
ISSN 1670-8539

Ph.D. DISSERTATION

Helgi Páll Helgason
Doctor of Philosophy
June 2013
School of Computer Science
Reykjavík University

General Attention Mechanism for
Artificial Intelligence Systems

Thesis Committee:

Kristinn R. Thórisson, Supervisor

Associate Professor, Reykjavík University

Pei Wang

Associate Professor, Temple University

Ricardo Sanz

Professor, Universidad Politécnica de Madrid

Joscha Bach, Examiner

AI Researcher, Klayo AG

Thesis submitted to the School of Computer Science

at Reykjavík University in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

June 2013

General Attention Mechanism for
Artificial Intelligence Systems

by

Helgi Páll Helgason

Copyright

Helgi Páll Helgason

June 2013

General Attention Mechanism for
Artificial Intelligence Systems

Helgi Páll Helgason

June 2013

Abstract

In the domain of intelligent systems, the management of mental resources is typical-
ly called “attention”. Attention exists because all moderately complex environments
– and the real-world environments of everyday life in particular – are a source of
vastly greater information than can be processed in real-time by available cognitive
resources of any known intelligence, human or otherwise. General-purpose artificial
intelligence (AI) systems operating with limited resources under time-constraints in
such environments must select carefully which information will be processed and
which will be ignored. Even in the (rare) cases where sufficient resources may be
available, attention could help make better use of them. All real-world tasks come
with time limits, and managing these is a key part of the role of intelligence. Many
AI researchers ignore this fact. As a result, the majority of existing AI architectures
is incorrectly based on an (explicit or implicit) assumption of infinite or sufficient
computational resources. Attention has not yet been recognized as a key cognitive
process of AI systems and in particular not of artificial general intelligence systems.
This dissertation argues for the absolute necessity of an attention mechanism for
artificial general intelligence (AGI) architectures. We examine several issues related
to attention and resource management, review prior work on these topics in cogni-
tive psychology and AI, and present a design for a general attention mechanism for
AGI systems. The proposed design – inspired by constructivist AI methodologies –
aims at architectural and modal independence, and comprehensively addresses and
integrates all principal factors associated with attention to date.

Alhliða athyglisstýring fyrir gervigreindarkerfi

Helgi Páll Helgason

Júní 2013

Útdráttur

Stjórnun og ráðstöfun hugarafls í greindum kerfum er oftast kölluð "athygli". Athygli
er til staðar þar sem öll flókin umhverfi – sérstaklega raunheimurinn – eru uppspretta
margfalt meiri upplýsingamagns en nokkur vitsmunavera getur unnið úr í rauntíma.
Kerfi með alhliða gervigreind, sem starfa með takmarkaða reiknigetu undir
margvíslegum tímaskorðum, verða að velja vandlega hvaða upplýsingum þau vinna úr
og hvaða upplýsingar þau leiða hjá sér. Jafnvel í þeim (sjaldgæfu) tilfellum þar sem
næganleg reiknigeta gæti verið til staðar gæti athygli bætt nýtingu hennar. Öll verkefni
í raunheiminum hafa tímaskorður og meðhöndlun þeirra skorða er eitt lykilhlutverk
greindar. Fjöldi rannsakenda á sviði gervigreindar hafa þó hunsað þessa staðreynd og
þar af leiðandi er meirihluti þeirra gervigreindarkerfa sem hafa verið smíðuð ranglega
byggður á þeirri forsendu að kerfin búi yfir óendanlegri reiknigetu. Athygli hefur
hingað til ekki fengið verðskuldaða áherslu sem lykilatriði í hönnun og hugarferli
gervigreindarkerfa. Í þessari ritgerð er sýnt fram á að athygli er algjörlega nauðsynleg
alhliða gervigreindarkerfum. Margvísleg málefni tengd athygli og stjórnun aðfanga
(reiknigetu, minnis og tíma) eru rannsökuð, farið er yfir fyrri rannsóknir í hugfræði og
gervigreind og hönnun alhliða athyglisstýringar fyrir gervigreindarkerfi er kynnt til
sögunnar. Aðferðafræði sjálfsþróunar við gerð gervigreindarkerfa er fylgt í
hönnuninni, og reynt er að fylgja leiðum sem eru óháðar arkitektúr og skynrása
kerfisins, og jafnframt nálgast á heildrænan hátt alla helstu þætti sem hafa hingað til
verið tengdir athygli.

“Everyone knows what attention is. It is the taking posses-

sion by the mind, in clear and vivid form, of one out of what

seem several simultaneously possible objects or trains of

thought. Focalization, concentration, of consciousness are of

its essence. It implies withdrawal from some things in order

to deal effectively with others, and is a condition which has a

real opposite in the confused, dazed, scatterbrained state

which in French is called distraction, and Zerstreutheit in

German.”

- William James (James 1890, p. 403-404)

at·ten·tion

noun

1. the act or faculty of attending, especially directing the

mind to an object

2. a concentration of the mind on a single object or

thought, especially one preferentially selected from a

complex, with a view to limiting or clarifying receptiv-

ity by narrowing the range of stimuli

3. a state of consciousness characterized by such concen-

tration

4. a capacity to maintain selective or sustained concen-

tration

v

Acknowledgements

I wish to extend my deepest gratitude to my thesis supervisor, Kristinn R. Thórisson, for

exceptional support, advice and motivation throughout this work. This thesis would not

exist without his visionary ideas and committed involvement.

Special thanks go to the brilliant and skillful Eric Nivel for his invaluable input, support

and friendship throughout this work.

I would also like to thank Pei Wang for being an integral part of this project and supply-

ing excellent suggestions and inspiration throughout the journey, as well as Ricardo

Sanz.

Thanks go to Kamilla Rún Jóhannsdóttir for expertly assisting me in navigating the

landscape of cognitive psychology, Hilmar Finnsson for his helpful comments and prac-

tical assistance and faculty members at the School of Computer Science at Reykjavík

University for discussions that helped shape this work. I also thank the thesis examiner,

Joscha Bach, for helpful and constructive comments.

Finally, I thank my beloved parents, Helgi Hjálmarsson and María Hreinsdóttir, for en-

couraging and supporting my interest in technology and science from an early age. It

seems to have had some effect.

This work was supported in part by the EU-funded project HUMANOBS: Humanoids

That Learn Socio-Communicative Skills Through Observation, contract no. FP7-

STREP-231453 (www.humanobs.org), and by grants from Rannís, Iceland.

vii

Publications

Parts of the material in this thesis have been or will be published in the following:

1. Helgason, H. P., Nivel, E., & Thórisson, K. R. (2012). On Attention Mechanisms

for AGI Architectures: A Design Proposal. In Proceedings of the Fifth Conference

on Artificial General Intelligence (AGI 2012), p. 89-98. Springer Berlin Heidelberg.

Winner of the Kurzweil “Best AGI Idea” prize.

2. Helgason, H. P., Thórisson, K. R. (2012). Attention Capabilities for AI Systems. In

Proceedings of the 9th International Conference on Informatics in Control, Automa-

tion and Robotics (ICINCO 2012), p. 281-286.

3. Thórisson, K. R., & Helgason, H. P. (2012). Cognitive Architectures and Autono-

my: A Comparative Review. Journal of Artificial General Intelligence, 3(2), p. 1-

30.

4. Helgason, H. P, Thórisson, K. R., Nivel, E., Wang, P. (2013). Predictive Heuristics

for Decision-Making in Real-World Environments. To appear in Proceedings of the

Sixth Conference on Artificial General Intelligence (AGI 2013).

5. Helgason, H. P., Thórisson, K. R., Garrett, D., Nivel, E. (2013). Towards a General

Attention Mechanism for Embedded Intelligent Systems. Submitted to IEEE Perva-

sive Computing Magazine.

All the above publications are or will be made available at:

http://cadia.ru.is/wiki/public:publications:main

ix

Contents

List of Figures xiii

Terms and definitions xv

1. Introduction .. 1

1.1 Attention-Relevant Systems .. 3

1.2 Theoretical and Scientific Framework .. 5

1.3 Real-Time Processing .. 6

1.4 Scope of Dissertation ... 7

2. Attention: Importance for AGI ... 11

2.1 Narrow AI and Attention ... 11

2.2 Notable Efforts Towards Resource Management in Classical AI 15

2.3 AGI and Attention ... 18

3. Prior Work / Artificial Attention Systems .. 25

3.1 Ymir ... 25

3.2 ICARUS ... 27

3.3 CHREST .. 28

3.4 NARS ... 29

3.5 LIDA .. 31

3.6 AKIRA ... 32

3.7 OSCAR .. 33

3.8 OPENCOG PRIME ... 35

x General Attention Mechanism for AI Systems

3.9 CLARION ... 36

3.10 ACT-R .. 37

3.11 SOAR ... 38

3.12 IKON FLUX .. 40

3.13 Other notable efforts .. 42

4. Natural Attention Systems ... 43

4.1 Cognitive Psychology .. 45

4.1.1 Cocktail Party Effect .. 45

4.1.2 Stroop Effect .. 46

4.1.3 Early Selection vs. Late Selection .. 46

4.1.4 Visual Attention ... 47

4.1.5 Baddeley’s Working Memory Model .. 49

4.1.6 Knudsen Attention Framework .. 50

4.2 Neuroscience ... 52

4.2.1 P300 .. 52

4.2.2 Gamma Band Activity .. 53

4.2.3 Attentional Blink .. 54

4.2.4 CODAM ... 54

5. Constructivist Methods for AGI ... 57

6. Requirements for an AGI Attention Mechanism .. 61

6.1 Design Requirements ... 61

6.2 Functional Requirements ... 65

6.3 Architectural Requirements ... 73

7. Towards Formalization .. 79

7.1 Constructivist AGI System .. 79

7.2 Control Module .. 84

7.2.1 Basic Control Policy ... 85

7.2.2 Memory Management .. 87

7.3 Control Mechanisms & Complexity .. 88

7.3.1 Meta-Control Complexity .. 89

Helgi Páll Helgason xi

7.3.2 Decision Complexity .. 92

7.4 Evaluation of Novelty .. 106

7.5 Attention & Prioritization .. 110

7.5.1 Mapping Goals to Data .. 110

7.5.2 Mapping Goals to Processes .. 113

8. Attention Mechanism Design .. 121

8.1 Goal-Driven Data Prioritizer ... 121

8.2 Novelty-Driven Data Prioritizer .. 125

8.2.1 Qualitative Novelty .. 128

8.2.2 Quantitative Novelty .. 130

8.2.3 Runtime Novelty Computation .. 132

8.2.4 Alternative Approaches .. 133

8.3 Experience-Driven Process Prioritizer .. 134

8.4 Control Parameters .. 139

8.4.1 Deliberation Ratio .. 140

8.4.2 Focused/Alert Ratio .. 140

8.5 Attention Mechanism .. 141

8.6 Discussion .. 148

8.7 Other Issues ... 150

8.7.1 Integration of Modalities .. 150

8.7.2 Attention, Curiosity and Creativity .. 150

8.7.3 Graceful Performance Degradation .. 151

8.7.4 Priming ... 152

8.7.5 System-Wide Alarms ... 152

9. Compatibility with Existing Architectures ... 155

9.1 SOAR ... 156

9.2 LIDA .. 157

9.3 NARS ... 158

9.4 AERA .. 160

9.5 Summary .. 167

10. Analytical & Conceptual Evaluation .. 169

xii General Attention Mechanism for AI Systems

10.1 Definitions .. 170

10.2 Methodological Considerations ... 173

10.3 Conceptual Evaluation ... 175

10.4 Summary .. 185

11. Conclusions and Future Work .. 187

Bibliography 189

Helgi Páll Helgason xiii

List of Figures

4.1 The Broadbent filter model . 46

4.2 The Knudsen attention framework. 51

4.3 The CODAM model of attention. 54

7.1 Compositional operating environment and embodiment 81

7.2 High-level overview of a Constructivist AGI system. 83

7.3 Meta-control complexity. 89

7.4 Deliberation ratio, focused/alert ratio and their relationship. 92

7.5 State-spaces in typical search problems . 95

7.6 Predictive heuristics. 101

7.7 Evaluation of novelty based on incremental compression. 109

7.8 A group of entities with different properties . 112

7.9 A chain of execution . 115

7.10 Example of an ontology. 118

8.1 Overview of the proposed attention mechanism. 122

8.2 Attentional pattern as a data-structure . 123

8.3 Goal-driven prioritization of information. 125

8.4 Top-levels of a categorization for data items. 127

8.5 A partial state. 128

8.6 Qualitative novelty determined by categorization. 130

8.7 Value generalization . 135

8.8 Ontological generalization. 135

8.9 Entry in the CPPH data structure. 137

8.10 Example of the EDPP reacting to a new goal . 138

xiv General Attention Mechanism for AI Systems

8.11 Focused/alert ratio of a hypothetical system at different times 141

8.12 Overview of the system before attention is introduced 142

8.13 Overview of the system with top-down attention 144

8.14 Overview of the system with top-down and bottom-up attention 145

8.15 Overview of the system and complete attention mechanism. 147

9.1 A bi-directional executable model in AERA. 160

9.2 Detailed overview of the AERA architecture . 162

9.3 Overview of attention in the AERA architecture 164

10.1 Overview of a typical situation in the self-driving car task. 179

Helgi Páll Helgason xv

Terms and definitions

Artificial Intelligence (AI)

Intelligence of an engineered non-biological system. As a field of scientific research,

this refers to the study and design of intelligent systems. It should be noted that this

field does not have a single commonly accepted definition of intelligence (Wang 2006,

p. 3-10).

General Intelligence

Refers to the ability of an information-processing system, biological or engineered, to

autonomously learn to solve novel tasks that were not directly part of its initial design,

to deal with variations in regular tasks, and to adapt to changing environments.

Artificial General Intelligence (AGI)

Engineered (non-biological) general intelligence. As a field of scientific research, this

refers to the study and design of engineered systems possessing some form of general

intelligence. This has also been referred to as “strong AI”.

AGI systems

Engineered software systems designed to achieve some level of general intelligence,

usually inspired to varying degrees by human cognition. Most share the goal of target-

ing human-like intelligence or behavior.

1

Chapter 1

Introduction

Most higher intelligences in nature have a built-in mechanism for deciding how to apply

their brainpower from moment to moment. It is called attention, and refers to manage-

ment of cognitive resources. Human attention is a reasonably well studied subject with-

in the field of psychology (cognitive psychology in particular) and known to be a key

feature of human intelligence. Every waking moment of our lives subjects our minds to

an enormous stream of sensory data; the bandwidth of this stream is far beyond our ca-

pacity to process in its entirety (Glass & Holyoak 1986). Without attention we would

constantly be overloaded with stimuli, severely affecting our ability to perform tasks,

make decisions and react to the environment. As the real world is a source of much

more information than any single intelligent agent can ever hope to cognitively ingest

and process in any given period of time, even the smartest being must come equipped

with attention mechanisms of some sort, selectively “drinking from the firehose of ex-

perience” as put by Kuipers (2005).

Natural attention is a cognitive function – or a set of them – that allow animals to focus

their limited resources on relevant parts of the environment as they perform various

tasks, while remaining reactive to unexpected events. Without this ability, alertness to

events in the environment while performing an important task, or multiple simultaneous

tasks, would not be possible. Furthermore, when faced with many simultaneous tasks, a

role of attention is to enable performance to degrade gracefully in light of information

overload, where focus is maintained on tasks of greatest urgency while others are neces-

sarily ignored or delayed, as opposed to a complete failure of all tasks as is the most

common case by far for existing software systems.

In the present work, I argue that attention functionality is not only important but critical

to all information processing systems of general intelligence that operate in everyday

environments under time constraints. Considering that our brains have by most

measures more processing capacity than currently existing computers, and yet require a

2 General Attention Mechanism for AI Systems

highly sophisticated attention mechanism to function, one could argue that attempts to

create embodied artificial intelligence (AI) systems that operate in real-world environ-

ments are doomed without it. Thus, it stands to reason that attention should be the focus

of considerable research in the field of AI.

In the development of AI systems, however, attention has received surprisingly limited

focus, and is not even commonly seen as a central cognitive function. This is surprising

given that any system expected to operate in real-world environments will face exactly

the same problem as living beings, and require a (functionally) similar solution. A likely

explanation is that researchers have been working under the assumption of sufficient re-

sources, i.e. that the resources of the system will at all times be sufficient to allow it to

operate successfully in the target domain. However, this is highly questionable when

most natural intelligences do not rely on this assumption. In fact, as argued throughout

this thesis, environments with complexities rivaling those of the real world are likely to

render any cognitive agent, no matter how intelligent, with insufficient resources for

significant parts of its operational time. In this dissertation we begin to raise attention to

the level it deserves.

From an engineering perspective, attention can be viewed as resource optimization, en-

abling systems to perform tasks in complex environments while requiring insignificant

amounts of resources (compared to complexity of tasks and environments) and using

existing resources only for information likely to be important or relevant. In this view,

time itself can be treated as a resource.

While a general-purpose attention mechanism, applicable to any AI architecture, could

be a goal to strive for, a perfect and complete independence from architecture has been

found practically impossible, as resource management touches on too many fundamen-

tal issues in the structure and operation of an architecture to make this a theoretical pos-

sibility. The goal of the present work is therefore not to develop an attention component

that can be plugged directly in to existing AI architectures. As a result of the co-

dependence of the numerous cognitive functions related to resource management, we

argue that any attempt to implement attention as an isolated architectural component is

highly problematic due to the rich interaction of attentional functionality and all major

cognitive functions, and furthermore that the best approach for endowing AI architec-

tures with attentional functionality is to address it at the level of architecture and core

operating mechanisms. It is thus clear from the outset that attention is a pervasive,

ubiquitous process that interacts with virtually all other cognitive functions and there-

fore requires deep, fundamental integration with the hosting architecture at multiple

levels; this point will be give further support later. The holistic, inclusive approach to

attention taken here includes top-down goal-derived control, bottom-up filtering and

Helgi Páll Helgason 3

novelty interruption processes, and includes internal process control as part of the

mechanism’s operation.

This work is motivated by the desire to create practical AI systems intended to perform

real tasks in real-world environments rather than attempting to validate hypothesis or

models relating to the functionality of the brain at any level. While clearly “biologically

inspired” at a high level (by natural attention), this work is not biologically inspired in

this sense: It does not target an accurate simulation or model of biological mechanisms.

Where deemed useful and appropriate, inspiration from research on human attention

will be taken, but it is not a goal to have the resulting components be constrained in de-

sign by what is known about the functionality of human attention.

This dissertation proceeds to motivate why attention is more critical for artificial gen-

eral intelligence (AGI) systems than narrow AI systems in Chapter 2, followed by a

survey of existing cognitive architectures and how they address attention in Chapter 3.

Selected work from studies of biological attention in the fields of cognitive psychology

and neuroscience is reviewed in Chapter 4, with useful ideas and concepts for imple-

menting attention for AI systems extracted. In Chapter 5, the constructivist AI method-

ology is presented and motivated as the core methodology of the present work. Re-

quirements for attention in context of design, function and architecture are presented in

Chapter 6, followed by formalization of operational concepts implied by these require-

ments in Chapter 7. A design for a general attention mechanism intended for implemen-

tation in AI architectures is presented in Chapter 8, followed by an examination of to

what degree selected existing architectures satisfy its architectural requirements in

Chapter 9. Finally, issues relating to evaluation methodology for attention mechanisms

in AI architectures are examined in Chapter 10, with conclusions and final discussions

in Chapter 11. The remainder of this section looks at the theoretical and practical scope

of attention as a subject of study, including the kinds of systems that this work may be

relevant to, and describes briefly the theoretical framework on which it rests.

1.1 Attention-Relevant Systems

Any type of information processing system intended to operate in complex, infor-

mation-rich environments without manual guidance, whether given during design or at

runtime, requires sophisticated resource management mechanisms – addressed under

the label of attention in the present work – to selectively process information and per-

form tasks while remaining reactive to changes in the environment. With the amount of

digital information being produced by humanity, which is growing rapidly at an expo-

nential rate (Gantz 2011), the importance of artificial attention mechanisms for any kind

4 General Attention Mechanism for AI Systems

of information technology is already significant and will only continue to grow; a case

in point is the rise of big data1 as a field of research and application. In particular, ambi-

tions for adaptive intelligent machines operating in everyday environments also require

such mechanisms if those ambitions are to be realized.

AGI is a relatively recent branch of AI (the first AGI conference was held in 2008) that

has seen a small but growing group of researchers (re)focusing on one of the original

ideas behind AI: human-level intelligence – and beyond. Since the beginning of AI as a

research field, an event most commonly associated with the 1956 Darthmouth confer-

ence, some ambitious and well-known attempts have been made in the direction of this

goal, such as the General Problem Solver (Newell 1961), CYC (Lenat 1990), Connec-

tion Machine (Hillis 1993) and more.

However, researchers mostly abandoned this goal as “too lofty”, since limited progress

was initially made towards achieving it in spite of ambitious attempts, and moved on to

solving isolated problems that captured much more limited parts of intelligence. Re-

search on more isolated sub-parts is now referred to as “narrow” or “classical” AI. This

work deals with solving problems that are reasonably well defined at design time and do

not assume drastic or even notable operational variations at runtime. Conversely, AGI

targets systems that are designed to learn to solve novel tasks and adapt to changing en-

vironments. The fundamental difference is that AGI systems are designed to learn and

adapt while narrow AI systems are designed to solve particular, isolated problems

(which may or may not involve some degree of learning at runtime).

The benefits of AGI systems run to several dimensions. An AGI system that continu-

ously learns from experience can theoretically achieve more robust, flexible and adap-

tive performance than any traditional software system, including the sum of existing

narrow AI work. In contrast to narrow AI systems that are manually implemented to

handle a set of pre-specified situations, such systems could automatically make sense

of, and react rationally to, new situations and changes in the operating environment –

including changes that system developers never foresaw. In an AGI system a new sepa-

rate (sub-)system would not need to be designed for each target domain that the system

applies itself to: The same system architecture can deal with different domains with

minimal or no manual work from the human designers. This would of course result in a

significant increase in reusability when compared to current software systems. It is gen-

erally assumed that AGI systems must be capable of dealing with goals and instructions

at a much higher level of abstraction than existing software systems, most of which re-

quire all operational knowledge necessary to achieve goals to be specified in detail as

part of each goal or supplied to the system at an earlier time.

1 http://en.wikipedia.org/wiki/Big_data

Helgi Páll Helgason 5

1.2 Theoretical and Scientific Framework

AGI architectures (also referred to as cognitive architectures) are engineered systems

inspired by human cognition that are designed to control artificial agents that solve

problems or execute tasks. While “AGI” mostly refers to the engineering of artificial

systems, “cognitive architectures” is typically a more encompassing term that refers al-

so to the scientific investigation of cognition in natural systems. Here we will use these

interchangeably to refer to engineered systems aiming for human-level intelligence. Ex-

isting architectures target different sets of cognitive functions and are based on different

theoretical assumptions and motivations, but most share the goal of targeting human-

like intelligence and behavior. Some of the most common cognitive functions targeted

are learning, reasoning, planning and memory. Implementation details vary greatly be-

tween architectures; some are based on artificial neural networks or other types of non-

symbolic processing while others are based on logic and symbolic methods. Hybrid ar-

chitectures that contain both types of processing also exist (c.f. Duch et al. 2008).

Ideally, a cognitive architecture implements a complete perception-action loop where

inputs from the environment are processed to find an appropriate action to perform. The

agent is usually goal-driven with goals being supplied externally or created autono-

mously. Some type of memory is most often present and is segmented in some architec-

tures to different types such as semantic, procedural and episodic. It is common for an

architecture to contain special working memory into which information relevant to cur-

rent tasks and situations is copied from long-term memory structures. Existing architec-

tures are almost without exception architecturally static, in the sense that the architec-

tural configuration of processes does not evolve over time, limiting learning which takes

place exclusively at the data level rather than the structural level. Recently, a new ap-

proach to cognitive architectures and AI has been proposed, constructivist AI (Thórisson

2012a, 2009), which emphasizes self-organizing and self-growing systems, and high-

lights several issues that must be addressed to achieve these kinds of architectures.

The most critical properties of human cognition that are usually neglected in existing

architectures are attention and real-time processing, both of which are central to the pre-

sent work. Here we address the fundamental differences between narrow AI and AGI

that concern their operational functions and architectural construction. A holistic archi-

tectural view, coupled with a strong constructivist perspective (Thórisson 2012a), gives

the present work its theoretical and scientific framework.

6 General Attention Mechanism for AI Systems

1.3 Real-Time Processing

While obvious, it is important to keep in mind that humans are real-time information

processing systems. There is no option for us to pause time and go off-line for delibera-

tion – the real world moves on whether we like it or not. While sleep can be seen as a

type of off-line processing, sleeping is clearly not a rational reaction when faced with

complex situations that require immediate action. The same must hold true for embod-

ied AI systems that operate in our environment and interact with us. Real-time pro-

cessing has more often than not been ignored in the development of AI architectures.

However, its importance becomes obvious when we consider embodied AI systems op-

erating in and reacting to complex real-world environments. For such systems, like hu-

mans, there clearly is no opportunity for off-line processing during operation: Decisions

must be made in tight synchronization with the flow of time. Such environments pro-

duce more sensory information than can be processed at real-time, be it by current state-

of-the-art hardware or human brains. In the case of machines the problem of infor-

mation overload is more severe than for humans, as the human perceptual systems per-

form vast amounts of preprocessing on sensory data before it even reaches the brain and

is introduced to awareness. Currently this sort of processing can only be very roughly

approximated in software, as the exact nature of this processing in the brain is not fully

known. Effectively, machines have to deal with raw sensory data. In the case of our vis-

ual system, our awareness (in the intuitive sense of the term) is only exposed to highly

processed information (such as features or objects) while a machine would potentially

need to deal with millions of pixels. Of course preprocessing of sensory data in AI sys-

tems is possible and desirable, but we are presently far from being able to approach the

sophistication of this processing as performed in the brain. As the passage of time can-

not be controlled, the only option is to select and process only important information.

We can thus say that when we have a requirement of real-time operation in complex en-

vironments, attention is really an extension of this requirement as we have little chance

of meeting the real-time requirement without it. Given infinite processing power we

could in theory meet the real-time requirement without any sort of attention mechanism,

although the result would be considerably different from human cognition and intelli-

gence as we know it.

In the context of AI architectures and intelligent machines it is worth stopping for a

moment to consider what exactly we mean by real-time. In engineering the term usually

refers to guaranteed completion of a processing task before a deadline, with any delay

past the deadline being considered a critical error (Ben-Ari 2006, p. 287-288). In other

words, a functionally correct result that arrives late (past its deadline) is considered

wrong. However, for AI systems, this meaning can be problematic as we can expect de-

Helgi Páll Helgason 7

lays to occur frequently, especially early in the lifetime of the system, when the system

is learning a lot. It is also not practical to halt autonomous systems in cases of delay as

they are built for continuous operation and we can expect a majority of delays not to

have a large irreversible negative impact on system operation, particularly in systems

with effective resource management. This makes “soft real-time” processing more ap-

propriate, where the system is expected to be on time most of the time while acknowl-

edging that delays can occur, although such cases should be handled in specific ways

and sought to be minimized. This paradigm also allows for operations that have more

flexible time restrictions than explicit deadlines (e.g. “as soon as possible”). In contrast

to conventional real-time processing, this means that a correct result arriving late is not

rong, but less valuable – while still correct – than one that arrives on time.

1.4 Scope of Dissertation

Considering that AI – and especially AGI – is itself a relatively new field of study with

vast regions of unexplored possibilities, and that the subject of attention is relatively un-

explored in the context of synthetic systems, it is important to be explicit about the

scope of the present work. There are several different possibilities available for viewing

the role of attention in context of AI architectures and a vast range of issues related to

attention that could be targets of investigation, as attention interacts in some way with

all other cognitive functions. Furthermore, there are a great number of possible sources

for inspiration.

Rather than focusing on specific modalities or types of data, the present work approach-

es attention as the general topic of system-wide resource management and control, and

targets all data and processes of the complete system. Related cognitive functions are

addressed and discussed as required for the purposes of attention, but diversions into the

numerous details of the many peripheral cognitive functions affected by and related to

attention are avoided to the extent that is possible.

The primary fields of inspiration for the present work are cognitive psychology and ex-

isting AI architectures. Limited reference is made to research results and theories from

neuroscience, as this tends to be at a significantly lower level than the level of computa-

tional abstraction that guides the present investigation. The present work especially tar-

gets systems designed under constructivist AI methodologies possessing advanced ca-

pabilities of introspection and self-modification that are well beyond what is known to

exist in nature. From cognitive psychology key pieces of work of relevance to this dis-

sertation are the work of Knudsen (2007) and Desimone & Duncan (1995). Other mod-

els and theories, such as the neurologically-grounded CODAM model of attention (Tay-

8 General Attention Mechanism for AI Systems

lor 2007) and Baddeley’s model of working memory (Baddeley 2000), are interesting in

that they view attention from relevant but limited perspectives. Generally speaking,

however, they are not comprehensive enough to be taken as a fundamental basis for the

work in the context of holistic cognitive architectures.

While the present work is targeted towards architectures for artificial general intelli-

gence systems, as this is the most demanding type of system in the context of attention,

the functionality under investigation is highly relevant to several other types of systems,

particularly those dealing with large data streams in real-time. This includes (functional-

ly) distributed systems in which a large number of processes must be coordinated and

controlled as well as embedded systems responsible for real-time control of large, multi-

component systems. Furthermore, the present work relates directly to information pro-

cessing systems that must adapt to substantial variations in complex tasks and environ-

ments over time in an autonomous fashion.

The functions of the proposed attention mechanism that deal with information selection

and filtering are relevant to systems that must monitor large data streams in real-time

for task-related and/or unusual information. Attentional functions described in the pre-

sent work for detecting task-relevant information – i.e. concerning top-down attention –

rely on the goals of the system being explicitly stated and represented in the surround-

ing system. For non-AGI systems without explicit internal goal representations, some

might be outfitted with such explicit goal representations, possibly with little effort, in

which case the attentional mechanism presented in this thesis will become relevant and

applicable.

To illustrate this, a hypothetical example with financial trading systems shows how the

present work can benefit a wide class of systems. These systems trade selected financial

instruments on multiple markets in real-time, continuously monitoring activity of these

markets. All these systems have explicit goal representation, where strategies are repre-

sented as high-level goals that involve a number of sub-goals. The trading systems

come in three flavors, where the difference between flavors reflects varying levels of

autonomy: The basic trading system executes manually pre-programmed trading strate-

gies on manually selected instruments at manually designated times; the learning trad-

ing system executes the same strategies, but decides what strategies to apply to which

instruments during which time itself (the quality of this system improves over time as

the system learns to make better decisions from experience); the autonomous trading

system performs all the functions of the learning trading system in addition to generat-

ing novel strategies, likely to be profitable based on the experience of the system, in a

directed fashion at runtime without human intervention. As far as the requirements for

attention are concerned, this third variant of the trading system may be considered an

Helgi Páll Helgason 9

AGI-level system, while the first two may be viewed as different shades of narrow AI

systems, and thus the attention mechanism presented here will be less relevant to the

first two than the third type.

As already mentioned, attentional functions for task-relevant information selection re-

quire explicit goal representation, meaning that the system must represent its goal in a

format accessible to the attention mechanism. Capacity to process larger data streams

with fixed resources is one of the benefits of the task-relevant selection for all of the

trading systems. In case of the basic trading system, task-relevant information can only

come from instruments referenced by active trading strategies; this is the smallest total

data stream that any of the trading systems must process. While the system could em-

ploy task-relevant information selection on complete streams of market activity, the

benefits of this approach are insignificant in contrast to subscribing to smaller data

streams specifically targeting strategy-related instruments when a strategy is activated.

A more challenging problem faces the learning trading system, which must allocate re-

sources not only to active strategies, but also for evaluation of inactive strategies in pre-

sent market conditions across potentially all possible instruments. For this system, all

market activity may be task-relevant to some degree. As the sum of all available data

streams represents a large magnitude of information, and a large number of possible de-

cisions exist in terms of number of possible strategy-instrument pairs, this resource-

bounded system is unlikely to afford the resources to consider each possibility. This

system can leverage the attentional functions for task-relevant information selection to

solve this problem, selectively processing information from the larger data stream in de-

creasing order of task-relevance as allowed for by available resources. One possible

way to determine degree of task-relevance in this case is to assign maximum relevance

value for information directly related to active strategies and instruments, while infor-

mation related to inactive strategies and instruments is rated relative to their success

(profit) in the past. This ensures active strategies receive necessary resources while the

most promising inactive possibilities are considered to the extent allowed for by system

resources. Finally, the autonomous trading system can leverage these attentional func-

tions in the same way while additional factors, too in-depth for discussion here, related

to strategy learning influence the information selection process.

Detection of novel, unexpected events using the bottom-up attentional processes is di-

rectly applicable to any information processing system as this functionality does not re-

ly on the state of the surrounding system. Novelty-detection may benefit the basic trad-

ing system by alerting human supervisors when unusual events are observed. In case of

the learning trading system, unusual events may be treated as triggering events to re-

evaluate currently active strategies or give more weight to consideration of inactive pos-

sibilities related to the source of these events. For the autonomous trading system, unu-

10 General Attention Mechanism for AI Systems

sual events may serve the same purpose in addition to potentially identifying new op-

portunities for pursuing the generation of new strategies.

Process prioritization and control is not relevant for the basic trading systems as all pro-

cessing decisions are directly and indirectly dictated by human control. However, these

attentional processes are relevant to the learning trading system, especially when each

strategy is viewed as a process (or a functional unit composed of several smaller pro-

cesses). In this case, the result of leveraging these functions may allow the system to

manage its resources in a rational way and control consideration of inactive possibilities

while learning to improve these aspects of its own operation over time. For the autono-

mous trading system, the same benefits may be realized in addition to control of pro-

cesses related to directed strategy generation.

As these examples show, attentional requirements are significantly higher for AGI sys-

tems than for other systems, motivating the emphasis on, and main relevance of, artifi-

cial general intelligence to the present work. In addition to other types of software sys-

tems, the contributions of this thesis may also have relevance to neuroscience as the

human mind – when viewed as an information processing system – as it satisfies many

of the architectural and functional requirements for attention (presented in Chapter 6).

The relevance of neuroscience to the present work is limited, however, for numerous

reasons: Neuroscience focuses on the operation of the brain at a low level of computa-

tional abstraction. Relying on this field as a primary source of inspiration would be

somewhat like studying the low-level operation of a central processing unit in order to

build a program to replicate some phenomena which may be observed directly. Fur-

thermore, biological attention is necessarily shaped by its physical medium and physical

components, which are very different from those of computer hardware. Both varieties

come with their benefits and limitations, but deliberately replicating the limitations of

one in an architecture based on the other is not a rational approach to the task at hand

here.

11

Chapter 2

Attention: Importance for AGI

This chapter examines the role and importance of attention for artificial intelligence

(AI) systems, and in particular discusses how the importance of resource management is

different – and greater – in the case of artificial general intelligence (AGI) systems than

in “narrow” AI systems – sometimes called “classical” AI systems. Some solutions to

resource management proposed in classical AI are also reviewed.

2.1 Narrow AI and Attention

Let us start by defining what is meant by a “narrow AI system”. While there are several

possible ways to define such a system, it is necessary to establish precisely what is

meant by the concept in the context of this work.

Definition 2.1: A narrow AI system is a software system specifically

designed to automatically perform specific, well-defined tasks in spe-

cific environments, whether using machine-learning, reasoning, statis-

tical processing, and/or targeting problems that have conventionally

required some level of human control or intervention to perform. Nar-

row AI systems will not function in domains they were not designed

for without substantial changes or re-design.

For decades now, narrow AI systems have been successfully deployed in industry with-

out being designed to have any special attention capabilities. How can these systems

solve real problems in complex environments, many of which generate more infor-

mation than said systems could ever hope to process in real-time, yet are necessary for

12 General Attention Mechanism for AI Systems

them to perform their tasks, when their design does not take attentional functions into

account?

To answer this question, let us consider fundamentally what a narrow AI system is.

Such a system is purpose-built for certain specified tasks and environments that are not

expected to vary significantly, hence the term “narrow”. An implication of this is that

once the tasks and environments the system has to deal with are specified, a great deal is

known about what kind of information will be useful for the system to process in order

to make decisions and what kind of information can be safely ignored.

Consider the following case:

A chess-playing system is designed for an environment consisting of a

discrete 8-by-8 grid, each cell being in one of a finite set of states at any

given time. Such a system can effectively ignore its surrounding real-world

environment as nothing outside of the chessboard is relevant; there is no

need to process information from any human-like modalities (vision,

hearing, etc.). As the task of playing chess is fully pre-specified by the rules

of the game and the structure of the game board, there is no chance for these

modalities or information coming from other sources to ever become

relevant to the system. Furthermore, any possibility that new states will at

some point be added to the set of possible states is precluded, as the rules of

the game (and thus the operational requirements of the system) are fully

pre-specified and static. A new type of chess piece is never expected to

appear on the board and new ways to move chess pieces will never be

allowed for. The end result is that the chess-playing system operates in a

closed world; it is never required to learn about new entities or new

fundamental ways of perceiving or acting in the environment. Any learning

performed by such a system targets ways to effect and react to this closed

deterministic environment with the goal of improving performance,

measured for example by the ratio of games won. The chess-playing task is

likely to include time constraints, but these are also specified in advance as

part of the rules of the game and are static in nature. The environment will

not change while the system is taking its turn in the game; any reaction to

the environment beyond taking turn within some pre-specified time limit is

precluded.

Helgi Páll Helgason 13

In the chess-playing example, the environment provides a very small amount of infor-

mation (the minimum for encoding the state of the board is 192 bits). As the game pro-

ceeds, the environment changes only when each player takes turn and the each change is

small; with each move no more than 6 bits (the state of two squares) of information can

change. While the state-space of the game is huge (upper-bounded by 647), perception

and action processing for this task are simple and do not require information filtering or

prioritization. Resource management may be required to determine the next move of the

system, but this only applies to internal processing and is solely controlled by the

amount time allowed for when deciding the next turn. During each move, the maximum

amount of time available for action decision is known in advance, greatly simplifying

internal resource management as opposed to an interruptible resource management

scheme.

While the chess environment has low complexity by any measure, many existing nar-

row AI systems deal directly with real world environments. The following presents an

example of such a system.

In a video security surveillance system, the task at hand is to detect humans

and attempt to identify them. Sensory input to the system consists of video

streams from several cameras, each targeting different parts of the target re-

al-world environment that the system is meant to monitor. Let us assume

that the system has to monitor 20 such video feeds where each video frame

is a 720p image and each feed provides 24 such frames per second. This re-

sults in a sensory stream of roughly 1.3 GB of information per second,

clearly a substantial amount of information to apply complex processing to

in real-time. However, as the operational requirements of the system are

static and known at design time, it is possible to greatly reduce incoming in-

formation very early in the sensory pipeline by immediately searching every

new frame for features that indicate the presence of a human, for example,

using well-known computer vision techniques (e.g. Haar cascade classifiers

(Viola 2001)). These features, once detected and extracted, could then form

a basis for identifying the particular individual. At no time will such a sys-

tem be expected to recognize novel features, such as finding a new type of

garment worn and classify it in the context of previously seen garments, un-

less explicitly programmed to do so. In any case, any and all information

that does not imply the presence of a human is irrelevant to the system and

may be immediately discarded after initial processing as it will have no im-

pact on the operation of the system. Assuming that there is a 0.1 probability

14 General Attention Mechanism for AI Systems

that there is a human in each frame of video, and that when detected, the

features necessary to identify the individual are roughly 1/8 the amount of

information contained in a single frame, the sensory stream of the entire

system amounts to a mere 16,5 MB per second. The effects of designing

static attention into the system, made possible by detailed specifications at

design time and implemented by focusing the resources of the system to-

wards information known to be relevant, results in an 80-fold decrease in

the input stream of the system, making its task significantly easier to ac-

complish without any form of, dynamic or otherwise, advanced resource

management. The resource requirements of the system are highly constant

and predictable at design time. It is worth reiterating that this kind of reduc-

tion in complexity could not have been achieved without the existence of

detailed pre-specified operational requirements of the system. Any time

constraints that the system shall meet (e.g. performing recognition of a new-

ly appeared individual within 2 seconds) can be addressed by optimizing

code or adjusting the hardware resources of the system to fit expected re-

source requirements.

This example demonstrates how a narrow AI system can superficially appear to be deal-

ing with real world environments, while they are in fact dealing with greatly simplified

and filtered representations of such environments, with the representations being nar-

rowly dictated by the operating requirements and limited, pre-determined tasks. It is left

to the reader to extend this idea to other examples of narrow AI, such as:

 Routing emails and cell phone calls

 Automated image-based medical diagnosis

 Guidance for cruise missiles and weapon systems

 Automatically landing airplanes

 Financial pattern recognition

 Detection of credit card fraud

When a complete specification of tasks and environment exists, the operating environ-

ment of the system becomes a closed world consisting only of task-relevant infor-

mation. Narrow AI systems have – in a sense – a tunnel vision view on the environment,

Helgi Páll Helgason 15

with static fixation points. A complete specification of task-relevant information can be

derived from a complete operating specification without much effort. As a result, the at-

tention of the system can be manually implemented at design and implementation time

(as seen in the example above), with the concrete implementation being that the system

processes particular information coming from particular types of physical or artificial

sensors, while ignoring others known to be irrelevant – all dictated by the operating

specification and pre-defined tasks. This results in an enormous reduction in the com-

plexity and amount of information that the system needs to deal with, in contrast to con-

stantly perceiving through all possible sensory channels in the target environment. Im-

portantly, the frequency of which the environment needs to be sampled by the system

(rate of incoming sensory information), and time constraints involved with the target

tasks, may also be derived from the specification in the same fashion.

2.2 Notable Efforts Towards Resource Management in
Classical AI

While narrow AI has – to a large extent – ignored resource management and thus not

provided adequate solutions to the core problem being addressed in this work, namely

to allow general AI systems to operate under varying time constraints and resource lim-

itations in real-world environments, some notable exceptions are reviewed in this sec-

tion that, although they do not address resource management under the flag of attention,

are nonetheless relevant to the topic.

Russell et al. (1989) present a framework for meta-reasoning as a design approach for

AI agents operating with limited resources. Rather than targeting optimal behavior of

agents, they take steps towards resource-bounded rationality. While this work is over

two decades old, the authors clearly recognized some of the problems that were instru-

mental in inspiring the present work and remain largely unresolved as of yet. We con-

sider these problems even more relevant today:

“… existing formal models, by neglecting the fact of limited resources for

computation, fail to provide an adequate theoretical basis on which to build

a science of artificial intelligence.” (page 1)

“A view of artificial intelligence as a constrained optimization problem may

therefore be profitable. The solutions to such a constrained design problem

16 General Attention Mechanism for AI Systems

may look very different from those provided by the deductive and decision-

theoretic models for the unconstrained problem.” (page 2)

“Since the time at which an action can be carried out depends on the

amount of deliberation required to choose the action to be performed, there

is often a tradeoff between the intrinsic utility of the action chosen and time-

cost of deliberation (…). As AI problems are scaled up towards reality, vir-

tually all situations will become ‘real-time’. As a result, system designs will

have to be sufficiently flexible to manage such tradeoffs.” (page 3)

“Standard algorithms in computer science either maximize intrinsic utility

with little regards for the time-cost, or minimize the time-cost for achieving

some fixed level of intrinsic utility. Work in real-time AI has traditionally

followed a variant of the latter approach, focusing on delivering AI capabil-

ities in applications demanding high performance and negligible response

times. As a result, designers typically choose a fixed level of output quality,

and then perform the necessary precompilation and optimization to achieve

that level within a fixed time limit.” (page 3)

(Quotes from Russell et al., 1989)

In their work, “meta-reasoning” refers to deliberation concerning possible computation-

al state changes to the agent. As opposed to the traditional view of actions as belonging

to an external environment, the authors take a more general view that includes internal

computation as actions. Expected utility of actions is used to guide action selection,

where such utility is determined by time-cost, associated changes in the external envi-

ronment and comparison with the agents pre-existing intent. The meta-reasoning

framework is notable as it directly addresses the challenges faced by AI agents related

to real-time processing and resource limitations, suggesting a methodology for such

agents to introspectively manage their limited resources while factoring in time con-

straints and resource availability. However, the approach suggested by Russell et al.

(1989) has some inherent practical problems. While basing decision-making on ex-

pected utility produces a plausible formal model for the desired intent, the problem of

concretely estimating such expected utility is not trivial, even when scope is restricted

to small, atomic operations and small, atomic steps along the temporal dimension. The

framework does not directly address the fact that real-world environments are stochastic

Helgi Páll Helgason 17

to some degree; the potential effects of an action in the environment can be predicted

with different levels of confidence, but the actual result cannot be guaranteed. For ex-

ample, in the real-world someone or something can appear suddenly and unexpectedly

and interrupt the current operation of the agent. A proposed solution might be to incor-

porate uncertainty into the expected utility value, with higher uncertainty leading to

lower expected utility. The larger problem is that of computing expected utility for all

possible actions. Some practical applications of the meta-reasoning framework are de-

scribed in (Russell 1989) for search problems, which are generally reliant on state-space

representations. But viewing real-world environments in terms of state-spaces is not

likely to be a fruitful approach due to the vast – and in some cases infinite – number of

possible states. Consider a state-space for an embodied AI agent operating in a real-

world environment. Even if the agent does nothing, a new state in the environment is

highly probable to occur shortly. If the agent has human-like actuators like arms and/or

legs, these must be controlled by real-valued motor commands, where each possible pa-

rameterized command produces different effects in the environment. The very process

of decision-making based on expected utility involves a significant resource manage-

ment problem in which not all possible actions can be considered, so a selection of ac-

tions to compute – being an additional resource-consuming process – is necessary.

While meta-reasoning in general is certain a capability worth pursuing in AI systems,

the meta-reasoning framework proposed by Russell et al. does not provide adequate so-

lutions to these problems.

Anytime algorithms (Boddy & Dean 1989) are another approach that has been suggested

for resource-bounded decision-making. Such algorithms return some solution for any al-

location of computation time (when computation time is viewed in atomic iterations of

the algorithm) and are expected to generate better quality of solutions as they are given

more time. This kind of algorithm has been shown to be useful in some types of time-

dependent planning problems (routing problems in particular), but requires a decompos-

able top-level problem – that can be solved in a divide-and-conquer fashion – in order to

work. The idea of anytime algorithms is relevant to the construction of AGI systems,

and may prove valuable for some aspects of their operation. For example, this kind of

functionality may be useful in generating predictions, as an AGI system will be depend-

ent on available resources in searching (in the general sense) – by generating new pre-

dictions – for events with higher utility than ones that are previously predicted. Howev-

er, they do not represent a viable top-level resource control policy for AGI systems, as

decision-making is unlikely to be entirely based on functions that consist of uniform it-

erations. But even if that were the case, the question of how to achieve anytime behav-

ior for the multitude of functions that an intelligent mind must be capable of performing

in complex environments remains unanswered. Essentially, any AGI operating in envi-

18 General Attention Mechanism for AI Systems

ronments of real-world complexity must, as a unit, have anytime operational character-

istics. Pointing out the relevance of anytime computation to AGI systems is a necessary

first step, which the early work of Boddy & Dean did, but the hard problem of design-

ing AGI systems in this way remains unaddressed.

Some work has also been done on reasoning under resource constraints. In particular,

(Horvitz 1988 & 1989) describes strategies based in decision theory for logical infer-

ence that exhibit some qualities of anytime algorithms where uncertainty is factored for

in moment-to-moment resource availability. He proposes an approach to probabilistic

inference using belief networks called bounded conditioning. The work of Horovitz and

its general research direction have a close relationship with the Non-Axiomatic Reason-

ing System (NARS) architecture discussed in chapter 3.

There are some problems inherent in decision-theoretic approaches to attention for AGI

systems. Functionality such as finding an action with the maximum expected value is

next to impossible to implement in practical AGI systems; the problem of enumerating

all possible actions alone is not insignificant as the system may have several actuators

that accept real-valued (continuous) parameters. Even if such enumeration could be ac-

complished, the set of possible actions is likely to be very large and possibly infinite;

resource-bounded systems could not realistically be expected to compute an expected

value for each possible action. Furthermore, decision-theoretic approaches are common-

ly based on assumptions that appear too dubious for systems operating in real-world en-

vironments; namely assumptions of perfect information and a predictable environment.

Another criticism of decision theory referred to as the ludic fallacy (Taleb 2007), is

highly relevant in context of the present work: Statistical and mathematical models have

inherent limitations in predicting future events due to the impossibility of perfect, com-

plete information and the fact that historical data does not directly help to explain or

predict events that have not occurred before without reasoning processes being applied.

In this sense, decision theoretic approaches can be said to focus on the expected varia-

tions while not accounting for unexpected events, focusing on “known unknowns”

while ignoring “unknown unknowns”.

2.3 AGI and Attention

Moving beyond narrow AI systems to AGI systems requires some fundamental thought

be given to the meaning of intelligence. It is no longer sufficient to work from a vague

definition of the phenomenon. While there is no single widely accepted definition of in-

telligence, anyone doing research in the field of AI needs to choose his or her definition

in order to specify research goals, engineering requirements, and to evaluate progress.

Helgi Páll Helgason 19

Wang (2006) gives an in-depth discussion of competing definitions for intelligence, list-

ing some well-known (but not universally accepted) examples. These include:

 Passing the Turing test. (Turing, 1948)

 Behavior in real situations that is appropriate and adaptive to the needs of the

system and demands of the environment. (Newell & Simon, 1976)

 The ability to solve hard problems, without any explicit consideration of time.

(Minsky, 1985)

 Achieving goals in situations where available information has complex charac-

teristics. (McCarthy, 1988)

Before proceeding, I present my working definition of intelligence, in the sense that this

is the general capability to be achieved in AGI systems that the present work is intended

to contribute to. Rather than reinventing the wheel, I have chosen to adopt Wang’s defi-

nition of intelligence (Wang 2013) as it matches my own views. Adopting this defini-

tion necessitates a rejection of all incompatible definitions, including the ones listed

above. Furthermore, Wang’s definition describes a measurable operational property of a

system, which greatly facilitates evaluation.

Definition 2.2. “Intelligence, as the experience-driven form of adapta-

tion, is the ability of an information system to achieve its goals with

insufficient knowledge and resources.”

(Wang 2013: p. 16)

The distinction between narrow AI and AGI is very important with regards to attention.

In the case of narrow AI systems, the task and operating environment are known (or

mostly known) at design time. In such systems the world is mostly closed, in the sense

that everything the system will ever need to know about is known at design time (in an

ontological sense). While the operation of the system may involve learning, exactly

what is to be learned is also specified in detail at design time. Using the specification of

the task, narrow AI systems can implement attention by combining the following meth-

ods:

20 General Attention Mechanism for AI Systems

 Completely ignoring modalities (in a general sense, i.e. data streams) that are

available yet irrelevant to the task as specified.

 Filtering data for characteristics that are known, at design time, to be task-

relevant.

 Sampling the environment at appropriate frequencies (typically the minimum

frequency that still allows for acceptable performance).

 Making decisions to act at predetermined frequencies that fit the task as speci-

fied.

A combination of these methods could allow narrow AI systems to effectively filter in-

coming information to deal with information overload, as well as being alert to pre-

defined interrupts. As the task and environment are known, operational boundaries are

also known to some extent, including boundaries with regards to how much information

the system will be exposed to. A fixed type of attention based on the methods described

above, along with proper allocation of hardware resources, would be sufficient for most

narrow AI systems.

The previous section discussed examples of narrow AI tasks. In contrast, in AGI sys-

tems the luxury of knowing these things beforehand is out of question – by design and

requirement. To illustrate, the following is an example of an AGI-level task in a real-

world environment:

Let us imagine an exploration robot that can be deployed, without special

preparation, into virtually any environment, and move between them without

serious problems. The various environments the robot may encounter can

vary significantly in dynamics and complexity; they can be highly invaria-

ble like the surface of Mars or the Sahara desert and dynamic like the Ama-

zon jungle and the vast depths of the ocean. We assume the robot is

equipped with a number of actuators and sensors and is designed to physi-

cally withstand the ambient environmental conditions of these environ-

ments. It has some general pre-programmed knowledge, but is not given

mission-specific knowledge prior to deployment, only high-level goals re-

lated to exploration, and neither it nor its creators know beforehand which

environment(s) may be chosen or how they may change after deployment.

Helgi Páll Helgason 21

For the purposes of this example, missions are assumed to be time-

constrained but otherwise open-ended. The robot has the goal of explora-

tion, which translates into learning about the environment, through observa-

tion and action.

Immediately upon deployment, the robot thus finds itself in unfamiliar situ-

ations in which it has little or no knowledge of how to operate. Abilities of

adaption and reactiveness are critical requirements as the environment may

contain numerous threats which must be handled in light of the robot's per-

sistent goal of survival. Specific actuators may function better than others

in certain environments, for example when moving around or manipulating

objects, and this must be learned by the robot as quickly as possible. Re-

source management is a core problem, as the robot's resources are limited.

Resources include energy, processing capacity, and time: Time is not only a

resource in terms of the fixed mission duration, but at lower levels as well

since certain situations, especially ones involving threats, have inherent

deadlines on action. The resource management scheme must be highly dy-

namic as unexpected events that require action (or inaction) can occur at

any time.

(Thórisson & Helgason 2012, p. 4)

This example represents a case where the benefits of having a detailed operational spec-

ification at design time are not available. The goals of the AI system’s design are ex-

pressed at a high level of abstraction, precluding such a specification. Here the methods

for reducing information and complexity for narrow AI systems, discussed above, do

not help. For the exploration robot to accomplish its high-level goals, any of its sensory

information may be relevant. At the same time, its resources are limited; giving equal

treatment to all information is not practically possible. Goals specified at a high level of

abstraction are not unique to this example; they are a unifying feature of all AGI sys-

tems. Such systems must learn to accomplish their own (high-level) goals by relating

them to their sensory experience as collected in complex, real-world environments.

Already several references to “real-world” environments have been made. Some clarifi-

cation is in order to disambiguate this concept. First, it is possible to build on the work

of Russell & Norvig (2003) in classifying environments for AI agents. The following

discusses each of the environmental properties proposed by them in the case of the tar-

get, real-world environments that are of interest to this project.

22 General Attention Mechanism for AI Systems

1) Fully observable / Partially observable

This property is not critical to what is considered a real-world environment, but does

raise an important issue. A core goal of the present work is generality – as a result it is

undesirable to limit the focus to the three-dimensional environments that people live

their lives in and sense in a very particular way, a result of the biological sensory system

of humans. Such environments can be abstracted to environments where the

agent/human must perform proactive, goal-directed sensing, meaning that not all as-

pects of the environment are observable simultaneously at any given time. If particular

aspects of the environment are not observable, reorienting sensors (as allowed for by the

mobility of the system) can make other aspects of the environment observable. Howev-

er, in the process of making new things observable the scope of what was observable

before may change. Additionally, a partially observable environment does not imply

that the environment is fully observable if all possible agent positions and sensor orien-

tations were somehow simultaneously possible, as there may be aspects of the environ-

ment that are relevant to the agent but can never be observed directly.

Environments where all information is visible at any time would be called “fully ob-

servable” by Russell & Norvig. But this definition becomes less clear when we consider

systems that perform active sensing where the system decides what senses to sample,

and at what temporal frequency. One reason active sensing may be desirable is that real

world environments contain such enormous amounts of information, that while in theo-

ry a system could observe the entire environment, practical issues such as available re-

sources would make this completely impossible, as perception – even of just a small as-

pect of the environment – may demand significant processing resources. Consider also

that time may be so fine-grained in the operating environments that no system will at-

tempt to, or be able to, sense it at the lowest theoretical level of temporal granularity,

inevitably causing it to miss some information. This is not to say that such extremely fi-

ne-grained temporal processing would be useful for the system, but rather to point out

that any practical system is virtually guaranteed to miss some high-speed events that oc-

cur in the environment.

In a practical sense, our conclusion from all of this can only be that an AGI system must

be expected to operate in partially-observable environments and that fully-observable

environments are likely to be exceptions.

Helgi Páll Helgason 23

2) Deterministic / Stochastic

In a deterministic environment, as defined by Russell & Norvig, any changes to the

state of the environment are dictated only by the current state of the environment and

the actions of the system. This implies that no other entities can make changes to affect

the environment, and also that the behavior of the environment is fully predictable to the

system. In stochastic environments, there is uncertainty and unpredictability with re-

gards to future states of the environment and many different outcomes are possible. An

AGI system will in all but the most trivial cases be dealing with stochastic environments

because, whether the environment is truly stochastic in nature or not, there will be caus-

al chains not immediately accessible or obvious to the AGI system that affect it. Some

aspects of the environment may be truly stochastic while others appear stochastic to the

system because it does not have necessary knowledge to predict their behavior. This can

be justified all the way down the working definition of intelligence that this work ad-

heres to, which incorporates uncertainty and incomplete knowledge. Based on this, an

AGI system must be expected to operate in stochastic environments.

3) Static / Dynamic

Static environments are not governed by the passage of time. When dealing with such

environments, the system can take an arbitrary amount of time to decide the next action;

the environment will not change meanwhile. This is clearly not the case for real world

environments, where changes are driven by the clock of the environment regardless of

the actions of the system. The present focus on real-world environments dictates that an

AGI system must be expected to operate in dynamic environments.

4) Discrete / Continuous

Discrete environments offer a finite number of perceptions and actions that can be taken

by the system. A chessboard is a good example of a discrete environment, where there

are limited ways to change and perceive the environment. Environments that do not

have discrete actions and perceptions are called continuous; typically this involves real-

valued action parameters and sensory information. Hence, we must assume continuous

environments for AGI systems, while noting that continuous aspects can be approximat-

ed with fine-grained discrete functionality.

24 General Attention Mechanism for AI Systems

5) Single agent / Multi-agent

Choosing between these properties is not necessary for AGI systems. Many conceivable

operating scenarios involve some type of interaction with other intelligent entities (e.g.

humans) while there are perfectly valid and challenging scenarios that are of the single

agent variety (e.g. space exploration).

Summary

The conclusion from the above analysis is that the types of environments that must be

targeted for AGI systems are:

 Partially observable

 Stochastic

 Dynamic

 Continuous

From this an attempt can be made to define more formally the types of environment that

AGI systems target.

Definition 2.3. A real-world environment is a partially observable,

stochastic, dynamic and continuous environment that is governed by its

own temporal rhythm and contains vast amounts of continuously

changing information.

As AGI systems are by definition unable to use the kind of techniques previously de-

scribed for narrow AI systems, which rely on design-time domain-dependent

knowledge, a fundamentally different approach must be adopted that involves making

complex resource management decisions at run-time rather than design-time and grad-

ually learning to adapt such decisions to actual tasks and environments that the system

is faced with. Implementing such attention mechanisms is thus a key research problem

that must be solved in order to realize practical AGI systems operating in real-world en-

vironments.

25

Chapter 3

Prior Work / Artificial Attention

Systems

This chapter surveys selected AGI architectures and other related work that has at-

tempted to implement some form of attention functionality. The architectures reviewed

are selected due to their particular approach to attention or to show how lack thereof

limits their potential. While development of AGI architectures has largely ignored atten-

tion mechanisms, some notable exceptions are discussed here. However, virtually all

implementations of attention discussed are incomplete in various ways, such as focusing

solely on data-filtering (ignoring control issues, e.g. how prioritization affects pro-

cessing of selected data) and the external environment (ignoring internal states). Limita-

tions and other performance considerations related to attention, such as real-time pro-

cessing, is also discussed as applicable in each case. First, some of the relevant architec-

tural work will be reviewed, while more isolated and focused efforts to implement at-

tention are discussed at the end.

3.1 Ymir

The Ymir cognitive architecture was created with the goal of endowing artificial agents

with human-like interaction capabilities in the form of embodied multimodal dialog

skills that are task oriented and function in real-time (Thórisson 1996, 1999). Ymir-

based agents are intended for face-to-face scenarios where users communicate with the

agent in a natural fashion without artificial protocols, i.e. as if communicating with an-

other human. A complete perception-action control loop is implemented, with higher

level cognitive functions effecting low level perception, and vice versa, in a layered

feedback-loop model. Lower layers deal directly with perceptual information and oper-

26 General Attention Mechanism for AI Systems

ate at faster time scales than higher layers, in which more advanced cognitive functions

occur. Time is handled in an explicit fashion within the system, with every piece of data

received and produced being time stamped. The architecture contains three layers: Re-

active (RL), Process Control (PCL), Content (CL) and a resource control system run-

ning across these called Action Scheduler (AS). Each layer contains a set of processing

elements, including perceptual modules, with unimodal perceptors focusing each on a

specific modality, while multimodal integrators are responsible for fusing data from dif-

ferent modalities. Deciders are another type of module that makes decisions based on

available data. Sharing of information between modules and layers is accomplished us-

ing blackboards, eliminating the need for direct connections between modules. The RL

performs initial processing of perceptual data and produces low-level reactions. The

PCL handles the flow of dialog and performs various processing relevant to turn-taking

and task-level actions. The CL contains knowledge bases, with one being dedicated to

general dialog knowledge and others being topic-specific. It controls the production of

topic-relevant actions, based on available perceptual data, in conjunction with its

knowledge bases. The process control and content layers have the ability to influence

processing in lower layers by turning modules on and off, enabling mixed bottom-

up/top-down control within the system. The AS accepts behavior requests from these

three layers and is responsible for translating those to low level motor movements. To

this end, a behavior lexicon is used that contains specifications of supported behavior,

allowing for run-time composition of actions, and also provides a clear separation be-

tween behavioral intent and behavior execution. Action scheduling is a complex prob-

lem, highly dependent on time and context, as execution of simultaneous behaviors is

allowed and some of them may be conflicting. A scheduling scheme that provides fast

response versus optimality is adopted. Long, incremental behavior sequences are a regu-

lar part of operation but interruption of these can also be expected at any time.

The way in which control in Ymir is simultaneously bottom-up and top-down can be

said to give rise to an attention mechanism in which irrelevant things are ignored by

turning off specific modules that produce or consume the irrelevant data. The layered

architecture of Ymir, with layers operating at different time scales, is inspired by cogni-

tive psychology in the sense that human cognition is known to have different time

scales for different processes. The architecture has been shown to give rise to some hu-

man-like qualities as well in implemented systems. Like many of its predecessors,

Maes' task network (Maes 1991) and Brook's subsumption architecture (Brooks 1991),

Ymir-based systems are completely static at the module level, as modules and their

connection potential in the architecture is manually specified a priori; they do not them-

selves change during operation. This has been referred to as a constructionist approach

to building AI architectures (Thórisson et al. 2004). Constructionist architectures rely

Helgi Páll Helgason 27

exclusively on the limits of human programmers, and thus represent a limitation for the

complexity such architectures can reach, as interactions and side effects of run-time op-

eration can get exponentially more complex with greater number of modules. The con-

structionist approach dominates the cognitive architectures reviewed here; contrast this

with the constructivist AI approach (Thórisson 2012a, 2009) underlying the present

work.

Ymir implements a primitive-top-down controlled filtering attention through its mecha-

nism of enabling turning off certain modules, resulting in certain raw data or intermedi-

ate-level perceptual computations being ignored. The system also implements primitive

bottom-up attention by tracking indicators of human attention: the Gandalf (Thórisson

1996), for instance, used its interlocutor’s real-time gaze, head direction, and body

stance, to infer where the other’s attention was directed, and using this information to

control its own internal cognitive processing. This is e.g. how Gandalf resolved ambig-

uous references to external objects via gesture and speech.

3.2 ICARUS

ICARUS is a cognitive architecture for embodied agents that has shown promising re-

sults on a number of classic AI toy problems in terms of generality (Langley 2005,

Langley 2006). The distinguishing features of the architecture are a separation of

memory to conceptual and procedural parts and incremental hierarchical knowledge ac-

quisition for concepts and skills. The conceptual memory stores Boolean concepts and

their relations. Skills are composed of more primitive sub-skills that bottom out in actu-

ator manipulation, allowing new skills to be acquired by composition of existing ones.

This works similarly for concepts where new concepts can be encoded in terms of exist-

ing ones. Memory is also subdivided to long-term and short-term sections. Short-term

memory holds intentions and beliefs and is composed of constructs from long-term

memory allowing for correspondence that is vital to relate concepts from long-term

memory to short lived goals. Symbolic processing is prevalent in the architecture and

sensory input is idealized compared to real-world complexity in the examples presented.

Pattern matching is employed to determine relevant skills and knowledge for a given

situation using start states and other types of constraints. The control loop of the archi-

tecture starts with a bottom-up pass from sensors generating high-level beliefs at the

end. Next, a top-down pass is made from beliefs that includes skill selection and termi-

nates in action. In cases where skills do not exist to reach a goal mean-ends analysis is

performed. Cognitive processing is controlled by an attention mechanism that is goal-

driven and focuses on a single goal at a time.

28 General Attention Mechanism for AI Systems

The attention mechanism in ICARUS is one of the simplest that can be implemented in

cognitive architectures. It does not have reactive aspects and can essentially be reduced

to selection from active goals. In other words, attention is only controlled in a top-down

fashion.

3.3 CHREST

CHREST (Chunky Hierarchy and and REtrieval STructures) is a cognitive architecture

with a psychological focus that has been used to simulate human cognition in specific

domains, such as expert behavior and verbal learning (Gobet 2005). It is based on an

earlier architecture called EPAM. The theoretical assumptions CHREST is based on in-

clude that there should be close interaction between perception, learning and memory as

well as that the mind is caused by a collection of emergent properties produced by the

interaction of short- and long-term memory, learning, perception and decision-making

processes. In this architecture, operational experience of the system is encoded into

chunks, an aggregate structure composed of concepts, schemata and production rules.

The developers of the architecture consider constraining the number of possible archi-

tectures, i.e. strong architectural limits, important in the design of cognitive architec-

tures.

The architecture contains three components: An input/output module which receives

and processes sensory information and controls actuators, long-term memory where op-

erational experience and knowledge are stored and finally short-term memory which is

essentially working memory. The operation of CHREST-based systems follows a step-

lock cognitive cycle in which input is processed (I/O module), matched with long-term

memory with matches being copied to short-term memory for further processing. Final-

ly, the I/O module takes over again, performing any prescribed actions and the process

then repeats. The long-term memory is the most complex of these components imple-

menting a "chunking network" (discrimination network) that stores different types of

items including chunks (patterns), concepts, schemata and production rules. Learning

and retrieval operations are used on the chunking network to form and store chunks and

retrieve existing ones.

Among other phenomena, CHREST has been used to study human attention, particular-

ly visual attention where a region of an image is selected for detailed processing includ-

ing feature extraction (Lane 2009). Detected features are used to match elements in

long-term memory, with matching elements being copied to short-term memory. Con-

tents of short-term memory, domain-specific knowledge and visual information residing

outside the selected image region subsequently guide movements of the systems "eye",

Helgi Páll Helgason 29

effectively guiding attention. The most sophisticated known domain used for evaluation

of the architecture is chess playing. In this case, the input image was a crisp, noise-free

diagram of a chess table with chess pieces occupying appropriate squares. While the

work is interesting and potentially useful in terms of cognitive sciences, it is unclear

how this would scale to noisy and highly dynamic environments, especially as real-time

operation was not a requirement and the system operates in atomic cognitive cycles.

3.4 NARS

The Non-Axiomatic Reasoning System (NARS) is a general-purpose intelligent reason-

ing system designed for operation in real-time under conditions of insufficient

knowledge and resources (Wang, 1995). Knowledge in a NARS system is grounded in

its experience, both in terms of meaning and reliability. However, a NARS system is

only embodied and situated in the sense of its actual experience, rather than the more

traditional sensory-motor sense as NARS does not address sensory-motor issues.

In stark contrast to conventional reasoning systems, most of which exclusively use

Boolean truth-values, beliefs in NARS are real-valued numbers based on the experience

of the system. This allows a NARS-based system to manage different types of uncer-

tainty such as randomness, fuzziness, and ignorance. NARS is based on a term-oriented

formal language called Narsese, which has experience-grounded semantics and a set of

inference rules. Thus, knowledge and beliefs contained within the system have associat-

ed non-Boolean truth-values that are shaped by operational experience. Learning is

achieved by reasoning upon this experience, generating beliefs that grow stronger as

they are repeatedly confirmed or weaker if they are contradicted.

Unlike most cognitive architectures, NARS was designed with real-time operation as a

requirement from the start. The logic of Narsese is embedded with time, making truth-

values of appropriate statements time-dependent, in contrast with traditional logic lan-

guages that are completely timeless. Time is represented primarily in a relative fashion,

with the timing of one event being defined in terms of the timing of another. Temporal

logical relations and operators are present in the language as well, providing some nec-

essary tools for temporal reasoning and inference. Core mechanisms in NARS, such as

learning – and meta-learning by extension – are fixed.

The control strategy for computation in NARS systems is called controlled

concurrency: the execution of tasks is controlled by two special prioritization

parameters, urgency and durability. The urgency value gradually decays over time, with

the strength of the decay being determined by the durability value. The values depend

on both the environment and internal state of the system. These parameters are used to

30 General Attention Mechanism for AI Systems

implement dynamic resource management, allowing the system to spend most of its

time on what is most important, giving rise to a type of attention mechanism.

Effectively, tasks constantly compete for processing within the system, with losers

being eventually removed from the task pool. An interesting property of this mechanism

is that resource allocation is context-dependent, (i.e. the same task with the same

urgency and durability values will vary in execution time depending on other active

tasks at any given time).

Wang (1996) examines the implications of real-time operation under insufficient

computational resources, concluding that Turing machines and traditional models of

computation are not applicable for such scenarios. The author makes a convincing case

that deadline-based task management is not appropriate for intelligent, reactive systems.

Instead, he suggests using problem solving algorithms that generate solutions or

answers after each iteration with solutions improving as the number of iterations

increases, iterations being the atomic processing unit of the system or what has been

called an anytime algorithm (Boddy & Dean 1989). Resource management needs to be

highly dynamic in these scenarios, influenced by, among others, the intermediate

progress of problem solving processes and exploration of multiple solution paths

concurrently and at different speeds, although not necessarily at the hardware level.

Space is also addressed, with bag-based memories being suggested, as memory is finite

and items will need to be added and removed frequently during operation.

As for attention, NARS views tasks and goals in a fairly traditional way: A distinction is

made between original goals, being input tasks originating outside the system, and de-

rived goals, being created within the system in response to original goals. While urgen-

cy and durability parameters are assigned by the system to derived goals, this is not the

case for original goals which are supplied externally (e.g. by the system designers).

However, the system can modify some task parameters at runtime according to its expe-

rience. As NARS is a reasoning system, and has not focused explicitly on perception

and action up to the current implementation, it is intended to accept queries and tasks

from an external entity. In this scenario, having priority values dictated by an external

entity are not problematic, but a different approach must be used if the system is to con-

trol an embodied agent, which includes perception and action functionality. In that set-

ting, the frequency of system tasks will likely to be much greater and reliance on an ex-

ternal entity to provide priority values for each task is problematic as it results in a loss

of autonomy.

Helgi Páll Helgason 31

3.5 LIDA

The LIDA architecture (Franklin 2007 & 2012) is intended for intelligent and autono-

mous software agents and is based upon IDA (Intelligent Distribution Agent), which is

an earlier architecture used in an autonomous US Navy software system that negotiates

assignments for personnel based on US Navy policies, sailor preferences, and other fac-

tors (Franklin 2006). The architecture is an implementation of the Global Workspace

Theory of consciousness (Baars, 1988).

LIDA features several types of specialized memory: sensory, sensory-motor, perceptual

(implemented as a slip net), episodic, declarative and procedural (implemented as a

scheme net). The operation of LIDA-based systems is a series of cognitive cycles, each

consisting of sense, attend and action selection phases. In the sensing phase, the current

representation of the internal and external environment of the system are updated.

Incoming sensory data activates low-level feature detectors as output from these are

sent to perceptual memory, where higher-level feature detectors process the information

further. Final processed sensory data is then sent to the local workspace and exposed to

declarative memory and episodic memory to generate associations which are also

copied to the workspace. This combined data constitutes the system's current

understanding of its operating situation. In the attending phase, Attentional Codelets

(essentially a collection of small programs) form coalitions of data from the Local

Workspace and move these to the Global Workspace. A coalition may be viewed as a

collection of functionally related data. In the Global Workspace, the most urgent

coalition (only one is selected in each cycle) is selected by a competitive process, and

broadcast throughout the system. The broadcast reaches several components of the

architecture that are related to learning, memory and decision-making (Action

Selection, Perceptual Memory, Procedural Memory, Episodic Memory, Local

Workspace and Attentional Codelets) and triggers different types of learning that are

performed in parallel: Procedural learning occurs as the data reaches Procedural

Memory, attentional learning occurs as the data reaches the Attention Codelets,

perceptual learning occurs as the data reaches Perceptual Memory and episodic learning

occurs as the data reaches Episodic memory. Following the broadcast, possible actions

given the current situation (encoded by the broadcast) are selected in Procedural

Memory and sent to the Action Selection module where one action is selected for

execution by a competitive process.

The LIDA architecture does not address time in an explicit fashion, tasks can be

scheduled in terms of “ticks” (operating cycles) but not in real-time. However, some

promising steps are taken in real-time direction, such as learnable alarm structures,

which are reflex-like mechanisms for reacting quickly (faster than the average operating

32 General Attention Mechanism for AI Systems

cycle) to certain events. While nothing prevents the system from performing temporal

reasoning, there are no provisions for dealing with real-time operation in the control

mechanisms of the system. An integrated approach to attention is followed by the

architecture where attention is one of three central processes in the operating cycle.

Attention is implemented as filtering/selection which potentially allows the architecture

to gracefully handle situations of information overload. Availability of time and

resources is taken into account when priorty of available information is evaluated. It

should be noted that LIDA implements attentional learning, giving it the capability to

improve its own resource management in terms of data filtering. This is significant

especially in light of the many different types of learning supported by the architecture.

The core learning mechanisms of the architecture are fixed but as internal data is

handled identically to external (environmental) data, the architecture is well suited for

introspection and self-improvement at the content level while the architectural level

remains fixed.

3.6 AKIRA

AKIRA is a fully implemented open-source framework whose architecture is inspired

by biological systems and is designed for parallel, asynchronous and distributed compu-

tation (Pezzulo 2007). The architecture consists of a number of modules (schemas) that

are interconnected by weighted activation links. Each module contains procedural in-

formation as well as an activation value which determines how much resources the

module has at its disposal. The activation value of a module can be changed by other

modules, by positive or negative feedback via activation links, and itself. Together the

modules and activation links form a network called the energetic network. Information

exchange and synchronization are possible by the use of shared (global) variables, mes-

sage passing, and a global blackboard. The links in the network are fully dynamic,

modules that succeed more often than others will develop strong links to many other

modules while unsuccessful modules will have weak links to few modules. The dynam-

ic nature of activation links leads to functionally related modules becoming tightly con-

nected and forming coalitions, which can be considered to be functional units for solv-

ing composite tasks. This allows cooperation and competition to be realized over the

collection of modules. Context awareness is an interesting property of the architecture

as the structure and exchange of activation in the energetic network will typically ensure

that modules that are relevant to the current situation (context) have high activation val-

ues while irrelevant modules will have lower values. The AKIRA framework has been

used in a number of implemented experimental systems including a biological simula-

tion of the praying mantis (Pezzulo 2006).

Helgi Páll Helgason 33

AKIRA evolves and adapts through changes in activation links which are based on suc-

cess or failure of individual modules and coalitions. This process is continuous meaning

that if the system performs some task perfectly it will adapt if the task changes and

evolve towards a new configuration that allows perfect performance to resume. The

main limitation of the framework is that procedural information is completely static,

which implies that a problem that no combination of hard-coded procedures (stored in

modules) can solve cannot be solved by the system. This limitation can be mitigated

with granularity, i.e. by having many procedurally simple modules instead of few mod-

erately complex ones.

The spreading activation functionality in AKIRA implements an emergent attention

mechanism as there is constant competition among modules for processing resources

with winners being determined by past and current inputs. Of the attention mechanisms

reviewed in this chapter, AKIRA contains the most deeply integrated one, although it is

virtually a by-product in the system. As the architecture is sub-symbolic, it is missing

reasoning capabilities, which is a critical part of human cognition and has links to atten-

tion as well. Relying on machine learning, as in AKIRA, means that when presented

with novel tasks involving irreversibility the system is not likely to fare well, due the

trial-and-error nature of its learning. As with any other architecture, the design places

limits on what the system can do and in AKIRA, these limits do in fact simplify atten-

tion requirements. It is also worth noting the AKIRA-based systems are architecturally

static, their structure does not change over time. Removing those constraints would cre-

ate new challenges in terms of attention.

3.7 OSCAR

OSCAR is an implemented architecture for generally intelligent agents operating under

uncertainty and incomplete knowledge (Pollock, 2008). The work is inspired by the fact

that any human's knowledge of individuals, in the epistemological sense (e.g. individual

grains of sand, individual apples on the trees on the planet, etc.), as well as general

knowledge, is very sparse. Yet we manage to form beliefs and make decisions with rela-

tive ease in our daily lives. According to Pollock, the prevalence of operating under un-

certainty strongly suggests some form of statistical probability processing. For this to

work, a mechanism is needed to resolve conflicting conclusions, as the introduction of

probability into the reasoning process implies that incorrect and contradicting conclu-

sions will occur. This type of reasoning is called defeasible reasoning, and forms the ba-

sis of the OSCAR architecture.

34 General Attention Mechanism for AI Systems

Beliefs are encoded in OSCAR as first-order representations, and first-order logic is the

basis of reasoning. Inference schemes supplied a priori are used for the reasoning pro-

cess, such as statistical syllogism. The correctness of inference schemes is evaluated

over time; if a particular scheme has been found unreliable under specific circumstances

this will be reflected in the reasoning process and conclusions based on that scheme will

therefore less likely to be made in the future. The mechanisms for invalidating infer-

ences based on experience are called undercutting defeaters; they are processed in a dis-

tinct phase of the reasoning process called defeat status computation. For the sake of

practicality, argument construction and defeat status computation are interleaved; oth-

erwise all knowledge that could possibly be relevant to present processing would need

to be considered in the argument construction phase before defeat status computation

could occur. However, the construction of new arguments can affect defeat status com-

putation with the side effect that not only the argument construction is defeasible but al-

so the defeat status computation itself; reasoning in OSCAR is said to be doubly defea-

sible. This produces important properties for generally-intelligent agents, as reasoning

can be interrupted at any time, yielding the best conclusions available at that particular

point in time and essentially implementing an anytime reasoning algorithm.

The main modules of the architecture are called Practical Cognition and Epistemic

Cognition. Practical Cognition has the responsibility of posing planning problems, eval-

uating and selecting plans as well as directing plan execution. Epistemic Cognition is

responsible for constructing plans, generating and revising beliefs, as well as forming

epistemic goals. The connection between these two modules forms a loop where epis-

temic cognition can supply practical cognition with the goal of learning some new in-

formation and practical cognition will in turn issue a corresponding goal to epistemic

cognition. As plan construction relies on defeasible reasoning, it is a defeasible process

and constructed plans can be expected to be invalidated at any time should relevant new

information be acquired. Planning and learning are interleaved as forward reasoning

(prediction) from perceptual inputs is coupled with backwards reasoning (planning)

from goals or interests.

The strength of the OSCAR architecture is its powerful time-bound symbolic reasoning

with support for deadlines. The reasoning process, which includes planning, is inter-

ruptible at any time for the best available current information, making it suitable for re-

al-time operation. Some introspective capabilities are present, such as dynamic con-

struction of defeaters for inference schemes. However, work remains to be done for

OSCAR to be able to control embodied agents.

Weak points of the architecture include lack of attention mechanisms, which has prob-

lematic implications for real-time processing when available information exceeds pro-

Helgi Páll Helgason 35

cessing capacity. Furthermore, the limitations of memory in the architecture are some-

what unclear from the literature available, for example whether any form of procedural

or episodic memory has been implemented.

Finally, how the architecture scales to multi-processor hardware and parallelization is

an important question that relates directly to its scalability and practical use: The cen-

tralized nature of its operation may hint at problems in this regard. Nevertheless,

OSCAR may offer valuable contributions for future work on cognitive architectures as

it presents a practical way to implement time-bound reasoning under uncertainty.

3.8 OPENCOG PRIME

OpenCog Prime (OCP) is a cognitive architecture (Goertzel 2008, Goertzel 2009) that is

closely related to the OpenCog framework (Hart 2008), which is an open source soft-

ware development framework intended for implementation of AI systems providing

common knowledge representation schemes, process scheduling and I/O systems across

different AI technologies running simultaneously. The architecture of the system com-

bines sub-symbolic methods such as neural network structures with symbolic pro-

cessing and can thus said to be truly hybrid in this sense. OCP is aimed at creating arti-

ficial general intelligence (AGI) systems and efforts focused on training such systems

largely focus on embodiment in virtual environments. The architecture is based on Cog-

nitive Synergy Theory (Goertzel 2009) which contains a working definition of intelli-

gence centered on the ability to achieve goals in environments. The theory furthermore

states that in order to achieve a high-level of AGI in virtual environments containing

communicative agents, special cognitive processes need to be present for six different

types of knowledge: declarative, procedural, sensory, episodic, attentional and inten-

tional. The theory also emphasizes that synergy or integration must be achieved across

these processes. The architecture is deeply rooted in probabilistic logic and reasoning.

However, the architecture might be criticized for lacking unification and containing a

very heterogeneous collection of modules, which may make the goal of integration and

synergy highly challenging to achieve.

OCP addresses attention in a somewhat unique way compared to other existing architec-

tures as it approaches the phenomena in terms of attentional knowledge, which pertains

to what information should receive resources from moment to moment. Attention is im-

plemented using a special type of attractor neural networks called Economic Attention

Networks (ECAN) (Ikle 2011). An ECAN may be viewed as a graph with generically

typed nodes and links, where each node and link has parameters representing its short-

36 General Attention Mechanism for AI Systems

term and long-term importance. Using methods inspired by information-geometry, the

networks learn over time to perform association and credit assignment used for resource

allocation. This technique has been successfully implemented for small problems but

some questions with regards to scaling of this method remain unanswered as of yet.

3.9 CLARION

The CLARION architecture is motivated by cognitive psychology and social simulation

(Sun 2001, 2003, 2006). It is based on dual representations using both symbolic and

sub-symbolic data, as well as the interaction between the two. Some often overlooked

issues such as meta-cognition and agent-motivation are specifically addressed, making

CLARION a fundamentally hybrid architecture that allows agents to learn autonomous-

ly without relying on knowledge supplied a priori. Symbolic knowledge is captured

with data structures called rules and chunks, while sub-symbolic knowledge is encoded

in connectionist networks. Both top-down and bottom-up learning are supported in such

a way that low-level procedural knowledge develops first followed by higher-level de-

clarative knowledge at later stages. This gives CLARION the rather unique ability to

generate symbolic knowledge from sub-symbolic knowledge, which is achieved by a

combination of connectionist, reinforcement, and symbolic learning methods.

As a result of its focus on social considerations, the architecture addresses the interac-

tion between cognition, environment, and motivation. CLARION has four main inter-

acting modules that handle different aspects of its operation, each of which has a dual

symbolic/sub-symbolic representation: The Action Centered Subsystem (ACS) is re-

sponsible for managing the internal or external actions of the agent. The Non-Action

Centered Subsystem (NACS) is responsible for managing system knowledge, including

declarative symbolic knowledge as well as sub-symbolic knowledge. The Motivational

Subsystem (MS) provides motivation for the system operation, namely perception, cog-

nition and action. This is performed using impetus, a particular type of motivation, and

feedback based on evaluation of the actions results. The Meta-Cognitive Subsystem

(MCS) is responsible for monitoring and dynamically modifying other modules, par-

ticularly the ACS. Action selection is a cooperative process between the symbolic and

sub-symbolic aspects of the ACS and is based on sensory input, working memory items

and current goals. Generated actions are either external, environmental or focused on in-

ternal aspects of working memory and goals.

The CLARION architecture has a number of strengths. The way in which low-level

learning of skills leads to high-level declarative knowledge is biologically plausible and

goes beyond what has been attempted in most cognitive architectures to date. Some

Helgi Páll Helgason 37

steps are taken towards meta-learning, as the architecture contains a dedicated module

for metacognition that handles introspective aspects and self-evaluation. However, the

architecture cannot fundamentally improve its own learning capabilities in terms of

functionality, as there is no reconfiguration possible at the structural level.

In terms of resource management, the MCS module applies filter/selection to input and

output data as well as selecting appropriate learning methods for each situation, imple-

menting attentional functionality that guides the operation of the system. CLARION has

been successfully tested on tasks involving time pressures and is designed with some

focus on time-related issues. However, available documentation indicates that this deals

mostly with response times of individual modules rather than presenting an integrated

approach to temporal management. The designers of this architecture have indicated

that potential for real-time processing is significantly greater than can be deduced from

currently published material2.

3.10 ACT-R

ACT-R3 is a cognitive architecture implementing a theory of human cognition that is

heavily inspired by biology and cognitive psychology. The architecture is largely de-

signed as a production system in which rules are activated when their preconditions are

met; human cognition emerges out of interaction between numerous declarative and

procedural knowledge elements (Anderson, 1996, 1997, 2003). Declarative knowledge

is represented by data structures called chunks, which encode relations and properties of

objects. Procedural knowledge is represented by production rules, which may be acti-

vated when their preconditions are met to produce actions. The existence of a specific

goal is one example of a precondition, while the generation of a sub-goal is an example

of produced action. Working memory is implemented with data structures called buffers

into which chunks and rules are retrieved based on the results of a special activation

process that essentially determines which of them are important in light of the situation

the system may find itself at any moment. While chunks and production rules are sym-

bolic constructs, the activation process is sub-symbolic in nature so ACT-R can be con-

sidered a hybrid architecture. The architecture operates in atomic processing cycles,

where each cycle begins with the activation process. This is a parallel process that ad-

justs the activation of chunks and production rules according to their calculated, proba-

bility of usefulness (determined by Bayesian methods) in the current situation. Higher

activation values translate into increased probability that the item in question will be re-

2 Ron Sun, personal communication with H. P. Helgason, 2012.
3 Discussion based on ACT-R 5.0.

38 General Attention Mechanism for AI Systems

trieved from working memory and then processed. Thus, the activation process can be

said to guide the operation and performance of the system.

Learning is performed on two levels: The activation process adapts to the system’s ex-

perience, and thus to the environment’s statistical structure, while new chunks and pro-

duction rules can also be learned. New chunks are created upon the completion of goals

and introduction of new percepts, while new production rules can be created by combin-

ing existing ones.

The perceptual module of the system implements attentional functionality, effectively

filtering sensory data which is processed by the system. However, this selection is not

influenced by the availability of resources, which is problematic for real-time operation.

Process control and prioritization is not addressed by the attentional functions of the ar-

chitecture, which all focus on information filtering.

It should be noted that ACT-R has the explicit goal of targeting human cognition and its

limitations, and that one of its intended and realized uses is to explain and predict hu-

man performance on various tasks. It is therefore limited by design, and cannot rely on

principles considered non-biological or on any performance dimension on which an arti-

ficial system could possibly exceed human capabilities.

3.11 SOAR

SOAR is one of the most mature cognitive architecture currently in development, and

has been used by many researchers worldwide during its roughly 30-year life span

(Laird, 2008). During this time it has also been revised and extended in a number of

ways; the discussion here is limited to the latest version as this represents its present

state of the art. SOAR operates on many of the same principles as ACT-R, but does not

share the psychologically-grounded goals of the latter.

The main operating principle of SOAR is its decision cycle: When a problem is present-

ed to the system, it searches its memory for knowledge relevant to related goals or re-

wards. If insufficient information is found it generates a sub-goal to split the problem

into smaller ones, if no solutions are found then this recursive process continues. When

a solution has been created, the system may compress the solution into a compact form

that can be applied directly, and store it until a later time, if the same problem should be

encountered, in a process called chunking. The pipelined decision cycle determines the

temporal granularity of the system by defining the update frequency for accepting new

sensory data.

Helgi Páll Helgason 39

The architecture consists of heterogeneous components that interact during each deci-

sion cycle. These are working memory and three types of long-term memory: semantic,

procedural, and episodic. Working memory is where information related to the present

is stored, with its contents being supplied by sensors or copied from other memory

structures based on relevancy to the present situation. Working memory also contains an

activation mechanism indicating the relevancy and usefulness of working memory ele-

ments when used in conjunction with episodic memory. Production rules are matched

and fired on the contents of working memory during the decision cycle, implementing

both an associative memory mechanism (as rules can fetch data from long-term memory

into working memory) and action selection (as rules can evaluate and propose opera-

tors). One of the most recent additions to the SOAR architecture is sub-symbolic pro-

cessing which is used for visual capabilities, where sub-symbolic and symbolic pro-

cessing is bridged with a form of feature detection.

In SOAR, operators are the building blocks of all actions, both internal and external.

The application of an operator is carried out by a production rule and either causes

changes in the working memory or triggers an external action. Problem solving is based

on search spaces, and operators can be seen as ways to move between states. In cases

where operator selection fails due to insufficient or conflicting knowledge, an impasse

event occurs and the recursive sub-goal creation process described above is started. The

results of this process are then converted to production rules by use of chunking. It is

worth noting here that this works identically for parent goals and sub-goals, which helps

with the transfer of learning as different parent goals may share identical sub-goals.

The symbolic and production-based approach has recently been extended with rein-

forcement learning, which is used for relating production rules to operator selection to

maximize future rewards in similar situations. As the SOAR working memory can con-

tain execution traces, introspective abilities are possible. As the architectural learning

mechanisms of the system are fixed, however, self-reconfiguration (e.g. improving own

learning capabilities) is not achieved, but it is worth noting that reinforcement learning

gives the architecture a method of managing knowledge more effectively over time, for

example by choosing which type of memory is most appropriate for certain situations.

The SOAR architecture provides one of the largest collections of simultaneously run-

ning cognitive processes of any cognitive architecture so far. Interestingly, however,

there is no explicit mechanism for control of attention; this is not seen as a central cog-

nitive capability by its authors, but as “processing that belongs to the perceptual side”4.

This seems like a problematic view of attention for numerous reasons, many of which

have already been detailed above; suffice it to say that attention will not be very useful

4 John E. Laird, personal communication with H. P. Helgason, 2010.

40 General Attention Mechanism for AI Systems

if it cannot be meaningfully influenced by the active goals of an agent, and several other

properties of its internal state.

Not containing attention-like functionality, the architecture is based on the assumption

of abundant computational power, in the sense that it is assumed that all incoming data

from the environment can always be processed. This is problematic, and, not surprising-

ly, the execution in SOAR is done in a strict step-lock form. In particular, the duration,

or amount of computation, in each decision cycle can vary greatly due to impasse events

that occasionally arise. At its core, the architecture is based on a single step-lock sense-

decide-act control cycle, and it is theoretically not designed to operate in parallel; there-

fore, were it to encounter situations in which the assumptions of sufficient resources

does not hold, it would not help significantly to add computing power (e.g. adding more

processors). While production rules can be fired in parallel, this is just one phase within

the operating cycle. Although it is not clear how fast the single processor that runs a

SOAR system must be for it to approach human levels of intelligence, it is safe to spec-

ulate that this stage has not been reached yet, even on the fastest supercomputer to date.

Performance of the architecture’s particular implementations is not being faulted here,

but rather the core of the architecture’s operating principles, which assumes sufficient

computational resources at all times. SOAR has essentially not been designed to cope

with situations for which it does not have computational power to process “everything”.

SOAR’s lack of attention mechanism(s) presents problems for practical operation, as

the architecture’s only available response to insufficient knowledge is essentially delay-

ing its operation in the environment. While SOAR has certainly made contributions to

the fields of AI and cognitive psychology, the design of this architecture seems to be

quite detached from operation in everyday environments, which are highly complex

from the perspective of existing cognitive architectures, and march to the beat of their

own time. Finally, one might argue that the development of SOAR has been somewhat

characterized by “adding boxes”, or components, to the architecture when it might have

been better to follow a more unified approach, putting integration at the forefront.

3.12 IKON FLUX

The IKON FLUX architecture is aimed at creating autonomous systems that adapt and

evolve in open-ended environments with incomplete knowledge (Nivel 2007). From a

manually constructed initial state, continuous self-directed growth takes over; this pro-

cess is aimed at maximizing current and future performance by targeted real-time evolu-

tion of architectural system structure and process source code as well as generation of

knowledge. Observation is the key component to knowledge construction, the external

Helgi Páll Helgason 41

environment is constantly observed as well as the internals of the system which gives

rise to self-reflective properties. An IKON FLUX based system can be called cognitive

in the sense that it senses and reasons upon events in the external and internal environ-

ments. Knowledge is encoded as models which may have multiple levels of detail.

Models in IKON FLUX fall in one of two categories, forward models and inverse mod-

els. Forward models deal with prediction using present states to determine what states

are likely to follow. Inverse models have explanatory power as they deal with explain-

ing how states were brought about in terms of previous states. They effectively contain

a recipe for reaching a target state from a starting state. Models are continuously modi-

fied to maximize their correctness in light of the systems experience. The model-based

approach creates the opportunity to perform simulations which are leveraged to find

new or better solutions for problems without acting in the external environment. The

models are grounded as they are expressed in native terms of operation and observation.

Models are the key to the adaptive and evolutionary nature of the architecture as desired

future states of the system are expressed as target models. Goal achievement works in a

similar way where goals are also expressed as target models. Rather than using tradi-

tional planning methods, IKON FLUX is designed for reactive planning at multiple lev-

els where many solutions compete for execution. An anticipation mechanism is imple-

mented using simulations with forward models and is useful for plan optimization and

constructing complex composite plans. IKON FLUX implements attention control with

control values and thresholds that define a focus of attention5. This process is critical to

system operation as IKON FLUX systems are intended to contain a very large number

of programs, making constant execution of all programs infeasible for real-time pro-

cessing. In the system, internal objects and input data both have control values. For an

input to be processed by the system, the input must have sufficiently large activation

values and the same has to hold true for at least one program (model) that accepts inputs

of that type. It is worth noting that input data does not only mean information coming

from the external environment but may also be generated by the system itself. This is a

novel approach as attention acts not just as a filter on input data but is also responsible

for selecting what objects within the system are important at any time.

IKON FLUX is one of the few cognitive architectures that features learning at the archi-

tectural level (self-growth) and thus adheres to constructivist AI methodology (Thóris-

son 2009). While a thorough evaluation (learning ability, scalability, performance, re-

source requirements) of the architecture is not available, experience from the extensive

5 Based on personal communication with Eric Nivel.

42 General Attention Mechanism for AI Systems

use of the architecture in a real-world setting6 suggests that it may be a promising direc-

tion for cognitive architectures.

3.13 Other notable efforts

Considerable work has been performed to build computational models for visual atten-

tion (cf. Frintrop 2010, Schmidhuber 1991). While this is a highly practical domain, es-

pecially for computer vision, the work is limited to a single modality and makes limited

theoretical contributions to a holistic, complete attention mechanism targeting all mo-

dalities in addition to internal system states.

Attentional functionality has also been investigated within the limited scope of working

memory. Skubic (2004) presents an adaptive working memory for robots that exhibit at-

tentional qualities. Philips (2005) presents a software toolkit for creating working

memory based on a neurocomputational account of biological working memory that is

evaluated for a visual attention task. While attention and working memory are closely

related, this is a restrictive context to study attention within as working memory can in

most cases be modeled as a cognitive function rather than an architectural component.

Novianto (2009) proposes an approach to attention based on self-awareness called

ASMO (Attentive Self-Modifying Framework), where self-awareness of robots is de-

fined as the capability to direct attention to their internal states. This view of attention

overlaps somewhat with constructivist AI methodologies (discussed in Chapter 5).

However, this work does not vigorously address the resource management aspects of at-

tention, focusing instead on self-awareness and consciousness.

6 An implementation of Ikon Flux, Loki, was used to control various aspects of a public play running for
several weeks, including lights, cameras, sound effects, and various sensors.

43

Chapter 4

Natural Attention Systems

This chapter surveys selected works on natural attention systems; namely human atten-

tion. While many animals besides humans are known to also possess attention mecha-

nisms (Zentall 2004), it is well outside the scope of the present work to determine or

speculate on which of Earth’s life forms possess attention systems, of which kind, and

to what degree. Nevertheless, the fact that attention is not a uniquely human capability

is suggestive evidence that attention is a critical cognitive process for surviving in com-

plex and dynamic environments. It seems reasonable to make the assumption that no

other species on the planet has more sophisticated or complex attention mechanisms

than human beings, or at the very least that human attention presents a sufficient super-

set of existing attention mechanisms to suffice for the present discussion. This allows

discussion of biological attention to focus on human attention as the most interesting

case in the theoretical, practical and technological sense, which also makes sense in

light of the fact that the vast majority of attention research so far has been focused on

human attention.

From an evolutionary point of view, it is highly probable that attention is the result of

our limited processing capacity coupled with complex and dynamic environments in

which frequent changes occur. Being attuned to our environments and able to shift our

attention quickly has enormous survival value. The human attention mechanism is fre-

quently viewed as an information reduction process that decides what sensory infor-

mation is allowed access to our awareness, performing selective analysis of stimuli (c.f.

Wolfe et al. 2006, p. 177-181). Neurological and psychological research strongly sug-

gests that this process is quite elaborate, deciding not only what to process but to what

degree. Increased awareness of a sensory stimulus is considered indicative of greater

levels of processing while other stimuli are still processed to varying degrees with or

without our conscious involvement (Glass & Holyoak 1986, p. 33-34). This suggests is

might be clearer to consider attention to be a dynamic resource management process, at

44 General Attention Mechanism for AI Systems

least for the purposes of the present work, allocating our processing capacity to incom-

ing sensory stimuli and other types of information. The control of attention has been

shown to be simultaneously reactive and deliberate (Glass & Holyoak 1986b, p. 47-48).

Humans can selectively focus their attention while remaining alert and reactive to unex-

pected and potentially important changes that occur in the environment. The deliberate

operation of attention is referred to as top-down attention, as it is directed from cogni-

tion towards the environment, while the reactive operation of attention is referred to as

bottom-up attention as it is directed from the environment towards cognition (c.f. Sarter

2001) 7. The overall effect of our attention mechanism is that we are able to concentrate

on information related to our current tasks while being reactive to unexpected events at

the same time. This is of no small value in terms of survival, as we are constantly alert

to potential threats while being able to perform complex, demanding tasks. As we learn

to perform new tasks, part of such learning includes how we orient our attention (John-

son & Proctor 2004). The fact that control of attention is part of learned procedural

knowledge hints at the pervasive and distributed nature of attention as it shows the in-

volvement of attention in other critical cognitive functions.

In attention research, visual attention has been studied in greatest detail. This is not sur-

prising given that the visual modality is likely to provide much greater amounts of in-

formation than other modalities, perhaps by orders of magnitude, and thus requires

highly complex and sophisticated attention mechanism. Unlike other modalities, it also

provides the opportunity to observe some attention effects externally; eye movements in

particular. It is also an example of active attention as we seek out specific things in the

environment with our eyes, unlike hearing, for example, which is more passive and does

not directly allow for the sensor (ear in this case) being actively oriented.

The rest of this chapter is devoted to a survey of notable or relevant attention research.

Two fields of study are the source of such work: Cognitive psychology and neurosci-

ence. The main emphasis will be on cognitive psychology in this chapter, while neuro-

science has limited relevance to the present work as discussed in the Introduction.

7 In cognitive psychology, top-down attention is also refferred to as endogenous attention and bottom-up
attention as exogenous attention. These terms are not as intuitive in the context of artificial intelligence
systems as top-down and bottom-up, which are used throughout this thesis.

Helgi Páll Helgason 45

4.1 Cognitive Psychology

4.1.1 Cocktail Party Effect

The beginning of modern attention research in psychology is commonly associated with

Colin Cherry’s work on what has been called the “cocktail party effect” (Cherry 1953),

referring to the human ability to focus on particular sensory information in the presence

of distracting information and noise, such as following a single conversation at a cock-

tail party in the presence of many other conversations and background noise. This prob-

lem is also sometimes referred to as selective attention. By using a set of dichotic listen-

ing experiments (where different spoken messages are simultaneously fed to each ear of

the subject using stereo headphones), it was shown that subjects were able to complete-

ly block out unattended messages in the sense that they could not report any information

from those messages afterwards, although primitive characteristics (such as gender of

speaker) of the unattended messages were sometimes recalled. There were cases when

unattended messages interfered with the attended message, particularly if the two mes-

sages were related in content.

In another set of dichotic listening experiments performed later on, some interruptive ef-

fects of the content of unattended messages were investigated (Wood 1995, p. 255-260).

In particular, the experiments focused on what happens when content highly salient to

the subject was present in the unattended message: the subject’s name. Consistent with

prior, less rigorous experiments, roughly a third of the subjects reported noticing their

name in the unattended message. Interestingly, subjects who noticed their names in the

unattended messages had problems following the attended message for a brief period of

time after occurrence of their name. The cocktail party effect is sometimes extended to

include this phenomena of remaining alert to unexpected important information while

deliberately focusing on unrelated aspects of the environment, for example following

and participating in a conversation at a cocktail party in the presence of many other

conversations and background noise, and still be able to catch when someone calls our

name in the background. We are capable of noticing our own name being called from

across the room in such a situation – although such recognition does not consistently

and reliably occur if the results of these experiments are any indication.

The cognitive operation described above seems to call for a selective filtering mecha-

nism of some sort while at the same time requiring deliberate steering of cognitive re-

sources. The cocktail party scenario is a good illustration of the dual nature of attention,

which simultaneously targets specific, task-related information in a top-down manner

while monitoring all sensory channels to some degree for unexpected events of rele-

vance in a bottom-up manner.

46 General Attention Mechanism for AI Systems

4.1.2 Stroop Effect

The Stroop effect refers to a delay in reaction time of a task due to interference of senso-

ry stimuli (Stroop 1935). This is demonstrated in what is commonly referred to as the

Stroop test, where subjects are asked to name the (text) color of a word when the word

itself also refers to a color. The task of naming the color of the word is more error-prone

and takes longer when then the text color does not match the color referred to by the

word. This task has been widely used as a psychological test for clinical and research

purposes.

As implied by the Stroop effect, the semantic meaning of the word being displayed is

automatically extracted without conscious effort on part of the subject, however the sub-

ject must apply conscious effort to separate the meaning and color of the word to give a

correct answer. This constitutes some evidence for a single memory representation as-

sociated with a particular color being activated by both the color and meaning of the

displayed word and also highlights some limits with regards to how humans are able to

control their perception. In this case, another role of attention can be seen as manage-

ment of representational meanings.

4.1.3 Early Selection vs. Late Selection

The cognitive performance characteristics discussed before imply simultaneous opera-

tion of a selective filter and deliberate steering mechanism which together perform allo-

cation of cognitive resources. A number of psychological models for attention have

been proposed that typically fall into one of two categories: Early selection models are

models where selection of sensory information occurs early in the sensory pipe-line and

is based on primitive physical features of the information (shallow processing) and little

or no analysis of meaning. In other words, early selection models assume that attention

influences perceptual processes. The Broadbent filter model (Broadbent 1958) is one of

the best known early-selection (filter) models. It assumes information filtering based on

primitive physical features, with information that is not selected by the filter receiving

no further processing.

Helgi Páll Helgason 47

Figure 4.1: Diagram depicting the operation of the Broadbent filter model. All

sensory information enters a sensory store from which a selective filter chooses

information on the basis of low-level physical characteristics to receive further

processing. Information not chosen by the filter is completely discarded.

Late selection models are models where selection is performed after some level of non-

trivial analysis of meaning at later stages of the sensory pipeline, assuming further anal-

ysis of incoming sensory information must be performed in order to determine its rele-

vance and carry out efficient selection. Implicit in this view is that attention operates on-

ly after perceptual processes are completed. The Deutsch-Norman model (Norman

1969) is a prime example of a late selection model. In contrast to the filter model, it

proposes gradual processing of information to the point where memory representations

are activated. Competitive selection is performed at the level of these representations,

with the most active ones being selected for further processing. The model also assumes

an attentional bottleneck at this point, where only one representation can be selected for

processing at a time.

The early vs. late section issue has resulted in considerable debate in the cognitive psy-

chology community. Some obvious problems are apparent for early selection models;

they fail to account for commonly-observed human behavior such as noticing unex-

pected but relevant information – the cocktail party effect. The acoustic features alone

of someone calling our name from the other side of a crowded room are not likely to be

sufficient to attract our attention – some analysis of meaning must be involved. Recent

work in neuroscience has found evidence that further validates late selection models:

“In and near low-level auditory cortices, attention modulates the representation by en-

hancing cortical tracking of attended speech streams, but ignored speech remains repre-

sented. In higher-order regions, the representation appears to become more selective, in

that there is no detectable tracking of ignored speech.” (Zion 2013: 980). This work also

found evidence of simultaneous involvement of top-down and bottom-up attentional

processes in the Cocktail Party Effect and selective auditory attention.

4.1.4 Visual Attention

While the models of attention discussed earlier relate to auditory attention, a significant

number of models for visual attention have been proposed as well. Vision is a particu-

larly interesting modality in context of attention, most notably because vision provides

orders of magnitude greater information per unit of time than any other human modali-

ty. Moravec (1998) estimates that the human retina processes ten one million point im-

ages per second. Based on this estimate, the total input of the visual modality is around

60 megabytes per second. In contrast to this, traditional compact audio discs (CD’s,

48 General Attention Mechanism for AI Systems

used here as indicative of the bandwidth of the human auditory modality) store audio

with 0.18 megabytes per second. If both estimates are roughly accurate, this indicates

that the visual modality supplies over 300 times as much information as the auditory

modality. There are further notable differences between the visual modality and the au-

ditory modality: Unlike hearing, vision involves sensors that can be physically oriented

towards different aspects of the environment and these orientations can be observed ex-

ternally.

The two most prominent classes of models for visual attention are space-based and ob-

ject-based. Space-based models assume that stimuli occurring within an attended spatial

region are selected for deeper processing while stimuli occurring outside such regions

require attention to be reoriented in order to receive deep processing. Two examples of

spaced-based models are the spotlight model (Posner et al., 1980), in which attention is

assumed to be directed to stimuli occurring in an attentional spotlight, and the zoom-

lens model (Eriksen & James, 1986), in which the analogy of a variable-power lens is

used to account for the capability of attended regions (spotlights) to change in size. As

the attended area grows larger (zoom out), reaction times were shown to increase, sug-

gesting even distribution of processing resources within the attended region. Both mod-

els assume that information is extracted in detailed manner from the central focus of the

spotlight, while information is processed in a cruder manner from the area surrounding

the focus, called the fringe. The area outside the fringe is called the margin and receives

little or no processing. Object-based models (c.f. Duncan 1984, Lavie & Driver, 1996)

assume that processing occurs in two stages, where elements sharing properties are

grouped into perceptual objects in the first stage and attention is located to such objects

in the second stage. Processing of information within a single attended object is as-

sumed to be parallel while processing of information across objects is assumed to be se-

rial. While these two classes of models are directly relevant to investigation of a vision-

specific attention for AI systems, they are significantly less relevant to the design of a

general, modality-independent attention mechanism.

Feature integration theory (Treisman 1980) is another influential model of visual atten-

tion. In this model, the operation of visual attention is described as a two stage process

where analysis and extraction of features is performed unconsciously in a pre-attentive

stage, followed by a focused attention stage in which features from the former stage are

combined to form complete representations of objects in the environment. Focus of at-

tention occurs within a master map, representing image space where each location is as-

sociated with features detected locally. Only features associated with attended locations

in the master map are processed consciously. Two types of visual search tasks are iden-

tified: Feature search is described as a fast type of search occurring in the pre-attentive

stage targeting only one feature while conjunction search is described as targeting two

Helgi Páll Helgason 49

or more features in a slower, serial process requiring focused attention. While the details

of these processes are not directly relevant for the present work, references to temporal

aspects of attentional processing are interesting; the model suggests that amount of pro-

cessing is related to the size of the description of the object being sought.

Desimone & Duncan (1995) present a model of visual attention based on biased compe-

tition of information, where the characteristics of relevant or needed data are encoded in

a special short-term description called attentional template, which can specify any

property of the desired input including for example shape, color and location. Desimone

& Duncan’s model addresses top-down and bottom-up attention separately. Bottom-up

attention is based on intrinsic or learned biases of the perceptual system towards certain

types of stimuli in addition to how significantly stimuli stand out from their back-

grounds. Top-down attention is based on spatial factors and feature detection where the

features to be detected are encoded in attentional templates.

Desimone & Duncan’s model has provided some inspiration to the present work, both

due to its view of attention as a biased competition and also in more concrete ways: A

functional equivalent of an attentional template, an attentional pattern, is included in

the attention mechanism design presented in Chapter 8 to encode properties of infor-

mation that is desired by the system.

4.1.5 Baddeley’s Working Memory Model

Working memory is closely related to attentional functions, to the extent that attention

has sometimes been viewed as a component in models of working memory (cf. Skubic

2004, Phillips 2005). Baddeley’s model of working memory (Baddeley 1974, 2000) is

among the more prominent models of working memory that has been proposed in cog-

nitive psychology. The model consists of four components: Central executive, phono-

logical loop, visuospatial sketchpad and an episodic buffer. The role of the central ex-

ecutive incorporates several aspects of attentional processing, such as binding infor-

mation from separate modalities into coherent episodes, coordinating sub-systems (the

other components of the model), shifting between tasks and strategies for information

retrieval in attention to selective attention and inhibition. The phonological loop is spe-

cific to the auditory modality, with all auditory information entering a phonological

store but decaying rapidly. An articulatory process operates on this information, being

viewed as an “inner voice” that prevents decay of salient auditory information. This

process is capable of interacting with the visuospatial sketchpad in order to code visual-

ly observed language in auditory form. The visuospatial sketchpad is used to hold and

manipulate information from the visual modality and for planning of motor actions. The

50 General Attention Mechanism for AI Systems

episodic buffer integrates information from separate modalities into coherent temporal

representations, which are potential targets for storage in long-term memory.

While Baddeley’s model addresses important aspects of attention, several important at-

tentional functions are not addressed, such as bottom-up attention, and interaction with

other major cognitive functions is not specified in much detail.

4.1.6 Knudsen Attention Framework

More recent models of attention focus on the interaction between top-down and bottom-

up attention, such as the Knudsen attention framework (Knudsen 2007) shown in Figure

4.2. It consists of four interacting processes: working memory, top-down sensitivity con-

trol, bottom-up filtering and competitive selection. The first two processes work in a re-

current loop to control top-down attention; working memory is intimately linked to at-

tention as its contents are determined by attention.

Helgi Páll Helgason 51

Figure 4.2: The Knudsen attention framework (reprinted from Knudsen 2007).

As shown in Figure 4.2, information flows up from the environment and passes through

saliency filters that detect important or unusual stimuli. Information that is passed

through the filters then activates memory representations that encode knowledge.

Memory representations are also activated by top-down sensitivity control, which is a

process influenced by the contents of working memory and adjusts activation thresholds

of representations. Representations compete for access to working memory, with the

most active ones being admitted. Overall, the flow of information from the environment

into working memory is regulated by the framework. While gaze is incorporated in the

framework, that component is not necessary to the fundamental operation of attention in

the framework.

52 General Attention Mechanism for AI Systems

This framework seems to capture the major necessary parts for attention and be a prom-

ising starting point for artificial general intelligence (AGI) systems, from which some

important issues for consideration can be extracted, as done in Chapter 6.

4.2 Neuroscience

Neuroscience refers to the scientific study of the nervous system, representing a broad

interdisciplinary branch of biology that has collaborated with computer science among

many other fields. This section surveys selected phenomena and prior work from neuro-

science that is relevant to attention. However, as the present work is not biologically

motivated except at a high level, much of what neuroscience has to offer with regards to

attention is considered too far from the main thread. The present stage of neuroscience

is unable to explain the working of attention in great detail, and certainly not in a holis-

tic fashion where interaction with other cognitive processes is mapped out. Some limita-

tions of human attention, discussed below, have been confirmed and investigated signif-

icantly. To be explicit, the present work has no ambitions towards replicating such phe-

nomena in intelligent engineered systems. Rather, the goal is to extract functional re-

quirements and useful inspiration from prior work where human attention has been in-

vestigated. The general idea is to endow intelligent systems with human-like attentional

capabilities in the sense that these capabilities are necessary or significantly improve the

operation of these systems, but leaving behind anything that can be considered a biolog-

ical limitation. A brief survey of attention-related phenomena observed in neuroscience

is presented in this chapter for completeness, but in general, neuroscience was not found

to offer the right level of abstraction to be influential to the present work. However,

concrete evidence for the existence of different attentional processes has been uncov-

ered by neuroscience, as discussed below. All types of these processes are directly ad-

dressed in the context of intelligent systems in the present work.

4.2.1 P300

Measurements of event-related potential (ERP) have provided neuroscientists with a

useful method to noninvasively study the function of the brain. ERP is a measured re-

sponse of the brain, in terms of electrical signals emanating from the scalp, resulting di-

rectly from a specific sensory, cognitive or motor event (Luck 2005). Early work in

neuroscience found that ERP measures of response to stimuli was different for stimuli

meaningful to the subject based on their current tasks and stimuli that was not (Chap-

man 1964). This differential response to stimuli on the basis of meaning to an individual

became known as the P300 response. The name reflects that the response occurs ap-

Helgi Páll Helgason 53

proximately 300 milliseconds after exposure to salient stimuli. Further studies found

that that the novelty and unexpectedness of stimuli also affected this response and that

the P300 response was modality-independent, at least to some degree, as it was ob-

served for both visual and auditory stimuli (Sutton 1965). Furthermore, the P300 re-

sponse was shown to occur even in the absence of task-related stimuli hinting at the par-

ticipation of a neural mechanism for detecting broken expectations (Sutton 1967).

Subsequently, two separate components of the P300 signals were identified: P3a and

P3b (Squires 1975). The P3a is also referred to as novelty P3 and is associated with in-

voluntary attentional shifts to changes in the environment and the processing of novelty

(Polich 2003). The P3b is associated with improbable, surprising stimuli, with the mag-

nitude of the measured response being relative to the level of improbability or surprise.

However, P3b has only been found to occur for stimuli that are associated with tasks

(Donchin 2007). Practical applications of the P300 response have included measure-

ment of cognitive function and cognitive workload demand in addition to lie detection,

where it is increasingly replacing conventional polygraphs (Farwell 2001).

The neural mechanics of the P300 response remain somewhat unclear to neuroscientists.

However, the signal represents evidence for a neural mechanism to detect novel or un-

expected events in addition to broken expectations. While one may argue that evidence

of such mechanisms can be found by observing the behavior of ordinary humans in eve-

ryday life, the work has found practical applications and provides support for some of

the requirements presented in Chapter 6.

Sarter (2001) provides a description, based on findings from studies of humans and an-

imals, of neural circuits that implement sustained attention and how these are disassoci-

ated with circuits responsible for bottom-up attention, implying separate functional

components for top-down and bottom-up attention in humans.

4.2.2 Gamma Band Activity

Recently, recording technologies and tools for analysis have been developed that allow

a more detailed examination of low-amplitude cortical oscillations; in particular the 30-

100 Hz range which is called the Gamma band. In Kaiser (2003), research on Gamma

band activity using a combination of intracortical recordings, EEG and MEG have

identified an important role of this signal in a range of cognitive processes. These

include top-down and bottom-up attention in addition to learning and memory. The

results are interpreted as demonstrating that rather than being mostly focused on

perception, the main task of the brain is to anticipate specific requirements related to

54 General Attention Mechanism for AI Systems

tasks and activate corresponding structures. This may be viewed as support for the

important role of predictive functionality in human cognition.

4.2.3 Attentional Blink

The attentional blink is a phenomenon discovered in rapid serial visual presentation

tasks where subjects frequently fail to detect a second salient target stimuli, after having

correctly identified the first, if the second target stimuli is presented at a particular

interval of time (150-450 ms) after the first target stimuli (Raymond 1992).

Subsequently, evidence was found in neuroscience for the attentional blink that

confirmed it to be the result of limitations in post-perceptual processes rather than a

limitation of perceptual processes (Vogel 1998).

4.2.4 CODAM

The CODAM (Corollary Discharge of Attention Movement) model of attention is

grounded in evidence from neuroscience (Taylor 2007). The most important feature of

this model is that the control signal for orienting attention is duplicated, being sent not

only to mechanisms carrying out attentional orientation but to working memory

mechanisms as well in order to prime working memory for new information that is

likely to be forthcoming due to the shift in orientation. The authors believe this

duplication of the control signal allows for faster and more efficient access to relevant

information in working memory, and furthermore that it is intrumental in giving rise to

consciousness.

Figure 4.3: The CODAM model of attention (from Taylor 2007).

Helgi Páll Helgason 55

In CODAM, attention is viewed as a high-level controller for lower-level brain

mechanisms. An overview of the model is shown in Figure 4.3, where IMC (Inverse

Model Controller) generates a feedback control signal for orientation of attention, which

is sent to both perceptual mechanisms to execute reorientation and to the working

memory for priming expected information, reducing effects from distractors and quickly

activating an error signal if intended goals of the system are not realized. The Goals

module transmits information with regards to intent of the system to the IMC while the

Input module is the source of new information to be perceived. The copy of the

attention control signal that directly affects working memory is called the corollary

discharge and activates a predictive forward model in the Corollary Discharge module

which in turn generates expectations with regards to what information is about to be

attended. An error monitor (Monitor) generates an error signal based on the differences

between what the system intended to observe versus what it actually observes.

While CODAM is a plausible model of some aspects of human attention due to its

grounding in neuroscience, the level of abstraction at which the model is presented

makes it somewhat difficult to relate to the present work. However, it does establish

predictive functionality as an integral part of attention and the failure of predictions as

triggering events for reactive behavior.

57

Chapter 5

Constructivist Methods for AGI

When considering information processing systems that possess intelligence operating in

complex environments under various time-constraints, as defined by Wang (2006), the

need for introspective capabilities on part of the system quickly becomes apparent. Ad-

aptation under limited knowledge and resources is central to this view of intelligence.

In environments that produce abundant sensory information the resource management

problem is critical because the processing capacity of the system is vastly overpowered

by the amount of information generated by the environment, requiring the system to

constantly monitor and anticipate usage of resources – an activity which again requires

introspective functionality. Meta-learning, self-configuration and adaptive attention are

other examples of introspective operation, some – and likely all – of which may be de-

sired as well. Traditional agent models (cf. Russell & Norvig 2003) can theoretically be

applied to systems exhibiting these qualities, assuming that introspective operations oc-

cur within a “box” (the agent) already present in the model. However, this approach

oversimplifies the problem and obscures important elements of the systems operation.

Furthermore, it does not provide any support in generating these introspective abilities.

A strong argument can be made for there being substantial benefit to a different ap-

proach, namely extending how the environment and the body of the agent are defined to

include the internal environment of the system itself. This view produces a unified sen-

sory pipeline8 where information from the external environment and information from

the internal environment are observed and processed in an identical fashion.

Mainstream methods for software development are constructionist (Thórisson 2012a,

Thórisson et al. 2004); they rely on manual design and hand-coded implementation of

systems, resulting in static structures and static capabilities during operation. The ap-

proach includes virtually all AI systems developed to date. Systems based on a con-

structionist approach tend to be operationally fragile as they cannot tolerate situations

8 For a review of the state-of-the-art in sensory pipeline unification, the reader is referred to section 9.4.

58 General Attention Mechanism for AI Systems

beyond those intended by the system designer; most significant changes to the system’s

tasks or its environment call for a manual reconfiguration of the system. While tradi-

tional engineering practices see this as a “feature”, artificial general intelligence (AGI)

sees this as a “bug”. Like software engineering in general, the field of AI has relied on

constructionist methods so far, achieving great success in building modular systems that

address isolated pre-specified problems: narrow AI systems. However, the success of

constructionist methods in narrow AI systems does not necessarily translate well to AGI

systems – if at all.

As an example, consider that the operating system Microsoft Windows XP has 40 mil-

lion lines of program source code9. Being a highly modular software system, under-

standing the effects of all possible interactions in such a system is already a significant

challenge of complexity for any team of software engineers, regardless of size or capa-

bility. The number of bug-fixing updates (being in the hundreds) released for this par-

ticular operating system supports this view and is not unusual for popular operating sys-

tems of comparable complexity in general. An operating system is responsible for

providing a user interface, managing hardware resources (computation, memory, disk

space), controlling communications with various hardware devices (monitors, mice,

keyboards, printers, etc.) and other tasks. While this may sound complex, the sharp dif-

ference in complexity between the operation of a modern operating system and a hu-

man-level intelligence embodied in the real world should be obvious. The human brain

has one hundred billion neurons and each neuron has 7.000 connections to other neu-

rons10 on average. It is not necessary to establish any type of equivalence between a line

of program code and a neuron to see that the complexity of human-level intelligence is

orders of magnitude beyond the complexity of an operating system, even if only a frac-

tion of the neurons are involved directly with what we consider intelligence. The neo-

cortex alone, a region of the brain that is most frequently associated with general intelli-

gence in humans, contains roughly 30 billion neurons11. As stated by Thórisson (2012a),

“available evidence strongly indicates that the power of general intelligence, arising

from a high degree of architectural plasticity, is of a complexity well beyond the maxi-

mum reach of traditional software methodologies”.

For there to be any chance of success in building AGI system capable of achieving near-

human levels of intelligence, new software development methodologies are desperately

needed. Given the complexity of the task and cognitive limitations of human software

engineers, such methodologies must follow a radically different approach than the

methodologies of today. As we stand very little chance of manually implementing these

9 http://en.wikipedia.org/wiki/Source_lines_of_code
10 http://en.wikipedia.org/wiki/Neuron
11 http://en.wikipedia.org/wiki/Neocortex

Helgi Páll Helgason 59

kinds of systems directly, we must abandon current approaches of manual system de-

sign, leaving only the option of delegating a large part of the software engineering work

onto the AGI systems themselves. Another equally important reason for abandoning

modern software methodologies as the (only or main) way to implement AGI systems is

the fact that unlike systems targeted to solve a single or a set of pre-defined simple

tasks, an AGI system may encounter completely novel tasks, scenarios, and even oper-

ating environment. Unless the systems have some sort of self-modification capabilities,

radical changes in the environment or tasks of targeted systems will clearly lead to a to-

tal operational breakdown.

“One way to address the challenge of artificial general intelligence

(AGI) is replacing a top-down architectural design approach with

methods that allow the system to manage its own growth. This calls

for a fundamental shift from hand-crafting to self-organizing architec-

tures and self-generated code – what we call a constructivist AI ap-

proach, in reference to the self-constructive principles on which it

must be based. Methodologies employed for constructivist AI will be

very different from today’s software development methods; instead of

relying on direct design of mental functions and their implementation

in a cognitive architecture, they must address the principles – the

“seeds” – from which a cognitive architecture can automatically

grow.”

- Kristinn R. Thórisson (Thórisson 2012a, p. 147)

Thórisson (2009, 2012a) has proposed methodological principles intended to facilitate

the creation of AGI systems that manage their own growth during operation, from a

manually created initial-state, referred to as a seed, to complement the growth metaphor.

Termed constructivist AI for its emphasis on self-constructing principles, this methodol-

ogy especially targets the architecture level of such systems and identifies several fea-

tures which must be architecturally supported such as tight integration, transversal

functions, real-time processing and large size (Thórisson 2012a, p. 152-153). Further-

more, AGI-aspiring constructivist systems must be fine-grained to allow for the neces-

sary dynamic communication patterns necessary to support these features (Thórisson

60 General Attention Mechanism for AI Systems

2009, p. 178); the more coarse-grain an architecture is, the fewer possible ways its indi-

vidual components and building blocks have to interact, and the more is hidden inside

“black boxes”, outside of the system’s ability to self-inspect.

Thórisson’s constructivist AI methodology is inspired partly by Piaget’s theory of cog-

nitive development (c.f. Wadsworth & Gray 2004), which is a comprehensive stage-

based theory of the development of human intelligence. Drescher (1991) has presented a

theory of developmental learning for AI systems using schema mechanisms based on

Piaget’s theory. Like Drescher, Thórisson’s approach assumes that knowledge builds up

over time via interaction with the world. However, taking the idea to the next level,

Thórisson takes a more radical approach proposing that not only the knowledge but also

that mature cognition – the cognitive processes themselves – emerge through interaction

and experience with the environment via controlled self-programming of large parts or

even the entire cognitive architecture. This view requires the methodology to be thor-

oughly grounded in the constructivist framework as well. The methodology is also in-

spired by and related to second order cybernetics (c.f. Heylighen 2001), which refers to

a self-organizing view of cybernetics where the investigator is part of the system. Thó-

risson expands on the idea of developmental, constructivist AI design, addressing meth-

odological assumptions by extending the scope to cover automatic management of con-

trol structures and system architecture as opposed to focusing exclusively on the

knowledge of the system.

The new constructivist AI methodology proposed by Thórisson relies on the same type

of unified sensory pipeline that was discussed earlier; directed self-growth requires sub-

stantial introspective capabilities on part of an AGI system in order to monitor, evaluate

and modify its own operation and structure. Furthermore, a unified sensory pipeline al-

lows for the identical application of virtually all cognitive functions to internal and ex-

ternal information without dedicated mechanisms being required for each.

In the present work, a constructivist AI methodology is adopted as it represents a meth-

odology on which future AGI systems are likely to be built, providing plausible ideas to

create significantly more flexible and adaptable software systems than seen to date. At-

tentional functionality is critical to systems based on a constructivist methodology as

the implicit introspective processes involved with self-directed growth must operate on

a large stream of information from the internal environment of the system.

61

Chapter 6

Requirements for an AGI Attention

Mechanism

This chapter focuses on requirements for attention in artificial general intelligence

(AGI) as viewed by the present work. The requirements that are discussed result from

several factors and are grouped here according to their nature. First, design require-

ments are discussed, which are constraints relevant to design and scope of the attention

mechanism proper, as implemented within an AGI architecture. This is followed by

functional requirements, which capture the intended purpose and behavior of the atten-

tion mechanism. Finally, architectural requirements are discussed, which represent a

criteria that a surrounding AGI architecture must meet in order to be an eligible host

target for implementation of this attention mechanism.

Before proceeding, the top-level design goal guiding this work is as follows:

Top-level goal: The attention mechanism of an AGI system must enable the

system to pursue goals while being reactive to unexpected events in dynamic

environments of real-world complexity containing abundant information, while

operating with limited resources and time constraints.

6.1 Design Requirements

The design requirements of the attention mechanism result from (a) the operational ca-

pabilities that this work aims to bring to AGI-level systems as well as (b) how this work

62 General Attention Mechanism for AI Systems

is meant to contribute to the field of artificial intelligence. These represent the funda-

mental requirements that have guided and given scope to subsequent work.

As the work is aimed at AGI systems, it is appropriate to address the “G” first. Gener-

ality has a dual meaning in relation to this work. First, a goal of achieving architectural

independence would seem highly desirable. Achieving architecture independence calls

for a highly general design, and possibly contingencies, as architectures vary wildly in

their operational principles and structures (c.f. Duch et al. 2008, Thórisson & Helgason

2012). A requirement of architecture independence is a conscious decision, attempting

to maximize the contribution of this work to the field of artificial intelligence and com-

puter science. As discussed in earlier chapters, when the function of attention is viewed

as holistic, unified resource management, there is a large gap in the body of existing

work on artificial intelligence. Few attempts have been made to answer the question of

how AGI systems will be able to operate in complex environments under real-time con-

straints with limited resources. Unfortunately, achieving this design requirement in a

strict sense is practically impossible, as the functionality required for this type of atten-

tion mechanism is simply too pervasive in and interconnected to the surrounding archi-

tecture; it is not possible to penetrate lower layers of abstraction and detail for operating

principles without making some assumptions with regards to the surrounding architec-

ture. Given these considerations, a weaker form of this requirement – targeting qualified

architecture independence – can be stated, and is targeted here.

Design requirement #1: The attention mechanism must be applicable to the

full range of possible cognitive architectures that meet its architectural require-

ments.

The success of this design goal can be measured by how severely the architectural re-

quirements narrow the set of potential target architectures. It should be explicitly stated

that unqualified success for the goal of architecture independence was never expected.

In the context of AGI systems, there are different ways to interpret the meaning of

“generality”. In the narrowest sense, an AGI system would need to be capable of adapt-

ing to changes in tasks and the operating environment in one type of environment, spec-

ified to some arbitrary level of detail. Consider for example a household robot responsi-

ble for doing chores in a typical home environment. If such a robot is capable of suc-

cessfully adapting to changes such as the appearance or disappearance of furniture, ap-

Helgi Páll Helgason 63

pliances and residents – and how these changes affect its tasks – the cognitive architec-

ture of the robot, even though specifically designed for a home environment, can be said

to meet the narrowest requirements of AGI. The type of generality exhibited in this ex-

ample will be referred to as task-generality.

In contrast, let us consider an AGI system that is designed to support any type of envi-

ronment that can be observed using human-inspired sensory modalities (vision, audito-

ry, tactile etc.) while satisfying task-generality. Such a system could potentially be de-

ployed in virtually any existing physical environment in the known universe. However,

as physical environments may not be the only environments of interest for AGI systems,

this type of generality will be referred to as weak environmental generality.

The final stop on the generality dimension is an AGI system that maintains task-

generality but can support any type of environment – not only physical three dimen-

sional environments – as long as there are sensors that can sense the environment and

actuators that can change it. As we drop the dependence on human-inspired modalities,

a vast range of non-physical environments become open to application. For example,

such a system might be deployed to trade financial instruments on stock markets, learn-

ing efficient trading strategies while sensing price changes and other channels of infor-

mation that are far removed from human sensory channels. This type of system displays

a type of generality that can equally be referred to as embodiment-generality or strong

environmental generality.

As this work adopts the definition of intelligence proposed by Wang (2013; see chapter

2), intelligence is viewed as a general capability independent of embodiment and envi-

ronments. Accordingly, this work targets AGI systems at the far end of the generality

dimension.

Design requirement #2: The attention mechanism targets AGI architectures

that support generality in tasks, embodiment and environments. Limiting as-

sumptions for tasks, embodiment or environments are avoided in its design.

As is implied by embodiment-generality, the attention mechanism proposed here does

not limit channels of sensing or actuation to a predefined set. This leads to a uniform

approach where all modalities are treated in an identical fashion while – for reasons of

practicality – modality-specific preprocessing is allowed. For example, it is not difficult

to see that tackling vision by working with single pixels at the cognitive level is hardly a

64 General Attention Mechanism for AI Systems

practical approach. Preprocessing of visual information that results in higher level fea-

tures being the actual inputs to the cognitive level is a more realistic solution. However,

this may be viewed as a change to the sensor rather than the cognitive part of an AGI

system. One camera sensor may supply raw pixels while another supplies a stream of

higher level visual features. For the system, these are simply two different sensors.

Design requirement #3: The attention mechanism treats information from all

sensory modalities in a uniform fashion. Modality-specific preprocessing should

be viewed as belonging to a sensor.

In chapter 5, the constructivist AI methodology (Thórisson 2012a) was reviewed and

motivation given for why this work adopts such a methodology. Any system tasked

with controlling its own growth in a directed fashion down to the architecture level re-

quires substantial introspective capabilities, both in terms of observation and under-

standing. As discussed earlier, practical AGI systems will display significantly greater

complexity than currently existing software systems, containing vast numbers of inter-

acting components. With this in mind, the internal activity of such a system may be

viewed as a rich sensory channel that must be monitored and selectively processed by

the system. It is entirely reasonable to assume that attentional functionality will be re-

quired on the internal side as well to enable meta-cognitive functions responsible for

system growth to operate in real-time while system resources remain limited. Why im-

plement a separate attention mechanism for this purpose, when a general attention

mechanism is already in place? Due to the generality of the attention mechanism pro-

posed in this work – its independence from domain-specific semantics of the input data

– nothing precludes the internals of a system constructed according to its principles to

be viewed as a separate environment or an addition to the external environment in terms

of attentional functionality. The potential benefits of applying the same attention mech-

anism to the external environment as well as the internal environment, for directed self-

growth, are significant: It greatly simplifies design and implementation as resource

management is treated in a holistic fashion throughout the system and also implies that

any improvements to the attention mechanism will be reflected both in improved per-

formance on tasks as well as improved functionality for self-growth.

Helgi Páll Helgason 65

Design requirement #4: The attention mechanism must target both external

and internal information (information coming from the environment as well as in-

formation coming from within the system).

As tasks and environments of AGI systems are not specified at design time – and these

may change once the system has adapted to them – a fixed mechanism for attention and

resource management seems inefficient and problematic. Using operational experience,

the control of attention may be improved over time identically to how experience can

allow for improvements in task performance in the external environment. Like any other

task that the system performs, the control of attention should be viewed as a skill that is

continuously learned over time in a dynamic fashion. In fact, control of attention and

management of resources are part of learning and performing all cognitive-level pro-

cessing. Concretely, this means that when faced with a state in the environment that is

identical to states that have been observed before, the attention mechanism will operate

(if possible) in a more “optimal” fashion than before, in the sense that resources should

not be allocated to information or processes that generated no value on earlier occasions

and the likelihood of information receiving processing that was later found to be rele-

vant but missed on earlier occasions increases. The learning produced in this adaption

process needs to be transferrable, not just improving operation in future identical situa-

tions but applicable to situations sufficiently similar to be useful.

Design requirement #5: The attention mechanism must be adaptive in the

sense that its behavior is influenced by prior operational experience in a rational

way.

6.2 Functional Requirements

This section introduces and motivates several functional requirements for the attention

mechanism. These are stated at lower levels of abstraction than design requirements and

result from reviewing existing work – and gaps therein - on attention in the field of AI

as well as literature from the field of cognitive psychology. The policy adopted for in-

spiration from cognitive psychology (biological inspiration) is to incorporate concepts

and ideas that seem necessary or promising to attention for AGI systems while biologi-

66 General Attention Mechanism for AI Systems

cal limitations are not of interest as the goal of the work is not to replicate any existing

biological attention mechanism to detail. With regards to level of abstraction and the re-

quirements, the first design requirement (architecture-independence) should be kept in

mind. This requirement constrains discussion of functionality from low levels of ab-

straction.

A concentrated, deliberate form of attention, related to a system’s goals, is referred to as

top-down attention. This function of attention has been shown in humans to be heavily

influenced by current tasks, which is not a surprising result. In a similar manner, an

AGI-level system must focus its top-down attention based on currently active goals. In

addition to goals, expectations also represent necessary control information for top-

down attention as humans have been shown to display greater alertness to sensory re-

gions and channels where new, relevant information is expected. The concept of top-

down attention is a core part of the cognitive process and essential for attention mecha-

nisms. Without detection of information relevant to current goals, the probability of

achieving them – at least in an efficient manner – is greatly reduced.

In order to sense if the operating environment is behaving in an expected fashion, the

system must monitor the results of its own predictions. It is important to detect failed

predictions as such cases indicate a faulty understanding of the environment and/or the

present situation and represent opportunities for learning as well as impacting next steps

of processing.

We must clearly distinguish between two types of unexpected events in the operating

environments that AGI systems will encounter, as two separate attentional functions are

required to detect these two different types of events. When an event occurs that is

completely unexpected, in the sense that no predictions existed prior to its occurrence

regarding whether or not it would occur, such an event will be said to be implicitly un-

expected. Such events imply that the system had no expectations of any kind with re-

gards to this event. When the occurrence of an event represents a failure of an existing

prediction, in the sense that an existing prediction explicitly describes the event as not

occurring, the event will be said to be called explicitly unexpected. Examples of such

events include cases where an existing prediction “The event A will not happen in

timeframe TF” is active and the event A does occur in the timeframe. Another form of

such an event is when an existing prediction “The value of X at time T will be 50” is ac-

tive and the actual value of X at time T is not equal to 50. An event that occurs and was

correctly expected by an existing prediction is said to be explicitly expected. Detection

of explicitly expected events is necessary in order to validate the knowledge or process-

es that produced the underlying prediction.

Helgi Páll Helgason 67

Functional requirement #1: The attention mechanism must include top-down

attentional processes that detect goal-relevant information and events that are

explicitly expected or explicitly unexpected in the operating environment.

The early vs. late selection issue for attention in cognitive psychology highlights that

early selection principles are not fully plausible in terms of explaining human behavior

and also problematic for attention for AI systems. Early selection models have difficulty

explaining how unexpected but important information can penetrate higher levels of

cognition as little or no analysis of meaning is performed. To be explicit about what is

meant by “meaning”; this is the process of relating new incoming information to exist-

ing knowledge and experience of a human or engineered intelligent system. We have

seen that some examples of human behavior contradict the early selection paradigm,

such as noticing one’s own name being called from across the room in a crowded, noisy

cocktail party (Cherry 1953). Furthermore, the capability of allowing unexpected but

potentially important information to penetrate cognition has functionally equivalent val-

ue for AI systems as for humans. It is not clear by what means other than semantic pro-

cessing such events could be caught; events that may not be directly goal-related to any-

thing going on at the moment but may still imply imminent goal failure or represent

necessary triggers for the generation of new goals. Ignoring vast amounts of information

without analysis of meaning introduces operational risk as the issue of whether the in-

formation has current relevance is left unresolved.

Functional requirement #2: The attention mechanism must include bottom-up

attentional processes that detect implicitly unexpected events in the operating

environment.

The types of systems being targeted by this work operate under time-constraints and

limited resources in environments of real-world complexity. Top-down and bottom-up

attentional processes must run simultaneously to allow the system to work towards

achieving goals while remaining reactive to changes and unexpected events in the envi-

ronment. It should be noted that attention is a top-level process of the whole system and

cannot rely on other processes triggering it (that would displace the function of attention

to those other processes).

68 General Attention Mechanism for AI Systems

Functional requirement #3: The attention mechanism must continuously run

top-down and bottom-up attention processes in parallel.

Another potential problem of early selection approaches to attention is that resource

management decisions such as allowing a data item to receive further processing are

made early when the availability of resources at such a time that the data will receive

processing is unknown. Furthermore, such decisions must necessarily be very coarse-

grained as they involve acceptance or rejection of data items with nothing in-between.

Effectively, the decision step either guarantees the particular data item further pro-

cessing or excludes it from ever having an opportunity to receive processing. From a re-

source management perspective, it is more feasible to defer processing decisions until

just before the processing is ready to occur and current resource availability is known.

How can such an attentional process determine when it has selected a sufficient amount

of data for processing such that resources will be fully utilized, considering that each

data item may get different levels of processing at next stages and that other processes

(top-down processes in particular) are simultaneously influencing resource management

as well? This represents a complex problem, but one which can be avoided with the

right design.

There are additional practical problems with single-step selection. One of the main pur-

poses of attention for intelligent systems is to enable the system to operate in real-time

while having greatly insufficient resources to process all available information. Consid-

er all of the factors that influence information selection and the amount of information

that such systems are likely to face, even after information selection has occurred. The

single-step selection process itself is clearly a resource-intensive process involving large

amounts of data and computation. Implementing this as an uninterruptable, atomic op-

eration in the system will unavoidably have a negative effect on the reactiveness of the

system. During this period of ballistic operation, new events may occur in the operating

environment that change the existing assumptions that guide ongoing active information

selection process, rendering the results of this process obsolete before it even finishes.

Functional requirement #4: The attention mechanism must guarantee respon-

siveness by avoiding any time-consuming atomic, uninterruptable processes or

control loops.

Helgi Páll Helgason 69

With regards to early selection vs. late selection, two issues require some thought. The

first is the early dismissal of information without analysis of meaning. As has already

been discussed this is problematic as detection of – and reaction to – unexpected but

relevant information is difficult to achieve. For this reason, late selection models from

cognitive psychology represent a more plausible approach to achieving human-like in-

telligence in engineered systems (c.f. Knudsen 2007, Norman 1969, Lavie 1995, Miller

1988, Keele & Neill 1978), as well as explaining attention in humans, than other models

proposed. The second issue is the manner in which processing decisions are made. Early

selection models typically make hard binary decisions very early in the sensory pipeline

as to whether a data item receives further processing; either-or decisions. For this rea-

son, they are frequently referred to as filter models. The Broadbent filter model is repre-

sentative example. In addition to problems discussed earlier, filter-based approaches

make any kind of re-evaluation of relevance difficult at future steps as the rejected data

item becomes inaccessible. Resource utilization is difficult to control as well using fil-

ter-inspired attentional processes as was discussed earlier.

A number of late selection models (such as the Knudsen Attention Framework, see

Knudsen 2007 and pages 49-50 above) are based on a process of competitive selection,

where units of data are typically activated to varying degrees depending on their present

relevance. The strength or quantity of this activation indicates the determined relevance

of each item. This may be viewed as a prioritization process, as activation is equivalent

to priority in this case. Following such approaches, data items can remain accessible for

further processing as there is no rejection of data involved, only different levels of prior-

ity being assigned. Furthermore, resource utilization is straightforward as processing

decisions can be made just before start of execution when resource availability is

known, applying available resources to data items in descending order of priority. This

makes a strong case for prioritization-based approaches, inspired by competitive selec-

tion, as opposed to filter-based approaches.

Functional requirement #5: The top-down and bottom-up processes of the at-

tention mechanism must collectively quantify the relevance of data items, col-

laboratively implementing prioritization of information.

Functional requirement #6: The attention mechanism must assign processing

resources to data in proportion to its relevance, as determined collectively by

the top-down and bottom-up attentional processes.

70 General Attention Mechanism for AI Systems

Attention is most widely understood as an information selection (reduction) process, al-

lowing certain aspects of the environment access to awareness while excluding others.

However, this conventional view of the phenomenon omits some important issues. An

interesting aspect of the Knudsen Attention Framework is that the process of attention is

not simply viewed as selecting sensory information that is admitted into working

memory. The diversity of the types of information (sensory, motor, stored memories

and internal states) that compete for access to working memory unveils another side of

attention: process control. Considering that the framework places motor knowledge (a

specialized form of procedural knowledge) in the domain of attention, it is not far-

fetched that other types of procedural knowledge, such as internal information pro-

cessing functions, belong in the domain of attention as well. For example, the act of

mentally adding two numbers can be viewed as such a process, activated on demand by

working memory.

If attention is viewed as a process solely concerned with information selection, some

important aspects of resource management remain unaddressed. In the biological case,

this omission might be accepted if we take a view that the wiring of the neurons in the

brain is simply “just right” to trigger useful, rational processing based on whatever in-

formation it receives – that routing information and selecting how to process it is simply

beyond the scope of attention in the world of biology. However, this point of view is

much less valid for engineered systems since we are working from the other end: We

must explain how to engineer the whole system from the ground up. Implementing an

attention mechanism in the absence of an integrated resource management strategy is

not likely to be very fruitful.

It is possible to maintain the same information selection view of attention for AI sys-

tems and in fact this is done in most existing AI systems making any attempt to address

attention that have been implemented to date. However, this leaves us the task of de-

signing a separate control mechanism that decides how to process information that is se-

lected by attention. In the end, the decision of whether to include process control in at-

tention for AI systems can be said to be a conscious decision of scope and ambition; it is

clear that process control will not be carried out by the exact same functions as infor-

mation prioritization and that even if we follow a unified approach, the attention mech-

anism will in some way remain decomposable to its information-prioritization and pro-

cess control functionality. Leaving out the control part of attention for AI systems

seems a rather arbitrary decision, since the prioritization, association mechanisms, and

allocation of processor time to processes is rather interlinked and co-dependent. It

seems more reasonable to describe and design all mechanisms related to resource allo-

Helgi Páll Helgason 71

cation together, as a whole, so that the operation of the full system may be determined

as a unit and implications of the design more readily and immediately apparent. Fur-

thermore, different approaches to information selection and process control may include

architectural requirements in both categories that may be incompatible when combined.

For these reasons, I make the conscious decision of including process control in the at-

tention mechanism.

Although process control requires dedicated functionality, there are similarities with in-

formation selection at higher levels of abstraction if the problem is framed as process

selection or process prioritization, which is only a conceptual change as the full, com-

plete set of system processes will not be able run simultaneously in any non-trivial AGI

system. This means that there is no way around process control involving process selec-

tion. As with prioritization of information (as a way to implement information selec-

tion), the competitive selection approach is a rational choice for process selection for

many of the same reasons as in the information selection case. Again, resource utiliza-

tion becomes more tractable when processing decisions are made as close to the begin-

ning of execution as possible as opposed to being made in a single step process. Choos-

ing process prioritization versus single-step selection allows multiple factors to be taken

into account over some period of time, resulting in higher quality processing decisions

and avoiding a time consuming uninterruptable atomic process. For these reasons, it

seems rational to approach process control from a perspective of competitive selection

based on prioritization, where processes compete for resources based on quantified es-

timates of their current relevance.

Functional requirement #7: The attention mechanism must continuously eval-

uate the relevance of available processes.

Functional requirement #8: The attention mechanism must assign processing

resources to processes in proportion to their relevance, as determined by the

process selection functionality of the mechanism.

Attentional processing itself clearly requires some fraction of system resources. While

care needs to be taken to avoid a line of thought leading to infinite recursion and loops

in this context (as attentional functionality may be viewed as controlling attentional

functionality in an all-inclusive approach to the phenomenon such as this one), some

72 General Attention Mechanism for AI Systems

consideration of resource consumption of attentional functionality is in order. As de-

fined in this work, an attention mechanism is intended to be an integral part of the sys-

tem, being responsible for system-wide resource management and control of cognitive

processing. The kinds of architectures being targeted have already been constrained to

systems having some level of introspective capabilities due to design requirement #4: a

unified sensory pipeline processing external and internal information identically. For

this reason, some external control from other functions of the hosting cognitive architec-

ture is conceivable. If a way is provided to control the attention mechanism in some

way, these “control knobs” could be operated by other parts of the system in an intro-

spective, self-controlling fashion. But what features of attentional operation should the

system be allowed to control in this way and for what purpose? Before proceeding, the

boundary between prioritization of information and processes and process execution

needs to be made explicit.

Functional requirement #9: The attention mechanism (or the hosting AGI ar-

chitecture) must contain a primitive, fixed and deterministic core control mecha-

nism whose scope is strictly limited to allocating resources according to the pri-

oritization resulting from attentional processing. In the absence of such prioriti-

zation, as occurs when attentional processing is deactivated, the core control

mechanism will continue to operate but processing decisions will be arbitrary,

unpredictable and undirected (in terms of system goals).

The core control mechanism should be responsible for all process execution within the

system; the result of disabling this mechanism will result in the system ceasing to be

operational (not initiating execution of any processes). This separates the process of

generating the control data for attention (information and process relevance) from the

actual execution of processes. This way, other functions of the attention mechanism can

theoretically be tuned for different resource consumption and even deactivated com-

pletely without causing the system to break operationally, although the performance (in

terms of goal achievement) of the system may be dramatically impacted.

Firstly, this separation allows for controls that are useful for evaluation of the attention

mechanism. This provides a way to measure and compare different settings of attention,

helping to refine functionality of future versions and gather results that further justify

researching attention as a critical function of AI systems. The attention mechanism con-

sists of different processes that have been identified earlier in this section:

Helgi Páll Helgason 73

 Top-down prioritization of information (functional requirement #1)

 Bottom-up prioritization of information (functional requirement #2)

 Prioritization of system processes (functional requirement #7)

As functional requirement #8 clearly separates attentional processes and process execu-

tion, the balance between these three functions can be adjusted at will in terms of re-

source consumption. Any one of the functions can be turned off completely or the bal-

ance of resources assigned to each changed while the total amount of resources provid-

ed to attention remains constant. The total amount of resources provided to attention can

also be changed. In addition to being useful for research evaluation, these resource con-

sumption controls of the attention mechanism may be used by the system itself at

runtime. For example, a system might decide to increase the weight of bottom-up atten-

tion processing – at the expense of other attentional functions - during periods where

many unexpected changes are occurring in the environment or increasing the weight of

top-down attention when a deadline approaches for an active goal that remains

unachieved. An AI architecture with sufficiently advanced introspective capabilities

could learn to operate these controls to dynamically improve performance.

Functional requirement #10: The attention mechanism must provide the host-

ing architecture with controls for: (a) Adjusting overall resource consumption of

attention processes, (b) Adjusting resource consumption of top-down and bot-

tom-up information prioritization and (c) Adjusting resource consumption of pro-

cess prioritization.

6.3 Architectural Requirements

The final set of requirements deal with the architecture hosting the attention mechanism.

Our first design targeted requirement above was architecture-independence, but as ex-

plained this requirement is unrealistic without some qualification due to the pervasive

nature of attention (as approached in this work) and its system-wide functionality. To

reach below the highest levels of abstraction when discussing the functionality of an at-

tention mechanism such as this one, some assumptions must be made to allow for a

more concrete design and discussion. These results in architectural requirements: Crite-

ria which an architecture must meet in order to be a candidate host for the attention

74 General Attention Mechanism for AI Systems

mechanism. The precise requirements that have been identified are the result of the de-

sign requirements and the functional requirements. These are requirements that architec-

tures must satisfy for being capable of hosting the proposed attention mechanism. It is

hypothesized that they represent also, to some extent, universal requirements for any at-

tention-implementing AGI system, but this hypothesis is only addressed superficially in

this thesis.

First, the issue of real-time operation will be discussed. As stated in functional require-

ment #4, the attention mechanism is required to be reactive and avoid time-consuming

atomic operations. This feature of its operation will be reflected in the operation of the

surrounding system unless the architecture of the system meets the same requirement.

The availability of a dynamic up-to-date prioritization of available information and pro-

cesses is not useful if process execution is lagging far behind. To support interruptible

and reactive operation, control of processing must be fine-grained. This implies a large

collection of small processes as opposed to a smaller collection of large processes (Thó-

risson & Nivel 2009). The concept of process size is used here to reflect the resource

consumption of a process rather than indicating lines of code or other properties. Fur-

thermore, small processes cannot be expected to process amounts of information that

are extremely large in proportion. In the case of attention, determining the relevance of

a very large item of information may result in a time-consuming atomic operation, vio-

lating functional requirement #4. This implies that not only the processes of the system,

but data items as well, should be fine-grained.

There are additional reasons that support this requirement related to constructivist AI

methodologies. For directed self-growth to be possible, the system must be able to rea-

son about the effects of changes to its structure and operation. If individual processes of

the system are large and complex, this becomes a practically intractable problem. Rea-

soning about small, simple components and their effects on the overall system (e.g. in

terms of resource usage) is more tractable than for larger, more complex components.

Fine-grained processes put such introspection more easily within reach. The complexity

of each process does not limit the complexity of high-level goals that can be achieved

by systems based on the architecture; such limitations can be fully addressed by the col-

laboration of many small processes.

Architectural requirement #1: The hosting architecture must be

based on fine-grained processes and units of data.

Helgi Páll Helgason 75

Fixed, elaborate control loops and global processing cycles are problematic for support-

ing real-time operation as these represent uninterruptible periods of processing. These

kinds of control loops can be avoided if the hosting architecture is data-driven, with all

processing being triggered by the occurrence of data. When combined with fine-grained

data and processes, a data-driven architecture can incrementally perform simultaneous

processing of multiple goals over time, where each goal has a potentially unique time-

scale, while remaining reactive to new events. In this case, such complex processing be-

comes dynamic, not being preplanned but reacting to intermediate results as they be-

come available to potentially alter next steps. This phenomenon has been referred to as

reactive planning (Firby 1987) and provides significant flexibility to the control of the

system as well as the ability to efficiently use available resources.

Architectural requirement #2: The hosting architecture must be da-

ta-driven, in the sense that processing is triggered by the availability

of data.

Design requirements #3 and #4 imply a unified sensory pipeline where all data is given

equal treatment regardless of origin. These requirements are motivated in the chapter on

design requirements and lead directly to the following architectural requirement, which

essentially allows all cognitive functions of the architecture – attention, in particular –

to be applied equally to task performance and meta-cognitive processing (e.g. self-

configuration). Alternatively, this may be viewed as a requirement for homogenous data

and processing items in the architecture.

Architectural requirement #3: The hosting architecture must have a

unified sensory pipeline where information is given identical treatment

regardless of origin.

As stated in functional requirement #4, the top-down information prioritization process

of the attention mechanism is guided by goals and predictions. This functional require-

ment leads directly to the following architectural requirements.

76 General Attention Mechanism for AI Systems

Architectural requirement #4: The hosting architecture must be

goal-driven with goals being a special case of data item.

Architectural requirement #5: The hosting architecture must have

predictive capabilities.

Finally, it is necessary to address knowledge representation. AI architectures have

commonly been classified according to whether they are based on sub-symbolic or

symbolic processing, or are hybrids in the sense that they rely equally on both (c.f.

Duch et al. 2008). However, it has not been emphasized frequently that this difference is

not so much one of architecture as of abstraction level. Consider that known biological

intelligences are clearly based on the sub-symbolic processing of their neural substrate

while displaying an obvious surface capability of efficient symbolic manipulation and

reasoning. For artificial general intelligences, the low-level substrate is sub-symbolic as

well, based at the lowest of level of manipulation of zeroes and ones. In both cases, the

low-level operating principles of the system and it‘s substrate are sub-symbolic in na-

ture; sub-symbolic information is given symbolic meaning by the internal structure of

the system. Some form of a sub-symbolic substrate is necessary for any information

processing.

The attention mechanism of this work requires the surrounding architecture to have a

symbolic level of knowledge representation for several reasons. The goals of the system

must be symbolic in nature, as they represent desired target states, and cannot be ex-

pressed without symbolic representation. As one of the major functions of attention in-

volves relating information to active goals, the requirement for symbolic representation

extends to other information of the system as well at some (operational) level of ab-

straction. The requirement can be justified further for the constructivist methodology,

which involves the capability to reason about the structure of the system and possible

structural changes. This type of reasoning requires symbolic representation as well.

Architectural requirement #6: The hosting architecture must have a

symbolic level of knowledge representation.

It is worth clearly stating what this architectural requirement does not imply. Clearly,

some type sub-symbolic substrate is necessary to any information processing capability

Helgi Páll Helgason 77

and as such is not precluded. While target architectures must have a symbolic level of

representation, this makes no limiting requirements with regards to sub-symbolic pro-

cessing in the architecture. In a sense, a symbolic representation must always be based

on sub-symbolic information. Architectures heavily based on sub-symbolic processing

and knowledge representation might become better candidates for the attentional func-

tionality presented in this work if an operational conceptualization of a symbolic level is

possible, based on existing sub-symbolic levels. For example, should significant pro-

gress be made in symbolizing neural networks, architectures based on these constructs

will become more applicable candidates.

79

Chapter 7

Towards Formalization

This chapter presents a formalization of the approach taken towards attention and re-

source management for artificial general intelligence (AGI) architectures in this work in

addition to related issues. Before proceeding directly to formalization for attention, it is

necessary to establish and formalize some of the components involved in the problem. It

is difficult to conceive an interpretation of attention that results in a stand-alone process

occurring in a vacuum. Such interpretations – if they exist – are unlikely to be useful in

terms of the top-level goals of this work. Attentional processing occurs within an AI

system and is directed towards information generated in substantial part by external en-

vironments. When attention is viewed in a holistic way, as detailed in the functional re-

quirements of chapter 6, it becomes apparent that this functionality is system-wide and

tightly integrated with and interconnected to the surrounding architecture. This necessi-

tates formalization for the kinds of AI system targeted by this work and their operating

environments as a necessary basis on which attention may then be formalized.

7.1 Constructivist AGI System

The adoption of a constructivist methodology influences – in subtle ways – how an AGI

system is formalized. To make this explicit, this is qualified appropriately and referred

to as a formalization of Constructivist AGI system, while the formalization or significant

parts of it may certainly apply for other types of AI systems as well.

Traditional models of AI agents (c.f. Russell & Norvig 2003) present artificial agents

that sense and act in their environment with the agent’s body being the interface be-

tween the “mind” of the agent and the external environment (sometimes referred to as

the task environment). This paradigm is a useful starting point for discussion, but one

that must be extended in the case of AGI systems based on a constructivist methodolo-

gy. The barrier between the external environment and internal operation of the system

80 General Attention Mechanism for AI Systems

must be removed as to allow for internal sensing and introspective capabilities, which

are required to direct the growth of a constructivist AGI system. The definition for sen-

sors and actuators must also be generalized in such a way that makes a physical compo-

nent of these optional, so as to allow for these concepts to be applied to the internals of

the system.

Definition 7.1.1. A sensor is a system module consisting of software

and, optionally, physical hardware that is intended for observation of

the operational environment. A sensor generates new information ei-

ther when explicitly prompted to do so by the AGI system or at speci-

fied regular intervals (which are optionally adjustable at run-time).

Sensors must expose an interface for commands intended to trigger a

sample or orient (in a general sense) the sensor if the sensor supports

such operation.

Evidence for top-down influence in human perception has been found in neuroscience

(c.f. Hopfinger et al., 2000) where attention orients sensory organs according to expec-

tations. The definition of a sensor presented here assumes an interface, through which

the sensor can be oriented in a general sense; modifying the orientation of a sensor is

thus equivalent to changing its configuration in some way. Thus, a top-down influence

in perception is supported in the attention mechanism presented in this work. However,

in the case of each type of sensor, sensor-specific operational knowledge of how to per-

form such control is required. A primitive version of this knowledge can be supplied to

the system at implementation time, while the system learns to improve its control of the

sensor over time through operational experience.

Definition 7.1.2. An actuator is a module consisting of software and,

optionally, physical hardware intended to change some parts of the op-

erating environment. Actuators must expose an interface for control

commands.

Helgi Páll Helgason 81

The nature of embodiment and the operating environment changes somewhat when in-

trospective capabilities are factored into the equation. Traditionally, these concepts have

been limited to the external environment and the embodiment of the system in that envi-

ronment; this view is too narrow to support the inclusion of introspective functions.

Constructivist AGI systems must sense and act in the external environment while simul-

taneously monitoring, reasoning about and changing their own internal operation and

structure. This implies that the operating environment is compositional, consisting of

one (or more) instance of an external environment and one instance of an internal envi-

ronment, and that the system is embodied across these separate environments.

Figure 7.1: The operating environment and embodiment of a constructivist AGI

system is compositional in nature.

Definition 7.1.3. The operating environment of a constructivist AGI

system is a compositional environment consisting of one instance of an

internal environment and at least one instance of an external environ-

ment, which may be a real-world environment or a synthetic, digital

environment. Any combination of real-world and synthetic environ-

ments constitutes a valid operating environment when combined with

the internal environment.

82 General Attention Mechanism for AI Systems

Having clarified these aspects, the focus moves to the internals of the system. On this

side, we can rely on traditional, intuitive concepts from computer science. The follow-

ing definitions establish the building blocks and primitive units on which the internals

of the system are built.

Definition 7.1.4. A process is a unit of executable program code which

may require inputs of a specific type in order to run. The execution of

a process results in the generation of new data items and/or new com-

mands for sensors or actuators. All processes may equally constitute an

executable object or data item (the code of the process).

Definition 7.1.5. A data item is a typed, structured unit of infor-

mation. Data items can only constitute executable objects if properly

typed and containing valid, executable code.

The operation of the system can be viewed as the interaction of data and processes; the

control part of the system is responsible for implementing this interaction. This is the

component of the system that is most directly relevant to attention and resource man-

agement and is discussed in greater detail in the next section.

Definition 7.1.6. A control module is a set of functions responsible for

controlling execution of processes, performing resource allocation by

selecting processes - and their inputs - for execution in addition to

managing the memory of the system.

With all the required building blocks in place, we can now proceed to define a Con-

structivist AGI System.

Definition 7.1.7. A Constructivist AGI System is a software system

consisting of the following components:

Helgi Páll Helgason 83

S: Set of sensors (s0..sn)

A: Set of actuators (a0..an)

P: Set of processes (p0..pn)

D: Set of data items (d0..dn)

C: Control module

All sets may be dynamic with insertions and deletions occurring at

runtime. Changes to the control module at runtime are also allowed.

Figure 7.2: High-level overview of a Constructivist AGI system.

During operation, new data items are continuously generated by sensors. The control

module controls process execution, selecting processes and data items (as inputs) to ini-

tiate computation, as well as managing available memory of the system. The execution

of processes results in new data items and/or commands sent to actuators (for changing

the operating environment in some way) or sensors (for requesting new samples, adjust-

ing the sampling frequency of the sensor or re-orienting the sensor). When an actuator

changes the operating environment, effects of the change are sensed (if observable to an

active, properly oriented sensor) and represented by new data items, closing the percep-

84 General Attention Mechanism for AI Systems

tion-action loop. It is worth re-iterating that the internal environment is included in the

operating environment; processes, data and the control module of the system are part of

the operating environment.

A Constructivist AGI system is goal-driven, where actions in the operating environment

may be viewed as attempts to achieve active goals of the system. This applies equally to

much of the internal operation of the system, while core functions may not require ex-

plicit goals to operate. Goals are specified in terms of concrete states in the operating

environment; they describe a desired target state in terms of attributes or properties of

entities in the operational environment. For practical reasons, describing desired states

in terms of the entire operating environment is not feasible. Such representation would

result in unnecessarily large and detailed goal objects, as each goal typically involves

only a few entities in the operating environment. Instead, an approach based on partial

states should be followed where the desired target state is specified only in terms of

goal-relevant elements. Multiple goals are expected to be simultaneously active within

the system. To efficiently direct processing and make informed resource management

decisions, each goal requires a priority value. This value should be supplied at creation

time of the goal by the process responsible for its generation, while it may also be

changed by system processes during the life-cycle of the goal.

Definition 7.1.8. A goal is a special type of data item that specifies a

partial state of the operating environment, representing a desired target

state, in terms of entities in the operating environment and their prop-

erties and attributes. A goal priority value is associated with each goal

and must be supplied by the process generating the goal; this value re-

flects the priority of the goal (relative to other goals in the system) for

access to available resources.

7.2 Control Module

In the previous section, the role of the control module was defined as managing compu-

tational resources: Controlling process execution as well as managing memory re-

sources. For attention, given the requirements of Chapter 6, this is a critically relevant

part of an AGI system. This section discusses the operation of a control module as rele-

vant for attention and resource management. This mainly involves how the results of at-

tention, being approached in present work as prioritization of processes and data items,

are used to influence management of resources. Clearly, most of the complexity in-

Helgi Páll Helgason 85

volved with the approach to attention taken in the present work lies in the prioritization

functionality rather than the application of the prioritization results to resource man-

agement. Before addressing these, issues involving the basic control policy should be

addressed and formalized in part. A full specification for a control module is not given,

as this would violate previously stated design requirements for generality and architec-

ture-independence.

7.2.1 Basic Control Policy

According to the definition of a Constructivist AGI system in the previous section, con-

trol of process execution is a matter of selecting processes and input data items to initi-

ate computation. To make the relationship between processes and data items explicit in

terms of execution, following definition is given.

Definition 7.2.1. A processing task is the execution of a single process

with valid input (as specified by the process), consisting of any num-

ber of data items.

At any given time, there may be a very large space of possible processing tasks that a

control module must select from, as the number of available processes and data items is

assumed to be extremely large, potentially ranging from tens of thousands to millions

for each in practice. Consider that in a system with just 10.000 processes and 25.000 da-

ta items, there are 250 million possible processing tasks when the simplifying assump-

tion is made that all processes require one data item as input and all data items represent

valid input for all processes. When these simplifying assumptions are dropped, a com-

binatorial explosion of possible processing tasks may result as processes may require

input consisting of more than one data item, where the number of possible composite,

multi-valued inputs grows intractably large. For this reason, approaches to action selec-

tion based on any kind of exhaustive search or maximum expected value over all possi-

ble actions are not feasible due to resource constraints.

The task of determining all possible processing tasks at any given time is itself resource

intensive and does not resolve the question of which processing tasks out of all possible

ones should be initiated. Ideally, the set of all possible processing tasks should be re-

duced to processing tasks that have the most probability (relative to other processing

tasks) of being useful - in the sense that they contribute to the achievement of goals - in

86 General Attention Mechanism for AI Systems

the present situation without directing resources towards other possible processing

tasks. Fortunately, there is a way to accomplish this in an efficient manner without hav-

ing to spend significant resources on determining the original, full set of possible pro-

cessing tasks.

For this purpose, priority values are introduced for processes and data items. In this sec-

tion, the scope is limited to how these values relate to the control module with discus-

sion of their details in the next section.

Definition 7.2.2. The activation of a process is a quantified estimation

of its relevance in the present operating situation. This value receives

meaning from comparison with the activation values of all other pro-

cesses and does not imply statistical probability of utility or expected

reward.

Definition 7.2.3. The saliency of a data item is a quantified estimation

of its relevance in the present operating situation. This value receives

meaning from comparison with the saliency values of all other data

items and does not imply statistical probability of utility or expected

reward.

These priority values are intended to rank the present relevance of process and data

items. With these values in place, the problem of identifying potentially useful pro-

cessing tasks becomes highly tractable and available resources can be directed towards

the set of high-priority tasks, as defined by a threshold based on resource availability or

fixed levels of priority. There are numerous approaches to the problem of selecting pro-

cessing tasks from this smaller, high-priority set. For example, one of the simplest pos-

sible approaches is shown below:

Simple processing task selection algorithm

1. Find process P with strongest activation

2. Find most salient matching input I

Helgi Páll Helgason 87

3. Start execution of process P with inputs I

4. Go to step 1

It should be noted that a simple processing task selection algorithm, such as the one

above, does not directly account for planning, which is required for tasks involving mul-

tiple steps and sub-goals spanning over longer periods of time. The implementation of

such functionality is viewed as the role of the hosting architecture, but one that can be

achieved on the basis of simple selection algorithms such as the one proposed here. The

task selection algorithm is extremely simple as it does not address the problem of de-

termining relevance-based priority values for data and processes; it merely uses these

values for selection. The problem of determining priority values, which is where most

of the complexity lies, will be discussed in following sections.

7.2.2 Memory Management

In addition to process execution, management of memory is another role of the control

module. As the stream of new data items being generated by the external environment

as well as within the system is potentially very large, the control module must provide

functionality to rationally “forget” information. This is similar in nature to garbage col-

lection, but with the subtle difference that potential future utility of each data item is not

fully known whereas traditional garbage collection in modern software systems targets

information known to be obsolete and useless. For this reason, referring to this func-

tionality as garbage collection is not sufficiently descriptive, as what is being discarded

is not “garbage” in the sense that the information is accessible to the system and poten-

tially useful up to the point where it is removed. A selective forgetting mechanism is a

more appropriate paradigm.

There are several possible approaches to implement this functionality in a constructivist

AGI system. A specific approach is suggested here that is based on a special decay pa-

rameter, taking values in the range [0..1], for each data item as well as the saliency pa-

rameter introduced earlier. The decay parameter is assigned a fixed initial value when a

new data item is created. Over time, this value is automatically decreased by the system.

The actual initial value and the particular decay function used is not important, however

collectively these must ensure that the decay parameter value does not drop to zero too

quickly, allowing the system time to process the data item. The goal of the selective

forgetting mechanism is to ensure that data items are kept in the system long enough to

have a fair opportunity to receive processing while discarding data items that have had

88 General Attention Mechanism for AI Systems

such opportunity and are not evaluated as being useful or interesting by the system.

When the decay and saliency parameters are combined, a priority value for access to

memory results on which selective forgetting functionality can be based. It seems intui-

tive to combine these two parameters by taking their product; this ensures that neither

data items that have been created very recently nor data items with high saliency will be

discarded. Note that both saliency and decay are values in the range [0..1]; for saliency

a value of 1.0 represents maximum possible importance and for decay a value of 1.0

represents a data item that has just been created.

Definition 7.2.4. The information value (IV) of a data item (d) is the

maximum of the saliency and decay parameters of the item:

IV(d) = d.Saliency * d.Decay

The process of selective forgetting can identify data items to be removed from the sys-

tem - freeing up space for new items – by finding the data items with the lowest infor-

mation value. The amount of new data entering the system may vary over time. Using a

prioritization based on information value, a dynamic selective forgetting mechanism can

be implemented where information is discarded in increasing order of information value

and the amount of information being discarded can vary according to operational needs

at any point in time.

7.3 Control Mechanisms & Complexity

The set of possible control mechanisms for an AGI system is vast, ranging from ones

that blindly initiate processing in a first-come first-serve basis to control mechanisms

that make processing decisions based on operating context and active goals. However,

only much smaller set of options from the latter group can support the desired operating

features being sought from these systems. This section discusses issues related to the

complexity and operation of control mechanisms of AGI systems. Two distinct types of

complexity are identified and discussed in this context: meta-control complexity and de-

cision complexity. The concept of degrees of freedom (DOF), commonly used in me-

chanics (robotics, in particular) and referring to the number of independent parameters

Helgi Páll Helgason 89

that define the configuration of a system12, is considered in context of both types of

complexity.

Figure 7.3: Meta-control complexity involves adjustable run-time parameters

while decision complexity is relevant to the number of possible actions.

7.3.1 Meta-Control Complexity

The meta-control complexity of a control mechanism is determined by its adjustable

control parameters, which may be adjusted at run-time by the system itself. Collective-

ly, the set of control parameters of an AGI system define its configuration in conjunc-

tion with operational experience. The same operational history can result in very differ-

ent configurations of the system when control parameters are changed.

Definition 7.3.1. The configuration of an AGI system (S) is determined

by its set of control parameters [c0..cn] and operational history13 E. If

12 http://en.wikipedia.org/wiki/Degrees_of_freedom_(mechanics)
13 The full operational history of the system consists of all processing and actions performed by the
system from start-up time, including input data for processing.

90 General Attention Mechanism for AI Systems

changes are allowed to control parameters at run-time, the trajectory of

the control parameter vector and E determines the configuration. This

definition assumes that initial knowledge (bootstrapping) is fixed.

The DOF of a control mechanism is thus represented by the n in the above definition. A

primitive control mechanism that initiates processing of tasks in a first-come first-serve

fashion has no control parameters, with n = 0, and thus its configuration is only deter-

mined by its operational experience. Beyond this special case, potentially useful control

parameters must be examined, as nothing has been said so far regarding what these pa-

rameters should represent. The functional requirements of chapter 6 offer some direc-

tion with regards to identifying important ones for attention. Clearly the complexity of a

control mechanism is impacted to a much greater degree by the semantics of the control

parameters rather than their number. The rest of this section is devoted to the discussion

of selected control parameters that are highly relevant to attention.

The concept of deliberation cost gives rise to potential parameters highly relevant to at-

tention. How much resources should be spent per unit of time on deciding what to do

versus actually doing? In the approach to attention followed in the present work, this

question has very similar meaning to the question: What amount of resources should be

allocated to attention? Increasing the amount of resources allocated to prioritization of

data and processes is expected to result in better quality of results, for example from

consideration of a greater number of options or deeper analysis of options.

Definition 7.3.2. The deliberation ratio of an AGI system is the frac-

tion of total system resources that are to be allocated to the process of

action selection.

For the sake of generality, this parameter is referred to here as “deliberation ratio”,

while one could argue that “attentional ratio” would be more descriptive. The delibera-

tion ratio represents the relative amount of total system resources allocated to selecting

future actions, without any assumptions regarding to how such selection is performed.

Overall performance of the system is dramatically impacted by different values that the

deliberation ratio may take. A low value is well-suited to situations where one or more

high priority goals are active that have been successfully accomplished previously, as

the process of achieving these goals is well-known by the system the deliberation cost

Helgi Páll Helgason 91

should be low. Conversely, a high value is well-suited to situations where the active

goals of the system are novel and/or the environment is behaving in ways not observed

before. Having the capability to autonomously modify the deliberation ratio at run-time

by way of introspection is clearly a valuable operational feature for the performance of

the system. In general, the process of determining values of control parameters using in-

trospection would seem to require some kind of meta-control mechanism, possibly con-

taining their own control parameters. This line of thinking can lead to infinite recursion

as the chain of control must end somewhere. However, such problems can be avoided

with a unified sensory pipeline, formalized as part of a constructivist AGI system in sec-

tion 7.1. A unified sensory pipeline allows meta-cognitive functions to be performed us-

ing the same control mechanisms as all other functions of the system, eliminating the

need for external meta-controllers.

As stated in the requirements of Chapter 6, the system is required to be reactive to un-

expected events while performing tasks. Alertness and task-focus can both be seen as a

matter of degree and are in a sense mutually exclusive, with the two corresponding to

bottom-up and top-down attention respectively. Different situations may call for diverse

settings to this ratio. For example, when a deadline is fast approaching for an active

high-priority goal, it would be rational for the system to increase its task-focus (and its

deliberation ratio) at the expense of alertness. This control parameter is defined below,

representing the fraction of resources already assigned to attentional processing – by the

deliberation ratio – that should be assigned to operation that is directly goal-relevant.

Definition 7.3.3. The focused/alert ratio (FAR) of an AGI system is the

fraction of the deliberation ratio that corresponds to resources to be al-

located for goal-focused processing over non-focused processing.

This definition implies that the task-focus value of the system is equal to the FAR value,

while the alertness of the system is equal to (1.0 – FAR).

92 General Attention Mechanism for AI Systems

Figure 7.4: The deliberation ratio, the focused/alert ratio, and their relationship.

7.3.2 Decision Complexity

The complexity of a control mechanism is also affected by the number of possible fu-

ture actions at each point in time, which in turn is largely determined by the surrounding

architecture as well as the control mechanism itself. The number of possible options that

the mechanism must choose from represents the DOF of the control mechanism, with

the complexity of the mechanism being determined to a significant degree by this quan-

tity, as well as the specific methods used to select the future actions. Revisiting the ex-

ample of a simple first-come first-serve mechanism, it is plain to see that based on the

underlying principle of this particular simple mechanism there is only one possible ac-

tion at any time: Starting execution of the oldest existing processing task in the system.

Many possible control mechanisms can be reduced to this very low level of complexity

if the generation of control data (e.g. prioritization values) is conceptually separated

from the control mechanism, but this is not helpful in the pursuit of control mechanisms

for AGI systems as it only addresses a trivial part of the control problem: Initiating ac-

tual computation from control data generated elsewhere.

A differentiating factor among control mechanisms is whether they base decisions on an

exhaustive evaluation of all possible actions or perform selective evaluation of a subset

of all possible actions based on some form of heuristics. For the purposes of the present

work, control mechanisms relying on exhaustive evaluation are not of interest. Such

evaluation is practically impossible when AGI systems operating in real-world envi-

ronments, the states of which are represented in large part by continuous values, as the

problem of enumerating all possible future actions alone becomes intractable.

Helgi Páll Helgason 93

As pointed out by Bratman et al. (1988), existing work in decision theory offers highly

limited guidance for decision-making in real-world environments. Most existing meth-

ods of action selection assume an environment that is deterministic, has discrete state-

spaces and a coarse-grained representation of time. All these properties are highly prob-

lematic for operation in real-world environments, which are stochastic, continuous and

constantly change with great frequency. Determinism is a problem since what has relia-

bly worked in the past is not guaranteed to work in the future; the environment may

change or some external entity may unexpectedly influence how events unfold. Discrete

state-spaces are a problem as the state of real-world environments must be represented

largely by continuous values, eliminating the possibility of enumerating all possible fu-

ture states, let alone evaluating all of them. While fine-grained discretization can ap-

proximate continuous values, each approximated value may still take anywhere from 232

to 264 different values. In operating situations involving multiple approximated values,

the state-space quickly grows out of control from the resulting combinatorial explosion

if all possible future states must be considered. A more coarsely grained approximation

can reduce the state-space, but is also likely to negatively impact performance at some

point. Coarse-grained representations of time are a problem as changes in real-world

environments do not occur simultaneously at relatively wide, fixed and synchronized in-

tervals. For these reasons, exhaustive evaluation of all possible future actions – and thus

optimal decision-making that guarantees the best outcome under time constraints – is

impossible in real-world environments for resource-bounded systems.

Changing the assumption of environmental determinism into a probabilistic environ-

ment leaves the nature of these issues unchanged. For example, in a Markov decision

process (MDP) the next state after an action is random, with a probability distribution.

While closer to the real-world environment by capturing uncertainty about the conse-

quences of actions, a stationary probabilistic distribution for the states following an ac-

tion are nevertheless unavoidable, and consequently truly novel situations and unantici-

pated situations are precluded. Furthermore, probabilistic models usually have even

higher resource demands than deterministic models, given the large number of possible

consequences of each action.

This implies that the only feasible approach to decision-making in real-world environ-

ments is selective evaluation of all future states if the issue is to be properly addressed.

However, this results in a new problem; how selected future points of interest are

mapped out. This requires a process of selective generation of possible future states of

value to the AGI system; a process which may be viewed as heuristics for AGI systems.

Heuristics may be defined as being “strategies using readily accessible, though loosely

applicable, information to control problem solving in human beings and machines”

94 General Attention Mechanism for AI Systems

(Pearl 1983, p. 7) and are usually domain-dependent in some way, for example repre-

senting “rules-of-thumb” from the particular problem domain. They have commonly

been used in search problems to increase the efficiency of search algorithms as approx-

imation methods to identify future states that are likely to be more rewarding than oth-

ers. As the concept of heuristics has a loose definition, implementations vary. Heuristics

are part of the utility function for future states in A* search (Hart 1968). A more general

type of heuristics, hyper-heuristics, has been proposed (Burke 2003). Hyper-heuristics

are domain-independent in nature, described as methods for selecting lower-level heu-

ristics at run-time from a predefined set of low-level heuristics as appropriate to the pre-

sent step of the problem solving process (Özcan 2008). Hyper-heuristics may be under-

stood as a method for optimizing the application of manually-generated domain-

dependent heuristics at run-time. Real-time operation in search and heuristics has been

addressed to a degree; most notably by the Real-Time A* algorithm proposed by Korf

(1990).

In traditional search (as presented in any entry-level AI textbook), action-selection in a

particular state is performed by enumerating and generating all possible next states – or

nodes, on the next level of the search tree – in what is called the expansion phase. All of

these possible future states are then evaluated using a utility function and the action

leading to the state with the highest utility value is chosen as the next action. Some ap-

plications of search focus on terminal states and do not require a utility function. These

include game-playing, where terminal states are states that end the current game either

in a draw, in favor of the system as a player or in favor of the opponent. However, a

terminal state is not a very intuitive concept to guide decisions of systems operating in

an open-ended fashion in real-world environments.

The expansion and evaluation phases are frequently repeated more than one step into

the future in order to evaluate what lies beyond a particular single action. Time is

represented in a coarse-grain manner where each decision step and following possible

states are both atomic units of time; conceptually all possible next states are thus

assumed to occur at a fixed step length in time while their actual time of occurrence is

unspecified. A deterministic environment is assumed in which actions corresponding to

paths to next states always succeed; there are no provisions for failing to reach the next

target state.

Enumerating all possible future states (the expansion phase in search problems), is usu-

ally a trivial problem in typical search problems but is not practical in the case of AGI

systems operating in real-world environments for reasons discussed above. While AGI

systems require some type of heuristics, these cannot be directly unleashed on an exist-

ing set of possible future states as that information is not available. In control mecha-

Helgi Páll Helgason 95

nisms based on selective evaluation, the decision-making process has an added dimen-

sion of identifying potentially useful actions, which must be resolved before decisions

regarding actions can be made. This is not a trivial problem, considering that methods

based on discrete state spaces are not directly applicable.

Figure 7.5: State-spaces in typical search problems and the application of heuris-

tics. a) The state-space is represented in atomic temporal steps with a tree struc-

ture where each level of the tree corresponds to an atomic moment of time. The

initial state S0 occurs at time T0. b) All possible states in the next moment of time

(T1) after S0 are enumerated resulting in the generation of possible future states

S1,0 to S1,n. c) All states generated in the previous step are evaluated using a heu-

ristic utility function. The resulting utility value for each state is noted in the fig-

ure. d) Comparison of utility values finds the state with maximum utility value.

This results in either the selection of action producing that state or an expansion of

96 General Attention Mechanism for AI Systems

that state where following states are evaluated. In the latter case, heuristics control

how the search tree is expanded.

The methodology shown in Figure 7.5 is not directly applicable to the problem of action

selection for AGI systems in real-world environments. The reliance on an enumerated

set of all possible future states in addition to a coarse grained approximation of time

present significant problems for their operation. The distinction between fine- and

coarse-grained representations of time should be viewed relative to the frequency of

changes in the operating environment where finer grained representations encode the

actual sequence of events with greater accuracy. This distinction may also be viewed as

the difference between an order-based versus a measure-based representation, the latter

being desired here. While this only applies to events relevant to the operation of the sys-

tem, these events are unknown at design time due to the domain-independent nature of

AGI systems; consequently, the finest possible or practical granularity should be target-

ed.

One possible solution is to generate “imaginary” future situations that are likely to occur

next, based on the present operating context and the operational experience of the sys-

tem. This can be accomplished by striving to stay some steps ahead of the environment,

continuously generating predictions with regards to future events that collectively repre-

sent a set of events that have more probability of occurring than others. It is rational to

direct the resources of the system towards events that have a greater probability of oc-

curring rather than towards the much greater number of improbable ones. An implica-

tion of this approach is that the system will be unable to anticipate, prepare for or ac-

tively avoid events that cannot be rationally predicted in some way by its operational

experience; no known intelligence has this ability.

In this more tractable approach, only possible future states that have a higher probabil-

ity of occurring than others are generated; states that can occur with or without specific

action in the environment on part of the system. Rather than selecting promising future

states from a full set of possible future states, probable future states should be generated

that are relevant to the goals of the system. This is possible by having the system gener-

ate predictions of future states based on the operational experience of the system and the

current state of the operating environment, factoring in a set of actions suggested by the

system (which should include inaction).

There is no clear reason why the same prediction mechanisms should not be able to pre-

dict future events in the environment in case of inaction on part of the system as well as

future events resulting from actions of the system. Predictive functionality is highly

Helgi Páll Helgason 97

general in nature with predictions being based on the observation of possible causal

links in the operational history of the system. Predictions of the system may be treated

as possible future states. They are not expected to be perfect all the time, the system

may predict states that are impossible in practice due to lack of knowledge and experi-

ence. However, predictions should improve over time as the operational history of the

system grows and more evidence (positive and negative) for causal links accumulates.

The traditional setting for search can be altered to accommodate this approach. First, a

fine-grained representation of time must be accommodated in the decision-making pro-

cess. This is possible if the requirement of considering only simultaneous possible ac-

tions (at the next coarse-grained time step) is simply dropped. The focus of the decision-

making process is still one step of action into the future. However the size of such a step

is allowed to vary in length along the future part of the temporal dimension for each

possible action. This length is determined by the timing of selected states that end up

being evaluated. The result is that meaning is given to the length of the links in Figure

7.5, representing when in time the possible future states occurs. As already discussed

the enumeration of all possible future states – even at a fixed point in time – is intracta-

ble in real-world environments. For this reason, the requirement of generating all possi-

ble future states must be dropped in favor of selectively generating only a small subset

of these. This addresses the enumeration problem. Finally, the stochastic nature of the

environment must be acknowledged by estimating the likelihood of generated future

states as opposed to taking their occurrence for granted, given some action leading up to

them. The evaluation of likelihood does not have to assume a stationary probability dis-

tribution. Even so, the likelihood of a future state should influence its evaluation; it

seems reasonable to discount the value of a highly favorable future state (in terms of the

utility function of the system) if its actual occurrence is not likely. Conversely, it is ra-

tional to amplify the value of a possible future state of average value (relative to other

possible future states) if its actual occurrence is virtually guaranteed. This addresses the

issue of deterministic environments.

Conceptually, the search tree structure is still valid for representing the decision prob-

lem, but evenly distributed levels of the tree disappear as the length of links between

nodes now represents the duration of time elapsing between states. This implies that the

depth of a node becomes its distance in the temporal dimension from the root node, as

opposed to the number of intermediate actions.

The prediction-based approach suggested earlier is based on the system suggesting ac-

tions in some fashion in order to evaluate different ways to affect the environment as is

relevant to its goals. Any attempt to predict the effects of all possible actions of the sys-

tem encounters the same enumeration problems as search in continuous environments

98 General Attention Mechanism for AI Systems

and must be rejected. The system must suggest a set of hypothetical actions in a goal-

directed fashion, the effects of which are then predicted. The combined set of predicted

future events resulting from suggested hypothetical actions as well as inaction can then

be evaluated. Not only does this allow the system to choose rational actions likely to

advance its goals, it may also allow the system to detect that undesirable events are like-

ly to occur in the near future, which the system can then generate explicit goals to ac-

tively avoid. The actual predictions that are made and actions that are suggested by the

system depend on attentional functionality; namely the prioritization of data and pro-

cesses. Resource availability and meta-control parameters can be expected to affect the

number of predictions made by the system at each point in time. Predictive functionality

has strong links to learning, as learning can result from discovering solutions by way of

generating predictions with desirable outcomes in terms of active goals. This indicates

that during periods where the system lacks knowledge and actively seeks to learn, a

greater share of resources should be devoted to generating and evaluating predictions

than under normal circumstances; this causes the system to explore a greater number of

future states. This represents a resource-bounded, interruptible and directed fashion of

learning; all of these qualities are targeted by the present work.

Once a set of predictions has been generated, these can be treated just like future states

and evaluation of such states is straightforward as no selection is needed; the very fact

that a state was generated (predicted) indicates that it is worthy of evaluation. The eval-

uation of future states can be based on active goals of the system. In systems based on

fine-grained architectures, the decomposition of a top-level into several sub-goals may

be expected. Evaluation of a state may then be determined according to the number of

achieved and incomplete goals taking into account the priority and temporal context of

each goal in that state. Each goal of the system is assumed to have associated Priority

and Deadline values; however, in the absence of these, default initial values may be

used. Time is represented as a single numeric value. Each state occurs at a specific time

t, which is encoded in the state itself.

A method to compute the value of achieving a specific goal in a specific state is needed,

which must be based on the priority of the goal and its temporal context in the state (dis-

tance from deadline). To address the temporal issue, an Urgency value is computed us-

ing the function below, taking a goal g and state S’ as inputs and returning an urgency

value. The urgency value represents the temporal priority of the goal at a specific point

in time relative to other active goals. The formula relies on a helper function and a spe-

cial set, H, for clear notation. The set H contains all time horizons (quantified intervals

of time) between the time of all states currently under consideration and the deadline of

the goal that spawned the state. If either value of the urgency calculation is equal or less

than zero, zero is returned.

Helgi Páll Helgason 99

Definition 7.3.4. The urgency of a goal g in a predicted future state S’

is computed as follows:

As each goal has an associated priority value which is independent of the deadline and

other temporal factors, the utility function of the system is computed by combining the

priority value of the goal with its urgency value in a specific state (a particular moment

in time). This means that the utility value of achieving a goal is not fixed but rather dy-

namic and depends on time.

Definition 7.3.5. The utility of achieving a goal g in a predicted future

state S’ is computed as follows:

With the utility function in place, computing the expected value of a future state be-

comes straightforward, being determined by which goals are achieved in such a state.

Definition 7.3.6. The expected value of a predicted future state S’ for

the system is computed as follows:

ሺܵᇱሻ݁ݑ݈ܸܽ݀݁ݐܿ݁݌ݔܧ ൌ ෍݀݁ݒ݄݁݅ܿܣሺ݃௞, ܵ′ሻ ∗ ,ሺ݃௞ݕݐ݈݅݅ݐܷ ܵ′ሻ	

௡

௞ୀ଴

where:

n = number of active goals

Achieved(g, S) = 1.0 if goal g is achieved in state S and -1.0

otherwise

Priority(g) = Priority value of goal g

100 General Attention Mechanism for AI Systems

The above definition does not take into account the reliability of predictions, which will

be addressed later. With prediction-based generation of future states, the evaluation of

possible events is restricted to states that have a non-astronomical probability of occur-

ring. Rather than working backwards from all possible future states - the number of

which approaches infinity in real-world environments – it seems greatly more feasible

to work forwards from the current state to the states that are likely to follow; the result-

ing decrease in complexity of the decision problem can hardly be overstated as the

number of states to be considered can drop by several orders of magnitude (or even

from infinity to finite number).

To encapsulate this, the concept of predictive heuristics is proposed for the functionality

just described; this concept represents an extended scope and slightly altered functional-

ity as opposed to traditional heuristics. To explicitly motivate this naming: “Predictive”

refers to reliance on predictors to generate possible future states in the form of predic-

tions. Traditionally, the enumeration phase has not been viewed as part of heuristic

functionality in search. Here, the equivalent of the expansion phase is integrated with

the heuristics.

Helgi Páll Helgason 101

Figure 7.6: Predictive heuristics. A) The initial state of Si occurs at a specific point

on a continuous (or fine-grained) axis of time. B) Based on the state Si, in addition

to the operating experience of the system and actions having been proposed by the

system, a finite set of new states (each denoted S’) is generated that may be dis-

tributed on the future part of the temporal axis. C) Each S’ state is evaluated and

S’5 found most desirable, causing the selection of action(s) leading to that state.

Predictive heuristics represent one possible way to relate work in state-space based

search and decision theory to the AGI problem. The search problem is modified to al-

low for action-selection that is not fixed to a specific moment in time but spanning the

future part of the temporal axis; the expansion phase becomes the generation of new

possible future states – distributed throughout some future time period – resulting from

the current state in combination with the systems operational experience and action or

inaction on part of the system. Conceptually, the tree structure is still valid for repre-

senting the decision problem in the AGI case, but uniformly distributed levels of the

tree disappear as the length of links between nodes acquires meaning, representing the

102 General Attention Mechanism for AI Systems

duration of time (as a continuous value) elapsing between states. This implies that the

depth of a node becomes its distance in the temporal dimension from the root node.

As stated earlier, predictions of the system cannot be expected to be correct all the time;

this follows from the facts that the operating environment is stochastic and the agent’s

knowledge and/or predictive capabilities are limited. This calls for consideration of the

reliability of predictions. The following definitions formalize these issues.

Definition 7.3.7. A predictor is a process that generates data items rep-

resenting predictions of future states in the operating environment. As

input, a predictor takes the current operating context as well as a set

(including the empty set) of hypothetical future actions of system.

Definition 7.3.8. The success rate of a predictor (p) is calculated as:

 SuccessRate(p) = | S’+ | / | S’*| for | S’*| > 0

SuccessRate(p) = 0.5 for | S’*| = 0

where

S’+ is the set of accurate predictions made by p in the past

S’* is the set of all predictions made by p in the past

Definition 7.3.9. The confidence of a predictor (p) is calculated as:

ሻ݌ሺ݂݁ܿ݊݁݀݅݊݋ܥ ൌ 	 ௡

௡ାଵ
 for n > 0

ሻ݌ሺ݂݁ܿ݊݁݀݅݊݋ܥ ൌ 0 for n = 0

where

n = | S’*|

Helgi Páll Helgason 103

These parameters and the way in which they are calculated are based on Wang’s (2006,

p. 59-62) method for evaluating truth of logical statements in NARS. The generation of

predictions may be viewed as a special case of logical inference as existing beliefs (in a

highly general sense) are used to infer future states. Some existing work has proposed

inferential heuristics. Johnson-Laird (1983, p. 34-39) proposes such heuristics based in

the context of cognitive psychology on linguistic economy of conclusions where the in-

ference process should produce only conclusions of the shortest possible form. These

heuristics are supported with examples from human reasoning. In the present context of

predictions, these heuristics apply conceptually; predictions are generated on the basis

of the operational history of the system. A prediction (conclusion) will have a more

compact form than the sum of information used to generate it. While this does not pro-

vide obviously helpful insights into the problem at hand, the fact that these heuristics

apply in the present case may lend a small degree of support from cognitive science for

the present approach.

The success rate of a predictor is intuitive; it is a direct measure of the frequency with

which it produces correct predictions. The confidence value of a predictor is a measure

of reliability for the success rate value of the predictor and grows larger as more predic-

tions are produced. Note that confidence does not imply anything about the quality of

the predictor in terms of making correct predictions; it addresses only the reliability of

its success rate value. In stochastic environments, there is no point of accumulated expe-

rience where the results of a predictor can be assumed to be correct forever; this is why

the confidence value is never allowed to reach the absolute maximum of its value range.

Based on these definitions, the likelihood of a prediction coming true can be estimated.

This estimate is not truly probabilistic, in the sense that the result does not represent the

actual probability value of the prediction coming true. Rather, the likelihood estimate is

relative to all other predictions of the system; when one prediction has a higher likeli-

hood estimate than another, it is more likely to come true than the prediction having a

lower likelihood value. The computation of likelihood is based on Wang’s (2006: 75-

76) formula for expectation.

Definition 7.3.10. The likelihood of a prediction S’ made by predictor

p is estimated as:

 Likelihood(S’) = Confidence(p)*(SuccessRate(p)-0.5)+0.5

104 General Attention Mechanism for AI Systems

The likelihood estimate should be included in calculations of expected values for pre-

dicted future states, as it represents a relative measure of likelihood for actually reach-

ing that state. A revised definition of expected value of future states is presented below.

Definition 7.3.11. The expected value of a predicted future state S‘ for

the system, taking into account the reliability of the prediction, is

computed as follows:

ሺܵᇱሻ݁ݑ݈ܸܽ݀݁ݐܿ݁݌ݔܧ ൌ ሺ෍݀݁ݒ݄݁݅ܿܣሺ݃௞, ܵ′ሻ ∗ ,ሺ݃௞ݕݐ݈݅݅ݐܷ ܵ′ሻ ሻ

௡

௞ୀ଴

∗ ሺܵᇱሻ݀݋݋݄݈݅݁݇݅ܮ

where:

n = number of active goals

Achieved(g, S) = 1.0 if goal g is achieved in state S and -1.0

otherwise

Utility(g,S) = see definition 7.3.5

 Likelihood(S) = see definition 7.3.10

The revised definition increases or decreases the expected value of future states based on

their likelihood, as defined in 7.3.10. For example, states that achieve multiple goals are

discounted in value if their likelihood is low while states that achieve fewer goals are in-

creased in value if their likelihood is high. Note that due to the particular definition of the

Achieved function in definition 7.3.11, decisions will always favor states that achieve goals

over ones that do not if action selection is based on maximum expected value.

This influences how future states based on intermediate states must be valued, as the in-

termediate states have their own likelihood estimates. Such decision-making is crucial for

problems involving multiple actions. In a sequential chain of predictions, the value of the

end prediction must take into account the likelihood estimate of all previous predictions in

the chain. The definition below provides a method to rationally value future states that are

reached by way of multiple steps of action.

Helgi Páll Helgason 105

Definition 7.3.12. The expected value of end state S’n in a sequential

chain of predictions (S’0..S’n) is computed as:

ሺS‘݊ሻ݁ݑ݈ܸܽ݀݁ݐܿ݁݌ݔܧ ൌ 	ෑ݀݋݋݄݈݅݁݇݅ܮቀܵ′݅ቁ
݊

݅ൌ0

∗ 	෍݀݁ݒ݄݁݅ܿܣ൫݃௝൯ ∗ ,ሺ݃௝ݕݐ݈݅݅ݐܷ S‘݊ሻ
௠

௝ୀ଴

where:

n = number of states in the prediction chain

m = number of active goals

Achieved(g) = 1.0 if goal g is achieved and -1.0 otherwise

Likelihood(g) = see definition 7.3.10

 Utility(g,S) = see definition 7.3.5

It should be noted that the expected value by itself can also be used as a heuristic for

finding promising prediction chains to explore in more depth. In this sense, the expected

value represents an additional level of heuristic functionality. Furthermore, exhaustive

evaluation of the set S’ is not an absolute requirement. Should selective evaluation be

desired – the evaluation being of set of states that have already been selectively generat-

ed – a reasonable approach would be to evaluate states, as starting points for exploration

further into the future, in decreasing order of expected value. This may be desirable for

reasons of resource conservation.

Finally, the relationship between predictive heuristics and attention should be ad-

dressed. The decision-making processes of an AGI system must necessarily involve col-

laboration of multiple functions, attention being one of these. The attention mechanism

of the present work supports the functionality described in this section by facilitating the

generation of possible future states of interest (the set of S’ in Figure 7.6). In order for

any predictions to be made, data that forming the basis of the predictions must be given

sufficient priority – by the information prioritization of attention – to be considered a

valid starting point for predictions. Predictive functions, like all other functions in a da-

ta-driven architecture, are only activated in response to being exposed to data, which is

in turn controlled by attention. This means that predictions are made from data in de-

creasing order of relevance.

106 General Attention Mechanism for AI Systems

Predictive heuristics represent a set of methods for rational decision-making in stochas-

tic, real-world environments. Their introduction in this section has highlighted problems

faced by traditional search methods in real-world environments and provides a potential

bridge from which techniques from traditional search and decision theory could possi-

bly be brought to bear on AGI-level problems, although most probably in some slightly

altered form.

7.4 Evaluation of Novelty

Bottom-up attention, as presented and discussed in chapters 4 and 6, requires methods

to evaluate the novelty of new information in relation to prior operational history of the

system. While these concepts are well understood in common language, some discus-

sion of their meaning is in order in context of the present work. How do we determine

and measure what is novel or unexpected for an AI system? It is clear such assessments

must be made based on the prior experience of the system. Events that the system has

experienced on previous occasions are considered less novel than events similar to ones

having been experienced before.

The most naïve approach to determine novelty would to evaluate new events by search-

ing for identical events in the entire operating history of the system. This approach has

functional and practical problems: Absolutely identical events are unlikely to occur fre-

quently in the operation the system; the description of events will involve continuous

values and even separate instances would have different values for time of occurrence.

It would seem more desirable to base novelty determination of new events on their simi-

larity, on the level of informational representation, with prior events. Furthermore, stor-

ing the entire continuously growing operating history of the system is not reasonable

due to limitations of memory, and even without memory limitations the size of the op-

erational history would eventually become so extreme as to render simple search highly

resource intensive.

Information entropy (or Shannon Entropy), as defined by Shannon (1948), is a concept

of interest to computing the novelty of information. It represents a measure of the abso-

lute optimal lossless compression possible for some sequence of information, represent-

ed as number of bits required on average to store each byte. Entropy can thus be seen as

a measure of unpredictability of the information, with greater compression implying

lower levels of unpredictability and less compression implying higher levels. However,

directly operationalizing entropy as a method to compute novelty at run-time is prob-

lematic: This would require a recalculation of entropy for the entire operational history

of the system (the availability of which is practically questionable as pointed out before)

Helgi Páll Helgason 107

each time a new event occurs. Changes to the entropy value of the total operational ex-

perience when a new event is added could serve as an indicator of novelty for the new

event. Unfortunately this amount of change approaches zero as the size of prior operat-

ing history continuously increases, which complicates the novelty determination.

Schmidhuber (2008) describes a useful relationship between the concepts of novelty,

prediction and compression. This is based on the insights that prediction may be seen as

a special case of compression, with compression of data being possible due to the rela-

tionship of the new data with prior data, and that the compression ratio resulting from

new data being added to set of prior data is a valid measure of the novelty of the new

data. For example, consider the following situation: The prior experience of the system

is contained in a file we will call P. Two new events occur in the operating environment

and are encoded in the equally sized (in bytes) files E1 and E2 in uncompressed form.

Next, two new files are generated: The first one is a compressed version of E1 appended

to P, the second is a compressed version of E2 appended to P. The numbers C1 and C2

represent the compression of each file, measured by the size of the compressed files as a

fraction of the size of the original data. If C2 is greater than C1, this means that greater

compression was achieved in the case of the file E1 than the file E2. This fundamentally

indicates that the event E2 is more novel than E1. If greater compression was possible in

the case of E1, this is because the data of E1 was more similar to the data in P than the

data of E2. Compression of new data, when appended to prior data, is thus a useful es-

timation of novelty contained in the new data. Furthermore, the resulting novelty meas-

ure has less severe mathematical problems (where the measuring quantity approaches

zero as operational history grows) than approaches relying directly on entropy calcula-

tions.

The determination of novelty in the operating environment by way of compression has

some interesting side-effects: It potentially provides the system with metrics which can

be used to evaluate its own level of intelligence - and changes thereof - in the present

environment; the level to which the system has adapted to the environment is directly

related to the amount of novelty that the system perceives in the environment. If the sys-

tem reaches the point of being able to correctly predict all events in the operating envi-

ronment over some substantial amount of time, no further novelty is likely to be en-

countered until the environment changes in some fundamental way. Conversely, at

boot-time the system has no operating experience, making all events novel except those

addressed by the initial knowledge (bootstrapping code) of the system. Furthermore,

changes in novelty observed by the system over time are indicators. Decreasing novelty

suggests successful learning and adaption while increasing novelty suggests changes in

the environment or faults in the systems own operation. Additionally, novelty may also

be used to detect elements of the environment that are fundamentally random and un-

108 General Attention Mechanism for AI Systems

predictable; knowing this, the system can conserve learning resources for more promis-

ing tasks. This insight well stated in the quote below.

“Consider two extreme examples of uninteresting, unsurprising, boring da-

ta: A vision-based agent that always stays in the dark will experience an ex-

tremely compressible, soon totally predictable history of unchanging visual

inputs. In front of a screen full of white noise conveying a lot of information

and “novelty” and “surprise” in the traditional sense of Boltzmann and

Shannon (…), however, it will experience highly unpredictable and funda-

mentally incompressible data. In both cases the data is boring (…) as it

does not allow for further compression progress.”

(Schmidhuber 2008, p. 8)

Having established novelty as an important and highly useful metric for AI systems, one

possible solution to determine the novelty of new data is to follow the earlier example,

storing the complete operational history of the system and performing compression each

time new events occur. In this case, the compression ratio resulting from each compres-

sion can be used as an estimation of novelty. However (as mentioned before) this is un-

likely to work in the real-world for practical reasons. For starters, storing the complete

operational history of the system would require enormous amounts of memory, with re-

quired memory growing rapidly throughout the operation of the system. This is particu-

larly true for constructivist AGI systems, where internal experience is guaranteed to be

included. The processing resources required to perform compression of the entire oper-

ating experience each time a new event occurs in the operating environment also repre-

sent an intractable problem due to resource limitations and real-time constraints.

These problems may be avoided if some modifications are made to the idea described

above. If the requirement of storing the complete operational experience of the system

is dropped, the problem of memory vanishes. Consider that while the experience of the

system is compressed, there is no intention of decompressing this information at a later

time. The interesting aspect of compression in this case is not the product, but the pro-

cess and its results. Fortunately, well-known methods of compression exist that work by

compressing new information solely from aggregated information from previous data,

with the aggregated information being stored in fixed-size data structures that are con-

Helgi Páll Helgason 109

tinuously updated as information is added. Adaptive Huffman coding14 is a prime ex-

ample of such methods (Gallagher 1978). This effectively means that by using a fixed

amount of memory, it is possible to determine approximately to what degree new data

compresses when appended with prior data without storing the prior data. This kind of

incremental compression seems to solve the problems of processing resources as well,

as only the aggregate data structures and the new data are involved in determining nov-

elty for a new event.

Based on the idea described above, a method for evaluating novelty under resource-

constraints and real-time requirements based on incremental compression using aggre-

gate fixed-size data structures is proposed.

Figure 7.7: Evaluation of novelty based on incremental compression. A new event

(the dark E) enters the unified sensory stream. Subsequently, it is compressed us-

ing aggregate data resulting from previous compression. The aggregate data is up-

dated as part of the process. Once compression is complete, the novelty of the

item may be estimated by its relation to the original size of the event. The com-

pressed version is then discarded.

14 http://en.wikipedia.org/wiki/Adaptive_Huffman_coding

110 General Attention Mechanism for AI Systems

7.5 Attention & Prioritization

An inclusive approach to attention, as described by the requirements of chapter 6, goes

significantly beyond the view of attention as an information-filtering process: The prob-

lem is not limited to selectively processing information; it directly addresses how in-

formation should be processed as well. As a result, the desired functionality for atten-

tion can be grouped in two categories: information prioritization and process prioritiza-

tion. These two sets of functionality are discussed in this section.

The prioritization of information has two distinct components: top-down attention and

bottom-up attention. As introduced in chapter 4, top-down attention is the deliberate

side of information selection, influenced by current tasks and desires; goals in the case

of AGI systems. An implication of this is that information must be related to goals in

some fashion in order for top-down information prioritization to be possible. In a simi-

lar fashion, the problem of prioritizing processes depends on relating processes to goals.

On the other hand, bottom-up prioritization of information relies on evaluation of novel-

ty, already discussed in the previous section.

7.5.1 Mapping Goals to Data

Before addressing the issue of how goals may be mapped to data, it is appropriate to re-

state the definitions of the two primitives of the problem.

Definition 7.1.5 (repeated). A data item is a typed, structured unit of

information. Data items can only constitute executable objects if

properly typed and containing valid, executable code.

Definition 7.1.8 (repeated). A goal is a special type of data item that

specifies a partial state of the operating environment, representing a

desired target state, in terms of entities in the operating environment

and their properties and attributes. A goal priority value is associated

with each goal and must be supplied by the process generating the

goal.

Helgi Páll Helgason 111

As goals are a special type of data item, the problem is clearly one of relating one type

of information to another type. Each data item is expected to carry information related

to some entity in the operating environment and some of its properties while each goal

represents a desired target state of such an entity. This implies that entities and their

properties are the common denominator in this particular problem. Finding matches be-

tween entities referenced in goals and data is an important part of solving the problem.

In fact, this is sufficient when only goals at the lowest level of abstraction are consid-

ered and will be addressed before more complex cases are considered.

In order to allow for fine-grained, precise targeting of information, which is desirable

for reasons of resource preservation, it is necessary to drill down into the issue of how

an entity is represented. Each data item is expected to carry information related to some

entity in the operating environment; otherwise it would be meaningless. Different data

items can contain a wide range of information concerning a particular entity. For exam-

ple, in the case of physical entities, a data item could contain information with regards

to the location of the object, for example. If the system generates a goal to move this ob-

ject, the location of the object will clearly be a property of interest while the goal re-

mains unresolved. However, the object in question may produce various types of other

information during this time, which are less goal-relevant. To allow for this degree of

control when targeting information, a flexible specification of relevant data is required;

one that can equally target individual entities as well as specific information related to

entities.

A form of pattern-matching is one method compatible with the requirement of matching

data in a flexible way based on various constraints and conditions. In the present work,

pattern matching does not refer to any particular existing implementation. At the con-

ceptual level, the desired functionality of pattern matching is simple, while efficient im-

plementation of the functionality is of great interest for implementing the attention

mechanism in any AGI architecture. Essentially, the kind of patterns useful for the goal-

to-data mapping problem allow for specification of target data to varying levels of de-

tail. Such patterns can range from fully specifying the contents of data being sought,

where the pattern becomes a complete description of the data item of interest, to gen-

eral, loosely specified patterns - for example targeting all data items of a certain type

without regards for content – in addition to all the various possibilities that lie in-

between.

112 General Attention Mechanism for AI Systems

Figure 7.8: A group of entities (shapes) with different properties (shape, color,

size).

In Figure 7.8, a group of entities (shapes) are shown having different properties includ-

ing: shape, color and size (measured as total area). The kind of functionality needed for

the particular type of pattern matching presently of interest should allow flexible speci-

fications of entities of interest, such as:

 Green rectangles (shape=rectangle, color=green, size=ANY)

 Largest blue circle (shape=circle, color=blue, size=MAX)

 Smallest green entity (shape=ANY, color=green, size= MIN)

 Largest entity (shape=ANY, color=ANY, size=MAX)

 All blue entities (shape=ANY, color=blue, size=ANY)

 All circles (shape=circle, color=ANY, size=ANY)

 All entities (shape=ANY, color=ANY, size=ANY)

Concretely, this pattern matching must support the composition of conditions on entities

and their attributes where wildcards (e.g. “ANY”) are allowed. Wildcards may be ex-

plicitly stated, such as in: (shape=rectangle, color=green, size=ANY). Alternatively,

wildcards can be implicit by omission, such as in: (shape=rectangle, color=green). Ei-

ther way, both cases should be functionally equivalent.

Helgi Páll Helgason 113

Formally, there at a finite number of entities present in the operating environment at any

point in time. These will be referred to as E = [e0..en]. Each entity has a finite set of

properties, referred to as e1 = [p0..pm]. The structure of a valid pattern is subject to the

following rewriting rules, where:

1) A pattern consists of one or more conditions:

Pattern → (Condition)+

2) A condition states that property pj of entity ei is equal or unequal to a value

(with wildcards not being valid in the latter case) or within or outside of a de-

fined range:

Condition →

(ei.pj = Valuea | ei.pj != Valueb | ei.pj within range | ei.pj outside range)

3) A value may represent a natural number, string or a wildcard:

Valuea → (number | string | wildcard)

Valueb → (number | string)

4) A range represents the range between two natural numbers:

Range → (numbermin, numbermax)

When a data item meets all the conditions specified by a pattern, a match occurs. This

type of pattern matching provides the desired functional capability to map goals to data

on the basis of entities, their attributes and values thereof. Patterns may also be used to

represent goals, in which case a match with present reality and such a goal pattern indi-

cates the achievement of the goal. The inclusion of ranges in the rewriting rules allow

fuzziness in the operating environment to be addressed.

7.5.2 Mapping Goals to Processes

As before, the definitions of the primitives of the problem are worth restating.

114 General Attention Mechanism for AI Systems

Definition 7.1.4 (repeated). A process is a unit of executable program

code which may require inputs of a specific type in order to run. The

execution of a process results in the generation of new data items

and/or new commands for sensors or actuators. All processes may

equally constitute an executable object or data item (the code of the

process).

Definition 7.1.8 (repeated). A goal is a special type of data item that

specifies a partial state of the operating environment, representing a

desired target state, in terms of entities in the operating environment

and their properties and attributes. A goal priority value is associated

with each goal and must be supplied by the process generating the

goal.

This problem is somewhat different from the one of relating goals to data, as there is no

clear common denominator and the primitives are of a fundamentally different nature

(executable objects versus data objects). The ability to view a process as a data item

does not simplify this problem in any obvious way. As a direct mapping seems out of

the question, a different approach must be adopted.

One such approach is to relate goals to processes by using the operational experience of

the system. This involves actively seeking processes that have contributed directly to

the achievement of previous goals that are identical or similar to the present goal. For

this to be possible, the following challenges must be addressed:

 How is the contribution of a particular process to a particular goal detected?

 How should information expressing such a contribution be stored?

 How can such information be efficiently accessed and searched on the basis of

similarity?

One way of detecting the contribution of a process to a successfully achieved goal is to

trigger dedicated processing when a goal is achieved. Most high-level goals can be as-

sumed to be achieved by the collaboration of multiple processes, due to the requirement

for fine-grained processes (architectural requirement #1 of chapter 6). A chain of execu-

tion starts when a new goal is generated which ends in successful achievement of that

Helgi Páll Helgason 115

goal (if the goal is achieved, which will probably not always be the case). When the

terminal state of the chain occurs (goal achievement), the system receives reward – in a

sense – as its goal-determined utility value increases. According to the expected value

defined in section 7.3.2, the quantity of the reward will be proportional to the priority of

the goal that was achieved. The reward is then back-propagated through the chain of ex-

ecution where each process is given a reward proportional to the utility increase, possi-

bly using some form of ampliative reasoning (c.f. Wang 1995).

Figure 7.9: A chain of execution, starting with the generation of a new goal and

ending in its achievement. Processes are represented by rectangles, data items are

represented by circles. Processes marked by the plus sign receive reward upon

goal achievement for contribution to the path of execution that resulted in success-

ful goal achievement.

Formally, a goal g is said to trigger processing consisting of processing tasks (see defi-

nition 7.2.1) represented by the set PT = (pi, ii) where pi is a process and ii is (valid) in-

put for pi. The enumerator (i) takes values from 0 to n, where n is the number of total

processing tasks resulting from the generation of goal g. A valid input for any process

constitutes a combination of one or more data item, collectively matching the input

specification of the process. In Figure 7.9, the set of all squares represents all pi and all ii

are composed from the set of all circles. The set PTg is defined as a subset of PT, con-

taining only processing tasks that the achievement of goal g directly relies on in the

chain of execution. The processes contained in PTg are marked with the plus symbol in

Figure 7.9. Finally, the set Pg contains only the processes of PTg.

116 General Attention Mechanism for AI Systems

To encode the contribution of each process towards the achievement of goal g, the fol-

lowing information is required:

 Specification of goal g

 Utility of contribution (priority value of goal g)

 Identifier of all processes in Pg

Taking a database view of the task, this represents a collection of entries where each en-

try encodes the contribution of one process. Entries may take the form:

 C = (goal, utility, process)

It should be noted that the surrounding architecture may have more than one prioritiza-

tion parameter for each goal. For example, NARS (Wang 1995) has two such parame-

ters in order to exert different types of time pressures on the system: in addition to the

main priority parameter, called urgency, a second priority parameter called durability

encodes the long-term importance of the task. However, these must be collapsed into

one at some point as a one-dimensional prioritization is required for the purposes of at-

tention.

For each achieved goal, the goal and utility values (determined by the priority of the

achieved goal) remain constant in all entries while the process identifier is different in

each entry, enumerating all processes of Pg. The total collection of all such entries of the

system constitute is contextualized process performance history (CPPH). This may be

viewed as a special database that can be consulted to prioritize processes of the system

by finding past contributions of processes that are relevant to a new goal.

While this presents a sufficient method of relating new goals to processes responsible

for achieving identical goals in the past, it is important to note that identical goals are

unlikely to occur often in the operational history of an AGI system, as the specification

of goals involves individual entities and/or continuous values. Furthermore, the CPPH is

likely to grow extremely large in size over time as the entire operational of goal-driven

AGI system revolves around achieving goals at various levels of abstraction. Function-

ality that enables access to the CPPH on the basis of similarity (as opposed to exact

matching) and compresses the size of the data contained therein is desirable.

The pattern matching described in 7.5.1 can be of use for this purpose, as the pattern

matching functionality is fully applicable to goals, with these being special types of data

items. If a set of goals contained in the CPPH share common features, a special process

of generalization can be used to generate one pattern from all these goals. In this case,

entries for the original goals can be collapsed – and potentially discarded - into one

more general entry where the goal specification is the new pattern. This enables the con-

Helgi Páll Helgason 117

tents of the PGGH to be accessed on a basis of similarity – where similarity of a new

goal with previous entries can be determined on the simple basis of whether it matches

an existing pattern or not. Furthermore, as numerous entries may be collapsed into sin-

gle entries, the growth of the PGGH over time is significantly reduced.

Generalization must be a continuously running maintenance function of the PGGH. The

principle of collapsing two or more process-to-goal contribution entries is based on

shared references to entities and attributes in the original entries. For example, these two

goals

rectangle01.position = (1.0, 1.0, 1.0)

rectangle01.position = (2.0, 0.0., 0.0)

both involve the process of moving a particular entity in the environment. Based on

their shared reference to the position of entity, a new pattern can be generated where the

actual numbers representing concrete locations in the environment are generalized:

 rectangle01.position = (NUMBER, NUMBER, NUMBER)

Subsequently, should a new goal be generated involving moving the particular entity,

such as for example

rectangle01.position = (5.0, 5.0, 5.0)

this new goal will match the generalized pattern, accomplishing access to the PGGH

based on similarity. The functionality of this example is referred to as value generaliza-

tion.

Definition 7.5.1. Value generalization is the process of replacing actu-

al values in a pattern with less constrained symbols that are applicable

to more than one value. Such symbols include wildcards, intervals (for

continuous or semi-continuous values) and enumerations (for discrete

values).

Generalization does not need to be limited to abstracting concrete values into wildcards

or variables. The surrounding architecture is required to have a symbolic level of

knowledge representation, as stated in architectural requirement #6 of chapter 6. The

present work does not go as far as to require an ontological representation; however

useful generalization opportunities emerge if such representation is assumed.

118 General Attention Mechanism for AI Systems

Figure 7.10: Example of an ontology. Ovals with solid borders represent classes

while the oval with dashed borders represents an instance of a class (that class be-

ing Rectangle). Solid lines represent an “is-a” relationship between concepts, with

the lower concept being a type of the higher concept.

Definition 7.5.2. Ontological generalization is the process of replacing

of references to an instance of a class with the type of the class, or re-

placing a reference to class with a reference to a super-class.

When an ontology is available in the surrounding architecture, an added dimension of

generality opens up. Ontological generalization is the action of generalizing from an in-

stance of a class to the type of the class, or from one class to super-class. Relative to

Figure 7.10 this represents movement upwards in the ontology. Ontologies structured as

trees are assumed here. This method may also apply to ontologies with graph structures

as long as the direction of increased generality can be determined in the graph.

This presents a method for generalizing on the basis of entities rather than values. For

example, the pattern

rectangle01.position = (NUMBER, NUMBER, NUMBER)

Helgi Páll Helgason 119

can be generalized several steps up using the ontology of Figure 7.10. The first step in

the generalization involves changing the reference to specific entity rectangle01 to a

reference to the ontological class to which it belongs.

Rectangle.position = (NUMBER, NUMBER, NUMBER)

Further ontological generalization is possible up to the root of the ontology, generating

the following patterns in increasing order of generality:

Shape.position = (NUMBER, NUMBER, NUMBER)

Physical_Entity.position = (NUMBER, NUMBER, NUMBER)

Entity.position = (NUMBER, NUMBER, NUMBER)

The risk of over-generalization is ever-present when generalization is performed; this

can lead to patterns that are not useful for achieving goals as the range of applicable

contexts and range of goals can grow to include goals that are sufficiently different to

require different solutions and thus processes. While such patterns can be generated,

they will not receive positive rewards to their utility value if they are unable to achieve

goals. Relative to other, more successful, patterns, over-generalized patterns will lag

behind and gradually loose the opportunity to be matched with new goals, perhaps be-

ing eventually discarded.

121

Chapter 8

Attention Mechanism Design

The design of a general attention mechanism for artificial general intelligence (AGI) ar-

chitectures presented in this chapter is both constrained and motivated by the require-

ments presented in Chapter 6, using the methods, concepts, and techniques discussed in

Chapter 7.

The attention mechanism consists of a set of functional components; these are functions

of the attention mechanism, not isolated software classes or modules. In Figure 8.1, an

overview of the complete attention mechanism is shown. To present the design, each

component shown in the figure is introduced at a time, with discussion of interactions

and overall functionality presented subsequently. Each component is also related to the

requirements presented in Chapter 6, motivating its place and necessity in the attention

mechanism, and providing an explanation of how it addresses the relevant requirements.

8.1 Goal-Driven Data Prioritizer

The component responsible for goal-driven prioritization of data items is intuitively re-

ferred to as the goal-driven data prioritizer (GDDP). The function of the GDDP is to:

a) Detect data items that are related to active goals or predictions,

b) Quantify the priority value such data items should be given and

c) Assigning them the resulting value.

These map directly to functional requirement 1 in chapter 6. While the functionality of

b) and c) will be shown to be relatively trivial, the functionality of a) involves signifi-

cant complexities and will be the main focus of this section. The particular resource

management control parameter that the GDDP is responsible for setting is the saliency

value of data items.

122 General Attention Mechanism for AI Systems

Figure 8.1. Overview of the proposed attention mechanism. The components de-

picted are functions of the attention mechanism (not isolated software classes or

modules).

Helgi Páll Helgason 123

The importance of predictions in the operation of predictions in the operation of the

GDDP is worth emphasizing. Observing the success or failure of a prediction is a criti-

cal requirement of the system in order to react appropriately to either event and to eval-

uate the quality of its predictive functions. In general, predictions can also be necessary

control data to configure sensors in order to ensure that the outcome of a prediction will

be observable to the system.

In section 7.5 a form of pattern matching was proposed that allows for flexible, fine-

grained targeting of data items. The task of relating data items to goals and predictions

relies on precisely this type of pattern matching; goal-relevant and prediction-relevant

data is considered to be the set of data contained in the system that matches a special set

of patterns. This special set of patterns consists of patterns derived from active goals

and predictions of the system. Each such pattern is referred to as an attentional pattern

(AtPat) and the set of attention patterns at any point in time fully define the focus of in-

terest for top-down attention (addressed here as goal-driven data prioritization). Func-

tionally, an AtPat is similar to the attentional template of Desimone & Duncan (1995),

but has wider scope as internal system information may be targeted in addition to envi-

ronmental information. Each AtPat has an associated priority value that determines the

boost in priority given to data items matching it, as well as being useful to prioritize at-

tentional functionality; matching of attentional patterns with data is performed in de-

creasing order of the priority of attentional patterns in cases where available resources

preclude full matching. Furthermore, each AtPat contains a reference to the goal or pre-

diction that triggered its creation, which is necessary so the pattern may be deactivated

by the achievement, failure or abandonment of the goal/prediction on part of the system.

Figure 8.2: Attentional pattern (AtPat) as a data-structure.

124 General Attention Mechanism for AI Systems

The life-cycle of an attentional pattern begins when a new goal or prediction is generat-

ed in the surrounding system. Both may be viewed as a fully specified pattern that rep-

resents a desired or predicted state in the operating environment. When the GDDP is no-

tified of the generation of a new goal or a new prediction, it derives one or more atten-

tional patterns from the new item. Goals have associated priority values that represent

the importance of a single goal relative to other goals of the system. On the other hand,

predictions do not have such priority values. In case of goal-triggered generation, the

priority value of the goal is set as the priority value of all derived attentional patterns. In

case of prediction-triggered generation, the priority of the prediction – if the surround-

ing architecture provides priority values for predictions – should determine the priority

values of all derived attention patterns. Possible sources of priority values for predic-

tions include the goal that the prediction was generated to serve and the estimated like-

lihood of the prediction being accurate, based on the operational experience of the sys-

tem. Otherwise, a default initial value must be used. The process of deriving patterns

from goals or predictions involves generalization; the original pattern is generalized by

creating new patterns where concrete values are replaced by wildcards by a process of

value generalization (definition 7.5.1). As the original pattern may involve more than

one condition, one attentional pattern is generated per condition. This allows each atten-

tional pattern to target a single component of the goal or prediction. While an attention

pattern is active, the system continuously attempts to find data items that match the pat-

tern in a continuous process of evaluating possible matches between available data

items in the system and existing attention patterns. This process is biased towards find-

ing matches for high priority attentional patterns, where more resources are allocated to

search for matches with these attentional patterns than those having lower priority. Dur-

ing the life-cycle of an attentional pattern, it never becomes inactive; however the prior-

ity of each pattern determines the likelihood of the pattern receiving processing re-

sources necessary for matches to be found with data. In cases where the GDDP has in-

sufficient resources to attempt matches for all active attentional patterns, available re-

sources are used to find matches for attentional patterns in decreasing order of priority.

Upon a match, the saliency value of the matching data item is increased relative to the

priority of the matching attentional pattern. Note that the same data item can be matched

by more than one attentional pattern, as well as having its saliency modified by bottom-

up attention. When a goal or prediction that triggered the generation of attentional pat-

terns is deactivated (which may happen as a result of goal achievement, goal failure,

goal abandonment, prediction success or prediction failure), all attentional patterns de-

rived from the deactivated item are deactivated as well.

Helgi Páll Helgason 125

Figure 8.3. Goal-driven prioritization of information. Attentional patterns are de-

rived from goals and predictions by a process of generalization. The AGI system

constantly tries to match active attentional patterns to data items. If a match is

found, the saliency of the matching data item is increased relatively to the priority

of the matching attentional pattern.

8.2 Novelty-Driven Data Prioritizer

A special function of the attention mechanism is responsible for prioritizing data based

on novelty: The novelty-driven data prioritizer (NDDP) function. This is a variation of

the compression-inspired methods for estimation of novelty that was described in sec-

tion 7.4. The operation of the NDDP is not influenced directly by goals or predictions;

its state is determined from the collective operational experience of the system. More

concretely, the NDDP keeps track of the frequency with which different types of infor-

mation have been observed in the past. This information forms a basis on which com-

pression may be based, as frequently observed events will compress to a greater degree

than novel events in relation to prior operational experience. If unlimited time and re-

sources were available in the system the ideal approach for computing novelty would be

to compress all new events individually together with all prior operational experience

and note the resulting compression ratio. This approach is clearly not applicable in prac-

126 General Attention Mechanism for AI Systems

tice, but compression methods exist that could enable an equivalent result to be generat-

ed; Adaptive Huffman Coding (AHC, Gallagher 1978) represents one such example.

However, AHC as originally described works on the level of individual bytes. While all

new events that the system encounters can be, and are, obviously represented as digital

information (and thus a series of bytes), that low level of granularity – where the build-

ing blocks are individual bytes – is too low to be useful, as the representations of two

events may share a large number of identical bytes without any meaningful operational

similarity. Working at the higher level of data items may seem to represent a more use-

ful approach. At this level, similarity (and thus novelty) can be measured based on the

type of data item, entities which are referenced by the data item and concrete values

contained in the data item. However, whereas a single byte can only take 256 values, a

data item can take a much greater number of different values. As representations of

events can be assumed to include continuous values, this number may in fact be infinite.

In addition, any two events in the operational history of the system will rarely be exact-

ly identical and if the event representation includes a reference to the time at which it

occurred this might in fact never happen. For these reasons, applying Adaptive Huffman

Coding or related methods at the level of data items is neither useful nor practically rea-

sonable. Some new ideas are needed to implement compression-inspired novelty esti-

mates at this level.

One possible solution is to categorize data-items into discrete groups based on their con-

tents, and use the frequency of a category to estimate novelty. As the set of data items

contained in each category will merely be similar and rarely identical, the actual novelty

value of each new data item – defined in terms of compression when appended to opera-

tional history – is not precisely computed, but rather becomes an approximation of nov-

elty, as limited by discrete categorization. Nevertheless, approximations may provide

near-equivalent results to precise novelty values, in terms of usefulness to the AGI sys-

tem. A categorization-based approach for approximating novelty can be viewed as a

variation on lossy compression15.

In order to implement such categorization-based approximation of novelty, the system

must dynamically generate and update categories at runtime. Efforts to implement such

functionality for a particular AGI architecture will be influenced and constrained by the

types of data items that are representable in the surrounding architecture. While availa-

ble types may vary between architectures, some core types are assumed to be necessary

in light of the requirements of Chapter 6. In particular, the need to represent – at a min-

imum – the following distinct types of data items may be derived from the require-

15 Data compression methods come in two flavors, of course: lossless and lossy. In lossless compression,
compressed data can be extracted back to its original form with absolute accuracy. In lossy compression
information is eliminated, so that the extracted version is similar – but not identical – to the original.

Helgi Páll Helgason 127

ments: Goals, predictions, and observations. The system is required to represent inten-

tions and desired future states, predictions and observations, derived from the operating

environment. These all refer to a partial state in the operating environment. For this rea-

son, it seems rational to introduce a special State data type intended to give meaning to

the first three types. The meaning of a state is determined by what type of data item it is

associated with. A state by itself is only a partial specification of a possible (representa-

ble) state in the operating environment. If a state is associated with a goal, its operation-

al semantics are those of a desired future state. If a state is associated with a prediction,

its operational semantics are those of an expected (possibly to a degree) future state in

the environment. Finally, if a state is associated with an observation, its operational se-

mantics are those of an event the system has witnessed in the operating environment.

The top level of a categorization for data items is shown in Figure 8.4.

Figure 8.4: Top-levels of a categorization for data items.

Considering the concept of a state at the fundamental level, a state must represent the

value of a property of an entity in the operating environment. Different entities may

have different properties. For example, a location property makes perfect sense for a

chair in the external environment but has no meaning in relation to internal entities,

such as a process. Conversely, a process entity may have a property that represents its

priority (in the competition for system resources) while such a property would not make

sense for the chair entity.

128 General Attention Mechanism for AI Systems

Figure 8.5: A state is the representation for a property of an entity with a specific

value.

A single state, as shown in Figure 8.5 may not be sufficient to represent states of inter-

est for the operation of the system. However, this can be resolved by allowing states to

be combined into composite states which represent an arbitrarily large set of atomic

states combined by conjunction or negation.

Note that there is no requirement on part of the NDDP for knowing all possible entities,

properties, or even data types, at design time. Should a new data item not fit into any

existing category, a new category would be dynamically created to accommodate it.

When this occurs it is a strong indication of novelty and the data item should be as-

signed the maximum allowable novelty value.

Two different types of novelty have to be addressed in this categorization-based ap-

proach: The qualitative novelty of what is being observed and the quantitative novelty

of the actual value.

8.2.1 Qualitative Novelty

Qualitative novelty measures the novelty of operational semantics carried by a data

item, measuring how novel it is to observe this kind of information, regardless of the ac-

tual concrete values of the data item. For example, if the system has never observed in-

formation regarding color, it is qualitatively novel if a color observation occurs. If the

system has observed color information before, but not for the entity referenced in this

particular observation, it is also qualitatively novel but to a lesser extent as the qualita-

tive novelty in this case relates to the entity of the observation rather than type of infor-

mation.

Qualitative novelty can be computed as follows: If a data item requires a new category

(as it does not match an existing one), it should be given the maximum allowable novel-

ty value, and quantitative novelty does not need to be computed. Creation of a new cat-

egory will occur if a) the type of this data item has never occurred before, b) an obser-

vation references an entity which has not been referenced before or c) an observation

describes a property never seen before in relation to the entity in question. All these

Helgi Páll Helgason 129

cases may be considered truly novel in the widest sense of the term. If a data item fits

into a pre-existing category, the qualitative novelty value is computed as the average of

the inverse probability for all categories to which the data item belongs. This computa-

tion is reflected in the formula below.

ሻܦሺݕݐ݈݁ݒ݋ܰ	݁ݒ݅ݐܽݐ݅ݐ݈ܽݑܳ ൌ෍
1.0 െ ௜ሻݕݎ݋݃݁ݐܽܥሺݕݐ݈ܾܾ݅݅ܽ݋ݎܲ

݊

௡

௜ୀ଴

 where

 D is a data item

 n is the number of categories matching D

The use of an average over all compatible categories is motived by a desire to allow

multiple levels of generality to influence the estimated qualitative novelty value. A

weighted average, which would presumably place higher weights on categories closer to

the root category, is not necessary as such bias towards more qualitative novel data

items is already present: When more than one new category need to be generated for a

new data item, all new categories influence the average with a probability value of zero.

The probability value of each category can be computed from simply incrementing a

counter of each category each time a new data item is added to the category and compu-

ting the relative value of the category counter with a global counter of all prior data

items.

130 General Attention Mechanism for AI Systems

Figure 8.6: Qualitative novelty is determined by the categorization of the relevant

data item. Each sub-category of the root “Data Item” category is given a likeli-

hood value based on the number of data items seen so far that belong to the cate-

gory, relative to the number of all data items seen. The qualitative novelty value is

calculated as the average of inverse likelihood values of all categories that a data

item belongs to, from the root of the categorization down to the terminal category.

In the categorization example above, the observation of a position for the table

would be given a qualitative novelty value of 40% based on this method. The

lower (bottom right-hand) observation, describing the position of the cup, requires

the creation of a new sub-category as such an observation has never been experi-

enced by the system before, although other properties of the cup have been ob-

served. The likelihood of this new observation is considered 0% in light of the op-

erational experience of the system, resulting in a qualitative novelty value of

100%.

8.2.2 Quantitative Novelty

Quantitative novelty measures how unusual specific values for properties of entities are

in context of prior operating history. This is different from qualitative novelty, which

focuses on novelty of operational semantics, in that quantitative novelty focuses on how

specific values in the operating environment change over time and deals with concrete

values. The approximation of quantitative novelty involves similarity of new observed

Helgi Páll Helgason 131

concrete values (that quantify properties of entities) when compared with previously

experienced ones. At a minimum, quantitative novelty is evaluated for the value of a

specific property of a specific entity, not over multiple entities or a variety of properties.

In systems having structured ontologies, while this is not one of the architectural re-

quirements, it is possible to go a step further and additionally evaluate quantitative nov-

elty over related or similar entities (e.g. entities of same ontological type). This allows

the system to not only detect that a particular property of a specific entity has an unusu-

al value, but also that a particular value for a specific property is unusual for the rele-

vant ontological type of entity. Approaches that must be followed to this end diverge

according to the type of value under consideration. For continuous numerical values, an

exponential moving average16 (EMA) is used to dynamically update the mean and

standard deviation of prior values. The choice of EMA, as opposed to a traditional aver-

age, is motivated by two factors:

1) The next value of an EMA can be computed using only two values, the new value of

the data stream and aggregate data (prior EMA), eliminating the need to revisit past ex-

perience (which may no longer exist in the system).

2) The influence of prior values decays over time in an EMA; the speed of this decay

can be controlled with a single coefficient.

With EMA-based estimations of mean and standard deviation, evaluation of novelty can

be calculated by assuming a Gaussian probability distribution where the novelty value is

the inverse of the probability of the new value. This approach works identically for nu-

merical integer values when the data is normalized to a continuous range.

Discrete values, such as identifiers (e.g. of entities), and strings of text require a differ-

ent approach. In this case, it is necessary to keep track of prior values for each variable

of interest, counting the total number of occurrences as well as occurrences of each val-

ue, giving rise to a discrete probability distribution. Based on this information, the prob-

ability of a new value can be computed from the number of occurrences of the value in

the past and the total number of occurrences for the particular variable. A dedicated data

structure holds all previously observed values and the number of occurrences for each.

One entry in this data structure is required for each discrete property of each entity.

When a previously unseen value occurs, this triggers the generation of an entry in the

data structure, with maximum possible quantitative novelty. The data structure includes

a decay parameter which is used to decrease all counters over time, at a rate determined

by the parameter. Evaluation of similarity between discrete values may present some

16 An exponential moving average is calculated as: St = α * Yt + (1- α) * St-1
where St is the value of the EMA at time t, Yt is the value being averaged at time t and α is a constant.

132 General Attention Mechanism for AI Systems

advantages in some cases, in particular for text strings, but this is a sub-domain that is

not addressed in the present work.

8.2.3 Runtime Novelty Computation

The operation of the NDDP consists of computing approximated qualitative and quanti-

tative novelty values for new events. These values should equally contribute to the final

approximated novelty value for a data item (d):

ሺ݀ሻݕݐ݈݁ݒ݋ܰ ൌ 	
ሺ݀ሻݕݐ݈݁ݒ݋ܰ݁ݒ݅ݐܽݐ݈݅ܽݑܳ ൅ ሺ݀ሻݕݐ݈݁ݒ݋ܰ݁ݒ݅ݐܽݐ݅ݐ݊ܽݑܳ

2

As observed by the design presented in this section, attempts for estimating novelty of

incoming information can be expensive in terms of memory resources; a large number

of data structures are required in the operation of non-trivial systems. To allow opera-

tion that gracefully handles limited memory resources, the collection of data used for

novelty estimation may need to be pruned during operation. In general, pruning should

be based on discarding knowledge regarding rare events; when such events are pruned

this will not greatly influence their novelty estimation if they occur in the future. Being

rare, such events will receive high novelty values while information regarding the fre-

quency of their occurrence exists. After removal of frequency evaluation, future occur-

rences will be treated as completely novel events, also resulting in a high (maximum)

novelty value. Pruning can be performed at multiple levels; where information is dis-

carded in order of increasing frequency. Data structures with lowest frequency storing

information regarding categories, entities or values are feasible targets for elimination

as they result in high novelty estimation values for the elements they are associated

with, which will continue to be the case (although to an increased degree) if these struc-

tures are removed. However, novelty data structures cannot be removed in this way too

quickly as this would inhibit the mechanism to learn what is common (the opposite of

novel) and display habituation.

Habituation is a trait of human cognition that is described as a decrease in response to a

stimulus after repeated presentations (Bouton 2007). This trait is desirable in bottom-up

attention of AGI systems and in fact implicit in the context of present work according to

our definition of novelty. The approach described in this chapter for estimating novelty

of data items provides this functionality; due to the continuously updated nature of the

data underlying estimates of novelty, repeated occurrences of data that were once novel

Helgi Páll Helgason 133

will cease to be so over time. However, the rate of habituation is what motivates the

frequency decay functionality in both qualitative and quantitative novelty. Without de-

cay, this rate would be high for a system with relatively short operational experience

while a system with extended experience would exhibit habitation at a slower rate. With

decay of frequency values over time, a more stable rate of habituation will be exhibited

by the system throughout its operation, as the effects of events in the distant past disap-

pear or become negligible. This may be implemented by a periodically running mainte-

nance function that applies decay to the novelty related data structures that have been

described. The effects of decay are also beneficial from a resource conservation per-

spective, where data structures are discarded from the system after their associated fre-

quency value reaches zero due to the effects of decay.

The methods discussed in this section for approximating novelty give some structure to

the experience of the system in the form of aggregate data structures and frequency val-

ues; this allows the novelty of new events to be approximated in an efficient manner as

opposed to requiring the system to base such computations on the entire set (or large

parts thereof) of prior operational history.

8.2.4 Alternative Approaches

The prior sections have presented methods for evaluating the novelty of information

based on an interpretation of novelty in terms of prior operational experience of the sys-

tem. There is at least one other way in which the concept of “novelty” can be interpreted

that is worthy of discussion: Novelty as events that are not predicted by the system.

Under this interpretation, all events that occur without an existing and explicit predic-

tion with regards to their occurrence are considered novel. This greatly simplifies the

process of determining novelty as continuous processes running on the total operational

experience of the system and the memory resources required to store the resulting data

(in some form) are no longer required. However, new problems are also raised when us-

ing this attractive but simplified definition of novelty. The approach requires the system

to attempt prediction for all future events that it can expect, to a rational degree, in

terms of its operating experience. This requires an extremely large number of predic-

tions to be continuously made in order to detect novelty, whereas the approach de-

scribed in prior sections only deals with novelty evaluation for all actual events. One

benefit of such approaches is that dedicated data structures (and the memory expendi-

ture involved with them) are not required to evaluate novelty, as the required infor-

mation is encoded in prediction processes that contribute to other aspects of operation as

well. However, the requirement to predict all aspects of the operating environments (in-

cluding aspects not related to current goals) – which is implicit in this approach to nov-

134 General Attention Mechanism for AI Systems

elty evaluation – is somewhat extreme and may ultimately not prove practical. Varia-

tions of this scheme that involve partial prediction may prove more practical.

8.3 Experience-Driven Process Prioritizer

The function responsible for prioritizing processes is called the experience-driven pro-

cess prioritizer (EDPP). In Chapter 7 the issue of mapping goals to processes was dis-

cussed and an approach suggested based on using the operational experience of the AGI

system to relate current goals to processes by keeping track of the contribution of each

process to the achievement of a goal, and using this information when similar goals are

generated in the future. A practical solution for implementing this method was also in-

troduced where the reward (or utility – represented by the priority of the achieved goal)

resulting from the achievement of a goal was propagated backwards through the chain

of execution in which it resulted (see Figure 7.9). The following encoding of a contribu-

tion of a process towards a goal was suggested: C = (goal, utility, process).

This encoding contains all necessary information to leverage the knowledge for future

goals and may be considered an entry in the knowledge base of the EDPP; a revised en-

try structure is presented at the end of this section that meets the operational needs of

the EDPP. The goal is expressed as a concrete partial state of the environment, the utili-

ty indicates the priority of the goal and an identifier of the process is included. The task

of prioritizing processes in this manner calls for a dedicated data structure to store a col-

lection of entries like the one above. This data structure (or base of knowledge) is re-

ferred to as the contextualized process performance history (CPPH). Each time a goal is

achieved in the system, the CPPH is updated to encode the contribution of each process

involved. In fine-grained systems, the numbers of goals that are achieved accumulate

rapidly over time due to a high number of sub-goals expected to be involved with each

high-level goal. Without further action, the data structure would eventually (and likely

quite soon) become impractical to store and inefficient to search. Furthermore, the prob-

lem of evaluating similarity of current goals and goals solved in the past remains un-

addressed. To resolve both of these issues, introducing a process of generalization for

specific goal details is necessary.

As goals can be viewed as fully specified patterns, a similar approach to generalization

as used in the GDDP may be used here. The generalization functionality that is of inter-

est for the present problem has two functions: Value-generalization and ontological

generalization (both defined in section 7.5.2). Value generalization is the process of re-

placing concrete values in goals with wildcards based on the insight that the application

of certain processes to the achievement of a goal with particular absolute values is likely

Helgi Páll Helgason 135

to be useful for at least some future goals that are identical in structure but have differ-

ent absolute values. This process generalizes a specification of some aspects of the op-

erating environment where the resulting pattern matches a greater number of states; for

example when an absolute specification of one possible state in the environment is re-

laxed to fit a wider range of similar states. Ontological generalization is the process of

replacing a reference to an actual entity (in the sense that instances of this entity exist in

the operating environment) with a reference to the class of the entity (so that the pattern

applies not only to this particular instance of the entity but all entities like it) or replac-

ing a reference to a class with a reference to its parent class (if one exists). This allows

for the application of processes to a wider range of similar entities in cases where pro-

cesses have only been observed in action with relation to a specific entity.

Figure 8.7: Value generalization involves the replacement of concrete values with

more general symbols, such as wildcards as shown.

Figure 8.8: Ontological generalization involves the replacement of 1) a reference

to a specific entity with a reference to the class of entities like it or 2) a reference

to a class of entities with a reference to the parent class of entities.

136 General Attention Mechanism for AI Systems

The existence of an ontological level of representation is not one of the architectural re-

quirements for the attention mechanism. Ontological generalization may either be

viewed as optional, being simply ignored (in architectures which do not offer such rep-

resentation), or attempted in the operation of the EDPP. In the latter case, proposed on-

tological classes may be dynamically generated for entities that occur in structurally

similar goals.

The results of both types of generalization will not always be useful as over-

generalizations may occur. While the original entries into the CPPH knowledge base

are proven to be useful in operation, the same cannot be said for new entries resulting

from generalization; these are unproven at creation time in terms of usefulness. For

original entries, the utility parameter quantifies approximately the contribution made by

a process to the operation of the system; its value comes from the priority of the goal

that was achieved. The issue of what priority value to assign to new entries resulting

from generalization raises some issues. First, generalized entries are fundamentally dif-

ferent from initial entries in the sense that their actual utility is unknown at creation time

– although the system will learn to evaluate their utility over time. However, there is

some motivation to validate new generalized entries as quickly as possible as

knowledge that is applicable in a greater number of contexts is more valuable – in a

general sense – to the system than highly context-specific knowledge. Furthermore, lim-

ited resources motivate removal of redundant information from the CPPH. As a general-

ized entry is validated successfully over time, the likelihood of redundancy for the en-

tries on which it is based increases, eventually allowing a rational decision to be made

regarding their removal. If the validation fails, the generalized entry becomes a target

for removal instead.

The utility value of each entry represents its priority in the pattern matching process,

where matches between active goals and existing entries of the PCCH are attempted in

order of decreasing utility. An examination of how the utility value of each entry should

change over time is in order. While entries resulting from goal achievement are ground-

ed in operational history, the contributions of the same processes for solving even iden-

tical goals is not guaranteed in the future as the environment is assumed to be stochas-

tic; this means that the utility value of original entries may need to be updated after cre-

ation. The same is true for entries resulting from generalization; at creation time their

utility is unknown. Due to the desire to determine their degree of usefulness, each new

generalized entry should be given an initial value higher than the average of the entries

on which the generalization is based. This represents the unverified belief of the system

that the new generalized entry is more useful than the entries on which it is based. The

utility value of all entries is subject future updates. By treating the utility value as an

exponential moving average (EMA), the utility value becomes a measure of the benefi-

Helgi Páll Helgason 137

cial influence of the entry which is biased towards recent events. The EMA value can be

updated in an efficient manner not directly reliant on a set of prior values.

When a new goal is generated, the CPPH is consulted by seeking entries that have a pat-

tern matching the goal. If matches are found, the processes corresponding to each entry

are assigned an increase in activation according to the utility value of the entry. Addi-

tionally, the fact that specific entries were used for the purpose of achieving a specific

goal by activating selected processes is recorded for the lifetime of the goal. This is

necessary to properly update the PCCH in the event that the goal is successfully

achieved, in which case the entries used to increase activation of selected processes

should receive increases in their utility values – if and only if the process activated by

the entry is part of the chain of execution that terminated in goal achievement- the pro-

cess rather than having individual process contribution entries being created and treating

the goal achievement as a fundamentally new one. When generalized entries are rein-

forced in this manner, the new utility value resulting from the latest goal achievement is

added to the exponential moving average (EMA) that encodes the utility of the entry.

Figure 8.9: An entry in the CPPH data structure contains: a) Goal or pattern that

an active goal must match in order for this entry to be applicable. b) Identifier of

process to be given increased activation. c) Exponential moving average of the

contributions this entry has made to the operation of the system. d) Durability of

the entry, which represents its priority in the competition for memory resources

relative to other entries. On successful achievement of a goal following the appli-

cation of an entry, the new contribution is added to the EMA of the Utility value

and to the Durability value.

138 General Attention Mechanism for AI Systems

Two continuously running processes operate on the CPPH: A generalization process

seeks possible generalizations and generates new entries based on these when found. A

memory maintenance process periodically removes entries from the CPPH whose dura-

bility value have fallen below the threshold for storing.

Figure 8.10: The EDPP reacts to a new goal. a) A new goal (gi) is generated,

prompting an attempt to match the goal to entries (e1..en) contained in the CPPH.

Four matches are found (e1, e2, e3 and e4). This results in the activation of pro-

cesses associated with each entry (p1, p2, p3 and p4) to be increased by the

amount of the utility value of the entry. b) Execution of processes occurs. The

goal is achieved by one chain of execution where processes p1 and p3 contribute

to the achievement, each having been given increased activation by respective

CPPH entries e1 and e3. Processes p2 and p4 do not contribute to the achievement

of the goal in spite of having received increased activation by CPPH entries e2

and e4. Process p5 also contributes to the achievement of the goal without receiv-

Helgi Páll Helgason 139

ing increased activation by any CPPH entry. c) The achievement of the goal caus-

es an update to the CPPH knowledge base. Entries e1 and e3 are reinforced for

their contribution to the goal achievement, where their utility values are updated

with the priority of the goal that was achieved and their durability values incre-

mented. Entries e2 and e4 receive no such reinforcement, not having contributed

to the achievement of the goal. A new entry is created in CPPH to record the con-

tribution of process p5 to the achievement of the goal.

8.4 Control Parameters

To address functional requirement #10 (from Chapter 6.2), which dictates that the atten-

tion mechanism should allow for external control of resource usage of its individual

functions, the attention mechanism is outfitted with such control parameters for control-

ling selected aspects of attentional processing. These parameters are supplied as con-

trols to be used by the system itself in an introspective manner and may also be adjusted

externally, while the latter is a less interesting case as autonomy of the system is re-

duced. The control parameters expose some aspects of the attention mechanism for out-

side control, in a sense making attentional functionality a tool that may be used to vary-

ing degrees and controlled by the system. However, any changes to these parameters are

reflected in system-wide operation.

Alternatively to exposing these control parameters, they could remain fixed or it could

be viewed as the role of the attention mechanism to adjust them during runtime. How-

ever, the former approach would fail to offer flexibility as varying operating conditions

benefit from different settings to these parameters.

The latter approach requires an attention-specific implementation of broad-scope learn-

ing mechanisms as part of the attention mechanism. While this is possible, a more prac-

tical solution would be to use the general learning capabilities of the surrounding archi-

tecture, that are assumed to exist in any constructivist AGI-level system, for this pur-

pose. However, such learning capabilities may not be available for all systems in which

the present attention mechanism could be implemented, justifying the implementation

of attention-specific learning functions. Such functions are out of scope of the present

work, because it does not focus on learning or reasoning mechanisms, and the types of

systems specifically targeted by the work are assumed to have general learning and rea-

soning mechanisms that can be applied to this problem.

The control parameters exposed by the attention mechanism are:

140 General Attention Mechanism for AI Systems

8.4.1 Deliberation Ratio

The Deliberation Ratio was introduced in definition 7.3.2. The value of this parameter

expresses the total amount of processing resources assigned to the operation of the at-

tention mechanism as a fraction of total system processing resources. Changes to this

parameter affect the amount of resources accessible to all functional components of the

attention mechanism (GDDP, NDDP, EDPP).

8.4.2 Focused/Alert Ratio

The Focused/alert ratio (FAR) was introduced in definition 7.3.3. The state of being fo-

cused refers to goal-focus and is achieved by means of top-down attention while the

state of being alert refers to the ability to notice novel, unexpected events in the envi-

ronment and is achieved by means of bottom-up attention. The EDPP reserves a fixed

amount of the attentional resources allocated at each time; the resource allocation the

EDPP as a functional component may not be altered as any reduction would negatively

impact the capability of the system to achieve its goals and react to new operating situa-

tions.

The desirable balance between these two states is different for varying operating condi-

tions, although some minimum resources must always be allocated to processes sup-

porting each state. For example, let us consider the case where a high-priority goal is

generated by the system and is unresolved while its deadline rapidly approaches. This

situation is depicted in Figure 8.11.

At time T0, a high-priority goal is generated within the system. As the goal remains

unachieved, the amount of resources dedicated to bottom-up attention is gradually de-

creased by the system at the expense of alertness to strive for goal-achievement by ded-

icating increased resources to top-down attention. The goal is achieved just before its

deadline, after which resource allocation to top-down and bottom-up attention reverts to

prior levels.

Quantitatively, the amount of resources allocated to top-down attention (GDDP) are

represented by FAR, with resources allocated to bottom-up attention (NDDP) are repre-

sented by (1.0 – FAR).

Helgi Páll Helgason 141

Figure 8.11: The pie charts show the focused/alert ratio of a hypothetical system

at different times, with red represented the amount resources allocated to bottom-

up attention (NDDP) and blue showing the resources allocated to top-down atten-

tion (GDDP). The lower line shows events related to a high-priority goal along the

temporal dimension.

8.5 Attention Mechanism

This section explains how the individual components described in this chapter interact

in a coordinated way to implement a complete attention mechanism. The discussion will

be around a set of illustrations which consecutively introduce the key sub-systems in the

mechanism, and the operation of the complete attention mechanism thus introduced in

stages, with the figures growing gradually in complexity as they incorporate more func-

tionality.

Two fundamental entities relating to operation of the attention mechanism are the col-

lection of processes and data items of a system. These are essentially the targets of the

attention mechanism. Data items are produced in the environment and sensed by the

system’s sensors and produced internally during normal operation of the system. In sys-

tems satisfying the fine-grained requirement of Chapter 6 (architectural requirement #1:

the hosting architecture must be based on fine-grained processes and units of data),

these are large collections of small interacting units.

142 General Attention Mechanism for AI Systems

Figure 8.12 shows an overview of the system before any attentional functionality is in-

troduced; actual operation of the system without such functionality will be arbitrary and

undirected. The system continuously receives new data items from the operating envi-

ronment, which is assumed to be of real-world complexity, from its set of sensors. Data

items trigger the execution of compatible processes, resulting in the generation of new

data items and/or commands for actuators. Any commands generated are sent to the

specified actuator, which performs some action in the operating environment that

changes its state. The results of such changes are then observed by the system via its

sensory devices, closing the perception-action loop.

Figure 8.12: Overview of the system before any attentional functionality is intro-

duced. Components represent architectural functions (not classes or modules).

Helgi Páll Helgason 143

First we will look at top-down attention functionality. In this process, new incoming da-

ta is initially evaluated by the GDDP to determine possible relationships with current

goals and predictions of the system by attempting to match active attentional patterns

(created by generalization of goals and predictions). When a new goal or prediction is

generated by the system, a new attentional pattern is generated in the GDDP by per-

forming value generalization on the specification of the goal. This causes the GDDP to

become reactive to information relating directly to the goal or prediction. When matches

are found, the data item receives positive bias in the form of an increase in its saliency

value with the magnitude of the increase being determined by the matching attentional

pattern. An overview of the system with this functionality is shown in Figure 8.13. In

this state, the system prioritizes its data items solely on their relation to active goals and

predictions, giving goal- and prediction-related data a higher probability of being pro-

cessed than other data.

Now, let’s look at bottom-up attentional functionality. New incoming data is also evalu-

ated by the NDDP for novelty using categorized aggregate data of prior experience. The

saliency of each data item evaluated for novelty is incremented by the amount of the re-

sulting novelty value. Habituation is an emergent operational property in this process, as

novel or unexpected information will cease to be so automatically after having been ob-

served on an increasing number of occasions. An overview of the system with the addi-

tion of the NDDP is shown in Figure 8.14. Once bottom-up attentional functionality is

added, the system not only targets information that is directly goal-relevant, but also

novel and unexpected information which may be indirectly relevant to active goals or

necessary triggers for the generation of new goals. Prioritization of data items, based on

goal-relatedness and novelty, is the result of combined operation of the GDDP and the

NDDP where priority is represented by saliency values of data items. However, process

prioritization remains unaddressed, implying that many processes not useful in the pre-

sent context may be used to process available data.

144 General Attention Mechanism for AI Systems

Figure 8.13: Overview of the system with top-down attention. Components in the

diagram represent architectural functions.

Helgi Páll Helgason 145

Figure 8.14: Overview of the system with top-down and bottom-up attention.

Components in the diagram represent architectural functions.

146 General Attention Mechanism for AI Systems

Finally, let’s look at process prioritization. The generation of a new goal also prompts

the EDPP to perform contextual process evaluation, with the goal being the context un-

der consideration. This process involves attempting to match the new goal with existing

entries in the contextual process performance history (CPPH) knowledge base. If

matches are found, the processes identified in matching entries are given increased acti-

vation, with the magnitude of the increase being determined by the utility value of the

entry. The resulting prioritization of processes, where the priority of a process is repre-

sented by its activation value, is thus based on historical operation of the AGI system in

similar contexts (in terms of active goals). This completes the attention mechanism, as

shown in Figure 8.15.

The case in which no entries are found in the CPPH for a new goal is worth discussing.

In this event, the EDPP cannot supply information with regards to prioritization of pro-

cesses in the context of this goal. The AGI system has to fall back on its general learn-

ing mechanisms and attempt to find a way to achieve the goal. While general problem

solving and learning are not the main focus of this work, the section discussing decision

complexity (7.3.2) in chapter 7 offers some direction in terms of methodology.

The top-level resource management policy of the AGI system should be to allocate re-

sources to data and processes based on their evaluated priority. As a data-driven archi-

tecture is assumed (see chapter 6), this translates to exposing the most salient data items

to the most activated processes of the system at all times. With a resource management

policy based on deterministic application of priority values, some processes and data of

the system may never receive attention, in the sense that they will not trigger any pro-

cessing. An interesting future research direction is a probabilistic application of control

data to resource management decisions, as featured in NARS (Wang 1995). Under such

a resource management policy, all items in the system have an opportunity to receive

resources, while priority values control the probability of this occurring. While I am

presently unable to motivate such a scheme as critically necessary for the attention

mechanism, wider exploration and even some form of creativity may result under such.

When the execution of a process is triggered by a match with compatible input data, the

result is the generation of new data items and/or commands for actuators of the system.

While this is not explicitly depicted in Figure 8.12, sensors may also be the target of

commands; examples of this include adjusting the sampling frequency or re-orienting a

sensor.

Helgi Páll Helgason 147

Figure 8.15: Overview of the system and complete attention mechanism. Compo-

nents in the diagram represent architectural functions.

148 General Attention Mechanism for AI Systems

8.6 Discussion

The design presented here seeks to make any system containing this attention mecha-

nism capable of real-time operation. While functional components that deal explicitly

and directly with temporal aspects of system operation have not been proposed, this is-

sue is addressed at the level of architecture. In particular, architectural requirements for

fine-grained structure and data-driven execution model are central to achieving real-

time performance. The importance of fine-grained structure is that, since processes and

data of the system are small but numerous, no time-consuming, atomic processes are

possible; the system will never have to wait for a substantial period of time before being

able to process and react to new information. Furthermore, this results in homogeneity

in temporal aspects of processing tasks of the system as all units of processing are likely

to take roughly the same or similar amounts of time. The importance of a data-driven

execution model is that it allows the system to bypass fixed global processing cycles

and elaborate control loops, which are atomic and potentially time-consuming units of

processing. Furthermore, this allows simultaneous processing related to immediate tasks

and possible future tasks while all branches of processing are fully open to interruption.

As a result of these architectural requirements, the system is constantly in an interrupti-

ble state of operation and temporal aspects of its operation are largely predictable. Sev-

eral aspects of real-time operation fall outside the scope of the present work, including

reasoning about task deadlines and balancing the priority of the goals of the system, of

which many are assumed to be concurrently active at any given time during operation.

The discussion on decision complexity in section 7.3.2 proposes some ideas with re-

gards to these issues.

As has been stated several times in the present work, the attention mechanism is intend-

ed to allow resource-bounded systems to operate in environments producing vastly

more information than they could ever hope to process in real-time. The operation of the

NDDP for bottom-up attention is a possible source of confusion with regards this intent,

as the functionality does indeed process all information from the environment. While it

is true that for complete, fully functional bottom-up attention all information observable

from the operating environment at any point in time must be processed, there is a signif-

icant qualitative difference in the type of processing referred to in this context and pro-

cessing on the cognitive level of the system.

Cognitive-level processing occurs when data items receive sufficient saliency to trigger

processes to execute. The results of such execution invariably results in generation of

new data items or actuator commands, potentially being the start of a chain of execu-

tion. Thus, the derived cost, in terms of resource allocation, of processing a data unit

from the operating environment at the cognitive level – where the meaning of the in-

Helgi Páll Helgason 149

formation is interpreted in context of all other data items of the system as well as prior

operational experience – is highly variable. In contrast, the NDDP applies uniform, pre-

determined processing to all data items from the operating environment; this may be

called low-level processing while processing at the cognitive level may be called high-

level processing.

This issue is not unique to the NDDP and bottom-up attention. The operation of the

GDDP also requires fixed amounts of predetermined low-level processing for all new

data items from the operating environment. The GDDP must ideally evaluate every sin-

gle new data item for matching with active attentional patterns in the same way that the

NDDP must ideally do the same to approximate novelty of all new data items. It is

worth stating explicitly that when abundance of environmental information and resource

limitations are discussed, insufficient resources on part of the system to process all envi-

ronmental information refer mainly to high-level processing, which is orders of magni-

tude more resource intensive than low-level processing where small, fixed algorithms

are applied to the data.

While the efficiency and risk of system operation are maximized by ensuring that the

system has sufficient resources to give attentional consideration to all new information,

this may not be possible in all cases. Full attentional consideration increases efficiency,

as the probability of missing goal-relevant information is reduced, and reduces risk, as

the probability of missing novel, unexpected events that are relevant to current tasks or

necessary triggers for the generation of new goals is reduced. While ideally, the baseline

resource requirements of any resource-bounded generally intelligent system must neces-

sarily be that resources are sufficient to apply some fixed low-level processing to all

units of new information; this is not a practical requirement in real-world environments

as the required resources may to vast. Some evidence even suggests that humans do not

fully meet this requirement, as relevant but unexpected events are not reliably noticed in

all cases (Wood 1995, p. 255-260).

A selective application of top-down and bottom-up attention is implicitly challenging as

it requires assumptions to made with regards to information that is not evaluated at all,

hence introducing increased risk. Rather than arbitrarily ignoring information in such a

way, a better policy would be to leverage the predictions of the system in an attempt to

isolate the type and place in time of relevant information to some degree and where no

predictions exist to strive for uniformly distributed evaluation along the temporal di-

mension so that no particular type of information or modalities go ignored for longer

periods than necessary.

150 General Attention Mechanism for AI Systems

8.7 Other Issues

Discussion of some issues that are somewhat peripheral to the main thread of present

work is presented in this chapter. We briefly examine how integration of data from dif-

ferent modalities and sources can be performed in systems implementing the attention

mechanism and how the attention mechanism can play a role in curiosity and creativity

on part of the hosting system. Finally, we discuss how systems containing the attention

mechanism show graceful performance degradation.

8.7.1 Integration of Modalities

The necessity of integrating data from separate modalities is critical to human cognition

and must be achieved in AGI systems as well. While this is not seen as a direct the role

of the attention mechanism present here, this is achieved based on the architectural re-

quirements, particularly the requirements of data-driven execution model and fine-

grained structure. Integration of data items from separate modalities is possible by way

of processes that take as inputs data from two or more modalities and produce new data

items that have meaning to the system as a merger of the input data. Due to the unified

nature of the sensory pipeline, it is also possible to integrate data items from the exter-

nal environment with the inner workings of the system.

8.7.2 Attention, Curiosity and Creativity

An interesting question presents itself in the investigation of attention for generally in-

telligent systems: How should idle time and free resources be spent, where both are

characterized by the absence of active high-priority goals? There are a number of differ-

ent possible policies to handle this scenario.

The system can allow free resources to go unused in an effort to conserve its energy

consumption. By doing this, viable opportunities for improving future performance are

missed but availability and cost of energy may justify this choice in certain situations.

Alternatively, the system can attempt use free resources to generate new knowledge or

change its structure in an effort to improve its future task performance. In a sense, this

temporarily changes the nature of the system from a goal-driven system to a knowledge-

seeking system. However, efforts on part of the system to seek knowledge should be

grounded in prior operating experience of the systems, goals in particular, as vast

amounts of information could potentially be generated or learned from the environment

that are in no way task related. It is difficult to justify the allocation of limited resources

Helgi Páll Helgason 151

for such knowledge, memory resources in particular. A pure knowledge-seeking system

could use up its limited memory resources quickly in a complex, information-rich envi-

ronment.

Some possible options for using free resources include:

a) Reasoning with existing knowledge to generate new knowledge relevant to prior

tasks of the system.

b) Performing internal (mental) simulations of hypothetical situations (relevant to prior

tasks) that have interesting outcomes, potentially giving rise to new, useful knowledge.

c) Increasing the level of bottom-up attention (NDDP) to observe the environment in

more detail for information, seeking information potentially related to prior tasks.

d) Seeking similarity in known entities by generalizing to a greater extent than required

for regular operation and validating or invalidating the results. Successful generalization

implies that knowledge and processes may be shared and reused by wider set of operat-

ing situations than previously known, potentially allowing the system to compact its in-

ternal structure.

All of these possibilities may be viewed as task-grounded curiosity on part of the sys-

tem and d) may be viewed as a form of creativity, as identifying common aspects of dif-

ferent entities can lead to innovative solutions for existing problems.

8.7.3 Graceful Performance Degradation

Graceful degradation in terms of task performance under conditions of information

overload – and even diminished resources – is an important characteristic of cognition

in natural intelligences. This issue is important for synthetic systems as well; in situa-

tions where a system has more active goals than it is capable of pursuing simultaneous-

ly, either due to an unusually large number of such goals or diminished resources (e.g.

hardware failure), some goals must necessarily be ignored (at least temporarily) in favor

of goals with highest priority. Systems unable to handle such situations in this fashion,

continuing to operate normally and making no provisions to handle the scenario, will

suffer total failure in such cases as task deadlines will be missed and important events

will go unnoticed or reacted to.

Due to the prioritization-based design of the attention mechanism presented here, sys-

tems implementing it are able to react rationally to situations of information overload or

severely insufficient resources (relative to active goals) as their core operation, con-

trolled by the attention mechanism, continuously allocates resources to processes and

152 General Attention Mechanism for AI Systems

data in order of decreasing priority. As a result, assuming that the prioritization generat-

ed by the attention mechanism is rational, graceful and rational performance degrada-

tion will be exhibited.

8.7.4 Priming

The use of predictions in top-down attention (Goal-Driven Data Prioritizer) directly

gives rise to the functional equivalent of priming in the hosting system, in the sense that

increased sensitivity to certain stimuli due to prior experience is a feature of the atten-

tion mechanism presented here. Systems containing this mechanism are required to

have the capability to generate predictions and expected to learn to improve their pre-

dictions over time (although the latter is more of an AGI requirement than an explicit

requirement for hosting this attention mechanism). The Goal-Driven Data Prioritizer

explicitly seeks out information related to predictions, which may be seen as equivalent

to priming. By dynamically configuring sensors at run-time to ensure that outcomes of

predicted events are observed, priming functionality can be achieved down to the level

of system sensors.

8.7.5 System-Wide Alarms

For systems operating in dangerous environments, reacting quickly to threatening situa-

tions is necessary for survival. This rests on the rational (in most cases) assumption that

one of the top-level goals of the system is to ensure its survival. When such a situation

arises, the system may be previously engaged in attempting to achieve a number of ex-

isting goals. In order to recognize the threatening situation and maneuver through it

safely, indicators of the situation must attract the focus of attention. The attention mech-

anism presented in this chapter supports this type of functionality primarily through bot-

tom-up attention (Novelty-Driven Data Prioritizer, NDDP) and its reliance on predic-

tions in top-down attention (Goal-Driven Data Prioritizer, GDDP). The NDDP ensures

that novel, unexpected information is considered by the system while the GDDP tracks

entities of interest by means of monitoring predictions regarding their behavior.

Let us take a hypothetical example of an autonomous (unmanned) aircraft. During regu-

lar flight, the system may focus primarily on goals related to reaching a destination be-

fore a specified time, complying with directions of air traffic controllers and minimizing

fuel consumption. Suddenly, a missile is launched from the ground targeting the air-

craft. The appearance of a new moving object in the approximate environment is caught

by bottom-up attention and data items relating to this object given high salience because

this information is novel on a qualitative level, as the aircraft is not assumed to have ex-

Helgi Páll Helgason 153

perienced missiles in its recent operating history. Even if this assumption does not hold

and the aircraft has just avoided another missile, qualitative novelty is still high as in-

formation relating to this newly appeared object in the operating environment is seman-

tically novel, as is true for any new entity in the operating environment for which there

are few or no prior observations. With the increased saliency assigned by the NDDP,

the new missile-related information is highly likely to receive processing. From either

recognizing the object as a threat by means of declarative knowledge, or generating a

chain of predictions based on the movement of the missile that eventually predicts that a

collision with the aircraft is on the horizon, maximum priority goals of evasive maneu-

vers can be generated. These maximum priority goals, in the absence of other goals of

such priority, will immediately receive the vast majority of resources available to the

system with previously generated goals being put on hold. In this way, the NDDP and

GDDP can collaboratively act as a system-wide alarm for the containing system.

155

Chapter 9

Compatibility with Existing

Architectures

Having presented the design of a general attention mechanism for AI architectures in

the last chapter, here we examine the compatibility of selected existing architectures as

potential targets for implementation. The selection criteria include the prominence of

the architectures, compatibility with the architectural requirements of Chapter 6 and an

attempt to present a reasonably broad range of the key high-level types of existing ar-

chitectures that aspire towards artificial general intelligence (AGI).

Before we embark on this discussion, to cut a long story short, given the architectural

requirements presented in Chapter 6, the following conclusion is inescapable: Extreme-

ly few architectures currently exist that fully satisfy them all. In fact, I am only familiar

with one such case which is introduced later in this chapter. One of the reasons for this

is that most existing AGI architectures, while AGI-aspiring, are all fairly far from solv-

ing the AGI problem and have certainly not demonstrated capabilities anywhere near

human-level intelligence. Another reason is the reliance of these architectures on con-

structionist methods, which, as discussed in chapter 5, bring with them significant limi-

tations in complexity and scope. This state leads us to consider which of the require-

ments can be relaxed – and how – for each of the architectures below, and which parts

of the attention mechanism’s operation would be affected by such changes to the re-

quirements. One architecture, AERA, has been motivated expressly from constructivist

principles. AERA is a fairly untested architecture, and few publications exist that de-

scribe it in sufficient detail. Nevertheless, as it is the only current AGI architecture I am

aware of that satisfies the architectural prerequisites posed by my attention design. For

these reasons it is included in the below discussion. All of the architectures considered

here, except AERA, were discussed in Chapter 3.

156 General Attention Mechanism for AI Systems

9.1 SOAR

SOAR is one of the most mature cognitive architectures currently in development, and

has been used by many researchers worldwide during its roughly 30-year life span

(Laird, 2008). It is a goal-driven architecture that features symbolic levels of representa-

tion, satisfying these two important prerequisites. SOAR partially satisfies the require-

ment of a uniform sensory pipeline, but limited aspects of the systems own operations

are sensed in this way. However, it has some problems satisfying the rest of the archi-

tectural requirements (predictive capabilities, fine-grained structure and data-driven ex-

ecution model). No explicit mechanisms for generating predictions are implemented in

the architecture. The processes of SOAR are large and monolithic in nature, where each

operating cycle is fixed in structure. When the system detects a lack of knowledge, a

special learning process is started during the running operating cycle as dictated by the

fixed control mechanism, highlighting the magnitude of broad-scope functionality built

into its core operating cycle and related control functions. The SOAR architecture can-

not be viewed as data-driven as operating cycles occur with or without the presence of

new data. As a result, the fixed control-loop of the architecture is an uninterruptable unit

of processing which may be time-consuming, especially when the need for problem-

solving is encountered in an iteration, which significantly limits the reactiveness of the

system. Furthermore, due to special problem solving processes being activated when

necessary as part of the control loop, temporal aspects of the systems performance are

unpredictable as iterations of the control loop can show considerable diversity in dura-

tion.

In terms of data filtering, a limited version of the GDDP for top-down prioritization –

using only goals for control data as predications are not available – could possibly be

added to the architecture. Bottom-up prioritization could probably be added as well,

with the NDDP. However, the lack of a unified sensory pipeline implies that these at-

tentional functions would only be performed on input data in a rather narrow sense,

where such input constitutes information generated by the environment, with some

highly limited information of the systems own operation possibly included. Alternative-

ly, these attentional processes could be duplicated, with each focusing on one type of

memory in the system, although this is likely to be an inefficient solution.

Adding these functions would require substantial changes to the core control mecha-

nisms and architecture of the system where prioritization values are supported and used

to guide processing decisions. While these additions might help SOAR in making more

rational processing decisions, they cannot improve the capability of the system for real-

time processing while a fixed, resource-intensive operating cycle forms the basis of the

Helgi Páll Helgason 157

operation of the system. Changing the fixed operating cycle would mean changing a

very core principle of the architecture, and would certainly not be straightforward.

The production rules of SOAR are the most directly relevant target for implementing

the functionality of the EDPP (process prioritization), as core system processes are too

large and general for this to be feasible. At this level, SOAR already implements some-

what similar, but more limited, functionality based on reinforcement learning. To im-

plement the processing prioritization functionality of the present attention mechanism in

SOAR, the existing functionality could possibly be modified to fit the design more

closely.

9.2 LIDA

The LIDA architecture is based on the Global Workspace Theory of Consciousness and

is intended for intelligent and autonomous software agents (Franklin 2007 & 2012).

While the LIDA architecture is more sub-symbolic than symbolic in nature and does not

have an explicitly symbolic level of knowledge representation, the organization of relat-

ed perceptual and other types of information into coherent units with meaning can be

viewed as a substitute for present purposes. LIDA is goal-driven and can be said to be

data-driven as system processes operate continually and asynchronously. The fine-

grained structure requirement is satisfied to significant degree as the majority of data

items in LIDA are small. While a LIDA system has many small processes (called

codelets), a considerable number of control processes of varying complexity operate in

the architecture, so that the fine grained requirement is not satisfied to the same degree

on the process side. Furthermore, the data items and processes of LIDA are not homog-

enous in structure and display considerable diversity. This suggests potential problems

in having the architecture predict the temporal aspects of its own operation, which the

architectural requirements of the attention mechanism are intended to avoid. LIDA has a

unified sensory pipeline (represented by its Perceptual Associative Memory), but capa-

bility for operational introspection is limited as not all aspects of the systems activity is

subject to perception. At the present stage of its development, LIDA does not explicitly

or rigorously address predictive capabilities, but such functionality is seen as part of fu-

ture development17.

The information prioritization processes (GDDP and NDDP) of the present attention

mechanism could be applied to the perceptual functionality of LIDA, although these

would either need to be modified to be compatible with LIDA’s Perceptual Associative

Memory or the present perceptual functionality changed significantly. However, these

17 Ryan McCall & Stan Franklin. Personal communication with H. P. Helgason.

158 General Attention Mechanism for AI Systems

attentional processes would be limited by the absence of predictions as control data, as

in SOAR. One of the clearest benefits of these additions to the LIDA architecture would

be increased capability for bottom-up attention, and thus to detect and react to unex-

pected events.

The process prioritization functionality of the attention mechanism is more challenging

to implement in LIDA due to significant numbers of structurally and functionally heter-

ogeneous processes. In order for this to be possible, multiple instances of the EDPP

would need to operate simultaneously on each type of processes or the processes of the

system would need to be unified to a greater extent.

9.3 NARS

The Non-Axiomatic Reasoning System (NARS) is a general-purpose intelligent reason-

ing system designed for operation in real-time under conditions of insufficient

knowledge and resources (Wang, 1995). As NARS is designed as a reasoning system,

one of its main purposes is to generate new knowledge from existing knowledge in ad-

dition to achieving given goals in the operating environment. The system clearly meets

the requirement of having a symbolic level of knowledge representation as symbolism

is implicit in reasoning, while the meaning of symbols is defined by the operational ex-

perience of the system rather than corresponding to arbitrary objects in the outside

world. Data units in NARS are fine-grained, consisting of beliefs and three types of

tasks: judgments, questions and goals. Beliefs are encoded as logical statements and can

also be viewed as processes in addition to data, although these two views do not hold

simultaneously for a given belief. As each statement tends to be short, and the architec-

ture has a single, fixed control mechanism, execution time should be fairly uniform and

predictable for each processing step. As a result, NARS can be said to meet the fine-

grained requirement on the processing side as well.

NARS is partially data-driven, as incoming information triggers processing, but not en-

tirely since the system will continue to improve its own knowledge in the background

during idle times when no new data is flowing into the system. More accurately, NARS

is task-driven, but it is possible for an architecture to be fully data-driven and goal-

driven (e.g. AERA – see below). Again, this is determined by the core control processes

of the system which are somewhat black-box, from the point of view of the system it-

self.

While the system may be said to have a unified sensory pipeline, explicit observations

with regards to all aspects of the systems own operation are not generated. This limits

Helgi Páll Helgason 159

the level of introspection possible in the system, although future work targets higher

levels of introspection than possible in current implementations.

NARS is partly goal-driven, but NARS goals – in the sense of being states to strive for

in the operating environment – are not the only types of tasks in the system: Judgments,

which are knowledge integration and derivation tasks based on accepting new

knowledge into the system, and questions, which are user supplied queries for the sys-

tem to answer on the basis of its current knowledge.

Explicit mechanisms for prediction are not featured in the system, but logical inference

may be viewed as a type of predictive functionality when time is addressed by the logic

of the system, as in NARS. Conversely, prediction may be viewed as a special case of

logical inference where conclusions are related to the future.

When considering the compatibility of NARS for the attention mechanism presented in

the present work, it must be noted that as a reasoning system, NARS is not heavily fo-

cused on perception and action. The kind of typical operation the system is designed for

is periodically receiving structured new information and tasks, where idle time is spent

organizing and expanding the knowledge of the system. This is in stark contrast to em-

bodied systems dealing directly with real-world environments, where vast amounts of

low-level information continuously flow into the system. Work intended to give NARS

greater focus towards perception and action is planned, the results of which are likely to

increase its level of compatibility with the attention mechanism. However, in its present

form not all aspects of the attention mechanism can be implemented in NARS. Process

control and the EDPP in particular would be difficult to implement in systems that do

not feature a clear separation of data and processes, while the ideas presented in the pre-

sent work for process control could potentially be adapted to NARS according to how a

process is viewed in the system or incorporated into core control mechanisms of the

system.

The functional components of the attention mechanism involved with prioritization for

data are more straightforward to implement in NARS; there are no obvious problems

preventing the implementation of the NDDP and the GDDP would be relatively straight

forward to implement, although this would require an analysis of how judgments and

question tasks would be handled. However, NARS already has functionality for data

prioritization that would need to be modified or replaced in this case.

160 General Attention Mechanism for AI Systems

9.4 AERA

The Autocatalytic Endogenous Reflective Architecture (AERA) is a recently-developed

fully implemented AGI-aspiring architecture (Nivel et al., 2012a) that targets domain-

independent autonomous systems that adapt in dynamic, open-ended environments,

while meeting assumptions about insufficient knowledge and limited resources (Wang

2006). AERA may be viewed as an evolutionary descendant of the Ikon Flux (Nivel

2007) architecture, discussed in Chapter 3. The architecture is developed under a con-

structivist methodology (Thórisson 2012a). From a manually constructed initial state

(called the Masterplan in AERA) the system revises its processes and structure as re-

quired for its operation in the target domain, based on experience. The architecture is in-

tended to allow systems to acquire domain-dependent knowledge from the environment

in real-time by observing intentional agents, inferring the details of its high-level goals

and observing ways to accomplish them. AERA-based systems are model-based and da-

ta-driven; the unifying structure of the entire architecture is an executable model where

the architecture consists of dynamic hierarchies of executable models. An AERA model

is bi-directional in nature, being capable of prediction or action prescription depending

on the data causing its activation. Consequently, models can be said to encode under-

standing of events by unifying the ability to predict events and the ability to make

events happen. In this respect, models may be viewed as bi-directional production rules.

Each model contains a specification of inputs it can process; this includes specification

of content and timing.

Helgi Páll Helgason 161

Figure 9.1: A bi-directional executable model in AERA. At the top, a model pre-

dicts the future position of an object (BOX) by observing its present state and a

command on part of the system to move it (in the future). At the bottom, the same

model generates a command to move the object (BOX) by observing a goal to

move it and its current position.

The architecture supports learning by building models that encode knowledge, in a pro-

cess driven by goals and predictions of the system. New models are built from few ex-

amples, which is in sharp contrast with traditional machine learning techniques. The op-

eration of AERA-based system involves the continuous cooperation of four processes:

model acquisition, model revision, model compaction and reaction. The model acquisi-

tion process involves transforming goal-related observations into reusable models while

the model revision process evaluates the correctness of existing models. The model

compaction process compresses models of the system proven by operational history to

be of high-quality and use, where compressed models are no longer targets of learning

as little or no improvement has been found possible. Compressed models are specially

compiled to execute faster (i.e. requiring less resources) than other models. The reaction

process samples information from the operating environment identifies models relevant

to the present operating situation and executes them to generate sub-goals, predictions

with regards to likely future events or produce commands for the actuators of the sys-

tem.

AERA was developed as part of the HUMANOBS project18 and has been used to im-

plement a system that can learn socio-communicative skills in real-time by observing

people in dialogue. For the implementation of the architecture, available programming

languages were found inadequate to support the desired operation of the architecture,

resulting in the design and implementation of a new programming language called Re-

plicode (Nivel et al. 2012b) on which AERA is based. The final evaluation of the pro-

ject revealed significant validation of the principles and assumptions on which it is

based (Thórisson 2012b); a range of publications describing the system and approach in

detail are currently in preparation (preliminary overview can be found in Nivel at al.

2013 and Nivel & Thórisson 2013).

18 http://humanobs.org/

162 General Attention Mechanism for AI Systems

Figure 9.2: Detailed overview of the AERA architecture (from Nivel et al. 2012).

Helgi Páll Helgason 163

AERA includes attention mechanisms closely related to, and compatible with, the one

presented in the present work. The success of the AERA architecture strengthens the

present design proposal, and further evaluations and future publications detailing the ar-

chitecture seem likely to further build support for the present attention design. In large

part this can be expected because AERA satisfies all the architectural requirements pre-

sented in Chapter 6: It is fine-grained – it is composed of small models and data objects

(requirement #1); it is data-driven – the execution of a model can only occur with expo-

sure to data (requirement #2); it has a unified sensory pipeline (requirement #3) – data is

treated identically regardless of whether it originated inside or outside the system; the

architecture is goal-driven (requirement #4) – all operation of the system is directed by

goals; it has predictive capabilities (requirement #5), as models generate predictions;

and finally, AERA operates on a symbolic level of knowledge representation (require-

ment #6). To further illustrate the relationship between the architectural implementation

of AERA and the architectural requirements on which the present work rests, a cursory

description of how attention is currently implemented in AERA is presented below.

164 General Attention Mechanism for AI Systems

Figure 9.3: Overview of attentional functionality in the AERA architecture.

Helgi Páll Helgason 165

All new information, being sampled from the environment or generated internally,

flows through a special component of the system called AutoFocus. This component is

primarily responsible for determining the relevance of new information and implements

this using a set of buffers called Targeted Pattern Extractors (TPX) that are identified

by a pattern derived from a goal or prediction. TPX’s correspond to the attentional pat-

terns of the attention mechanism design presented in the present work. However, they

are only created if the model that produced the goal or prediction is evaluated to be a

candidate for improvement. The model revision process maintains information with re-

gards to the performance of a model over time to make such evaluation possible. If a

new data object matches the pattern of one or more TPX’s, the following occurs: The

data item is placed in the buffers of matching TPX’s after concrete values have been re-

placed with variables (representing generalization) to make learning more efficient, as is

explained below. The original version of the data item is then allowed to proceed further

into the system where it will have opportunity to activate models. Data objects that do

not match or share values with any TPX pattern are discarded.

Attention is tightly integrated with learning in AERA. During the lifecycle of a goal or

prediction (the period from its generation up until its success, failure or abandonment),

data objects are accumulated in each TPX. The lifecycle of a TPX is identical to that of

the goal or prediction it was derived. If the lifecycle of a TPX ends with success of a

goal or failure of a prediction, the accumulated data in the TPX is used for the genera-

tion of new models. The significance of these particular events deserves some elabora-

tion. Observing another entity (e.g. an intentional agent) in the environment achieving

an identical or similar goal to one which the system current seeks to achieve allows the

recipe for achieving this goal to be extracted from the environment. The data objects

that end up in the TPX for such a goal constitute such a recipe and are used to generate

new models that are intended allow the system to solve similar goals by itself at future

points in time. In the case of predictions, a failure of a prediction - which the system has

generated using its models - to come true is evidence of a problem with the current

models of the system. No new models are produced if an existing model predicted the

successful achievement of a goal or the failure of a prediction. The data objects of the

associated TPX represent the means to generate a new model that accurately would

have predicted the turn of events.

The quality of all models in the system is continuously monitored and updated by the

model revision process based on the ability of each model to generate accurate predic-

tions. Models contain a special parameter, called success rate, to store their estimated

quality. The success rate is in part used to set the activation of models, influencing pro-

cess control with higher quality models receiving higher activation and thus a greater

chance of being executed. However, this does not guarantee the execution of a model,

166 General Attention Mechanism for AI Systems

even in the presence of compatible input data, as the limited resources of the system are

allocated to individual models in decreasing order of their total activation value.

As there may be several ways to achieve a specific goal, each with different costs and

side-effects, the system employs simulations to select and commit to appropriate goals

as opposed to doing so blindly. This is particularly important in cases where the pursuit

of a new goal has potential to interfere with the pursuit of an existing goal that the sys-

tem has already committed to. Simulations are achieved using the models of the system

and can explore multiple ways of reaching a goal in parallel, in a manner similar to

breadth-first search. The predictive capabilities possessed by the models are essential to

the analysis of hypothetical situations that simulations must deal with. Once a viable so-

lution is found, the system commits to the corresponding sub-goals, which are then add-

ed to the active goals of the system. The system has a fixed, global parameter to control

simulation called simulation time horizon. This parameter controls how far into the fu-

ture different possible actions are simulated.

As a large number of models accumulate in the system over time, many models are only

valid in specific operating contexts. In addition to the success rate of a model, evaluated

relevance of a model to the present operating situation is used to set activation values.

This is accomplished by a process of continuously running all models of the system in

partial mode to determine if they are able to react (find data items to trigger execution)

in the present context. As most models have restrictive, precise input specifications, the

ability of a model to execute indicates that it was learned in a context similar to the pre-

sent one. Although implemented in different form than proposed in the design presented

in the present work, the functional result of contextual process evaluation influencing

the activation of processes (or models, in the AERA case) is highly similar.

The ways in which attention in AERA deviates from the attention mechanism proposed

in the present work are now discussed. The main deviation lies in the area of bottom-up

attention; AERA approaches novelty as observed events that were not predicted to oc-

cur. Consequently, bottom-up attention is implemented by detecting mismatches be-

tween predictions and actual observations, focusing on prediction failures. The attention

mechanism proposed in the present work approaches novelty on different terms; namely

as events that are different from what the system has experienced previously. Equiva-

lence between these two approaches can be roughly assumed if the system is required to

predict all aspects of its future experience, regardless of relevance to goals. However,

AERA predicts only events that are relevant to goals and predictions. While this is a ra-

tional design decision given issues of resource consumption, it limits the capability of

bottom-up attention in systems based on the architecture, implying reduced capacity to

Helgi Páll Helgason 167

notice events that, while not currently goal-related, may be relevant to the goals of the

system in addition to providing opportunities for learning.

There is some evidence that humans share similar limitations when it comes to bottom-

up attention. For example, although we can notice unexpected but relevant information

in the presence of noise while performing tasks, this capability is not absolutely reliable

(Wood 1995, p. 255-260). However, I view this as a biological limitation; increased ca-

pability in bottom-up attention should lead directly to higher levels of intelligence (as

defined by Wang) as improved mechanisms for detecting unexpected events enhance

the flexibility of such a system and enable it to adapt faster to its environment. Howev-

er, bottom-up attention is a resource-intensive process as it requires constant compari-

son of new events with some form of prior operational experience of the system. With

the power of current computer hardware it may not be feasible to pursue implementa-

tions of such mechanisms at present, although this is far from obvious in my view; es-

pecially when considering approximate methods using aggregate information from prior

operating experience versus the totality of actual operating experience. Whatever the

case, computer hardware is highly likely to dramatically increase in capability over the

coming decade, which in turn is likely to affect the feasibility of highly accurate bot-

tom-up attention mechanisms.

9.5 Summary

We have seen that extremely few existing architectures satisfy all of the architectural

requirements of Chapter 6. All architectures considered in this chapter, except AERA,

fail to meet some of the requirements.

SOAR is goal-driven and has symbolic knowledge representation. However, it is not da-

ta-driven, lacks predictive capabilities and does not have fine-grained structure. While

SOAR does not feature a fully unified sensory pipeline, some aspects of the system’s

own operations are observable to the system. The LIDA architecture is goal-driven, da-

ta-driven and has fine-grained structure - although the variety of its building blocks pos-

es some problems. It may be viewed as having a sufficiently symbolic level of

knowledge representation. The architecture does not feature explicit mechanisms for

predictions yet and has a limited version of a unified sensory pipeline. NARS, being a

reasoning system, clearly has a symbolic level of representation. The architecture has

fine-grained structure but is only partially goal-driven and data-driven. While explicit

mechanisms for generating predictions are not featured in the architecture, predictions

may be viewed as a special form of reasoning in context of NARS. Like SOAR and

LIDA, NARS has a limited version of a unified sensory pipeline in its present stage of

168 General Attention Mechanism for AI Systems

development. AERA is the only architecture considered here that satisfies all require-

ments.

Since SOAR, LIDA and NARS do not satisfy these architectural requirements, only

limited functions of the attention mechanism of the present work are applicable to those,

as discussed in previous sections. Having motivated constructivist methodologies (in

Chapter 5) as a significantly more promising path towards realizing fully capable AGI

systems, and presented a set of requirements for attention in AGI-aspiring systems

largely based on such methodologies, the failure of architectures to meet these require-

ments – their incompatibility with the general attention mechanism presented in the

present work – is an indication that significant functionalities are missing that are criti-

cal to solving the AGI-problem. This result is not specific to these architectures, being

chosen as representative examples, but concerns the vast majority of AGI-aspiring ar-

chitectures that exist to date.

169

Chapter 10

Analytical & Conceptual Evaluation

We now turn to issues related to the evaluation of attention mechanisms in AI systems.

This chapter discusses some of the issues that must be addressed in future evaluations of

implemented artificial general intelligence (AGI) attention mechanisms – the present

one included. The ultimate evaluation of the proposed attention mechanism will involve

an actual implementation – or several – in actual cognitive architectures, situated in a

variety of environments. The luxury of such an elaborate scenario, however, is still a

few years down the road, as it is a considerably greater undertaking than a single –

probably even several – Ph.D. theses.

This chapter addresses therefore the question of evaluation from two angles. We begin

by grounding the necessary concepts by providing clear and concise definitions of the

main concepts involved, such as the expected limits of attention, information bandwidth

of cognitive architectures, and their processing capacity. We then present a high-level

discussion of the possible and appropriate methodologies and methods that a full analy-

sis would call for, which could be done in the near future provided that a sufficiently

advanced architecture is available to host an implementation of the proposed design;

this might already happen sometime in the next decade. Task complexity, which is part

of environmental complexity, and methodological concerns, are also addressed. The

proposed design is subsequently analyzed analytically and conceptually, along the main

dimensions of its operating principles. For this purpose we propose a hypothetical ex-

ample of a real-world task involving a self-driving car.

170 General Attention Mechanism for AI Systems

10.1 Definitions

On the surface level, two quantities seem central to making attention mechanisms nec-

essary: the amount of information coming from the operating environment and the

amount of resources available to the system. Operating environments supply a steady

stream of new information: The magnitude of this stream is such that if available re-

sources are distributed evenly between units of information, each such unit is likely to

receive only a very small amount of processing. In this sense, the resources of the sys-

tem are vastly insufficient to uniformly process the entire stream at depth; in search of

rational responses to the operating situation, exhaustive consideration of all available in-

formation in a uniform fashion is not feasible. Nature and evolution have solved this

problem with selective processing, which is the principal inspiration for the present

work. The following defines the nature of these two quantities – environmental com-

plexity and system processing capacity – and applies equally to systems with or without

a uniform sensory pipeline. The term “cognitive system” will be used to refer to systems

implementing attention, covering AI (including AGI) and natural intelligence systems.

Definition 10.1. The environmental bandwidth (EB) of a cognitive

system, measured in bytes, is the amount of information generated by

its operating environment per second, averaged over a specified period

of time.

Definition 10.2. Assuming all possible orientations of the system sen-

sors simultaneously, the environmental bandwidth potential (EBP) of

a cognitive system, measured in bytes, is the amount of information

generated by its operating environment per second, averaged over a

specified period of time.

Definition 10.3. The computational resources of a cognitive system

consist of processing capacity, measured in millions of low-level in-

structions per second (MIPS), and total memory space, measured in

bytes. Memory refers to dynamic storage that may be used to store data

items.

Helgi Páll Helgason 171

With these definitions in place, we can further discuss the relationship between the

quantities in question. In general, a system that requires fewer resources to successfully

operate in more complex environments can clearly be said to have better attention

mechanisms than a system requiring the same or more resources in a simpler environ-

ment:

Definition 10.4. The theoretical upper limit of attention may be

viewed as an attention mechanism that enables the system to success-

fully operate, according to some concrete definition of success, with

theoretically minimal resources required to accomplish its tasks in the

target environment.

That is to say that any general-purpose information processing system with fewer re-

sources would be unable to do the same regardless of all aspects of its implementation.

Conversely:

Definition 10.5. The lower limit of attention (theoretical and practi-

cal) is uniform processing of all information.

Incidentally, this definition describes how most existing software systems operate. It

should be noted that efficient design and implementation and optimization of software

can heavily influence the processing capability of a system while resources remain

fixed; attention is not the only way to achieve greater capability while resources remain

fixed. However, as soon as our discussion is restricted to constructivist systems – and

we have presented ample arguments for why it should be for any system that is respon-

sible to large degree for implementing and optimizing itself – increased performance

with fixed resources can increasingly be viewed as the product of attention, as processes

of self-reconfiguration must rely heavily on the attention mechanisms of the system.

Comparing attention mechanisms not only requires the resource usage of the individual

systems being evaluated to be normalized but important aspects of the tasks and envi-

ronments of the system must also be normalized. Starting with focusing on the envi-

ronment, the amount of resources than can be spared for each unit of information, as-

172 General Attention Mechanism for AI Systems

suming uniform processing and given the complexity of the environment, is a quantity

of interest.

Definition 10.6. The environmental processing capacity (EPC) of a

cognitive system is the ratio of the processing capacity of the system

(PC) and the environmental bandwidth (EB).

 EPC (MIPS/bytes) = PC / EB

While the EPC measures the processing capacity of a system in relation to complexity

of the environment, a similar measure is required to evaluate the memory aspect of the

systems resources. This may be done by relating the environmental bandwidth to the

amount of total system memory. Although no existing intelligences are known to actual-

ly store the entirety of its raw experience in memory, this relationship is a valid metric

of to what degree memory resources of the system must be “stretched” to serve the op-

eration of the system.

Definition 10.7. The environmental retention capacity (ERC) of a

cognitive system is the ratio of environmental bandwidth (EB) and the

total memory space (MS) of the system. It measures of how many sec-

onds of full, unfiltered environmental experience can be stored by the

memory of a system.

 ERC = MS / EB

The EPC and ERC ratios are particularly interesting for attention. The EPC ratio

measures how much processing can be applied to each byte of environmental infor-

mation when resources are uniformly distributed while the ERC ratio measures how

many seconds of complete, unfiltered operating experience can theoretically be stored

by the system. These represent useful quantities to compare the attentional capabilities

of different systems. In general, when two systems can maintain identical or highly sim-

ilar quality of operation in the same operating context (defined by tasks and the envi-

ronment), the system with lower EPC and ERC values can be said to have higher quali-

ty attentional functions as they satisfy greater attentional requirements.

Helgi Páll Helgason 173

Studies that investigate attentional capability of humans, common in cognitive psychol-

ogy as discussed in Chapter 4.1, also provide some ideas for important metrics and

properties related to attentional functionality of cognitive systems. Such studies (e.g. the

Stroop Test) typically focus on the response time, error rate and influence of distrac-

tors. These properties are likely to be useful for evaluating different implementations or

control parameter settings of an attention mechanism in a single system while resources

and operating conditions are fixed.

10.2 Methodological Considerations

In this section, we examine methodological issues in the evaluation of attention mecha-

nisms.

Based on calculations of the processing capacity of the human retina, among other

things, Moravec (1998) estimated the processing capacity of the human brain at 100

million (108) MIPS. The environmental bandwidth for humans may be estimated when

some assumptions are given.

Some conservative assumptions will be made in order to roughly estimate the environ-

mental bandwidth that humans are exposed to. Vision is the dominant modality in terms

of information generation to such a degree that other modalities become almost irrele-

vant when focusing on the environmental bandwidth. For the sake of simplicity, the as-

sumption is made here that all other human modalities produce at most 25% of the

amount of information that is generated by vision. In Moravec’s estimates the human

retina processes ten one million point images per second. If we assume one of the more

common representations used in computer graphics, each pixel consists of 24 bytes (8

bytes respectively for red, green and blue). The result is close to 60 megabytes per sec-

ond, each retina supplying around 30 megabytes. By adjusting this number for other

modalities, following the simplifying assumption noted above, the result is that the en-

vironmental bandwidth that humans must cope with is around 75 megabytes. With these

numbers in place, the EPC of humans is estimated at 1.3 MIPS / byte. At the present

stage of neuroscience, insufficient information is available to attempt a similar estimate

for the environmental retention capacity of humans with useful precision.

It has been well established in cognitive psychology and neuroscience that the human

brain does not assign processing resources to information capacity in a uniform fashion.

The reader can easily verify this himself by nothing that numerous aspects of the envi-

ronment are being ignored while reading this text. It would thus appear that processing

well beyond the quantity indicated by the EPC is required for relevant data in order to

produce rational, meaningful responses to the environment while the majority of availa-

174 General Attention Mechanism for AI Systems

ble information is virtually ignored. Thus the distribution of resources over all available

information over some period of time cannot be uniform, but must be highly heteroge-

neous and irregular. Furthermore, determining the relevance of available information al-

so requires computation.

Turning back to synthetic systems, a high-level methodology for comparing attentional

capabilities was suggested above that assumes that the tasks and environments of sys-

tems being compared remain fixed. Comparing attentional capabilities between systems

operating in different environments with different tasks, with any real precision, is a

much harder problem. For this to be possible, the attentional requirements of each sys-

tem under comparison would need to be individually determined. At a minimum, such

determination would need to factor in the following quantities:

a) Environmental bandwidth of the system.

b) Environmental bandwidth potential of the system.

c) Average degree of change in the environment per unit of time.

d) Number of entities in the environment relevant to each task.

e) Number of atomic steps involved with each task.

f) Complexity of each task.

g) Number of concurrently active tasks.

h) Processing resources of the system.

i) Memory resources of the system.

Of these, metrics relating to task requirements and complexity are particularly difficult

to determine as they may vary greatly and even be different in each instance of the same

task. One possible approach to measure task complexity is to use the minimum descrip-

tion length of each task. This is identical to how complexity of algorithms is measured

using Kolmogorov complexity (Kolmogorov 1963). However, this would require a

normalized description language and identical levels of abstraction for the tasks of all

systems under comparison. This is very difficult if not impossible to do. And yet, even

with such approaches solved, concurrency issues will still be next to impossible to ad-

dress as any number of tasks may be active at the same time and task-relevant interac-

tions in the operating environment need to be accounted for.

Ideally, it would be useful if we could quantify these variables so that a formula, possi-

bly similar to the one below, could be used to determine the attentional requirements of

a system on the drawing board, or compare attentional requirements of different existing

Helgi Páll Helgason 175

systems (assuming the systems all operate above a minimum acceptable threshold of

performance in terms of successful task execution).

While this is clearly a simplified, abstract formula it captures the idea that the attention-

al requirements of a system – the need to stretch out available resources – may be de-

termined by a multiple of environmental and task related complexity measures in rela-

tion to the resources of the system, where higher values indicate greater need for atten-

tion and selective processing. If the resources of the system are increased, the require-

ment for attention decreases and conversely, the requirement increases if resources are

reduced. If the environmental complexity or task complexity is increased or decreased,

this directly affects the requirement for attention. And, in particular, if both environ-

mental and task complexity change, the resulting change in requirement for attention is

exponential. Higher values for attentional requirements indicate a more efficient intelli-

gence (Goertzel 2007: p. 11) than in systems with lower attentional requirement values.

While the preceding sections have established a methodology to compare attentional re-

quirements of two or more systems when environments and tasks are fixed, such eval-

uation is also of interest when this assumption does not hold. The comparison problem

is of course more tractable if the individual systems under comparison are functionally

identical or highly similar. Methods for task-independent comparisons, which must be

based on advanced task-complexity metrics, would be of clear value but are presently

out of reach due to the unavailability of said metrics.

10.3 Conceptual Evaluation

In order to evaluate the proposed attention mechanism design analytically and

conceptually, we look at a real-world task in this section that requires all functions of

the proposed attention mechanism: Autonomously driving a car safely from one place to

another in a large city within a specified amount of time. Such systems are usually

referred to as self-driving cars. For present purposes, the task is analyzed on a level of

symbolic representation where vision capabilities are seen as low-level processing that

provide symbolic data to the hosting AGI system.

176 General Attention Mechanism for AI Systems

This task is well-suited to demonstrate all capabilities of the attention mechanism as it

has the following properties:

 Prioritization of information is required.
o The operating environment provides abundant information.

 Real-time operation is required.
o Goals are time-constrained.
o The environment is dynamic and the system must react quickly to avoid

undesirable outcomes.

 Decision complexity is significant.
o Several simultaneously active goals with different priorities
o More than one way to achieve most goals.

 Potential for novel, unexpected events.
o Perfect familiarity with the operating environment is practically impossible.

A standard car with some extra sensors is assumed here. Through these sensors, the

system is able to observe driving speed, fuel level, fuel consumption, tire pressure,

engine diagnostics, road temperature, humidity, wind, location (via GPS), microphones

and various other types of information related to the state and operation of itself as well

as the external environment. As hinted at earlier, the system is also equipped with

cameras that monitor the surrounding environment and generate symbolic observations

from raw video feeds. Information from all these sources, in addition to information

relating to the internal operation of the system itself, serve as inputs to the unified

sensory pipeline on which the attention mechanism operates. As the attention

mechanism treats all data in a uniform fashion, dedicated attentional sub-systems are

not required for each type of information. Finally, the system has a machine-readable

map of the city, such as those found in modern GPS navigators.

The system is trained in a simulator before being enlisted for real-world operation and

learns from its simulated experience, as this is the most feasible way of allowing the

system to learn from its experience that does not involve pedestrians being run over.

Even imitation learning, where the system would learn by monitoring a human driving,

is not capable of making the system learn to avoid undesirable outcomes unless such

outcomes actually occur in the training sessions.

Helgi Páll Helgason 177

The initial high-level persistent goals of the system are listed below, some of which may

have been supplied by the system designers (except the first goal, which is always given

by a human operator) and others may have been learned during training in the simulator

(such as goals 2-5). In order of increasing priority, these include:

 G1. Arrive at location L1 before time T1
o Priority = 0.2

 G2. Drive only on a road
o Priority = 0.4

 G3. Do not run a red traffic light
o Priority = 0.4

 G4. Drive in a proper lane for the direction of travel
o Priority = 0.4

 G5. Avoid all collisions
o Priority = 0.6

 G6. Avoid collisions with pedestrians
o Priority = 1.0

In the system, persistent goals are treated in a special way as they are not bound in time.

Persistent goals are operationally embodied as processes that generate time-bound goals

that are specific to actual situations at run-time, when the system perceives risk that the

corresponding persistent goal may fail. For example, if the system observes a new

pedestrian in the environment or a prediction is seen that indicates that a pedestrian is

about to be run over, special processes associated with the persistent goal will generate

an operational goal to avoid this specific event. These special processes have a fixed

activation value equal to the priority value of the persistent goal they embody.

What follows is an analysis of how each functional component of the attention

mechanism enables the system to perform its task. An example of a typical scenario

which the system may encounter during operation is examined and broken down to

show how each functional component supports the operation of the system.

Before the examples, a short recap summary is provided to explain the role of each

functional component (details can be found in Chapter 8):

178 General Attention Mechanism for AI Systems

Novelty-Driven Data Prioritizer (NDDP)

The role of the NDDP is to prioritize information based on its novelty to implement

bottom-up attention. This functional component is responsible for detecting novel

events in the environment which require consideration to determine if some reaction on

part of the system is necessary.

Goal-Driven Data Prioritizer (GDDP)

The GDDP is responsible for detecting information related to active goals and

predictions of the system. This is accomplished with attentional patterns which are

generated for each goal and prediction; the GDDP continuously attempts to find

matches between active attentional patterns and incoming information. Upon such a

match, the priority of the goal or prediction that generated the attentional pattern is

added to the saliency of the matching data item, giving it a greater chance of being

processed.

Experience-Driven Process Prioritizer (EDDP)

Process control in the system is handled by the EDDP, which prioritizes the processes

of the system based on active goals. Information required to map goals to processes is

contained in the Contextualized Process Performance History (CPPH), a structure which

is continuously updated with contributions of processes to goal achievements. When a

new goal is generated in the system, a match is sought in the CPPH. If such a match is

found, this indicates that the system has previously achieved a similar goal and the

processes that have been associated through experience with successful accomplishment

of similar goals are given increased activation.

Helgi Páll Helgason 179

Figure 10.1: Overview of a typical situation in the self-driving car task. The cir-

cles are pedestrians, where those colored orange have already been observed by

the system but the one colored red has not. The red arrows indicate direction of

movement for each object.

Example #1:

The car is driving down a street when a child (pedestrian) on the

sidewalk enters its field of vision.

When the NDDP processes this observation, it evaluates it for qualitative and

quantitative novelty. Qualitative novelty is determined by mapping the observation to a

category in the category tree of the NDDP. If a corresponding node in the category tree

is not found for the observation, this indicates a previously unseen entity in the

operating environment resulting in maximum qualitative novelty being assigned to the

observation and the generation of a node for the observation. In this case, the

observation may be represented as:

180 General Attention Mechanism for AI Systems

[Obs Pedestrian_1 Position -100, 100]

New instances of known types of entities are always assigned unique identifiers in the

system. The next time the system observes a pedestrian, the identifier might be

“Pedestrian_2”.

In this case, no category node exists in the categorization tree for the observation

because nothing has been observed for Pedestrian_1 recently. Thus, the observation

carries semantic novelty. As there is no record of prior values for such an observation,

maximum quantitative novelty is also assigned. The average of both types of novelty

values (1.0 in this case) is added to the saliency of the observation as a result. The

increase in saliency has ensured (in the absence of a large amount of equally salient data

items) that this observation will be allowed as valid input for eligible processes (i.e.

processes with sufficient activation and an input specification that is compatible with

the observation).

The observation then proceeds to activate the processes associated with persistent goal

number 6 (avoid collisions with pedestrians, see list of persistent goals above). This in

turn generates a goal to avoid a collision with this specific pedestrian for the period it

takes the car to drive past him. The priority of this goal is identical to that of the

persistent goal (1.0). The creation of the new goal generates a new attentional pattern in

the GDDP which targets all information related to that specific pedestrian. This

attentional pattern is active for the duration of the goal, causing the system to track the

pedestrian while the car drives by.

The pedestrian remains stationary as the car drives by.

In this case a specific task-level response on part of the system due to appearance of the

pedestrian was not necessary. After the car has passed the pedestrian, the goal expires

and the corresponding attentional pattern is removed.

Example #2:

The car is driving down a street when a child (pedestrian) on the

sidewalk enters its field of vision.

This example is identical to the first one up until the point after which the GDDP is

tracking the pedestrian by having an attentional pattern focusing on that entity.

Helgi Páll Helgason 181

Suddenly, the pedestrian starts moving in a direction to cross the

street.

As all observations related to the pedestrian are now the targeted by the GDDP, the new

observations that indicate movement on part of the pedestrian are given increased

saliency. When the pedestrian starts moving, there is also quantitative novelty in the

new values of his position, resulting in additional saliency being provided to the

movement observations by the NDDP. This triggers predictions into the immediate

future as to how this will affect the goals of the system.

Critically, a chain of predictions is generated that involves the car colliding with the

pedestrian at a particular location (Lc) on the street just ahead of the car at a specific

time (Tc). This generates a maximum priority goal Gc of avoiding the collision.

From training in the simulator, the system is familiar with the following strategies to

achieve this critical goal (Gc) of avoiding a potentially fatal collision for the pedestrian.

Processes for activating these strategies are mapped to a goal such as this one by way of

the CPPH in the EDPP.

However, the success of any of these strategies is largely dependent on conditions in the

operating environment at any given time. The Utility of each strategy is listed with each

strategy, which represents how useful the strategy was found in the simulator

environment.

 S1. Brake. Experience-based utility = 0.7.

 S2. Sound the horn. Experience-based utility = 0.3.

 S3. Bypass the pedestrian on another lane. Experience-based utility = 0.4

 S4. Bypass the pedestrian on the sidewalk. Experience-based utility = 0.3.

 S5. No reaction. Experience-based utility = 0.05.

When the goal Gc is matched with the CPPH in the EDPP, a match is found for each of

the strategies above. These four matches result in processes that are associated with

each strategy being given increased activation. In each case, the amount of activation is

dependent on the experience-based utility value.

182 General Attention Mechanism for AI Systems

In order to find the most useful strategies in the current operating context, the system

uses prediction. The overall utility of each strategy in this situation are evaluated using

the methodology of Section 7.3.2 (predictive heuristics) to generate a utility value. What

predictions reveal with regards to each strategy is the following:

S1. Brake: As there is another car driving close behind the system, executing this

strategy involves some risk that the action will result in the vehicle behind colliding

with the system. This would cause the failure of persistent goal 5 (avoid all collisions).

If the system is sufficiently advanced, it may also attempt to evaluate the alertness of

the driver in the oncoming car from gaze and other visual features. However, all

predictions for this strategy avoid running over the pedestrian. This results in a final

utility value of 0.7.

S2. Sound the horn: Analysis of the predicted of effects of this strategy reveals that

that there is a 30% chance that the pedestrian will register the alarm and change his

direction of travel to avoid the collision. The strategy has no side-effects that make it

mutually exclusive to any of the other strategies. Plainly put, the system has nothing to

lose by trying this strategy and predictions also reveal that doing so slightly increases

the chance of success for the Brake (S1) strategy, as it may increase the alertness of the

driver in the car driving behind. This results in a final utility value of 0.4.

S3. Bypass the pedestrian on another lane: The system has observed an oncoming car

from the opposite direction approaching on the other lane. Predictions indicate that a

collision between the system and this oncoming car would likely result from running

this strategy and that there is also a possibility of evasive maneuvers on part of the

oncoming car would result in the pedestrian being run over. The final utility value

assigned for this strategy in this case is 0.2.

S4. Bypass the pedestrian on the sidewalk: Other pedestrians were already being

observed on the sidewalk when this example began. Predicted effects of executing this

strategy are the collision between the system and a different pedestrian. The resulting

utility value is 0.0.

S5. No reaction: Predicted effects of unchanged course of action result in the system

colliding with the pedestrian with high likelihood, resulting in a utility value of 0.0.

After this evaluation of each strategy the system has the choice of executing one of:

S1. Brake. Present utility = 0.7.

S3. Bypass the pedestrian on another lane. Present utility = 0.2.

S4. Bypass the pedestrian on the sidewalk. Present utility = 0.0.

Helgi Páll Helgason 183

S5. No reaction. Present utility = 0.0.

Additionally, the system has the option of executing S2 without a negative impact on

any of the other strategies and a slightly positive impact on S1. In other words, a future

state where the system sounds the horn and brakes is currently evaluated to be most

desirable. When these two strategies are implemented, one of two outcomes is likely:

The system sounds the horn and brakes. The significance of the alarm

is registered by both the pedestrian and the driver in the car behind.

The pedestrian stops on his trajectory across the street and the car

behind brakes. Both collisions are avoided.

In this example, this is the most favorable outcome for the system that is likely to be

possible. All of its goals are achieved and the system is free to resume its high level,

which will become the focus of processing within the system in the absence of more

important goals.

The system sounds the horn and brakes. The significance of the alarm

is not registered in time by the pedestrian or the driver in the car

behind. The pedestrian continues on his trajectory across the street and

the other car does not slow down or brake in time. The system

experiences a collision with the car driving behind.

This outcome will leave the system damaged to some extent, possibly rendering it

incapable of pursuing the original goal (G1) of arriving at a particular location before a

certain time. While potentially causing the failure of G1, the success of the maximum

priority goal in the system (G6: avoid collision with pedestrians) is achieved.

These synthetic examples demonstrate how the attention mechanism enables the hosting

system to meet the top-level design requirement originally presented in Chapter 4:

“The attention mechanism of an AGI system must enable the system to pursue goals

while being reactive to unexpected events in dynamic environments of real-world com-

plexity containing abundant information, while operating with limited resources and

time constraints.”

In these examples, the system benefits from the attention mechanism in several ways.

First, it is capable of performing a demanding task in an environment providing abun-

dant information. The information prioritization processes of the mechanism (GDDP

and NDDP) are essential for this purpose: Without this functionality, the system would

be overloaded with inputs, lose the ability to perform in real-time, and fail at its task.

184 General Attention Mechanism for AI Systems

Even if the system had sufficient resources to process all information from the operating

environment the attention mechanism allows it to do so with notably less resources.

Due to the bottom-up attentional processes of the NDDP, the system is constantly alert

to novelty in the operating environment. This allows it to react quickly to unexpected

events, such as the sudden appearance of a new pedestrian in the examples above. As a

result of architectural requirement #1 (fine-grained processes and units of data; see

Chapter 6) there are no time-consuming control loops or large, complex processes that

block processing for extended periods of time, and therefore the system is always in a

reactive and interruptible state. The NDDP and this architectural requirement enable the

system to react quickly when needed, to avoid failure of high-priority goals. Without

these, the pedestrian from the second example would surely be in the hospital or the

morgue.

As for process control, the EDDP allows the system to use prior experience, from real-

world operation or training in the simulator, to efficiently identify processes likely to be

relevant to an operating scenario based only on the specification of an active goal

(which by definition must already exist). This affords the system more time to evaluate

the effects of taking different actions likely to be useful in the present situation, as op-

posed to spending vast amounts of resources on blindly searching for such actions. The

utility value assigned to each entry in the CPPH also guides resources allocation to con-

sideration of actions, where actions most likely to lead to a favorable outcome are con-

sidered before others.

The architectural requirement of a unified sensory pipeline (requirement #3, see Chapter

6) also has important implications for the system. As mentioned earlier, this means that

all information is treated identically when it comes to attention – separate or special at-

tentional sub-systems for each are not needed; thus the problem of implementing – and

in particular – coordinating such sub-systems is eliminated. Safety issues aside, a sys-

tem hosting this attention mechanism can theoretically be hooked up to a brand new

type of sensor at run-time and learn how to use it to improve its performance. Sensory

unification also means that no additional attentional functions are needed for introspec-

tion. Introspection is necessary – or at least highly beneficial – for allowing the system

to improve its inner working.

The architectural requirements of Chapter 6 have already been cited several times, and

their importance should not be underestimated, as many of the benefits discussed above

are directly derived from these. If these requirements initially seemed unnecessary, ec-

centric or arbitrary to the reader, a second look at them with this example in mind may

be worthwhile.

Helgi Páll Helgason 185

Finally, let us examine what sets the proposed attention mechanism presented in the

present thesis apart from the limited existing work on attention in context of artificial

intelligence. Firstly, bottom-up attention has been given serious consideration through-

out the design as first-class citizen. Secondly, attention is addressed here in a holistic

sense, where information selection and process control are both fully addressed. Third-

ly, the attention mechanism presented here is specifically designed for a unified sensory

pipeline, which can equally target information from the external environment and in-

formation relating to internal system operation. This is an important feature for harness-

ing the full benefits of a constructivist AI approach (Thórisson 2012a; see Chapter 5).

Last but not least, the attention mechanism presented here is general; its design is not

based on any assumptions regarding possible tasks or environments, except for real-

world complexity. And with the possible exception of this last point, none of the cogni-

tive architectures reviewed in Chapter 3 make serious efforts towards meeting any of

these requirements. The attention mechanism presented in this thesis directly and suc-

cessfully addresses all of them.

10.4 Summary

Ultimate evaluation of the proposed attention mechanism is presently out of reach, as

this requires the mechanism to be fully implemented in one or more architectures, and

evaluated against several operating scenarios and environments. Evaluation of attention

in AGI-level systems requires fully implemented attention mechanisms in reasonably

advanced AGI architectures and must take into account that performance of attention

varies between operating scenarios and environments. A near-optimal attention mecha-

nism in one operating scenario cannot be assumed to be appropriate for other operating

scenarios. Furthermore, attention (as approached in the present work) is dependent on

architecture, making comparison of attention mechanisms between different architec-

tures challenging. Holistic evaluation methods are needed to solve this high-

dimensional problem.

187

Chapter 11

Conclusions and Future Work

Unlike previous attempts to design attentional capabilities for intelligent systems, the at-

tention mechanism design presented here takes a general and holistic approach to atten-

tion, where the phenomenon is viewed as system-wide prioritization of information and

processes in the architecture of cognitive systems aiming for high levels of autonomy.

The design is primarily inspired by the constructivist AI methodology (Thórisson

2012a) and models of attention from cognitive science (Knudsen 2007, Desimone &

Duncan 1995). Simultaneously active functions are included in the design for top-down

and bottom-up attention, allowing systems implementing this mechanism to focus on

active tasks while remaining alert to the operating environment. Context-sensitive prior-

itization of processes is also featured in the design as a function that learns from opera-

tional experience and improves over time. As the attention mechanism is designed to

operate on a unified sensory pipeline, it can be applied equally to any sensory modality

as well as to internal system data. This is a critical feature for systems designed under a

constructivist AI methodology.

A number of existing artificial general intelligence (AGI) architectures have been dis-

cussed that all take substantially different approaches to attention than is done here.

Most of these approaches are limited in comparison with the design proposed here, be-

ing limited to data filtering and ignoring control aspects and process prioritization. In

stark contrast, attention is viewed as a system-wide architecture-level function here.

Furthermore, few cases exist where attention is applied to internal system data. With the

exceptions of AERA (Nivel et al., 2012a, 2013) and Ikon Flux (Nivel 2007), none of the

AGI architectures discussed follow a constructivist AI methodology or fully support re-

al-time processing. The attention mechanism of the present work and its architectural

requirements are intended to endow the surrounding architecture with capabilities for

real-time processing. Bottom-up attention is not featured in any of the architectures dis-

188 General Attention Mechanism for AI Systems

cussed (except in AERA to a limited degree) and has been a largely unexplored topic

for intelligent systems but is addressed directly by the present work.

Future work includes full implementation and evaluation of the attention mechanism

design. Successful results have already been confirmed for the AERA architecture,

which represents the closest existing implementation of the attention mechanism pre-

sented here. However, the functionality proposed here for bottom-up attention has not

been implemented as of yet. Bottom-up attentional functionality (as viewed in the pre-

sent work) is resource intensive; pure novelty computation is likely prohibitively so. Of

special interest is the evaluation of the approximation methods for computing novelty

presented here, which are intended to make resource requirements of the problem more

tractable. Furthermore, investigation of the attention mechanism in specific domains

and in context of specific modalities is of great interest. Vision and visual attention is an

obvious example vision, where symbolic low-level features would need to be extracted

from images and input as data items into the system. The capability and learning charac-

teristics (such as learning rate) of a system to improve control of attention over time, us-

ing the control parameters of the attention mechanism, is also an interesting research

subject as it represents a complex meta-control problem. Approaches to evaluating at-

tention mechanisms of intelligent systems in general have been discussed. In particular,

the need for task-complexity metrics has been identified, representing another direction

of possible future work.

The critical importance of attention and sophisticated, adaptive mechanisms for re-

source management has been highlighted for resource-bounded intelligent systems op-

erating in open-ended everyday environments under time-constraints. In particular, I

have argued the need for these capabilities is fundamentally different and much greater

in the case of generally intelligent (AGI) systems than traditional narrow AI systems.

That being said, there is reason to believe that the proposed attention mechanism, and

the requirements it rests on, represent a valid and useful step in the direction of more

capable intelligent systems.

189

Bibliography

Anderson, J. R. (1996). ACT: A simple theory of complex cognition. American Psy-

chologist. 51: 355-365.

Anderson, J.R., Matessa, M., Lebiere, C. (1997). ACT-R: A theory of higher level cog-

nition and its relation to visual attention. Human-Computer Interaction. 12: 439-

462.

Anderson, J. R., Lebiere, C. (2003). The Newell test for a theory of cognition. Behav-

ioral and brain Sciences. 26: 587-601.

Baars, B. J. (1988). A Cognitive Theory of Consciousness. Cambridge, UK: Cambridge

University Press.

Baddeley, A. D., & Hitch, G. J. (1974). Working memory. The psychology of learning

and motivation, 8, 47-89.

Baddeley, A. (2000). The episodic buffer: a new component of working memory?

Trends in cognitive sciences, 4(11), 417-423.

Ben-Ari, Mordechai. (2006). Principles of concurrent and distributed programming.

Addison-Wesley Longman.

Boddy, M., Dean, T. (1989). Solving time-dependant planning problems. In Sridharan,

N. S. (Ed.), Proceedings of the Eleventh International Joint Conference on Artifi-

cial Intelligence, 979-984, Detriot, MI, USA. Morgan Kaufmann.

Bouton, M. E. (2007). Learning and behavior: A contemporary synthesis. MA Sinauer:

Sunderland.

Bratman, M. E., Israel, D. J., & Pollack, M. E. (2007). Plans and resource‐bounded

practical reasoning. Computational intelligence, 4(3), 349-355.

Broadbent, D. E. (1958). Perception and Communication. London: Pergamon.

Brooks, R. (1991). New approaches to robotics. Science, 253(5025), 1227-1232.

Burke, E. K., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S. (2003). Hyper-

heursitics: an emerging direction in modern search technology. In F. Glover and

190 General Attention Mechanism for AI Systems

G. Kochenberger (eds.) Handbook of Metaheuristics, pages 457-474. Kluwer Ac-

ademic Publishers.

Chapman, R. M., & Bragdon, H. R. (1964). Evoked responses to numerical and non-

numerical visual stimuli while problem solving. Nature (1964), p. 1155-1157.

Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and two

ears. Journal of the Acoustical Soceity in America, p. 975-979.

Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention.

Annual review of neuroscience, 18(1), 193-222.

Donchin, E. (2007). Surprise!… surprise?. Psychophysiology, 18(5), 493-513.

Drescher, G. L. (1991). Made-up minds: a constructivist approach to artificial intelli-

gence. The MIT Press.

Duch, W., R.J. Oentaryo, M. Pasquier (2008). Cognitive architectures: Where do we go

from here. Proceedings of the first AGI conference, p. 122-136.

Duncan, J. (1984). Selective attention and the organization of visual information. Jour-

nal of Experimental Psychology: General, 113(4), 501-517.

Eriksen, C. W., & James, J. D. S. (1986). Visual attention within and around the field of

focal attention: A zoom lens model. Perception & Psychophysics, 40(4), 225-240.

Farwell, L. A., & Smith, S. S. (2001). Using brain MERMER testing to detect

knowledge despite efforts to conceal. Journal of Forensic Sciences, 46(1), 135.

Firby, J. A. (1987). An investigation into reactive planning in complex domains. Pro-

ceedings of the Tenth International Joint Conference on Artificial Intelligence

(IJCAI-87), 202-260, Milan, Italy.

Franklin, S. (2006). The LIDA architecture: Adding new modes of learning to an

intelligent, autonomous software agent. In Proceedings of the International

Conference on Integrated Design and Process Technology, PAGE NUMBERS:

San Diego, CA. Society for Design and Process Science.

Franklin, S., Ramamurthy, U., D’Mello, S. K., McCauley, L., Negatu, A., Silva, R., &

Datla, V. (2007). LIDA: A computational model of global workspace theory and

developmental learning. In AAAI Fall Symposium on AI and Consciousness:

Theoretical Foundations and Current Approaches (pp. 61-66).

Franklin, S., Strain, S., Snaider, J., McCall, R., & Faghihi, U. (2012). Global workspace

theory, its LIDA model and the underlying neuroscience. Biologically Inspired

Cognitive Architectures, 1(1).

Frintrop, S., Rome, E., & Christensen, H. I. (2010). Computational visual attention sys-

tems and their cognitive foundations: A survey. ACM Transactions on Applied

Perception (TAP), 7(1), 6.

Gallagher, R. (1978). Variations on a theme by Huffman. Information Theory, IEEE

Transactions on, 24(6), 668-674.

Helgi Páll Helgason 191

Gantz, J., Reinsel, D. (2011). Extracting Value from Chaos. IDC IVIEW technical re-

port available at http://www.emc.com/collateral/analyst-reports/idc-extracting-

value-from-chaos-ar.pdf

Glass, A. L., Holyoak, K. J. (1986). Cognition, 2nd edition. Random House.

Gobet, F., & Lane, P. C. (2005). The CHREST architecture of cognition: Listening to

empirical data. Visions of mind: Architectures for cognition and affect, 204-224.

Goertzel, B., Pennachin, C. (2007). Artificial General Intelligence. Springer.

Goertzel, B. (2008). OpenCog Prime: Design for a Thinking Machine. Online wikibook

at http://opencog.org.

Goertzel, B. (2009). OpenCogPrime: A cognitive synergy based architecture for artifi-

cial general intelligence. In Cognitive Informatics, 2009. ICCI'09. 8th IEEE Inter-

national Conference on (pp. 60-68). IEEE.

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic deter-

mination of minimum cost paths. Systems Science and Cybernetics, IEEE Trans-

actions on, 4(2), 100-107.

Hart, D., & Goertzel, B. (2008). Opencog: A software framework for integrative artifi-

cial general intelligence. Frontiers in Artificial Intelligence and Applications, 171,

468.

Hillis, W. D., Tucker, L. W. (1993). The CM-5 Connection Machine: A Scalable Super-

computer. Communications of the ACM, vol. 36, no. 11. November 1993. Pages

31-40.

Hopfinger, J. B., Buonocore, M. H., & Mangun, G. R. (2000). The neural mechanisms

of top-down attentional control. Nature neuroscience, 3(3), 284-291.

Horvitz, E. J. (1988). Reasoning Under Varying Time and Uncertain Resource Con-

straints, Proceedings of AAAI-88, St. Paul, Minnesota, AAAI, 1988, 111-116

Horvitz, E. J., Suermondt, H. (1989). Bounded Conditioning: Flexible Inference for De-

cisions under Scarce Resources. Proceedings of the Fifth Workshop on Uncertain-

ty in Artificial Intelligence, 182-193, Mountain View, CA.

Ikle, M., & Goertzel, B. (2011). Nonlinear-dynamical attention allocation via infor-

mation geometry. Artificial General Intelligence, 62-71.

James, W. (1890). The Principles of Psychology. New York: Henry Holt, Vol. 1.

Johnson, A., Proctor, R. W. (2004). Attention – Theory and Practice. California: Sage

Publications.

Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language,

inference, and consciousness (No. 6). Harvard University Press.

Kaiser, J., & Lutzenberger, W. (2003). Induced gamma-band activity and human brain

function. The Neuroscientist, 9(6), 475-484.

192 General Attention Mechanism for AI Systems

Keele, S. W., Neill, W. T. (1978). Mechanisms of attention. In E.C. Carterette & M. P.

Friedman (Eds.), Handbook of perception, vol. 9, p. 3-47. New York: Academic

Press.

Knudsen, E. I. (2007). Fundamental components of attention. Pages 57-78. Annu Rev

Neurosci, vol. 30.

Kolmogorov, A. N. (1963). On tables of random numbers. Sankhyā: The Indian Journal

of Statistics, Series A, 25(4), 369-376.

Korf, R. E. (1990). Real-time heuristic search. Artificial intelligence, 42(2), 189-211.

Kuipers, B. (2005). Consciousness: drinking from the firehose of experience. In

Proceedings of the National Conference on Artificial Intelligence (Vol. 20, No. 3,

p. 1298). Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press;

1999.

Laird, J. E. (2008). Extending the Soar Cognitive Architecture. In Proceedings of the

First Conference on Artificial General Intelligence, p. 224-235. Memphis, Tenn.:

Springer.

Lane, P. C., Gobet, F., & Smith, R. L. (2009). Attention mechanisms in the CHREST

cognitive architecture. In Attention in Cognitive Systems (pp. 183-196). Springer

Berlin Heidelberg.

Langley, P. (2005). An adaptive architecture for physical agents. In Web Intelligence,

2005. Proceedings. The 2005 IEEE/WIC/ACM International Conference on (pp.

18-25). IEEE.

Langley, P., & Choi, D. (2006). A unified cognitive architecture for physical agents. In

Proceedings of the National Conference on Artificial Intelligence (Vol. 21, No. 2,

p. 1469). Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press;

1999.

Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Jour-

nal of Experimental Psychology, Human Perceptual Performance, vol. 26, p.

1038-1052.

Lavie, N., & Driver, J. (1996). On the spatial extent of attention in object-based visual

selection. Perception & Psychophysics, 58(8), 1238-1251.

Lenat, D. B., Guha, R. V., Pittman, K., Pratt, D., Sheperd, M. (1990). Cyc: Toward Pro-

grams with Common Sense. Communications of the ACM, 33(8), 30-49.

Luck, S. J. (2005). An introduction to the event-related potential technique. Cambridge,

MA: MIT Press; 2005.

Maes, P. (1991). The agent network architecture (ANA). ACM SIGART Bulletin, 2(4),

115-120.

McCarthy, J. (1988). Mathematical logic in artificial intelligence. Daedalus, 117(1),

pages 297-311.

Helgi Páll Helgason 193

Miller, J. (1988). Priming is not necessary for selective-attention failures: semantic ef-

fects of unattended, unprimed letters. Percept. Psychophys., vol. 41, p. 419-434.

Minsky, M. (1985). The Society of Mind. Simon and Schuster: New York.

Moravec, H. (1998). When will computer hardware match the human brain? J. Trans-

humanism (Online: ftp://los.io.usp.br/pub/los/IOF257/moravec.pdf)

Newell, A., Simon, H. A. (1961). GPS – a program that simulates human problem-

solving. Proceedings of a conference in learning automata. Munich: Oldenbourgh.

Newell, A., Simon, H. (1976). Computer science as empirical inquiry: symbols and

search. Communications of the ACM, 19(3), pages 113-126.

Nivel, E. (2007). Ikon Flux 2.0., Technical Report, RUTR – CS07006, School of

Computer Science, Reykjavik Univer.

Nivel, E., Thórisson, K. R., Dindo, H., Corbato, C. H., Rodriguez, M., Pezzulo, G.,

Koutnik, J., Glasmachers, T., Ognibene, D., Sanz, R., Chella, A., Castelfranchi, C.

(2012a). HUMANOBS Architecture. Technical report available at

http://wiki.humanobs.org/_media/public:humanobs-d9-r2-v2-

architecturedesign.pdf

Nivel, E., Thurston, N., Bjornsson, Y. (2012b). Replicode Language Specification.

Technical report available at:

http://wiki.humanobs.org/_media/public:publications:proj-docs:d3-1-

specification-replicode.v1.0.pdf

Nivel, E., Thórisson, K. R. (2013). Replicode: A Constructivist Programming Paradigm

and Language. Tech. Rep. RUTR-SCS13001, Reykjavik University Technical

Report.

Nivel, E., Thórisson, K. R., Dindo, H., Pezzulo, G., Rodriguez, M., Corbato, C.,

Thurston, N., Steunebrink, B., Ognibene, D., Chella, A., Schmidhuber, J., Sanz,

R., List, T., Helgason, H. P., 2013. Autonomous Endogenous Reflective Architec-

ture. Tech. Rep. RUTR-SCS13002, Reykjavik University Technical Report.

Norman, D. A. (1969). Memory while shadowing. Pages 85-93. Quarterly Journal of

Experimental Psychology, vol. 21.

Novianto, R., Williams, M. A. (2009). The Role of Attention in Robot Self-Awareness,

The 18th International Symposium on Robot and Human Interactive Communica-

tion. Pages 1047-1053.

Pearl, J. (1983). Heuristics: Intelligent Search Strategies for Computer Problem Solving.

New York, Addison-Wesley.

Pezzulo, G., & Calvi, G. (2006). A schema based model of the praying mantis. In From

Animals to Animats 9 (pp. 211-223). Springer Berlin Heidelberg.

Pezzulo, G., & Calvi, G. (2007). Designing modular architectures in the framework

AKIRA. Multiagent and Grid Systems, 3(1), 65-86.

194 General Attention Mechanism for AI Systems

Phillips, J. L. (2005). A biologically inspired working memory framework for robots.

Proc. 27th Ann. Conf. Congitive Science Society. Pages 1750-1755.

Polich, J. (2003). Detection of change: event-related potential and fMRI findings.

Springer.

Pollock, J. L. (2008). OSCAR: An Architecture for Generally Intelligent Agents. Fron-

tiers in Artificial Intelligence and Applications, p. 275-286.

Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of

signals. Journal of experimental psychology: General, 109(2), 160-174.

Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of vis-

ual processing in an RSVP task: An attentional blink?. Journal of Experimental

Psychology: Human Perception and Performance, 18(3), 849.

Russell, S., Wefald, E. (1989). Principles of metareasoning. Proceedings of the First In-

ternational Conference on Principles of Knowledge Representation and Reason-

ing, Toronto, 1989.

Russell, S., & Norvig, P. (2003). Artificial Intelligent: a Modern Approach. Prentice

Hall.

Sarter, M., Givens, B., & Bruno, J. P. (2001). The cognitive neuroscience of sustained

attention: where top-down meets bottom-up. Brain Research Reviews, 35(2), 146-

160.

Schmidhuber, J., Huber R. (1991). Learning to generate artificial fovea trajectories for

target detection. International Journal of Neural Systems, 2(1 & 2):135-141.

Schmidhuber, J. (2008). Driven by compression progress. In Knowledge-Based Intelli-

gent Information and Engineering Systems KES-2008, I. Lovrek, R.J. Howlett

and L. C. Jain Eds. Berlin, Germany: Springer-Verlag.

Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Tech-

nical Journal 27 (3): 379–423.

Skubic, M., Noelle, D., Wilkes, M., Kawamura, K., Keller, J.M. (2004). A biologically

inspired adaptive working memory for robots. AAAI Fall Symp., Workshop on

the Intersection of Cognitive Science and Robotics. Washington D.C. 2004.

Squires, N. K., Squires, K. C., & Hillyard, S. A. (1975). Two varieties of long-latency

positive waves evoked by unpredictable auditory stimuli in man. Electroenceph-

alography and clinical neurophysiology, 38(4), 387-401.

Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of exper-

imental psychology, 18(6), 643.

Sun, R., Merrill, E., Peterson T. (2001). From implicit skills to explicit knowledge: A

bottom-up model of skill learning. Cognitive Science. 25: 203-244.

Sun, R. (2003). A Detailed Specification of CLARION 5.0. Technical report available

at: http://www.cogsci.rpi.edu/~rsun/sun.tutorial.pdf

Helgi Páll Helgason 195

Sun, R. (2006). The CLARION cognitive architecture: Extending cognitive modeling to

social simulation. In: Ron Sun (ed.), Cognition and Multi-Agent Interaction.

Cambridge University Press, New York.

Sutton, S., Braren, M., Zubin, J., & John, E. R. (1965). Evoked-potential correlates of

stimulus uncertainty. Science (New York, NY), 150(700), 1187.

Sutton, S., Tueting, P., Zubin, J., & John, E. R. (1967). Information delivery and the

sensory evoked potential. Science, 155(3768), 1436-1439.

Taleb, N.N. (2007). The Black Swan: The Impact of the Highly Improbably. New York:

Random House.

Taylor, J. G. (2007) CODAM model: Through attention to consciousness. Scholarpedia,

2(11):1598.

Thórisson, K. R. (1996). Communicative humanoids: a computational model of psycho-

social dialogue skills. Doctoral dissertation, Massachusetts Institute of Technolo-

gy.

Thórisson, K. R. (1999). Mind model for multimodal communicative creatures and hu-

manoids. Applied Artificial Intelligence, 13(4-5), 449-486.

Thórisson, K. R., Benko, H., Abramov, D., Arnold, A., Maskey, S., & Vaseekaran, A.

(2004). Constructionist design methodology for interactive intelligences. AI Mag-

azine, 25(4), 77.

Thórisson, K. R. (2009). From Constructionist to Constructivist A.I. Keynote, AAAI

Fall Symposium Series: Biologically Inspired Cognitive Architectures, Washing-

ton D.C., Nov. 5-7, 175-183. AAAI Tech Report FS-09-01, AAAI press, Menlo

Park, CA.

Thórisson, K. R., Nivel, E. (2009). Achieving artificial general intelligence through

peewee granularity. In Proc. of the 2nd Conf. on Artificial General Intelligence,

pages 220-221.

Thórisson, K. R., Helgason, H. P. (2012). Cognitive Architectures and Autonomy: A

Comparative Review. Journal of Artificial General Intelligence, vol. 3, p. 1-30.

Thórisson, K. R. (2012a). A New Constructivist AI: From Manual Construction to Self-

Constructive Systems. In P. Wang and B. Goertzel (eds.), Theoretical Foundations

of Artificial General Intelligence. Atlantis Thinking Machines, 4:145-171.

Thórisson, K. R. (2012b). Final Project Evaluation Report for HUMANOBS. Technical

report available at:

 http://wiki.humanobs.org/_media/public:d23_progress_report_v1.1.pdf

Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cogni-

tive psychology, 12(1), 97-136.

Turing, A. M. (1948). Computing machinery and intelligence. Mind 59, 433-460. Re-

printed in: 1992, Mechanical Intelligence: Collected Works of A. M. Turing, pag-

es 133-160.

196 General Attention Mechanism for AI Systems

Viola, P., Jones, M. (2001). Rapid object detection using a boosted cascade of simple

features. Proc. IEEE Conference on Computer Vision and Pattern Recognition.

Vogel, E. K., Luck, S. J., & Shapiro, K. L. (1998). Electrophysiological evidence for a

postperceptual locus of suppression during the attentional blink. Journal of Exper-

imental Psychology: Human Perception and Performance, 24(6), 1656.

Wadsworth, B. J., & Gray, W. M. (2004). Piaget's theory of cognitive and affective de-

velopment. Pearson/A and B.

Wang, P. (1995). Non-Axiomatic Reasoning System: Exploring the Essence of Intelli-

gence. Ph.D. dissertation, Indiana University, Indiana.

Wang, P. (1996). Problem-solving under insufficient resources. In Working Notes of the

Symposium on Flexible Computation, 148-155. Cambridge, Mass.: AAAI Press.

Wang, P. (2006). Rigid Flexibility: The Logic of Intelligence. New York: Springer.

Wang, P. (2013). A General Theory of Intelligence. Available at:

 https://sites.google.com/site/narswang/EBook

Wolfe, J. M., Kluender, K. R., Levi, D. M., Bartoshuk, L. M., Herz, R. S., Klatzky, R.

L., & Lederman, S. J. (2006). Sensation & perception. Sunderland, MA: Sinauer

Associates.

Wood, N., & Cowan, N. (1995). The cocktail party phenomenon revisited: how frequent

are attention shifts to one's name in an irrelevant auditory channel? Journal of Ex-

perimental Psychology-Learning Memory and Cognition, 21(1), 255-260.

Zentall, T. R. (2004). Selective and divided attention in animals. Behavioral Processes

69.

Zion G., E. M., Ding, N., Bickel, S., Lakatos, P., Schevon, C. A., McKhann, G. M.,

Schroeder, C. E. (2013). Mechanisms Underlying Selective Neuronal Tracking of

Attended Speech at a “Cocktail Party”. Neuron, 77(5), 980-991.

Özcan, E., Bilgin, B., Korkmax, E. E. (2008). A comprehensive analysis of hyperheuris-

tics. Intell. Data Anal., vol 12, no. 1, pages 3-23.

School of Computer Science
Reykjavík University
Menntavegi 1
101 Reykjavík, Iceland
Tel. +354 599 6200
Fax +354 599 6201
www.reykjavikuniversity.is
ISSN 1670-8539

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

