

CREST Explorer

Self discovery API explorer

Final report

 Spring 2013

Ingi Steinn Guðmundsson

Hjörleifur Henriksson

BSc in Computer Science

Instructor: Stefán Freyr Stefánsson T-404-LOKA

 Examiner: Birgir Kristmannsson Tölvunarfræðideild

2

Table of Contents
1. Introduction ... 3

2 .Project description .. 3

3. Approach .. 6

3.1 Methodology ... 6

2.2 Project roles... 7

2.3 Project Analysis ... 7

2.4 Project tools and software .. 8

2.5 Testing ... 8

2.6 Design .. 8

2.7 Risk assessment ... 8

3. Project progress... 9

3.1 Worked hours .. 9

3.2 Release burndown ... 10

3.3 Sprint 0 .. 10

3.4 Sprint 1 .. 10

3.5 Sprint 2 .. 11

3.6 Sprint 3 .. 12

3.7 Sprint 4 .. 12

3.8 Sprint 5 .. 13

3.9 Sprint 6 .. 13

3.10 Sprint 7 .. 14

3.11 Sprint 8 .. 15

4. Conclusion ... 15

3

1. Introduction

CCP recently rolled out a new RESTful service called Carbon REST, or CREST for

short. CREST is a service that allows interaction with CCP‘s games EVE and Dust 514

using the HTTP protocol. Quality assurance and developers need to interact with the

CREST service today to see what is available to them and what they need to do to call

and use a specific service. Interacting with the system today is done through command

line tools and even though it is possible to explore the CREST service it can be a

cumbersome and time-consuming process, that requires knowledge of the system and

good understanding of the HTTP protocol.

The primary goal of the project was to create a new tool for CCP‘s quality

assurance and developers to facilitate interactions with CREST in a fast and easy way.

We created a self discovery API explorer called CREST Explorer. The system had to be

able to create an interface for the user dynamically, depending on what the user is

looking at and allow him navigate the CREST service in a fluid manner.

2 .Project description

CREST is a service that allows CCP‘s massively-multiplayer online game EVE and

their new online first-person shooting game DUST 514 to interact with each other. Even

though the games are vastly different and everything in EVE happens in space while

everything in DUST 514 takes place on the ground on planets, they exist in the same

universe called New Eden. Thanks to CREST, players from those two games can

communicate with each other, trade and even kill each other. CREST works as a bridge

between those two games, through which for example when players in EVE want to send

a mail to a DUST player, the mail is sent to CREST and it is then relayed to the DUST

player. Third-party applications can also be created and connected to CREST allowed

access to the EVE and DUST 514 worlds.

4

 The problem is that CREST is extensive and created for computer to computer

interactions, making it hard for developers to navigate the service with the tools that

exist today and see what is available and what they can do in CREST.

The tools that are being used by CCP developers today are command line tools

and can be time consuming and difficult to use in some situations. For one request the

user has to get a access token from an single sign-on login service, copy that and create a

request to an already known path, see Figure1. The response he gets back can be a huge

JSON formatted string that does not show all the wanted information or too much

information, see Figure 3. CCP also has extensive auto-generated documentation that

shows CREST structure but does not allow for interactions with data. The auto-

generated documentation can also be time-consuming to read if you don‘t know exactly

what you are looking for, see Figure 3.

The project aim is to create a system for CCP developers and quality assurance

that replaces command line interactions with CREST and serves as an interactive

documentation. We call the system CREST Explorer. CREST Explorer is a self discovery

API explorer that can create an interface dynamically depending on what service or data

the user is looking at, making it much easier to perform testing on and developing for it

through immediate explorative access to all exposed branches of the CREST service.

 CREST Explorer should be generic enough to handle new services in CREST that

are added later. It should also find out what the user can do with specific data. The user

can log in as either a DUST514 or EVE character and explore the service as that

character to get information, delete, create or change data specific to that character.

 As an example of how CREST Explorer could be used, a new service might be

made available in CREST. This new service can send in-game mail between players. A

developer wanting to use the service for a new feature in the game, instead of going

through the documentation, can find it with CREST Explorer. When he selects it, he is

presented with all available actions on that service. He chooses to send an in-game mail

and a form is generated for him. The form displays the following fields:

 Subject

 Body

 Recipients

5

The developer can now see what needs to be entered to send a mail and even test the

service before he uses it by filling out the form and submitting it. Quality assurance can

also use it to test the new service and see if it is working correctly the same way.

Figure 1: Command line request with a single sign-on access token in the header and the
wanted path

Figure 2: Command line response

6

Figure 3: Auto-generated documentation for CREST. This image represents one service in
CREST and all available options. Note how long the list is marked with the red circle.

3. Approach

3.1 Methodology

The team decided to use SCRUM for this project since CCP makes heavy use of it for most

of their projects.

Because all our work had to be done in-house at CCP and we didn‘t have access cards to

the building, which prevented us from coming there on weekends and evenings, we

decided on steady hours so we could be there at the same time and work together.

At first we decided on 1 week sprints, thinking that would be a good approach for our

small team but we quickly ran into problems with that when our school workload

increased and almost no work could be done in some sprints. We revised our plans after

sprint 3 and made the sprints last two weeks and threw away our time plan to

compensate for the delay. We also got our access cards to the building and that allowed

for much more flexible hours. The only regular hours we planned was the SCRUM

retrospective meetings and the sprint planning which we had on the same day. Daily

scrum meetings where also conducted either remotely or at CCP when we were both

there.

7

We used Microsoft Excel to keep track of the product and sprint backlogs. We also used

Excel for keeping track of our work hours. The sprints can be seen in Table 1.

Sprints Begin End

Sprint 0 16.1.2013 11.2.2013

Sprint 1 11.2.2013 18.2.2013

Sprint 2 18.2.2013 25.2.2013

Sprint 3 25.2.2013 4.3.2013

Sprint 4 4.3.2013 18.3.2013

Sprint 5 18.3.2013 1.4.2013

Sprint 6 1.4.2013 15.4.2013

Sprint 7 15.4.2013 29.4.2013

Sprint 8 29.4.2013 13.5.2013

Table 1. Sprints

It took us some time to set up at CCP, getting access to systems and familiarizing

ourselves with them since many of them were quite complex. This led us to start

experimenting with pair programming so we could share what we had learned, this

proved to be very useful and we stuck with it for most of the project.

During sprint planning, each story that was to be done was reviewed and re-evaluated.

The story was broken down into tasks and assigned. A story was not finished until every

task in that story was completed. It was then tested by the other team member. Code review

was done either during work on the story with pair programming or after it was finished.

2.2 Project roles

The team members had following roles

 Ingi Steinn Guðmundsson – Scrum master, programmer

 Hjörleifur Henriksson – Programmer

 Nicolas Tittley – Product owner (CCP)

2.3 Project Analysis

A program flow chart was created to help us understand how the service should work. It

proved to be very valuable in getting us on the same page as to how the system should

work. The flow chart was revised a couple of times as we got a better understanding of

the inner workings of CREST.

The state of the project and what it could do was shown to the product owner (and

sometimes other CCP employees) on a regular basis, followed by discussions about

improvements and the future of the project, with particular focus on making the

application as useful as possible. Some extra features were added as a result of these

8

discussions, such as showing the response headers from the most recent request to

CREST, and the response time.

2.4 Project tools and software

The client is a single page application made with AngularJS and jQuery. A Python Flask

server serves up the client and acts as a proxy between the client and CREST. Twitter

bootstrap and angular.ui is used for styling in addition to our own modifications. The

Sublime Text editor was used for all code and markup.

2.5 Testing

When we had a basic client up and running we created basic tests in JavaScript for every

function. These tests were primitive but effective for debugging.

System tests were conducted by the team members when a story was finished. Extensive

System tests were also conducted at the end of sprint 7 and 8 so bug fixes could be made

before the final release.

2.6 Design
Intially we were unsure about the look,and had a very rough outline of how it should be, as we were

not yet sure about many details that only came to light as our understanding of the project

deepened. This was in part due to the dynamic nature of the data that the application is working

with and displaying in a readable manner. We knew that Twitter Bootstrap would be used, as it was

already in use for several related systems, and we wanted to have a familiar look and feel to the user

interface.

2.7 Risk assessment
Our Risk assessment plan served as a guide for us if something was slowing down the project or

stopping it. Only one risk came into fruition, and that was the risk of other courses taking up more

time than we planned.

Risk assessment
1-5

Description Mitigation plan Impact

5
Unable to conform
backend to project
requirements

Test early on and
figure out what´s
needed to fulfill
requirements

Delay and possible
dropping of requirements

3 Changes in backend

Make the software as
robust as possible -
try to avoid
unnecessary
dependencies

Refactorization, project
delay

9

3
Test server goes
down during
presentation

Make recordings of
application in use,
coordinate with CCP

Unable to show software
being used live, less
interesting presentation

4
Too much time
consumed by other
courses

Make up for lost time
during weekends

Project delay

3. Project progress

Sprint 0 was our longest sprint, we used that time to get set up at CCP, we got our own

workstation and go introduced to the team we would be working for. We also got an

extensive tutorial on the inner workings of CREST and most of the systems we would be

working with. This was much to take in and we used most of sprint 0 to get familiar with the

systems, getting and exploring CCP‘s source code.

We started with a project plan that used 1 week sprints,totaling 13 sprints. It soon became obvious

to us that it wasn‘t working because of increased workload from other courses. We did account for

that in our risk assesment, and to combat that we planned to work on weekends but we did

not get access cards to the CCP building fast enough and our sprints suffered. We increased

our sprint durations to two weeks so sprints wouldn‘t go to waste when we had a busy week

and when we got access to the building our sprints began to go more smoothly.

In the end one A story was left and two B stories.

3.1 Worked hours
The team members schedule did differ since we did not have all the same courses but in the end we

spent almost the same amount of time on the project.

We planned 350 hours per person at the beginning, that estimed was off by 50 hours, see Table 2.

 Ingi Hjörleifur

Total hours 400 399

Planned hours 350 350

Table 2: Worked hours vs Planned hours

10

3.2 Release burndown

3.3 Sprint 0

16.01.13 - 11.02.13

Retrospective

In the initial sprint we spent all of the time doing preparatory work, and getting

ourselves set up at the company. This proved a more challenging task than expected,

however we gained familiarity with some aspects of the project in the meantime, as we

read the documentation and examined some of the source code for the back-end

services.

3.4 Sprint 1

11.02.13 - 18.02.13

Retrospective

We had some problems where we had to refactor the estimated time taken for tasks, as

the authentication process proved troublesome. The story remains in progress, as we

remain undecided about the validation step, so we’ve put that on hold until it becomes

clear exactly what is necessary.

0

50

100

150

200

250

Sprint
1

Sprint
2

Sprint
3

Sprint
4

Sprint
5

Sprint
6

Sprint
7

Sprint
8

Hours worked

Storypoints left

Ideal actual

11

3.5 Sprint 2

18.02.13 - 25.02.13

Retrospective

We put some of the tasks on hold here – getting the available actions requires some

backend changes that we will start thinking about in the next sprint.

0

5

10

15

20

25

30

35

40

45

Start Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Work hours

Actual - Remaining effort

Ideal - Remaining effort

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8

Work hours

Actual - Remaining effort

Ideal - Remaining effort

12

3.6 Sprint 3

25.02.13 - 04.03.13

Retrospective

We held a meeting about required backend changes, but little else was done in this

sprint as other courses were demanding. We realized that a one-week spring is not ideal

for the project, especially with the load from other courses sometimes consuming the

entire sprint. We thus decided to change to two-week sprints. We requested access

cards again so we could continue our work on weekends when situations like these

come.

3.7 Sprint 4

04.03.13 - 18.03.13

Retrospective

Progress was impaired due to time-consuming assignments in other courses. We have

allotted more time to the project on weekends to make up for the recent delays.

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8

Work hours

Actual - Remaining
effort

Ideal - Remaining
effort

13

3.8 Sprint 5

18.03.13 - 01.04.13

Retrospective

The sprint went well, we now have a good feeling about how many story points we can

handle.

3.9 Sprint 6

01.04.13 - 15.04.13

Retrospective

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Work hours

Actual - Remaining
effort

Ideal - Remaining
effort

14

We had trouble implementing specific features with the frameworks we were using and

decided to change from jQuery to Google’s SPA framework called AngularJS.

We had to cancel one story in the sprint to be able to implement the wanted features and

change everything that was written in jQuery to AngularJS.

3.10 Sprint 7

15.04.13 - 29.04.13

Retrospective

The sprint took place at the same time as our finals and we only assigned tasks worth

half our estimated velocity. Our estimate was accurate and we finished everything we

set forth to do.

15

3.11 Sprint 8

29.04.13 - 13.05.13

Retrospective

The sprint went pretty well, the only hickup was that we implemented the post form

incorrectly and didn‘t figure it out until after a test on it was conducted. Testing after

someone closes a story was pretty beneficial in this case.

4. Conclusion
The main goal of the project was to facilitate the use of CREST and making it more
accessible, thus improving testing capabilities and making development easier. This goal

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Work hours

Actual - Remaining
effort

Ideal - Remaining
effort

16

was reached, and the product owner, as well as other CCP employees to whom the
product was shown, were pleased with the product.

Working on this project has been a very valuable learning experience. We tried pair

programming and that became very helpful for us to understand problems faster and

share our knowledge on what we had learned from the CCP developers on CCP‘s

systems. At first we had a hard time adjusting scrum to our team effectively but were

able to adjust to it as the project went on and found it very useful for managing the

project workload. We also learned a great deal from working with the complex system

that is EVE and it was very informative to see how such a big project is managed.

We found it rather difficult to familiarize ourselves with the OAuth autentication service,

which seemed only to grow in complexity as the project progressed. At one point when

we thought we had completed that part of the project, we realized that we needed a

different kind of token from it, which changed the entire flow of communication. On the

other hand, we learned a lot from these difficulties.

We were reassured as to the usefulness of the product by the reactions of CCP

employees when presented with it. Judging from their reactions we believe it will come

to serve its intended purpose, and be used by both CCP employees working with CREST

as well as third-party developers.

Quotes from CCP employees:
‘I love this’ - Nicolas Tittley (Product Owner)
‘When do we get this?’ - Simon König (Quality Assurance)

