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Abstract 

Fiber reinforced polymer (FRP) have over the past years become an interesting choice as a 

reinforcement for concrete structures and this is mainly so because of their good resistance to 

chemicals and weathering. Basalt fiber reinforced polymer (BFRP) is the latest FRP material 

considered as reinforcement for concrete and understanding of concrete behavior, reinforced 

with BFRP, is therefore partly unknown and still developing today. This dissertation focuses 

on increasing the understanding of BFRP as a reinforcing material for concrete. The main 

emphasis is on bearing capacity, failure modes and relaxation. Experimental results from 

three studies, considering prestressed BFRP reinforced concrete (RC) beams, were reviewed 

and compared with formulations, regarding shear capacity, from codes and guidelines. The 

experiments were also simulated in the finite element (FE) program ANSYS. Experimental 

work was then carried out to estimate the long term relaxation of BFRP tendons. This 

research produced several key findings: FE models created in ANSYS to simulate 

experimental tests gave an acceptable approach with experimental results regarding failure 

mode, failure force and stress distribution. Equations from JSCE-1997, BSI 8110, Model code 

2010, ACI 440.1R-06, CAN/CSA-S806-02, Nehdi et al, Fib and CNR-DT 203, regarding 

shear capacity, were compared with experimental results for nine beams. Many of these 

equations provided a rather conservative approach while equations from Nehdi et al and 

CAN/CSA-S806-02 gave the best safe approach when compared with experimental results. 

Finally the long term relaxation of BFRP tendons was estimated, based on over 2000 hours of 

measurements on stretched tendons. The 50 years relaxation, for tendons loaded with 50% of 

ultimate tensile strength, was estimated to be 11%. The main conclusions drawn from this 

research were that: Further use of ANSYS to explore and provide understanding of the 

behavior of BFRP RC beams is recommended. More than 4-5‰ strain should not be allowed 

in BFRP longitudinal tension reinforcement to maintain bond behavior between concrete and 

reinforcement. When developing shear capacity equations for FRP RC, use of cubic root 

when considering rigidity of FRP longitudinal bars, concrete compression strength and the 

modification factors which account for different stiffness of FRP and steel is recommended. 

Most of the shear capacity equations reviewed from codes and guidelines for FRP RC are too 

conservative which can lead to inefficient design.  

Keywords: BFRP tendons, steel tendons, shear capacity, ANSYS simulation, relaxation, 

prestressed concrete beams, FRP.   
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Ágrip 

Titill á íslensku: Þol á forspenntum steinsteyptum bitum bentum með basalttrefjastyrktum 

stöngum skoðað með smástykkjaaðferð og útreikningum auk athugunar á slöknun. 

Trefjastyrkt plastefni (FRP) hafa þróast yfir í það að vera raunhæfur valkostur sem bending í 

steinsteypt mannvirki á síðustu árum en aðalástæðan fyrir þessu er gott efna og veðrunarþol 

FRP efnanna. Basalttrefjastyrkt plastefni (BFRP) eru nýjasta tegunding af FRP efnum sem 

farið er að nota í þessum tilgangi og þekking á hegðun steinsteypu bentri með þeim er því að 

hluta óþekkt og í stöðugri þróun. Þessi ritgerð stefnir á að auka skilning á BFRP sem 

bendingarefni fyrir steypu. Aðaláherslan er lögð á burðarþol, brotmyndir og slöknun. 

Rannsóknarniðurstöður úr þremur rannsóknum sem voru að skoða forspennta steinsteypubita 

benta með BFRP stöngum eru skoðaðar og bornar saman við skerþolsformúlur úr stöðlum og 

viðmiðunarreglum. Tilraunirnar voru einnig hermdar í burðarþolsforritinu ANSYS sem 

byggir á smástykkjaaðferðinni (FE). Langtímaslöknun fyrir BFRP stangir er síðan metin með 

tilraunavinnu. Þessi rannsókn gefur nokkrar lykil niðurstöður: FE líkön sem búinn voru til í 

ANSYS til að herma tilraunir gáfu ásættanlega nálgun við tilraunaniðurstöður m.t.t. 

brotmynda, brotkrafta og spennudreifinga. Jöfnur fyrir skerþol úr JSCE-1997, BSI 8110 

Model code 2010, ACI 440.1R-06, CAN/CSA-S806-02, Nehdi et al, Fib og CNR-DT 203 

voru bornar saman við tilraunaniðurstöður fyrir níu bita. Margar af þessum jöfnum gáfu 

nokkuð íhaldssama nálgun en jöfnur frá Nehdi et al og CAN/CSA-S806-02 gáfu hins vegar 

bestu öruggu nálgunina. Að lokum var langtímaslöknun BFRP stanga metin út frá yfir 2000 

klst. mælingu á strekktum stögnum. Fyrir stangir spenntar upp með 50% af mesta togkrafti, þá 

var 50 ára slöknun áætluð sem 11%. Helstu ályktanir sem dregnar voru af þessari rannsókn 

eru: Mælt er með frekari notkun á ANSYS til að skoða og auka skilning á hegðun steinsteypu 

sem bent er með BFRP. Ekki ætti að leyfa meira en 4-5‰ streitu í BFRP togbendingu til að 

viðhalda bindingu milli steypu og bendingar. Við þróun á skerþolsjöfnum fyrir FRP benta 

steinsteypu þá er mælt með notkun á þriðju rótinni þegar verið er að skoða stífni FRP 

togbendingar, þrýstistyrk steinsteypu og stuðla sem taka tillit til mismunandi stífni FRP og 

stáls. Flestar skerþolsjöfnur sem skoðaðar voru í stöðlum og viðmiðunarreglum fyrir FRP 

benta steinsteypu eru of íhaldsamar sem getur leitt til óhagkvæmnar hönnunar. 

Lykilorð:  Basaltrefjastangir, stál strandar, skerþol, ANSYS hermun, slöknun, forspenntir 

steinsteypubitar, trefjastyrkt plastefni.   
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1. Introduction 

1.1. Background 

Concrete is the world´s most used man-made construction material today (Courland, 2011). It 

is relatively cheap and easy to form when cast. When concrete is cast, the cement locks the 

aggregate together making the concrete strong in compression. However, this lock doesn´t 

help the concrete much in tension and it is therefore weak in tension. The tensile strength is 

approximately only 1/10 of the compression strength (Neville & Brooks, 2008). To increase 

the tension capacity of the concrete and prevent cracks, it is reinforced. The most common 

reinforcing material for RC used until now and is still used today is steel. Using steel as 

reinforcement has numerous advantages; it is strong in tension and has a high modulus of 

elasticity. The thermal expansion is similar to concrete and it works well with concrete under 

loading.  

The production process for steel is very stable and thus the material properties are also very 

stable, then steel is easy to form and work with. But using steel as reinforcement has also 

some disadvantages. It can corrode with time and has low fire resistance. The price of steel 

has also been rising over the last few years.  

To prevent steel from corroding and to extend its fire resistance, it is usually coated with e.g. 

painting or galvanized. When steel is used to reinforce concrete the concrete cover serves as 

coating. The cover is usually between 20-80 mm and even more if needed. This cover has 

little or no effect as regards the bearing capacity of the concrete and actually just adds more 

load to the structure. It is therefore of economical interest to reduce the concrete cover by 

using other reinforcing materials with higher fire resistance which are less vulnerable to 

corrosion than steel is.  

FRPs has mainly been tested and used to replace steel as reinforcing material for concrete. 

FRP fibers and sheets have probably been most popular, but tendons have also become an 

option over the last few years. The FRP materials have high tension strength, higher than 

ordinary reinforcing steel. They don’t corrode like steel and most of them have good chemical 

resistance. Some of them like BFRP, for instance, have high fire resistance. However, the 

FRP materials also have some disadvantages. They have low compression and shear strength 

compared to the same properties of steel. The same applies for the modulus of elasticity, 

which is considerably lower for the cheapest FRP materials, GFRP and BFRP, than for steel.  
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FRP materials are also brittle and still considerably more expensive than reinforcing steel. 

Some of the FRP materials, like BFRP and GFRP, are then considerably more flexible than 

concrete compared to steel which has similar flexibility as the concrete. Because of that, the 

concrete fails long before tensile capacity of the FRP materials have been fully utilized. 

Prestressing the FRP materials could however partly solve this problem. 

Prestressing concrete to increase its bearing capacity and durability is commonly used and 

recognized method. By prestressing concrete it is possible to reduce or eliminate tensile 

stresses caused by applied load which usually makes the concrete crack free at serviceability 

stage. Prestress also makes the concrete stiffer than normal concrete. Prestressing is usually 

implemented to concrete through tendons which are stretched in the formwork before casting 

the concrete. After the concrete has cured for some time around the tendons then the tension 

in the tendons is transferred to the concrete as compression by releasing the tendons.  

Because FRP materials have only been used and considered as reinforcement for concrete 

over a relatively short period of time and not very extensively, analytical methods for bearing 

capacity and failure modes are not well understood. There is a difference in the behavior of 

concrete reinforced with FRP and steel which few design codes and textbooks consider. Then 

most of the methods developed for FRP materials do not include BFRPs directly although 

they usually include GFRPs which have similar material properties. This study will therefore 

focus on prestressed concrete beams reinforced with BFRPs or steel tendons, using the steel 

tendons mainly as a reference topic. The main theme will be on bearing capacity, prediction 

of failure modes and theoretical modeling/simulation of the beams. Relaxation of prestressed 

BFRP tendons will also be explored.  

1.2. Problem statement 

Several research studies have been conducted on BFRP materials in Iceland. The two latest 

ones, conducted at Reykjavik University, studied prestressed BFRP tendons as reinforcement 

for concrete beams. The theses produced from these researches are: 

• Björgvin Smári Jónsson, 2011. Prestressed BFRP tendons in concrete beams  

(Jónsson, 2011). 

• Sindri Hlífar Guðmundsson, 2012. Capacity of concrete beams prestressed with BFRP 

tendons (Guðmundsson, 2012). 
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The above mentioned research both had similar main themes, which were to compare testing 

capacity and theoretical calculations for prestressed concrete beams reinforced with BFRP 

tendons. However, in both cases the beams failed differently than expected according to 

theoretical formulations. It is therefore the plan to study further what was happening when 

those beams failed.  

It was also part of this research to estimate the long term relaxation of prestressed BFRP 

tendons. This was partly successful in Jónsson´s (2011) research, but didn´t give entirely 

reliable results, which was mainly because of short measuring time and disturbance of the 

strain gauge from casting of concrete. In Guðmundsson´s (2012) research this part failed and 

no conclusions were reached due to relaxation of BFRP. The long term behavior of 

prestressed BFRP tendons will therefore be explored in this study.  

In continuation of Jónsson´s and Guðmundsson´s theses, Ásbjörnsson (2013) executed a BSc 

study regarding testing of prestressed concrete beams reinforced with BFPR tendons. The 

main theme of this research was to add data to Jónsson´s and Guðmundsson´s results and 

Ásbjörnsson´s results will therefore also be used is this study. 

Last year a similar research as Jónsson and Guðmundsson performed was done as a part of an 

MSc course (Gunnarsson, Claxton, & Jónsson, 2012). In that research prestressed concrete 

beams were reinforced with steel tendons instead of BFRP tendons. In this case the beams 

also failed differently than expected and didn´t reach full calculated capacity. The failure 

mode was then quite similar to what was experienced in the research done with BFRP 

tendons. The results from this research will therefore be studied further and the modeling and 

calculations from that could then be used as reference work for the BFRP study. 

The research questions raised at the beginning of this study are: 

1. Can the FE method be used to calculate bearing capacity and predict failure modes of 

prestressed concrete beams reinforced with BFRP tendons? 

2. What recommended or standard formulations can be used to estimate shear capacity of 

prestressed concrete beams reinforced with BFRP tendons? 

3. How much is the long term relaxation of prestressed BFRP tendons? 
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1.3. Aim and objectives 

The aim of this study is to increase the understanding about BFRP as reinforcing material for 

concrete. The main focus of the study will be on theoretical formulations and modeling for 

bearing capacity of prestressed concrete beams reinforced with BFRP tendons and predictions 

of failure modes for them. Long term relaxation of prestressed BFRP tendons will also be 

estimated. 

The main objectives of this study are:  

1. To create an FE model based on the research work represented in chapter 1.2 and 

compare results. 

2. To compare measured data and results from the experimental work represented in 

chapter 1.2 with theoretical formulations, codes and guidelines. 

3. To estimate the long term relaxation of prestressed BFRP tendons with experimental 

work. 

1.4. Scope of work 

The experimental work started partly in October 2012 when 6 prestressed concrete beams 

reinforced with steel tendons were made and tested subsequently as a part of MSc course. 

Then early in January 2013 the research work started at full power by prestressing BFRP 

tendons and starting of the literature review. The work was planned to be finished in the end 

of May 2013 followed with graduation on the 15th of June 2013.  

The thesis is divided into nine main chapters that are defined below. In additions are 

references and appendixes.  

Chapter one introduces the project undertaken in this thesis along with its aim, objectives, 

reasons and the frameworks of its structure. 

The second chapter discusses the methodology used in this research. It focuses on 

experimental and modeling setup along with use of former research. 

Chapter three gives an overview of the literature relevant to the subject of this thesis. It 

contains review of the materials explored in this study, concrete, steel and BFRP. FE 

modeling of prestressed concrete is then discussed along with shear capacity of concrete. 

Lastly relaxation of BFRP is looked into. 



5 
 

The fourth chapter outlines the creation of an FE models in the computer program ANSYS 

which is supposed to simulate and match the results from previous research. 

Chapter five outlines what calculation methods and formulations are used to fit and represent 

results from previous research. 

The sixth chapter outlines the preparations, setup and execution of the experimental work 

done in this research. 

Chapter seven represents the results from FE modeling created, calculation methods 

considered and experimental work executed. Discussions regarding each theme are also 

carried out. 

The eighth chapter discusses the results from chapter seven along with connection between 

and with former experiments/research. Then the research questions are answered and 

recommendations for further research represented. 

Chapter nine summarizes the whole work. Then some conclusions are drawn. 

  



6 
 

2. Research methodology 

2.1. Introduction 

This thesis includes both literature review and experimental based research. The literature 

search is supposed to explore the field and support the experimental work, especially the 

calculations and modeling part. The experimental work then includes modeling and 

calculations of the prestressed concrete beams along with testing of long term relaxation of 

prestressed BFRP tendons. 

2.2. Former research 

This thesis is a continuation of the work of Sindri Hlífar Guðmundsson´s and Björgvin Smári 

Jónsson´s MSc theses written over the last two years at Reykjavik University. The aim of 

Jónsson´s (2011) thesis, Prestressed BFRP tendons in concrete beams, was to estimate the 

relaxation of prestressed BFRP tendons and to test ultimate force resistance of prestressed 

concrete beams reinforced with BFRP tendons. The aim of Guðmundsson´s (2012) thesis, 

Capacity of concrete beams prestressed with BFRP tendons, was to find some suitable 

analytical methods to estimate load capacity for prestressed BFRP along with estimating the 

efficiency of BFRP tendons as reinforcement and increasing the knowledge on BFRP 

reinforced concrete.  

Jónsson (2011) casted 4 concrete beams 	 ∙ ℎ ∙ � = 200 ∙ 200 ∙ 2000. Three of them were 

reinforced with prestressed Ø 10 mm BFRP tendons and one with un-prestressed tendons. He 

then tested the beams in two point flexural test to simulate their moment capacity due to static 

loading. The beams however failed in shear which was a surprising result. He therefore 

studied the failure modes and shear capacity of the beams further and reached the following 

conclusions: 

• “Ultimate bearing resistance of a beam with prestressed BFRP tendons is not much 

higher than of un-prestressed beams but the SLS bearing resistance is much higher 

and the deflection is smaller.  

• The long-term relaxation (95 year) is estimated around 20%. That is comparable with 

aramid fibers but much higher than for steel and carbon fibers.  

• Special care should be taken when designing members without shear reinforcement.” 

(Jónsson, 2011, p. 55)  
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Guðmundsson (2012) also cast four beams 	 ∙ ℎ ∙ � = 200 ∙ 200 ∙ 3860. They were all 

reinforced with prestressed Ø 10 mm BFRP tendons and tested in a two point flexural test. 

The first two failed unexpectedly in shear. He therefore added external stirrups to the last two 

beams to try getting a moment failure. He succeeded and both beams failed by bending in the 

middle. He´s main conclusions were:  

• “Comparison showed that ACI-440.4R-04 guide for FRP prestressed concrete and  

EN 1992-1-1 design code for steel reinforced and prestressed concrete agreed rather 

well with the test results for flexural capacity. 

• Several shear capacity equations were reviewed, which gave shear capacity from 20% 

of tested capacity to 200%.  

• Comparison between test results and Jónsson´s results indicates that a/d ratio has 

great effect on the shear capacity although most shear equations don’t consider it 

directly. 

• BFRP prestressed beams without shear reinforcement are vulnerable to transvers 

loading even if the a/d ratio is high.” 

(Guðmundsson, 2012, p. 63) 

To add more data to the research, results from Ásbjörnsson´s (2013) BSc thesis, Prestressed 

BFRP tendons in concrete beams, are also used. The main aim of his study was to collect 

more data about failure behavior of prestressed concrete reinforced with BFRP tendons. His 

experimental work and results were similar to the Guðmundsson and Jónsson experiments, the 

only difference being in connection with the length of the beams.  

Data from tests carried out as a part of an MSc course is also used, Testing of prestressed 

concrete (Gunnarsson et al., 2012). That test was a comparison with Guðmundsson´s and 

Jónsson´s work. There the experimental work was executed in exactly the same way as they 

did except steel tendons were used instead of BFRP tendons. In these tests 6 beams were cast 

and tested, the cross section was the same as before but three of them had the same length as 

Jónsson´s beams and the other three the same as Guðmundsson´s beams. Five of them failed 

surprisingly in shear but the last one was fitted with external stirrups and failed in 

compression.  

The calculations and FE modeling will primarily be based on and compared to the results and 

data from these former research.  
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2.3. FE modeling and calculations methods 

When an experimental test is carried out, it is common practice to simulate the test with 

computer modeling and compare them with calculations methods. Test results are used to 

scale and construct calculations methods and modeling. Because concrete behaves in a 

nonlinear way when going into plastic zone, problems involving RC can be difficult to solve 

analytically in a practical way. Therefore numerical methods have been developed and used to 

solve such problems. In this study the FE method will be used to simulate test results from the 

work represented in chapter 2.2, but FE models will only be constructed for prestressed 

concrete beams that failed due to shear. According to Liu and Quek (2003), the FE method is 

a numerical approach widely used to solve structural problems. Over the past few decades this 

method has been developing into a key method for structural modeling and simulations.  

The simulating FE modeling carried out in this research consists of the following main things: 

1. Collect data from the experimental work introduced in chapter 2.2. This involves e.g. 

study of failure mechanism, estimation of material properties, analyzing crack 

behavior and load deflection behavior.  

2. Create FE models in ANSYS for prestressed concrete beams reinforced with BFRP 

and steel tendons and get it to work properly. 

3. Comparing test results with results from ANSYS due to ultimate load and deflection, 

cracking behavior, strain distribution and load deflection curves.  

4. Drawing some conclusions about the results. 

Calculations will also be carried out in this research to compare test results with formulations 

used in textbooks, design codes and guidelines. Like mentioned in chapter 1.1 many of these 

formulations are designed for steel or other FRP materials than BFRP. Calculations will be 

carried out for prestressed concrete beams, reinforced with BFRP or steel tendons, tested in 

the studies represented in chapter 2.2 which consists of the following main things: 

1. Executing literature study on some relevant textbooks, designs codes and guidelines. 

2. Comparing formulations from explored materials with test results due to failure 

behavior and ultimate load capacity.  

3. If relevant, use results from the ANSYS model when comparing formulations and test 

results as supplementary material.  

4. Drawing some conclusions about the results. 
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2.4. Experimental work 

To evaluate the long term relaxation of the BFRP tendons, it was decided to stretch three 

tendons up to approximately 50% of their ultimate tension strength and measure their tension 

loss over 3-4 months. To measure the tension loss, two strain gauges were placed on each 

tendon. An accelerometer was also placed on each tendon to measure the tendons´ frequency. 

The longtime relaxation can then be calculated based on changes in strain or frequency over a 

certain time. To stretch and anchor the tendons, the same equipment and process was used as 

Guðmundsson (2012) made use of in his study.  
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3. Literature review 

3.1. Introduction 

In this chapter important topics relevant to the content of this research are reported and 

discussed. First, concrete and the reinforcing materials for concrete used in this research are 

briefly introduced. Then modeling of prestressed concrete regarding FE analysis is discussed 

and former studies due to that matter are revealed. Further, theory behind calculation method 

for prestressed concrete is explored via design codes, textbooks and previous research. Finally 

relaxation of BFRP tendons is looked into.  

3.2. Materials 

3.2.1. Concrete 

Concrete has been used for a long time as a structural material and is well known. It is easy to 

form, relatively cheap and has proven to be durable and strong if produced and used in a 

proper way. Its material properties and behavior are well understood but strongly depends on 

the production and casting process. Concrete can be produced in many strength classes and 

also in different forms like e.g. self-compacting, fiber reinforced and as shotcrete.  

Concrete is a composite material mixed primarily from cement, aggregate and water. Various 

materials can then be added to the mixture to improve its properties like e.g. pozzolan, fly ash, 

blast furnace slag, sulphur, superplasticizer and fibers (Neville & Brooks, 2008). Concrete can 

therefore be produced with various material properties regarding strength, durability and 

workability which make it popular as construction material.  

Concrete is a quasi-brittle material and, as mentioned before, behaves differently due to 

compression and tension. It is strong in compressions but has tensile strength usually only 

around 10% of its compression strength for normal concrete. Concrete, being “live” material 

has some disadvantage. It creeps and shrinks which causes cracking. Concrete is also weak 

for chemical attacks like sulphate, acid- and some of the aggregate used are alkali reactive. 

Freezing and thawing cycles may also damage the concrete. These problems can, however, 

partly be controlled by permeability and the use of an air-entraining agent along with the use 

of supplementary cementitious materials (Neville & Brooks, 2008). However, if the concrete 

is well made and these factors mentioned above are controlled, then it can be durable and 

strong, even when facing extreme condition. An example of concrete can be seen on  

Figure 3.1. 
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   ss 

Figure 3.1: (Left) Concrete beams being cast. (Right) Prestressed concrete beams ready to be used 
(Author of photographs: Sindri Hlífar Guðmundsson 2012). 

The stress-strain relation for concrete, in compression, is in reality never fully linear and 

concrete is not an isotropic material. The stress-strain curve is, however, close to being linear 

up to 30-40% of ultimate strength and estimation of the modulus of elasticity for concrete is 

usually based on that region of the curve. This is represented on Figure 3.2 where a stress-

strain curve for concrete is shown. When concrete reaches 70-80% of its ultimate strength, it 

begins to yield and exhibits plastic behavior. After the concrete has reached its ultimate 

strength, the stress-strain curve descends and crushing failure occurs at an ultimate strain 

(Kachlakev, Miller, & Yim, 2001). Concrete therefore does not suffer from very brittle failure 

in compression except when prestressed.  

 

Figure 3.2: Stress-strain relation for a uniaxial compression in concrete (Fib, 2012a). 
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3.2.2. Steel 

Steel is a well known material among structural engineers and has been the most frequently 

used reinforcement material for concrete for a long time. It has been widely explored and its 

material properties and behavior are well known. Steel is used in various forms as 

reinforcement, e.g. in form of ordinary rebars, in form of high steel quality tendons which are 

usually stressed and in form of small fibers which are added to the concrete mixture before 

casting. 

According to Marting and Purkiss (2008), manufacturing of standard steel can be divided into 

three stages, i.e. iron production, steel production and rolling. Production of iron is carried out 

by chemically reducing iron ore in a blast furnace using coke and crushed limestone which 

results in material called cast iron. Steel is then made from the iron by reducing the sulphur, 

carbon and phosphorus levels and adding materials like e.g. chromium, manganese, vanadium 

or nickel to improve and control the quality. The steel is then passed to rolling mills to reduce 

its size and produce standard sections.  

Steel is an isotropic material, i.e. it has the same strength in all directions. Its main structural 

advantages are high strength, stiffness and viscosity. Steel has also some disadvantage like 

high density and it can corrode in a moist environment or when used along certain metals. 

Fire resistance of unprotected steel is not high either and its material properties decrease fast 

with increasing heat. Its heat resistance is around 450°C, but steel is incombustible and can 

therefore work well in structures if it is well protected (Martin & Purkiss, 2008). On Figure 

3.3, an example of prestressed high strength steel tendons is shown. 

 

Figure 3.3: Prestressed high strength steel tendons in forms ready to be cast. 

The stress-strain relation for normal and high strength reinforcement steel is reasonably linear 

up to the yield point but when the curve moves to plastic behavior then it becomes nonlinear. 

The steel curve (Figure 3.4, left) for normal steel behaves similar to the concrete curve 

(Figure 3.2), i.e. after it reaches ultimate stress the stress decreases as the strain increases and 
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the failure mode is more ductile. The curve for the high strength steel (Figure 3.4, right), 

however, fails when it reaches ultimate stress which results in more brittle failure than for 

normal steel.  

 

Figure 3.4: (Left) Stress-strain relation for hot rolled normal steel reinforcement. (Right) Stress-strain 
relation for typical high strength steel (EN 1992-1-1, 2004). Note that the figure is out of scale. 

3.2.3. BFRP 

For structural engineering, basalt fibers are a rather new product although they have been 

known for almost a century. Over the last decade they have been explored more, both in 

experiments and practice in the form of FRP materials (Guðmundsson, 2012). They have 

mostly been used in the form of external fabrics but also as rebars and tendons. The fabrics 

have, however, been more popular, especially when it comes to repairing old or damaged 

structures.  

The main material used in the production of BFRP is melted basalt. It is the most common 

rock type in the world. The ocean floor, for instance, is mostly made of basalt and lava is also 

mostly basalt. The basalt fibers themselves are produced in a single stage process by melting 

pure basalt rock at 1400-1600°C, it is then formed into 5-15 µm thick fibers. The composite 

material, BFRP, is then made by utilizing basalt fibers and an epoxy resin to form e.g. sheets 

and tendons (Figure 3.5). These basalt made materials are environmental, non-corrosive, have 

good chemical ability and have high heat resistance (Ramakrishnan & Panchalan, 2005). The 

main strength advantages of basalt fiber are their high tension strength, around 2000-2500 

MPa. However, they have also some disadvantages regarding strength such as low shear 

strength, low elastic modulus and their longtime durability is not well known. Basalt fibers 
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are also not very workable like steel. They can´t be welded or clamped and then it is almost 

impossible to form them after production (Arya, Clarke, Kay, & O’Regan, 2002).  

      

Figure 3.5: (Left) BFRP fabric. (Right) BFRP tendon. 

Although chemical and weather resistance of basalt fibers are considered good, some research 

regarding long term behavior of the fibers show different results. According to Sim, Park and 

Moon (2005), basalt fibers loose strength when they undergo various experiments for 

durability. This is something that needs to be explored further and designers must bear this in 

mind.  

FRP materials usually show linear elastic behavior on stress-strain plots, when subjected to 

tension, all the way to failure. This is demonstrated on Figure 3.6, where stress-strain relation 

for several FRP materials is shown. This behavior is different compared with steel and 

concrete which show nonlinear behavior (Figure 3.2 and Figure 3.4) when they approach 

failure. 

 

Figure 3.6: Stress-strain relation for FRP materials (GangaRao, Taly, & Vijay, 2007).  
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3.3. FE modeling of prestressed concrete 

To model and analyze some advanced engineering problems in detail, some powerful 

calculations method is needed. One of the most powerful methods available today is the FE 

method. Liu and Quek (2003, p. 1) defined the FE method as “a numerical method seeking an 

approximated solution of the distribution of field variables in the problem domain that is 

difficult to obtain analytically“. If the FE method is used with a nonlinear analysis with 

appropriate constitutive relationships, failure and deformational characteristic, then realistic 

behavior of prestressed concrete can be predicted (Bjarnason, 2008).  

3.3.1. The FE method 

The FE method, as the name indicates, is based on dividing the problem domain into several 

small elements. These small elements are then analyzed by applying known physical laws to 

each of them. Behavior of each sub-domain, which is shaped by nodes and named an element, 

is then approached by using piecewise linear functions to represent continuous function of an 

unknown field variable. The unknown represents the discrete values of the field variable at the 

nodes. Then appropriate principles are used to develop equations for the elements which are 

then combined to one another. The results of this process are a set of linear algebraic 

simultaneous equations which represent the whole system. These equations can then be solved 

to return the necessary field variable (Liu & Quek, 2003).  

When creating an FE model, an element type must first be chosen to define the geometry and 

degrees of freedom. There are numerous of elements type that can be used, e.g. truss, beam, 

plate, 2D solid and shell elements. The main differences between these elements are due to 

amount of degrees of freedom as well as possibilities of shape and how they deform. 

According to Liu and Quek (2003), these elements can, however, all be considered as special 

cases of a three-dimensional (3D) solid element, which is considered the most general of all 

solid FE elements. In 3D solid element all field variables depend on x, y and z direction. It 

can also have any arbitrary shape, boundary condition and material properties in space, 

meaning it can deform in all three directions in space. On Figure 3.7, a case of 3D solid 

element under loading is revealed. When an element type has been chosen then the problem 

can be solved with suitable formulation.  
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Figure 3.7: A 3D solid element under loading (Liu & Quek, 2003). 

Using the FE method demands high calculations capacity and only very simple problems can 

be solved by hand. Therefore computer programs based on numerical methods are often used 

to solve problems with the FE method. Many computer programs are available to set up an FE 

model and analyze it. There are, however, not so many capable of executing iterative 

nonlinear analyses and predicting crack and failure mode behavior in a proper way. Programs 

like ABAQUS and ANSYS seem to be popular for these kinds of analyses regarding concrete 

along with some privately made programs developed by individual researchers. In this study it 

was therefore decided to use ANSYS, release 14.0, to execute the FE modeling. ANSYS 

(2011) is a multipurpose and advanced FE program that offers a comprehensive solution to 

structural problems. It contains e.g. features that allow secondary effects or nonlinearities in 

the solution which makes it suitable for the study carried out in this thesis. 

3.3.2. Elements 

In this study three elements were used to model the experiments. Solid65 was used to model 

concrete, Link180 to model reinforcement and Solid187 to model steel supporting cylinders.  

The element Solid65 allows the presence of three different and independent reinforcement 

materials within each solid (e.g. concrete) element. The solid element can represent cracking 

in three orthogonal directions, plastic deformations and crushing. Each element has eight 

integration points at which crushing and cracking checks are made. The reinforcement 

materials, however, only have uniaxial stiffness and can therefore only pick up tension and 

compression. By using a discrete strut or beam element to represent the internal reinforcement 

and connect it to the solid element, the reinforcement can develop shear stress. Plastic 

deformations are, however, not possible because a strut and beam element in ANSYS 

represents linear behavior (ANSYS, 2011). On Figure 3.8 an example of Solid65 is displayed. 
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Figure 3.8: The concrete element Solid65 in Ansys (2011) 

In ANSYS the following main assumptions and restrictions apply for the Solid65 element.  

1. “Cracking is permitted in three orthogonal directions at each integration point. 

2. If cracking occurs at an integration point, the cracking is modeled through an 

adjustment of material properties which effectively treats the cracking as a “smeared 

band” of cracks, rather than discrete cracks. 

3. The concrete material is assumed to be initially isotropic. 

4. Whenever the reinforcement capability of the element is used, the reinforcement is 

assumed to be “smeared” throughout the element. 

5. In addition to cracking and crushing, the concrete may also undergo plasticity, with 

the Drucker-Prager failure surface being most commonly used. In this case, the 

plasticity is done before the cracking and crushing checks.“ 

(ANSYS, 2011, p. 601) 

In most of the studies reviewed, where reinforced concrete is modeled in ANSYS, an element 

called Link8 is used to model the reinforcement material if it is in the form of rebar or tendon. 

However, in release 14.0 of ANSYS used in this study, this element has been removed. The 

element chosen to model the steel and BRFP tendons in this study is called Link180. This 

element is a sort of new and improved version of the Link8 element. It is a 3D spar element 

with three degrees of freedom at each node and is capable of plasticity, rotation, creep, large 

strain capabilities and large deflection (ANSYS, 2011). On Figure 3.9 a Link180 element is 

displayed. 
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Figure 3.9: The Link180-3-D Spar element in Ansys (2011) 

To avoid stress concentration problems and premature failure of concrete elements at support 

points, steel cylinders are added there. In the experimental tests, represented in chapter 2.2, 

which this study is based on, steel cylinders are used to support the beams. Simulating of the 

beams will therefore be more realistic by adding these cylinders to the model.  

In many of the studies reviewed, where loading and supporting steel elements are added, an 

element called Solid45 is used to model steel loading and support plates. But like the Link8 

element this element does not exist in the ANSYS release used in this study. Therefore an 

element called Solid187 is chosen to model these steel cylinders. This element has a quadratic 

displacement behavior, is defined by 10 nodes and each node has three degrees of freedom. 

The element is capable of simulating creep, stress-stiffening, large strain, plasticity, 

hyperelasticity and large deflection (ANSYS, 2011). On Figure 3.10 a Soldi187 element is 

displayed. 

 

Figure 3.10: The Solid187-3-D 10 node tetrahedral thermal solid element in ANSYS (2011) 
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3.3.3. Modeling of concrete 

In this study only concrete was defined with nonlinear behavior and therefore modeling of 

concrete will be especially discussed with this in mind. According to Chen (2007), strength of 

concrete elements under multiaxial stress can only be properly determined by considering the 

interaction of the different components of the state of stress. Therefore failure criteria are 

defined as a function of the state of stress in concrete. Several failure criteria have been 

developed for concrete through the years by using mathematical models relying on one to five 

parameters. Parameters that have been used to formulate failure criteria are e.g. yielding, 

initiation of cracking and ultimate bearing capacity (Powanusorn, 2003).  

In the FE program ANSYS, an element called Solid65 is provided to model the nonlinear 

behavior of brittle material like e.g. concrete. Solid65, as mentioned in chapter 3.3.2, is a 

dedicated three-dimensional eight-node solid isoparametric element and its failure criteria is 

based on Williams and Warnke (1974) study. That model considers five parameter failure 

surface models for concrete in tension and compression. According to Kachlakev et al (2001), 

Bjarnason (2008) and Wolanski (2004), the Williams and Warnke model has been popular 

and widely used for research and modeling of concrete since it was first published. On Figure 

3.11 a simple description of the three-dimensional failure surface is published, on a two 

dimensional graph, for states of stress that are biaxial or almost biaxial.  

 

Figure 3.11: Failure surface for concrete with nearly biaxial stress (ANSYS, 2011) 
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On the Figure 3.11 are the most important nonzero principal stresses in σxp and σyp directions 

and the three failure surfaces presented are function of the sign of σzp. This means that when 

σxp and σyp are negative (compression) and σzp.is equal or less than zero, then crushing would 

be predicted. However, if σzp would be larger than zero (tension), then cracking in direction 

perpendicular to the σzp direction would be predicted (William, K.J. & Warnke, E.P., 1974). 

This can be explained generally, that is when all principal stresses are compressive and lie 

outside the failure surface and the elastic modulus of concrete becomes zero in all principal 

directions, crushing happens and the element becomes inactive. However, when the principal 

stress in some direction lies outside the failure surface and the elastic modulus becomes zero 

in the direction parallel to the principal stress direction, then cracking occurs.  

When performing a nonlinear analysis, the plastic behavior of the yield surface must be 

defined. To do this, hardening rules are used but they reveal changing of the yield surface 

with progressive yielding, so the stress state for further yielding can be estimated. In ANSYS, 

two commonly used hardening rules are available, kinematic hardening and work/isotropic 

hardening. The main difference between these rules lies in the behavior of the yield surface as 

can be seen on Figure 3.12. Work hardening assumes that the yield surface increases in size as 

the plastic strains change but remains centered about its original centerline. Kinematic 

hardening however assumes that the yield surface translates in stress space with progressive 

yielding but its size remains constant (ANSYS, 2011). 

 

Figure 3.12: (Left) behavior of yield surface when following work hardening rule.  
(Right) behavior of yield surface when following kinematic hardening rule (ANSYS, 2011). 

There is, however, not much difference between the results from these rules if the loading is 

monotonically increased until failure. If the load is added in a cyclic way and it repeatedly 

overcomes the yield point then the results would be different.  
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3.3.4. Discretization and nonlinear solutions 

Discretization of elements is an important part of FE analysis. The FE model must be meshed 

up with appropriate element size, because e.g. the model convergence and accuracy of the 

solution strongly depends on that. When modeling concrete in ANSYS and using the Solid65 

element, studies have shown that the element size should be around one to three times bigger 

than the maximum aggregate size to accurately predict crack behavior (Kachlakev et al., 

2001). Use of rectangular mesh is also recommended to obtain good result when using the 

Solid65 element. 

When carrying out nonlinear analysis on the FE model, the total load applied is divided into a 

series of load steps. Each load step is solved independently and at the end of each step 

solution the stiffness matrix of the model is adjusted to reflect nonlinear changes in structural 

stiffness. After that the next load step is solved in the same way (Kachlakev et al., 2001). This 

process is carried out in ANSYS with Newton-Raphson equilibrium iterations. For given 

tolerance limits, this method offers convergence at the end of each load step (ANSYS, 2011). 

On Figure 3.13 the use of Newton-Raphson approach is demonstrated for nonlinear analysis 

on single degree of freedom system. 

 

Figure 3.13: Newton-Raphson iterative solution for two load steps in  
single degree of freedom system analysis (ANSYS, 2011). 

The Newton-Raphson approach evaluates the out-of-balance load vector before each solution. 

This vector represents the difference between the loads equivalent to the element stress and 

applied load. Next, ANSYS finds a linear solution by using the out-of-balance loads and then 

checks if the solution fulfills convergence tolerance. This procedure is carried out 

continuously until the convergence criteria are fulfilled (ANSYS, 2011). The convergence 
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criteria for similar studies as carried out in this research seem to be usually based on 

displacement and load.  

Some researchers like e.g. Kachlakev et al (2001), Bjarnason (2008) and Wolanski (2004) 

point out that the default criteria used in ANSYS, regarding convergence tolerance limits, 

makes it difficult to achieve solutions. They therefore recommend that the default tolerance 

should be increased to five times the default limit for force and displacement checking. 

Wolanski (2004) also points out in his study that the force criteria could not converge when 

the concrete member began cracking and he therefore released here in his study and lowered 

the tolerance limits for the displacement criterion. 

3.3.5. Use of ANSYS in practice  

It is common practice to create FE model in computer programs and compare them with 

experimental results from some tests or researches. Many such studies have been carried out 

regarding prestressed concrete beams both with steel tendons and FRP materials. Most of the 

FRP materials simulated in this research are, however, in form of CFRP, AFRP and GFRP. It 

is not easy to find materials on modeling of concrete reinforced with BFRP and majority of 

the few studies found have been carried out in China and are written in Chinese or are 

unavailable. Thus the focus will be on all these FRP materials in this review.  

Kim, Shi and Green (2008) studied ductility and cracking behavior of prestressed concrete 

beams strengthened with prestressed CFRP sheets. They made prestressed beams reinforced 

with internal steel strands and stirrups. The beams were then precracked and a significant 

reduction of the reinforcement was carried out. This was done to simulate a significant loss of 

prestress in the beams. Then CFRP sheets were added to the bottom of the beams and they 

tested both for service load and to complete failure. An FE model was then constructed in 

ANSYS to predict the flexural behavior of the beams. In Kim et al. (2008) model two 

different elements were used to create the beams, Solid65 to model the concrete and Link8 to 

model the CFRP sheets and steel strands. They also developed nonlinear iterative model to 

predict flexure of the beams which was based on the CEB-FIB code. Their main conclusion, 

based on the FE analysis, was that the ANSYS model presented acceptable crack widths 

under service loads when compared to the tested beams. However, the FE model did not 

represent the stiffness of the beams well enough after the beams started cracking and some 

differences were also noticed in the ductility indices between the test beams and the FE 

model.  
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Ibrahim and Mahmood (2009) created an FE model in ANSYS to simulate experimental test 

of shear capacity for six reinforced concrete beams strengthened with FRP laminates. The 

beams were made with different conditions due to strengthening. They were all with deficient 

shear reinforcement and then either strengthened with CFRP or GFRP laminates near the 

supports to increase the shear capacity. The thickness of the FRP laminates also varied 

between beams. The concrete was modeled with Soldi65 element, the reinforcing steel with 

Link8 element and Solid46 layered element was used to model the FRP composites. Steel 

plates were used to support and load the beams and they were modeled with Solid45 element. 

All materials were modeled with linear behavior except the concrete which was defined with 

nonlinear behavior. Comparisons between experimental results and the ANSYS FE model 

were then carried out as regards load deflection curves, crack pattern and failure loads. All 

these comparisons showed good agreement. Ibrahim and Mahmood (2009) main conclusions 

were that CFRP was more effective for strengthening than GFRP to strengthen RC beams for 

shear. Then they state that their FE model could be used in additional studies to develop 

design rules for use of FRP laminates as strengthening material for RC members.  

Chen et al. (2008) studied strengthening of RC slabs with CFRP, GFRP and BFRP materials. 

They cast RC slabs and let them cure for over a month. The FRP materials were then applied 

in different layers to the slabs using epoxy resin. The strengthening was added as strips 

forming a cross shape over the slab (Figure 3.14 ) and the slabs were then tested to failure. FE 

model was then created in ANSYS to simulate the test results by using the Solid65 element to 

model the concrete slab and Shell41 element to model the FRP plates.  

 

Figure 3.14: FE model created by Chen et al. (2008) to model cross-shape strengthened slabs. 
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Perfect bonds between FRP materials and concrete were assumed but when tested, debonding 

occurred between the CFRP plate and the concrete. Therefore Combine39 spring element was 

added to the models to simulate this behavior. This was, however, not a problem for the BFRP 

and the GFRP strengthening. Comparisons between ANSYS models and the test regarding 

load-deflection curves showed good results but there was minor difference for ultimate 

deflection and load results. That could, however, be explained with the small difference 

between restrains in the experimental test and the ANSYS model.  

3.4. Shear capacity of concrete 

The behavior of RC structures due to shear is a complex phenomenon and is still today partly 

unsolved. Few or no analytical methods are available and calculations to estimate shear 

strength of reinforced concrete are mainly based on empirical equations developed from test 

results. However, it is known that shear resistance of reinforced concrete elements is mainly 

determined by contribution from aggregate interlock, dowel action, un-cracked compression 

zone and shear reinforcement, if provided. Nevertheless, the nature of the interaction between 

concrete and reinforcement and mechanical properties of the reinforcing material have also 

some influence on the development of all of these shear mechanisms not just the properties of 

the concrete itself (Fib, 2007). 

3.4.1. Types of shear failure 

When a concrete beam is loaded by a combination of shear force and bending moment, 

maximum shear and normal stresses at a point in a beam occur in planes inclined with the axis 

of the beam. These planes are usually called principal planes and the stresses that work on 

them are called principal stresses.  

Above the neutral axis of the beam, the cross section of the beam is in compression and 

therefore the maximum principal stress is also in compression which prevents cracking. 

However, below the neutral axis, where the beam cross section is in tension, the maximum 

principal stress is in tension. When the principal tensile stress exceeds the concrete tensile 

strength, cracks form. The tension in the beam decreases as one moves towards the support 

and the slope of the principal stress rises as demonstrated on Figure 3.15. Because the 

concrete has relatively low tension strength, diagonal tension cracks develop along planes 

perpendicular to the planes of principal tensile strength. Close to the supports where the cross 

section is almost in a state of pure shear, this diagonal tension forms inclined shear cracks. 

(Nawy, 2009).  
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Figure 3.15: Trajectories of principal stresses in concrete beam. Dashed lines represents 
 compressive trajectories and solid lines tensile trajectories (Nawy, 2009). 

According to Nawy (2009), the effects of the tensile and flexural stresses are considerably 

reduced by prestressing concrete which leads to smaller flexural cracks in the prestressed 

member. This behavior then directly affects the shear forces and the resulting principal 

stresses in the member, but those forces and stresses are considerably lower in a prestressed 

member than in an unprestressed member.  

Form of shear failure is different between members depending on several factors such as 

quantity of longitudinal reinforcement, geometry and load configuration. The shear 

span/effective depth ratio (a/d ratio), defined e.g. on Figure 3.16, is, however, one of the most 

significant factors affecting the behavior of shear failure because it controls the slenderness of 

the member. Nawy (2009, p. 229) stated that “Fundamentally, three modes of failure or their 

combination occur: flexural failure, diagonal tension failure, and shear compression failure 

(web shear)”. These failure modes are defined for prestressed concrete beams without shear 

reinforcement. 

First Nawy (2009) defined flexural failure (Figure 3.16). When beams suffer from flexural 

failure, cracks start to develop in the middle of the beam perpendicular to the lines of 

principal stress. These cracks are therefore generally vertical and they extend towards the 

neutral axis as the load increases, causing noticeable deflection and finally failure of either the 

concrete or longitudinal reinforcement. This type of failure usually occurs in beams with 

shear span/effective depth ratio value larger than 5.5 under concentrated loading.  

 

Figure 3.16: Flexural failure of concrete beam, cracking developement (Nawy, 2009) 
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Next Nawy (2009) defined diagonal tension failure (Figure 3.17). This type of failure occurs 

when the diagonal tension strength is lower than flexural strength of a beam. First, vertical 

flexural cracks starts to develop at midspan which is followed by bonding failure between the 

reinforcing steel and surrounding concrete at the support. In continuation of that, diagonal 

cracks start to develop between loading and support points. As the cracks stabilize, they 

widen into principal diagonal tension cracks which extend to the top of the beam. This type of 

failure usually causes only relatively small deflection at failure and the shear span/effective 

depth ratio varies from 2.5 to 5.5 for beams under concentrated loading.  

In prestressed beams, the principal diagonal tension cracks are located closer to the loading 

points than in unprestressed beam. The compression force applied through prestress reduces 

the maximum principal stress in tension at the supports which causes the diagonal cracks to 

form further into the span. Therefore, in prestressed beams, the diagonal tension failure is 

often referred to as flexure shear because in sum, it is the result of the combination of shear 

and flexural stresses. 

 

Figure 3.17: Diagonal tension failure of concrete beam, cracking developement (Nawy, 2009) 

Finally Nawy (2009) defined shear compression failure (Figure 3.18). This failure mode 

behaves similar to diagonal tension failure to begin with. That is, flexural cracks start to 

develop at misdspan which is followed by bonding failure between the reinforcing steel and 

surrounding concrete close to the support. Next, inclined cracks quickly develop and head to 

the neutral axis; these cracks are, however, steeper than the cracks which developed in the 

diagonal tension failure. As the cracks get closer to the neutral axis, their progress slows down 

because the concrete in the top compression fibers starts to crush and redistribute stresses in 

the compression zone. Finally the principal inclined cracks dynamically join the crushed 

concrete area which causes sudden failure. 



27 
 

 

Figure 3.18: Shear compression failure of concrete beam, cracking developement (Nawy, 2009) 

For unprestressed members under shear and bending, the cracks usually vary in slope from 

45-90° depending on their position in the beam. In prestressed members, the compressive 

stress reduces the tensile stress and the slope of the cracks reduces to 0-45°. This behavior 

improves the shear strength of the member because the shear stress is distributed to a larger 

area. The prestress also increases the flexural cracking load and therefore the effective shear 

strength tends to be greater than in an ordinary reinforced beam (O’Brien & Dixon, 1995).  

3.4.2. Shear transfer mechanisms for members without shear reinforcement 

When a member, reinforced with only longitudinal reinforcement for bending, is exposed to 

bending and shear, it will crack, e.g. as on Figure 3.17. The transmission of the shear force 

through the cracked member is basically carried out with combination of three mechanisms, 

dowel action, aggregate interlock and resistance of the compression (uncracked) zone of the 

member. These mechanisms are demonstrated on Figure 3.19. For traditional steel 

reinforcement the dowel action generally reaches its capacity first which is followed by 

failure of the aggregate interlock. Then the concrete in the compression zone fails in shear 

(O’Brien & Dixon, 1995).  

 

Figure 3.19: Shear transfer mechanisms for concrete member (O’Brien & Dixon, 1995). 
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It can be difficult to estimate the bearing capacity for each of these mechanisms individually 

and therefore most shear capacity formulations provide a single equation which includes all 

these mechanisms. The most common factors used to develop shear capacity equations are: 

• Shear span/effective depth (a/d) ratio. 

• Material properties of the concrete. 

• Amount and material properties of longitudinal tension reinforcement. 

• Axial forces in member. 

• Sizes of the member. 

• Shear and moment distribution for the member. 

Prestressing of members, although not always included in shear capacity equations, directly 

affects some of the shear transfer mechanisms. French, Dereli and Shield (2010) discussed 

this in their research. According to them, the magnitude of shear resistance provided by the 

uncracked compression zone mainly depends on its depth. Adding compression to concrete 

members increases the depth of the zone and therefore its contribution to the shear resistance.  

The shear resistance provided by the aggregate interlock mainly depends on the size of the 

aggregate and cracks width. Bigger aggregate and smaller cracks increase the shear resistance. 

As mentioned before in this chapter, the size of the flexural cracks is reduced by prestressing 

members and thus increases the shear resistance provided by the aggregate interlock.  

The dowel action contribution to the shear resistance mainly depends on the stiffness and 

shear resistance of the longitudinal reinforcement and the concrete cover below it. Hence the 

prestressing of members does not contribute much directly to the dowel action mechanism.  

3.4.3. Effect of FRP materials on shear capacity 

According to GangaRao et al. (2007), the failure modes, regarding shear, of concrete 

reinforced with FRP materials are the same as for concrete reinforced with steel, which was 

discussed in chapter 3.4.1. However, the shear span/effective depth ratio rules, used to 

determine which kind of failure occurs, presented in that chapter cannot be directly used to 

predict failure mode of FRP reinforced concrete. Ramadass and Thomas (2010) point out that 

based on the model proposed by ACI 440.1.R (2006), shear failure would be predicted for 

FRP RC beams without shear reinforcement if the a/d ratio is less than 9.0. This is different to 

Nawy´s (2009) approach for prestressed steel RC beams where he predicts flexural failure for 

beams with a/d ratio larger than 5.5.  
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Because FRP materials are more flexible than steel, larger strain can be induced in them when 

used as reinforcement and loaded. This is not convenient because large strain in the concrete 

reinforcement usually results in wider cracks and larger deflections of the concrete member. 

The failure behavior of FRP reinforced concrete will also be brittle compared to steel 

reinforced concrete. This is because the FRP materials are linear elastic until failure while the 

plastic behavior of the steel induces more ductile failure. Stress redistribution in the concrete 

can also be interrupted because of this elastic behavior of the FPR materials. Prestressing the 

FRP materials could, however, partly solve this problem.  

As introduced in chapter 3.4.2, the transmission of the shear force through the cracked 

member is carried out with combination of three mechanisms, dowel action, aggregate 

interlock and resistance of the compression zone of the member. Using FRP materials as 

longitudinal reinforcement instead of steel affects all this mechanisms.  

Using FRP materials as reinforcement for concrete leads to wider cracks and larger 

deflections of concrete member compared to when steel is used. Concrete reinforced with 

FRP materials is therefore expected to carry less shear force trough the aggregate interlock 

than concrete reinforced with steel (Fib, 2007).  

FRP materials have usually very low transverse stiffness and do therefore not contribute much 

to shear resistance trough dowel action. However, fib (2007, p. 75) state that “dowel action is 

a shear carrying action that is of relatively minor importance in comparison to other shear 

transfer mechanism”. Because of that, it can´t really by asserted that FRP materials affect 

shear capacity through dowel action since that mechanism does not contribute much at all.  

Because FRP materials are not as stiff as steel, the size of the concrete compression zone will 

be smaller when they are used as reinforcement and thus a lower shear resistance of FRP 

reinforced concrete is expected compared to steel RC straight after cracking. However, when 

yield strain of flexural steel reinforcement is reached, shear capacity of the compression zone 

seems to deteriorate very quickly. This behavior has not been observed for concrete 

reinforced with FRP materials. The reason for this is that when the steel starts to yield, the 

neutral axis depth reduces rapidly leading to a smaller concrete compression zone and 

therefore lower shear resistance of the zone. In FRP reinforced concrete the concrete 

compression zone is smaller than in steel reinforced concrete from beginning of loading and 

therefore also when the concrete starts to crack. However, the compression zone does not 

reduce more as strain in the FRP materials increases and non-linearity in the mechanical 
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characteristic of concrete in compression even leads to increase of the compression zone. This 

means that even though the shear resistance provided by the compression zone of the concrete 

is smaller for FRP RC than for steel RC right after cracking, the increase of strain in the 

reinforcement will not lead to as rapid degradation in the shear resistance, in FRP RC, as 

when steel is used (Fib, 2007). 

Most of the formulations and design equation used to estimate shear strength of concrete are 

semi empirical and according to fib (2007, p. 77), “ rely on the underlying assumption that the 

various mechanism that develop are plastic and redistribution of stresses can occur following 

yielding of the reinforcement”. The elastic-brittle behavior of FRP material therefore raises 

questions whether formulations and assumptions used for steel reinforced concrete can be 

adapted for FRP materials. Although being a controversial subject, like shear behavior of 

concrete has been through the years, fib (2007), Nehdi, El Chabib and Saïd (2007) and 

GangaRao et al. (2007) e.g. are of the opinion that today formulations and assumptions can be 

adapted for FRP materials and they demonstrate this by providing shear capacity equations for 

FRP reinforced concrete.  

One of the basic assumptions for the derivations of shear capacity equations is that adequate 

bond between reinforcement and concrete can be developed (Fib, 2007). Usually steel 

rebar/tendons are formed when used as reinforcement and therefore reach good bond with the 

concrete. The shape and form of FRP rebar/tendons, however, varies between producers and 

bond behavior of e.g. BFRP tendons is not well known. Fib (2007) states that if adequate 

bond between concrete and reinforcement is developed, the concrete section experiences 

strain and forces that do not depend on the type of flexural reinforcement used. This means, 

that if the same design forces and strain in the longitudinal reinforcement are maintained by 

using FRP, then equation 3.1 can be defined, referred to as the “strain approach”. In 

continuation of that, an equivalent area of flexural reinforcement can be developed  

(equation 3.2).  

 �� = �� ∙ �� ∙ �� = �	 ∙ �	 ∙ �	 = �	 3.1 
 

 �� = �� ∙
���	 3.2 
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This principle, or similar corrections, has been widely used to account for the different axial 

rigidity of the flexural reinforcement when developing shear resistance equation for FRP RC 

members (Fib, 2007).  

Another thing to bear in mind when adapting the formulation, is the different behavior of steel 

and FRP. GangaRao et al. (2007, p. 247) point out following considerations to be aware of 

when using FRP reinforcement in shear.  

• “FRPs have a higher tensile strength than that of steel and many FRP types do not 

exhibit yield behavior. 

• Some of FRPs have a relatively low modulus of elasticity. 

• FRPs have low dowel resistance. 

• The tensile strength of the bent portion of FRP bar is less than about 40% of the 

straight portion.” 

Several attempts have been carried out to modify and develop existing shear formulations so 

they fit for FRP RC, as mentioned above. Standards like e.g. the JSCE standard, the British 

standard, the ACI standard, the CSA design specifications and the Italian design 

specifications have all done this. Research and studies have also been conducted to develop 

formulations for FRP RC. In chapter 5 some of these formulations will be revealed and 

compared to test results.  

3.5. Relaxation of BFRP 

According to fib (2007, p. 27), “stress relaxation is the decay in stress with time when the 

material is kept under constant strain condition”. Relaxation of tendons used to implement 

prestress in concrete is thus an important factor for designers because it, among other factors, 

controls the effective prestress force in the concrete.  

Relaxation of FRP tendons can be estimated by performing a relaxation test. The ACI sub-

committee 440K has e.g. developed a test method to estimate long-term relaxation of FRP 

tendons. The test is usually carried out by stretching a tendon and then holding it at constant 

temperature for a certain time. From that a relaxation curve over a time interval can by created 

and the relaxation rate determined as the absolute value of the slope of the curve. The 

relaxation rate is then used to estimate long-term relaxation (ACI 440.3R-04, 2004). 
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The amount, basic structure, type of resin and fibers used to create FPR products can be very 

different which is unfortunate, because it affects the relaxation of the FRP materials. Hence, 

relaxation varies between types of FRPs and can even vary for the same type of FRPs. Other 

factors that affect relaxation of FRP materials are e.g. the size of specimen and tension force 

applied to them. The ACI sub-committee e.g. recommends tensile force applied to FRPs to be 

between 40-65% of ultimate tensile strength compared to 85% for steel. That, however, does 

not include BFRP (ACI 440.4R-04, 2004).  

Relaxation of some FRP materials has been measured and Model Code 2010 provides values 

for GFRP, CFRP and AFRP tendons (Table 3.1) based on relaxation rate from relaxation tests 

which exceeded 3000 hours (Fib, 2012a).  

Table 3.1: Relaxation for FRP tendons recommended by fib (2012a). 

FRP materials 1000 hours 
relaxation 

50 years 
relaxation 

GFRP tendons 1.8 - 2.0% 4.0 - 14.0% 

CFRP tendons 0.5 - 1.0% 2.0 - 10.0% 

AFRP tendons 5.0 - 8.0% 11.0 - 25.0% 

Although numerous research regarding relaxation in FRP materials has been carried out, 

information about relaxation of BFRP tendons are not easy to find. Some studies have been 

carried out in China but they are either reported in Chinese or are unavailable.  

  



33 
 

4. Modeling in ANSYS 

4.1. Introduction 

In this chapter modeling of 6 types of beams in ANSYS will be described. The models, e.g. 

material properties and geometry, are all based on information and results from the theses and 

research mentioned in chapter 2.2. The basic definition of the elements of the models, 

material properties, meshing, loads and boundary conditions, analysis set up and control of 

results output will be described here. 

4.2. Creations of the models 

Like mentioned in the introduction (chapter 4.1) the models are based on the theses written by 

Guðmundsson (2012), Jónsson (2011), Ásbjörnsson (2013) and an MSc research (Gunnarsson 

et al., 2012). Six types of models will be created to simulate chosen beams from these 

research. Information and relevant results from these theses and researches are published in 

Appendix A. The beams that each model is supposed to simulate are listed below.  

• Model 1: This model is based on the work carried out in the thesis Prestressed BFRP 

tendons in concrete beams by Jónsson (2011). This model will only represent the three 

prestressed concrete beams reinforced with Ø 10 mm BFRP tendons that failed due to 

shear in his experiments. 

• Model 2: This model is based on the work carried out in the thesis Capacity of 

concrete beams prestressed with BFRP tendons by Guðmundsson (2012). This model 

will only represent the two prestressed concrete beams reinforced with Ø 10 mm 

BFRP tendons that failed due to shear in his experiments.  

• Model 3: This model is based on the work carried out in the thesis Prestressed BFRP 

tendons in concrete beams by Ásbjörnsson (2013). This model will only represent two 

1.2 m long prestressed concrete beams reinforced with Ø 10 mm BFRP tendons that 

failed due to shear in his experiments.  

• Model 4: This model is based on the work carried out in the thesis Prestressed BFRP 

tendons in concrete beams by Ásbjörnsson (2013). This model will only represent two 

2.7 m long prestressed concrete beams reinforced with Ø 10 mm BFRP tendons that 

failed due to shear in his experiments.  
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• Model 5: This model is based on the work carried out in an MSc course tests Testing 

of prestressed concrete (Gunnarsson et al., 2012). This model will only represent two 

2 m long prestressed concrete beams reinforced with steel tendons that failed due to 

shear in the experiments.  

• Model 6: This model is based on the work carried out in an MSc course tests Testing 

of prestressed concrete (Gunnarsson et al., 2012). This model will represent three 3.86 

m long prestressed concrete beams reinforced with steel tendons that failed due to 

shear in the experiments.  

4.2.1. Modeling of geometry, element types and real constant 

The elements used to create the models are as represented in chapter 3.3.2 

• Solid65 for prestressed concrete.  

• Link180 for reinforcement. 

• Solid187 for supporting cylinders. 

The geometry and measurements of the beams, loading and supporting points are displayed in 

Appendix A. The basic geometry is also shown in Table 4.1. Both the beams and supporting 

cylinders are modeled as volumes (Figure 4.1) but the reinforcement is modeled with line. A 

perfect bond between reinforcement and concrete was assumed. The diameter of the cylinders 

was defined as 100 mm.  

 

Figure 4.1: Volumes created in ANSYS for model 1. 

Beams represented by models 1, 3, 4 and 5 were created 50 mm longer than they should be. 

This was done to prevent cracking at the end and to simplify placing the load in the correct 

position. This has, however, no effect on the test results because distance between supports 

and loading positions are the same as in the experiments simulated, only 25 mm are added to 

either end of the beams.  
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Table 4.1: Basic geometry of the models created. 

Model Reinforcement Atendon Length  a/d ratio b h d 

[nr] - [mm2] [mm] - [mm] [mm] [mm] 

1 BFRP 78 2000 5,3 200 200 150 

2 BFRP 78 3860 10,67 200 200 150 

3 BFRP 78 1200 2,63 200 200 150 

4 BFRP 78 2700 7,63 200 200 150 

5 Steel 100 2000 5,3 200 200 150 

6 Steel 100 3860 10,67 200 200 150 

Real constants were defined for two elements, Solid65 and Link180. No real constants set 

exist for the Solid187 element.  

Solid65 was represented with real constant 1. It is possible to define reinforcement in three 

directions, all with different rebar materials and size in the concrete. In this study there are, 

however, only two tendons in the concrete which were defined with the Link180 element and 

therefore a value of zero was added for all real constants in the Solid65 element for models 1, 

2, 4, 5 and 6. This action turns off the smeared reinforcement capability for the elements. For 

model 3, however, premature failure at the beam ends occurred when to model was tested. To 

prevent that, rebar material with elastic modulus of 1 GPa, Poisson´s ratio 0.2 and volume 

ratio 0.001 was added in all three directions. Using rebar material with low elastic modulus, 

compared with concrete, to keep the beam together should not affect the stiffness significantly 

and therefore not the results either. 

Link180 was represented with real constant 2. There the cross-sectional area of the BFRP 

tendons was defined as 78 mm2 (Ø 10 mm tendons) and the cross-sectional area of the steel 

tendons as 100 mm2. The Link 180 element was defined to resist both tension and 

compression for both BFRP and steel tendons. 
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4.2.2. Material properties 

Three types of material were used to create the FE-models in ANSYS, steel, BFRP and 

concrete. The material properties defined for each of these materials are described below. The 

steel and BFRP tendons had the same material properties for all models but the concrete is 

different.  

4.2.2.1. Steel 

The supporting cylinders were defined as steel. The steel was defined as a linear elastic and 

isotropic material. Only two material properties are thus needed. 

• Poisson’s ratio (ν). 

• Elastic modulus (Es). 

Normal steel was used, the Poisson’s ratio was defined as 0.3 and the elastic modulus as  

210 GPa (Gere, 2003).  

The high strength steel tendons used as reinforcement for model 5 and 6 are not linear elastic 

until failure. However, the stress in them when the beams fail did not reach yield stress of the 

tendons and they were therefore defined as a linear elastic material for simplicity. Only two 

material properties are thus needed. 

• Poisson’s ratio (ν). 

• Elastic modulus (Es). 

The Poisson’s ratio was defined as 0.3 (Gere, 2003) and the elastic modulus obtained from the 

manufacturer was defined as 197.5 GPa. The prestress of the tendons was applied by cooling 

them down. Thermal expansion of the tendons must thus be defined. Following properties are 

needed for that: 

• Coefficient of thermal expansion (αL). 

This coefficient was defined as isotropic and with the value � = 13 ∙ 10��
�

°�
 at reference 

temperature 0°C (Gere, 2003).  
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4.2.2.2. BFRP 

The BFRP tendons, as described in chapter 3.2.3 and on Figure 3.6, are linear elastic until 

failure. Therefore there was no need to define nonlinear behavior for them. The material 

properties needed for BFRP are: 

• Poisson’s ratio (ν). 

• Elastic modulus (Ef). 

The Poisson’s ratio was defined as 0.23 and the elastic modulus as 50 GPa based on 

information from the producers (“RockBar,” n.d.). Thermal expansion of the tendons was also 

defined and the following property is needed for that: 

• Coefficient of thermal expansion (αL). 

This coefficient was defined as isotropic and with the value � = 2 ∙ 10��
�

°�
 at reference 

temperature 0°C (“RockBar,” n.d.). 

4.2.2.3. Concrete 

The concrete is, as demonstrated in chapter 3.2.1, a nonlinear material. Therefore numerous 

properties are needed to define its nonlinearity in a proper way. First its basic linear elastic 

isotropic behavior must be defined, which includes: 

• Poisson’s ratio (ν). 

• Elastic modulus (Ec). 

Poisson’s ratio was assumed to be 0.2 for all models (Fib, 2012a). In continuation of this, 

following properties are required by ANSYS when modeling concrete with the Solid65 

element 

• Shear transfer coefficient for an open crack (βt). 

• Shear transfer coefficient for a closed crack (βc). 

• Ultimate uniaxial tensile strength (ft). 

• Ultimate uniaxial compressive (crushing) strength (fc). 

The mean compression cylinder strength and modulus of elasticity (calculated according to 

EN 1992-1-1 (2004)) are known from all former studies and are displayed in Appendix A. 

Based on that, the tension strength can be calculated (equation 4.1) according to  

EN 1992-1-1 (2004).  
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 ���� = 2.12 ∙ ln �1 +
���
10

� 		> 	�50/60		 4.1 
 

The value for the shear transfer coefficient ranges from zero to one and characterizes 

conditions of the crack face. When it is zero the crack is smooth (full loss of shear transfer) 

and when it is one the crack is rough (no loss of shear transfer). Kachlakev, et al. (2001) 

recommend that the shear transfer coefficient for open crack should not be chosen lower than 

0.2 to prevent convergence problems. That value is therefore chosen for this property in this 

study. The summary of the material properties represented so far and used in this FE 

modeling study are shown in Table 4.2 

Table 4.2: Summary of material properties for concrete that are defined in ANSYS. 

Model 
fc Ec ft βt βc ν 

[MPa] [GPa] [MPa] - - - 

1 60,4 37,7 4,14 0,2 1 0,2 

2 57,1 37,1 4,04 0,2 1 0,2 

3 67,4 39,0 4,34 0,2 1 0,2 

4 61,7 38,0 4,18 0,2 1 0,2 

5 67,4 39,0 4,34 0,2 1 0,2 

6 61,7 38,0 4,18 0,2 1 0,2 

The following properties can also be defined in ANSYS but were chosen as default by 

defining them as zero. 

• Biaxial crushing stress (fcb). 

• Ambient hydrostatic stress, for use with constant f1 and f2 (���) 

• Biaxial crushing stress under the ambient hydrostatic stress state (f1). 

• Uniaxial crushing stress under the ambient hydrostatic stress state (f2). 

• Stiffness multiplier for cracked tensile condition (Tc). 

The ambient hydrostatic stress is only needed if f1 and f2 are not defined as default. This stress 

state is defined as a function of the principal stresses in all three principal directions  

(ANSYS, 2011).  

The Willam and Warnke (1974) criteria described in chapter 3.3.3 uses five input parameters, 

ft and fc already defined and f1, f2 and fcb. The three last ones, as mentioned above, are default 

in ANSYS according to the Willam and Warnke model. 
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• �� = 1.45 ∙ �� 
• �� = 1.725 ∙ �� 
• ��� = 1.2 ∙ �� 

The stiffness multiplier for cracked tensile condition is a multiplier for tensile relaxation. Its 

value varies between zero and one. Zero value denotes full loss of tensile stress at cracking. 

The default value is 0.6 (ANSYS, 2011). 

Finally compressive uniaxial stress-strain relationship (multilinear material properties) for 

concrete must be defined. That can be done by either defining a secant modulus of elasticity 

or a stress-strain curve for concrete. In this study it was decided to create a six point stress-

strain curve (Figure 3.2) based on formulation from Model code 2010 (Fib, 2012a). Using a 

multilinear curve makes it easier for the solution to converge when carrying out nonlinear 

analysis. The relation between stress and strain is demonstrated in equation 4.2. 

 ����� = −� � ∙  −  �
1 + !� − 2" ∙  # 		�$%		|��| < 	 '��,���' 4.2 

 

where 

 =
����� 							�(
							� =

������ 

Ec1 and εc1 are values from a table in Model code 2010 (Fib, 2012a, p. 128). 

The stress-strain curve was defined as inelastic, rate independent and kinematic hardening 

was chosen to represent the plastic behavior of the yield surface. Von Mises failure criteria 

were then chosen to implement the multilinear stress-strain curve. When defining a 

multilinear stress-strain curve in ANSYS, the program requires the first point of the curve to 

satisfy Hooke´s law (equation 4.3). 

 � = � ∙ � 4.3 
 

The simplified uniaxial stress-strain curve created for model 1 is displayed in Figure 4.2. The 

Rest of the curves for models 2, 3, 4, 5 and 6 appear in Appendix B. 
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Figure 4.2: Simplified uniaxial stress-strain curve for model 1. 

The curve was constructed by defining six points and connecting them with straight lines. The 

curve starts at zero stress and strain. The first point was defined according to equation 4.3 

with the stress 20% of maximum compression strength. Rests of the points were defined 

according to equation 4.2. The value of compression strength for points 2, 3 and 4 were 

chosen with similar distribution as in the work of Kachlakev, et al. (2001). 

• For point two the stress was chosen equal to approximately 60% of fc. 

• For point three the stress was chosen equal to approximately 85% of fc. 

• For point four the stress was chosen equal to approximately 96% of fc. 

Perfectly plastic behavior was then assumed after point number five in this study. All 

calculations and stress-strain curves are displayed in Appendix B. 

It can be noted that density was not defined for any material used. This was partly done to 

simplify the calculation process in ANSYS, but a problem occurred due to the convergence of 

the solution and boundary condition when implementation of the self-weight was tried. 

Another reason for not using the self-weight is that when the real beams were tested, 

deflection and load were measured after the beam had been placed in the test fixture. Self-

weight is therefore not included in the test results regarding failure load and deflection. A 

better comparison between test results and the ANSYS models will thus be obtained by 

leaving out the self-weight. 
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4.2.3. Meshing 

The mesh density is important in FE modeling as demonstrated in chapter 3.3.4. There the 

element size was recommended to be one to three times bigger than the maximum aggregate 

size due to e.g. cracking behavior. The maximum aggregate size in all the test beams 

simulated was 19 mm. In this study the concrete beam was therefore meshed with rectangular 

elements 	 ∙ ℎ ∙ � = 50 ∙ 50 ∙ 50. Because the height and width of the beam was 200 mm, 

this size of mesh divided the cross-section of the beam into equally sized elements, as can be 

seen on Figure 4.3. This element size was also chosen like this to make it possible to 

implement the load through element nodes. Using smaller mesh, 	 ∙ ℎ ∙ � = 25 ∙ 25 ∙ 25, 

was also tried, but convergence problems due to local element failure occurred when that 

mesh was used. The calculation time also increased considerably. 

After the concrete volume had been meshed, the tendons, which were modeled as line, were 

meshed. The line was divided into 50 mm long elements so the length of the elements in the 

tendon would be consistent with the position of the nodes and elements in the concrete 

portions.  

 

Figure 4.3: Meshing of the elements for model 1. 

The supporting cylinders were meshed last. Free tetrahedral mesh with the maximum element 

length of 25 mm was used to mesh the volume of the cylinders. The maximum length of the 

element was chosen small enough to fully simulate the cylindrical shape of the supporters, but 

not so small that it would cause convergence problems or significantly increase the 

calculation time of the model. 
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4.2.4. Loads and boundary conditions 

When the basic model has been made with respect to correct geometry and material properties 

and meshed properly, the boundary condition and loads need to be defined.  

4.2.4.1. Boundary conditions 

Displacement boundary condition needs to be defined to constrain the model and get a unique 

solution. If the model is not properly constrained, large displacements or stresses can occur, 

which interrupt the solution process. The same boundary conditions were used for all models 

and they are descripted below. 

The bottom areas of the supporting cylinders were constrained in all directions which allow 

neither rotation nor displacement of the cylinders. The area at the side of the concrete beams 

was constraint in X-directions to prevent buckling and sideways displacement. These basic 

boundary conditions, applied to all models, are presented on Figure 4.4. No constraints were 

added in the Z-directions of models 1, 3 and 5 (longitudinal direction).  

 

Figure 4.4: Basic boundary conditions for all models; supporting cylinders are  
constrained in all directions and the sides of the beams in X-directions. 

The longest beams simulated by models 2, 4 and 6, however, suffered from unsymmetrical 

displacement in Z-directions and nodes in the middle of models 2 and 6 were thus constrained 

in Z-directions to prevent longitudinal movement. 

 

Figure 4.5: Beams simulated by model 2 and 6 were constrained  
in the middle to prevent movement in Z-directions. 

Supporting cylinders, constrained in all directions 

Side of the models; constrained in X-directions. 

Nodes in the middle of models 2 and 6 were constrained in Z-directions. 
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Model 4 was constrained a little differently in Z-directions. Nodes 50 mm below the top at 

both ends of the beam simulated by that model were constrained while the first 5 mm 

displacement was added in the Y-direction. After that, these constraints were removed and the 

rest of the displacement, needed to cause failure, added to the model.  

The connections between the top area of the supporting cylinders and the bottom area of the 

beam were defined by creating a contact pair between the two areas (Figure 4.6). This contact 

pair forces the two areas chosen to connect, to remain in contact e.g. during an analysis. This 

also allows the beam to rotate on the cylinders which make the models set up in ANSYS 

exactly the same as in the real tests executed. 

The contact pair is created in ANSYS by using a contact manager. It provides a contact 

wizard which can be followed to define the properties of the contact pair. In this study the 

contact was defined as surface to surface between areas. The cylinders were chosen as target 

surface and the beam as contact surface and a symmetric pair was then defined to be used 

when prestressing the beam. In addition to that, the friction coefficient was defined as 0.2 for 

the concrete. The friction coefficient was chosen reasonably small so it wouldn´t affect the 

results. Optional settings were kept default except for three properties which were defined 

specially to facilitate convergence of the solution. These properties are 

• Normal penalty stiffness which was defined as: 0.2. 

• Contact detection which was defined as: on nodes normal to target. 

• Automatic contact adjustment which was defined as: close gap. 

 

Figure 4.6: Contact pair between top area of the supporting cylinders and the bottom area of a beam. 

4.2.4.2. Prestress 

In release 14.0 of ANSYS used in this study, applying prestress through a real constant by 

defining initial strain, like in older releases, is not possible. Instead, a pretension section can 

e.g. be defined but implementing the prestress through that module is complicated. This 

modulus is not directly designed to create prestress in concrete and demands the use of 

various tricks to work properly. Hence, a simple method was used to implement the prestress. 
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The tendons were constrained at both ends and cooled down. Because the tendons were 

defined as linear elastic and with a coefficient of thermal expansion, they follow Hooke´s law 

(equation 4.3) and Gere (2003) formulation for linear expansion (equation 4.4). 

 �� = � ∙ ∆� 4.4 
 

Structural temperature load can therefore be applied as constant value to the tendons. Because 

both ends of the tendons are constrained in all directions (Figure 4.7), the strain created by 

cooling the tendons forms tension stress in them which is transferred as compression to the 

concrete. The effective prestress and applied temperature are shown in Table 4.3 

Table 4.3: Effective prestress force in each tendon and applied cooling to the tendons for each model. 

Model 
Prestress ∆T 

[kN] [°C] 

1 39 5000 

2 39 5000 

3 42 5385 

4 42 5385 

5 24 93.5 

6 24 93.5 

The calculations for the applied temperature are shown in Appendix B. 

 

Figure 4.7: Ends of the tendons constrained while prestressing them. 

After the beam was prestressed, the constraints were removed from the ends of the tendons 

before failure capacity of the beam was tested. On Figure 4.8 an example of model 1 is 

displayed after prestressing of the beam. 

Tendons, constraint in  

all directions 



45 
 

 

Figure 4.8: Deflection of model 1 after prestress. 

4.2.4.3. Loading of the beams 

The load is applied to the beams as a displacement. The displacement is applied at element 

nodes but the elements were divided so the nodes would be placed at loading points for all 

models. Pushing the beam down will eventually make it fail. 

 

Figure 4.9: Loading of the beams implemented by adding displacement, model 1 is displayed. 

There are five nodes across the width of the beams and an equal displacement is applied to all 

of these nodes to represent a symmetric load. Therefore displacement is applied to ten nodes 

at each beam.  

4.2.5. Analysis set up 

The analysis type for this study was defined as static because the FE model consists of a 

simple beam facing transverse loading.  

Setting up load steps, sub steps and convergence criteria can affect the solution considerably 

and was therefore specially explored in this study. In some of the studies reported in chapter 

3, the creation of numerous load steps was recommended to make it easier for the solution to 

converge and to capture the correct failure load (Kachlakev et al. (2001) and Wolanski 

(2004)). However, too many load and sub steps can also cause errors in convergence to 

accumulate. If that happens, the failure load and maximum displacement would possibly be 

wrongly estimated. In this study both approaches were therefore tried for model 1. The first 

approach was carried out by defining four load steps and second one by defining two load 

steps. All other parameters in the model were kept the same for both approaches.  

Displacement added to nodes 
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For the first approach, the convergence criteria were defined for force and displacement. The 

default tolerance was increased to five times the default limit in both cases, as discussed in 

chapter 3.3.4. The setup is shown in Table 4.7.  

Table 4.4: Convergence criteria defined for the first approach regarding model 1. 

Type Force Displacement 

Ref. Value Calculated Calculated 

Tolerance 0.005 0.05 

Norm L2 L2 

Min. Ref not applicable not applicable 

The numbers of sub steps and load added in each load step for the first approach, using four 

load steps, are defined in Table 4.5. 

Table 4.5: Number of load steps, sub steps and displacement added for the first approach for model 1. 

Model 
Load step Sub step Displacement 

- - [mm] 

1 

1 5 Prestress 

2 100 5 

3 200 15 

4 100 20 

For the second approach the convergence criteria were just defined for displacement and the 

default tolerance was increased to five times the default limit. The setup is displayed in  

Table 4.7. Numbers of sub steps and load added in each load step for the second approach, 

using two load steps, are defined in Table 4.6. On Figure 4.10, the results from these two 

approaches are compared to load-deflection curves from Jónsson´s (2011) study. 
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Figure 4.10: Load-deflection curve for beams from Jónsson´s (2011) study, simulated with model 1, 
compared with results from ANSYS using two and four load steps approaches. 

The comparison reveals that both approaches simulate the cracking point and linear behavior 

of the beams quite well. Approach one then follows the test curves rather well as the concrete 

starts to crack and yield but as the load increases this approach starts to move away from the 

test curve. Approach two however follows the test curves rather well on the yield zone until 

failure. Based on this result, it was decided to use approach two for the setting up of load 

steps, substeps and convergence criteria for all models. 

The restart command was used to start the new load step after the previous one had finished. 

The loading and number of a sub step for the load step was changed before restarting. In 

Table 4.6, the number of sub steps and displacement added in each load step are represented 

for all models.  

The behavior of a non-linear solution in ANSYS can be organized by using the solution 

control feature. In this feature four sheets can be worked with to control the solution behavior. 

In the first sheet (basic) the analysis option was chosen as small displacement static and 

calculations of prestress effects were selected. For the time control, the time at the end of first 

load step was defined as one and automatic time stepping was turned off. The Numbers of sub 

steps for each model are then defined as represented in Table 4.6 and the option of writing 

every sub step was chosen. Other possibilities in this sheet were chosen as default. In the next 
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sheet (Sol’n Options), only the equation solver was changed to Pre-Condition CG and other 

possibilities were left as default. In the third sheet, all configurations were left as default 

except the convergence criteria which were defined specially according to Table 4.7. In the 

final sheet (Advanced NL), all configurations were left as default.  

Table 4.6: Number of load steps, sub steps and displacement added for each model created. 

Model 
Load step Sub step Displacement 

- - [mm] 

1 
1 5 Prestress 

2 100 20 

2 
1 5 Prestress 

2 100 120 

3 
1 5 Prestress 

2 100 15 

4 

1 5 Prestress 

2 15 5 

3 100 40 

5 
1 5 Prestress 

2 100 16 

6 
1 5 Prestress 

2 100 100 

It can be seen that three load steps were defined for model four. This was done, as explained 

in chapter 4.2.4.1, because of different boundary conditions defined in load step 2 and 3. 

One convergence criterion was defined for all the models in this study, for displacement. The 

setup is displayed in Table 4.7 but the default tolerance was increased to five times the default 

limit, as discussed in chapter 3.3.4. 

Table 4.7: Convergence criteria defined for all load steps and all models. 

Type Displacement 

Ref. Value Calculated 

Tolerance 0.05 

Norm L2 

Min. Ref not applicable 

The failure was detected when the solution stopped converging for the last load step or when 

the model suffered from extreme deformation in some sub step.  
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4.3. Analysis results 

The results from ANSYS will be compared to experimental results regarding ultimate failure, 

ultimate deflection, load deflection curves, ultimate strain in concrete and tendons and 

cracking behavior.  

Failure, as mentioned in chapter 4.2.5, is detected in ANSYS when the solution stops 

converging for the last load step or when the model suffers from extreme deformation in some 

sub step. From there, forces, deformation, stresses and strain distributions for the models can 

be obtained. It must, however, be noticed that there might be some slight uncertainty in the 

failure point because, as mentioned in chapter 4.2.5, small sub steps are recommended close 

to failure to catch the correct point. 

Because the analysis is carried out in numerous sub steps, a solution is available for all sub 

steps. Based on these solutions for all sub steps, a proper load deflection curves can be created 

for all models.  

ANSYS (2011) provides a crack pattern for the solid concrete element which is represented 

with cracking signs. Stresses and strains in concrete solid elements are calculated at 

integration points (Figure 3.8) and when a principal tensile stress exceeds the ultimate tensile 

strength of concrete, a cracking signs appears, represented by a circle in the plane of the 

crack. Crushing, however, is represented with an octahedron outline. The direction of a 

cracking sign is then always perpendicular to the direction of the principal stress causing it. 

Kachlakev et al. (2001, p. 53) defined three typical cracking signs, displayed on Figure 4.11, 

occurring in ANSYS.  

 

Figure 4.11: Typical cracking signs occuring in FE model: (a) flexural cracks, (b) compressive 
cracks, (c) diagonal tensile cracks (Kachlakev et al., 2001, p. 53). 

The direction and angle of the cracks are, however, not the only properties that describe their 

behavior. The cracking signs also appear in three colors, red, green and blue. The first crack at 

an integration point is shown with a red circle outline, the second crack with a green outline, 

and the third crack with a blue outline (ANSYS, 2011).   
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5. Calculations methods 

5.1. Introduction 

In this chapter, equations to calculate shear capacity of FRP RC concrete beams will be 

introduced and discussed briefly. Most equations developed for FRP RC are originally created 

for steel RC concrete beams and then modified for FRP RC beams. Therefore the original 

equations for steel RC concrete will also be revealed. These equations, as regards steel and 

FRP RC will be compared with results from the theses and researches mentioned in chapter 

2.2.  

5.2. Research data 

The research data used in this study are collected from four studies as mentioned in chapter 

2.2. Based on these studies a small database (Table 5.1) can be constructed, composed of test 

results related to 9 experimental beams reinforced with BFRP tendons and 5 experimental 

beams reinforced with steel tendons which all failed due to diagonal tension shear.  

Table 5.1: Database for BFRP and steel RC members without shear reinforcement. 

Model Reference a/d ratio Type P f ć bw d ρs,f Es,f Vfailure 

- - - - [kN] [MPa] [mm] [mm] - [GPa] [kN] 

1 Jónsson, 2011 

5,3 BFRP 78 60,4 200 150 0,0052 50 29,5 

5,3 BFRP 78 60,4 200 150 0,0052 50 33,5 

5,3 BFRP 78 60,4 200 150 0,0052 50 29,0 

2 Guðmundsson, 2012 
10,67 BFRP 78 57,1 200 150 0,0052 50 15,8 

10,67 BFRP 78 57,1 200 150 0,0052 50 15,5 

3 Ásbjörnsson, 2013 
2,63 BFRP 84 67,4 200 150 0,0052 50 77,5 

2,63 BFRP 84 67,4 200 150 0,0052 50 72,0 

4 Ásbjörnsson, 2013 
7,63 BFRP 84 61,7 200 150 0,0052 50 23,1 

7,63 BFRP 84 61,7 200 150 0,0052 50 23,2 

Average for BFRP RC 6,42 
 

81 61,5 
    

35,4 

SD for BFRP RC 2,99   3,2 3,7         23,1 

5 Gunnarsson et al., 2012 
5,3 Steel 48 67,4 200 150 0,0067 197,5 38,0 

5,3 Steel 48 67,4 200 150 0,0067 197,5 38,4 

6 Gunnarsson et al., 2012 

10,67 Steel 48 61,7 200 150 0,0067 197,5 28,0 

10,67 Steel 48 61,7 200 150 0,0067 197,5 28,4 

10,67 Steel 48 61,7 200 150 0,0067 197,5 29,3 

Average for steel RC 8,52 
 

48 64,0 
    

32,4 

SD for steel RC 2,94   0,0 3,1         5,3 
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More detailed information and material properties regarding the studies which this database is 

composed from can be found in Appendix A. One property commonly needed when 

calculating shear resistance of FRP RC, which is not defined in Appendix A, is the elastic 

modulus of ordinary steel, �	. It is defined as 200 GPa in this study but both the JSCE and 

BSI guidlines, for instance, use that value. 

5.3. Shear resistance of RC beams 

In this study, the main focus was on shear capacity equations from various design codes and 

guidelines. These provide the rules which designers are supposed to follow and the shear 

capacity equations there are thus probably the most widely used ones. Formulations from six 

design codes/guidelines were hence explored and they are: 

• The JSCE standard 

• The British standard 

• The ACI standard 

• The CAN/CSA standard 

• The Italian guidelines 

• Eurocode 2 

Formulations from two other interesting sources were also explored, they are: 

• Model code 2010 

• Zsutty´s (1971) equation developed by Nehdi et al. (2007) 

These two sources are interesting because Model code 2010 provides a new shear equation 

with a theoretical approach while Nehdi et al. (2007) modified Zsutty´s (1971) equation for 

FRP RC beams successfully. Their equation actually showed much better agreement, when 

compared to a large collection of test results, than equations from codes and design 

guidelines. 

All the equations revealed in this chapter do only estimate shear resistance of concrete, but the 

effect of shear reinforcement is not considered in this study. All safety factors included in the 

formulation, both regarding material properties and loading, are removed because a 

comparison is carried out between pure test results and calculated values. The basic equations 

and their safety systems can be found in appropriate sources cited along the formulations. All 

calculations are published in Appendixes D and E. 
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5.3.1. JSCE design guidelines 

The JSCE provides shear capacity equations for both steel RC and FRP RC members which 

are represented below. 

Beams reinforced with steel 

The JSCE (2007) provides standard specifications for concrete structures where an equation 

to estimate shear capacity of linear members is displayed. The equation is empirical and was 

proposed by Niwa et al. and adopted to the standard in 1996. It has, however, been more or 

less unchanged since then. According to the standard, the shear resistance of concrete member 

reinforced with steel can be calculated using equation 5.1.  

 �� = )� ∙ )� ∙ )� ∙ ���� ∙ 	� ∙ 
 5.1 
 

where 

• )� = *1000/
� 		≤ 1.5 

• )� = *100 ∙ �	� 		≤ 1.5 

• ���� = 0.2 ∙ *��´� 		≤ 0.72			(��´ < 50) 

• )� = 1 + 2 ∙ ��/��� 			≤ 2					(��
´ ≥ 0) 

The factor ���� can actually be chosen bigger than 0.72 but then the safety factor for concrete 

changes from 1.3 to 1.5. No safety factors are included in the calculations in this study and 

this is therefore not a problem. 

The factor )� accounts for compressive force in the concrete where 

• ��: Flexural moment necessary to cancel stress due to axial force at an extreme 

tension fiber corresponding to a design flexural moment. 

• ���: Pure flexural capacity without considerations of axial force. 

The reinforcement ratio �	 is then calculated as  

 �	 =
�		� ∙ 
 5.2 
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Beams reinforced with FRP  

The JSCE (1997) published modifications to the standard specifications for concrete 

structures which can be used for the design of FRP RC structures. The shear capacity equation 

provided in this modification for FRP RC follows the same format as the equation for steel 

RC (equation 5.1). The strain approach (discussed in chapter 3.4.3) is directly applied to the 

steel equation along with some modifying term to account for the difference regarding 

reinforcement stiffness. According to the modifications, the shear resistance of concrete a 

member reinforced with FRP can be calculated using equation 5.3.  

 ��� = )� ∙ )� ∙ )� ∙ ���� ∙ 	� ∙ 
 5.3 
 

where 

• )� = *1/
� 		≤ 1.5 

• )� = *100 ∙ �� ∙ ��/�	� 		≤ 1.5 

• ���� = 0.2 ∙ *��´� 		≤ 0.72			(��´ < 50) 

• )� = 1 + 2 ∙ ��/��� 			≤ 2					(��
´ ≥ 0) 

Here ��� is calculated according to ACI 440.1R-03 (2003) which provides a formulation to 

estimate flexural capacity of unprestressed FRP RC. 

The reinforcement ratio �� is then calculated as  

 �� =
��	� ∙ 
 5.4 

 

5.3.2. British design codes 

The BSI provides shear capacity equations for both steel RC and FRP RC members which are 

represented below. 

Beams reinforced with steel 

The British design codes BS 8110 (BSI, 1997) provides guidelines for structural use of 

concrete. There, an empirical equation to estimate shear stress resistance of steel RC beams is 

represented. According to the standard, the shear stress resistance of a concrete member 

reinforced with steel can be calculated using equation 5.5  
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 �� = 0.79 ∙ +100 ∙ �		� ∙ 
�

∙ +400
�

∙ +��
25

�

 5.5 
 

In this equation the use of concrete compressive strength above 40 MPa is not recommended. 

In this study the compressive strength is varying between 57 to 67 MPa which can affect the 

results from this equation. This equation is nevertheless used because the BSI provides an 

equation for shear capacity of FRP RC developed from equation 5.5.  

When a member is exposed to axial force, equation 5.6 can be used. By using this equation, 

the axial force is included and the a/d ratio is also indirectly included. 

 ��´ = �� + 0.6 ∙
�� ∙ �� ∙ ℎ�� ∙ ��

 5.6 
 

The shear resistance of the member can then be calculated based on the shear stress resistance 

as demonstrated in equation 5.7.  

 �� = ��´ ∙ 	� ∙ 
 5.7 
 

Beams reinforced with FRP  

The Institution of Structural Engineers (IStructE, 1999) published a guidance for the design of 

FRP RC members. There they provide an equation (5.8) to estimate shear stress resistance of 

FRP RC members. This equation is developed by modifying equation 5.5 from BS 8110 (BSI, 

1997) with direct implement of the strain approach (chapter 3.4.3).  

 ��� = 0.79 ∙ + 100	� ∙ 
 ∙ �� ∙
��

200

�

∙ +400
�

∙ +��
25

�

 5.8 
 

Fib (2007, p. 82) stated that “restrictions imposed by the current modifications to the valued 

of maximum allowable strain that can be developed in the FRP reinforcement are 

unnecessarily conservative”. Fib therefore proposes a modified approach when designing FRP 

RC beams where the maximum allowed strain in FRP flexural reinforcement is limited to 

4.5‰. In continuation of that, fib (2007) proposed the following modifications (equation 5.9) 

to equation 5.8 for shear resistance of FRP RC. 
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 ���,��� = 0.79 ∙ + 100	� ∙ 
 ∙ �� ∙
��

200
∙ ,��

∙ +400
�

∙ +��
25

�

 5.9 
 

where 

• ,� = ��/�	 
Here �� is the maximum allowed strain in FRP reinforcement and �	 is the yield strain of 

normal steel reinforcement. Fib (2007) recommends �� = 0.0045 and the steel yield strain, 

�	, is defined as 0.002. 

The shear resistance of a member can then be calculated based on the shear stress resistance 

as demonstrated in equation 5.7. Both equations 5.8 and 5.9 will be compared with test results 

regarding beams reinforced with BFRP tendons. 

5.3.3. ACI design guidelines 

The ACI provides shear capacity equations for both steel RC and FRP RC members which are 

represented below. The basic equations (5.10 and 5.11) for steel RC has, however, according 

to Sudheer, Ramana and Gunneswara (2010) shown certain imperfections because they 

underestimate the effect of a/d ratio on shear capacity. 

Beams reinforced with steel 

ACI 318-05 provides a rather simple empirical equation (5.10), compared with other sources, 

to estimate shear resistance provided by concrete (McCormac & Brown, 2009). This basic 

equation is primarily based on test data as most other shear capacity equations.  

 �� = � ∙ 0.167 ∙ -��´ ∙ 	� ∙ 
 5.10 
 

If the concrete member is subjected to axial forces, a multiplying factor can be added to 

equation 5.10 to account for it which results in equation 5.11 (McCormac & Brown, 2009).  

 �� = �1 +
��

14 ∙ ��� ∙ � ∙ 0.167 ∙ -��´ ∙ 	� ∙ 
 5.11 
 

The ACI 318-05 actually provides equation to specially estimate shear resistance of 

prestressed concrete but because the equation used to estimate shear resistance of FRP RC 

concrete is derived from equation 5.10, then that equation is used for comparison.  
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For a beam that suffers from large moments, more and extensive flexural cracks will occur 

which leads to the reduction of the compression zone of concrete and thus the shear 

resistance. To deal with this behavior, ACI 318-05 suggests a somewhat more conservative 

equation (5.12) which includes the reinforcement ratio and the moment and shear magnitudes. 

Implementing moment and shear magnitudes into the equation also indirectly implements the 

a/d ratio (McCormac & Brown, 2009).  

 �� = �� ∙ -��´ + 120 ∙ �	 ∙
�� ∙ 
��

# ∙
	� ∙ 


7
≤ � ∙ 0.3 ∙ -��´ ∙ 	� ∙ 
 5.12 

 

Equations 5.11 and 5.12 will be compared with test results regarding beams reinforced with 

steel tendons. 

Beams reinforced with FRP  

In ACI 440.1R-06 (2006) formulations to estimate shear resistance of FRP RC are provided. 

The basic formulations are based on the same approach as used in ACI 318-05 but they were 

adopted for FRP RC using design model proposed by Tureyen and Frosch (2002), (2003). By 

using this model, the axial stiffness of the FRP reinforcement is implemented through the 

depth of the neutral axis, c, which leads to derivations of equation 5.13, published in ACI 

440.1R-06 (2006). 

 ��� = 0.4 ∙ -��´ ∙ 	� ∙ . 5.13 
 

where  

• . = � ∙ 
 

• � = *2 ∙ �� ∙ (� + (�� ∙ (�)� − �� ∙ (� 

• (� = ��/�� 
Here (� is the modular ratio and . the depth of the neutral axis. Equation 5.13 can also be 

reworked in the following way. 

 ��� = �12

5
∙ �� ∙ 0.167 ∙ -��´ ∙ 	� ∙ 
 5.14 

 

The form of equation 5.14 is hence just the same as for equation 5.10, which is the shear 

resistance equation for steel RC, multiplied with the factor 12/5 ∙ � to account for the axial 

stiffness of FRP reinforcement (ACI 440.1R-06, 2006). 
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Fib (2007), as for the BS 8110, finds the ACI approach unnecessarily conservative. They 

therefore proposes the same modified approach for ACI 318-05 code equations (5.10) as for 

the BSI 8110 code equations in chapter 5.3.2 which results in equation 5.15.  

 ���,��� = � ∙ 0.167 ∙ -��´ ∙ 	� ∙ 
 ∙ ����	 ∙ ,���/� 5.15 
 

Both equations 5.13 and 5.15 will be compared with test results regarding beams reinforced 

with BFRP tendons. 

5.3.4. CSA design guidelines 

The CSA provides shear capacity equations for both steel RC and FRP RC members which 

are represented below. The basic equation (5.16) for steel RC does, however, not consider the 

effect of the longitudinal tension reinforcement and a/d ratio on the shear resistance of RC 

(Sudheer et al., 2010). 

Beams reinforced with steel 

CSA A23.3-94 (1994) provides a similar equation (5.16) as ACI 318-05 for steel RC without 

shear reinforcement.  

 �� = � ∙ 0.2 ∙ -��´ ∙ 	� ∙ 
 5.16 
 

Equation 5.16 actually represents upper boundary value for the shear resistance recommended 

by CSA (Fico, Prota, & Manfredi, 2008). If compared directly with the equation (5.10) 

provided by ACI 318-05, it can be noted that the CSA approach gives higher values. This 

suggests that either the equation provided by CSA is unsafe or the equation provided by ACI 

too conservative. 

It can be notice here that effect of axial force is not included in equation 5.16 provided by 

CSA. 

Beams reinforced with FRP  

CAN/CSA S806-02 (2002) provides equations 5.17 and 5.18 to calculate shear resistance of 

FRP RC members. Equation 5.17 slightly differs from the approach used by the CSA 

guidelines regarding the steel RC (equation 5.16) and is based on the characteristics of the 

concrete section. Equation 5.18 is, however, directly developed from equation 5.16.  



58 
 

 ��� = � ∙ 0.035 ∙ ���´ ∙ �� ∙ �� ∙
����

∙ 
��� 	 ∙ 	� ∙ 
				�$%				
 < 300	 5.17 
 

 ��� = � 130

1000 + 
� ∙ � ∙ -��´ ∙ 	� ∙ 
				�$%				
 > 300	 5.18 
 

Following criteria must also be satisfied 

• (��/��) ∙ 
 ≤ 1 

Minimum and maximum values for shear resistance are also provided by CSA. According to 

CSA the shear resistance, regarding equation 5.17, needs not be taken lower than ���,��� nor 

shall it exceed ���,���. 

• ���,��� = � ∙ 0.1 ∙ *��´ ∙ 	� ∙ 
 

• ���,��� = � ∙ 0.2 ∙ *��´ ∙ 	� ∙ 
 

For equation 5.18 then, the minimum shear resistance, ���,���, is reduced in the following 

way while the same demands apply for the maximum shear resistance as published above.. 

• ���,��� = � ∙ 0.08 ∙ *��´ ∙ 	� ∙ 
 

Equation 5.17 actually provides lower value for shear resistance, and somewhat unsafe 

approach, than with the recommended minimum, ���,���, by CSA when compared with the 

experimental results. Because of that the minimum value is ignored and equation 5.17, 

providing safer approach, is compared directly with test results regarding beams reinforced 

with BFRP tendons 

5.3.5. Italian design guidelines 

The CNR published design guidelines for FRP RC in 2006. There an equation to calculate 

shear resistance of FRP RC is provided but the equation is based on the supersede to EC2 

(ENV 1992-1-1, 1992) which will therefore be explored in this study regarding steel RC. It 

must be noted that the shear capacity equation in the supersede to EC2 differs from the one in 

the final version which is used today. 

Beams reinforced with steel 

In ENV 1992-1-1 (1992) an empirical equation (5.19) is provided to calculate shear resistance 

for steel RC. 
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 �� = /�
� ∙ � ∙ !1.2 + 40 ∙ �	" + 0.15 ∙ ���0 ∙ 	� ∙ 
 5.19 
 

where 

• �
� = 0.25 ∙ ��� 
• ��� = ��/�� 
• � = |1.6 − 
	| ≥ 1			(with	
	in	meters) 

The tensile strength of concrete, ���, can be calculated according to equation 4.1 and the 

reinforcement ratio, 	�	, should not be chosen larger than 0.02. 

Beams reinforced with FRP  

The CNR (2006) modified equation 5.19 so it would work for FRP RC which resulted in 

equation 5.20. According to Fico et al. (2008), the goal of CNR was to develop a reliable and 

simple equation with a structure that practitioners knew when they were developing equation 

5.20. They also point out that this equation is not a final result and it could and should be 

updated when a full understanding is reached as regards the effect of FRP materials on the 

different shear mechanisms. 

 ��� = 1.3 ∙ ����	�
�/�

∙ /�
� ∙ � ∙ 11.2 + 40 ∙ ��20 ∙ 	� ∙ 
 5.20 
 

where  

• 1.3 ∙ (��/�	)�/� 	≤ 1.  

The same methods and rules apply for the estimation of �
�, � and �� as for steel RC 

considered in equation 5.19. 

5.3.6. Eurocode 2 

EN 1992-1-1 (2004) provides an equation to calculate shear resistance of steel RC beams 

which designers in Europe have recommended for use today. Fib (2007) proposed 

modifications to the EC2 equation so it could be used to calculate shear resistance of FRP RC 

beams.  

Beams reinforced with steel 

Equation 5.21 provided by EN 1992-1-1 (2004) to calculate shear resistance of steel RC 

members without shear reinforcement is a fully empirical equation and is not supported by 

physical theory. According to Collins, Bentz, Sherwood and Xie (2008), the equation (5.21) 

provided by EC2 is actually partly developed from Zsutty´s (1971) equation, represented in 
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chapter 5.3.8. The main difference is that more and different multipliers factors have been 

added based on test results. The effect of axial force is also considered in the EC2 equation. 

 �� = [�
�,� ∙ � ∙ !100 ∙ �	 ∙ ��"�� + �� ∙ ���] ∙ 	� ∙ 
 5.21 
 

where 

• � = 1 + *200/
 ≤ 2.0		345ℎ	
	4(	mm 

• ��� = ��/�� 
The factors �� and �
�,� are recommended respectively as 0.15 and 0.18 in EN 1992-1-1 

(2004). EC2 also provides formulations to estimate minimum shear resistance provided by 

concrete. 

• ��,��� = (���� + �� ∙ ��� ∙ 	� ∙ 
) 

• ���� = 0.035 ∙ ��/� ∙ ���/� 

It can also be pointed out that for members with an a/d ratio between 0.5 and 2, EN 1992-1-1 

(2004) allows reduction to the applied shear force which accounts for more shear strength of 

short members. 

Beams reinforced with FRP  

Fib (2007) provided modifications to equation 5.21 which are based on the same approach as 

they used when proposing modifications to BS 8110 (chapter 5.3.2) and ACI 318-05 (chapter 

5.3.3) which results in equation 5.21 for FRP RC members. 

 ��� = [0.12 ∙ � ∙ �100 ∙ �� ∙
���	 ∙ ,� ∙ ���

�
�

] ∙ 	� ∙ 
 5.22 
 

Here the factor k is calculated as it is for steel RC, considered in equation 5.21, and the ratio 

between maximum allowed strain, ,�, is calculated as shown in chapter 5.3.2. It can be seen 

in equation 5.21 that the effect of axial forces is not included as in the original equation (5.21) 

provided by EC2. 

5.3.7. Model code 2010 design guidelines 

MC10 (Fib, 2012b) offers a new approach to estimate shear resistance of RC but their 

equation is based on a physical model unlike most other equations. For shear resistance of RC 

without shear reinforcement, MC10 developed equation 5.23 which is based on the Simplified 

Modified Compression Field Theory (Evan, Vecchio, & Collins, 2006).  
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 �� = �� ∙ *�� ∙ � ∙ 	� 5.23 
 

Here the concrete compression strength is not supposed to be larger than 64 MPa. The 

concrete strength regarding test data from two beams actually reaches 67.4 MPa at most but is 

nevertheless used. Such a small difference should not affect the results greatly but needs to be 

kept in mind. 

Two levels of accuracy are provided for this equation regarding calculations of the factor ��; 

level I and level II approximations. The first one is simpler than the second one but does not 

provide as much accuracy, hence the level II approximation is used in this study. The factor 

�� is thus calculated according to equation 5.24. 

 �� =
0.4

1 + 1500 ∙ �� ∙
1300

1000 + ��� ∙ � 5.24 
 

This factor, ��, contains the “size effect” on the right hand side (member size) and the “strain 

effect” on the left hand side (longitudinal strain at mid-depth ��) (Sigrist & Hackbarth, 2012). 

The factor ��� takes into account the maximum aggregate size through equation 5.25.  

 ��� =
32

16 + 
� ≥ 0.75 5.25 
 

Here the maximum aggregate size, 
�, should not be chosen less than 16 mm. If it is less, ��� 

should be taken as 1.0. It must also be noted that for concrete strength above 70 MPa and for 

light weight concrete then 
� should be taken as zero. MC10 (Fib, 2012b, p. 51) states that 

this is done “in order to account for the loss of aggregate interlock in the cracks due to 

fracture of aggregate particles.”  

The longitudinal strain at mid-depth, ��, for prestressed members is then calculated with 

equation 5.26. 

 

�� =

���� + �� + �� ∙
1�� − ��2� #

2 ∙
��� ∙ �� ∙ ��  5.26 

 

Here the effective shear depth of longitudinal reinforcing bars, z, and the effective shear depth 

of the prestressed tendon, ��, are equal because no longitudinal reinforcing bars are added. A 

value of 0.9 ∙ 
 can be assumed as a conservative approach for z regarding steel RC. 
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However, for the BFRP RC beams z was based on maximum flexural capacity of the 

experimental beams according to ACI 440.1R-03 (2003). The moment occurring in the tested 

beams reinforced with BFRP was quite close to the maximum estimated flexural capacity 

which supports this approach. The moment occurring from the prestress force, NE, is added to 

the Moment occurring at applied shear force, ME. 

It can also be pointed out that for members with the a/d ratio between 0.5 and 2, the MC10 

(Fib, 2012b) allows reduction to the applied shear force to account for more shear strength of 

short members. 

Sigrist and Hackbarth (2012) compared the MC10 formulation to the ones provided by  

EN 1992-1-1 (2004). Their conclusions are listed below. 

“The MC10 Level of Approximation approach presented here covers design, detailed 

analysis and elaborate structural assessment of members in shear. The calculation 

procedures involved are based on physical models and can be deduced from one 

another. Evidently, the effort in calculating the shear strength is low for designing and 

high for evaluating a member but accuracy is increased as well. For the future 

development of the EC2 shear provisions it is recommended to review the MC10 

concepts. In comparison of the two codes, there is good agreement of the results in 

certain ranges of parameters but clear divergence in others. Therefore, additional and 

more specific theoretical and experimental studies should be carried out to further 

investigate these aspects“. 

(Sigrist & Hackbarth, 2012, p. 8). 

The formulations provided by MC10 are developed for steel RC members but because they 

are based on a physical model the conclusion can be drawn that they are usable for FRP RC 

members as well. These formulations from MC10 will therefore be compared with test results 

regarding both steel and FRP RC. 

5.3.8. Zsutty´s equation 

Zsutty (1971) developed a semi-empirical equation for steel RC beams without shear 

reinforcement. This equation has according to Nehdi et al. (2007, p. 1035) “proven to be one 

of the simplest and most accurate equation for conventional reinforced concrete beam”. This 

equation unlike many others directly accounts for the effect of a/d ratio and longitudinal steel 
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reinforcement which make it more suitable to predict shear strength of both long and short 

beams.  

Nehdi et al (2007) modified this equation for FRP RC and their proposed equation actually 

presented a much better approach, when compared to large collection of data, than equations 

from many codes and guidelines.  

Beams reinforced with steel 

Zsutty´s (1971) semi-empirical shear resistance equations (5.27 and 5.28) for beams without 

shear reinforcement are shown below. Although the a/d ratio is directly included in the basic 

equation (5.27), Zsutty also provides equation 5.28 to account for more shear resistance of 

shorter beams.  

 �� = 2.2 ∙ ���´ ∙ �	 ∙ 
� #�/� ∙ 	� ∙ 
				�$%				 �
 > 2.5 5.27 
 

 �� = �2.5 ∙

�� ∙ 2.2 ∙ ���´ ∙ �	 ∙ 
� #�/� ∙ 	� ∙ 
				�$%				 �
 < 2.5 5.28 

 

The effect of axial force is not included in those equations. 

Beams reinforced with FRP  

Nehdi et al. (2007) modified Zsutty´s original equation so it would account for the axial 

rigidity of FRP longitudinal reinforcement. They then used genetic algorithm to create the 

multipliers factors and the exponent term of the equation. A large collection of test results, 

regarding shear strength, for 168 beams (68 without shear reinforcement) were used in the 

genetic algorithm model when developing the equations. As a result, Nehdi et al. (2007) 

proposed using of equations 5.29 and 5.30 to estimate shear resistance of FRP RC beams. 

 ��� = 2.1 ∙ ���´ ∙ �� ∙ 
� ∙
���	#

 .�

∙ 	� ∙ 
				�$%				 �
 > 2.5 5.29 
 

 ��� = �2.5 ∙

�� ∙ 2.1 ∙ ���´ ∙ �� ∙ 
� ∙

���	#
 .�

∙ 	� ∙ 
				�$%				 �
 < 2.5 5.30 
 

It may be noted that these equations are the final proposed form provided by Nehdi et al. 

(2007). The genetic algorithm model actually suggested an exponent factor of 0.23 but to 

make the equations a little more conservative and therefore safer, an exponent factor of 0.3 

was used. 
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5.3.9. Summary 

Summary of all the equations regarding shear resistance of steel RC beams compared to test 

results in this study are displayed in Table 5.2 below.  

Table 5.2: Shear design equations for steel RC beams. All safety factors both regarding 
 loading and material properties have been removed from these equations. 

Reference Equation 

JSCE-2007 �� = �� ∙ �� ∙ �� ∙ ���� ∙ �� ∙ � 

BS 8110 

�� = 0.79 ∙ �100 ∙ ���� ∙ ��

∙ �400��

∙ ���
25

� 			
�� 

�� = ��� + 0.6 ∙
�� ∙ �� ∙ ℎ�� ∙ ��

� ∙ 	� ∙ 
 

ACI 318-05 �� = �1 +
�

14 ∙ ��

� ∙ � ∙ 0.167 ∙���´ ∙ �� ∙ � 

ACI 318-05,  

conservative approach 
�� = �� ∙���´ + 120 ∙ �� ∙ �� ∙ ���

� ∙
�� ∙ �
7

 

CSA A23.3-94 �� = � ∙ 0.2 ∙���´ ∙ �� ∙ � 

ENV 1992-1-1 �� = ��	� ∙ � ∙ �1.2 + 40 ∙ ���+ 0.15 ∙ ���� ∙ �� ∙ � 

EN 1992-1-1 �� = [�	�,� ∙ � ∙ �100 ∙ �� ∙ ���
� + �
 ∙ ���] ∙ �� ∙ � 

MC10 �� = �� ∙��� ∙ � ∙ �� 

Zsutty´s equation �� = 2.2 ∙ ���´ ∙ �� ∙ �
 �
/� ∙ �� ∙ �				�� 				 
� > 2.5 

It can be seen here that all these equations except for the CSA and Zsutty´s equations include 

the effect of axial force. It may also be noticed that although most of the equations, except for 

CSA and EC2, indirectly include the a/d ratio through moment and shear distribution, Zsutty´s 

equation is the only one that directly implement it. The same applies for the equations 

regarding FRP RC beams. The main reason for this lack of consideration regarding the a/d 
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ratio is because most of these equations are developed for equally distributed load for 

practical reasons.  

Summary of all equations regarding shear resistance of FRP RC beams compared to test 

results in this study are displayed in Table 5.3 below.  

Table 5.3: Shear design equations for FRP RC beams. All safety factors both regarding 
 loading and material properties have been removed from these equations. 

Reference Equation 

JSCE-97 ��� = �� ∙ �� ∙ �� ∙ ���� ∙ �� ∙ � 

BS 8110 ��� = 0.79 ∙ � 100�� ∙ � ∙ �� ∙
!�
200

�

∙ �400��

∙ ���
25

�

∙ �� ∙ � 

Fib modifications to  

BS 8110 
���,�� = 0.79 ∙ � 100�� ∙ � ∙ �� ∙

!�
200

∙ "�

�

∙ �400��

∙ ���
25

�

∙ �� ∙ � 

ACI 440.1R-06 ��� = 0.4 ∙���´ ∙ �� ∙ # 

Fib modifications to 

ACI-318-05 
���,�� = � ∙ 0.167 ∙���´ ∙ �� ∙ � ∙ �!�!� ∙ "��
/� 

CAN/CSA S806-02 ��� = � ∙ 0.035 ∙ ���´ ∙ �� ∙ !� ∙
����

∙ ��
� 	 ∙ �� ∙ � 

CNR-DT 203 ��� = 1.3 ∙ �!�!��

/�

∙ ��	� ∙ � ∙ $1.2 + 40 ∙ ��%� ∙ �� ∙ � 

Fib modifications to  

EN 1992-1-1 ��� = [0.12 ∙ � ∙ �100 ∙ �� ∙
!�!� ∙ "� ∙ ���



�

] ∙ �� ∙ � 

MC10 �� = �� ∙��� ∙ � ∙ �� 

Zsutty´s equation, 

developed by Nehdi et al. 
��� = 2.1 ∙ ���´ ∙ �� ∙ �
 ∙

!�!��
�.�

∙ �� ∙ �				�� 				 
� > 2.5 

Here it can be seen that all these equations, except for JSCE and MC10, neglect the effect of 

axial force. It is also good reason to keep in mind that none of these equations are developed 

from test results as regards BFRP. They are mainly based on test results regarding GFRP and 

CFRP, some results as regards AFRP are also used.  
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Another thing to bear in mind is that the strength of concrete, when in reaches 60-70 MPa, it’s 

contributes to shear resistance is greatly reduced. Some of the equations consider this but not 

all of them.  

To evaluate the performance of the equations considered, comparison regarding ratio of 

experimental to calculated shear strength (Vexperimental/Vcf,c) and AAE will be carried out.  

For the ratio Vexperimental/Vcf,c,, the average, SD and COV will be calculated to see how close 

calculated values are to experimental results along with the data distribution. Fico et al. 

(2008) and Nehdi et al. (2007) both used this approach when carrying out similar studies.  

Nehdi et al. (2007) also used the AAE (equation 5.31) to see how well the shear resistance 

equations fitted to experimental data. It can be seen that although the AAE gives valid 

information about how well the equations represent the experimental data, it doesn’t say too 

much about their safety. 

 ��� =
1( ∙ 6'����. − ���,�'���,�  5.31 

 

The safety of the shear resistance equations considered will finally be revealed and discussed. 

It is considered important that the equations do not provide lower value than experimental 

results, so if that happen the equations will be considered unsafe. 
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6. Experimental work 

6.1. Introduction 

In this chapter the experimental setup for the relaxation of BFRP tendons will be explained 

and discussed. The idea was to tension three BFRP tendons and measures their relaxation over 

a 3 month period. The experimental work was carried out at the engineering laboratory of 

Reykjavik University (SEL) from the middle of January 2013 until early Mai 2013. The basic 

experimental setup is shown in Figure 6.1 but the setup and data processing parts were partly 

carried out according to guidelines provided by the ACI-440.3R-04 (2004).  

 

Figure 6.1: Experimental setup for relaxation test; the drawing is partly schematic. 

To estimate the relaxation in the tendons, both accelerometer and strain gauges were 

implemented on the tendons to monitor their behavior.  

6.2. BFRP tendons 

The BFRP tendons used in the experiment (Figure 6.2) were obtained from Magmatech 

(http://magmatech.co.uk). The basic material that forms the tendons is basalt fiber threads and 

resin but sanded finish is also added to them to increase bonding with mortar.  

 

Figure 6.2: BFRP tendons used for the relaxation test. 

More detailed information about the mechanical properties of the tendons is shown in 

Appendix F.  
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6.3. Equipment for stressing of the tendons 

A prestress bench had been designed and constructed in the former experiments carried out in 

Guðmundsson´s (2012) study and the MSc course research (Gunnarsson et al., 2012). This 

bench was also used in this study. The bench is constructed from two steel angle sections  

(“L” shaped) ℎ ∙ 	 ∙ 5 = 200 ∙ 200 ∙ 20 mm spaced 4220 mm apart. The angel sections were 

also strengthened by welding steel plates on them (Figure 6.3). To fasten the angel sections to 

the concrete floor, eleven M12 bolts in strength class 10.9 were implemented into ferrules, 

“HILTI HIS-N M12” (Hilti, 2013a), which were glued into the floor. The BFRP tendons were 

then stressed between the angles.  

To prevent the tendons from being damaged over the three months test period, a formwork 

was made from 12 mm thick oil coted plywood. The formwork was then placed over the 

BFRP tendons as displayed in Figure 6.3. The temperature was constant at around 21°C the 

whole test time and the humidity was also constant.  

    

Figure 6.3: The prestress bench (dark blue painted angle sections) and the experimental setup. 

It must be noted that one should carefully consider how to create and fasten prestress bench 

because large forces are being implemented into the bench which can lead to serious damage 

or injuries in case of failure.  
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6.4. Anchors 

The BFRP tendons can´t be welded or clamped straight to the prestress bench as is usually 

done when using steel tendons. This problem has been solved at Reykjavik University by 

using chemical anchors (Figure 6.4, right) which has proven successful in several studies 

Jónsson (2011), Guðmundsson (2012), Gunnarsson et al. (2012) and Ásbjörnsson (2013).  

The chemical anchors are created by gluing the BFRP tendons inside hollow threaded steel 

rods with “HILTI HIT-RE 500” epoxy adhesive (Hilti, 2013b). To do this an Ø 11 mm hole 

was drilled 120 mm into an M20 mm stainless steel threaded rod (Figure 6.4, left). The hole 

was then threaded with M10 thread to induce contact between the steel and the glue. It must 

be noted that when using this particular glue, it is very important to clean all chemicals from 

the surface which will be in contact with the glue.  

    

Figure 6.4: (Left) Threaded steel rods being drilled out and screw threaded inside.  
(Right) The chemical anchors ready to being used. 

When the BFRP tendons had been glued into the threaded steel rods, each anchor was put 

through a Ø 20.5 mm hole on each of the angle sections and tightened up with a nut as the 

stress was implemented into the tendons (Figure 6.5 and Figure 6.8).  

 

Figure 6.5: Tendon being prestressed after the anchors have been installed into the prestress bench. 



70 
 

6.5. Strain gauges 

Two 30 mm long strain gauges were glued directly on each BFRP tendon before stressing to 

monitor the strain variation in them through the 3 month testing time. Before the gauges were 

glued to the tendons, the sand coat on them was removed to get better adhesion.  

The gauges are made of fine girded metal wires that shorten or elongate in accordance with 

the tendons. There is electric resistance in the wires and as their length changes the resistance 

changes too. The electric resistance measured in the wires is used to calculate the strain in the 

tendons. Being electrical, water or much humidity can disturb or damage the gauges. It is also 

important that they are exactly parallel to the tensioning direction to prevent inaccuracy in the 

strain results. They are also vulnerable to temperature changes and have proven to be quite 

sensitive in former research conducted at Reykjavik University, Jónsson (2011), 

Guðmundsson (2012), Gunnarsson et al. (2012) and Ásbjörnsson (2013). An example of a 

strain gauge that has been glued on a BFRP tendon and connected is given in Figure 6.6.  

 

Figure 6.6: Strain gauge glued on BFRP tendon. 

A computer program constructed in LabView was used to process the data from the gauges 

and measurements were collected every two seconds. The measurements were carried out 

from stressing and then over 50 days. There was, however, a slight problem regarding the 

computer equipment as the computer had to be restarted every 2 or 3 days because of data 

overflow. This caused small gaps in the data which should, however, not affect them 

considerably because of the relatively small time occurring.  

When the tendons were stressed, one gauge failed on each tendon and the strain measured was 

greater than it should be, based on the force implemented into them. The results from the 

gauges were also not consistent with the accelerometer results. It can also be pointed out that 

gauges can lose accuracy when used over a long period of time. Based on this and previous 

results having to do with the high sensitivity of the gauges, it was decided not to use the 

results from the gauges to estimate the relaxation of the BFPR tendons.  
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It may be noted that the method of gluing the gauges directly on to the tendons instead of 

using an aluminum plate in between, as done in former research at Reykjavik University, 

could be the reason for this inaccuracy in the results as regards the gauges. It e.g. caused a 

small curvature of the gauges in the transvers direction and the gauges could also have been 

too short. This is something that should be tested before further use of these gauges is 

considered. 

6.6. Accelerometer 

An accelerometer was used to regularly measure the cyclic frequency of the BFRP tendons 

(Figure 6.7, left). Because of technical limitations, constant measurements were not possible. 

Instead, the frequency was measured 3 times a day for the first week and then at a 1 to 3 day 

interval for over 2000 hours. This should not affect the results too much because the 

frequency changes very slowly after the first days. Constant measurement, however, would be 

more ideal.  

A steel nut was glued on to the middle of the tendon (Figure 6.7, right) to fix the 

accelerometer on it and the accelerometer was fitted with a magnet. When the accelerometer 

had been fixed to the tendon, a wave motion was created by hitting the tendon lightly. The 

accelerometer measured the transverse acceleration occurring and a computer device, 

connected to the accelerometer, recorded the data. By using Fourier transformation, the cyclic 

frequency caused by the acceleration could be derived. More detailed information about 

technical properties of the accelerometer is shown in Appendix F.  

    

Figure 6.7: (Left) The accelerometer used to measure the frequency of the tendons.  
(Right) The nut on the BFRP tendon which the accelerometer is placed on. 

Relaxation is defined in ACI-440.3R-04 (2004, p. 24) as “the reduction of stress (or load) in a 

material under a constant state of strain (or deformation)“. Thus, the tension in the tendons 
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must be calculated to estimate the relaxation rate and long term relaxation of the tendons. The 

tension in the tendons can be calculated based on their frequency. It is, however, quite 

difficult to do it with much accuracy because supporting conditions are hard to define. The 

accelerometer is also very sensitive and some slight vibration from the environment could 

cause disturbance in the frequency. Although there is some uncertainty in the frequency, it 

doesn´t affect the results significantly because the estimated relaxation is based on relative 

difference in the tension which is equally affected by all disturbances.  

Based on the wave equation for a string, a simplified approach to the tension in the tendon can 

be carried out. This is done by defining the tendon as a massless string with concentrated 

mass in the middle (the accelerometer) and assuming fixed supporting conditions which result 

in equation 6.1 (Gómez, Repetto, Stia, & Welti, 2007). 

 � =
�� ∙ � ∙ 

2
 6.1 

 

where 

• � = � ∙ 27 

Although being somewhat simplified, equation 6.1 provides a reasonably close approach to 

the initial tension in the tendons. The initial tension force applied to the tendons was around  

47 kN while, based on the frequency, equation 6.1 estimated it to be between 45-55 kN.  

It is actually not too important to calculate the exact tension force in the tendons because 

different multiplying factors don’t affect the relative difference. The most important thing is 

to consider the square exponent of the frequency in the formulation because that affects the 

relative difference between the initial and measured tension in the tendons.  

6.7. Stressing 

One of the biggest decisions to be made when stressing the tendons is the prestress force. As 

mentioned in chapter 3.5, the recommended tensile force applied to FRPs is between 40-65% 

of their ultimate tensile strength. In former studies, which this study is based on and which are 

reported in chapter 2.2, the initial prestress rate was around 50% of the ultimate tensile 

strength of BFRP tendons. To be consistent with that and be able to estimate the effective 

prestress force in former studies, the same initial prestress rate was used in this study which 

demands a force of 47 kN to be applied into the BFRP tendons.  
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To apply the force, a hydraulic jack (Figure 6.8, right) capable of producing 300 kN force was 

used. The jack is controlled by a hydraulic pump (Figure 6.8, left) which is connected to a 

computer device that calculates the force due to the oil pressure in the jack. A displacement 

sensor was also added to the jack to measure the lengthening of the tendons. The tendons 

were prestressed in one relay and once the decided force had been reached, the nut on the 

corresponding anchor was tightened to the prestressed bench (Figure 6.8, right).  

    

Figure 6.8: (Left) The hydraulic pump used to control the jack. (Right) The hydraulic jack  
used to implement the stress into the tendons.  
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7. Analysis and test results 

7.1. Modeling in ANSYS 

Results from the ANSYS models created will be published here regarding load deflection 

curves and cracking behavior. More results from ANSYS regarding stress, strain and force 

distribution can be seen in Appendix C. 

7.1.1. Prestressed concrete beams reinforced with BFRP tendons 

In this chapter, results from models 1, 2, 3 and 4 created in ANSYS will be published, 

compared with test results and discussed.  

7.1.1.1. Model 1 

The load deflection curve from ANSYS and the curves from the real tests beams are displayed 

in Figure 7.1.  

 

Figure 7.1: Comparison between load-deflection curves for ANSYS and experimental results, model 1. 

The beam created in ANSYS began to crack under a 29 kN load and the tendons started to 

take over the tension force. Maximum force was 65.8 kN and maximum displacement was  

21 mm. The maximum concrete strain at the top of the beam at the middle at failure was 

1.28‰ and the maximum tension occurring in the BFRP tendons was 90.4 kN. If the elastic 

modulus of the tendons is assumed to be 50 GPa, this force would result in a 23.2‰ strain. 

The stress, strain and force distribution for the ANSYS model are reported more fully in 

Appendix C. 

0 5 10 15 20 25
0

10

20

30

40

50

60

70

Displacement [mm]

F
or

ce
 [k

N
]

 

 

Beam 1

Beam 2

Beam 3

ANSYS



75 
 

The cracking behavior recorded in ANSYS is displayed in Figure 7.2 and Figure 7.3. First, 

vertical flexural cracks started to develop at midspan. They were followed with a formation of 

diagonal tension cracks and multiple sloping flexural cracking beside the loading points. The 

description of the cracking signs in ANSYS is reported in chapter 4.3.  

 

Figure 7.2: Cracking behavior for the beam at failure, model 1. 

 

Figure 7.3: Close up of the cracking behavior for the beam at failure, model 1. 

In Figure 7.4 an example of a failure crack from Jónsson´s (2011) test is shown for 

comparison.  

 

Figure 7.4: Cracking behavior for the test beam at failure, model 1 (Jónsson, 2011). 

More figures regarding cracking development of the test beams can be seen in Appendix A. 
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7.1.1.2. Model 2 

The load deflection curve from ANSYS and the curves from the real tests beams are displayed 

in Figure 7.5. 

 

Figure 7.5: Comparison between load-deflection curves for ANSYS and experimental results, model 2. 

The beam created in ANSYS began to crack under a 14 kN load and the tendons started to 

take over the tension force. Maximum force was 32.6 kN and maximum displacement was  

93 mm. The maximum concrete strain at the top of the beam at the middle at failure was 

1.35‰ and the maximum tension occurring in the BFRP tendons was 90.6 kN. If the elastic 

modulus of the tendons is assumed to be 50 GPa, this force would result in a 23.2‰ strain. 

The stress, strain and force distribution for the ANSYS model are reported more fully in 

Appendix C. 

The cracking behavior recorded in ANSYS is shown in Figure 7.6 and Figure 7.7. First, 

vertical flexural cracks started to develop at midspan. They were followed with a formation of 

diagonal tension cracks and multiple sloping flexural cracking beside the loading points.  

 

Figure 7.6: Cracking behavior for the beam at failure, model 2. 
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Figure 7.7: Close up of the cracking behavior for the beam at failure, model 2. 

In Figure 7.8 an example of a failure crack from Guðmundsson´s (2012) test is shown for 

comparison.  

 

Figure 7.8: Cracking behavior for the test beam at failure, model 2 (Guðmundsson, 2012). 

More figures regarding cracking development of the test beams can be seen in Appendix A. 

7.1.1.3. Model 3 

The load deflection curve from ANSYS and the curves from the real tests beams are shown in 

Figure 7.9. 

 

Figure 7.9: Comparison between load-deflection curves for ANSYS and experimental results, model 3. 

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

140

160

Displacement [mm]

F
or

ce
 [k

N
]

 

 

Beam 4

Beam 5

ANSYS

Multiple cracks occurring 
Diagonal tension cracks Flexural cracks 

Diagonal tension crack 



78 
 

The beam created in ANSYS began to crack under a 55 kN load and the tendons started to 

take over the tension force. Maximum force was 155 kN and maximum displacement was 

13.1 mm. The maximum concrete strain at the top of the beam at the middle at failure was 

1.24‰ and the maximum tension occurring in the BFRP tendons was 97.1 kN. If the elastic 

modulus of the tendons is assumed to be 50 GPa, this force would result in a 24.9‰ strain. 

The stress, strain and force distribution for the ANSYS model are reported more fully in 

Appendix C. 

The cracking behavior recorded in ANSYS is shown in Figure 7.10. First, vertical flexural 

cracks started to develop at midspan. They were followed with a formation of diagonal 

tension cracks and multiple sloping flexural cracking beside the loading points.  

 

Figure 7.10: Cracking behavior for the beam at failure, model 3. 

In Figure 7.11 an example of a failure crack from Ásbjörnsson´s (2013) test is shown for 

comparison.  

 

Figure 7.11: Cracking behavior for the test beam at failure, model 3  
(Author of photograph: Jónas Þór Ásbjörnsson). 

More figures regarding cracking development of the test beams can be seen in Appendix A. 
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7.1.1.4. Model 4 

The load deflection curve from ANSYS and the curves from the real tests beams are shown in 

Figure 7.12. 

 

Figure 7.12: Comparison between load-deflection curves for  
ANSYS and experimental results, model 4. 

The beam created in ANSYS began to crack under a 20 kN load and the tendons started to 

take over the tension force. Maximum force was 52.4 kN and maximum displacement was  

42 mm. The maximum concrete strain at the top of the beam at the middle at failure was 

1.47‰ and the maximum tension occurring in the BFRP tendons was 100.8 kN. If the elastic 

modulus of the tendons is assumed to be 50 GPa, this force would result in a 25.8‰ strain. 

The stress, strain and force distribution for the ANSYS model are reported more fully in 

Appendix C. 

The cracking behavior recorded in ANSYS is shown in Figure 7.13 and Figure 7.14. First, 

vertical flexural cracks started to develop at midspan. They were followed with a formation of 

diagonal tension cracks and multiple sloping flexural cracking beside the loading points.  

 

Figure 7.13: Cracking behavior for the beam at failure, model 4. 
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Figure 7.14: Close up of the cracking behavior for the beam at failure, model 4. 

In Figure 7.15 an example of a failure crack from Ásbjörnsson´s (2013) test is shown for 

comparison.  

 

Figure 7.15: Cracking behavior for the test beam at failure, model 4  
(Author of photograph: Jónas Þór Ásbjörnsson). 

More figures regarding cracking development of the test beams can be seen in Appendix A. 

7.1.2. Discussion 

The load deflection curves from ANSYS follow the curves from the real tests quite well up to 

yield zone of concrete (Figure 7.1, Figure 7.5, Figure 7.9 and Figure 7.12). After the concrete 

starts to yield, the ANSYS curves follow the test curves approximately one third to half way 

of failure displacement. There the slope of the test curves decreases, suggesting reduction in 

the stiffness of the beams, while the ANSYS curves are almost linear until failure. This leads 

to higher failure force and less deformation of the ANSYS models.  

There can be numerous reasons for the difference between ANSYS and test curves, some of 

them are discussed below. 

There is some uncertainty regarding material properties of the BFRP tendons and the values 

used are “safe” value from producers. The variance for these values was unavailable and the 

mean value for e.g. the elastic modulus of the tendons, which affect both yield point and slope 

of the curve on the yield zone, is therefore unknown. However, the value chosen and 

recommended by the producer (“RockBar,” n.d.), 50 GPa, seems to fit well as regards 

calculations and test results from former research.  
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The value of the effective prestress force, as demonstrated in Appendix A, is not known with 

much accuracy. The prestress force does not affect the slope of the curve on the yield zone 

significantly. It has, however, considerable effect on the yield point of the concrete. As 

mentioned above, the ANSYS model are more or less predicting correct yield point and 

therefore the effective prestress force chosen for the model should be roughly the same as in 

the real tests. 

There is some variance regarding material properties of the concrete (Table 11.5, Table 11.8 

and Table 11.11). This can affect the slope of the load deflection curves, but it is hard to 

estimate hove much effect the variance has. It should, however, not cause the slope to 

decrease on the yield zone, as it does for the test beams.  

It is not unexpected result that the ANSYS models are stiffer than the test beams. The ANSYS 

models are only an approach to the reality and they assume perfect bond behavior between 

tendons and concrete. The same applies to the concrete elements which is not the case in 

reality where the arrangement of the aggregate and the microstructure of the concrete affect 

the stiffness of it. Debonding of the BFRP tendons, under much tension force, could also 

explain the decrease in the stiffness of the test beams but the ANSYS model does not simulate 

that behavior. In must, however, be noticed that the tendons were anchored at the ends in the 

experimental beams. Debonding of the tendons would therefore be caused by internal 

lengthening of the tendons inside the beam.  

The cracking behavior detected in the ANSYS models is quite similar to the behavior 

described in Appendix A for the real tests. The failure cracks (Figure 7.4, Figure 7.8, Figure 

7.11 and Figure 7.15) occurring in the tests also have a similar slope and position as the 

diagonal tension cracks (Figure 7.3, Figure 7.7, Figure 7.10 and Figure 7.14) that were formed 

in the ANSYS models. The same applies to the flexural cracks were they can be detected on 

the figures available from the real tests which are displayed in Appendix A. The cracks 

forming in the end of the beams in the ANSYS model are due to the force in the tendons 

which rises as the beam is loaded more. The tendons were anchored at the ends in the real 

tests and the cracking behavior of the ends was not monitored specially. This behavior was 

therefore not detected there. This, however, should not affect the results from ANSYS.  

Comparison regarding failure load, maximum deflections, cracking loads and strain is carried 

out in Table 7.1, Table 7.2, Table 7.3 and Table 7.4. This comparison is between the ANSYS 

models and the average results from the test beams that the models are simulating.  
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Table 7.1: Comparison between ANSYS models and test results regarding  
model 1 and average results from Jónsson (2011) tests. 

Results 
Strain at top 
and middle 

Strain in 
tendons 

Ultimate 
failure load (F) 

Maximum 
deflection 

Cracking 
load (SLS) 

- - - [kN] [mm] [kN] 

ANSYS models 0,00128 0,0232 65,8 21 29 

Test beams 0,0026 - 61 20 34 

Test/ANSYS 2,03 - 0,93 0,97 1,16 

 

Table 7.2: Comparison between ANSYS models and test results regarding  
model 2 and average results from Guðmundsson (2012) tests. 

Results 
Strain at top 
and middle 

Strain in 
tendons 

Ultimate failure 
load (F) 

Maximum 
deflection 

Cracking 
load (SLS) 

- - - [kN] [mm] [kN] 

ANSYS models 0,00135 0,0232 32,6 93 14 

Test beams 0,0028 0,0235 31,3 121 18 

Test/ANSYS 2,04 1,01 0,96 1,30 1,29 

 

Table 7.3: Comparison between ANSYS models and test results regarding  
model 3 and average results from Ásbjörnsson (2013) tests. 

Results 
Strain at top 
and middle 

Strain in 
tendons 

Ultimate failure 
load (F) 

Maximum 
deflection 

Cracking 
load (SLS) 

- - - [kN] [mm] [kN] 

ANSYS models 0,00124 0,0249 155 13,1 55 

Test beams 0,0031 - 150 16 71 

Test/ANSYS 2,48 - 0,96 1,22 1,29 

 

Table 7.4: Comparison between ANSYS models and test results regarding  
model 4 and average results from Ásbjörnsson (2013) test. 

Results 
Strain at top 
and middle 

Strain in 
tendons 

Ultimate failure 
load (F) 

Maximum 
deflection 

Cracking 
load (SLS) 

- - - [kN] [mm] [kN] 

ANSYS models 0,00147 0,0258 52,4 42,3 20 

Test beams 0,0032 - 46,3 54 23 

Test/ANSYS 2,17 - 0,88 1,28 1,15 
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The strain occurring in the concrete is 50-60% lower in the ANSYS models than measured in 

the test beams. This is a rather big difference and it is difficult to see some obvious reason for 

this. In Appendix A, uncertainty in strain gauges is discussed, the difference is, however, so 

large that it can´t only be explained with uncertainty in the gauges. Other things that could 

partly explain this difference is the higher stiffness of the ANSYS models and debonding of 

the tendons. Debonding of the tendons would cause reduction in the stiffness and more 

deformation which leads to higher compression force in the concrete.  

Debonding of the tendons was partly explained by the stiffness decrease of the load-deflection 

curves obtained from the test results. By creating a load-strain plot (Figure 7.16) for the 

compressive strain in the concrete, discrepancy is noticed between ANSYS and test results at 

a similar force as for the load-deflection curves which support the debonding hypothesis.  

 

Figure 7.16: Load-compression strain plot for concrete. Data from testing of beam number 3 in 
Guðmundsson (2012) test and results from model 2 in ANSYS being compared. 

In Figure 7.16 it can be seen that at around a 0.8-0.9‰ strain and 20 kN force, discrepancy 

occurs between test results and ANSYS results. Based on figure 5-9 from Guðmundsson´s 

(2012, p. 44) thesis, the strain in the BFRP tendon can be estimated as 14-15‰ when this 

strain occurs in the concrete. The effective strain caused by prestress in his experiment was 

measured around 10‰ which means that the strain occurring in the tendons when assumed 

debonding occurs is around 4-5‰. 
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It must, however, be noted that there is some uncertainty in the creation of the load-strain 

plots from the experimental data. The data regarding load and strain were recorded in separate 

computers and at a different frequency which makes synchronizing of them difficult, 

inaccurate and time consuming. Another thing that can be noticed is that although there is 

some difference between test results and results from the ANSYS models, the measured value 

of both terms is quite similar between models. This means that a similar strain is occurring in 

the concrete at failure when experimental tests are compared to each other and also when 

ANSYS results are compared to each other. This actually supports the validity of both results 

because the moment occurring at failure was quite similar for all beams and therefore the 

concrete strain should be similar for all beams as well as the tendons strain. 

Strain in the tendons at failure was only successfully measured in Guðmundsson´s (2012) test 

(Table 7.2) and his results match the ANSYS results quite well. This can be seen in Figure 

7.16 where the load-compression strain plot for a BFRP tendon, created from test results, is 

being compared with results from model 2 created in ANSYS. It may also be noticed for the 

other tests that all the ANSYS models calculate similar strain in the tendons at failure which 

suggest similar moment at failure. Because the moments occurring at failure were similar in 

all test beams, this behavior supports the functionality of the ANSYS models. 

 

Figure 7.17: Load-compression strain plot for BFRP tendon. Data from testing of beam number 3 in 
Guðmundsson´s (2012) test and results from model 2 in ANSYS being compared. 
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Ultimate failure load is 4-10% higher in the ANSYS models than in the real tests. The main 

reason for this, as mentioned before, is the decrease in the stiffness of the test beams 

approximately one third to half way of failure displacement. This is, nevertheless, not much 

difference except that one would rather like to have results from calculations method lower 

than in reality.  

The maximum deflection for models 2, 3 and 4 (Table 7.1, Table 7.3 and Table 7.4) created in 

ANSYS is approximately 20-30% lower than the deflection occurring in the real tests. The 

main reason for this is, as for the ultimate failure load, due to decrease in the stiffness of the 

test beams. The beams created in ANSYS fail at similar force but are stiffer and therefore 

experience less deflection. The maximum deflection for model 1 (Table 7.2) is, however, 

almost the same for the ANSYS model and the test beams. This can be explained with the 

variance in the deflection measured in the test beams which model 1 is simulating. In Figure 

7.1 it can be seen that one of the test beams (beam 3) failed under much less deflection than 

the others. If this beam would be removed from the data, similar difference between the 

ANSYS model and test beams would be detected as for models 2, 3 and 4.  

The cracking load estimated for the test beams is 15-30% lower than in the ANSYS models. 

The cracking load as regards the test beams was estimated visually at just one side and is 

therefore rather uncertain. In ANSYS this can, however, be estimated with good accuracy and 

this difference is thus not unexpected.  
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7.1.3. Prestressed concrete beams reinforced with steel tendons 

In this chapter, results from models 5 and 6 created in ANSYS will be published, compared 

with test results and discussed.  

7.1.3.1. Model 5 

The load deflection curves from ANSYS and the curves from the real tests beams are shown 

in Figure 7.18. 

 

Figure 7.18: Comparison between load-deflection curves for  
ANSYS and experimental results, model 5. 

The beam created in ANSYS began to crack under a 23 kN load and the tendons started to 

take over the tension force. Maximum force was 82.2 kN and maximum displacement was 

12.2 mm. The maximum concrete strain at the top of the beam at the middle at failure was 

1.36‰ and the maximum tension occurring in the steel tendons was 113.7 kN. If the elastic 

modulus of the tendons is assumed to be 197.5 GPa, this force would result in a 5.8‰ strain. 

The stress, strain and force distribution for the ANSYS models are reported more fully in 

Appendix C. 

The cracking behavior recorded in ANSYS is shown in Figure 7.19 and Figure 7.20. First, 

vertical flexural cracks started to develop at midspan. They were followed with a formation of 

diagonal tension cracks and multiple sloping flexural cracking beside the loading points.  
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Figure 7.19: Cracking behavior for the beam at failure, model 5. 

 

Figure 7.20: Close up of the cracking behavior for the beam at failure, model 5. 

In Figure 7.21 an example of a failure crack from the MSc course research (Gunnarsson et al., 

2012) test is shown for comparison.  

 

Figure 7.21: Cracking behavior for the test beam at failure, model 5 

More figures regarding cracking development of the test beams can be seen in Appendix A. 
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7.1.3.2. Model 6 

The load deflection curves from ANSYS and the curves from the real tests beams are shown 

in Figure 7.18. 

 

Figure 7.22: Comparison between load-deflection curves for  
ANSYS and experimental results, model 6. 

The beam created in ANSYS began to crack under a 10 kN load and the tendons started to 

take over the tension force. Maximum force was 61.8 kN and maximum displacement was  

83 mm. The maximum concrete strain at the top of the beam at the middle at failure was 

2.43‰ and the maximum tension occurring in the steel tendons was 176.6 kN. If the elastic 

modulus of the tendons is assumed to be 197.5 GPa, this force would result in a 8.9‰ strain. 

The stress, strain and force distribution for the ANSYS model are reported more fully in 

Appendix C. 

The cracking behavior recorded in ANSYS is shown in Figure 7.23 and Figure 7.24. First, 

vertical flexural cracks started to develop at midspan. They were followed with a formation of 

diagonal tension cracks and multiple sloping flexural cracking beside the loading points.  

 

Figure 7.23: Cracking behavior for the beam at failure, model 6. 
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Figure 7.24: Close up of the cracking behavior for the beam at failure, model 6. 

In Figure 7.25 an example of failure crack from the MSc course research (Gunnarsson et al., 

2012) test is shown for comparison.  

 

Figure 7.25: Cracking behavior for the test beam at failure, model 6 

More figures regarding cracking development of the test beams can be seen in Appendix A. 

7.1.4. Discussion 

The load deflection curves from the ANSYS models follow the curves from the real tests 

rather well until failure, especially for model 6 (Figure 7.22). The slope of the curve at the 

linear zone for model 5 (Figure 7.18) does, however, not match the test curves well enough 

while there is only small difference in the slope of the curves on the yield zone. There are 

several possible reasons that could explain this difference. The loading speed could have been 

too slow when the experimental beams were tested, but as the equipment used was controlled 

by hand with respect to force and displacement increment. Inaccurate size of the prestress 

force could also partly explain this, the size of it as explained in Appendix A, is not known 

with good accuracy. Then there is some variance in the measured concrete strength, and 

therefore the stiffness, regarding the experimental beams represented by model 5 (Table 11.1).  
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The cracking behavior detected in the ANSYS models is rather similar to the behavior 

described in Appendix A for the real tests. The failure cracks (Figure 7.21 and Figure 7.25) 

occurring in the tests have a similar slope and position as the diagonal tension cracks (Figure 

7.20 and Figure 7.24) that were formed in the ANSYS models. The same applies for the 

flexural cracks where they can be detected on the figures available from the real tests which 

are displayed in Appendix A. 

Comparison regarding failure load, maximum deflections, cracking loads and strain is carried 

out in Table 7.5 and Table 7.6. This comparison is between the ANSYS models and the 

average results from the test beams that the models are simulating.  

Table 7.5: Comparison between ANSYS model and test results regarding model 5 and  
average results from MSc course research (Gunnarsson et al., 2012) test. 

Results 
Strain at top 
and middle 

Strain in 
tendons 

Ultimate 
failure load (F) 

Maximum 
deflection 

Cracking 
load (SLS) 

- - - [kN] [mm] [kN] 

ANSYS models 0,00136 0,0058 82,2 12 23 

Test beams 0,0024 - 76 13 25 

Test/ANSYS 1,73 - 0,93 1,10 1,09 

 

Table 7.6: Comparison between ANSYS model and test results regarding model 6 and  
average results from MSc course research (Gunnarsson et al., 2012) test. 

Results 
Strain at top 
and middle 

Strain in 
tendons 

Ultimate 
failure load (F) 

Maximum 
deflection 

Cracking 
load (SLS) 

- - - [kN] [mm] [kN] 

ANSYS models 0,00243 0,0089 61,8 83 10 

Test beams 0,0028 - 57,1 82 13,0 

Test/ANSYS 1,15 - 0,92 0,98 1,30 

The strain occurring in the concrete is similar for model 6 (Table 7.6) created in ANSYS and 

experimental results but there is some difference with respect to model 5 (Table 7.5). This 

difference for model 5 is strange, especially because a decent approach was reach with model 

6. It can be noticed that there is some difference regarding the moment occurring in the beams 

at failure and therefore the tendons strain, as can be seen in Table 7.5 and Table 7.6. This 

should lead to the assumption that a similar difference as regards the concrete strain would 

also occur between beams simulated by model 5 and 6 which is not the case with respect to 
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the experimental results. This suggest some malfunction in the strain gauges used to measure 

the strain in the beams simulated by model 5 which would explain the difference between the 

ANSYS model and the experimental results.  

Strain in the tendons calculated in the ANSYS models could not be compared with test data. It 

can, nevertheless, be used to confirm the assumption made in chapter 4.2.2.1, where it was 

stated that the stress in the steel tendons at failure would not reach yield stress of the tendons. 

The maximum strain calculated in the ANSYS models was 8.9‰ for model 6 while the yield 

strain of the steel tendons is approximately 10‰. The simplification made in the modeling by 

defining the steel for the tendons as linear elastic until failure is thus valid.  

Ultimate failure load calculated in the ANSYS models is rather similar to the load measured 

in the experiments. There is only an 8-9% difference which must be considered reasonable 

difference when modeling concrete. The maximum deflection is also quite similar when the 

results from the ANSYS models and experimental tests are compared, there is only about  

2-10% difference.  

The cracking load regarding the test beams was, as mentioned in chapter 7.1.2, estimated 

visually and is therefore rather uncertain. This explains the difference between results from 

the ANSYS model and test beams for model 6 which is around 30%. The difference is, 

however, only around 9% for model 5 which is rather good based on the uncertainty in the 

test results regarding the cracking load. 

Models 5 and 6 created in ANSYS are overall simulating the test beams rather well when 

results are being compared regarding load deflection curves, cracking behavior, ultimate 

failure and deflection. The concrete strain is the only parameter where some difference is 

detected between the ANSYS models and test beams.  
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7.2. Calculations methods 

Results from the shear resistance equations revealed in chapter 5 will be published here. All 

calculations are displayed in Appendixes D and E. 

7.2.1. Prestressed concrete beams reinforced with BFRP tendons 

The performance of the equations provided by JSCE-97, MC10, ACI 440.1R-06, Zsutty´s 

equation developed by Nehdi et al. and fib modifications to ACI-318-05 is shown in Figure 

7.26. Then the performance of equations provided by CAN/CSA S806-02, CNR-DT 203, fib 

modifications to EN 1992-1-1, fib modifications to BS 8110 and BS 8110 is shown in Figure 

7.27. In these figures, the ratio Vexperimental/Vcf is plotted up against the a/d ratio which was the 

most influential parameter that changed noticeable between experimental data. The red line 

represents the safety limit and values below here are classified as unsafe. 

It must be noticed that all safety factors, both with respect to loading and material properties, 

have been removed from the equations before comparison is carried out. 

 

Figure 7.26: Comparison between experimental results and the shear design equations for FRP RC. 
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Figure 7.27: Comparison between experimental results and the shear design equations for FRP RC. 

As mentioned in chapter 5.3.9, performance of the equations considered is evaluated 

regarding average, SD and COV for the ratio Vexperimental/Vcf along with estimation of AAE. 

The results with respect to these are displayed in Table 7.7.  

Table 7.7: Comparison between shear design equations for FRP RC  
and the experimental beams considered in this study.  

          Vexperiments/Vcf   

Reference AAE Average SD COV Safety 

        [%] - - [%] - 

JSCE-1997 83,9 8,19 5,17 63 Safe 

Model code 2010  79,1 7,35 6,08 82 Safe 

ACI 440.1R-06 61,1 3,37 2,12 62 Safe 

Fib 2007 modifications to ACI-318-05 46,9 1,08 0,66 61 Unsafe 

CNR-DT 203 46,8 1,07 0,65 60 Unsafe 

CAN/CSA-S806-02 46,4 2,20 0,95 43 Safe 

Zsutty´s equation developed by Nehdi et al.  39,7 1,87 0,85 45 Safe 

Fib modifications to EN 1992-1-1 37,7 1,86 1,17 63 Unsafe 

Fib modifications to BS 8110  37,6 1,29 0,81 63 Unsafe 

BS 8110  35,9 1,69 1,07 63 Unsafe 

 

0 1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

a/d ratio

V
e

xp
. / 

V
cf

 

 

Limit

CAN/CSA-S806

CNR-DT 203
fib, EN 1992-1-1

fib, BS 8110

BS 8110



94 
 

7.2.2. Discussion 

The main input parameters for the equations considered, e.g. reinforcement ratio, cross 

sections, applied moments, elastic modules, prestress, and compression strength were all 

similar. The only parameter which significantly affects the results and varied much was the 

a/d ratio of the members considered.  

All the shear design equations considered provided a very conservative approach when 

estimating shear resistance of FRP RC with a low a/d ratio (2.63), while half of them provided 

an unsafe approach for the largest a/d ratio (10.67) considered. Most of the equations, 

however, provided safe approach for members with a/d ratio between 5.3 and 7.63 and some 

of them actually provided quite a good agreement. 

The shear design equations of JSCE-97, MC10 and ACI 440.1R-06 provide a very 

conservative approach when estimating shear resistance of FRP RC, especially for beams with 

a low a/d ratio. This can be clearly seen in Table 7.7 where these equations provide the largest 

value for AAE and average for Vexp./Vcf. This is perhaps not unexpected for the JSCE-97 and 

MC10 equations. The JSCE-97 equation is the oldest one considered in this study while the 

MC10 equation is not directly developed for FRP RC and is based on a physical model which 

could demand a different approach when considering FRP materials. The ACI 440.1.R-06 

equation, however, is rather new and performed adequately in e.g. Nehdi et al. (2007) and 

Fico et al (2008) studies. Better fit with respect to the experimental data was therefore 

expected from it. 

The shear design equations of fib 2007 modifications to ACI-318-05 and CNR-DT 203 

provide the lowest value for the average of Vexp./Vcf although not providing the lowest AAE 

value. It must, however, be noted that these equations provide rather unsafe values for shear 

resistance as represented in Figure 7.26 and Figure 7.27. These equations seem to 

overestimate the shear resistance of members with a high a/d ratio. This is interesting result 

because Fico et al. (2008) considered the CNR-DT 203 equation to be conservative and giving 

accurate predictions about shear capacity. 

The shear design equations of CAN/CSA-S806-02 and Zsutty´s equation developed by Nehdi 

et al. provide the best approach based on the AAE and average of Vexp./Vcf (Table 7.7) for the 

equations that always provide a safe outcome, regarding experimental results, with Nehdi et 

al. equation on the top. These two equations are actually quite similar, except for the fact that 

the CSA-S806-02 does not directly include the a/d ratio as the Nedhi et al. equation does.  
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This result is also in compliance with the Nedhi et al (2007) study where these two equations 

provided the best agreement with experimental values.  

The shear design equations of fib modifications to EN 1992-1-1, fib modifications to BS 8110 

and BS 8110 provide the best approach as regards experimental data based on the AAE. 

These equations do, however, not provide safe values for the members with the largest a/d 

ratio (10.67). The equation from fib modifications to BS 8110 also overestimates the shear 

resistance of beams with a/d ratio 7.63. However, for members with a/d around 9 and below 

the equations provided by fib modifications to EN 1992-1-1 and BS 8110 can be considered 

safe (Figure 7.27). It is quite a surprising result that the equation provided by fib 

modifications to BS 8110 gives a poorer and more unsafe approach than the original equation 

provided by BS 8110. The idea was probably to make less a conservative equation which 

resulted in this way. This trend can actually also be noted for fib 2007 modifications to ACI-

318-05, but the equation provided there, although having lower AAE, gives rather unsafe 

results compared with ACI 440.1R-06 which is, however, quite conservative.  

Based on Table 7.7, four equations can be evaluated, regarding safety and AAE, to provide 

the best approach to experimental results. These equations are displayed in Table 7.8. 

Table 7.8: The shear capacity equations for FRP RC that gave best approach to experimental results. 

Reference Equation 

CAN/CSA S806-02 ��� = � ∙ 0.035 ∙ ���´ ∙ �� ∙ !� ∙
����

∙ ��
� 	 ∙ �� ∙ � 

Zsutty´s equation 

developed by Nehdi et al. 
��� = 2.1 ∙ ���´ ∙ �� ∙ �
 ∙

!�!��
�.�

∙ �� ∙ �				�� 				 
� > 2.5 

Fib modifications to  

EN 1992-1-1 ��� = [0.12 ∙ � ∙ �100 ∙ �� ∙
!�!� ∙ "� ∙ ���



�

] ∙ �� ∙ � 

BS 8110 ��� = 0.79 ∙ � 100�� ∙ � ∙ �� ∙
!�
200

�

∙ �400��

∙ ���
25

�

∙ �� ∙ � 

Although the two last equations shown in Table 7.8 are not considered safe, they only provide 

a slightly unsafe approach when compared with the experimental beams with the largest a/d 

ratio (10.67) which were, as represented in Guðmundsson´s (2012) study, on the edge of 

flexural failure when failing due to shear.  
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An interesting trend that can be spotted regarding these equations in Table 7.8, highlighted in 

red. They all consider the cubic root of the reinforcement ratio, the concrete compression 

strength and the modification factor while most of the other equations considered, see Table 

5.3, estimate these parameters in a different way. Most of them consider e.g. the square root 

of the concrete compression strength, rigidity of FRP longitudinal bars and the stiffness 

modification factors. This cubic root approach used in the equations in Table 7.8 can thus be 

concluded as the best one, at least when estimating shear resistance of BFRP reinforced high 

strength concrete.  

7.2.3. Prestressed concrete beams reinforced with steel tendons 

The performance of the shear resistance equations provided by EN 1992-1-1, conservative 

approach to ACI 318-05, CSA A23.3-94 and Zsutty´s equation is shown in Figure 7.28. Then 

the performance of equations provided by JSCE 2007, MC10, BS 8110, ENV 1992-1-1 and 

ACI 318-05 is shown in Figure 7.29. On these figures the ratio Vexperimental/Vcf is plotted up 

against the a/d ratio which was the most influential parameter that changed noticeably 

between experimental data. The red line represents the safety limit but values below here are 

classified as unsafe. 

It must be noticed that all safety factors, both with resepect to loading and material properties, 

have been removed from the equations before comparison is carried out. 

 

Figure 7.28: Comparison between experimental results and the shear design equations for steel RC. 
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Figure 7.29: Comparison between experimental results and the shear design equations for steel RC. 

As mentioned in chapter 5.3.9, performance of the equations considered is evaluated 

regarding average, SD and COV for the ratio Vexperimental/Vcf along with estimation of AAE. 

The results for these are published in Table 7.9. 

Table 7.9: Comparison between shear design equation for steel RC  
and the experimental beams considered in this study. 

        Vexperiments/Vc   

Reference AAE Average SD COV Safety 

      [%] - - [%] - 

ENV 1992-1-1 87,3 0,55 0,07 13 Unsafe 

CSA A23.3-94  52,2 0,67 0,09 14 Unsafe 

Model code 2010  51,5 2,22 0,07 3 Safe 

ACI-318-05 37,9 0,74 0,10 14 Unsafe 

EN 1992-1-1 36,4 0,75 0,11 15 Unsafe 

BS 8110  27,7 0,81 0,09 11 Unsafe 

Zsutty´s equation  18,2 1,29 0,03 2 Safe 

ACI 318-05, conservative approach 15,2 0,93 0,12 13 Unsafe 

JSCE-2007 14,6 0,96 0,14 15 Unsafe 
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7.2.4. Discussion 

The results from the equations for steel RC members were quite unexpected. Only two 

equations considered provided safe approach for all experimental results, the MC10 and 

Zsutty´s equations, and neither of them is provided by a practitioners standard/code although 

MC10 can partly be considered as such. Nevertheless, four equations provide safe approach 

for the beams with the lower a/d ratio (5.3). 

The shear design equations of ENV 1992-1-1, CSA A23.3-94 and MC10 give the worst 

approach with test results regarding AAE and average for Vexp./Vcf as can be seen in Table 

7.9. ENV and CSA do also provide rather an unsafe approach while MC10 is quite 

conservative. This is maybe not so unexpected because ENV and CSA are relatively old with 

e.g. the ENV based on Model code 1990. The CSA also, as mentioned in chapter 5.3.4, 

represents upper boundary value for shear resistance. With the MC10 equation as one of the 

first to be fully based on a physical model, some uncertainty is maybe not surprising. It at 

least provides a conservative approach and is not unsafe. 

The shear design equations of ACI-318-05, EN 1992-1-1 and BS 8110 provide a moderately 

good approach with test results regarding AAE and the average for Vexp./Vcf as can be seen in 

Table 7.9. They, however, all provide unsafe approach as can be seen in Figure 7.28 and 

Figure 7.29. This is rather unexpected for the ACI and EC2 equations being probably among 

the most used ones in the world today.  

The shear design equations of JSCE-2007, ACI 318-05 (conservative approach) and Zsutty´s 

equation provide the best approach with test results regarding AAE and average for Vexp./Vcf 

as can be seen in Table 7.9. The equations provided by JSCE and ACI are only slightly unsafe 

for the beams with the largest a/d ratio (10.63) and for members with a/d around 9 and below 

they could be considered safe (Figure 7.28 and Figure 7.29). The good performance of 

Zsutty´s equation is little surprising because it is the oldest one considered in this study. It 

has, however, according to Nehdi et al. (2007) proven to be accurate and is e.g. the only 

equation considered in this study that directly includes the effect of the a/d ratio. It is also 

worth noticing that both the conservative approach to ACI 318-05 and Zsutty´s equation 

neglect the effect of axial force, being the only ones as regards shear resistance equations of 

steel RC in this study. 
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7.3. Relaxation of BFRP tendons 

The frequency measurements for three stressed BFRP tendons carried out over 2000 hours are 

shown in Figure 7.30. 

 

Figure 7.30: Measured frequency in the BFRP tendons for over 2000 hours. 

Based on Figure 7.30, the 1000 hours relaxation can be calculated. To estimate the relaxation, 

the tension force in the tendons must first be estimated according to equation 6.1 which 

results in Table 7.10.  

Table 7.10: Estimation of 1000 hours relaxation based on frequency measurements. 

Tendon Length Initial frequency Initial tension 1000 hours tension Relaxation 

- [m] [Hz] [kN] [kN]   

1 3,905 44,63 44,52 42,05 5,6% 

2 3,885 46,50 48,09 44,73 7,0% 

3 3,865 49,90 55,09 51,79 6,0% 

Average     49,23 46,19 6,2% 
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7.3.1. Discussion 

It can be noticed in Figure 7.30, representing the frequency measurements, that there is some 

difference between measured frequencies although it should be the same as the tension force 

in the tendons. Slightly less tension force was actually implemented into tendon one, probably 

around 44 to 45 kN because of technical problems which explains why it has lower frequency 

than the others. The same tension force was, however, added into tendon 2 and 3, around 47 

kN, which should lead to the same frequency in them. This difference could be explained by 

frequency disturbance but the frequency measured in tendon three was fluctuating between to 

frequencies. Other of these was quite close to the initial frequency measured for tendon two 

but didn´t decrease as the second one measured which was therefore used. The reason for this 

disturbance possibly results from some environmental frequencies from e.g. the computer 

equipment, pipes or the building but as mentioned in chapter 6.6, the accelerometer used in 

this study is quite sensitive. This disturbance was, however, constant through all the test time 

so it should not affect the results because they are based on the relative difference between 

initial and final measurements.  

The relaxation can be estimated and an approximation line created based on the decrease of 

tension force in the tendons which was calculated from the frequency (Figure 7.30). The 

results from the first 2 days were, however, removed from the data because they were rather 

inaccurate. The first two days were partly used to scale and understand the equipment which 

led to this uncertainty.  

To create the approximation line, the approach provided by ACI-440.3R-04 (2004) was used. 

There the use of logarithmic function is recommended (equation 7.1) to create an 

approximation line. 

 8� = �� − 	� ∙ log	(�) 7.1 
 

Where  

• 8� is the relaxation rate. 

• ��	�(
		� are empirical constants. 

• � is the test time. 

Based on this, Microsoft Excel was used to create approximation lines and calculate 

logarithmic functions for the lines which are all represented in Figure 7.31.  
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Figure 7.31: Relaxation rate for BFRP tendons based on frequency changes. 

Based on the equations for the approximation lines to the data in Figure 7.31, the 50 and 100 

years relaxation for the BFRP tendons used in this study were calculated (Table 7.11).  

Table 7.11: Estimated long term relaxation for BFRP tendons. 

Time Tendon 1 Tendon 2 Tendon 3 Average 

[years] - - - - 

50 10,9% 11,7% 10,9% 11,2% 

100 11,5% 12,2% 11,4% 11,7% 

Based on this the 50 years relaxation, for the specific BFRP tension used in this study loaded 

with approximately 50% of the recommended ultimate tensile strength, can be estimated as 

11% for BFRP tendons and the 100 years relaxation as 12%. Providing more accurate 

numbers would not be reasonable with respect to the experimental and calculations 

uncertainty in this study.  
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8. Discussion 

The main objectives of this study were, as represented in chapter 1.3:  

1. To create an FE model based on the research work represented in chapter 1.2 and 

compare results. 

2. To compare measured data and results from the experimental work represented in 

chapter 1.2 with theoretical formulations, codes and guidelines. 

3. To estimate the long term relaxation of prestressed BFRP tendons with experimental 

work. 

The results published in chapter 7, as regards these objectives, will be discussed separately in 

this chapter. 

8.1. Modeling in ANSYS 

The ANSYS models created in this study, both for BFRP and steel RC, showed acceptable 

correspondence when compared with test results, especially for the steel RC beams. The 

ANSYS models representing the BFRP RC beams were, however, a little stiffer than the 

tested ones. Results regarding both BFRP and steel RC will be discussed individually below.  

8.1.1. Prestressed concrete beams reinforced with steel tendons 

The behavior of steel RC beams is well known and has been widely explored. Therefore, steel 

RC beams were used as reference work in this study to provide understanding and test the 

functionality of ANSYS.  

Creation of ANSYS models to simulate steel RC beams succeeded quite well as demonstrated 

in chapter 7.1.3. Only a small difference as to concrete strain occurred in Model 5 while other 

parameters compared in Table 7.5 and Table 7.6 showed good match. Cracking behavior 

occurring in the ANSYS models (Figure 7.19 and Figure 7.23) was also quite similar to the 

cracking behavior occurring in the experimental beams (Figure 7.21 and Figure 7.25). It is 

also interesting to compare the stress distribution, with respect to concrete and principal 

stresses in Figure 11.21 and Figure 11.22 (Appendix C), with the cracking behavior. The 

largest stresses mostly occur where the failure cracks are formed. Based on the stress 

distribution along with the cracking behavior of the models created in ANSYS, the position 

and angle of the failure crack can be roughly determined to be the same as for the 

experimental beams simulated.  
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These results confirm the functionality of ANSYS when modeling prestressed steel RC. 

Creating models to simulated prestressed BFRP RC beams, using the same approach as for 

the steel RC beams, should therefore be equally justifiable. It can also be pointed out that 

these results also indicate that the experimental work carried out in the MSc course research 

(Gunnarsson et al., 2012) was done in a proper way and provides valid results. 

8.1.2. Prestressed concrete beams reinforced with BFRP tendons 

Creation of ANSYS models to simulate BFRP RC beams succeeded fairly well as 

demonstrated in chapter 7.1.1. The main difference between the ANSYS models and the 

experimental beams was due to stiffness after yielding of concrete but the beams created in 

ANSYS were all a bit stiffer which led to a higher failure force, less deformation and less 

concrete strain. This was widely discussed in chapter 7.1.2 and the main reason for this was 

considered to be debonding of the BFRP tendons in the experimental beams caused by high 

internal strain in the tendons. In continuation of that, there are a few other things worth 

revealing that can cause difference between the experimental beams and the ANSYS models.  

Only displacement criteria were defined for the models to check and control the convergence 

for the elements while force criteria were released. This could slightly affect the accuracy of 

the failure force and deformation.  

Neither the rate of the force increment nor the displacement could be controlled when the 

experimental beams were tested. The loading speed affects the failure force and if it is too 

high, the failure force tends to be higher. If the loading speed is too slow, the failure force 

tends, however, to be lower. This could affect the slope of the load deflection curve but not 

considerably.  

The implementation of the prestress force as regards the ANSYS models was not carried out 

in exactly the same way as done for the experimental beams. The difference was due to the 

strength of the concrete when the prestress force was implemented into the beams. The 

prestress force was implemented into the experimental beams 10 to 15 days after the casting 

of the concrete whereas it was implemented into the ANSYS models when the beams had 

been defined with final concrete strength. This should, however, only have trivial effects on 

the results.  

Finally, the assumption made that the BFRP tendons are linear elastic until failure can be 

discussed. Although most textbooks, standards and guidelines assume this behavior,  
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some change in the slope of the load deflection curve (Figure 3.6) at the very end might be 

possible. That could e.g. partly explain the stiffness difference between the experimental 

beams and the ANSYS models.  

Although these things discussed above explain and substantiate a part of the difference 

between the experimental beams and the ANSYS models, debonding of the BFRP tendons is 

still considered as the main and most likely source for the stiffness difference, between 

experimental beams and ANSYS models, occurring after yielding of concrete.  

Cracking behavior occurring in the ANSYS models (Figure 7.2, Figure 7.6, Figure 7.10 and 

Figure 7.13) was quite similar to the cracking behavior occurring in the experimental beams 

(Figure 7.4, Figure 7.8, Figure 7.11 and Figure 7.15). This cracking behavior can also be 

compared with stress distribution, with respect to concrete and principal stresses, on Figure 

11.17, Figure 11.18, Figure 11.19 and Figure 11.20 (Appendix C). The largest stresses occur 

at similar places as the failure cracks form and based on this stress distribution along with the 

cracking behavior of the models created in ANSYS, the position and angle of the failure crack 

can be roughly determined to be the same as for the experimental beams simulated. 

In Table 8.1, experimental results, Vexp., are compared with predicted values from ANSYS, 

Vansys, regarding shear capacity of all the prestressed BFRP RC beams considered in this 

study. All the beams have the same concrete cross section and material properties regarding 

the BFRP tendons.  

Table 8.1: Comparison of experimental and predicted shear capacity for prestressed BFRP RC beams. 

Reference Beam f´c P a/d Af ρ Mfailure Vexp. Vansys Vexp./Vansys 

  [nr] [MPa] [kN] - [mm2] - [kNm] [kN] [kN] - 

Jónsson, 2011 1 60,4 78 5,3 156 0,0052 23,5 29,5 32,9 0,90 

Jónsson, 2011 2 60,4 78 5,3 156 0,0052 26,6 33,5 32,9 1,02 

Jónsson, 2011 3 60,4 78 5,3 156 0,0052 23,1 29,0 32,9 0,88 

Guðmundsson, 2012 3 57,1 78 10,67 156 0,0052 25,3 15,8 16,3 0,97 

Guðmundsson, 2012 4 57,1 78 10,67 156 0,0052 24,7 15,5 16,3 0,95 

Ásbjörnsson, 2013 1 61,7 84 7,63 156 0,0052 26,4 23,1 26,2 0,88 

Ásbjörnsson, 2013 3 61,7 84 7,63 156 0,0052 26,6 23,2 26,2 0,89 

Ásbjörnsson, 2013 4 67,4 84 2,63 156 0,0052 30,6 77,5 77,5 1,00 

Ásbjörnsson, 2013 5 67,4 84 2,63 156 0,0052 28,4 72,0 77,5 0,93 

Average   61,5 81       26,1     0,93 
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It can be seen in Table 8.1 that ANSYS is providing quite good approach overall when 

simulating the experiments regarding failure force. It can also be noticed that the moment 

occurring at failure, Mfailure, is similar for all the beams tested, suggesting similar strain and 

stress distribution in the beams at failure which is also consistent with the ANSYS models.  

It is also interesting to plot all experimental results along with ANSYS results to see how the 

failure force changes as regards the length and the a/d ratio of the beams. This relation is 

plotted up in Figure 8.1 by using all the load deflection curves from experimental beams and 

ANSYS models. Other important parameters, regarding failure resistance, such as the beams 

cross section, prestress force, reinforcement ratio and concrete strength were similar for all 

experimental beams as demonstrated in Table 8.1.  

 

Figure 8.1: Experimental results compared to simulating models 
 created in ANSYS due to load deflection curves. 

In Figure 8.1 it may be noticed how rapidly bearing capacity regarding shear and stiffness 

decreases as the a/d ratio increases. This is interesting relationship and demonstrates how 

vulnerable slender BFRP RC beams without shear reinforcement are due to shear failure 

which is something that designers should keep in mind.  

It is complicated to simulate behavior of RC because of its non-homogenous behavior, 

uncertainty regarding material properties and nonlinear failure behavior. Some difference 

between experimental results and calculated values is therefore to be expected. Based on this, 

the results obtained from the comparison between the ANSYS models and the experimental 
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beams can be defined as acceptable which confirms the functionality of ANSYS when 

modeling prestressed BFRP RC beams. These results also indicate that the experimental work 

carried out in the studies by Jónsson (2011), Guðmundsson (2012) and Ásbjörnsson (2013), 

which the ANSYS models are based on, were done in a proper way and provide valid results.  

8.2. Calculation methods 

The equations tested in this study provided mostly a safe and sometimes quite conservative 

approach for the prestressed BFRP RC beams while the equations considered for prestressed 

steel RC beams provided a rather unsafe approach. Results regarding both of these approaches 

will be discussed individually below.  

8.2.1. Prestressed concrete beams reinforced with steel tendons 

The calculations regarding the steel RC beams were mainly carried out as a reference work 

for the BFRP RC beams to provide understanding on the functionality of the shear capacity 

equations. This was done because, as demonstrated in chapter 5.3, most of the shear capacity 

equations for BFRP RC are developed from equations for steel RC. The poor performance 

provided by the equations for steel RC was, however, quite unexpected because they have 

been under developement for a long time and been widely tested. It is also worth noticing that 

three of the experimental beams that failed due to diagonal tensions shear had an a/d ratio of 

10.63. According to Nawy (2009), however, prestressed beams with a larger a/d ratio than 5.5 

should fail in flexure.  

There are several things that could partly explain this difference between experimental results 

and calculated values.  

High strength concrete was used in the experiments with the concrete compression strength 

from 61.7 to 67.4 MPa. Sudheer et al. (2010) stated that estimation of shear capacity of high 

strength concrete is still a controversial subject and when concrete reaches 60-70 MPa 

compression strength, its contribution to shear resistance begins to decrease. This is 

recognized by some of the equations explored like the ones provided by BS 8110, JSCE-2007 

and MC10 but there the concrete strength used is limited. This is, however, not the case for all 

the equations considered which could partly explain the difference occurring. The JSCE-2007, 

for example provides the best approach and MC10 is, along with Zsutty´s equation, the only 

one source providing a safe approach despite being conservative.  
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Most of the equations are considered and developed for an equally distributed load and do 

therefore not directly include the effect of the a/d ratio which has considerable effect on the 

failure mode of concrete according to some researchers such as Sudheer et al. (2010), Nehdi 

et al. (2007) and Zsutty (1971). Some equations do, however, allow reduction of considered 

design shear force for members with a lower a/d ratio than 2 or 2.5. Zsutty´s equation, the 

only one directly including the a/d ratio, provides the best safe approach while JSCE-2007 

and the conservative approach by ACI 318-05, both indirectly including the a/d ratio, provide 

the best and only slightly unsafe approach. These results indicate further the effect of the a/d 

ratio on shear capacity and the need to consider it in formulations.  

The Icelandic aggregate used in the concrete in this study has proven to be weaker and more 

porous than aggregate in many other European countries. Because of that, the Icelandic 

National Annexes to Eurocodes (2010) e.g. suggest reduction factors when using the elastic 

modulus for concrete provided in the EN 1992-1-1 (2004).  

• 0.9 for non-porous aggregates. 

• 0.6 for porous aggregates. 

Weaker aggregate could lead to poorer aggregate interlock and therefore lower shear 

resistance of concrete. If the aggregate used in this study is considerably weaker and more 

porous than the aggregate used in other experimental tests conducted abroad, which the 

empirical equations considered in this study are based on, then it could plausibly explain the 

difference between the experimental results and calculated values. This is something that the 

Icelandic standard council should maybe explore further to see if, e.g. a lower ���,� factor 

should by used in the shear resistance equations (5.21) provided by EN 1992-1-1 (2004). 

�� = [�	�,� ∙ � ∙ �100 ∙ �� ∙ ���
� + �
 ∙ ���] ∙ �� ∙ � 

It must also be pointed out that results from only five experimental tests are being considered 

in this study. Many more would be needed to draw some realistic conclusions about the 

functionality of the equations considered in this study. 

8.2.2. Prestressed concrete beams reinforced with BFRP tendons 

Ten equations, from several sources, for shear resistance of BFRP RC beams were considered 

in this study and they provided various approaches. Five equations provided a safe approach 

although some of them were quite conservative. Two equations gave only a slightly unsafe 

approach, but it was quite good one, while three equations were rather unsafe. This is a little 
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odd when compared with the results from the shear resistance equations for steel RC beams 

where an unsafe approach was usually obtained. This suggests that the modifications carried 

out on equations for steel RC to develop equations for BFRP RC (see in chapters 3.4.3 and 

5.3) are rather conservative. There is another thing that can be pointed out regarding the 

principles for the equations. Based on the ANSYS models created, hypothesis suggesting 

debonding of the BFRP tendons when reaching 4-5‰ strain was presented (chapter 7.1.2). If 

it holds, one of the basic assumptions for the derivations of shear capacity equations, which 

assume that an adequate bond between reinforcement and concrete can be developed, fails. 

This should, however, lead to a less conservative approach which is mostly not the case for 

the equations considered, that also suggest that they are too conservative. 

The failure mode of the experimental beams considered in this study is reasonable consistent 

with the concepts considered for FRP RC beams. Ramadass and Thomas (2010), for instance 

reached the conclusion, that FRP RC beams without transverse reinforcement would fail in 

shear if the a/d ratio was less than 9.0. This is reasonably close to Guðmundsson´s (2012) 

results where two experimental beams with an a/d ratio of 10.63 failed in shear but were also 

quite close to failing in flexure as he demonstrated in his study. This suggests that BFRP RC 

beams suffer from similar failure modes as other FRP RC beams although being probably a 

little more vulnerable to shear failure. 

It is worth noticing that not many researches have considered as large a/d ratio and concrete 

compression strength as is being considered in this study. Fico et al. (2008) collected test 

results regarding 88 beams and one way slabs without shear reinforcement in their study. 

There the a/d ratio stretched between 1.78 and 6.50 while maximum concrete strength 

considered was 50 MPa. Nehdi et al. (2007) then collected test results for 68 beams without 

shear reinforcement in their study where the a/d ratio also stretched between 1.8 and 6.50 

while maximum concrete strength considered was 49 MPa. The a/d ratio regarding the test 

results considered in this study, however, varied between 2.63 and 10.63 while mean concrete 

strength was 61.5 MPa. It can also be seen that most if not all of the equations considered in 

this study are based on experimental results where GFRP, CFRP or ARFP are used to 

reinforce concrete. Neither Fico et al. (2008) nor Nehdi et al. (2007), e.g. considered 

experimental results involving BFRP RC in their studies. Some of the equations considered in 

my study do, however, provide an acceptable approach for the beams considered in this study 

despite the high a/d ratio, high concrete compression strength and use of BFRP tendons. This 

supports the shear resistance equations, for FRP RC, functionality regarding these matters. 
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In continuation of this a/d ratio discussion, it is interesting to consider when the cross section 

tested in this study would fail in flexure. To do this, shear force and bending moment capacity 

are plotted up against the a/d ratio (Figure 8.2). Zsutty’s equation (5.29) is used to estimate 

the shear capacity but as demonstrated in Table 7.7 it gave the best safe approach with respect 

to the experimental results. Formulations from ACI 440.4R-04 (2004) are then used to 

calculate the flexural moment capacity. There equation (8.1) to estimate moment capacity of 

prestressed FRP RC beams is provided. 

 �� = �� ∙ 	 ∙ 
� ∙ �	
 ∙ �1 −
��
1.7

∙
�	
��´ # 8.1 

 

This equation applies for tension controlled sections, meaning that the beam strength is 

governed by the tensile strength of the tendon. The inputs parameters into both the shear and 

moment capacity equations are mean values from all the experiments considered in this study 

and are mainly obtained from Table 5.1. 

In Guðmundsson´s (2012) study, two beams which were identical to the two beams 

represented by model 2 (3.86 m long), were fitted with external stirrups to generate flexural 

failure. Ásbjörnsson (2013) did the same with one beam in his study which was identical to 

the one represented by model 4 (2.7 m long). This succeeded in both cases and these three 

beams all suffered from flexural failure. To roughly estimate the performance of equation 8.1 

the results from these experiments will also be put in the graph in Figure 8.2.  

 

Figure 8.2: Relationship between shear resistance, moment resistance and a/d ratio for BFRP RC. 
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It must be noted that this relationship only works for the particular cross section and material 

properties considered in this study and is based on only twelve beam specimens. 

First it can be seen that the moment capacity equation (8.1) provides a decent approach to the 

experimental results but only a 10-20% difference is detected. This result supports the 

functionality of equation 8.1, for prestressed BFRP RC beams, which can therefore be used 

for further conclusions. Figure 8.2 also clearly demonstrates the conservative approach 

provided by most codes and guidelines regarding shear capacity of FRP RC beams, especially 

for beams with a low a/d ratio. It can then be concluded, based on Figure 8.2, that beams with 

an a/d ratio up to 12 to 13 will fail in shear while more slender beams will fail in flexure as 

regards this approach, cross section and material properties. This is a little higher a/d ratio 

than previously expected for shear failure of FRP RC beams and suggests that designers 

should be careful when determining bearing capacity of slender FRP RC beams. 

As discussed before, the moment occurring at failure was similar for all the experimental 

BFRP RC beams tested. This is worth considering a little further by comparing the curvature 

development for all the experimental beams together (Figure 8.3). According to O’Brien and 

Dixon (1995) and Nawy (2009), the curvature of the beams can be calculated by using a 

simplified equations (8.2) based on the deflection at the middle of the beams. 

 � =
9 ∙ 10��� �$%	:��(
�%	�	�%:						� =

9 ∙ 8��� 	�$%	:ℎ$%5	�	�%: 8.2 
 

 

Figure 8.3: Curvature development in the experimental beams from Jónsson (2011), Guðmundsson 
(2012) and Ásbjörnsson (2013) studies along with the MSc course research (Gunnarsson et al., 2012). 
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It may be noticed in Figure 8.3 that all the beams reinforced with BFPR tendons, except for 

the 1.2m long ones, failed when suffering from similar curvature. This is an interesting 

outcome and indicates that there is some maximum curvature that prestressed slender BFRP 

RC members fail at, especially because this behavior is not noticed for the steel RC beams. 

This hypothesis needs, however, further investigations by testing slender beams with e.g. 

other effective height, d, and different concrete strength, fc, than considered in this study to 

see if similar curvature also occurs for e.g. different cross sections and concrete strength. It 

would also be interesting to explore if this hypothesis applies for concrete beams reinforced 

with other FRP than BFRP. Figure 8.3 also clearly demonstrates how much use of BFRP 

tendons affects the stiffness of concrete but the steel RC beams resist much higher stress 

while suffering from less curvature than the BFRP RC beams do. 

The conservative approach provided by most of the equations is finally worth discussing 

because this conservativeness can hinder the development of innovative and more efficient 

products and design solution regarding FRP RC. 

Most of the equations, except for the ones provided by JSCE-1997 and MC10, neglect the 

effect of prestress force but axial force increases the shear resistance, as demonstrated in 

chapter 3.4.2. Including effects of axial force in the equations would therefore make them less 

conservative.  

Most of the equations for FRP RC are developed from equations originally created for steel 

RC which are supposed to be based on a well-established philosophy. The equations for the 

steel RC do, however, not provide a conservative approach, as demonstrated in this study, 

which does not conform with the FRP RC equations. This suggests that the modification 

principles and approaches used to develop equations for FRP RC are too conservative or not 

sufficient. Changing the basic empirical multipliers for the equations, as Nehdi et al. did with 

good results, could be necessary along with use of the modification principles discussed in 

chapters 3.4.3 and 5.3, to provide less conservative and more practical equations.  

One interesting trend was also spotted in this study, as demonstrated in Table 7.8, which is the 

good functionality of equations that consider the cubic root of the axial rigidity of FRP 

longitudinal bars, concrete compression strength and the modification factors which accounts 

for different stiffness of FRP and steel. Using this approach would thus be recommended in 

the future when developing less conservative equations for FRP RC members. 
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8.3. Relaxation of BFRP tendons 

First, it is interesting to compare the estimated relaxation for the BFRP tendons, loaded with 

approximately 50% of the recommended ultimate tensile strength, with suggested relaxation 

for other FRP materials as seen in Table 8.2. 

Table 8.2: Relaxation for FRP tendons suggested by fib (2012a)  
and results from this study regarding BFRP tendons. 

FRP materials 1000 hours 
relaxation 

50 years 
relaxation 

GFRP tendons 1.8 - 2.0% 4.0 - 14.0% 

CFRP tendons 0.5 - 1.0% 2.0 - 10.0% 

AFRP tendons 5.0 - 8.0% 11.0 - 25.0% 

BFRP tendons 6% 11% 

Here the 1000 hours relaxation of the BFRP tendons is similar to AFRP tendons while the 

long term relaxation (50 years) is comparable to both the GFRP and AFRP tendons. It is 

difficult to reach some conclusions based on this study because only three BFRP tendons 

were tested. Many more experiments with different applied force and BFRP structure would 

be needed to create a relaxation interval as for the other FRP materials. The estimated 

relaxation for the BFRP tendons is nevertheless similar to the other FRP tendons which 

indicate that the measurements were done in a proper way and provide valid data.  

As mentioned in chapter 2.2, Jónsson (2011) estimated the 95 years relaxation as 20% for 

exactly the same type of BFRP tendons and similar tension force as used in this study. This is 

not close to the results reached in this study, where the 100 years relaxation was estimated as 

12%. The main reason for this is probably that Jónsson used data from strain gauges to 

estimate the relaxation and only measured the strain over 19 days (~450 hours). The 

measurements from the strain gauges, as he himself pointed out, were also rather uncertain 

which makes his estimation little controversial. Bearing this fact in mind, this difference is 

perhaps not so unexpected.  

The applied tension force is also worth discussing. As mentioned in chapter 3.5, the ACI 

recommends applied tensile force to FRPs to be between 40-65% of the ultimate tensile 

strength but these recommends does not include BFRP. In this study, the tendons were loaded 

with approximately 50% of the recommended ultimate tensile strength which resulted in 

similar long term relaxation as regards other FRP materials considered in Table 8.2. Based on 

this, it can be concluded that the recommends proposed by ACI for applied tensile force to 
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FRPs can also be used for BFRPs. Loading BFRP tendons with up to 50% of their ultimate 

tensile strength provides at least acceptable results compared with other FRPs and can 

therefore be recommended. Using a higher rate of ultimate tensile strength should, however, 

be tested before used in practice.  

8.4. Answers to research questions 

Three research questions were raised at the beginning of this study, and these questions are 

answered below. 

1. Can the FE method be used to calculate bearing capacity and predict failure modes of 

prestressed concrete beams reinforced with BFRP tendons? 

In this study, the FE program ANSYS was used to create four FE models of 

prestressed BFRP RC beams which were supposed to simulate experimental beams. 

Comparison between ANSYS and experimental results provided mostly acceptable 

outcomes and based on that the use of the FE method can be recommended to 

calculate bearing capacity and predict failure modes of prestressed BFRP RC beams. It 

must, however, also be noted that use of an advanced FE program is desirable in order 

to be able to control important parameters in a proper way as e.g. material properties, 

discretization, element structure and loading behavior.  

2. What recommended or standard formulations can be used to estimate shear capacity of 

prestressed concrete beams reinforced with BFRP tendons? 

Ten equations from various sources were considered in this study and six of them can 

be recommended to provide an acceptable approach for estimation of shear capacity 

for prestressed BFRP RC. These are equations from following references.  

• JSCE-1997. 

• ACI 440.1R-06. 

• CAN/CSA-S806-02. 

• Zsutty´s equation developed by Nehdi et al. 

• Fib modifications to EN 1992-1-1. 

• BS 8110. 

It must also be noted that the JSCE-1997 and ACI 440.1R-06 provide quite a 

conservative approach while fib modifications to EN 1992-1-1 and BS 8110 provide a 
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slightly unsafe but also the best approach. However, Zsutty´s equation developed by 

Nehdi et al. and CAN/CSA-S806-02 provided the best safe approach, regarding all 

data in this study, and are therefore recommended as the preferred references for 

prestressed BFRP RC beams.  

3. How much is the long term relaxation of prestressed BFRP tendons? 

Based on the experimental work carried out in this study, the 50 years relaxation for 

the BFRP tendons used in this study was estimated to be 11% and the 100 years 

relaxation as 12%.  

8.5. Recommendations of further research 

When working on this thesis, several questions were raised which could be developed into 

ideas for further research. In continuation of that, the following suggestions for research 

topics came to mind. 

• Investigate bond behavior between concrete and BFRP tendons and estimate if and 

when debonding occurs. 

• Investigate further relaxation of BFRP tendons with respect to e.g. size of prestress 

force, material structure, resin used and tendons sizes.  

• Keep on working with the ANSYS models created in this study by including the effect 

of debonding for BFRP tendons. In addition, the models could be expanded for 

different beams sizes and material properties and then be used to create more data 

regarding behavior of BFRP RC beams. 

• Investigate further the effect of Icelandic aggregate on shear resistance of concrete 

beams and determine if there is a reason to modify the EN-1992-1-1 equation (5.21) 

provided for shear resistance.  

• Not much research has been carried out considering shear resistance of FRP RC beams 

without shear reinforcement, with large a/d ratio (above 6 to 7) and high concrete 

compression strength. It could therefore be interesting to explore this further and 

provide more data for such cases. 

• Investigate further if there is some maximum curvature that slender FRP RC members 

fail at by testing beams with different effective height from that considered in this 

study. 
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9. Conclusions 

In this study, experimental results regarding prestressed BFRP RC beams were simulated with 

the FE method in ANSYS and then compared with some of the current shear resistance 

equations provided by codes and guidelines. Experimental work was also carried out to 

estimate the long term relaxation of BFRP tendons. Hence, the following conclusions can be 

drawn:  

• The FE program ANSYS provides an acceptable approach and understanding when 

used to simulate prestressed BFRP RC beams. Further use of it to explore and provide 

understanding on behavior of BFRP RC beams is therefore recommended.  

• The maximum strain in longitudinal BFRP tension reinforcement needs to be 

controlled. Based on this study, more than a 4-5‰ strain should not be allowed in the 

reinforcement to maintain bond between concrete and reinforcement.  

• Ten equations, regarding shear capacity of FRP RC, from various sources were 

considered in this study. Although most of them are not directly developed for BFRP 

RC, six of them provided an acceptable approach for BFRP RC beams. These are 

equations from the following sources.  

� JSCE-1997. 

� ACI 440.1R-06. 

� CAN/CSA-S806-02. 

� Zsutty´s equation developed by Nehdi et al. 

� Fib modifications to EN 1992-1-1. 

� BS 8110. 

• Most of the shear capacity equations for FRP RC reviewed from codes, textbooks and 

guidelines for FRP RC are too conservative which can lead to inefficient design. This 

is something that must change to make FPR materials more competitive, practical and 

desirable for designers.  

• When developing shear capacity equations for FRP RC, use of cubic root when 

considering rigidity of FRP longitudinal bars, concrete compression strength and the 

modification factors, which accounts for different stiffness of FRP and steel, is 

recommended.  
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• As a reference work to the shear capacity equations for FRP RC, nine shear capacity 

equations for steel RC, taken from the same sources as the ones for FRP RC, were 

considered and compared to test results. Surprisingly, most of them provided an 

unsafe approach which was partly reasoned by poor Icelandic aggregate. This is 

something that should be explored further to estimate if some modifications to the 

shear capacity equations used in Iceland are necessary, e.g. the one provided by  

EN-1992-1-1.  

• Relaxation test on BFRP tendons was carried out for over 2000 hours. Based on that, 

the 1000 hours relaxation of BFRP tendons was calculated as 6%, the 50 years 

relaxation was estimated to be 11% and the 100 years relaxation was estimated to be 

12%. It must, however, be noted that this only applies to the certain BFRP tendons 

used in this study and the tension force applied (~50% of ultimate tensile strength)  

• Loading BFPR tendons with up to 50% of their ultimate tensile load provides an 

acceptable long term relaxation compared with other FRPs and can therefore be 

recommended for practical purpose.  
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11. Appendixes 

Appendix A 

This appendix contains information and results from thesis written by Guðmundsson (2012), 

Jónsson (2011) and Ásbjörnsson (2013) along with MSc course research (Gunnarsson et al., 

2012). The ANSYS models created in this study are supposed to simulate the experimental 

work carried out in these researches as mentioned in chapter 2.2. Here the basic geometry, 

material properties and experimental setup from these researches will be described and 

cracking behavior will also be published. The failure mechanisms will then be shortly 

explained. 
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A1: MSc course research (Gunnarsson et al., 2012) 

In this research 6 prestressed concrete beams, reinforced with steel tendons, were cast and 

tested to failure in two point flexural test. They had all the same cross section and 

reinforcement but were made in two lengths, three of them were 2 m long and the other three 

were 3.86 m long. The geometry and test set up are shown in Figure 11.1. One of the shorter 

beams was fitted with external shear links to try causing failure due to moment. He will 

therefore not be used in this research.  

 

 

Figure 11.1: A schematic drawing of test set up and beams cross section, all dimensions are in mm.  

All the beams were prestressed with two high strength steel tendons and the effective 

prestress force was estimated to be around 24-36 kN in each tendon. The total effective 

prestress force was chosen to be 48 kN for calculations and modeling in this study but that 

gave good results in ANSYS. The material properties for the concrete and the steel are listed 

in Table 11.1 and Table 11.2. The concrete properties are different between beams because 

they were tested at different times.  

Table 11.1: Material properties for concrete. 

Model  
Age from 
casting 

Density 
Mean compression 

strength 
Standard 
deviation 

Modulus of 
elasticity 

  [days] [kg/m3] [MPa] [MPa] [GPa] 

5 (2 m) 38 2400 67,4 4,8 39,0 

6 (3.86 m) 25 2400 61,7 3,8 38,0 
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Table 11.2: Material properties for steel tendons. 

Density 
Tensile 
strength 

Yield strength 
0,2% 

Modulus of 
elasticity 

[kg/m3] [MPa] [MPa] [GPa] 

77000 1975 1786 197,8 

In this study, it succeeded to measure and estimated strain at the top of the beams for middle 

at failure, ultimate failure load, maximum deflection and cracking load. The results regarding 

these parameters are listed in Table 11.3 and Table 11.4. 

Table 11.3: Strain in concrete, failure load, maximum deflection, cracking load  
and a/d ratio for beams simulated by model 6 (3.86m long). 

Beam 
Strain at top 
and middle 

Ultimate failure 
load (F) 

Maximum 
deflection 

Cracking 
load (SLS) 

a/d ratio 

- - [kN] [mm] [kN] - 

ST1 0,0029 56,0 79 13 10,67 

ST2 0,0025 56,7 82 13 10,67 

ST3 0,0030 58,6 84 13 10,67 

Average 0,0028 57,1 82 13   

The equipment which measured the displacement for the 2m long beams was wrongly scaled, 

measuring the deflection approximately 25% to high. This error was corrected to make the 

results comparable with the ANSYS model. The corrected results are shown in Table 11.4. 

Table 11.4: Strain in concrete, failure load, maximum deflection, cracking load  
and a/d ratio for beams simulated by model 5 (2m long). 

Beam 
Strain at top 
and middle 

Ultimate failure 
load (F) 

Maximum 
deflection 

Cracking 
load (SLS) 

a/d ratio 

- - [kN] [mm] [kN] - 

ST4 0,0018 76,0 12 25 5,3 

ST5 0,0029 76,7 15 25 5,3 

Average 0,0024 76,4 13 25   

The cracking behavior for the beams is presented in the figures below and then the failure 

mechanism is discussed in continuation to that.  

In Figure 11.2, developing of cracks and the failure crack is shown for beams simulated by 

model 5. This figure represents both shorter beams (2m), but their cracking behavior and 

failure mode were similar.  
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Figure 11.2: Beams simulated by model 5. (Upper) Crack development for beam close to failure.  
(Lower) Failure mode of the beam. 

In the upper figure the crack development can be noticed. First, vertical flexural cracks started 

to develop from the lover edge of the beam at midspan and at around 20-30 kN load. They 

were followed with formation of diagonal tension cracks between the loading points and 

supports. It can then be noticed in the lower figure that the beam eventually failed due to such 

crack. The critical diagonal crack started in the middle of the beam, which suggest failure of 

the aggregate interlock, and headed in 45° angle up and down. When the crack reached 50 

mm from the bottom of the beam, which was in level with tendons, her angle reduced 

considerable as the crack extended to the bottom. The same behavior was observed at 20 mm 

from the top, which is approximately the position of the neutral axis. The failure crack is 

shown in a more iterative in Figure 11.3. 

 

Figure 11.3: Failure crack for the shorter beams (2m), all dimensions are in mm. 
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In Figure 11.4, developing of cracks and the failure crack is shown for the longer beams  

(3.86m). This figure represents all the longer beams, but their cracking behavior and failure 

mode were similar. 

 

 

Figure 11.4: Beams simulated by model 6. (Upper) Crack development for beam close to failure.  
(Lower) Failure mode of the beam. 

In the upper figure the crack development can be seen. First, vertical flexural cracks started to 

develop from the lover edge of the beam at midspan and at around a 10-15 kN load. They 

were followed with a formation of diagonal tension cracks between the loading points and 

support. It can then be noticed in the lower figure that the beam eventually failed due to such 

crack. The critical diagonal crack started in the middle of the beam and headed in 45° angle 

up and down. When the crack reached 50 mm from the bottom of the beam, which was in 

level with tendons, she became almost horizontal as she extended to the bottom. The same 

behavior was observed at 20 mm from the top, which is approximately the position of the 

neutral axis, in even more extreme way. The crack headed approximately 0.5 m after the 

neutral axis until extending to the surface close to the loading point. The failure crack is 

shown in a more iterative on Figure 11.5. 

 

Figure 11.5: Failure crack for the longer beams (3.86m), all dimensions are in mm. 
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A2: Jónsson (2011) research  

In this research 3 prestressed concrete beams, reinforced with BFRP tendons, were cast and 

tested to failure in two point flexural test. They all had the same cross section, reinforcement 

and length. One unprestressed beam was also made for comparison but he will not be 

considered in this study. The geometry and test set up are displayed on Figure 11.6.  

 

Figure 11.6: A schematic drawings of test set up and beams cross section  
simulated by model 1 (Jónsson, 2011), all dimensions are in mm. 

The beams were prestressed with two BFRP tendons and Jónsson expected the original 

prestress force to be 47 kN in each tendon and used that value in his calculations. He applied 

strain gauges to the tendons to measure the strain when prestressing and testing the beams but 

the gauges did not give accurate results and could not be used to estimate the original 

prestress force. He also calculated the strain in the tendons according to the lengthening which 

occurred when they were stressed and estimated the strain to be 10.6‰. If modulus of 

elasticity is assumed to be 50 GPa and Hook’s law is applied, the original prestress force can 

be estimated as 41 kN in each tendon, Jónsson, however, did not use this estimation in his 

study. This difference between the expected original prestress force (47 kN) and the estimated 

force (41 kN) by the author is probably due to relaxation in the hydraulic jack occurring while 

the tendons were fastened. By assuming 4-5% relaxation over 20-30 days, the total effective 

prestress force was estimated to be around 78 kN for all the test beams. The material 

properties for the concrete and the BFRP tendons are listed in Table 11.5 and Table 11.6.  

Table 11.5: Material properties for concrete. 

Age from 
casting 

Density 
Mean compression 

strength  
Standard 
deviation 

Modulus of 
elasticity 

[days] [kg/m3] [MPa] [MPa] [GPa] 

22 2400 60,4 2,0 37,7 
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Table 11.6: Material properties for BFRP tendons. 

Density 
Tensile 
strength 

Modulus of 
elasticity 

[g/cm3] [MPa] [GPa] 

2,6 1000+ 50 

In his study Jónsson succeeded to measure and estimated strain at the top of the beam for 

middle at failure (just for one beam), ultimate failure load, maximum deflection and cracking 

load. His results regarding these parameters are shown in Table 11.7. 

Table 11.7: Strain in concrete, failure load, maximum deflection,  
cracking load and a/d ratio for beams simulated by model 1. 

Beam 
Strain at top 
for middle 

Ultimate failure 
load (F) 

Maximum 
deflection 

Cracking load 
(SLS) 

a/d ratio 

- - [kN] [mm] [kN] - 

1 - 59 22 33 5,3 

2 - 67 24 35 5,3 

3 0,0026 58 15 33 5,3 

Average 0,0026 61 20 34 - 

The cracking behavior for the beams is presented in the figures below and then the failure 

mechanism is discussed in continuation to that.  

In Figure 11.7, the developing of cracks and the failure crack is shown for the beams 

simulated by model 1. This figure represents all the three beams tested but their cracking 

behavior and failure mode were similar.  

    

Figure 11.7: Beams simulated by model 1. (Left) Crack development for beam close to failure.  
(Right) Failure mode of the beam (Author of photographs: Björgvin Smári Jónsson 2011). 
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First vertical flexural cracks started to develop at midspan, as the load was increased diagonal 

cracks started to develop between the loading and support points. One of this crack eventually 

lead to diagonal tension failure of the beam. The angle of the failure crack was approximately 

20° as shown in Figure 11.8.  

 

Figure 11.8: Failure crack for the beams, all dimensions are in mm. 
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A3: Guðmundsson (2012) research  

In this research 4 prestressed concrete beams, reinforced with BFRP tendons, were cast and 

tested to failure in two point flexural test. They all had the same cross section, reinforcement 

and length. Two of these beams were, however, fitted with external shear links and will not be 

considered in this study. The geometry and test set up are displayed in Figure 11.9. 

 

Figure 11.9: Schematic drawings of test set up and beam cross section simulated  
by model 2 (Guðmundsson, 2012), all dimensions are in mm. 

The beams were prestressed with two BFRP tendons and Guðmundsson expected the original 

prestress force to be 47 kN in each tendon. He then estimated the effective prestress force to 

be around 43 kN when the beams were tested. This estimation was based on measurement 

from strain gauges implemented on the tendons before stressing them, however, 

Guðmundsson points out in his study that results from the strain gauges are not accurate. 

Based on that and preliminary tests in ANSYS, the effective prestress force was estimated to 

be around 39 to 40 kN in each tendon. That results in 78 kN total effective prestress force 

which was used in this study. The material properties for the concrete and the BFRP tendons 

are listed in Table 11.8 and Table 11.10.  

Table 11.8: Material properties for concrete. 

Age from 
casting 

Density 
Mean compression 

strength 
Standard 
deviation 

Modulus of 
elasticity 

[days] [kg/m3] [MPa] [MPa] [GPa] 

32 2400 57,1 2,1 37,1 

 

Table 11.9: Material properties for BFRP tendons. 

Density 
Tensile 
strength 

Modulus of 
elasticity 

[g/cm3] [MPa] [GPa] 

2,6 1000+ 50 
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In his study Guðmundsson succeeded to measure and estimated strain at the top of the beams 

for middle at failure, strain in tendons at failure, ultimate failure load, maximum deflection 

and cracking load. His results regarding these parameters are listed in Table 11.10. 

Table 11.10: Strain in concrete and tendons, failure load, maximum deflection,  
cracking load and a/d ratio for beams simulated by model 2. 

Beam 
Strain at top 
and middle 

Strain in 
tendons 

Ultimate failure 
load (F) 

Maximum 
deflection 

Cracking 
load (SLS) 

a/d ratio 

- - - [kN] [mm] [kN] - 

3 0,0025 0,0231 31,6 124 18 10,67 

4 0,0030 0,0238 30,9 117 18 10,67 

Average 0,0028 0,0235 31,3 120,5 18   

The cracking behavior for the beams is presented in the figures below and then the failure 

mechanism is discussed in continuation to that.  

In Figure 11.10, developing of cracks and the failure crack is shown for beams simulated by 

model 2. This figure represents both beams, but their cracking behavior and failure mode 

were similar.  

 

 

Figure 11.10: Beams simulated by model 2. (Upper) Crack development for beam close to failure.  
(Lower) Failure mode of the beam (Guðmundsson, 2012). 
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Guðmundsson (2012, p. 46) descripted the failure mechanism in his study 

“At the early stage of the specimens increment of deflection and strain were relatively low 

compared to the incitement of loading. When loading reached 15-18 kN, vertical cracks 

started to develop from the lower edge of the beam. At this stage both displacement and strain 

started to rise more rapidly. Further vertical flexural cracks developed, former cracks 

elongated and widened up as the loading went on. When loading reached 21-23 kN the 

concrete tension zone failed, force displacement relationship and force strain relationship 

became almost linear until complete failure. Diagonal cracks developed 350-500 mm from the 

loading points at loading 24-26 kN, they headed in nearly 45° angle in the direction of the 

beam. As loading increased these cracks elongated and widened up, much faster than the 

vertical flexural cracks and were wider. The critical diagonal cracks longed and became 

nearly horizontal 20 mm from the top and 50 mm from the bottom, which was in level with the 

tendons. Both beams failed on the left side to the jack although diagonal cracks started on the 

right side. Right before failure the strain and force increment slacks, but deflection continues 

especially at beam 4. Maximum load was rather similar for both beams 30,7 kN and 31,6 kN. 

Tendons didn’t fail in either of the beams.“ 

The failure crack is shown in Figure 11.11. 

 

Figure 11.11: Failure cracks for the beams, all dimensions are in mm. 
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A4: Ásbjörnsson (2013) research 

In this research 6 prestressed concrete beams, reinforced with BFRP tendons, were cast and 

tested to failure in two point flexural test. They had all the same cross section and 

reinforcement but were made in two lengths, three of them were 1.2m long and the other three 

were 2.7m long. The geometry and test set up are displayed in Figure 11.12. One of the longer 

beams (2.7m) had lower prestress force and was fitted with external shear links to try causing 

failure due to moment. Then part of the data for the failure test for one of the shorter beams 

(1.2m) was disrupted and could not be used. Results as regards four beams from this research 

will therefore be used for comparison and modeling in this study, two 1.2 m long beams and 

two 2.7 m long beams. 

 

 

Figure 11.12: Schematic drawings of test set up and beam cross section. Model 4 simulates the  
upper one and Model 3 the lower one (Ásbjörnsson, 2013), all dimensions are in mm. 

The beams were prestressed with two BFRP tendons and Ásbjörnsson expected the original 

prestress force to be 47 kN in each tendon. The tendons were e.g. originally stressed up to 50 

kN to take into account the relaxation in the hydraulic jack used to prestress the tendons. 

Based on the lengthening of the tendons due to the prestress force, the strain can be estimated 

to be around 11.4‰ to 11.8‰. If modulus of elasticity is assumed to be 50 GPa and Hook’s 

law is applied, the original prestress force can be estimated as 44 to 46 kN in each tendon, 

Ásbjörnsson however did not use this estimation in his study. This original prestress force 

estimated by the author is however sufficiently close to Ásbjörnsson´s expected value. By 

assuming 5-6% relaxation over 30-40 days, the total effective prestress force was estimated to 

be around 84 kN for all the test beams simulated in this study.  
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The material properties for the concrete and the BFRP tendons are listed in Table 11.11 and 

Table 11.12. The concrete properties are different between beams because they were tested at 

different times.  

Table 11.11: Material properties for concrete. 

Model  
Age from 
casting 

Density 
Mean compression 

strength 
Standard 
deviation 

Modulus of 
elasticity 

  [days] [kg/m3] [MPa] [MPa] [GPa] 

3 (1,2 m) 38 2400 67,4 4,8 39,0 

4 (2,7 m) 25 2400 61,7 3,8 38,0 

 

Table 11.12: Material properties for BFRP tendons. 

Density 
Tensile 
strength 

Modulus of 
elasticity 

[g/cm3] [MPa] [GPa] 

2,6 1000+ 50 

In his study Ásbjörnsson succeeded to measure and estimated strain at the top of the beams 

for middle at failure, ultimate failure load, maximum deflection and cracking load. His results 

regarding these parameters are displayed Table 11.13 and Table 11.14 below. 

Table 11.13: Strain in concrete, failure load, maximum deflection, cracking load  
and a/d ratio for beams simulated by model 3 (1.2m long). 

Beam 
Strain at top 
for middle 

Ultimate failure 
load (F) 

Maximum 
deflection 

Cracking load 
(SLS) 

a/d ratio 

- - [kN] [mm] [kN] - 

4 0,00325 155 17 66 2,63 

5 0,0029 144 15 76 2,63 

Average 0,0031 150 16 71 - 

 

For the longer beams (2.7m), wrong scale was used in the computer program used to measure 

the force due to the hydraulic pressure in the jack used to implement the load. The load 

applied to the beams which Ásbjörnsson measured in this test is therefore approximately 50% 

lower than it really is. The equipment which measured the displacement for beams was also 

wrongly scaled, measuring the deflection approximately 25% to high. These errors were 

corrected to make the results comparable with the ANSYS models and the corrected results 

are shown in the Table 11.14. 
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Table 11.14: Strain in concrete, failure load, maximum deflection, cracking load  
and a/d ratio for beams simulated by model 4 (2.7m long). 

Beam 
Strain at top 
for middle 

Ultimate failure 
load (F) 

Maximum 
deflection 

Cracking load 
(SLS) 

a/d ratio 

- - [kN] [mm] [kN] - 

1 0,00313 46,1 53 23 7,63 

3 0,00325 46,4 56 23 7,63 

Average 0,0032 46,3 54 23 - 

The cracking behavior for the beams is presented in the figures below and then the failure 

mechanism is discussed in continuation to that.  

In Figure 11.13, the developing of cracks and the failure crack is shown for beams simulated 

by model 3. This figure represents both the shorter beams (1.2m), but their cracking behavior 

and failure mode were similar.  

 

 

Figure 11.13: Beams simulated by model 3. (Upper) Crack development for beam close to failure.  
(Lower) Failure mode of the beam (Author of photographs: Jónas Þór Ásbjörnsson). 
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First vertical flexural cracks started to develop at midspan, as the load was increased diagonal 

tension cracks started to develop between the loading and support points. One of this crack 

eventually lead to diagonal tension failure of the beam. The angle of the failure crack was 

approximately 45° as shown in Figure 11.14 

 

Figure 11.14: Failure crack for the beam, all dimensions are in mm. 

In Figure 11.15, developing of cracks and the failure crack is shown for beams simulated by 

model 4. This figure represents all the longer beams (2.7m), but their cracking behavior and 

failure mode were similar. 

 

 

Figure 11.15: Beams simulated by model 4. (Upper) Crack development for beam close to failure.  
(Lower) Failure mode of the beam (Author of photographs: Jónas Þór Ásbjörnsson). 
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First vertical flexural cracks started to develop at midspan, as the load was increased diagonal 

tension cracks started to develop between the loading and support points. One of this crack 

eventually lead to diagonal tension failure of the beam. The angle of the failure crack was 

approximately 30° as shown in Figure 11.16 

 

Figure 11.16: Failure crack for the beam, all dimensions are in mm. 
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Appendix B 

In this appendix, creation of stress-strain curves used to simulate the concrete behavior in the 

ANSYS models along with calculations of applied cooling to the models are displayed. 

 

  



Modeling in ANSYS

Mean compressive strength f cm 60,4 MPa

Mean tension strength f ct 4,14 MPa

Modulus of elasticity E ci 37,700 GPa

Strain at maximum compressive stress ε c1 0,0027 mm/mm

Secant modulus of elasticity E c1 26,2 GPa

Plasticity number k 1,44

Effective prestress force in each tendon P 39 kN

Coefficient of thermal expansion α L 0,000002 1/°C

Modulus of elasticity for BFRP tendons E f 50000 MPa

Cross sectional area of BFRP tendons A f 78 mm2

Necessary cooling to implement prestress ΔT 5000,0 °C

Basic material properties for concrete and creation of stress-strain curve

Cooling needed to implement effective prestress force in BFRP tendons

Model 1, 2 m long beams reinforced with BFRP tendons

Stress-strain curve for concrete based on Model code
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Modeling in ANSYS

Mean compressive strength f cm 57,1 MPa

Mean tension strength f ct 4,04 MPa

Modulus of elasticity E ci 37,100 GPa

Strain at maximum compressive stress ε c1 0,00265 mm/mm

Secant modulus of elasticity E c1 25,5 GPa
Plasticity number k 1,45

Effective prestress force in each tendon P 39 kN

Coefficient of thermal expansion α L 0,000002 1/°C

Modulus of elasticity for BFRP tendons E f 50000 MPa

Cross sectional area of BFRP tendons A f 78 mm2

Necessary cooling to implement prestress ΔT 5000,0 °C

Basic material properties for concrete and creation of stress-strain curve

Model 2, 3.86 m long beams reinforced with BFRP tendons

Stress-strain curve for concrete based on Model code

Cooling needed to implement effective prestress force in BFRP tendons
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Modeling in ANSYS

Mean compressive strength f cm 67,4 MPa

Mean tension strength f ct 4,34 MPa

Modulus of elasticity E ci 39,000 GPa

Strain at maximum compressive stress ε c1 0,0027 mm/mm

Secant modulus of elasticity E c1 28 GPa
Plasticity number k 1,39

Effective prestress force in each tendon P 42 kN

Coefficient of thermal expansion α L 0,000002 1/°C

Modulus of elasticity for BFRP tendons E f 50000 MPa

Cross sectional area of BFRP tendons A f 78 mm2

Necessary cooling to implement prestress ΔT 5384,6 °C

Stress-strain curve for concrete based on Model code

Cooling needed to implement effective prestress force in BFRP tendons

Model 3, 1.2 m long beams reinforced with BFRP tendons

Basic material properties for concrete and creation of stress-strain curve
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Modeling in ANSYS

Mean compressive strength f cm 61,7 MPa

Mean tension strength f ct 4,18 MPa

Modulus of elasticity E ci 38,000 GPa

Strain at maximum compressive stress ε c1 0,0027 mm/mm

Secant modulus of elasticity E c1 26,5 GPa
Plasticity number k 1,43

Effective prestress force in each tendon P 42 kN

Coefficient of thermal expansion α L 0,000002 1/°C

Modulus of elasticity for BFRP tendons E f 50000 MPa

Cross sectional area of BFRP tendons A f 78 mm2

Necessary cooling to implement prestress ΔT 5384,6 °C

Basic material properties for concrete and creation of stress-strain curve

Model 4, 2.7 m long beams reinforced with BFRP tendons

Stress-strain curve for concrete based on Model code

Cooling needed to implement effective prestress force in BFRP tendons
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Modeling in ANSYS

Mean compressive strength f cm 67,4 MPa

Mean tension strength f ct 4,34 MPa

Modulus of elasticity E ci 39,000 GPa

Strain at maximum compressive stress ε c1 0,0027 mm/mm

Secant modulus of elasticity E c1 28 GPa
Plasticity number k 1,39

Effective prestress force in each tendon P 24 kN

Coefficient of thermal expansion α L 0,000013 1/°C

Modulus of elasticity for BFRP tendons E f 197500 MPa

Cross sectional area of BFRP tendons A f 100 mm2

Necessary cooling to implement prestress ΔT 93,5 °C

Model 5, 2 m long beams reinforced with steel

Basic material properties for concrete and creation of stress-strain curve

Stress-strain curve for concrete based on Model code

Cooling needed to implement effective prestress force in BFRP tendons
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Modeling in ANSYS

Mean compressive strength f cm 61,7 MPa

Mean tension strength f ct 4,18 MPa

Modulus of elasticity E ci 38,000 GPa

Strain at maximum compressive stress ε c1 0,0027 mm/mm

Secant modulus of elasticity E c1 26,5 GPa
Plasticity number k 1,43

Effective prestress force in each tendon P 24 kN

Coefficient of thermal expansion α L 0,000013 1/°C

Modulus of elasticity for BFRP tendons E f 197500 MPa

Cross sectional area of BFRP tendons A f 100 mm2

Necessary cooling to implement prestress ΔT 93,5 °C

Model 6, 3.86 m long beams reinforced with steel

Basic material properties for concrete and creation of stress-strain curve

Stress-strain curve for concrete based on Model code

Cooling needed to implement effective prestress force in BFRP tendons
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Appendix C 

In this appendix results from ANSYS will be published and shortly discussed. These results 

will mainly represent stress, strain and force distribution in the beams simulated. These results 

cannot directly be compared to the tests results from the experimental work which the 

ANSYS models are simulating. They however support the functionality of the models created 

and display interesting behavior of the beams when tested to failure. 

Material properties, geometry, data sources and description of the ANSYS models can be 

found in chapter 4.2, Table 4.1, Table 4.2 and Table 5.1. Iterative information about the 

experimental work which the data is collected from is then displayed in Appendix A. 

  



146 
 

C1: Results from ANSYS for Model 1 

 

 

 

 

Figure 11.17: (a) Tension distribution for the BFRP tendons in the beam at failure [N].  
(b) Distribution of the first principal stress in the concrete beam at failure [MPa].  
(c) Distribution of concrete stresses (Z-direction) in the beam at failure [MPa].  

(d) Distribution of the concrete strain (Z-direction) in the beam at failure.  

(a) 

(b) 

(c) 

(d) 
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C2: Results from ANSYS for Model 2 

 

 

 

 

Figure 11.18: (a) Tension distribution for the BFRP tendons in the beam at failure [N].  
(b) Distribution of the first principal stress in the concrete beam at failure [MPa].  
(c) Distribution of concrete stresses (Z-direction) in the beam at failure [MPa].  

(d) Distribution of the concrete strain (Z-direction) in the beam at failure. 

  

(a) 

(b) 

(c) 

(d) 



148 
 

C3: Results from ANSYS for Model 3 

 

 

 

 

Figure 11.19: (a) Tension distribution for the BFRP tendons in the beam at failure [N].  
(b) Distribution of the first principal stress in the concrete beam at failure [MPa].  
(c) Distribution of concrete stresses (Z-direction) in the beam at failure [MPa].  

(d) Distribution of the concrete strain (Z-direction) in the beam at failure.  

(a) 

(b) 

(c) 

(d) 
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C4: Results from ANSYS for Model 4 

 

 

 

 

Figure 11.20: (a) Tension distribution for the BFRP tendons in the beam at failure [N].  
(b) Distribution of the first principal stress in the concrete beam at failure [MPa].  
(c) Distribution of concrete stresses (Z-direction) in the beam at failure [MPa].  

(d) Distribution of the concrete strain (Z-direction) in the beam at failure. 

  

(a) 

(b) 

(c) 

(d) 
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C5: Results from ANSYS for Model 5 

 

 

 

 

Figure 11.21: (a) Tension distribution for the steel tendons in the beam at failure [N].  
(b) Distribution of the first principal stress in the concrete beam at failure [MPa].  
(c) Distribution of concrete stresses (Z-direction) in the beam at failure [MPa].  

(d) Distribution of the concrete strain (Z-direction) in the beam at failure. 

  

(a) 

(b) 

(c) 

(d) 
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C6: Results from ANSYS for Model 6 

 

 

 

 

Figure 11.22: (a) Tension distribution for the steel tendons in the beam at failure [N].  
(b) Distribution of the first principal stress in the concrete beam at failure [MPa].  
(c) Distribution of concrete stresses (Z-direction) in the beam at failure [MPa].  

(d) Distribution of the concrete strain (Z-direction) in the beam at failure. 

  

(a) 

(b) 

(c) 

(d) 
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Appendix D 

In this appendix calculations of shear resistance for FRP RC beams according to the 

formulations represented in chapter 5.3 are displayed. The calculations will be in the 

following order. 

• JSCE-1997. 

• BS 8110 and fib modifications to BS 8110. 

• ACI 440.1R-06 and fib modifications to ACI-318-05. 

• Model code 2010. 

• Zsutty´s equation developed by Nehdi et al. 

• CNR-DT 203. 

• CAN/CSA-S806-02 

• Fib modifications to EN 1992-1-1. 

Material properties, geometry, data sources and description of the calculations models 

considered can be found in chapter 4.2, Table 4.1, Table 4.2 and Table 5.1. Further 

information about the experimental work which the data is collected from is then displayed in 

Appendix A. 

 

  



Shear resistance for FRP RC beams

Calculations model considered (length of the beam) Model 1 (2m) Model 2 (3,86m) Model 3 (1,2m) Model 4 (2,7m)
Effective prestress force P [kN] 78 78 84 84

Beam´s effective depth d [mm] 150 150 150 150

Beam´s effective width b w [mm] 200 200 200 200

Modulus of elasticity of FRP longitudinal bars E f [GPa] 50 50 50 50

Modulus of elasticity of normal steel reinforcement E s [GPa] 200 200 200 200

Area of FRP tension reinforcement A f [mm2] 156 156 156 156

Compressive strength of concrete f´ c [Mpa] 60,4 57,1 67,4 61,7

Flexural moment needed to cancel tension stress M o [kNm] 2,6 2,6 2,8 2,8

Flexural capacity without considerations of axial force M ud [kNm] 21,2 20,6 22,6 21,5

Factor which include contribute of axial force β n - 1,25 1,25 1,25 1,26

Reinforcement ratio ρ f - 0,0052 0,0052 0,0052 0,0052

f vcd [Mpa] 0,78 0,77 0,81 0,79

β d - 0,29 0,29 0,29 0,29

β p - 0,51 0,51 0,51 0,51

Shear resistance V cf [kN] 4,2 4,2 4,4 4,3

Vexp. [kN] 29,5

Vexp. [kN] 33,5 15,8 77,5 23,1

Vexp. [kN] 29,0 15,5 72,0 23,2

Average failure shear Vexp,average [kN] 30,7 15,6 74,8 23,1

Average safety ratio Vexp./V cf - 7,22 3,73 16,96 5,35

Experimental results

JSCE-1997
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Shear resistance for FRP RC beams

Calculations model considered (length of the beam) Model 1 (2m) Model 2 (3,86m) Model 3 (1,2m) Model 4 (2,7m)
Beam´s effective depth d [mm] 150 150 150 150
Beam´s effective width b w [mm] 200 200 200 200

Modulus of elasticity of FRP longitudinal bars E f [GPa] 50 50 50 50

Area of FRP tension reinforcement A f [mm2] 156 156 156 156

Compressive strength of concrete f´ c [Mpa] 60,4 57,1 67,4 61,7

Shear stress capacity ν cf [Mpa] 0,69 0,67 0,71 0,69

Shear resistance, BS 8110 V cf [kN] 20,6 20,2 21,4 20,7

Maximum allowed strain in FRP flexural reinforcement ε f - 0,0045 0,0045 0,0045 0,0045

Maximum allowed strain in steel flexural reinforcement ε s - 0,002 0,002 0,002 0,002

Maximum strain ratio φ ε - 2,25 2,25 2,25 2,25

Shear resistance, fib 2007 modifications to BS 8110 V cf,fib [kN] 27,0 26,5 28,0 27,2

Vexp. [kN] 29,5

Vexp. [kN] 33,5 15,8 77,5 23,1

Vexp. [kN] 29,0 15,5 72,0 23,2

Average failure shear Vexp,average [kN] 30,7 15,6 74,8 23,1

Average safety ratio, BS 8110 Vexp./V cf - 1,49 0,77 3,50 1,12

Average safety ratio, fib 2007 modifications to BS 8110 Vexp./V cf,fib - 1,14 0,59 2,67 0,85

Experimental results

BS 8110 
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Shear resistance for FRP RC beams

Calculations model considered (length of the beam) Model 1 (2m) Model 2 (3,86m) Model 3 (1,2m) Model 4 (2,7m)
Beam´s effective depth d [mm] 150 150 150 150
Beam´s effective width b w [mm] 200 200 200 200

Modulus of elasticity of FRP longitudinal bars E f [GPa] 50 50 50 50

Modulus of elasticity of concrete E c [GPa] 37,7 37,1 39 38

Area of FRP tension reinforcement A f [mm2] 156 156 156 156

Compressive strength of concrete f´ c [Mpa] 60,4 57,1 67,4 61,7

Reinforcement ratio ρ f - 0,0052 0,0052 0,0052 0,0052

Elastic modulus ratio n f - 1,33 1,35 1,28 1,32
k - 0,11 0,11 0,11 0,11

Depth of concrete in compression c [mm] 16,6 16,7 16,3 16,6

Shear resistance,  ACI 440.1R-06 V cf [kN] 10,3 10,1 10,7 10,4

Maximum allowed strain in FRP flexural reinforcement ε f - 0,0045 0,0045 0,0045 0,0045

Maximum allowed strain in steel flexural reinforcement ε s - 0,002 0,002 0,002 0,002

Maximum strain ratio φ ε - 2,25 2,25 2,25 2,25

 Shear resistance, fib 2007 modifications to ACI-318-05 V cf,fib [kN] 32,1 31,3 34,0 32,5

Vexp. [kN] 29,5

Vexp. [kN] 33,5 15,8 77,5 23,1

Vexp. [kN] 29,0 15,5 72,0 23,2

Average failure shear Vexp,average [kN] 30,7 15,6 74,8 23,1

Average safety ratio, ACI 440.1R-06 Vexp./V cf - 2,97 1,54 6,96 2,22

Average safety ratio, fib 2007 modifications to ACI-318-05 Vexp./V cf,fib - 0,95 0,50 2,20 0,71

Experimental results

ACI 440.1R-06
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Shear resistance for FRP RC beams

Calculations model considered (length of the beam) Model 1 (2m) Model 2 (3,86m) Model 3 (1,2m) Model 4 (2,7m)
Beam´s effective depth d [mm] 150 150 150 150

Beam´s effective width b w [mm] 200 200 200 200
Beam´s effective height h [mm] 200 200 200 200
Modulus of elasticity of FRP longitudinal bars E f [GPa] 50 50 50 50

Modulus of elasticity of concrete E c [GPa] 37,7 37,1 39 38

Area of FRP tension reinforcement A f [mm2] 156 156 156 156

Compressive strength of concrete f´ c [Mpa] 60,4 57,1 67,4 61,7

Applied axial force N E [kN] 78 78 84 84

Average shear force at failure V E [kN] 30,7 15,6 74,8 23,1
Distance between load and support a [m] 0,795 1,6 0,395 1,145
Average moment at failure shear force ME [kNm] 20,5 21,1 25,3 22,3

Inner lever arm z [mm] 143,5 143,5 143,5 143,5
Eccentricity of prestressed tendons e p [mm] 130 130 130 130

Longitudinal strain at the mid-depth ε x - 0,012 0,011 0,017 0,012

Maximum aggregate size d g - 19 19 19 19

Aggregate factor k dg - 0,91 ok 0,91 ok 0,91 ok 0,91

Level II approximation k v - 0,025 0,027 0,018 0,024

Shear resistance V cf [kN] 5,6 5,7 4,2 5,5

Vexp. [kN] 29,5

Vexp. [kN] 33,5 15,8 77,5 23,1

Vexp. [kN] 29,0 15,5 72,0 23,2

Average failure shear Vexp,average [kN] 30,7 15,6 74,8 23,1

Average safety ratio Vexp./V cf - 5,50 2,72 17,89 4,22

Model code 2010 

Experimental results

156



Shear resistance for FRP RC beams

Calculations model considered (length of the beam) Model 1 (2m) Model 2 (3,86m) Model 3 (1,2m) Model 4 (2,7m)
Beam´s effective depth d [mm] 150 150 150 150
Beam´s effective width b w [mm] 200 200 200 200

Distance between load and support a [mm] 795 1600 395 1145

Modulus of elasticity of FRP longitudinal bars E f [GPa] 50 50 50 50

Modulus of elasticity of steel longitudinal bars E s [GPa] 200 200 200 200

Area of FRP tension reinforcement A f [mm2] 156 156 156 156

Compressive strength of concrete f´ c [Mpa] 60,4 57,1 67,4 61,7

Reinforcement ratio ρ f - 0,0052 0,0052 0,0052 0,0052

Shear resistance V cf [kN] 17,8 14,2 22,7 16,1

Vexp. [kN] 29,5

Vexp. [kN] 33,5 15,8 77,5 23,1

Vexp. [kN] 29,0 15,5 72,0 23,2

Average failure shear Vexp,average [kN] 30,7 15,6 74,8 23,1

Average safety ratio Vexp./V cf - 1,72 1,10 3,29 1,44

Zsutty´s equation developed by Nehdi et al.

Experimental results
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Shear resistance for FRP RC beams

Calculations model considered (length of the beam) Model 1 (2m) Model 2 (3,86m) Model 3 (1,2m) Model 4 (2,7m)
Beam´s effective depth d [mm] 150 150 150 150
Beam´s effective height h [mm] 200 200 200 200

Beam´s effective width b w [mm] 200 200 200 200

Modulus of elasticity of FRP longitudinal bars E f [GPa] 50 50 50 50

Modulus of elasticity of steel longitudinal bars E s [GPa] 200 200 200 200

Area of FRP tension reinforcement A f [mm2] 156 156 156 156

Compressive strength of concrete f´ c [Mpa] 60,4 57,1 67,4 61,7

Reinforcement ratio ρ f - 0,0052 0,0052 0,0052 0,0052
k - 1,45 1,45 1,45 1,45

Basic shear strength τ Rd [Mpa] 0,81 0,78 0,87 0,82

Shear resistance V cf [kN] 32,2 31,0 34,6 32,6

Vexp. [kN] 29,5

Vexp. [kN] 33,5 15,8 77,5 23,1

Vexp. [kN] 29,0 15,5 72,0 23,2

Average failure shear Vexp,average [kN] 30,7 15,6 74,8 23,1

Average safety ratio Vexp./V cf - 0,95 0,50 2,16 0,71

 CNR-DT 203, modifications to ENV 1992-1-1

Experimental results
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Shear resistance for FRP RC beams

Calculations model considered (length of the beam) Model 1 (2m) Model 2 (3,86m) Model 3 (1,2m) Model 4 (2,7m)
Beam´s effective depth d [mm] 150 150 150 150
Beam´s effective width b w [mm] 200 200 200 200

Modulus of elasticity of FRP longitudinal bars E f [GPa] 50 50 50 50

Area of FRP tension reinforcement A f [mm2] 156 156 156 156

Compressive strength of concrete f´ c [Mpa] 60,4 57,1 67,4 61,7

Reinforcement ratio ρ f - 0,0052 0,0052 0,0052 0,0052

Average shear force at failure V E [kN] 30,7 15,6 74,8 23,1
Distance between load and support a [m] 0,795 1,6 0,395 1,145
Average moment at failure shear force ME [kNm] 24,4 25,0 29,5 26,5

Checking moment and shear distribution V E /M E *d - 0,19 ok 0,09 ok 0,38 ok 0,13 ok

Shear resistance, calculated value V cf,calc [kN] 15,1 11,7 19,7 13,4

Minimum shear resistance V cf,min [kN] 23,3 22,7 24,6 23,6

Maximum shear resistance allowed V cf,max [kN] 46,6 45,3 49,3 47,1

Shear resistance, suggested value V cf,sugg. [kN] 23,3 22,7 24,6 23,6

Vexp. [kN] 29,5

Vexp. [kN] 33,5 15,8 77,5 23,1

Vexp. [kN] 29,0 15,5 72,0 23,2

Average failure shear Vexp,average [kN] 30,7 15,6 74,8 23,1

Average safety ratio, suggested value Vexp./V cf,sugg - 1,32 0,69 3,04 0,98

Average safety ratio, calculated value Vexp./V cf,calc - 2,03 1,33 3,78 1,72

CAN/CSA-S806 

Experimental results
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Shear resistance for FRP RC beams

Calculations model considered (length of the beam) Model 1 (2m) Model 2 (3,86m) Model 3 (1,2m) Model 4 (2,7m)
C Rd,c - 0,12 0,12 0,12 0,12

Beam´s effective depth d [mm] 150 150 150 150

Beam´s effective width b w [mm] 200 200 200 200

Modulus of elasticity of FRP longitudinal bars E f [GPa] 50 50 50 50

Modulus of elasticity of normal steel reinforcement E s [GPa] 200 200 200 200

Area of FRP tension reinforcement A f [mm2] 156 156 156 156

Compressive strength of concrete f´ c [Mpa] 60,4 57,1 67,4 61,7

Reinforcement ratio ρ f - 0,0052 0,0052 0,0052 0,0052
k - 2,00 2,00 2,00 2,00

Maximum allowed strain in FRP flexural reinforcement ε f - 0,0045 0,0045 0,0045 0,0045

Maximum allowed strain in steel flexural reinforcement ε s - 0,002 0,002 0,002 0,002

Maximum strain ratio φ ε - 2,25 2,25 2,25 2,25

Shear resistance V cf [kN] 18,8 18,4 19,5 18,9

Vexp. [kN] 29,5

Vexp. [kN] 33,5 15,8 77,5 23,1

Vexp. [kN] 29,0 15,5 72,0 23,2

Average failure shear Vexp,average [kN] 30,7 15,6 74,8 23,1

Average safety ratio Vexp./V cf - 1,64 0,85 3,84 1,22

Fib modifications to EN 1992-1-1

Experimental results
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Appendix E 

In this appendix calculations of shear resistance for steel RC beams according to the 

formulations represented in chapter 5.3 are displayed. The calculations will be in the 

following order. 

• JSCE-2007. 

• BS 8110. 

• ACI-318-05 and conservative approach to ACI 318-05. 

• Model code 2010. 

• Zsutty´s equation. 

• ENV 1992-1-1. 

• CSA A23.3-94. 

• EN 1992-1-1. 

Material properties, geometry, data sources and description of the calculations models 

considered can be found in chapter 4.2, Table 4.1, Table 4.2 and Table 5.1. Further 

information about the experimental work which the data is collected from is then displayed in 

Appendix A. 

 

  



Shear resistance for steel RC beams

Calculations model considered (length of the beam)

Effective prestress force P [kN] 48 48

Beam´s effective depth d [mm] 150 150

Beam´s effective width b w [mm] 200 200

Area of steel tension reinforcement A s [mm2] 200 200

Compressive strength of concrete f´ c [Mpa] 67,4 61,7

Flexural moment needed to cancel tension stress M o [kNm] 1,6 1,6

Flexural capacity without considerations of axial force M ud [kNm] 47,9 47,3

Factor which include contribute of axial force β n 1,07 1,07

Reinforcement ratio ρ s - 0,0067 0,0067

f vcd [Mpa] 0,81 0,79

β d - 1,5 1,5

β p - 0,87 0,87

Shear resistance V c [kN] 34,1 33,2

Vexp. [kN] 28,0
Vexp. [kN] 38,0 28,4
Vexp. [kN] 38,4 29,3

Average failure shear Vexp,average [kN] 38,2 28,6

Average safety ratio Vexp./V c - 1,12 0,86

JSCE-2007

Experimental results

Model 5 (2m) Model 6 (3,86m)
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Shear resistance for steel RC beams

Calculations model considered (length of the beam)

Beam´s effective depth d [mm] 150 150

Beam´s effective width b w [mm] 200 200

Area of steel tension reinforcement A s [mm2] 200 200

Compressive strength of concrete f´ c [Mpa] 67,4 61,7

Shear stress capacity ν c [Mpa] 1,23 1,19

Shear force capacity, axial force not included V c [kN] 36,8 35,8

Applied axial force N E [kN] 48 48

Average shear force at failure V E [kN] 38,2 28,6
Distance to load from support a [m] 0,795 1,6
Average moment at failure shear force ME [kNm] 30,3 45,7
Beam´s height h [mm] 200 200

Cross sectional area of concrete A c [mm2] 40000 40000

Shear stress capacity ν´ c [Mpa] 1,41 1,28

Shear force capacity, axial force included V c [kN] 42,3 38,5

Vexp. [kN] 28,0
Vexp. [kN] 38,0 28,4
Vexp. [kN] 38,4 29,3

Average failure shear Vexp,average [kN] 38,2 28,6

Safety ratio, without consideration of axial force Vexp./V c - 1,04 0,80

Safety ratio, with consideration of axial force Vexp./V c - 0,90 0,74

Experimental results

BS 8110 

Model 5 (2m) Model 6 (3,86m)

163



Shear resistance for steel RC beams

Calculations model considered (length of the beam)
Beam´s effective depth d [mm] 150 150

Beam´s effective width b w [mm] 200 200

Compressive strength of concrete f´ c [Mpa] 67,4 61,7

Shear force capacity, axial force not included V c [kN] 41,1 39,4

Applied axial force N E [kN] 48 48

Cross sectional area of concrete A c [mm2] 40000 40000

Shear force capacity, axial force included V c [kN] 44,7 42,7

Vexp. [kN] 28,0

Vexp. [kN] 38,0 28,4

Vexp. [kN] 38,4 29,3

Average failure shear Vexp,average [kN] 38,2 28,6

Safety ratio, without consideration of axial force Vexp./V c - 0,93 0,73

Safety ratio, with consideration of axial force Vexp./V c - 0,85 0,67

Calculations model considered (length of the beam)

Cross sectional area of steel reinforcement A s [mm2] 200 200

Average shear force at failure V E [kN] 38,2 28,6
Distance to load from support a [m] 0,795 1,6
Average moment at failure shear force ME [kNm] 30,3 45,7

Reinforcement ratio ρ s - 0,0067 0,0067

Shear capacity V c [kN] 35,8 34,0

Maximum allowed shear capacity V c,max [kN] 73,9 70,7
ok ok

Average safety ratio Vexp/V c - 1,07 0,84

ACI 318-05

Model 5 (2m) Model 6 (3,86m)

Experimental results

ACI 318-05, conservative approach

Model 5 (2m) Model 6 (3,86m)
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Shear resistance for steel RC beams

Calculations model considered (length of the beam)
Beam´s effective depth d [mm] 150 150
Beam´s effective width b w [mm] 200 200

Beam´s effective height h [mm] 200 200

Modulus of elasticity of FRP longitudinal bars E s [Gpa] 197,5 197,5

Modulus of elasticity of concrete E c [Gpa] 39 38

Area of steel tension reinforcement A s [mm2] 200 200

Compressive strength of concrete f´ c [Mpa] 67,4 61,7

Applied axial force N E [kN] 48 48

Shear force at failure V E [kN] 38,2 28,6
Distance between load and support a [m] 0,795 1,6
Moment at failure shear force ME [kNm] 27,9 43,3

Inner lever arm z [mm] 135 135
Eccentricity of prestressed tendons e p [mm] 112,5 112,5

Longitudinal strain at the mid-depth ε x - 0,0032 0,0045

Maximum aggregate size d g - 19 19

Aggregate factor k dg - 0,91 0,91
ok ok

Level II approximation k v - 0,080 0,059

Shear resistance V c [kN] 17,7 12,6

Vexp. [kN] 28,0

Vexp. [kN] 38,0 28,4

Vexp. [kN] 38,4 29,3

Average failure shear Vexp,average [kN] 38,2 28,6

Average safety ratio Vexp./V c - 2,16 2,26

Model code 2010 

Model 5 (2m) Model 6 (3,86m)

Experimental results
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Shear resistance for steel RC beams

Calculations model considered (length of the beam)

Beam´s effective depth d [mm] 150 150

Beam´s effective width b w [mm] 200 200

Distance between load and support a [mm] 795 1600

Area of steel tension reinforcement A s [mm2] 200 200

Compressive strength of concrete f´ c [Mpa] 67,4 61,7

Reinforcement ratio ρ s - 0,0067 0,0067

Shear resistance V c [kN] 29,0 22,3

Vexp. [kN] 28,0

Vexp. [kN] 38,0 28,4

Vexp. [kN] 38,4 29,3

Average failure shear Vexp,average [kN] 38,2 28,8

Average safety ratio Vexp./V c - 1,32 1,29

Zsutty´s equation 

Model 5 (2m) Model 6 (3,86m)

Experimental results
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Shear resistance for steel RC beams

Calculations model considered (length of the beam)

Beam´s effective depth d [mm] 150 150

Beam´s effective height h [mm] 200 200

Beam´s effective width b w [mm] 200 200

Area of steel tension reinforcement A f [mm2] 200 200

Compressive strength of concrete f´ c [Mpa] 67,4 61,7

Reinforcement ratio ρ f - 0,0067 0,0067
k - 1,45 1,45

Basic shear strength τ Rd [Mpa] 0,87 0,82

Applied axial force N E [kN] 48 48

Cross sectional area of concrete A c [mm2] 40000 40000

Stress in concrete caused by axial force σ cp [Mpa] 1,2 1,2

Shear resistance V c [kN] 60,9 57,7

Vexp. 28,0

Vexp. [kN] 38,0 28,4

Vexp. [kN] 38,4 29,3

Average failure shear Vexp,average [kN] 38,2 28,8

Average safety ratio Vexp./V c 0,63 0,50

Model 5 (2m) Model 6 (3,86m)

Experimental results

ENV 1992-1-1
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Shear resistance for steel RC beams

Calculations model considered (length of the beam)
Beam´s effective depth d [mm] 150 150
Beam´s effective width b w [mm] 200 200

Compressive strength of concrete f´ c [Mpa] 67,4 61,7

Shear resistance V c [kN] 49,3 47,1

Vexp. [kN] 28,0

Vexp. [kN] 38,0 28,4

Vexp. [kN] 38,4 29,3

Average failure shear Vexp,average [kN] 38,2 28,8

Average safety ratio Vexp./V c - 0,77 0,61

Experimental results

CSA A23.3-94 

Model 5 (2m) Model 6 (3,86m)
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Shear resistance for steel RC beams

Calculations model considered (length of the beam)
C Rd,c - 0,18 0,18

Beam´s effective depth d [mm] 150 150

Beam´s effective width b w [mm] 200 200

Beam´s effective height h [mm] 200 200

Area of steel tension reinforcement A s [mm2] 200 200

Compressive strength of concrete f´ c [Mpa] 67,4 61,7

Reinforcement ratio ρ s - 0,0067 0,0067
k - 2,00 2,00
k 1 - 0,15 0,15

Minimum shear strength provided ν min [MPa] 0,81 0,78

Applied axial force N E [kN] 48 48

Cross sectional area of concrete A c [mm2] 40000 40000

Stress in concrete caused by axial force σ cp [Mpa] 1,2 1,2

Shear resistance V c [kN] 43,8 42,7

Minimum shear resistance V c,min [kN] 29,8 28,7

Vexp. [kN] 28,0

Vexp. [kN] 38,0 28,4

Vexp. [kN] 38,4 29,3

Average failure shear Vexp,average [kN] 38,2 28,8

Average safety ratio Vexp./V c - 0,87 0,68

EN 1992-1-1

Experimental results

Model 5 (2m) Model 6 (3,86m)
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Appendix F 

In this appendix technical information about the mechanical properties of the BFRP tendons 

and the accelerometer used in this study are published. This information regarding both the 

tendons and the accelerometer is obtained via the dealers web pages (“RockBar,” n.d.) and 

(Monitran, n.d.).  

 

  



Corrosion resistant basalt fibre reinforcing bars

RockBar

RockBar is a range of basalt fibre composite reinforcing bars for use in 
Concrete, Mortar and Cast Stone

The properties of RockBar include:

Excellent chemical and corrosion resistance

3.7 times lighter than steel and stainless steel

2.5 times stronger in tensile strength than steel and stainless steel

Over 60 times less thermally conductive than steel and over 20 
times less thermally conductive than stainless steel

Non magnetic

Electrically non-conductive

Environmental performance of RockBar includes:

40% lower global warming impact than stainless steel

No waste production during manufacture

Basalt is one of the most common rock types in the Earth’s crust



0.7 W/K.mThermal 
Conductivity

2 x 10-6 1/k (in the longitudinal direction)Coefficient of 
Thermal 
Expansion

A life cycle analysis has been conducted at Imperial College 
London. The report concludes that; “The production of 
stainless steel bars emits ~170% more CO2 than the BFRP 
bars”.

Sustainability

Durability tests which model the alkali environment of 
concrete have been completed at Sheffield University
The report concludes that; “The estimated environmental 
strength reduction factor for a period of 100 years wet 
concrete conditions is 1.25 which corresponds to a strength 
retention of 79.6 %”. 

Durability

10 – 30% higher bond strength than ribbed stainless steel 
rebar in pull out tests from Cast Stone.

Bond Strength

50 Gpa +Elastic 
Modulus

1000 Mpa +Tensile 
strength

Basalt fibre reinforced polymer (BFRP) bar with a sanded 
finish to aid bonding to mortar.

Composition

3mm, 4mm, 5mm, 6mm, 7mm, 8mm, 10mm, 12mm, 16mm, 
20mm
Other diameters available on request.

Nominal 
Diameters

Stock lengths are 2.5m. 
Cutting to required lengths is possible. 

Length 

RockBar technical information

MagmaTechMagmaTechMagmaTechMagmaTech
www.magmatech.co.uk

contact: Ben Williams
Tel: +44(0)7916155822
Fax: +44(0)8701236392

ben.williams@magmatech.co.uk
PO Box 59162 ▪ London ▪ NW2 9HD
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MTN/1100 Series  

General purpose industrial accelerometer 

Applications 

• Data-collector 

• Heavy industry 
• Paper machinery 

25mm A/F

51mm

Ø22mm

2 Pin MS

 
 

Technical Specification 
 

Standard Sensitivity  100 mV/g  ±10% Nominal at 80 Hz 

Frequency Response  2 Hz to 10 kHz ±5% (-3 dB at 0.8 Hz) 

Mounted Base Resonance  18 kHz (nominal) 

Isolation   Base isolated 

Dynamic Range ±80g 

Transverse Sensitivity  Less than 5% 

Electrical Noise   0.1 mg max 

Current Range  0.5 mA to 8 mA 

Temperature Range -55 to 140 ºC 

Bias Voltage 12 Volts DC (nominal)  

Case Material  Stainless steel 

Mounting Torque 8 Nm 

Weight  110 gms (nominal) 

Sealing IP67 

Maximum Cable Length 1000 metres 

Mounting Connector MTN/MH002 

Options Integral cable, filters, temperature output, 
various connector assemblies, other 
sensitivities (see table)  
sensitivities  

 
 
 
 

ORDER CODE 
PART No 

MOUNTING 

xx = OPTIONAL 
SENSITIVITY 

RANGE AVAILABLE  
(+/- 10%) 

MTN/1100-xx 
MTN/1100Q-xx 

¼” UNF FEMALE 
QUICK FIT FEMALE 

FOR OTHER MOUNTINGS 
SEE OVER PAGE. 

10 mV/g 

30 mV/g 

50 mV/g 

500 mV/g 

1 V/g 




