested in specific objects or struc-
tures in the image. These objects of interest are viewed as subsets of the image.
After these objects have been identified, several sets of known size and shape
(such as square, line or disk) can be used to characterize their morphology.

These simple sets are called Structuring Elements (SEs). An SE always has an
origin (usually its symmetric center) that allows one to position the SE at a
given pixel of the image.

The most fundamental morphological operations are erosion and dilation. The
eroded value at a given pixel x is the minimum pixel value over the SE and the
dilated value at a given pixel x is the maximum pixel value over the SE. Erosion
and dilation of the Lena image is shown in Figure 16.1.

Two of the most common operations of MM are opening and closing operations.
The morphological opening of an image is an erosion followed by dilation while
the morphological closing of an image is the reverse: dilation followed by erosion.
Both operations are done using the same SE. The morphological opening of an
image removes light features that are smaller than the SE whereas morphological
closing removes dark features smaller than the SE.

While these operations are useful, they have the drawback of not being con-
nected filters. What this means is that they do not preserve shapes and thus
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(a) Original Lena image (b) Eroded Lena image (c) Dilated Lena image

Figure 16.1: Erosion and dilation of the Lena image using a disk of radius 10
as the SE.

introduce shape noise. So instead we will use the morphological reconstruction
operations. Opening and closing of the Lena image is shown in Figure 16.2.

(a) Original Lena image (b) Opening of Lena image (c) Closing of Lena image

Figure 16.2: Opening and Closing of the Lena image using a disk of radius 10
as the SE.

Opening by reconstruction of an image removes unconnected light features while
closing by reconstruction of an image removes unconnected dark features. For
both operations, shapes are preserved and the structures present after the trans-
formation are of a size greater than or equal to the SE used. This effectively
means that less shape noise is generated. Opening and closing by reconstruction
of the Lena image is shown in Figure 16.3.

Since objects in a given image may be of varying sizes, the use of a single SE
might prove to be inefficient. To solve this, a multiscale approach can be taken,
where SEs of the same shape but of several different sizes are used.

A Morphological Profile (MP) [37, 44] is a 2n+ 1-dimensional vector that con-
sists of the input image, n openings and n closings (reconstruction operations)
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(a) Original Lena image (b) Opening by reconstruc-
tion of Lena image

(c) Closing by reconstruc-
tion of Lena image

Figure 16.3: Opening and closing by reconstruction of the Lena image using a
disk of radius 10 as the SE.

generated with an SE of fixed shape but of varying size. The MP can be defined
as

MP (x) = [CPn(x), · · · , I(x), · · · , OPn(x)]
where CP and OP are closing profile and opening profile of n-dimension, con-
structed using an SE of fixed shape but of varying size and I(x) is the original
panchromatic image. An n dimensional profile has n different sizes in total.
This kind of structure is called a granulometry. The number of openings/clos-
ings and the corresponding sizes of the SE depend on the size distribution of
structures of interest in the panchromatic image. Finally, since these are op-
erations performed on the panchromatic image, the MPs contain no spectral
information, i.e., they only contain spatial information. Two different MPs are
shown in Figure 16.4.

(a) Opening by reconstruction MP

(b) Closing by reconstruction MP

Figure 16.4: MPs based on successive Opening by reconstruction and closing by
reconstruction operations using a disk shaped SE of increasing radius.

The Derivative of the Morphological Profile (DMP) [40] is defined as a 2n-
dimensional vector equal to the discrete derivative of the MP and is given by

DMPi(x) = |MPi−1(x)−MPi(x)|.
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The information provided by the DMP is both spatial and radiometric. For
a given pixel, the shape of the DMP can give an idea of the neighborhood
of the pixel, e.g., whether it belongs to darker or lighter structure than the
surrounding pixels. Finally, the amplitude of the DMP gives information about
the local contrast of the structure.

From the above it can be seen that an MP (DMP) can be viewed as a multiband
image, where the different openings and closings (or their derivatives) make
up the different bands. In a classification setting, inclusion of these profiles
effectively increases the number of features available for classification.
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Classification Methods

17.1 Support Vector Machine

One of the most promising of recent developments in the field of machine learn-
ing and pattern recognition is the Support Vector Machine (SVM) [46–48].
These are supervised learning methods that are widely used for classification
and regression. When given a set of training samples where each sample is
marked as belonging to one of two classes, the SVM algorithm builds a model
that can predict to which class new data points will belong to.

The SVM model can be viewed as a representation of the data points as points
in space where the separate categories or classes are divided by a gap that is as
wide as possible. The SVM constructs a hyperplane in a space that has a high
or infinite dimension. For a good separation, the distance from the training data
points of each class to the hyperplane should be maximized. When this distance
or margin is maximized we call the resulting linear classifier, a maximum margin
classifier.

For this linear classifier to be able to solve non-linear problems, the non-linear
data points are mapped into a higher dimensional space in such a way that
linear classification in this new space is equivalent to non-linear classification in
the original space. This is what is known as the ’kernel trick’. By using non-
linear kernel-functions, this approach can separate complex (e.g., multi-modal)
class distributions in high dimensional feature spaces. A commonly used kernel-
function is the Gaussian Radial Basis function and it is used for the experiments
presented here.
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The SVM is in fact a binary classification strategy so some kind of multiclass
decomposition is required to handle multiclass problems. A single multiclass
problem is reduced into multiple binary classification problems. Two common
methods are the One-Against-All (OAA) and One-Against-One (OAO).

For a multiclass problem with k-classes, k(k−1)/2 binary SVMs are trained. For
OAO, classification is done by max-wins voting strategy where every individual
binary classifier assigns the instance to one of the two classes thus increasing
the vote count for that class by one.

Since SVM does not provide class-labels as classifier output but instead provides
the distance from each data point to the hyperplane, the sign of the distance
is used to determine a class. Finally, the instance classification is determined
by the class with the most votes. A detailed discussion on SVM is for example
given in [49].

17.2 Random Forest

Random Forest (RF) [50] is a relatively recent ensemble method for classifi-
cation and regression. Ensemble classifiers get their name from the fact that
several classifiers, i.e., an ensemble of classifiers, are trained and their individual
results are then combined through a voting process. Many such methods have
been proposed [51–53]. These methods are usually based on the techniques of
boosting [54, 55] or bagging [56]. Boosting uses an iterative re-training proce-
dure where the samples that have been incorrectly classified are given increased
weight with each iteration. Bagging (or bootstrap aggregation) is based on train-
ing an ensemble of classifiers using samples that have been bootstrapped from
a training set. This has been shown to reduce the variance of the classification.

Trees are good examples of high-variance and low-bias procedures so bagging
seems to work very well for them. The idea is to average many noisy but
relatively unbiased models in order to reduce the variance. Since trees are
inherently noisy, averaging is of great benefit. Also, when grown sufficiently
deep, they have a low bias.

Boosting is in general a much more computationally costly method than bagging
but it is considerably more accurate. The RF algorithm uses an improved
method of bootstrapping as bagging and has been shown to be comparable to
boosting in terms of accuracy while being free from the drawbacks of boosting.
Thus RF is a much faster algorithm than boosting.

During the training process, the RF algorithm grows many CART-like trees [57],
with each individual tree trained on bootstrapped samples of the original train-
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ing set. In order to determine a split for each node, the algorithm only searches
across a randomly selected subset of the input variables.

In order to classify an object from an input vector, the input vector is run down
each tree in the forest. Each tree gives a classification or a unit vote for a
particular class and the forest chooses the classification having the most votes.

The most important user-tunable parameter in the RF algorithm is the number
of variables used for a split of a tree. A common value for this parameter is the
square root of the number of inputs. By limiting this parameter, the amount
of computation can be greatly reduced while the correlation between the trees
in forest is minimized. Thus reducing the error rate. Since each tree only uses
a portion of the available input variables, the algorithm is much faster than
a conventional bagging algorithm with a similar tree-like classifier. Another
nice feature is that the trees do not need to be pruned, hence reducing the
computational costs even further.

The computational time of the RF algorithm [57] has been shown to be

cT
√
MN log (N)

where c is some constant, T is the number of trees in the forest, M is the number
of variables and N is the number of samples in the dataset. This shows that
the algorithm is not very computationally intensive but on the other hand it
can require a considerable amount of memory as it needs to store an N by T
matrix while running.

RF as a classifier has many nice properties [57] such as excellent accuracy, it
scales up very well, it can handle thousands of variables and a lot of missing
data and it is insensitive to noise in the training labels. It also gives an unbiased
estimate of the test set error as trees are added to the ensemble and finally it
does not overfit.
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Chapter 18

Datasets and Experimental
Results

There are three datasets used the experiments. Two of these are images of
Reykjavik, Iceland, acquired by the IKONOS Earth imaging satellite on 9th
August 2001. Each dataset consists of a low-resolution (4m) multispectral image
with four bands R,G,B and NIR and a high-resolution panchromatic image of
resolution 1m. The ratio between the panchromatic and low-resolution images
is 16 or 4 by 4 pixels.

The third dataset is an image of Rome, Italy acquired by the QuickBird satellite.
As with the other datasets, it consists of a low-resolution (2.4m) multispectral
image with the four bands R, G, B and NIR and a high-resolution panchromatic
image of resolution 0.6m. The ratio between the Pan and MS image is again 4.

These images were then fused using the methods in Table 18.1, and the resulting
high-resolution multispectral image was used for classification.

Ground truth data for 6 classes (Large buildings, small buildings, large roads,
streets, open areas and shadows) was available for the IKONOS datasets and ex-
tensive ground-truth data with 9 classes was available for the QuickBird dataset.

Two different classification algorithms were used, 1) SVM and 2) RF. For the
SVM part, the libSVM1 library was used. The Gaussian Radial Basis function
was chosen for the kernel and the training parameters were found using a grid-
search.

1Chih-Chung Chang and Chih-Jen Lin - LIBSVM – A Library for Support Vector Machines
- http://www.csie.ntu.edu.tw/ cjlin/libsvm/



86 Datasets and Experimental Results

Table 18.1: Notation for the different pansharpening methods used in experi-
ments

Name Type

MBF Model Based Fusion
Brovey Brovey fusion
IHS IHS fusion
DWT MRA based fusion using the DWT
UDWT MRA based fusion using the UDWT
PCA PCA based fusion

Table 18.2: The Morphological Profiles (MP) used in the experiments.

Dataset Design SEs (radius of disks)

1 3 openings, 3 closings 2,4,6
2,3 11 openings, 11 closings 1,2,3,4,6,8,10,12,17,25,30

For the RF part, the randomforest-Matlab2 package, developed by Abhishek
Jaiantilal was used. The number of trees was chosen to be 200, all other options
used the default values.

For the datasets, two different MPs (and their derivatives, DMPs) were con-
structed. Details on these profiles are shown in Table 18.2.

By including these profiles in the classification process, the number of features
is increased by their respective lengths, i.e., by 6 and 22, respectively.

For each dataset and pansharpening method, five different experiments were
conducted. The first one was to simply classify the Pan image. The second
experiment was to classify the pansharpened MS image. The third type of
experiment was to classify the pansharpened MS image along with the Pan
image. In the fourth experiment, the pansharpened MS image with an MP was
classified and finally, the MP was replaced with the DMP.

These experiments were done using both a three band (RGB) pansharpened
MS image and the four band (RGBNIR) image. Since the original IHS method
can only handle the RGB bands, this method was omitted when using the four

2Abhishek Jaiantilal, randomforest-Matlab, Random Forest (Regression, Clas-
sification and Clustering) implementation for MATLAB (and Standalone) -
http://code.google.com/p/randomforest-matlab/
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band MS images.

Each MS image produced by the different pansharpening methods was evaluated
using a number of quality metrics, 7 metrics for spectral quality and one metric
to evaluate the spatial quality. A summary of these metrics can be found in
Chapter 6.

There two different approaches to evaluating these metrics. One to compare
the upsampled original MS image with final pansharpened image. Another
way of doing this is to fuse the low-resolution MS image with a downsampled
(degraded) Pan image and then comparing the final result with the original MS
image. We chose to use the former approach.

For the metrics CC, ERGAS, RASE, RMSE, SAM and SID lower is better,
while for the Qave and spatial metric, closer to one is better.

All classification accuracies are presented using 3 different methods. The Over-
all Accuracy (OA) is simply the percentage of correctly classified pixels. The
Average Accuracy (AA) is the mean of class-specific accuracy for all the classes.
Finally, the Kappa Coefficient (Kappa) is the percentage of agreement, i.e., cor-
rectly classified pixels, corrected by the number of agreements that one would
expect purely by chance alone.

In the next three subsections a short description of the datasets is given and
the experimental results for each dataset are presented. The OA is used in the
discussion.

18.1 First Dataset

This dataset is composed of a high resolution panchromatic image (976 × 640
pixels) and a low resolution multispectral image consisting of 4 bands: R, G,
B and NIR. As stated above, the ratio between the panchromatic and low-
resolution images is 16 or 4 by 4 pixels. The panchromatic image can be seen
in Figure 18.3 (a).

It is important to note that the training set was chosen in such a way as to be not
very representative and thus making the classification a much more challenging
task. Information on the size of the training and test sets is shown in Table
18.3 and the training and validation sets are shown in Figure 18.1 (a) and (b),
respectively.

The spectral and spatial quality metrics for all the pansharpening methods are
shown in Table 18.4 (three bands) and Table 18.5 (four bands), respectively.
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Table 18.3: Training and test set details for the first dataset.

Class Train Test

Small buildings 1526 34155
Open areas 7536 43867
shadows 1286 25806
Large buildings 2797 30916
Large roads 3336 39202
Streets 5616 35147

Total 22097 209093

Table 18.4: Quality metrics for the three band (RGB) data using first dataset

Metric MBF Brovey IHS DWT UDWT PCA

CC 0.002 0.014 0.007 0.033 0.004 0.027
ERGAS 2.359 8.846 8.904 5.636 6.502 9.436
Qave 0.728 0.680 0.713 0.985 0.688 0.673
RASE 8.623 33.256 32.996 22.111 24.400 35.325
RMSE 0.013 0.051 0.051 0.034 0.038 0.054
SAM 1.072 2.081 1.407 2.105 2.470
SID 0.001 0.0 0.005 0.018 0.003 0.004
spatial 0.501 0.981 0.985 0.847 0.998 0.969

Since there are so many different metrics, it is not easy to order the different
methods by performance, but it is evident while studying the three band data in
Table 18.4 that the MBF method produces by far the best spectrally consistent
results while its spatial performance is rather low.

The DWT method gives the second best results when it comes to spectral quality
while the spatial quality is the second worst. The IHS, Brovey and PCA methods
produce similar results of low spectral quality and rather good spatial quality,
while the UDWT method gives better spectral quality and the best spatial
quality of all the methods. The same can be said about the four band data in
Table 18.5.

The results from the classification experiments are presented in Table 18.6 and
Table 18.7, for three band (RGB) and four band (RGBN) data, respectively.
Note that the IHS method is not available for the four band data.

In the following discussion we use the OA and only refer to the results achieved
using the RF classifier. The accuracies achieved using the two classifiers are
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Table 18.5: Quality metrics for the four band (RGBNIR) data using first dataset

Metric MBF Brovey DWT UDWT PCA

CC 0.007 0.026 0.033 0.067 0.233
ERGAS 2.518 7.426 5.636 6.387 8.212
Qave 0.976 0.946 0.985 0.858 0.949
RASE 10.072 27.575 22.111 25.261 31.763
RMSE 0.016 0.043 0.034 0.039 0.049
SAM 1.103 1.407 4.472 2.461
SID 0.007 0.0 0.018 0.013 0.004
spatial 0.522 0.920 0.847 0.998 0.808

somewhat similar for the first dataset, with the SVM classifier usually trailing
behind the RF, but for the other datasets, RF gives significantly better results
than SVM in every single case.

18.1.1 Three Band Data (RGB)

By studying Table 18.6 we see that the classification of the Pan image alone
gives OA of 37.2%. When classifying the pansharpened image alone the MBF
data give the best accuracy, 56.57% closely followed by the PCA and UDWT
data. The Brovey results are the worst in terms of accuracy at 50.93% with IHS
only slightly better. For this experiment we see that difference between best
and worst accuracy is 5.64%, so all the results are relatively similar.

When the Pan image is added to classification process, the results in terms of
accuracy change somewhat drastically. Now the data giving best accuracies are
the UDWT, at 63.20%, while the MBF data are second best at 59.77%. Again
the accuracies for the Brovey data are at the bottom (50.70%) with IHS only
slightly better. The difference in accuracy between best and worst is now 12.5%,
more than twice the difference from the previous experiment.

It is also interesting to note that the Brovey, IHS and PCA data perform slightly
worse in this experiment than in the previous one. It seems that adding the
spatial information from the Pan image into the classification process is not of
any noticeable benefit for these data. The average gain in accuracy, compared
to the previous experiment, for all the methods is 2.37%.

The next two experiments add the MP followed by the DMP so we have richer
spatial information available for classification. The results are very similar for
these two last experiments so we will only comment on the results obtained by
including the MP. The MP for this dataset was chosen to be short; we have
only three different sizes for the SEs. This dataset did not benefit from longer
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(a) (b)

Figure 18.1: Training map (a) and reference map (b) for dataset 1.

profiles. This is probably a result from the fact that the training set was chosen
in a way not to be representative, thus making the classification difficult.

Again the UDWT method produces the best accuracies, 67.87% with MBF
coming second at 65.72%. The Brovey and IHS data give the worst acuracies,
61.21% and 61.17%, respectively. The DWT data 65.12% and the PCA data
63.51%. The difference between best and worst accuracies is now 6.66% and
it is clear that the further inclusion of more spatial information decreases this
difference compared to the previous experiment (Pan and MS). The most spec-
trally inconsistent data, gain the most from the MP/DMP. For example, we see
a gain of 10.51% accuracy for the Brovey data, while the gain for the UDWT
data is only 4.67%. The average gain in accuracy by including the MP is 7.28%
and 6.78% by including the DMP, a difference of 0.5% favoring the MP.

18.1.2 Four Band Data (RGB and NIR)

Table 18.7 presents the results for the experiments using all four bands of the
fused image. By comparing this table to the previous one, we see that there
are some important differences. It is clear that the benefit of adding the NIR
band is very different for the various pansharpening methods. If we look at the
classification of MS data only, it is evident that the best results are achieved by
the UDWT data, 63.77%, an increase of 7.85% from the three band experiment.

Surprisingly, the accuracy for the Brovey data now comes second at 58.94%,
an increase of 8.01% compared the the three-band experiment. In the same
manner, the DWT data show a modest increase of accuracy, 3.73% to 58.09%
and the PCA data goes from 55.24% to 58.72%, an increase of only 3.48%.
The best spectrally consistent MBF data only shows an increase of accuracy of
2.01%, to 58.58%, coming third in this experiment.
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Clearly, the biggest increase in accuracy is for the Brovey data which also is
the least spectral consistent. It is also noticeable that the UDWT data perform
best now. While both the MBF and DWT data give better spectral quality, the
UDWT data scores highest in spatial quality, at 0.998 according to Table 18.5.

When the Pan data are included, there are not as big gains overall in accuracy
as in the three band case. This can easily by explained by the presence of the
NIR band in the MS data, so the addition of spatial data from the Pan image
is relatively smaller. The most notable result is that all data gain in accuracy
except the PCA data. In the three band case we saw very big gains in accuracy
for the UDWT in this experiment, but in this case the gain in accuracy is only
1.58%. The average gain in accuracy for all data is now 1.35%. Also, similar
to the three band case, the UDWT data give the best accuracies and the MBF
data come second.

By looking at the last two experiments (MP/DMP) in Table 18.7 we see a
similar trend as for the three band data but obviously the gains in accuracy
are not quite as big, now that we have increased the amount of MS data. The
average gain in accuracy by including the MP is 6.34% and the gain achieved
by including the DMP is 4.92%, giving a difference of 1.42%, which is almost
three times more than for the three-band data.
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Table 18.8: Training and test set details for the second dataset

Class Training Test

Houses 1863 6213
Open Areas 6068 28144
Shadows 2619 10610
Large buildings 5599 29768
Large Roads 2489 12051
Streets 4103 11940

Total 22741 98726

(a) (b)

Figure 18.2: Training map (a) and reference map (b) for dataset 2.

18.2 Second Dataset

The second dataset is also an IKONOS image of Reykjavik, Iceland. The high
resolution panchromatic image is 628×700 pixels and the lower-resolution mul-
tispectral image consists of R,G,B and NIR bands. The size ratio is again 16 or
4 by 4 pixels. The panchromatic image is shown in Figure 18.3 (c). Information
on the size of the training and test sets is shown in Table 18.8 and the training
and validation sets are shown in Figure 18.2 (a) and (b), respectively.

The training set has been chosen to be more representative than that for the
previous dataset hence the accuracy is generally much better than for the first
dataset. The MP/DMP is now of length 23.
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Table 18.9: Quality metrics for the three band (RGB) data using second dataset

RGB MBF Brovey IHS DWT UDWT PCA

bandCorrs 0.003 0.009 0.004 0.056 0.006 0.038
ERGAS 2.766 10.306 10.523 6.657 7.504 8.034
Qave 0.727 0.673 0.708 0.980 0.704 0.701
RASE 10.199 37.296 37.003 26.151 29.155 30.723
RMSE 0.010 0.035 0.035 0.025 0.028 0.029
SAM 1.082 NA 2.754 1.481 1.824 2.099
SID 0.003 0.0 0.002 0.032 0.007 0.003
spatial 0.699 0.990 0.995 0.907 0.999 0.972

Table 18.10: Quality metrics for the four band (RGBNIR) data using second
dataset

dataset2-RGBN MBF Brovey DWT UDWT PCA

bandCorrs 0.014 0.081 0.056 0.083 0.288
ERGAS 3.105 9.375 6.657 7.544 7.372
Qave 0.969 0.924 0.980 0.900 0.961
RASE 11.912 33.797 26.151 29.627 28.571
RMSE 0.011 0.032 0.025 0.028 0.027
SAM 1.287 NA 1.481 3.300 2.123
SID 0.009 0.0 0.032 0.018 0.003
spatial 0.718 0.970 0.907 0.999 0.904

The spectral and spatial quality metrics for all the pansharpening methods are
shown in Table 18.9 (three bands) and Table 18.10 (four bands), respectively.
The MBF method produces the best results in terms of spectral quality while
having the worst spatial quality. However, the spatial quality of 0.699 is signif-
icantly higher than for the previous dataset.

If we try to order the methods from best to worst according to spectral quality
(based on the average of the metrics where lower is better), we have the ranking:
MBF (2.344), DWT (5.734), UDWT (6.421), PCA (6.821), IHS (8.387) and
Brovey (9.529). This should give a reasonable idea how these methods rank
spectrally. Spatially, they rank, from best to worst: UDWT (0.999), IHS (0.995),
Brovey (0.990), PCA (0.972), DWT (0.907) and MBF (0.699).

These results reflect the complementary nature of the spectral and spatial qual-
ity. The best spectrally performing method has also the lowest spatial quality.
The best spatially performing method, UDWT, has rather low spectral quality.

The values for the four-band data are similar. It is worth nothing though, that
in general the Qave values for three-band data are lower (mean : 0.749) than
for the four-band data (mean : 0.947).
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The accuracies from the classification experiments are presented in Table 18.6
and Table 18.7, for three band (RGB) and four band (RGBN) data, respectively.
As before, we will use the OA in the discussion and omit the SVM results.

18.2.1 Three Band Data (RGB)

Classification accuracy for the Pan data alone is 62.63% which is considerably
better than for the previous dataset. The next experiment is classification of
the pansharpened MS data. The average accuracy of all data is 75.41%. The
data giving the best accuracy is now the UDWT at 79.29%, the PCA data
come second with 77.41%, followed by the MBF data at 75.84%, the DWT data
with 74.59% and finally the IHS and Brovey data with 73.73% and 71.63%,
respectively. Compared to the first dataset, we see now that the MBF data
goes from giving best accuracy to being third. The method with the best spatial
detail, UDWT, gives the best result even though the spectral quality is lower
than that of MBF and DWT.

By adding the Pan image to the classification we now see the difference between
data produced by the different methods become even more pronounced. The
average accuracy for this experiment is 77.31% which is only slightly higher
than for the MS data alone (75.41%) but as we have seen before, the accuracy
for the IHS, Brovey and PCA methods lowers a little bit compared to the
previous experiment. This means greater increase for the MBF and wavelet
based methods. The accuracy of the MBF data increases by 2.92%, the DWT
data see an increase of 5.33% and finally for the UDWT data there is an increase
of 4.90%. The data that show an increase in accuracy here are those which give
the best spectral quality in Table 18.9. The data produced by the other methods
do not benefit at all from the added spatial information in the Pan image.

In the final two experiments for this dataset, an MP and an DMP are included.
By looking at Table 18.11 one sees that the increase in accuracy is, in every
case, more for the DMP than for the MP, so we will only comment on the DMP
experiment, since the behavior is very similar.

The average gain in accuracy by including the DMP in the classification is
10.92% (7.83% for the MP). This is significantly higher than for the first dataset.
Since these two IKONOS images are somwhat similar, the rather large differ-
ences in the experiments are probably due to the way the training sets were
chosen.

The data that gain most in terms of accuracy in this experiment are those with
low spectral quality, namely the IHS, Brovey and PCA data. The gains are
16.59%, 14.13% and 11.24%, respectively. The smallest gain, 5.12%, is indeed
for the UDWT data, which have the best spatial detail.
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18.2.2 Four Band Data (RGB and NIR)

The inclusion of the NIR band in the pansharpened data has a similar effect as
was seen for the first dataset. The experiment results are shown in Table 18.12.
Basically, we see the same kind of behavior as before.

Since we now have four bands of MS data, the classification accuracy is better
than for the three-band case. The average accuracy is 80.86% so the NIR band
brings in an average increase of 5.12%. The UDWT data gives yet again the best
results 85.31%, followed by Brovey with 80.53%, the PCA with 80.02%, DWT
with 79.96% and finally the MBF with 78.46%. The Brovey method comes
second here, which was also the case in this experiment for the first dataset.
It is also interesting to see how well the UDWT data perform here, almost 5%
better than the second best.

Adding the Pan data to the classification does not give much change in terms
of accuracy, the average gain in accuracy is only 0.89%. This is also similar to
what was seen in the first dataset. The biggest gains in terms of accuracy are for
the Brovey and DWT data, 1.89% and 1.98%, respectively. For the UDWT data
there is only gain in accuracy of 0.37%, so it is clear that these data don’t gain
anything from the spatial information in the Pan data, which may be explained
by the high spatial quality of the UDWT data.

Again, there is more gain in accuracy when adding the DMP to the classification
process. But unlike the three-band case, the gains are not nearly as great, the
average being 7.15%. This is consistent with the results from the previous
dataset. The MBF data gain the most, 8.70% while the UDWT data gain the
least, 3.79. The explanation for this is probably the low spatial quality of the
MBF data and the high spatial quality of the UDWT data.
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Table 18.13: Training and validation set details for the third dataset

Class Training Test

Buildings 10872 54360
Blocks 6589 32945
Roads 9811 49056
Light Train 964 4818
Vegetation 4177 20884
Trees 5451 27253
Bare Soil 4876 24381
Soil 903 4515
Tower 2875 14375

Total 46518 232587

18.3 Third Dataset

The third dataset is a QuickBird image of Rome, Italy. The Pan image is
972 × 1188 pixels and the spatial resolution is 0.6m, while the low-resolution
four-band MS image has spatial resolution of 0.24m. The ratio of high-resolution
Pan pixels to the low-resolution MS pixels is 4, same as for the IKONOS data.
The panchromatic image is shown in Figure 18.3 (e). There are several things
that make this dataset challenging. First, this image is taken when the satellite
was far from being at the nadir. As a result the buildings in the images have
a very ’oblique’ look. Second, this is a dense urban area with primarily three
classes of buildings: 1) small buildings (1− 2 floors), 2) blocks, large buildings
with 3 − 5 floors and 3) towers, tall rectangular buildings with more than 5
floors. There are 9 different classes. Information on the classes and number of
training and validation samples is shown in Table 18.13.

The quality metrics for this dataset are shown in Table 18.14 (three-band) and
Table 18.15 (four-band). The rank of the methods is similar as for the previously
discussed datasets.

The results of the classification experiments are presented in Table 18.16 for the
three-band data and in Table 18.17 for the four-band data.
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Table 18.14: Quality metrics for the three band (RGB) data using third dataset

RGB MBF Brovey IHS DWT UDWT PCA

bandCorrs 0.029 0.003 0.018 0.049 0.020 0.090
ERGAS 1.562 6.068 6.235 3.779 4.291 4.484
Qave 0.745 0.709 0.729 0.991 0.732 0.717
RASE 5.645 26.367 25.894 14.474 15.626 17.206
RMSE 22.900 106.968 105.049 58.718 63.393 69.804
SAM 0.677 0.0 1.967 1.012 1.821 1.776
SID 0.001 0.001 0.010 0.029 0.009 0.012
spatial 0.587 0.967 0.968 0.771 0.995 0.889

Table 18.15: Quality metrics for the four band (RGBNIR) data using third
dataset

RGBN MBF Brovey DWT UDWT PCA

bandCorrs 0.026 0.113 0.049 0.077 0.330
ERGAS 1.652 4.711 3.779 4.108 3.827
Qave 0.992 0.970 0.991 0.965 0.962
RASE 6.593 20.444 14.474 15.807 15.625
RMSE 26.746 82.941 58.718 64.127 63.388
SAM 0.731 0.0 1.012 2.390 1.638
SID 0.009 0.001 0.029 0.013 0.006
spatial 0.609 0.924 0.771 0.995 0.766

18.3.1 Three Band Data (RGB)

Classification of the Pan image alone gives the relatively low accuracy of 41.03%.
The reason for the low AA and Kappa values for this experiment is that several
classes had accuracy of zero or close to zero.

Classification of the MS data gives average accuracy of 65.07% which is a big
improvement in accuracy compared to the prevous experiment. Now the IHS
data give the best accuracy 66.86%, MBF data give 65.59%, Brovey 65.45%,
then PCA with 64.78%, UDWT with 64.68% and finally DWT with 63.06%.
The difference here between the best and worst accuracy is 3.80%. Interestingly,
the least spectrally consistent data give the best classification results here.

Adding the Pan image to the classification brings the average accuracy up to
69.62%, which does not seem much. Closer inspection shows that only the
MBF and the wavelet based data show improvement in accuracy, 8.22% for
MBF, 9.42% for DWT and 12.04% for UDWT. The accuracy for the other data
actually decreases by almost a percentage. The difference in accuracy between
the best (UDWT, 76.72%) and worst (Brovey, 64.64%) is 12.08%, which is a
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much larger difference than for the previous experiment.

Adding the MP and DMP brings big gains in accuracy for this dataset. The MP
and the DMP improve the average accuracy by 22.64% and 22.79%, respectively.
If we look at the DMP, the average accuracy is 92.42%, which is very good. Of
all the different pansharpening methods, UDWT gives yet again the best results,
followed closely by the MBF at 93.39%. IHS is again at the bottom with 91.69%.
The difference between best and worst accuracy is 3.78%.

18.3.2 Four Band Data (RGB and NIR)

With the added NIR band, the average accuracy for classification of the MS
data alone is now 76.05%. This is an improvement of 10.98% over the three
band experiment. The UDWT data give the best accuracy, 78.47%, followed
by the MBF at 76.34%, DWT at 75.32%, Brovey at 75.07% and finally PCA at
75.04%. The difference between best and worst accuracy is 3.40%.

Adding the Pan data to the classification does not improve the accuracy signif-
icantly. The average accuracy increases by a meager 0.83% up to 76.88%. The
Brovey and PCA data actually decrease in accuracy by a small amount. The
UDWT data give the best accuracy, 79.69%, MBF comes second with 77.92%.
The difference between the best and worst accuracy is 4.75%.

The inclusion of the MP and DMP does does not help as much as in the three-
band case in terms of accuracy. The respective gains of the MP and DMP are
now 17.27% and 17.34%. The UDWT data give the highest accuracy of 94.79%,
followed closesly by MBF at 94.17%, PCA at 94.16%, Brovey at 94.09% and
DWT at 93.90%. The difference between the best and worst accuracy is 0.89%.
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(a) (b)

(c) (d)

(e) (f)

Figure 18.3: The panchromatic images and the classification maps obtained
using all 4 bands for each dataset. The classification images were obtained us-
ing the configuration that yielded the highest accuracy. (a) Original IKONOS
panchromatic image for dataset 1. (b) RF classification map for dataset 1 (OA:
68.73%). (c) Original IKONOS panchromatic image for dataset 2. (d) RF clas-
sification map for dataset 2 (OA: 89.46%). (e) Original QuickBird pacnhromatic
image for dataset 3. (f) RF classification map for dataset 3 (OA: 94.79%).
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Chapter 19

Conclusions

In this work we have attempted to assess the relative importance of the spectral
and spatial quality for classification of pansharpened satellite urban imagery.
We used two different classifiers, SVM and RF and we considered 6 different
pansharpening methods with varying degrees of spectral and spatial quality.

Of those methods, there are two that can be said to represent the opposite ends
of the quality spectrum. The MBF method produces images of very high spectral
quality while the spatial quality is considerably lacking. On the other hand,
the multi-resolution analysis based UDWT method produces images of spectral
quality that is relatively low but have outstanding spatial quality, producing
images of almost the same detail as the Pan image itself.

A number of experiments were done using three different datasets produced
by two different satellite sensors, IKONOS and QuickBird. All the different
experiments for a single dataset were done using pansharpened images of three
channels (RGB) and four channels (RGB and NIR), respectively. The different
experiments were classification of the Pan image alone and MS image alone,
Pan image and MS image together, and, finally, of the Pan image together with
the MS image and an MP or a DMP.

The results of the classification experiments show that the UDWT method gives
best results in terms of accuracy in 22 out of 24 experiments using the RF as
classifier and in 19 out of 24 experiments using the SVM classifier. The MBF
method gives the best results in terms of accuracy in 1 experiments out of 24
using the RF classifier and in 4 out of 24 experiments using the SVM classifier.
The RF classifier produced better results in terms of accuracy than the SVM
method in almost every experiment, except for about a fourth of the experiments
for the first dataset.
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In general, the results obtained for each dataset showed the same patterns.
In the case of the three-band data (RGB), classification of the pansharpened
MS image alone, gave relatively similar accuracies for all the pansharpening
methods. The difference between the best and the worst accuracies for the first
dataset was 5.64%, 5.78% for the second dataset and 3.8% for the third dataset.
The MBF data gave best accuracies for the first dataset, The UDWT data gave
the best accuracies for the second dataset and surprisingly, for the QuickBird
dataset, the IHS data gave the best accuracy for both type of classifiers in this
experiment.

The gap in performance between data produced by the different pansharpen-
ing methods was greatly increased with the addition of the Pan image to the
classification process. The difference between the best and the worst accuracies
are now 12.5%, 13.4% and 12.08% for the first, second and third dataset, re-
spectively. The UDWT data gave the best accuracies for this experiment for all
datasets and both classifiers.

For the four-band data (RGB and NIR) there were substantial differences com-
pared to the three-band case. The UDWT data gave the best accuracies in every
experiment using the RF classifier. For the SVM classifier, the only exception
were the MP/DMP experiments for the first dataset, where the MBF data gave
best results.

The most notable things concerning the classification of the MS data alone
using all the four bands, are how much higher accuracy the UDWT data gives
compared to the rest of the methods, and secondly, how well the Brovey data
perform compared to the more spectrally consistent methods, coming second
place for the first two datasets and third in the last dataset. It has to be
mentioned though, that the performance of all the data with the exception of
the UDWT data, are very similar for this experiment.

Adding the Pan image to the classification using all four channels does not
change much in terms of accuracy. For all datasets, the general behavior is that
the MBF, DWT and UDWT data gain 1%-2% in accuracy while the other data
usually give lower accuracy than for the previous experiment for the MS data
only.

Including the MP/DMP in the classification increased the accuracy by a con-
siderable amount for all datasets. The most notable increase in accuracy being
for the third dataset, an average increase of 22.7% (using RGB data) compared
to the PRGB experiment. The first dataset showed the least benefits from
including the MP/DMP, the probable reason being how unrepresentative the
training set was chosen. The three band data gained more accuracy than the
four band data in the experiments using the MP/DMP, since the added spatial
information was relatively less in the four band case.
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The conclusion to draw here seems to be that while spectral consistency is im-
portant, spatial quality seems to be more important for classification purposes,
given that the spectral consistency is acceptable. Here, ”acceptable” means sig-
nificantly better spectral consistency than that of the IHS and Brovey methods.

We also demonstrated that adding spatial information (Pan image, MP/DMP)
to the classification of data with very good spatial quality resulted in relatively
greater gains in accuracy than for data with good spectral quality but lacking
somewhat in spatial quality. Often the classification accuracy actually decreased
when including the Pan image in the classification, for the least spectrally con-
sistent data. The conclusion being that if the data has bad spectral quality,
adding spatial data will not help at all. This behavior was seen in every dataset
when working with three band data.

The UDWT is the pansharpening method that produced the data achieving
the highest classification accuracy in almost every experiment performed. The
images produced by this method ranked third in terms of spectral quality for
all three datasets, but in every case the spatial quality was excellent (as good
as it can get). The method giving the best spectral quality, by far, did worse
than expected in our experiments and we draw the conclusion that the reason
for this, is the relatively low spatial quality of the fused images produced by
that method.

Hence, the main conclusion is that while the spectral consistency and the spatial
quality of pansharpened images tend to be complementary in nature, i.e., gains
in one quality often compromise the other, for classification purposes, it seems
better to aim for as good spatial quality as is possible, given that the spectral
quality stays above some acceptable minimum.

Since all the datasets used the experiments were of urban areas, future work is
to see if the above conclusions also hold for rural imagery.
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ABSTRACT

Classification of high resolution urban remote sensing im-
agery is addressed. The classification is done by both consid-
ering the panchromatic imagery and the multi-spectral image
obtained using the spectrally consistent fusion method intro-
duced in [1]. The data are classified using support vector ma-
chines (SVM). To further enhance the classification accuracy,
mathematical morphology is used to derive local spatial in-
formation from the panchromatic data. In particular we use
the Morphological Profile (MP) in classification of satellite
imagery as was proposed in [2, 3]. We also use the deriva-
tive of the MP (DMP). In the majority of the image fusion
(pansharpening) techniques proposed today, there is a com-
promise between the spatial enhancement and the spectral
consistency. By comparing classification results obtained by
using our model based scheme [1] to results obtained using
the IHS and Brovey fusion methods, we find that spectrally
consistent data give better results when it comes to classifica-
tion.

Index Terms— Classification, Pansharpening, Morpho-
logical Profile

1. INTRODUCTION

Satellites provide very valuable data about the Earth, e.g., for
environmental monitoring, weather forecasting, map-making
and military intelligence. But satellites are expensive, both to
build and operate. This implies that we are obliged to make
the best use of the data obtained from existing satellites, e.g.,
by combining the output from different sensors. Good exam-
ple of this is the merging of satellite images of low spatial
and high spectral resolution with images of high spatial and
low spectral resolution. This is also known as image fusion
(pansharpening).

This work was sponsored by the University of Iceland Research Fund.

In this paper we work with pixel-level satellite image fu-
sion derived directly from a model of the imaging sensor. This
method has the nice feature of being spectrally consistent by
design [1].

Since the problem of satellite image fusion is an ill-posed
problem, regularization is necessary for its solution. For this
purpose, the framework for pixel neighborhood regularization
was presented in [1]. In [1], the low-resolution RGB image
was only used in the image fusion. Here we add the near
infrared (NIR) band of the low-resolution (spectral) image to
the image fusion method in [1].

For our experiments, we use an IKONOS image of an
urban area (Reykjavik, Iceland) with a multi-spectral image
with four bands (R,B,G and NIR) and a panchromatic image
which is of higher resolution (4 by 4 to 1 pixel) as compared
to the multi-spectral image. The resulting fused image is then
going to be used for classification.

The classification of high resolution urban remote sensing
imagery is a challenging research problem. In this paper we
look at the classification of such data by both considering the
classification of panchromatic imagery (single data channel)
and spectral image (multiple data channels) obtained by the
extended fusion method in [1].

Panchromatic images are characterized by a high spatial
resolution. This high spatial resolution allows the identifica-
tion of small structures in a dense urban area. However, the
analysis of a scene by considering the value of a pixel only
will produce very poor classification results compared to the
fine resolution. To solve this problem, some local spatial in-
formation is needed.

An interesting approach to provide local spatial informa-
tion is based on the theory of Mathematical Morphology [4],
which provides tools to analyze spatial relationship between
pixels. The morphological profile (MP) was proposed in [2, 3]
for segmentation of high-resolution satellite images. An MP
is made up of an opening profile (OP) and a closing profile
(CP) and we will also use the derivative of the morphological
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profile (DMP). Only the panchromatic data are used to build
the morphological profile and its derivative.

For classification purposes, the MP and the DMP are re-
garded as feature vectors, where each class has a typical MP-
DMP. Hence each MP (or DMP) is considered as a channel of
a multi-spectral image. This way, classification methods ap-
plied to multi-spectral images can be applied [5, 6]. The clas-
sification will be performed using support vector machines
(SVM). We will also add the 4-channel fused image as new
element in the feature vectors obtained using the MP-DMP on
the IKONOS panchromatic image.

In the next section, spectrally consistent images fusion is
discussed. Section 3 gives a brief review on mathematical
morphology and Section 4 reviews SVM. Experimental set
up and results are given in Sections 5 and 6, respectively and
finally, conclusions are drawn in Section 7.

2. IMAGE FUSION

Image fusion can be done at several levels: pixel, feature, ob-
ject and decision levels, for example. Here we will only be
concerned with pixel level fusion. The image fusion method
[1] we will be using is derived from a model of the imag-
ing sensor’s underlying physics. This approach ensures spec-
tral consistency of the resulting fused image. This property
is very important since spectral distortion can result in unreli-
able results for applications.

Spectral consistency can be measured as the cross cor-
relation between the low resolution RGB image and the ap-
propriately down-sampled fused image. In our case the low
resolution spectral image consists of four bands: R,B,G and
NIR.

Several pansharpening techniques have been proposed
during the past two decades. In the majority of those tech-
niques there is a compromise between the desired spatial
enhancement and the spectral consistency. The intensity-
hue-saturation (IHS) method has been widely used. Another
popular method is the Brovey [5] sharpening method. Both
suffer from spectral distortions.

In this paper we compare classification results obtained
with our model-based, spectrally consistent scheme to results
obtained by using IHS and Brovey image fusion.

3. MATHEMATICAL MORPHOLOGY

Mathematical Morphology (MM) is a theory that provides
mathematical tools to analyze spatial relationship between
pixels. It was originally introduced by Matheron and Sierra
in the 1960s to study binary porous media.

When working with MM, one is usually interested in spe-
cific objects in the image. These objects of interest are viewed
as subsets of the image. After these objects have been iden-
tified, several sets of known size and shape (such as square,
line or disk) can be used to characterize their morphology.

These simple sets are called Structuring Elements (SEs).
An SE always has an origin (generally its symmetric center)
that allows the positioning of the SE at a given pixel of the
image.

The two most fundamental morphological operations are
erosion and dilation. The eroded value at a given pixel x is
the minimum pixel value over the SE. The dilated value at a
given pixel x is the maximum pixel value over the SE.

Two of the most common operations of MM are the mor-
phological opening and closing operations. The morpholog-
ical opening of an image is an erosion followed by dilation
while the morphological closing of an image is the reverse:
dilation followed by erosion. Both operations are done us-
ing the same SE. It can be said that morphological opening of
an image removes light features that are smaller than the SE
whereas closing removes dark features smaller than the SE.
While these operations are useful, they have the drawback of
not being connected filters so they do not preserve shapes. So
instead we will use the morphological reconstruction opera-
tions.

Opening by reconstruction of an image removes uncon-
nected light features while closing by reconstruction of an
image removes unconnected dark features. For both opera-
tions, shapes are preserved and structures present after trans-
formation are of a size greater than or equal to the SE. This
effectively means that less shape noise is generated.

Since objects in a given image may be of varying sizes,
the use of a single SE might be prove to be inefficient. To
solve this, a multiscale approach can be taken, where SEs of
same shape but of different size are used.

A Morphological Profile (MP) is a 2n + 1-dimensional
vector that consists of the input image, n openings and n clos-
ings (reconstruction operations) generated with an SE of fixed
shape but of varying size. The MP can be defined as

MP (x) = [CPn(x), · · · , I(x), · · · , OPn(x)]

where CP and OP are closing profile and opening profile of
n-dimension, constructed using an SE of fixed shape but of
varying size. There should be n different sizes in total.

The Derivative of the Morphological Profile (DMP) is de-
fined as a 2n-dimensional vector equal to the discrete deriva-
tive of the MP and is given by

DMPi(x) = MPi−1(x) − MPi(x).

The information provided by the DMP is both spatial and ra-
diometric. For a given pixel, the shape of the DMP can give an
idea of the neighborhood of the pixel, e.g., whether it belongs
to darker or lighter structure than the surrounding pixels. Fi-
nally, the amplitude of the DMP gives information about the
local contrast of the structure.
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4. SUPPORT VECTOR MACHINES

One of the most promising of recent developments in the field
of machine-learning and pattern-recognition are Support Vec-
tor Machines (SVM). These are supervised learning methods
that are widely used for classification and regression. When
given a set of training data points (examples) where each data
point is marked as belonging to one of two classes, the SVM
algorithm builds a model that can predict to which class new
data points will belong to.

The SVM model can be viewed as a representation of the
data points as points in space where the separate categories or
classes are divided by a gap that is as wide as possible. The
SVM constructs a hyperplane in a space that has a high or in-
finite dimension. For good separation, the distance from the
training data points of each class to the hyperplane should be
maximized. When this distance or margin is maximized we
call the resulting linear classifier, a maximum margin classi-
fier.

For this linear classifier to be able to solve non-linear
problems, the non-linear data points are mapped into a higher
dimensional space in such a way that linear classification in
this new space is equivalent to non-linear classification in the
original space. This is what is known as the ’kernel trick’.
By using non-linear kernel-functions, this approach can sepa-
rate complex (e.g., multi-modal) class distributions in high di-
mensional feature spaces. A commonly used kernel-function
is the Gaussian Radial Basis function and it is used for the
experiments in this paper.

Since the SVM is in fact a binary classification strategy,
some kind of multiclass decomposition is required to handle
multiclass problems. A single multiclass problem is reduced
into multiple binary classification problems. Two common
methods are the One-Against-All (OAA) and One-Against-
One (OAO). OAO is probably the widest used.

For a multiclass problem with k-classes, k(k − 1)/2 bi-
nary SVMs are trained. For OAO, classification is done by
max-wins voting strategy where every individual binary clas-
sifier assigns the instance to one of the two classes thereby
increasing the vote count for that class by one.

Since SVM does not provide class-labels as classifier out-
put but instead provides the distance from each data point to
the hyperplane, the sign of the distance is used to determine a
class. Finally, the instance classification is determined by the
class with the most votes. A detailed discussion on SVM is
given in [7].

5. DATASET AND EXPERIMENTAL SETUP

The data set used in this paper consists of two images of
Reykjavik, Iceland. These images were acquired by the
IKONOS Earth imaging satellite on 9th August 2001. One
is a low-resolution (4m) multi-spectral image that consists
of four bands R,G,B and NIR. The other is a high-resolution

panchromatic image of resolution 1m. The ratio between the
panchromatic and low-resolution images is 16 or 4 by 4 pix-
els. These images were then fused by using the model based
method described in [1], and the resulting high-resolution
multi-spectral image was used for classification.

An MP was constructed, consisting of 3 openings by re-
construction and 3 closings by reconstruction where the SE
was a disc of sequentially increasing radius of 3, 6 and 9 pix-
els. Finally the discrete derivative (DMP) of the MP was cal-
culated and used.

Ground truth data for 6 classes (Large buildings, Small
buildings, Residential Lawns, Streets, Open Areas and Shad-
ows) was used for training and validation. Details about the
training and validation sets can be seen in Table 1.

Table 1. Training and validation set details.

Class Samples

No. Name Train Test
1 Large Buildings 1526 34155
2 Small Buildings 7536 43867
3 Residential Lawns 1286 25806
4 Streets 2797 30916
5 Open Areas 3336 39202
6 Shadows 5616 35147

Total 22097 209093

For the classification, the libSVM1 library was used. It is a
freeware and is regularly updated. The Gaussian Radial Basis
function was chosen for the kernel and the training parameters
were found using a grid-search.

6. EXPERIMENT RESULTS

Classification based on the panchromatic (PC) image only,
gave a relatively low test accuracy of 46.23%. The test ac-
curacy improved significantly when the R,G,B bands were
added, improving to 58.78%. Further adding the NIR band
did not change much in terms of accuracy, bringing the over
all test accuracy to 60.32%.

To further increase the classification accuracy, a morpho-
logical profile (MP), or rather, a derivative of the morpho-
logical profile (DMP) was also added. MPs and DMPs of
two different lengths were used in classification. The DMPs
gave slightly better results than the MPs. The best results
were achieved by using a DMP of length 6 with the SEs be-
ing disks of radius 3, 6 and 9 pixels. The same DMP was
used in all experiments presented here. By adding the DMP
the total number of features available for classification was
increased by 6, resulting in the overall accuracy of 66.58%
for the R,G,B bands along with the panchromatic image and

1Chih-Chung Chang and Chih-Jen Lin - LIBSVM – A Library for Support
Vector Machines - http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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Table 2. Training and test accuracies (%) for all experiments

Data Panchromatic 3 bands+PC+DMP 4 bands+PC+DMP IHSFUSE+PC+DMP BROVERY+PC+DMP

Features 1 10 11 10 10
Class no train test train test train test train test train test

1 58.06 29.32 94.10 51.41 94.69 52.13 98.82 50.50 98.75 52.24
2 89.97 65.92 99.80 87.11 99.76 86.33 99.81 50.09 99.50 51.04
3 87.25 77.70 97.28 83.03 97.59 82.95 95.72 84.03 89.27 83.12
4 56.60 25.88 95.07 33.00 95.17 34.69 92.67 41.15 93.21 40.36
5 21.01 19.01 81.95 77.56 84.05 78.28 83.03 71.65 84.65 73.51
6 83.32 63.25 91.45 60.89 91.72 62.11 91.58 62.80 91.54 61.91

Ave 66.03 46.85 93.28 65.50 93.83 66.08 93.61 60.04 92.82 60.36
OA 71.28 46.23 93.85 66.58 94.29 67.11 93.98 59.20 93.79 59.66

67.11% by adding the NIR band. The gains in test accuracy
are 7.80% and 6.79%, respectively.

These results clearly demonstrate the value of the local
spatial information obtained by using the derivative of the
morphological profile in the classification.

Finally the same experiments were repeated (without us-
ing the NIR band) using the multi-spectral image obtained
from the IHS and Brovey fusion methods.

As can been seen from Table 2, the IHS and Brovey fusion
methods did not give quite as good results for the classifica-
tion as the spectrally consistent model based approach.

Fig. 1. The distribution of the test accuracies for all 6 classes.
SCP stands for spectrally consistent pansharpening.

7. CONCLUSIONS

Three different methods of image fusion were used to produce
high resolution multi-spectral images that were then classified
using an SVM. Morphological profiles were added as feature
vectors to aid in the classification process.

The model-based, spectrally consistent fusion method in-
troduced in [1] was shown to give better results than the IHS
and Brovey methods which are not spectrally consistent.

The use of the morphological profiles and their derivative
to provide local spatial information resulted in improved clas-
sification accuracy.
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ABSTRACT

In this paper we present a new method for the pansharpening

of multi-spectral satellite imagery. This method is based on a

simple explicit image formation model which leads to an ill

posed problem that needs to be regularized for best results.

We use both Tikhonov (ridge regression) and Total Variation

(TV) regularization. We develop the solutions to these two

problems and then we address the problem of selecting the op-

timal regularization parameter λ. We find the value of λ that

minimizes Stein’s unbiased risk estimate (SURE). For ridge

regression this leads to an analytical expression for SURE

while for the TV regularized solution we use Monte Carlo

SURE where the estimate is obtained by stochastic means.

Finally, we present experiment results where we use quality

metrics to evaluate the spectral and spatial quality of the re-

sulting pansharpened image.

Index Terms— Pansharpening, Total variation, SURE.

1. INTRODUCTION

Due to limitations of the imaging sensor found in satellites

such as IKONOS and Quickbird, images of high spectral res-

olution have lower spatial resolution than images of low spec-

tral resolution. Pansharpening is the process of fusing a multi-

spectral (MS) image of low spatial resolution with a Panchro-

matic (PAN) image of high spatial resolution to obtain a MS

image of high spatial resolution.

One area of application where the pansharpened image is

useful is, i.e., classification, since the added spectral resolu-

tion increases the classification accuracy [1]. Pansharpening

is in general an ill-posed problem that needs regularization for

optimal results.

We begin by formulating an explicit image formation

model as was given in [2] for the pansharpening process.

While the formulation in [2] is based on dividing the image

data into small patches and solving the problem for each

patch since the matrices involved appear unfeasibly large, we

This work was supported by the Research Fund of the University of Ice-

land.

use the whole dataset. This involves very large matrices but

since they are very sparse this is not a problem.

We use two different regularization methods, ridge re-

gression (Tikhonov regularization) and Total Variation (TV).

The solution to the ridge regression problem is easy to ob-

tain analytically but solving the problem using TV regular-

ization is more challenging since one has to use majorization-

minimization (MM) techniques and in the end obtain the so-

lution in an iterative manner.

There are many papers on TV based denoising in the lit-

erature and our work is based on the results in [3],[4]. The

algorithm can be easily modified to use the �1-norm for the

data fidelity term, instead of the more commonly used �2-

norm. Our experiments indicate that the �1-norm based solu-

tions give better results.

To select the optimal value of the regularization parameter

λ, we use Stein’s unbiased risk estimate (SURE) [5],[6]. This

makes it possible to calculate an estimate of the risk (or MSE)

of our estimate of the pansharpened image.

For the ridge regression case, it is straightforward to ob-

tain a closed form equation for SURE. However, for the TV

case, it is more difficult to get a closed form solution because

the problem is more complex and we are dealing with an iter-

ative algorithm. Instead of trying to find the SURE estimate

by analytical means, we chose to implement what is called

Monte Carlo SURE (MCSURE) [7].

Calculation of SURE involves finding the trace of a very

large matrix, which is essentially the divergence of the algo-

rithm or operator. The idea of MCSURE is to estimate the

diagonal of this matrix using stochastic methods. The algo-

rithm is probed with additive noise and the difference or re-

sponse signal is then used to estimate the divergence. This

estimate of SURE is quite good as we will demonstrate, and

does not incur great computational cost.

Finally, we present experimental results using both cases

of regularization and choice of �1- or �2-norm as the data fi-

delity term. There are a number of metrics [1] available to

estimate both the spatial and spectral quality of pansharpened

imagery and we will use them to get some quantitative quality

measurements on the results obtained.

2288978-1-4673-1159-5/12/$31.00 ©2012 IEEE IGARSS 2012



2. IMAGE FORMATION MODEL

The data consists of a high spatial resolution panchromatic

(PAN) image yPAN and a low spatial resolution multispec-

tral (MS) image yMS. The PAN image has dimensions four

times larger than the MS image thus the ratio in pixels is 1 to

16. The MS image contains 4 bands, RGB and near-infrared

(NIR).

The PAN image is of dimension M × N and the MS

image is of dimension m × n where m = M/4 and n =
N/4. The vectors yPAN and yMS are the vectorized PAN

and MS images, respectively and yMS is arranged as yMS =
{1, · · · ,mn︸ ︷︷ ︸

R

, 1, · · · ,mn︸ ︷︷ ︸
G

, 1, · · · ,mn︸ ︷︷ ︸
B

, 1, · · · ,mn︸ ︷︷ ︸
NIR

} where mn

is the number of pixels in each band. The vectorized fused

image x has this same arrangement where there are MN pix-

els in each band.

The image formation model is based on the results in [2]

but as stated before we do not divide the problem into small

patches, but instead work with the whole image, so very large

sparse matrices as involved.

There are two key observations that define the model. The

first observation is that the low resolution MS image can be

described as a degradation (downsampling) of the fused im-

age we seek. We write this in matrix notation as yMS =
M1x + ε where M1 is a decimation matrix of size 4mn ×
4NM and ε is a Gaussian noise.

The second observation is that the PAN image is a linear

combination of the bands of the fused image we seek with

some additive Gaussian noise. This can be written in matrix

notation as yPAN = M2x+ ε where ε is a Gaussian noise and

M2 = { 1
4I,

1
4I,

1
4I,

1
4I} where I is an identity matrix of size

MN by MN .

M1 and M2 have the same number of columns and we

can combine the expressions for yMS and yPAN into a single

equation

y = Mx+ ε, (1)

where y =

(
yMS

yPAN

)
and M =

(
M1

M2

)
and ε is a Gaussian

noise. The dimension of M is 4mn+MN by 4MN and this

is clearly an under determined system since there are more

columns than rows and thus some kind of regularization is

needed.

3. REGULARIZATION AND SELECTION OF
OPTIMAL REGULARIZATION PARAMETER

3.1. Tikhonov Regularization

Here we seek the solution of the minimization problem

argmin
x

‖y −Mx‖22 + λ‖Dx‖22, (2)

where D is the Tikhonov matrix and λ is the regularization

parameter. This matrix is often chosen as the identity matrix

but here it is chosen to be a difference operator so that it will

enforce a smooth solution. This matrix D is the same matrix

as we will be using to calculate the TV and it is defined as

D =

(
Dh

Dv

)
where the matrix Dh is defined such that when

it is multiplied by a vectorized image it gives the first order

differences in the horizontal direction and similarly the matrix

Dv gives the first order differences in the vertical dimension.

It is easy to show that the solution to (2) is given by

x̂ = (MTM+ λDTD)−1MTy. (3)

To find the optimal value of the regularization parameter λ we

are going to use SURE which we denote by Rλ to emphasize

that it is a function of λ. It is given by

Rλ = ‖ŷλ − y‖2 + 2σ2tr

(
∂x̂

∂yT

)
, (4)

where ŷλ = Mx̂λ and x̂λ is the estimate of the fused image

given by (3) and tr(·) is the trace operator. Now that we have

a closed form expression for x̂λ it is easy to show that ∂x̂λ

∂yT =

M(MTM+ λDTD)−1MT and we can write

Rλ = ‖Mx̂λ − y‖2 + 2σ2tr
(
M(MTM+ λDTD)−1MT

)
.

(5)

Unfortunately the inverse of the matrix MTM + λDTD is

not sparse. Even though we have a closed form expression for

the SURE estimate, it is going to be impossible to calculate it

by using (5). Instead, we will use MCSURE to estimate the

diagonal of the matrix M(MTM+ λDTD)−1MT .

3.2. Total variation (TV) regularization

TV is a commonly used regularization in image denoising.

By penalizing solutions with high total variation we are forc-

ing the estimate to be smooth without necessarily penalizing

sharp boundaries since the estimated boundary or edge is de-

cided by the observed data. The solution we present here is

based on the work described in [3],[4].

The TV of an image can defined as

TV(x) =
∑
i

√
(Δh

i x)
2 + (Δv

i x)
2, (6)

where Δh
i x = xi − xji is the first order horizontal difference

of pixel i and Δv
i x = xi−xki

is the first order vertical differ-

ence of pixel i. This can be written more compactly in matrix

notation as

TV(x) =
∥∥√(Dhx)2 + (Dvx)2

∥∥
1
, (7)

where x is the vectorized image and the matrices Dh and Dv

are defined exactly as in the Tikhonov case. Now we need to

solve the optimization problem formulated as

x̂ = arg min
x

‖y −Mx‖22 + λTV(x), (8)
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where TV(x) is given in (7).

This is a difficult problem to solve directly, because the

TV(x) functional is not differentiable and the above objec-

tive function is not necessarily convex. In order to be able to

solve this problem we use majorization-minimization (MM)

techniques to replace this difficult problem with a sequence

of easier ones. Details on how the majorizing function is de-

termined and the solution is found can be found in [3] and

[4].

The solution to this problem is given by the simple itera-

tion

xk+1 = (MTM+ λDTWkD)−1MTy, (9)

where

Wk =
1

2
√
(Dhxk)2 + (Dvxk)2

. (10)

To replace the �2-norm of the data fidelity term in (8) with the

�1-norm we need to introduce a weighting term WF for the

data fidelity term. This changes the iteration equation (9) to

xk+1 = (MTWk
FM+ λDTWkD)−1MTWk

Fy, (11)

where the weights Wk
F are given by

Wk
F = g(|y − xk|) (12)

and the function g is

g(x) =

{
|x|−1 if |x| > εF

ε−1
F , if |x| ≤ εF ,

(13)

and εF is a constant chosen to be very small.

3.3. Monte Carlo SURE

The last term in (4) is sometimes referred to as the divergence

term, because it is the divergence of our operator. To estimate

this term, we adopt the stochastic method presented in [7].

The central idea is that if you have an operator denoted by

fλ(y) that is continuous and bounded and we also require

that

divy{fλ(y)} =

N∑
k=1

∂fλ(y)

∂yk
(14)

then we can estimate the divergence using the following algo-

rithm.

1. For λ = λ0, evaluate fλ(y).

2. Perturb z = y + δbT , where bT is a unit variance

random vector and δ is a constant chosen sufficiently

small.

3. Evaluate fλ(z) for λ = λ0.

4. Compute divy{fλ(y)} = 1
δb

T
T (fλ(z)− fλ(y)).

Then we can calculate SURE using

Rλ = ‖ŷλ − y‖2 + 2σ2tr (divy{fλ(y)}) , (15)

where the parameter σ2 is estimated as the variance of the

difference of our estimate ŷ = Mx̂ and the data y.

4. EXPERIMENT RESULTS

In our experiments we used an image of Reykjavik, Iceland,

acquired by the IKONOS satellite on 9th of August 2001.

This dataset consists of a panchromatic image of dimension

976 by 640 pixels and a multispectral image of dimension 244
by 160 pixels. The MS image has four bands, RGB and NIR.

The optimal value of the regularization parameter λ was

found by using MCSURE to estimate the MSE for a range of

values of λ and selecting the value that minimized the MC-

SURE estimate. Once the optimal value of λ was found for

each type of regularization, we proceeded to pansharpen the

data with the chosen values. Figure 1 shows the pansharpened

results for a subset of the final image, along with the PAN and

MS images for the same area.

Table 1 shows several spectral and a spatial quality met-

rics evaluated for the proposed method and for several other

methods such as the Brovey, PCA and two wavelet methods.

Details on these methods and experiments are given in [1].

All these metric are for spectral quality except spatial which

measures spatial properties. Lower numbers are better for the

bandCorrs, ERGAS, RASE, RMSE, SAM and SID metrics,

while values close to 1 are best for the QAVE and spatial met-

rics.

The proposed method gives good results in comparison to

the other methods. It gives good spectral consistency coupled

with good spatial detail of 96.2% for the TV regularized im-

age and 98.2% for the Tikhonov regularized image. We also

see that though the wavelet method based on the 2D-DWT

does better spectrally than the proposed method for some met-

rics, the spatial fidelity is very low at 85%.

Table 1 suggests that the results obtained using Tikohonov

regularization have higher spatial metric than the TV results

and that the spectral quality is slightly worse than the TV re-

sults gives. Here it has to be kept in mind the the Tikhonov

regularization blurs the resulting image a little and for larger

values of λ, the Tikhonov results are better spectrally and

worse spatially than the TV results. We were able to get better

spectral quality than is presented here, but at the expense of

some spatial detail.

The different metrics were computed by comparing the

original MS image with the pansharpened imaged by uppsam-

pling the low spatial resolution MS image to make it the same

size as the pansharpened one. Some authors [2] downsample

the PAN and MS images to produce a fused image of same di-

mension as the original MS image. By using downsampling

we feel that too much information was lost compared to using

upsampling as we did when the metrics were calculated.
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Fig. 1. Experiment results using optimal value of λ. The first image is a 200 by 200 pixel subset of the PAN image. The

second image shows the MS image corresponding to the same area, the third image shows the pansharpened image using TV

regularization (λ = 0.063) and the last image shows the pansharpened image using the Tikhonov regularization (λ = 0.0169).

Table 1. Various spectral and spatial metrics. The pro-

posed methods are denoted by the TV and Tikh. (Tikhonov)

columns.

Metric TV Tikh. Wavelet PCA CWT Brovey

bandCorrs 0.04 0.04 0.03 0.23 0.06 0.03

ERGAS 5.94 6.42 5.64 8.21 6.40 7.43

QAVE 0.95 0.95 0.98 0.95 0.86 0.95

RASE 21.98 23.71 22.11 31.76 25.31 27.58

RMSE 0.03 0.04 0.03 0.05 0.04 0.04

SAM 2.31 2.46 1.41 2.46 4.41 NA

SID 0.002 0.004 0.02 0.00 0.01 0.00
spatial 0.96 0.98 0.85 0.81 0.997 0.92

5. CONCLUSIONS

In this paper we have proposed a method for pansharpening

images based on both Tikhonov and TV regularization. We

have also shown that the optimal regularization parameter can

be found via Monte Carlo SURE. The experiment results indi-

cate that the proposed method produces images with excellent

spatial detail and spectral quality.

The optimal value of the regularization parameter λ cho-

sen by MCSURE gives results that minimize the MSE. Low

values of λ produce results with up to 99% of the spatial detail

found in the PAN image while higher values produce results

of better spectral quality but lower spatial detail. There is a

tradeoff between desired spatial and spectral quality.

In [1] we evaluated several different pansharpening meth-

ods using classification accuracy. The results indicate that

the spectral quality is not very important when it comes to

classification if it is adequate to begin with. Spatial fidelity

is very important in classification and hence the results pre-

sented here are very good.
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ABSTRACT

Images obtained using Synthetic Aperture Radar (SAR)

are corrupted by speckle. Speckle noise results from the

chaotic interference of backscattered electromagnetic waves

and makes the analysis, interpretation and classification of

SAR images difficult. In this paper, we present a denois-

ing algorithm based on Total Variation (TV) regularization.

While this kind of denoising algorithm is not new, we propose

to select the regularization parameter by minimizing the esti-

mate of the mean square error (MSE) between the denoised

image and the clean image. We do not have to know the clean

image because we use a statistically unbiased MSE estimate -

Stein’s Unbiased Risk Estimate (SURE), that depends on the

observed image and the estimated image. However, since it is

difficult to derive SURE analytically for this kind of problem,

we estimate SURE using stochastic methods. We present

results using both a simulated image and real SAR image.

Index Terms— SAR, TV, denoising, speckle, SURE

1. INTRODUCTION

Synthetic Aperture Radar (SAR) is an important technique for

obtaining images of the Earth’s surface, especially because of

its ability to operate under all weather conditions. However,

the images obtained are degraded by speckle which makes

them difficult to analyze, interpret and classify.

Speckle is a chaotic phenomenon resulting from the inter-

ference of backscattered signals. Speckle is not the result of

a stochastic process, but it can typically be modeled as mul-

tiplicative i.i.d. Rayleigh noise [1]. A logarithmic transfor-

mation changes the multiplicative noise model to an additive

noise model.

Since the speckle obscures the scene content of the SAR

image, some kind of speckle removal is necessary before

further processing of the image. Many speckle suppressing

methods have been proposed. A commonly used method

is the Lee filter which is based on local variance statistics.

Another important class of methods is based on the concept

of wavelet coefficient thresholding [2].

In this paper we propose a speckle suppressing method

which is based on Total Variation (TV) denoising. This leads

to an optimization problem regularized by the TV of the im-

age. Using TV for despeckling of SAR images is not new,

but we propose to select the optimal value of the regulariza-

tion parameter by minimizing an estimate of the mean square

error (MSE) between the true noise free image and the esti-

mated image. We don’t have access to the true underlying

image, but we have at our disposal, a statistically unbiased

estimate of the MSE, Stein’s unbiased risk estimate (SURE)

[3], which depends on the noisy image and the estimated im-

age. To find the optimal regularization weight λ, we compute

SURE for a range of values of λ and select the value of λ that

minimizes the SURE estimate.

Due to difficulties deriving a formula for calculating

SURE analytically, we use a method called Monte-Carlo

SURE (MCSURE) [4] to estimate the SURE by stochastic

means.

The idea of MCSURE is to estimate the diagonal of this

matrix using stochastic methods. The algorithm is probed

with additive noise and the difference or response signal is

then used to estimate the divergence. This estimate of SURE

is quite good as we will demonstrate, and does not incur great

computational cost.

Finally, we present experiment results for both a simu-

lated SAR image and a real SAR image. Our experiments

show that the MCSURE method gives a very good estimate

of the true MSE and that the TV based denoising performs

well compared to existing methods.

2. TOTAL VARIATION DENOISING

For an SAR image that has been digitized, let y denote the

observed intensity of the image and we can write the pixel

level of the image as

y = xe, (1)

where x is the desired image and e is the Rayleigh i.i.d. mul-

tiplicative noise. By using the logarithm transformation we

can convert this into an additive model

ỹ = x̃+ ẽ, (2)
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where ỹ = ln(|y|) and ẽ is approximately Gaussian additive

noise. Now that we have an additive model we can proceed to

formulate the denoising problem as

x̂ = arg min
x̃

1

p
‖ỹ − x̃‖2p + λTV(x̃), (3)

where TV(x) is the TV of the image and p is either 1 for the

�1-norm or p = 2 for the �2-norm and λ is the regularization

parameter. It controls the relative weight of the data fidelity

and regularization terms.

This is a commonly used regularization in image denois-

ing. The TV term in (3) penalizes solution with large total

variation and hence the solution is forced to be smooth. This

does not mean that sharp boundaries or edges in the image

are heavily penalized since the estimated edge is decided by

the observed data. Also, smooth edges have the same total

variation as sharp edges. TV is defined as the sum of all first

order differences in the image in the horizontal and vertical

directions and thus it can be formulated as

TV(x) =
∑
i

√
(Δh

i x)
2 + (Δv

i x)
2, (4)

where Δh
i x = xi − xji is the first order horizontal difference

of pixel i and Δv
i x = xi−xki is the first order vertical differ-

ence of pixel i. This can be written more compactly in matrix

notation as

TV(x) =
∥∥√(Dhx)2 + (Dvx)2

∥∥
1
, (5)

where the matrix Dh is defined such that when it is multiplied

by a vectorized image it gives the first order differences in

the horizontal direction and similarly the matrix Dv gives the

first order differences in the vertical dimension. The solution

to (3) is well known and the solution we present here is based

on the work described in [5],[6].

2.1. �2-norm solution

We begin by finding the solution to (3) with the �2-norm as

the data fidelity term. Immediately one can see that this is a

difficult problem to solve using conventional means. Firstly,

the TV functional is not differentiable and secondly, the ob-

jective function does not necessarily have to be convex. So

instead of trying to solve (3) directly, we use Majorization-

Minimization (MM) [5],[6] techniques and minimize a ma-

jorizer function of (3). Without going into details on exactly

how the solution to (3) is found, when p = 2, it is given as the

iteration

x̃k+1 = (I+DTWkD)−1ỹ, (6)

where

Wk =
λ

2
√
(Dhx̃k)2 + (Dvx̃k)2

. (7)

and D =

(
Dh

Dv

)
. It must be noted that when implementing

this iterative algorithm it is necessary to use some means to

avoid dividing by zero in (7). This can be done by adding a

small constant to the square root in (7) or by using the method

described in [5].

2.2. �1-norm solution

By replacing the �2-norm on the data fidelity term with the

�1-norm, the algorithm becomes more robust with respect to

outliers. Since speckle is impulsive in nature, using the �1-

norm is justified. To solve (3) with the �1-norm on the data

fidelity term we need to use a technique similar to Iteratively

Reweighted Least Squares (IRLS) where instead of solving

‖y − x‖1, (8)

we replace the �1-norm by a weighted �2-norm problem and

solve it in an iterative manner [5]. The data fidelity term in

(3) is replaced by

1

2
‖W1/2

F (ỹ − x̃)‖22, (9)

and the iterative solution (6) is now replaced by

x̃k+1 = (Wk
F + λDTWkD)−1Wk

F ỹ, (10)

where the weights Wk
F are given by

Wk
F = g(|ỹ − x̃k|) (11)

and the function g is

g(x) =

{
|x|−1 if |x| > εF

ε−1
F , if |x| ≤ εF ,

(12)

where εF is a constant chosen to be small.

3. STEIN’S UNBIASED RISK ESTIMATE (SURE)
AND MONTE-CARLO SURE

To find the value of λ that minimizes the MSE between the

true desired texture information we seek x̃ and our estimate

x̂ we do not need to know x̃. Instead we will compute a sta-

tistically unbiased estimate of the MSE denoted by Rλ that is

given by

Rλ = ‖ỹ − x̂‖2 + 2σ2tr

(
∂x̂

∂yT

)
, (13)

where ỹ is our log transformed observed data and x̂ is our es-

timate. This remarkable result is called Stein’s unbiased risk

estimate (SURE). The last term of (13), which is also called

the divergence term because it is the divergence of our denois-

ing operator, is going to be problematic. This is because we
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do not have a closed form expression for x̂ for the �1-norm

solution. Also, the analytical solution for TV denoising using

the �2 norm for 1D signals was derived in [7]. Using that so-

lution we know that computing SURE will involve finding the

diagonal of the inverse of a matrix whose number of elements

is the number of pixels in the image, squared.

To overcome this, we will use an estimate of SURE called

Monte-Carlo SURE (MCSURE) which is based on estimating

the diagonal of our operator using a stochastic method. The

central idea is that if you have an operator denoted by fλ(y)
that is continuous and bounded and we also require that

divy{fλ(y)} =

N∑
k=1

∂fλ(y)

∂yk
(14)

then we can estimate the divergence using the following algo-

rithm.

1. For λ = λ0, evaluate fλ(ỹ).

2. Perturb z = ỹ + δbT , where bT is a unit variance

random vector and δ is a constant chosen sufficiently

small.

3. Evaluate fλ(z) for λ = λ0.

4. Compute divy{fλ(ỹ)} = 1
δb

T
T (fλ(z)− fλ(ỹ)).

Then we can calculate SURE using

Rλ = ‖ŷλ − ỹ‖2 + 2σ2tr (divy{fλ(ỹ)}) , (15)

where the parameter σ2 is the variance of the noise and re-

mains to be estimated.

4. EXPERIMENT RESULTS

In our experiments we used both a simulated SAR image and

a real SAR image. The simulated image is based on the well

known Lena image. To this image we added multi-look [8]

Rayleigh distributed noise. We did experiments for several

different numbers of looks, namely, 1, 2, 4, 9 and 25. The

Lena image is 512 by 512 pixels and it was scaled such that

the image intensity was in the range 0 to 1.

The real image is a 256 × 256, 8-bit single-look ERS-1

SAR image. It shows a portion of the glacier Kotlujokull in

the southern part of Iceland. The image is from the C-band

with VV-polarization.

For the simulated image, we began by finding the opti-

mal λ for each kind of norm and each number of looks using

MCSURE. Once the value was found that minimized the MC-

SURE estimate, the image was denoised using this value. The

experiment was repeated 10 times and the resulting PSNR is

the average. The results for the simulated image are shown in

Table 1.

As previously stated, we used a log transform on the im-

ages prior to processing. After denoising, we used the ex-

ponential function to obtain the final image. We did the ex-

periments with both the �1-norm and the �2-norm as the data

fidelity term. We found that when using the �1-norm, the MC-

SURE estimate was very close to the real MSE for all values

of λ used and for all different number of looks.

When using the �2-norm, the optimal results were achieved

using relatively smaller values of λ than was required when

using �1-norm. For small values of λ and large values of

noise (1 and 2 looks) the MCSURE estimate diverges some-

what from the true MSE. Due to this, in experiments using

few looks (1 and 2) the value of λ that minimized the MC-

SURE estimate was not the same as the value that minimized

the true MSE when using the �2-norm. However, the cor-

responding maximal deviation of the Peak Signal to Noise

Ratio (PSNR) is equal to 2% which is a relatively small error.

The results also indicate that better results are achieved

using �1-norm when the noise is heavy but when the noise is

less, i.e., the number of looks is more than 4, the �2 norm gives

better results. This is not unexpected since the the noise is

impulsive in nature and the �1-norm is more robust to outliers.

A plot of the MSE and the MCSURE estimate for both norms

and 2-looks is shown in Figure 2.
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(a) �1-norm, 2 looks.
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(b) �2-norm, 2 looks.

Fig. 2. The MCSURE estimate is close to the true MSE. For

more than 2 looks, the two curves become difficult to distin-

guish on the plot.

Table 1. PSNR (in dB) for noisy and denoised simulated im-

age

Looks 1 2 4 9 25

Noise 11.65 14.68 17.68 21.20 25.64

�1-TV 22.47 25.26 26.58 28.19 28.06

�2-TV 20.07 24.34 27.46 29.56 32.20

From Table 1 it is seen that the �1-norm results are better

in terms of the PSNR for 1 and 2 looks while the �2-norm

gives better results for the remaining number of looks. The

results shown here can be directly compared to Table 1 in [2],

where the same simulated image was used and the number of
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(a) (b) (c)

Fig. 1. Experiments results using real SAR image; (a) the original image, (b) �1-norm denoised image and (c) �2 denoised

image.

looks are the same. It turns out that the results presented here

are significantly better in terms of the PSNR.

For the real SAR image, prior to denoising, the variance

of the noise has to be estimated. The method we used here

to estimate the variance of the noise is to calculate the vari-

ance of the difference of the noisy image and a denoised im-

age where a relatively large value of λ is used to ensure that

the denoised image is sufficiently smooth. The optimal value

of the regularization was then found by minimizing the MC-

SURE estimate. The logarithmic transform was used prior to

denoising and the the exponential transform was used after

denoising. The results for the real SAR image are shown in

Figure 1.

5. CONCLUSION

In this paper we have proposed to denoise images corrupted

by multiplicative noise by using TV regularization using both

�1- and �2-norms as the data fidelity terms. Speckle noise can

be modeled as a multiplicative Rayleigh i.i.d. noise and a log-

arithmic transform gives an additive noise model. While this

is not new, the the novelty here is using Monte-Carlo SURE

to find the optimal value of the regularization parameter.

The experiment results for a simulated image indicate that

MCSURE gives a very good estimate of the true MSE be-

tween the noise free image and the denoised image, and that

using the �1-norm as the data fidelity terms gives better results

for noise of high variance (fewer looks) while the �2-norm

gives better results when the noise is less (higher number of

looks). Finally we presented results for a real single look SAR

image.
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ABSTRACT
In this paper we consider pansharpening of multispectral
satellite imagery based on solving an under-determined in-
verse problem regularized by the `1-norm of the coefficients
of overcomplete multi-scale transforms which all are tight-
frame systems. There are two main approaches in sparsity
promoting `1-norm regularization, the analysis and the syn-
thesis approach. We perform a number of experiments using
two real and well known datasets where the focus is the
comparison of the two approaches. One dataset includes a
high resolution reference image while the other needs to be
degraded prior to pansharpening in order to use the original
multispectral image as the reference. Experiments are per-
formed for a range of values for the regularization parameter,
where each resulting pansharpened image is evaluated us-
ing three quality metrics. The behavior of those metrics as
a function of the regularization parameter is compared for
the analysis and synthesis formulations and it is shown that
analysis gives better results.

1. INTRODUCTION

Pansharpening is the process of synthesizing a high spa-
tial resolution multispectral (MS) image from a low spatial
resolution multispectral image and a high spatial resolution
panchromatic (PAN) image.

During the past two decade many diverse methods for
pansharpening have been proposed, where one can discern
three main paradigms. These are methods based on multi-
resolution analysis (MRA), methods based on component
substitution and methods based on variational techniques.
Here the approach is based on modeling the pansharpening
process using the classic observational model

y = Mx+ n, (1)

where y is the observed data, M is the model matrix, x is
the pansharpened image we are estimating and n is zero mean
Gaussian noise. The model is well known and the exact struc-
ture of M was derived in [1]. It is based on the assump-
tions that a decimation of the pansharpened image gives the

MS image and that a linear combination of the bands of the
pansharpened image gives the PAN image. The matrix M
has more columns than rows and therefore this is an under-
determined inverse problem. The classical approach to solv-
ing this kind of problem is to minimize a cost function of the
form

J(x) =
∥∥y −Mx

∥∥2
2
+ λR(x) (2)

where the first term is a data fidelity term, λ is the regular-
ization parameter and the function R(x) is the regularizer or
penalty function.

Sparsity promoting optimization techniques have been a
source of much interest and research in recent years. Today,
one can identify two main paradigms in `1-norm sparsity opti-
mization [2]. One is the use of an analysis prior and the other
is the use of a synthesis prior.

The analysis prior formulation is given as

J(x) = ‖y −Mx‖22 + λ‖Ax‖1, (3)

where A is the analysis operator. This formulation derives
its name from the fact that the signal x is being analyzed by
applying linear filters (rows of A) to it. On the other hand,
the synthesis prior formulation is given by

J(x) = ‖y −MSω‖22 + λ‖ω‖1, (4)

where S is the synthesis operator. Now, x is being restored or
synthesized as linear combination of the columns of S where
the coefficients of this linear combination are the vector ω.
Hence, this approach is called synthesis.

Here we will be concerned with over-complete trans-
forms, i.e., wavelet and directional wavelet transforms which
are tight-frame systems. If we denote the transform operator
by W where W ∈ RM×N and M � N , the analysis op-
erator is A = W while the synthesis operator is the adjoint
operator, i.e., S = WT .

For tight-frame systems we have SA = WTW = I and
the signal x can be perfectly reconstructed from the analyzed
signal by x = WT (Wx). Over-complete systems give dif-
ferent results for the two approaches while for orthonormal
systems we have WTW = WWT = I and thus the analysis
and synthesis cases are the same.



Since wavelet and directional wavelet transforms are
multi-resolution analysis (MRA) systems, they decompose
the signal under study into a low-pass representation and a hi-
erarchy of high-pass representations at different scales. While
the high-pass coefficients are sparse, the low-pass coefficients
of most natural signals are far from sparse. Therefore, in the
implementation of the methods used in this study, the low-
pass coefficients are not included in the penalty term. In all
experiments the same value of the regularization parameter λ
is used for all the high-pass subbands.

The focus of the work presented here is the comparison of
these two different methods for sparsity optimization for the
solution of the inverse problem of pansharpening. These two
approaches give different results for many types of inverse
problems. For some problems, e.g. denoising, the analysis
formulation gives better results [3] while for other problems,
the synthesis formulation is better.

Experiments are performed using simulated Pleiades data
[4] and Quickbird data [4]. The Pleiades dataset includes a
high resolution reference image which is very useful when
evaluating the quality of the pansharpened image using qual-
ity metrics. In order to evaluate the results for the Quickbird
image, the data is degraded using bilinear interpolation such
that the resulting pansharpened image is of the same size as
the original MS image, which can then be used as the ref-
erence MS image. This method has the obvious drawback
that information is lost during the degradation of the data, but
it can still give a good indication of the performance of the
method being evaluated.

The metrics used in the experiments are ERGAS [5],
SAM [5] and Qavg [1], which all need a reference image.
While there are metrics that do not need a reference image
such as the QNR [6] spectral and spatial metrics, they usually
do not give a good estimate of the mean square error (MSE).

2. SOLUTIONS OF THE ANALYSIS AND
SYNTHESIS PROBLEMS

2.1. Analysis prior formulation

The optimization problem objective function using the analy-
sis prior is stated as

J(x) =
∥∥y −Mx

∥∥2
2
+ λ‖Wx‖1, (5)

where λ is the regularization parameter and W is the trans-
form operator. The algorithm to solve this problem is well
known [3] and is given as

b(i) =x(i) +
1

α
MT

(
y −Mx(i)

)
(6)

z(i+1) =
(
cz(i) +W

(
b(i) −WT z(i)

))
./
(2α
λ
|Wx(i)|+ c

)

(7)

x(i+1) =b(i) −MT z(i+1), (8)

where the constantsα and c are chosen asα > maxeig(MTM)
and c > maxeig(WWT ). The operator ./ denotes element-
wise division.

2.2. Synthesis prior formulation

The formulation using the synthesis prior is

J(ω) =
∥∥y −MWTω

∥∥2
2
+ λ‖ω‖1, (9)

where WT is the adjoint operator (synthesis) and x is recon-
structed by WTω. The solution to this problem is the iterated
soft-thresholding algorithm [3] :

ω(i+1) = Sλ
(
ω(i)+

1

α
WMT

(
y−MWTω(i)

)
,
λ

2α

)
, (10)

where Sλ(·, λ) is the element-wise soft-thresholding operator
with threshold λ and for convergence the constant α needs to
be chosen such that α ≥ maxeig(WMTMWT ).

3. DATASETS & EXPERIMENTAL RESULTS

3.1. Datasets

The simulated Pleiades dataset [4] consists of a 0.8m resolu-
tion PAN image of dimension 1024 by 1024 pixels and a 3.2m
resolution 256 by 256 pixel MS image. There is also a high-
resolution MS image of same size and resolution as the PAN
image which means that no degradation of the data is needed.

The Quickbird dataset [4] is a high resolution image of the
Mississippi State University campus. The PAN image is 2048
by 2048 pixels and of resolution 0.7m and the MS image is
512 by 512 pixels and of resolution 2.8m.

3.2. Experiments & Results

Experiments are performed using three overcomplete trans-
forms, i.e., the Undecimated Discrete Wavelet Transform
(UDWT) [7], the Non-Subsampled Contourlet Transform
(NSCT) [8] and the Fast Discrete Curvelet Transform (FDCT)
[9]. Two levels of decomposition are used in all experiments.

For the both dataset, results are evaluated for 41 values of
λ ranging from 0 to 20 at intervals of 0.5. We use the ERGAS
[5], SAM [5] and Qave [1] metrics to evaluate the quality of
the pansharpened images.

The results for the Pleiades dataset are shown in Figure
1. The UDWT, FDCT and NSCT results are shown in the
top, middle and bottom row, respectively. The columns of the
figure array represent the ERGAS, SAM and Qave results,
respectively. The results for the Quickbird dataset are shown
in Figure 2 using the same layout. For the ERGAS and SAM
metrics, lower values are better, while for the Qave metric,
higher values are better with 1 being optimal.

In Table 1, the best results for each metric in each exper-
iment are shown. The table gives a general idea of the rela-
tive performance of the methods. For the NSCT and UDWT,



Table 1: Best results obtained for each experiments. Bold font indicates best result obtained for analysis vs. synthesis.

Pleiades

NSCT UDWT Curvelet
Analysis Synthesis Analysis Synthesis Analysis Synthesis

ERGAS 3.215 3.237 3.178 3.186 3.255 3.255
SAM 4.199 4.361 4.093 4.197 4.377 4.379
Qavg 0.958 0.957 0.959 0.959 0.956 0.956

Mississippi

ERGAS 2.440 2.504 2.328 2.380 2.526 2.527
SAM 3.459 3.620 3.228 3.411 3.653 3.642
Qavg 0.946 0.939 0.953 0.949 0.939 0.938

the analysis approach gives better results in all experiments,
while for the FDCT, the two approaches give very similar re-
sults. Overall, the UDWT gives best results.

4. CONCLUSIONS

In this paper we have compared the analysis and the synthesis
approaches for `1-norm sparsity regularization for the inverse
model of pansharpening, where we have used three different
over-complete transforms which all are tight-frame systems.
Experiments were performed for two datasets and three qual-
ity metrics, a total of 36 combinations.

The results, as measured by the three metrics used, indi-
cate that the analysis approach gives better performance than
the synthesis approach. In 34 out of 36 experiments, analysis
gives better results. However, the relative difference between
the two approaches never exceeded 5.7%, with the average
relative difference being 0.83% for the Pleiades dataset and
1.78% for the Quickbird dataset.

The assumption in the model matrix M in (1), that a linear
combination of bands gives the PAN image, is one possible
reason for apparent similarity of the analysis and the synthe-
sis method. This assumption sets strong constraints on the
solution and thus limits the effectiveness of the sparsity regu-
larization.
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Fig. 1: Results for the Pleiades data.
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Fig. 2: Results for the degraded Quickbird data.
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Abstract—The classification of high resolution urban remote
sensing imagery is addressed with the focus on classification of
imagery that has been pansharpened by a number of different
pansharpening methods. The pansharpening process introduces
some spectral and spatial distortions in the resulting fused mul-
tispectral image, the amount of which highly varies depending
on which pansharpening technique is used. In the majority of
the pansharpening techniques that have been proposed, there is
a compromise between the spatial enhancement and the spectral
consistency. Here we study the effects of the spectral and spatial
distortions on the accuracy in classification of pansharpened
imagery. We also study the performance in terms of accuracy of
the various pansharpening techniques during classification with
spatial information, obtained using mathematical morphology
(MM). MM is used to derive local spatial information from the
panchromatic data. Random Forests (RF) and Support Vector
Machines (SVM) will be used as classifiers. Experiments are
done for three different datasets that have been obtained by two
different imaging sensors, IKONOS and QuickBird. These sensors
deliver multispectral images that have four bands, R, G, B and
near infrared (NIR). To further study the contribution of the NIR
band, experiments are done using both the RGB bands and all
four bands, respectively.

Index Terms—Classification, mathematical morphology, mor-
phological profile, pansharpening, spatial consistency, spectral
consistency.

I. INTRODUCTION

S ATELLITES provide very valuable data about the Earth,
e.g., for environmental monitoring, weather forecasting,

map-making and military intelligence. But satellites are expen-
sive, both to build and operate. This implies that it is important
to make the best use of the data obtained from available satel-
lites, e.g., by combining the output from different sensors. A
good example of this is the merging of satellite images of low
spatial and high spectral resolution with images of high spatial
and low spectral resolution. This is also known as image fusion
(pansharpening). An ideal pansharpened image should have the
same spatial resolution as the panchromatic (Pan) image and
be absolutely spectrally consistent with the multispectral (MS)
image.
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Several pansharpening techniques have been proposed during
the past two decades [1]. For the majority of those techniques
there is a compromise between the desired spatial enhancement
and the spectral consistency. Achieving good spatial resolution
usually compromises the spectral consistency and vice versa.
Spectral consistency is an important property since spectral dis-
tortion can produce unreliable results in many applications such
as classification.
There are few papers that address classification of pansharp-

ened data. Pansharpened images are commonly not used directly
for classification, rather, pansharpening is used to improve the
image visually.
The classification of high resolution urban remote sensing im-

agery is a challenging research problem. Here we look at the
classification of such data by both considering the classifica-
tion of panchromatic imagery (single data channel) and spectral
image (multiple data channels) obtained by image fusion. Obvi-
ously, both the spatial and spectral quality of the pansharpened
image are inherently important in order to be able to correctly
classify the pixels. Low spatial quality means missing details
and low spectral quality, i.e., spectral distortion, can result in
mis-classified pixels.
In this paper, we will investigate the classification of images

that have been pansharpened using several different methods.
Some of these methods have good spectral consistency while
lacking spatial quality and for some methods, the opposite is
true. We will also, try to assess the relative importance of spec-
tral consistency vs spatial quality for classification.
In order to estimate the spectral and spatial quality of a pan-

sharpened image, several metrics have been formulated, such as
ERGAS [2], SAM [3], SID [4], Qave [5], RASE [6] and more
(see Appendix A). To gain more insight into what qualities of
the pansharpened image are important for classification, we will
not only classify the multispectral pansharpened image but also
add the original Pan image as well as morphological profiles
(MP) and their derivatives (DMP), as proposed in [7], [8].
Panchromatic images are characterized by high spatial reso-

lution. This high spatial resolution allows the identification of
small structures in a dense urban area. However, the analysis
of a scene by considering the value of a single pixel only will
produce very poor classification results compared to the fine res-
olution. To solve this problem, some local spatial information is
needed.
An interesting approach to provide local spatial information

is based on the theory of Mathematical Morphology [9], which
provides tools to analyze spatial relationship between pixels.
The Morphological Profile (MP) was proposed in [7], [8] for
segmentation of high-resolution satellite images. An MP is
made up of an Opening Profile (OP) and a Closing Profile
(CP) and we will also use the Derivative of the Morphological

1939-1404/$26.00 © 2011 IEEE
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Profile (DMP) [8], [10]. Only the panchromatic data are used
to build the morphological profile and its derivative.
For classification purposes, theMP and the DMP are regarded

as feature vectors, where each class has a typical MP-DMP.
Hence each MP (or DMP) is considered as a channel of a mul-
tispectral image. In this way, classification methods applied to
multispectral images can be applied [4], [15].
Of the pansharpening methods used, one is our model-based

method derived from the imaging sensor’s physical properties.
This method has the nice feature of being spectrally consistent
[11] by design. The Intensity-Hue-Saturation (IHS) method
has been widely used [12]–[15]. Another popular method
is the Brovey [5] sharpening method. The IHS and Brovey
methods suffer from spectral distortions. An important class
of pansharpening methods are those based on multi-resolution
analysis (MRA). In our experiments we will be using two
such methods, one based on the Discrete Wavelet Transform
(DWT) [16] and another based on the undecimated DWT [17].
Finally, we will use a pansharpening method based on Principal
Component Analysis (PCA).
For our experiments, we have three different datasets along

with ground truth data. There are 2 different IKONOS images
of an urban area (Reykjavik, Iceland) with multispectral images
with four bands (R, B, G and Near Infrared (NIR)) and panchro-
matic images which are of higher resolution (4 by 4 to 1 pixel)
as compared to the multispectral images. Third experimental
dataset is a QuickBird image of an urban area (Rome, Italy) [18]
where the ratio of the pan and MS images is the same as for the
IKONOS images and the MS image has also four bands. Thus
we have data from two different sensors.
The work flow of our experiments is as follows. We begin

by pansharpening the data from each dataset using the different
methods. For all datasets we classify the pan image and the MS
data separately. The next step is to add the Pan image to the MS
data and classify the resulting multi-channel image. Finally, we
add an MP and a DMP. As noted before, the MP or DMP can be
thoughtof asmultispectral imageson their own,where, of course,
the different bands do not contain any spectral information, only
spatial information. The classification is performed using
Support Vector Machines (SVM) and Random Forests (RF).
The outline of the paper is as follows. In the next section,

we will give a brief overview of the different pansharpening
methods. Section III gives a brief review on mathematical mor-
phology and Section IV and V review SVM and RF, respec-
tively. Experimental set up and results are given in Section VI
and finally, conclusions are drawn in Section VII. Appendix A
includes a brief discussion on the different quality metrics for
estimating spectral consistency and spatial quality.

II. IMAGE FUSION

Image fusion can be done at several levels, e.g., at pixel, fea-
ture and decision levels. Here, we will only be concerned with
pixel level fusion. The next subsections give a brief overview
of the pansharpening methods used in this paper.

A. IHS Fusion

The IHS method [12]–[15] is a frequently used method, espe-
cially when working with LANDSAT and SPOT imagery. The

basic idea is to first transform the MS image into intensity (I),
hue (H) and saturation (S) components (IHS colorspace)

The next step is to scale the Pan image so that it has the same
mean and variance as the intensity component of the MS image

The intensity component is then replaced with the appropriately
scaled Pan image and finally the inverse IHS transformation is
taken to get the fused image

The IHS method produces images that have high spatial resolu-
tion and low spectral quality.

B. Brovey Fusion

The Brovey transform is a simple method for pansharpening
and similar to the IHS method, produces images that have good
spatial resolution and poor spectral quality. Each channel of the
fused image is computed as

where means element-wise multiplication, and
are the -th channels of the fused and MS images, respectively,
and is the number of channels in theMS image. So is either
3 or 4.

C. Model Based Fusion

Several fusion methods have been proposed that take into ac-
count the physics of the imaging sensor [11], [19]. The model
based image fusion method [11] is derived from a model of
the imaging sensor’s underlying physics. This approach ensures
spectral consistency of the resulting fused image. Spectral con-
sistency can be measured as the cross correlation between the
low resolution MS image and the downsampled fused image.
In our case the low resolution spectral image consists of four
bands: R, B, G and Near Infrared (NIR).
The method of image fusion presented in [11] creates a high

resolutionmulti band image from
a high resolution panchromatic image and a low resolu-
tion multi band image . The first part
of the method calculates a correlation matrix, , between the
five channels, . This is done by considering the
inner product, or spectral overlap, of the respective channels.
The relative spectral response of the IKONOS sensor can be
seen in Fig. 1.
The high resolution image is then grouped into blocks,

where each block exactly corresponds to a low resolution
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Fig. 1. Relative Spectral Response of the IKONOS sensor for the panchro-
matic, R,G,B and N bands.

pixel . Assuming a perfect overlap
between low and high resolution pixels, spectral consistency,
which is enforced, has the form

(1)

where runs over the high resolution pixels corresponding to
the low resolution pixel . It is then assumed that these blocks
follow a multivariate normal distribution, with a variance of
, and a mean value computed via conditional means utilizing
that the and are known. This
is used in a Bayesian setting, where this normal distribution is
used as the data term.
To complete the Bayesian setting, a prior (or model of a likely

image) is also needed. For that, a piecewise smooth model is
used. The model is specifically formulated by penalizing devi-
ation between neighboring high resolution pixel values, except
for when the panchromatic image has edges. The data term
and the prior are combined into a Markov Random Field (MRF)
framework. The additional constraint on this MRF framework
is that the resulting , must be
spectrally consistent. That is accomplished by observing that
(1), describes a hyperplane (i.e., a linear constraint), and then
only allowing solutions located on that hyperplane. The re-
sulting optimization problem is a large sparse least squares
function—which has the nice quality that it is convex.

D. MRA Method

The multi-resolution analysis approach to pansharpening is
widely used and there are numerous techniques today based
on it. The basic idea is to take the discrete wavelet transform
(DWT) [16] of both the MS and Pan images. The next step is
to retain the approximation coefficients for the MS image but
replace the detail coefficients with those from the Pan image.
Instead of just replacing the coefficients, some fusion rule can
be used. This is shown in Fig. 2.

Fig. 2. Basic wavelet based pansharpening.

Fig. 3. PCA based pansharpening.

The main drawback to this approach is that there will be sub-
stantial artifacts in the fused image due to the nature of the DWT,
i.e., it is not shift-invariant and lacks directionality so there is
bound to be some aliasing, thus the spatial quality of the final
fused image is reduced. One approach to overcome this prob-
lems is to use the undecimated DWT [17].

E. PCA Method

Similar to the MRA method, the PCA method for pansharp-
ening [20] is a so called spatial detail injection method. First,
the mutually correlated bands of the MS image are transformed
using PCA into a set of independent components whose number
is the same as number of bands in the MS image. The first prin-
cipal component has the highest variance and is similar to the
Pan image itself. The next step is to replace this component with
the actual Pan image and finally take the inverse transform to get
the fused image. Fig. 3 illustrates this.

III. MATHEMATICAL MORPHOLOGY

Mathematical Morphology (MM) is a theory that provides
mathematical tools to analyze the spatial relationship between
pixels [7], [9], [21]. Matheron and Serra originally introduced
MM to study binary porous media in the 1960s [22].
When working with MM, one is usually interested in specific

objects or structures in the image. These objects of interest are
viewed as subsets of the image. After these objects have been
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identified, several sets of known size and shape (such as square,
line or disk) can be used to characterize their morphology.
These simple sets are called Structuring Elements (SEs). An

SE always has an origin (usually its symmetric center) that al-
lows one to position the SE at a given pixel of the image.
The most fundamental morphological operations are erosion

and dilation. The eroded value at a given pixel is the minimum
pixel value over the SE and the dilated value at a given pixel
is the maximum pixel value over the SE.
Two of the most common operations of MM are opening and

closing operations. The morphological opening of an image
is an erosion followed by dilation while the morphological
closing of an image is the reverse: dilation followed by erosion.
Both operations are done using the same SE. The morpho-
logical opening of an image removes light features that are
smaller than the SE whereas morphological closing removes
dark features smaller than the SE. While these operations are
useful, they have the drawback of not being connected filters.
What this means is that they do not preserve shapes and thus
introduce shape noise. So instead we will use the morphological
reconstruction operations.
Opening by reconstruction of an image removes unconnected

light features while closing by reconstruction of an image re-
moves unconnected dark features. For both operations, shapes
are preserved and the structures present after the transformation
are of a size greater than or equal to the SE used. This effec-
tively means that less shape noise is generated.
Since objects in a given image May be of varying sizes, the

use of a single SE might prove to be inefficient. To solve this, a
multiscale approach can be taken, where SEs of the same shape
but of several different sizes are used.
A Morphological Profile (MP) [7], [21] is a -dimen-

sional vector that consists of the input image, openings and
closings (reconstruction operations) generated with an SE of

fixed shape but of varying size. The MP can be defined as

where and are closing profile and opening profile of
-dimension, constructed using an SE of fixed shape but of
varying size and is the original panchromatic image. An
dimensional profile has different sizes in total. This kind

of structure is called a granulometry. The number of open-
ings/closings and the corresponding sizes of the SE depend on
the size distribution of structures of interest in the panchromatic
image. Finally, since these are operations performed on the
panchromatic image, the MPs contain no spectral information,
i.e., they only contain spatial information.
The Derivative of the Morphological Profile (DMP) [10] is

defined as a -dimensional vector equal to the discrete deriva-
tive of the MP and is given by

The information provided by the DMP is both spatial and ra-
diometric. For a given pixel, the shape of the DMP can give an
idea of the neighborhood of the pixel, e.g., whether it belongs to
darker or lighter structure than the surrounding pixels. Finally,

the amplitude of the DMP gives information about the local con-
trast of the structure.
From the above it can be seen that an MP (DMP) can be

viewed as a multiband image, where the different openings and
closings (or their derivatives) make up the different bands. In a
classification setting, inclusion of these profiles effectively in-
creases the number of features available for classification.

IV. SUPPORT VECTOR MACHINES

One of the most promising of recent developments in the
field of machine learning and pattern recognition are Support
Vector Machines (SVM) [23]–[25]. These are supervised
learning methods that are widely used for classification and
regression. When given a set of training samples where each
sample is marked as belonging to one of two classes, the SVM
algorithm builds a model that can predict to which class new
data points will belong to.
The SVM model can be viewed as a representation of the

data points as points in space where the separate categories or
classes are divided by a gap that is as wide as possible. The SVM
constructs a hyperplane in a space that has a high or infinite
dimension. For a good separation, the distance from the training
data points of each class to the hyperplane should bemaximized.
When this distance or margin is maximized we call the resulting
linear classifier, a maximum margin classifier.
For this linear classifier to be able to solve non-linear prob-

lems, the non-linear data points are mapped into a higher di-
mensional space in such a way that linear classification in this
new space is equivalent to non-linear classification in the orig-
inal space. This is what is known as the ‘kernel trick’. By using
non-linear kernel-functions, this approach can separate complex
(e.g., multi-modal) class distributions in high dimensional fea-
ture spaces. A commonly used kernel-function is the Gaussian
Radial Basis function and it is used for the experiments in this
paper.
The SVM is in fact a binary classification strategy so some

kind of multiclass decomposition is required to handle multi-
class problems. A singlemulticlass problem is reduced intomul-
tiple binary classification problems. Two common methods are
the One-Against-All (OAA) and One-Against-One (OAO).
For a multiclass problem with -classes, binary

SVMs are trained. For OAO, classification is done by max-wins
voting strategy where every individual binary classifier assigns
the instance to one of the two classes thus increasing the vote
count for that class by one.
Since SVM does not provide class-labels as classifier output

but instead provides the distance from each data point to the hy-
perplane, the sign of the distance is used to determine a class. Fi-
nally, the instance classification is determined by the class with
the most votes. A detailed discussion on SVM is for example
given in [26].

V. RANDOM FOREST

Random Forest (RF) [27] is a relatively recent ensemble
method for classification and regression. Ensemble classifiers
get their name from the fact that several classifiers, i.e., an en-
semble of classifiers, are trained and their individual results are
then combined through a voting process. Many such methods
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have been proposed [28]–[30]. These methods are usually
based on the techniques of boosting [31], [32] or bagging [33].
Boosting uses an iterative re-training procedure where the sam-
ples that have been incorrectly classified are given increased
weight with each iteration. Bagging (or bootstrap aggregation)
is based on training an ensemble of classifiers using samples
that have been bootstrapped from a training set. This has been
shown to reduce the variance of the classification.
Trees are good examples of high-variance and low-bias pro-

cedures so bagging seems to work very well for them. The idea
is to average many noisy but relatively unbiased models in order
to reduce the variance. Since trees are inherently noisy, aver-
aging is of great benefit. Also, when grown sufficiently deep,
they have a low bias.
Boosting is in general a much more computationally costly

method than bagging but it is considerably more accurate. The
RF algorithm uses an improved method of bootstrapping as bag-
ging and has been shown to be comparable to boosting in terms
of accuracy while being free from the drawbacks of boosting.
Thus RF is a much faster algorithm than boosting.
During the training process, the RF algorithm grows many

CART-like trees [34], with each individual tree trained on boot-
strapped samples of the original training set. In order to deter-
mine a split for each node, the algorithm only searches across a
randomly selected subset of the input variables.
In order to classify an object from an input vector, the input

vector is run down each tree in the forest. Each tree gives a
classification or a unit vote for a particular class and the forest
chooses the classification having the most votes.
The most important user-tunable parameter in the RF al-

gorithm is the number of variables used for a split of a tree.
A common value for this parameter is the square root of the
number of inputs. By limiting this parameter, the amount of
computation can be greatly reduced while the correlation be-
tween the trees in forest is minimized. Thus reducing the error
rate. Since each tree only uses a portion of the available input
variables, the algorithm is much faster than a conventional
bagging algorithm with a similar tree-like classifier. Another
nice feature is that the trees do not need to be pruned, hence
reducing the computational costs even further.
The computational time of the RF algorithm [34] has been

shown to be where is some constant, is
the number of trees in the forest, is the number of variables
and is the number of samples in the dataset. This shows that
the algorithm is not very computationally intensive but on the
other hand it can require a considerable amount of memory as
it needs to store an by matrix while running.
RF as a classifier has many nice properties [34] such as excel-

lent accuracy, it scales up very well, it can handle thousands of
variables and a lot of missing data and it is insensitive to noise
in the training labels. It also gives an unbiased estimate of the
test set error as trees are added to the ensemble and finally it
does not overfit.

VI. DATASETS AND EXPERIMENTAL RESULTS

There are three datasets used in this paper. Two of these are
images of Reykjavik, Iceland, acquired by the IKONOS Earth
imaging satellite on 9th August 2001. Each dataset consists of a

TABLE I
NOTATION FOR THE DIFFERENT PANSHARPENING METHODS

USED IN EXPERIMENTS

TABLE II
MORPHOLOGICAL PROFILES (MP) USED IN THE EXPERIMENTS

low-resolution (4m) multispectral image with four bands R,G,B
and NIR and a high-resolution panchromatic image of resolu-
tion 1 m. The ratio between the panchromatic and low-resolu-
tion images is 16 or 4 by 4 pixels.
The third dataset is an image of Rome, Italy acquired by the

QuickBird satellite. As with the other datasets, it consists of a
low-resolution ( 2.4 m) multispectral image with the four bands
R, G, B and NIR and a high-resolution panchromatic image of
resolution 0.6 m. The ratio between the Pan and MS image is
again 16.
These images were then fused using the methods in Table I,

and the resulting high-resolution multispectral image was used
for classification.
Ground truth data for 6 classes (Large buildings, small build-

ings, large roads, streets, open areas and shadows) was avail-
able for the IKONOS datasets and extensive ground-truth data
with 9 classes was available for the QuickBird dataset.
Two different classification algorithms were used, 1) SVM

and 2) RF. For the SVM part, the libSVM1 library was used.
The Gaussian Radial Basis function was chosen for the kernel
and the training parameters were found using a grid-search.
For the RF part, the randomforest-Matlab2 package, devel-

oped by Abhishek Jaiantilal was used. The number of trees was
chosen to be 200, all other options used the default values.
For the datasets, two different MPs (and their derivatives,

DMPs) were constructed. Details on these profiles are shown
in Table II.
By including these profiles in the classification process, the

number of features is increased by their respective lengths, i.e.,
by 6 and 22, respectively.
For each dataset and pansharpening method, five different ex-

periments were conducted. The first one was to simply classify

1Chih-Chung Chang and Chih-Jen Lin—LIBSVM—A Library for Support
Vector Machines—http://www.csie.ntu.edu.tw/ cjlin/libsvm/.
2Abhishek Jaiantilal, randomforest-Matlab, Random Forest (Regression,

Classification and Clustering) implementation for MATLAB (and Stand-
alone)—http://code.google.com/p/randomforest-matlab/.
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TABLE III
TRAINING AND TEST SET DETAILS

FOR THE FIRST DATASET

the Pan image. The second experiment was to classify the pan-
sharpened MS image. The third type of experiment was to clas-
sify the pansharpened MS image along with the Pan image. In
the fourth experiment, the pansharpened MS image with an MP
was classified and finally, the MP was replaced with the DMP.
These experiments were done using both a three band (RGB)

pansharpened MS image and the four band (RGBNIR) image.
Since the original IHS method can only handle the RGB bands,
this method was omitted when using the four band MS images.
Each MS image produced by the different pansharpening

methods was evaluated using a number of quality metrics,
7 metrics for spectral quality and one metric to evaluate the
spatial quality. A summary of these metrics can be found in
Appendix A.
There are two different approaches to evaluating these met-

rics. One is to compare the upsampled original MS image with
the final pansharpened image. Another way of doing this is to
fuse the low-resolution MS image with a downsampled (de-
graded) Pan image and then comparing the final result with the
original MS image. We chose to use the former approach.
For the metrics CC, ERGAS, RASE, RMSE, SAM and SID

lower is better, while for the Qave and spatial metric, closer to
one is better.
All classification accuracies are presented using 3 different

methods. The Overall Accuracy (OA) is simply the percentage
of correctly classified pixels. The Average Accuracy (AA) is the
mean of class-specific accuracy for all the classes. Finally, the
Kappa Coefficient (Kappa) is the percentage of agreement, i.e.,
correctly classified pixels, corrected by the number of agree-
ments that one would expect purely by chance alone.
In the next three subsections a short description of the datasets

is given and the experimental results for each dataset are pre-
sented. The OA is used in the discussion.

A. First Dataset

This dataset is composed of a high resolution panchromatic
image (976 640 pixels) and a low resolution multispectral
image consisting of 4 bands: R, G, B and NIR. As stated above,
the ratio between the panchromatic and low-resolution images
is 16 or 4 by 4 pixels. The panchromatic image can be seen in
Fig. 6(a).
It is important to note that the training set was chosen in such

a way as to be not very representative and thus making the clas-
sification a much more challenging task. Information on the size

Fig. 4. Training map (a) and reference map (b) for dataset 1.

TABLE IV
QUALITY METRICS FOR THE THREE BAND (RGB) DATA USING FIRST DATASET

TABLE V
QUALITY METRICS FOR THE FOUR BAND (RGBNIR) DATA

USING FIRST DATASET

of the training and test sets is shown in Table III and the training
and validation sets are shown in Fig. 4(a) and (b), respectively.
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TABLE VI
CLASSIFICATION ACCURACIES (%) FOR ALL EXPERIMENTS USING FIRST DATASET WITH THREE INPUT CHANNELS (RGB)

TABLE VII
CLASSIFICATION ACCURACIES (%) FOR ALL EXPERIMENTS USING FIRST DATASET WITH FOUR INPUT CHANNELS (RGBNIR)

The spectral and spatial quality metrics for all the pansharp-
ening methods are shown in Table IV (three bands) and Table V
(four bands), respectively. Since there are somany differentmet-
rics, it is not easy to order the different methods by performance,
but it is evident while studying the three band data in Table IV
that the MBF method produces by far the best spectrally consis-
tent results while its spatial performance is rather low.
The DWTmethod gives the second best results when it comes

to spectral quality while the spatial quality is the second worst.

The IHS, Brovey and PCA methods produce similar results of
low spectral quality and rather good spatial quality, while the
UDWT method gives better spectral quality and the best spatial
quality of all the methods. The same can be said about the four
band data in Table V.
The results from the classification experiments are presented

in Table VI and Table VII, for three band (RGB) and four band
(RGBN) data, respectively. Note that the IHS method is not
available for the four band data.
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In the following discussion we use the OA and only refer
to the results achieved using the RF classifier. The accuracies
achieved using the two classifiers are somewhat similar for the
first dataset, with the SVM classifier usually trailing behind the
RF, but for the other datasets, RF gives significantly better re-
sults than SVM in every single case.
1) Three Band Data (RGB): By studying Table VI we see

that the classification of the Pan image alone gives OA of
48.45%. When classifying the pansharpened image alone the
MBF data give the best accuracy, 56.57% closely followed by
the PCA and UDWT data. The Brovey results are the worst in
terms of accuracy at 50.93% with IHS only slightly better. For
this experiment we see that difference between best and worst
accuracy is 5.64%, so all the results are relatively similar.
When the Pan image is added to classification process, the

results in terms of accuracy change somewhat drastically. Now
the data giving best accuracies are the UDWT, at 63.20%, while
the MBF data are second best at 59.77%. Again the accuracy for
the Brovey data is at the bottom (50.70%) with IHS only slightly
better. The difference in accuracy between best and worst is
now 12.5%, more than twice the difference from the previous
experiment.
It is also interesting to note that the Brovey, IHS and PCA data

perform slightly worse in this experiment than in the previous
one. It seems that adding the spatial information from the Pan
image into the classification process is not of any noticeable
benefit for these data. The average gain in accuracy, compared
to the previous experiment, for all the methods is 2.37%.
The next two experiments add the MP followed by the DMP

sowe have richer spatial information available for classification.
The results are very similar for these two last experiments so we
will only comment on the results obtained by including the MP.
The MP for this dataset was chosen to be short; we have only
three different sizes for the SEs. This dataset did not benefit from
longer profiles. This is probably a result from the fact that the
training set was chosen in a way not to be representative, thus
making the classification difficult.
Again the UDWT method produces the best accuracies,

67.87% with MBF coming second at 65.72%. The Brovey and
IHS data give the worst acuracies, 61.21% and 61.17%, respec-
tively. The DWT data 65.12% and the PCA data 63.51%. The
difference between best and worst accuracies is now 6.66% and
it is clear that the further inclusion of more spatial information
decreases this difference compared to the previous experiment
(Pan and MS). The most spectrally inconsistent data, gain the
most from the MP/DMP. For example, we see a gain of 10.51%
accuracy for the Brovey data, while the gain for the UDWT
data is only 4.67%. The average gain in accuracy by including
the MP is 7.28% and 6.78% by including the DMP, a difference
of 0.5% favoring the MP.
2) Four Band Data (RGB and NIR): Table VII presents the

results for the experiments using all four bands of the fused
image. By comparing this table to the previous one, we see that
there are some important differences. It is clear that the ben-
efit of adding the NIR band is very different for the various
pansharpening methods. If we look at the classification of MS
data only, it is evident that the best results are achieved by the
UDWT data, 63.77%, an increase of 7.85% from the three band
experiment.

Surprisingly, the accuracy for the Brovey data now comes
second at 58.94%, an increase of 8.01% compared to the three-
band experiment. In the same manner, the DWT data show a
modest increase of accuracy, 3.73% to 58.09% and the PCA data
goes from 55.24% to 58.72%, an increase of only 3.48%. The
best spectrally consistent MBF data only shows an increase of
accuracy of 2.01%, to 58.58%, coming third in this experiment.
Clearly, the biggest increase in accuracy is for the Brovey data

which also is the least spectral consistent. It is also noticeable
that the UDWT data perform best now.While both theMBF and
DWT data give better spectral quality, the UDWT data scores
highest in spatial quality, at 0.998 according to Table V.
When the Pan data are included, there are not as big gains

overall in accuracy as in the three band case. This can easily by
explained by the presence of the NIR band in theMS data, so the
addition of spatial data from the Pan image is relatively smaller.
The most notable result is that all data gain in accuracy except
the PCA data. In the three band case we saw very big gains in
accuracy for the UDWT in this experiment, but in this case the
gain in accuracy is only 1.58%. The average gain in accuracy
for all data is now 1.35%. Also, similar to the three band case,
the UDWT data give the best accuracies and theMBF data come
second.
By looking at the last two experiments (MP/DMP) in

Table VII we see a similar trend as for the three band data but
obviously the gains in accuracy are not quite as big, now that
we have increased the amount of MS data. The average gain in
accuracy by including the MP is 6.34% and the gain achieved
by including the DMP is 4.92%, giving a difference of 1.42%,
which is almost three times more than for the three-band data.

B. Second Dataset

The second dataset is also an IKONOS image of Reykjavik,
Iceland. The high resolution panchromatic image is 628 700
pixels and the lower-resolution multispectral image consists of
R, G, B and NIR bands. The size ratio is again 16 or 4 by 4
pixels. The panchromatic image is shown in Fig. 6(c). Infor-
mation on the size of the training and test sets is shown in
Table VIII and the training and validation sets are shown in
Fig. 5(a) and (b), respectively.
The training set has been chosen to be more representative

than that for the previous dataset hence the accuracy is generally
much better than for the first dataset. The MP/DMP is now of
length 23.
The spectral and spatial quality metrics for all the pansharp-

ening methods are shown in Table IX (three bands) and Table X
(four bands), respectively. The MBF method produces the best
results in terms of spectral quality while having the worst spa-
tial quality. However, the spatial quality of 0.699 is significantly
higher than for the previous dataset.
If we try to order the methods from best to worst according

to spectral quality (based on the average of the metrics where
lower is better), we have the ranking: MBF (2.344), DWT
(5.734), UDWT (6.421), PCA (6.821), IHS (8.387) and Brovey
(9.529). This should give a reasonable idea how these methods
rank spectrally. Spatially, they rank, from best to worst: UDWT
(0.999), IHS (0.995), Brovey (0.990), PCA (0.972), DWT
(0.907) and MBF (0.699).



PÁLSSON et al.: CLASSIFICATION OF PANSHARPENED URBAN SATELLITE IMAGES 289

Fig. 5. Training map (a) and reference map (b) for dataset 2.

TABLE VIII
TRAINING AND TEST SET DETAILS FOR THE SECOND DATASET

These results reflect the complementary nature of the spectral
and spatial quality. The best spectrally performing method has
also the lowest spatial quality. The best spatially performing
method, UDWT, has rather low spectral quality.
The values for the four-band data are similar. It is worth

nothing though, that in general the Qave values for three-band
data are lower (mean: 0.749) than for the four-band data (mean:
0.947).

TABLE IX
QUALITY METRICS FOR THE THREE BAND (RGB) DATA

USING SECOND DATASET

TABLE X
QUALITY METRICS FOR THE FOUR BAND (RGBNIR) DATA

USING SECOND DATASET

The accuracies from the classification experiments are pre-
sented in Table XI and Table XII, for three band (RGB) and four
band (RGBN) data, respectively. As before, we will use the OA
in the discussion and omit the SVM results.
1) Three-Band Data (RGB): Classification accuracy for the

Pan data alone is 62.63% which is considerably better than for
the previous dataset. The next experiment is classification of
the pansharpened MS data. The average accuracy of all data is
75.41%. The data giving the best accuracy is now the UDWT at
79.29%, the PCA data come second with 77.41%, followed by
theMBF data at 75.84%, the DWT data with 74.59% and finally
the IHS and Brovey data with 73.73% and 71.63%, respectively.
Compared to the first dataset, we see now that the MBF data

goes from giving best accuracy to being third. The method with
the best spatial detail, UDWT, gives the best result even though
the spectral quality is lower than that of MBF and DWT.
By adding the Pan image to the classification we now see the

difference between data produced by the different methods be-
come even more pronounced. The average accuracy for this ex-
periment is 77.31%which is only slightly higher than for theMS
data alone (75.41%) but as we have seen before, the accuracy
for the IHS, Brovey and PCA methods lowers a little bit com-
pared to the previous experiment. This means greater increase
for the MBF and wavelet based methods. The accuracy of the
MBF data increases by 2.92%, the DWT data see an increase
of 5.33% and finally for the UDWT data there is an increase of
4.90%. The data that show an increase in accuracy here are those
which give the best spectral quality in Table IX. The data pro-
duced by the other methods do not benefit at all from the added
spatial information in the Pan image.
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TABLE XI
CLASSIFICATION ACCURACIES (%) FOR ALL EXPERIMENTS USING SECOND DATASET WITH THREE INPUT CHANNELS (RGB)

TABLE XII
CLASSIFICATION ACCURACIES (%) FOR ALL EXPERIMENTS USING SECOND DATASET WITH FOUR INPUT CHANNELS (RGBNIR)

In the final two experiments for this dataset, an MP and an
DMP are included. By looking at Table XI one sees that the
increase in accuracy is, in every case, more for the DMP than
for the MP, so we will only comment on the DMP experiment,
since the behavior is very similar.
The average gain in accuracy by including the DMP in the

classification is 10.92% (7.83% for theMP). This is significantly
higher than for thefirst dataset. Since these two IKONOS images
are somwhat similar, the rather large differences in the experi-
ments are probably due to the way the training sets were chosen.

The data that gain most in terms of accuracy in this exper-
iment are those with low spectral quality, namely the IHS,
Brovey and PCA data. The gains are 16.59%, 14.13% and
11.24%, respectively. The smallest gain, 5.12%, is indeed for
the UDWT data, which have the best spatial detail.
2) Four-Band Data (RGB and NIR): The inclusion of the

NIR band in the pansharpened data has a similar effect as was
seen for the first dataset. The experiment results are shown
in Table XII. Basically, we see the same kind of behavior as
before.
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Fig. 6. The panchromatic images and the classification maps obtained using all 4 bands for each dataset. The classification images were obtained using the
configuration that yielded the highest accuracy. (a) Original IKONOS panchromatic image for dataset 1. (b) RF classification map for dataset 1 (OA: 68.73%).
(c) Original IKONOS panchromatic image for dataset 2. (d) RF classification map for dataset 2 (OA: 89.46%). (e) Original QuickBird pacnhromatic image for
dataset 3. (f) RF classification map for dataset 3 (OA: 94.79%).

Since we now have four bands of MS data, the classifica-
tion accuracy is better than for the three-band case. The average
accuracy is 80.86% so the NIR band brings in an average in-
crease of 5.12%. The UDWT data gives yet again the best re-
sults 85.31%, followed by Brovey with 80.53%, the PCA with
80.02%, DWT with 79.96% and finally the MBF with 78.46%.

The Brovey method comes second here, which was also the case
in this experiment for the first dataset. It is also interesting to see
how well the UDWT data perform here, almost 5% better than
the second best.
Adding the Pan data to the classification does not give much

change in terms of accuracy, the average gain in accuracy is
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TABLE XIII
TRAINING AND VALIDATION SET DETAILS

FOR THE THIRD DATASET

only 0.89%. This is also similar to what was seen in the first
dataset. The biggest gains in terms of accuracy are for the MBF
and DWT data, 1.89% and 1.98%, respectively. For the UDWT
data there is only gain in accuracy of 0.37%, so it is clear that
these data do not gain anything from the spatial information in
the Pan data, which may be explained by the high spatial quality
of the UDWT data.
Again, there is more gain in accuracy when adding the DMP

to the classification process. But unlike the three-band case, the
gains are not nearly as great, the average being 7.15%. This is
consistent with the results from the previous dataset. The MBF
data gain the most, 8.70% while the UDWT data gain the least,
3.79. The explanation for this is probably the low spatial quality
of the MBF data and the high spatial quality of the UDWT data.

C. Third Dataset

The third dataset is a QuickBird image of Rome, Italy.
The Pan image is 972 1188 pixels and the spatial resolution
is 0.6 m, while the low-resolution four-band MS image has
spatial resolution of 0.24 m. The ratio of high-resolution Pan
pixels to the low-resolution MS pixels is 16, same as for the
IKONOS data. The panchromatic image is shown in Fig. 6(e).
There are several things that make this dataset challenging.
First, this image is taken when the satellite was far from being
at the nadir. As a result the buildings in the images have a
very ‘oblique’ look. Second, this is a dense urban area with
primarily three classes of buildings: 1) small buildings (1–2
floors), 2) blocks, large buildings with 3–5 floors and 3) towers,
tall rectangular buildings with more than 5 floors. There are
9 different classes. Information on the classes and number of
training and validation samples is shown in Table XIII.
The quality metrics for this dataset are shown in Table XIV

(three-band) and Table XV (four-band). The rank of themethods
is similar as for the previously discussed datasets.
The results of the classification experiments are presented in

Table XVI for the three-band data and in Table XVII for the
four-band data.
1) Three-Band Data (RGB): Classification of the Pan image

alone gives the relatively low accuracy of 41.03%. The reason
for the low AA and Kappa values for this experiment is that
several classes had accuracy of zero or close to zero.

TABLE XIV
QUALITY METRICS FOR THE THREE BAND (RGB) DATA USING THIRD DATASET

TABLE XV
QUALITY METRICS FOR THE FOUR BAND (RGBNIR) DATA

USING THIRD DATASET

Classification of the MS data gives average accuracy of
65.07% which is a big improvement in accuracy compared
to the prevous experiment. Now the IHS data give the best
accuracy 66.86%, MBF data give 65.59%, Brovey 65.45%,
then PCA with 64.78%, UDWT with 64.68% and finally DWT
with 63.06%. The difference here between the best and worst
accuracy is 3.80%. Interestingly, the least spectrally consistent
data give the best classification results here.
Adding the Pan image to the classification brings the average

accuracy up to 69.62%, which does not seem much. Closer
inspection shows that only the MBF and the wavelet based
data show improvement in accuracy, 8.22% for MBF, 9.42%
for DWT and 12.04% for UDWT. The accuracy for the other
data actually decreases by almost a percentage. The difference
in accuracy between the best (UDWT, 76.72%) and worst
(Brovey, 64.64%) is 12.08%, which is a much larger difference
than for the previous experiment.
Adding theMP and DMP brings big gains in accuracy for this

dataset. The MP and the DMP improve the average accuracy
by 22.64% and 22.79%, respectively. If we look at the DMP,
the average accuracy is 92.42%, which is very good. Of all the
different pansharpening methods, UDWT gives yet again the
best results, 94.23%, followed closely by the MBF at 93.39%.
PCA is at the bottom with 90.45%. The difference between best
and worst accuracy is 3.78%.
2) Four-Band Data (RGB and NIR): With the added NIR

band, the average accuracy for classification of the MS data
alone is now 76.05%. This is an improvement of 10.98% over
the three band experiment. The UDWT data give the best accu-
racy, 78.47%, followed by theMBF at 76.34%,DWT at 75.32%,
Brovey at 75.07% and finally PCA at 75.04%. The difference
between best and worst accuracy is 3.40%.
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TABLE XVI
CLASSIFICATION ACCURACIES (%) FOR ALL EXPERIMENTS USING THIRD DATASET WITH THREE INPUT CHANNELS (RGB)

TABLE XVII
CLASSIFICATION ACCURACIES (%) FOR ALL EXPERIMENTS USING THIRD DATASET WITH FOUR INPUT CHANNELS (RGBNIR)

Adding the Pan data to the classification does not improve
the accuracy significantly. The average accuracy increases by
a meager 0.83% up to 76.88%. The Brovey and PCA data
actually decrease in accuracy by a small amount. The UDWT
data give the best accuracy, 79.69%, MBF comes second with

77.92%. The difference between the best and worst accuracy
is 4.75%.
The inclusion of the MP and DMP does does not help as

much as in the three-band case in terms of accuracy. The re-
spective gains of theMP andDMP are now 17.27% and 17.34%.
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The UDWT data give the highest accuracy of 94.79%, followed
closesly by MBF at 94.17%, PCA at 94.16%, Brovey at 94.09%
and DWT at 93.90%. The difference between the best and worst
accuracy is 0.89%.

VII. CONCLUSIONS

In this paper we have attempted to assess the relative impor-
tance of the spectral and spatial quality for classification of pan-
sharpened satellite urban imagery. We used two different classi-
fiers, SVM and RF and we considered 6 different pansharpening
methods with varying degrees of spectral and spatial quality.
Of those methods, there are two that can be said to represent

the opposite ends of the quality spectrum. The MBF method
produces images of very high spectral quality while the spatial
quality is considerably lacking. On the other hand, the multi-res-
olution analysis based UDWTmethod produces images of spec-
tral quality that is relatively low but have outstanding spatial
quality, producing images of almost the same detail as the Pan
image itself.
A number of experiments were done using three different

datasets produced by two different satellite sensors, IKONOS
and QuickBird. All the different experiments for a single dataset
were done using pansharpened images of three channels (RGB)
and four channels (RGB and NIR), respectively. The different
experiments were classification of the Pan image alone and MS
image alone, Pan image and MS image together, and, finally,
of the Pan image together with the MS image and an MP or a
DMP.
The results of the classification experiments show that the

UDWT method gives best results in terms of accuracy in 22 out
of 24 experiments using the RF as classifier and in 19 out of 24
experiments using the SVM classifier. The MBF method gives
the best results in terms of accuracy in one experiment out of
24 using the RF classifier and in 4 out of 24 experiments using
the SVM classifier. The RF classifier produced better results in
terms of accuracy than the SVM method in almost every exper-
iment, except for about a fourth of the experiments for the first
dataset.
In general, the results obtained for each dataset showed the

same patterns. In the case of the three-band data (RGB), clas-
sification of the pansharpened MS image alone, gave relatively
similar accuracies for all the pansharpening methods. The dif-
ference between the best and the worst accuracies for the first
dataset was 5.64%, 5.78% for the second dataset and 3.8% for
the third dataset. The MBF data gave best accuracies for the
first dataset, The UDWT data gave the best accuracies for the
second dataset and surprisingly, for the QuickBird dataset, the
IHS data gave the best accuracy for both type of classifiers in
this experiment.
The gap in performance between data produced by the

different pansharpening methods was greatly increased with
the addition of the Pan image to the classification process.
The difference between the best and the worst accuracies are
now 12.5%, 13.4% and 12.08% for the first, second and third
dataset, respectively. The UDWT data gave the best accuracies
for this experiment for all datasets and both classifiers.
For the four-band data (RGB and NIR) there were substan-

tial differences compared to the three-band case. The UDWT

data gave the best accuracies in every experiment using the RF
classifier. For the SVM classifier, the only exception were the
MP/DMP experiments for the first dataset, where the MBF data
gave best results.
The most notable things concerning the classification of the

MS data alone using all the four bands, are how much higher
accuracy the UDWT data gives compared to the rest of the
methods, and secondly, how well the Brovey data perform com-
pared to the more spectrally consistent methods, coming second
place for the first two datasets and third in the last dataset. It has
to be mentioned though, that the performance of all the data
with the exception of the UDWT data, are very similar for this
experiment.
Adding the Pan image to the classification using all four chan-

nels does not changemuch in terms of accuracy. For all datasets,
the general behavior is that the MBF, DWT and UDWT data
gain 1%–2% in accuracy while the other data usually give lower
accuracy than for the previous experiment for the MS data only.
Including the MP/DMP in the classification increased the ac-

curacy by a considerable amount for all datasets. The most no-
table increase in accuracy being for the third dataset, an average
increase of 22.7% (using RGB data) compared to the PRGB ex-
periment. The first dataset showed the least benefits from in-
cluding the MP/DMP, the probable reason being how unrepre-
sentative the training set was chosen. The three band data gained
more accuracy than the four band data in the experiments using
the MP/DMP, since the added spatial information was relatively
less in the four band case.
The conclusion to draw here seems to be that while spectral

consistency is important, spatial quality seems to be more
important for classification purposes, given that the spectral
consistency is acceptable. Here, “acceptable” means signif-
icantly better spectral consistency than that of the IHS and
Brovey methods.
We also demonstrated that adding spatial information (Pan

image, MP/DMP) to the classification of data with very good
spatial quality resulted in relatively greater gains in accuracy
than for data with good spectral quality but lacking somewhat
in spatial quality. Often the classification accuracy actually de-
creased when including the Pan image in the classification, for
the least spectrally consistent data. The conclusion being that if
the data has bad spectral quality, adding spatial data will not help
at all. This behavior was seen in every dataset when working
with three band data.
The UDWT is the pansharpening method that produced the

data achieving the highest classification accuracy in almost
every experiment presented in this paper. The images produced
by this method ranked third in terms of spectral quality for all
three datasets, but in every case the spatial quality was excellent
(as good as it can get). The method giving the best spectral
quality, by far, did worse than expected in our experiments
and we draw the conclusion that the reason for this, is the
relatively low spatial quality of the fused images produced by
that method.
Hence, the main conclusion is that while the spectral consis-

tency and the spatial quality of pansharpened images tend to be
complementary in nature, i.e., gains in one quality often com-
promise the other, for classification purposes, it seems better to
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aim for as good spatial quality as is possible, given that the spec-
tral quality stays above some acceptable minimum.
Since all the datasets used in this paper were of urban areas,

future work is to see if the above conclusions also hold for rural
imagery.

APPENDIX

SUMMARY OF QUALITY METRICS

ERGAS:

ERGAS [2] is an acronym in French for “Erreur relative
globale adimensionnelle de synthese” which translates to
“relative dimensionless global error in synthesis”. This metric
calculates the amount of spectral distortion in the fused image
and is given by

where is the number of bands, RMSE is the root mean square
error, is the ratio of pixels in the Pan image to the MS image
and is the mean of the -th band.

Universal Image Quality Index: Qave:

Qave [5] is a metric that attempts to model the spectral dis-
tortion as a combination of three factors. These factors are loss
of correlation, luminance distortion and contrast distortion. The
metric is given by

where and
are the original MS and fused image vectors, respectively, and

Relative Average Spectral Error (RASE):

RASE [6] computes the average performance in terms of the
RMSE of the bands in the pansharpened image.

Spectral Angle Mapper (SAM):

The Spectral Angle Mapper (SAM) [3] is a metric that cal-
culates the spectral similarity between two spectral vectors as a
spectral angle,

where is the number of bands and and
are two spectral vectors at some pixel

location in the original MS image and the fused image, respec-
tively. The value of SAM for the entire image is the average of
all the values for every pixel.

Spectral Information Divergence (SID):

SID [4] originates from information theory. Each pixel spec-
trum is viewed as a random variable and SID measures the dif-
ference or discrepancy of the probabilistic behaviors between
two spectral vectors, taken from the MS image and final fused
image, respectively. Let the vector be taken
from the MS image and the vector be taken
from the final pansharpened image. The range of these vectors
needs to be normalized to the range [0, 1] so we define

where is the number of bands. SID is defined by

where is called the relative entropy and is given by
. Similar for the term .

Correlation Coefficient (CC):

The correlation coefficient (CC) between the original MS
image and the pansharpened image is defined as

where and are the mean values of the corresponding
images.

Root Mean Square Error (RMSE):

The RMSE is defined as

where is the MS image, is the pansharpened image, is
the pixel and is the band number. Finally, is the number of
rows, is the number of columns and is the number of bands.
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Spatial:

The spatial metric used in this paper is based on computing
the correlation coefficent between the high-frequency data of
each MS band and the high frequency data of the Pan image. To
extract the high-frequency data of a band, it is convoluted with
the following mask

The metric value is the average of the CCs for each band of the
MS image.
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A New Pansharpening Algorithm Based on Total
Variation

Frosti Palsson, Member, IEEE, Johannes R. Sveinsson, Senior Member, IEEE
and Magnus O. Ulfarsson, Member, IEEE

Abstract—In this letter we present a new method for the
pansharpening of multispectral satellite imagery. Pansharpening
is the process of synthesizing a high resolution multispectral
image from a low spatial resolution multispectral image and
a high resolution panchromatic image. The method uses total
variation to regularize an ill-posed problem dictated by a widely
used explicit image formation model. This model is based on
the assumptions that a linear combination of the bands of the
pansharpened image gives the panchromatic image and that
a decimation of the pansharpened image gives the original
multispectral image. Experimental results are based on two real
datasets and the quantitative quality of the pansharpened images
is evaluated using a number of spatial and spectral metrics, some
of which have been recently proposed and do not need a reference
image. The proposed method compares favorably to other well
known methods for pansharpening and produces images of good
spatial and spectral quality.

Index Terms—Image fusion, remote sensing, total variation,
pansharpening.

I. INTRODUCTION

PANSHARPENING is the process of fusing a multispectral
(MS) image of low spatial resolution with a Panchromatic

(PAN) image of high spatial resolution to obtain a MS image
of high spatial and spectral resolution.

One area of application where the pansharpened image
is useful is classification, since the added spatial resolution
increases the classification accuracy [1]. Another application
is feature extraction.

Over the years, a number of different pansharpening meth-
ods have been proposed and many of these methods are either
based on Multiresolution Analysis (MRA) or Component
Substitution (CS). There are also hybrid methods based on
both MRA and CS. The MRA methods are usually based on
methods such as the Undecimated Discrete Wavelet Trans-
form (UDWT) or other kinds of pyramidal representations.
Typically, the MS image is upscaled and a multiresolution
representation is calculated for this image along with the PAN
image. The idea is to use some kind of injection model to
replace or enhance the detail of the MS image with details
from the PAN image.

The CS methods typically make use of transformations such
as Principal Component Analysis (PCA) or a spectral transfor-
mation such as Intensity Hue Saturation (IHS) transformation,
where a component derived from the MS image is substituted

All the authors are with the Department of Electrical and Computer
Engineering, University of Iceland, Reykjavik, E-mail: (frostip@gmail.com,
sveinsso@hi.is, mou@hi.is)

This work was funded by the Research Fund of the University of Iceland.

for a component derived from the PAN image and then the
fused or pansharpened image is obtained from the inverse
transformation. There are also methods that do not fit either
of these categories such as the method proposed in this letter.

We begin by formulating an observational model widely
used for the pansharpening process and is for example given in
[2]. The model is based on the assumptions that the decimated
pansharpened image gives the multispectral image and that
the PAN image is a linear combination of the bands of the
multispectral image.

The approach we take here is to apply the model to the
whole dataset instead of dividing the data into small patches
and applying the model to these separately, as was done
in [2]. This involves very large matrices but since these
operators represent simple operations on images, this makes
the implementation of the algorithm fast and straightforward.

Pansharpening is in general an ill-posed problem that needs
regularization for optimal results. We have chosen to use Total
Variation (TV) regularization which is justified by the fact that
the TV of the solution is reduced without penalizing discon-
tinuities, thus resulting in a solution that is essentially free
of noise while preserving the fine detail of the panchromatic
image. This type of regularization is well known in image
denoising and there exist many algorithms to solve this kind
of problem.

The algorithm presented here uses Majorization-
Minimization (MM) techniques to obtain the solution in
an iterative manner. It is related to the work presented in [3]
and is shown to be a 1D-version of Chambolle’s algorithm.
The novelty of the method presented here is the use of the TV
regularization in combination with the observational model.

In Section II we derive the observational model. In Section
III we derive the TV regularized method. Section IV gives
a short overview of the quantitative quality metrics used and
Section V describes the datasets and presents the experimental
results. Conclusions are drawn in Section VI.

II. OBSERVATIONAL MODEL FOR PANSHARPENING

The dataset consists of a high spatial resolution PAN image
yPAN and the low spatial resolution MS image yMS. The PAN
image has dimensions four times larger than the MS image
thus the ratio in pixels is 1 to 16. The MS image contains 4
bands, RGB and near-infrared (NIR).

The PAN image is of dimension M × N and the MS
image is of dimension m × n where m = M/4 and
n = N/4. The vectors yPAN and yMS are the vectorized
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PAN and MS images, respectively and yMS is arranged
as yMS = [1, · · · ,mn︸ ︷︷ ︸

R

, 1, · · · ,mn︸ ︷︷ ︸
G

, 1, · · · ,mn︸ ︷︷ ︸
B

, 1, · · · ,mn︸ ︷︷ ︸
NIR

]T

where mn is the number of pixels in each band. The vectorized
pansharpened image x has this same arrangement where there
are MN pixels in each band.

There are two assumptions that define the model. The first
is that the low spatial resolution MS image can be described
as a degradation (decimation) of the pansharpened image x.
We write this in matrix notation as yMS = M1x + ε where

M1 = I4 ⊗
(
(In ⊗ 1T4×1)⊗ (Im ⊗ 1T4×1)

)
(1)

is a decimation matrix of size 4mn× 4MN , I4 is an identity
matrix of size 4 by 4, ⊗ is the Kronecker product and ε is
zero mean Gaussian noise.

The second assumption is that the PAN image is a linear
combination of the bands of the pansharpened image with
some additive Gaussian noise. This can be written in matrix
notation as yPAN = M2x + ε where ε is zero mean Gaussian
noise and

M2 = [ω1IMN , ω2IMN , ω3IMN , ω4IMN ], (2)

where ω1, · · · , ω4 are constants that sum to one. These con-
stants determine the weight of each band in the PAN image.

Now M1 and M2 have the same number of columns and
thus we can combine the expressions for yMS and yPAN into
a single equation which is the classical observational model,

y = Mx + ε, (3)

where y = [yTMS,y
T
PAN]

T and M = [MT
1 ,M

T
2 ]
T .

III. TV REGULARIZATION

TV regularization encourages noise removal while preserv-
ing edges. By penalizing solutions with high TV, the estimate
is forced to be smooth without necessarily penalizing sharp
boundaries since the estimated boundary or edge is decided
by the observed data.

One can define the TV of the MS image as

TV(x) =
∥∥√(DHx)2 + (DV x)2

∥∥
1
, (4)

where x is the vectorized 4 band MS image, DH = (I4 ⊗Dh),
DV = (I4 ⊗Dv) and the matrices Dh and Dv are defined
such that when multiplied by a vectorized image they give the
first order differences in the horizontal direction and vertical
direction, respectively. The cost function of the TV regularized
problem can be formulated as

J(x) = ‖y −Mx‖22 + λTV(x). (5)

Minimizing this cost function is difficult because the TV
functional is not differentiable. However, MM techniques can
be used to replace this difficult problem with a sequence of
easier ones

xk+1 = arg min
x

Q(x,xk), (6)

where xk is the current iterate and Q(x,xk) is a function that
majorizes the cost function J(x). This means that Q(x,xk) ≥
J(x) for x 6= xk and Q(x,xK) = J(x) for x = xk. By

iteratively solving (6), xk will converge to the global minimum
of J(x).

A majorizer for the TV term [4] can be written using matrix
notation as

QTV(x,xk) = xTDTΛkDx + c (7)

where we define

wk =
(
2
√
(DHxk)2 + (DV xk)2

)−1
(8)

and Λk = diag(wk,wk) and the matrix D is defined as D =
[DT

H DT
V ]
T . When the the data fidelity term, ‖y −Mx‖22, is

expanded, it is evident that we end up with the term MTM
in the solution. In order to avoid having to find the inverse of
this term later in the solution, it is necessary to introduce the
function

QDF(x,xk) = (x− xk)
T (αI−MTM)(x− xk), (9)

where α > max eig(MTM). This ensures that QDF(x,xk) is
positive definite and Q(x,xk) is still a majorizer for J(x).
The function to minimize becomes

Q(x,xk) = ‖y−Mx‖22 +QDF(x,xk) + λQTV(x,xk). (10)

Differentiating this function w.r.t. x, setting to zero and
subsequently solving for x gives

(αI + λDTΛkD)x = b, (11)

where
b = αxk + MT (y −Mxk). (12)

The matrix inversion lemma gives

(αI + λDTΛkD)−1 =
1

α
(I−DT (

α

λ
Λ−1k + DDT )−1D).

(13)
This gives x = 1

α (b−DT z) where we have defined

z = (
α

λ
Λ−1k + DDT )−1Db. (14)

From (14) we have (αλΛ−1k + DDT )z = Db and by adding
cz, where the constant c > max eig(DDT ), and by subtracting
DDT z from both sides of this equation we obtain

(
α

λ
Λ−1k + cI)z = Db + (cI−DDT )z, (15)

which leads to the update rule

zk+1 = (
α

λ
Λ−1k + cI)−1(Db + (cI−DDT )zk) (16)

xk+1 =
1

α
(b−DT zk+1). (17)

We can see that finding the inverse in (16) is trivial since it is
a diagonal matrix.

The implementation of the above algorithm becomes
straightforward once it is realized that all the matrix multi-
plications involving the operators D, DT , M and MT can
be implemented as simple operations on multispectral images.
This significantly reduces computation time and memory re-
quirements due to the enormous size of the matrices involved.

However, there is one important thing to note. Bearing in
mind the structure of the model matrix M, it is clear that
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the multiplication with MT in (12) indicates nearest neighbor
interpolation (the inverse of decimation) of an MS image. By
using bilinear decimation and interpolation instead gives better
results, both according to quality metrics and visual inspection.

IV. QUANTITATIVE QUALITY METRICS

The quantitative quality assessment of pansharpened im-
agery is often difficult since a reference high resolution MS
image is not available. When there is no reference image
available, the PAN and MS images are degraded in resolution
such that the resulting pansharpened image has the same size
as the original MS image and can thus be used as a reference.
However, there are metrics which do not need a reference
image, such as the Quality Without Reference (QNR) spectral
and spatial metrics.

When there is no reference image available it is difficult to
make objective comparisons, however, a possible solution is
to make use of Wald’s consistency property [5] which states
that the pansharpened image degraded to the resolution of the
MS image should be very similar to the original MS image.
The spectral metrics without reference attempt to measure this
spectral consistency.

In this letter we use the SAM [6] (Spectral Angle Mapper),
ERGAS (relative dimensionless global error synthesis) [7], Q4
[8], CC and Qave as metrics that need a reference image and
we use the QNR Dλ spectral [9] and QNR Ds spatial [9]
metrics for quality assessment without reference. Details on
ERGAS, SAM, CC and Qave can be found in [1].

The QNR Dλ spectral distortion metric is given by

Dλ =
1

NB(NB − 1)

NB∑

l=1

NB∑

r=1,r 6=l

∣∣∣Q(Fl, Fr)−Q(F̂l, F̂r)
∣∣∣,

(18)
where NB is the number of bands, F is the pansharpened
image and F̂ is the MS image and Q is the Universal Image
Quality Index (UIQI) [10]. Similarly, the QNR Ds spatial
distortion is given by

Ds =
1

NB

NB∑

l=1

∣∣∣Q(Fl, P )−Q(F̂l, P̂ )
∣∣∣, (19)

where P is the PAN image and P̂ is the degraded PAN image
of same size as the MS image. UIQI is a metric that attempts
to model the spectral distortion as a product of three factors,
i.e., loss of correlation, luminance distortion and contrast
distortion.

The Q4 metric is an extension of the UIQI metric to images
with 4 bands. This is done by considering the 4 values for each
pixel as a quaternion, hence this metric can be viewed as the
hypercomplex extension of UIQI. Further details can be found
in [8].

Both the UIQI and Q4 metrics use a sliding window for the
calculations. We use 64 by 64 pixel window for high resolution
images and 16 by 16 pixel window for low resolution images,
as was done in [11].

The other metrics used in this letter are CC and Qave, CC is
simply the average correlation coefficient between the bands
of the pansharpened image and the reference image, while

Qave is defined as the mean UIQI between the bands of the
pansharpened image and the reference image.

V. EXPERIMENTAL RESULTS

A. Datasets

We present experimental results using simulated Pléiades
data [11] and Quickbird data [11]. The Pléiades dataset
consists of a 0.8m resolution PAN image of dimension 1024
by 1024 pixels and a 3.2m resolution 256 by 256 pixel MS
image. There is also a simulated high-resolution MS image
of same size and resolution as the PAN image. This makes it
possible to use the metrics that use a reference for this dataset.

The other dataset is a high resolution Quickbird image of
the Mississippi State University campus. The PAN image is
2048 by 2048 pixels and of resolution 0.7m and the MS image
is 512 by 512 pixels and of resolution 2.8m. For this dataset
there is no high resolution reference image available.

In order to to be able to use the low spatial resolution MS
image as a reference, we perform experiments using degraded
MS and PAN images. This gives a pansharpened image of the
same size as the original low spatial resolution MS image.
The images are degraded using bilinear interpolation which is
consistent with the use of bilinear decimation and interpolation
in the implementation of the proposed method. We also present
results using the Quickbird dataset at full scale using QNR
metrics only.

B. Comparison to other methods

We compare the proposed method to three state of the art
pansharpening methods. The method called UDWT [1] uses
the undecimated wavelet transform to decompose the PAN im-
age and the bicubic expanded MS image into their coarse (LL)
and detail parts (HH). The LL part of the PAN decomposition
is replaced with the LL part of the MS image and finally the
inverse transform yields the pansharpened image. This method
produces images with excellent spatial quality. Because of its
simplicity there are no tuning parameters other than number
of levels of decomposition, which was set to 2 and the type
of filter, where we use the Daubechies filter of length 2.

The Principal Component Analysis (PCA) method [12] is a
method which belongs to the CS family of methods and finally
the P+XS [13] method is based on a variational model. The
PCA method implementation we used has no parameters to
tune and the number of components is fixed at 4.

The P+XS method is more complex and there are several
parameters to tune. However, most of them were left at
their default values. The parameters that matter most are the
weights for each multispectral band in the fused image and
the regularization term λ. We used the same weights as for
the proposed method and we chose λ = 5 which was shown
to give optimal results based on sensitivity analysis.

C. Choice of parameters

There are several parameters that affect the performance
of the proposed method. The constants α and c affect the
convergence of the algorithm and in all the experiments they
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were chosen as 0.75 and 8, respectively. Sensitivity analysis
of λ shows that for imagery at full scale, the performance of
the algorithm is very good for small values of λ. Based on
this we chose λ = 2 for imagery at full scale. When using
degraded imagery, the ERGAS metric, which is based on the
mean square error, has a global minimum at λ = 1.5, which
is the value we choose.

The constants ωi that determine the weights of the bands
of the pansharpened image are important for spectral quality.
Choosing the value of 0.25 for each ωi gives good results, but
there is room for improvement, since in reality the PAN image
is not the average of the bands. These constants were selected
for each dataset by doing a grid search over the parameter
space, evaluating each possible combination of the parameters
using the ERGAS metric. The values chosen for the Pléiades
dataset are 0.30, 0.26, 0.22 and 0.22 for the red, green, blue
and NIR bands, respectively and for the Quickbird dataset as
0.21, 0.21, 0.21 and 0.37, respectively.

D. Quantitative Quality Assessment Results

Tables I-III show the results of the quantitative quality
evaluations of the different pansharpening algorithms. The last
row in these tables, called Expanded is where the expanded or
upsampled (using bicubic interpolation) MS image is used as
the fused image. This image is used as a baseline reference,
i.e., this is the most basic method for pansharpening.

Table I shows the results for the Pléiades data. Since a
high resolution MS image is available for this dataset, the
pansharpened image can be evaluated at full scale using all
the metrics discussed in Section IV. The table shows that
the proposed method gives best results in every metric using
reference, while the P+XS and UDWT methods give slightly
better results for QNR spectral and spatial metrics. The high
values of the CC, Qave and Q4 metrics indicate good spatial
detail as well as good spectral quality. The CPU time in
seconds for each algorithm, in the same order as they appear in
the table, is 1.8, 0.2, 83.4 and 15.4, respectively. The computer
specification is i5-2400, 3.1 Ghz CPU with 12GB of memory.
All methods are implemented in Matlab.

Table II shows the results for the degraded Quickbird data.
Note how similar values are for the QNR spectral and spatial
metrics. This is very probably a result of the degradation pro-
cess. The proposed method gives the best results for all metrics
except the QNR spectral metric, where surprisingly, PCA gives
slightly better result. The CPU time for the experiments in
Table II is 0.3, 0.1, 20.3 and 3.2, respectively and in the same
order as before.

Finally, Table III shows the results using the Quickbird
dataset at full scale. At this scale, no reference image is
available and thus we only use the QNR metrics to assess
the quality of the pansharpened image. The proposed method
is shown to give better results for both the spectral and
spatial QNR metrics than the other methods. The CPU time
in seconds for the experiments in Table III is 6.1, 0.9, 335.2
and 57.7, respectively.

In Table III we see that the best results for QNR Dλ are

TABLE I: Comparison of pansharpening methods using the
simulated Pléiades data at full scale. The best results are
denoted using bold font.

SAM ERGAS CC Qave Q4 Dλ Ds

Reference 0 0 1 1 1 0.011 0.040

UDWT [1] 5.178 4.424 0.947 0.913 0.890 0.044 0.020
PCA [12] 6.964 7.681 0.853 0.678 0.670 0.073 0.201

P+XS [13] 5.108 4.965 0.951 0.912 0.894 0.017 0.024
Proposed 4.213 3.119 0.972 0.960 0.945 0.039 0.044

Expanded 4.905 6.345 0.869 0.792 0.799 0.002 0.122

for the expanded image. This seems to indicate that the QNR
metrics are not very reliable..

TABLE II: Comparison of pansharpening methods using the
degraded Quickbird data. The best results are denoted using
bold font.

SAM ERGAS CC Qave Q4 Dλ Ds

Reference 0 0 1 1 1 0.020 0.029

UDWT [1] 5.038 3.411 0.933 0.885 0.912 0.100 0.102
PCA [12] 4.821 4.835 0.930 0.784 0.818 0.071 0.097
PXS [13] 4.513 2.982 0.950 0.914 0.931 0.117 0.113
Proposed 3.520 2.448 0.965 0.942 0.960 0.073 0.086

Expanded 4.439 4.444 0.893 0.813 0.812 0.006 0.119

TABLE III: Comparison of pansharpening methods using the
Quickbird data at full scale. The best results are denoted using
bold font. Only metrics that don’t need reference are used.

Dλ Ds

UDWT [1] 0.048 0.055
PCA [12] 0.093 0.113

P+XS [13] 0.060 0.079
Proposed 0.027 0.042

Expanded 0.002 0.045

E. Visual Comparison

A visual comparison of the results for the Pléiades data
using all methods is shown in Fig. 1. Only a subset of the
data is shown in order to display more detail. The images have
been gamma corrected in order to make them more visually
pleasing. Visual inspection shows that all the methods show
good level of detail while the PCA results look very spectrally
distorted.

Figure 2 shows a subset of the pansharpened images using
the Quickbird data at full scale for all methods. Again the
PCA method shows considerable spectral distortion while the
proposed and P+XS method give best results. The UDWT
image shows some noticeable spectral distortion while the
spatial resolution is excellent which is the primary strength
of this method.
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(a) Reference (b) UDWT (c) PCA (d) P+XS (e) Proposed

Fig. 1: Pansharpening results for the Pléiades data. Note that only a subset of the pansharpened images is shown.

(a) Reference (b) UDWT (c) PCA (d) P+XS (e) Proposed

Fig. 2: Pansharpening results for the full scale Quickbird data. Note that only a subset of the pansharpened images is shown.

VI. CONCLUSIONS

In this letter we have proposed a new pansharpening method
based on an observational model which is regularized using
TV. The fact that the model is applied to the whole dataset
results in computations involving very large matrices. How-
ever, since these operations can be implemented as operations
on images, the resulting algorithm is quite fast. We performed
experiments using datasets from two different sensors, Pléiades
and Quickbird and compared our method to three other well
known state of the art methods, representing three important
paradigms in pansharpening, and evaluated the results using
a number of quantitative quality metrics. The results show
that the proposed method consistently outperformed the other
methods used in virtually all experiments for all quality met-
rics used. Visual inspection shows that the method produces
pansharpened images that have excellent spatial and spectral
quality.
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