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Sorting operators and their preimages

Hjalti Magnússon

May 2013

Abstract

This thesis extends previous work of Claesson and Úlfarsson (2012) on al-
gorithms for computing the preimage of a pattern class under the stack-sort
operator. We consider several other sorting operators, namely stacks of fixed
depth, queues, pop-stacks, insertion sort and pancake sort, and find corre-
sponding algorithms for them. We also introduce the notion of meta patterns
that allow us to present these algorithms in a uniform way. Furthermore, we
consider how Claesson’s and Úlfarsson’s original algorithm for stack-sort
can be extended to find the preimage of a mesh pattern class. This enables us
to give an automatic proof of the description of West-3-stack-sortable permu-
tations. Finally we show how the combination of the stack-sort and queue-
sort operators can be used to create a linear time algorithm for determining
avoidance of the pattern 4312.



Röðurnaraðferðir og formyndir þeirra

Hjalti Magnússon

Maí 2013

Útdráttur

Þessi ritgerð byggir á þeirri vinnu Claessons og Úlfarssonar sem snýr að
reikniritum sem finna formyndir mynsturflokka undir staflaröðunarvirkjan-
um. Við skoðum einnig aðrar röðunaraðferðir, þ.e. röðun með stafla af tak-
markaðri dýpt, röðun með biðröð, röðun með togstafla, innsetningarröðun
og pönnukökuröðun, og gefum sambærileg reiknirit fyrir þær. Við kynn-
um einnig til sögunnar yfirmynstur sem gera okkur kleift að samræma fram-
setningu reikniritanna. Við sýnum jafnframt hvernig reiknirit Claesson og
Úlfarssonar, fyrir formyndir staflaröðunar, er hægt að útfæra til þess að finna
formyndir ákveðins flokks möskvamynstra. Þannig má sjálfvirknivæða sönn-
un á lýsingu þeirra umraðana sem hægt er að raða með þremur ítrunum
af staflaröðun. Að lokum sýnum við hvernig samskeyting á staflaröðunar-
og biðrararöðunarvirkjunum gefur reiknirit sem ákvarðar, á línulegum tíma,
hvort umröðun innihaldi klassíska mynstrið 4312.
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Chapter 1

Introduction

Although the notion of permutation patterns is implicit in the literature a long way back,
the formal study of permutation patterns began in the 1960’s, inspired by the stack-sorting
problem introduced by Knuth [1, Ch. 2.2.1, pp. 242–243]. Knuth discovered that permu-
tations that could be generated by passing the permutation 12 . . . n through a stack (or
equivalently, the permutations sortable by a pass through a stack) are precisely the per-
mutations that do not contain a subsequence a, b, c, such that c < a < b. In terms of
permutation patterns, Knuth discovered that the permutations, sortable by a single pass
through a stack, are precisely the class of permutations defined by the avoidance of the
pattern 231. The problem of describing the permutations sortable by two passes through a
stack then remained open, until in 1990 when West [2] gave their description by extending
the notion of classical permutation patterns. In 2012 Úlfarsson [3] gave a description of
permutations sortable by three passes through a stack by extending a class of permutation
patterns called mesh patterns, defined by Brändén and Claesson [4].

In [5] Claesson and Úlfarsson gave an algorithm for describing the preimage of any class
of permutations, defined by the avoidance of a classical pattern, under the stack-sort op-
erator. This algorithm generalizes the results of Knuth, which gave a description of the
preimage of permutations avoiding 21, and the results of West, which described the preim-
age of the permutations avoiding 231.

This thesis extends the work of Claesson and Úlfarsson in two ways. First, we give algo-
rithms that describe the preimage of five sorting operators, namely stack sort of limited
depth, queue sort, pop-stack sort, insertion sort and pancake sort (Chapter 2). These algo-
rithms are based on the preimage algorithm for stack sort, however, we also introduce the
notion of meta patterns, which allow us to give a uniform description of these algorithms.
We also show how these preimage algorithms can be applied to prove the correctness
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of a linear-time algorithm for determining the avoidance of the pattern 4312. We also
present an algorithm to give a description of the preimage of pattern classes, described
by the avoidance of a certain type of mesh patterns, under the stack-sort operator (Sec-
tion 3). This allows us to describe the West-3-stack sortable permutations. Finally, we
give an implementation of these algorithms in the computer algebra system Sage (Ap-
pendix A).

1.1 Permutations

Let Ja, bK denote the integer interval {i ∈ Z : a ≤ i ≤ b}. A permutation of rank n

is a bijection π : J1, nK → J1, nK. The set of all permutations of rank n is denoted by
Sn.

A permutation π ∈ Sn can be represented in one-line notation as the word

π = π(1)π(2) . . . π(n).

The graph of a permutation π ∈ Sn is defined as

G(π) = {(i, π(i)) : i ∈ J1, nK}

and is depicted by plotting the points of G(π) on a grid. For example, the graph of 14352
is depicted as

.

We let πvi denote the i-th vertical line of (the graph of) π and πhi denote the i-th horizontal
line of π. Furthermore, if π ∈ Sn, we let πh0 , πhn+1, πv0 and πvn+1 denote the bottom, top,
left and right edge of π, respectively.

Let π = π1π2 . . . πn ∈ Sn. We define

πr = πnπn−1 . . . π1
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as the reverse of π,

πc = ((n+ 1)− π1)((n+ 1)− π2) . . . ((n+ 1)− πn)

as the complement of π and πi as the (usual functional) inverse of π.

An inversion in π is a pair (πi, πj) where πi > πj and i < j. If a pair (πi, πj) is not an
inversion, we refer to it as a non-inversion. We let inv(π) denote the set of all inversions
in π and ninv(π) denote the set of all non-inversions in π.

A descent in π is an index i, such that πi > πi+1. In this case πi+1 is called the descent

bottom.

We also define idn = 123 . . . n as the identity permutation of rank n, and ε as the empty

permutation, which is the unique bijection ∅→ ∅.

1.2 Permutation patterns

Let σ ∈ Sm and π ∈ Sn be permutations. We say that π contains σ (or σ occurs in π)
if there exists a subsequence in π with the same relative order as σ. In this context, the
permutation σ is called a (classical) pattern. If π does not contain σ we say that π avoids

σ.

For example, if π = 41523 we have that π contains the pattern 231 since the subsequence
452 (41523) in π has the same relative order as 231. Furthermore, we have that π avoids
the pattern 321, since no subsequence of π has that relative order.

1.2.1 Decorated patterns

Let N = {0, 1, . . . } and let N+ = N \ {0}. A decorated pattern is a 5-tuple p =

(π, S,M,A,C) where

• π ∈ Sn is the underlying classical pattern of p,

• S ⊆ J0, nK× J0, nK are the shadings of p,

• M ⊆ {(T, k) : T ⊆ J0, nK× J0, nK, k ∈ N+} are the markings of p,

• A ⊆ {(T, q) : T ⊆ J0, nK × J0, nK, q is a decorated pattern} are the avoidance

decorations of p, and
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• C ⊆ {(T, q) : T ⊆ J0, nK × J0, nK, q is a decorated pattern} are the containment

decorations of p.

Decorated patterns were introduced by Úlfarsson in [3]. If M = A = C = ∅, we
refer to p as a mesh pattern, which were introduced by Brändén and Claesson in [4]. If
A = C = ∅, we refer to p as a marked mesh pattern, introduced by Úlfarsson in [6].

We depict a decorated pattern (π, S,M,A,C) with the graph of π, with the following
additions.

• For each (i, j) ∈ S we shade the unit square with bottom left corner (i, j) with
diagonal lines.

• For each (T, n) ∈M we draw a box around the region T and mark it with n.

• For each (T, q) ∈ A we draw a shaded box around the region T and mark it with
the pattern q.

• For each (T, q) ∈ C we draw a (non-shaded) box around the region T and mark it
with the pattern q.

As an example, the pattern

(213, {(0, 0), (1, 1)}, {({(0, 3)}, 2)}, {({(1, 2), (2, 2)}, 12)}, {({(3, 0), (3, 1)}, 21)})

is depicted as

2

.

We say that a decorated pattern (π, S,M,A,C) occurs in a permutation σ, if we can find
the underlying classical pattern π in the graph of σ positioned in such a way that

• the shaded regions are not occupied by any elements of σ,

• the marked regions are occupied by at least the number of elements specified by the
marking,

• the elements occupying the avoidance decorated regions avoid the pattern marked
in the region,

• the elements occupying the containment decorated regions contain the pattern mark-
ed in the region.
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More formally, an occurrence of p = (π, S,M,A,C) in σ, where π ∈ Sk and σ ∈ Sn, is
a subset ω of the graph of σ,G(σ), such that there are two injections α, β : J1, kK→ J1, nK
that satisfy the following six conditions.

1. For all i, α(i) < α(i+ 1) and β(i) < β(i+ 1).

2. ω = {(α(i), β(j)) : (i, j) ∈ G(π)}.

Let
Tij = Jα(i) + 1, α(i+ 1)− 1K× Jβ(j) + 1, β(j + 1)− 1K,

where we define α(0) = β(0) = 0 and α(k+1) = β(k+1) = n+1. This set contains all
the points in (the graph of) the permutation σ after the pattern p has been “stretched” over
σ to match the underlying classical pattern π. Furthermore, suppose T ⊆ J0, nK× J0, nK.
We then define

U(T ) = {(α(i), β(j)) : (i, j) ∈ G(π) and (i− t, j − s) ∈ T for all t, s ∈ {0, 1}}

as the set of points surrounded by the region defined by T . We also define

V (T ) =

 ⋃
(i,j)∈T

Tij ∩G(σ)

 ∪ U(T ).
This set contains the points of the permutation σ that land in the region T , after p has been
stretched over σ, along with the points in σ that correspond to points in the underlying
classical pattern π that are surrounded by the region T in p. The remaining conditions are
then as follows.

3. For all (i, j) ∈ S, we have Tij ∩G(σ) = ∅.

4. For all (T, n) ∈M , we have |V (T )| ≥ n.

5. For all (T, q) ∈ A, we have that V (T ) avoids q.

6. For all (T, q) ∈ C, we have that V (T ) contains q.
Example 1.2.1. Suppose we have the decorated pattern

p =
1
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and the permutation

σ = .

Below we show three examples where σ contains the underlying classical pattern of p,
but not p. We denote the occurrence of the underlying pattern by circling the elements of
σ. In the first example, the marking contains no points and is therefore not satisfied. In
the second example the element 6 lands in a shaded region and in the third example, the
avoidance decoration contains an occurrence of the pattern 12.

The pattern p, however, has four occurrences in σ, namely the following.

Example 1.2.2. Let

p =

and

σ = .
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Below are two examples where σ contains the underlying classical pattern of p, but not
p. In both cases the shaded region contains the pattern 21, which is forbidden by the
avoidance decoration.

There are, on the other hand, two occurrences of p in σ, namely the following. In these two
cases, the shaded region only contains the element corresponding to 2 in p, and therefore
does not contain 21.

We let Av(M) denote the set (or class) of all permutations avoiding a set M of decorated
patterns, and Co(M) the set of all permutations containing some pattern in M .
Remark. Markings and containment decorations, marked with classical patterns, do not
add to the expressiveness of decorated patterns. Given a decorated pattern p, we can define
a finite set exp(p) of decorated patterns, with no markings or containment decorations,
with the property that a permutation π avoids p if and only if p ∈ Av(exp(p)). We call
this set exp(p) the expansion of p.

For example, if

p =

1
1

then we have

exp(p) =


, ,


.

We obtain exp(p) by inserting points into the markings of p. There is only one way of
inserting a point in the left marking. However, after we have inserted a point in the left
marking, the right marking covers three boxes. Thus there are three distinct ways of
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inserting a point into that region, so we obtain three patterns. The inserted points are
circled in the set above.

As another example, suppose we have

q = .

The expansion of q,

exp(q) =


, ,


,

is then obtained by inserting an inversion in the region marked with the containment
decoration. There are three distinct ways of inserting an inversion in the region, so we
obtain three patterns.
Remark. In some cases markings and decorations are redundant. For example, we have
that

1
1 = 1

since by satisfying the smaller marking, we also satisfy the larger marking, making the
larger marking redundant. In general, by the same argument, if we have a region T marked
with k and another region T ′ marked with k′, such that T ′ ⊆ T and k ≤ k′, we can remove
the marked region T .

Furthermore if C and C ′ are containment decorations, decorated with the classical pat-
terns p and p′, respectively, such that C contains C ′ and p′ (as a permutation) contains the
pattern p, we can remove the decoration C. The decoration C is redundant, since if the
decoration C ′ is satisfied, C is automatically satisfied as well. Similarly, if C and C ′ are
avoidance decorations, decorated with the classical patterns p and p′, respectively, such
that C ′ contains C and p′ (as a permutation) contains the pattern p, we can remove the



Hjalti Magnússon 9

decoration C. Thus, for example, we have that

= ,

and

= ,

Note, however, that the same does not apply if decorations contain non-classical patterns.
For example, we have that

6= ,

since the pattern on the left hand side is avoided by 542631 whereas the pattern on the
right hand side is not.

1.3 Sorting operators and preimages

Sorting, i.e., the rearrangement of items into ascending order, is one of the most exten-
sively researched topics in computer science. A function f : Sn → Sn is called a sorting

operator if there exists another function, u : N → N, such that fu(n)(π) = idn, for all
π ∈ Sn.

Our main emphasis in this thesis will be finding preimages of classes of permutation under
several sorting operators. More precisely, given a sorting operator f and a pattern p, we
give algorithms to construct a set M of decorated patterns such that

Av(M) = {π : f(π) ∈ Av(p)},
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or equivalently f−1(Av(p)) = Av(M). In this context we refer to p as the target pattern.
The algorithms can then be extended to find the preimage of a class of permutations
defined by the avoidance of a set of classical patterns L, which is given by

f−1(Av(L)) =
⋂
q∈L

f−1(Av(q)).

1.3.1 Sorting with a stack

A stack (of unlimited depth) is a list with the restriction that elements can only be added
and removed from one end of the list. We call this end the top of the stack. The act of
adding an element to a stack is called pushing, and the act of removing is called pop-

ping.

Given an input permutation π, let S(π) be the permutation obtained by the following
procedure.

1. If the stack is empty or the topmost element is larger than the first element of the
input, s, push s onto the stack.

2. Otherwise, pop elements from the stack and append them to the output permutation,
until s can be pushed onto the stack.

3. Repeat this process until the input is empty.

4. Pop all elements off the stack and append them to the output permutation.

We refer to S as the stack-sort operator. For a permutation π ∈ Sn, if S(π) = idn, we
say that π is stack-sortable.

The stack-sort operator can also be defined recursively as follows [7]. For a permutation
π = αnβ, where n is the largest element of π, we have that

S(π) = S(αnβ) = S(α)S(β)n,

S(ε) = ε.

Figure 1.1 shows the result of applying the stack-sort operator to the permutation 41325.
First 4 and 1 are pushed onto the stack. The 1 is then popped off the stack, by the 3, which
is pushed onto the stack. The 2 is then pushed onto the stack, on top of the 3. Finally,
since 5 is larger than all the elements on the stack, all the elements are popped off the
stack, and the 5 is pushed onto the stack. The stack is then emptied into the output.
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41325

4

1325

4
1

325 1

4

325

1

4
3

25 1

4
3
2

5 4321 5 4321

5

54321

Figure 1.1: Stack-sort operator applied to 41325

As mentioned before, Knuth discovered that the stack-sortable permutations were pre-
cisely the permutations that avoided the pattern 231. Since the identity permutation is
the only permutation that avoids the pattern 21, we can formulate Knuth’s discovery as
S−1(Av(21)) = Av(231). Using this result, we have that if a permutation avoids 231 after
a pass through a stack, it is sortable by two passes through a stack. The discovery of West,
which originally described the permutations sortable by two passes through a stack, can
therefore be written as

S−1(Av(231)) = Av

 ,

 .
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Chapter 2

Preimages of sorting operators

2.1 Sorting with a stack of any depth

The depth of a stack is the number of elements it can hold. The stack-sort operator can
be extended as follows. Given a stack of depth d and an input permutation π, let Sd(π) be
the permutation obtained by the following procedure.

1. If the stack is empty, push the first element of the input onto the stack.

2. If the stack is full (i.e., contains d elements), pop the top element from the stack
and append it to the output permutation.

3. If the topmost element is larger than the first element of the input, s, push s onto
the stack.

4. Otherwise, pop elements from the stack and append them to the output permutation,
until s can be pushed onto the stack.

5. Repeat this process until the input is empty.

6. Pop all elements off the stack and append them to the output permutation.

We refer to Sd as the stack-sort operator of depth d. For a permutation π ∈ Sn, if
Sd(π) = idn, we say that π is stack-sortable with a stack of depth d.

Figure 2.1 shows the result of applying the stack-sort operator of depth 3 to the permu-
tation 45321. First 4 is pushed onto the stack, and immediately popped by the 5. The 3

and the 2 are then pushed onto the stack, and the stack becomes full. The 2 is therefore
immediately popped off the stack. The same applies to the 1, which is pushed onto the
stack and then immediately popped off the full stack. The stack is subsequently emptied
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into the output. Figure 2.2 shows the result of applying the stack-sort operator of depth 4

to the same permutation. In this case, the stack is not filled by the 2, and the 1 can there-
fore be pushed onto the stack, on top of the 2. The relative order of 1 and 2 is therefore
reversed in the output.

45321

4

5321 4 5321 4

5

321

4

5
3

21 4

5
3
2

1 24

5
3

1 24

5
3
1

53124

Figure 2.1: Stack-sort operator of depth 3 applied to 45321

45321

4

5321 4 5321 4

5

321

4

5
3

21 4

5
3
2

1 4

5
3
2
1

53214

Figure 2.2: Stack-sort operator of depth 4 applied to 45321

The following definition is analogous to the recursive definition of the stack-sort operator.
For a permutation π = αnβ, where n is the largest element of π, we have that

Sd(π) = Sd(αnβ) =

Sd(α)Sd−1(β)n if d > 1,

π if d = 1,

Sd(ε) = ε.

Note that S∞ = S is the stack-sort operator (of unlimited depth), and S2 = B is the
bubble-sort operator (see e.g. [8]).
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In [5, Algorithm 1], Claesson and Úlfarsson presented an algorithm that gives a descrip-
tion of the preimage of any set, defined by the avoidance of classical patterns, for S.
The algorithm takes as input the pattern defining the avoidance class whose preimage we
want to find, and then proceeds in two steps. In the first step, classical patterns, called
candidates, are generated. In the second step, shadings and markings are added to the
candidates, to produce the patterns that describe the preimage. Note that it might be im-
possible to add shadings or markings to some of the candidates produced by the first step.
We will now give a generalization of this algorithm, that finds the preimage of a stack of
any depth. More precisely, given a classical pattern p, the generalized algorithm, preimSd

,
gives a set of decorated patterns that describe the preimage of Av(p) under Sd.

The analog of [5, Proposition 4.1], which generates classical pattern candidates, is the
following.
Proposition 2.1.1. Let p = αnβ be a permutation of a finite set of integers where n is the

largest element of p and α = a1a2 . . . ai. Then

candd(p) =



i⋃
j=0

{γnδ : γ ∈ candd(a1a2 . . . aj), δ ∈ candd−1(aj+1 . . . aiβ)} if d > 1,

{p} if d = 1,

{ε} if p = ε.

contains all classical patterns that can become p after one pass through a stack of depth

d.

Proof. In the case when d = 1, we have that Sd is the identity map, and therefore the only
classical pattern that can become p, after Sd has been applied to it, is p itself. Furthermore,
the only permutation that can become the empty permutation, ε, after a pass through a
stack of any depth is ε itself.

Suppose then we have a pattern p = αnβ, and suppose we have a pattern q = γnδ that
becomes p after a pass through a stack of depth d. We know that, since n is the largest
element of q, it cannot move to the left, and must therefore move to the right or stay in
the same place after Sd is applied. Furthermore, since n is the largest element of q, we
have that all the elements to the left of n in q must be to the left of n in p, since n pops all
elements, smaller than itself, off the stack. Finally, we note that after n is pushed onto the
stack, no element in q will pop n off the stack, and therefore the stack’s depth is decreased
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by (at least) 1. By the induction hypothesis, we therefore have that

i⋃
j=0

{γnδ : γ ∈ candd(a1a2 . . . aj), δ ∈ candd−1(aj+1 . . . aiβ)}

contains all patterns that can become p after a pass of stack-sort of depth d.

We note that if σ = Sd(π), then inv(σ) ⊆ inv(π). This follows from the fact that when
the stack-sort operator is applied to π, each inversion in π either becomes a non-inversion
in the output σ, or it stays an inversion. Non-inversions in π must also be non-inversions
in σ.

In the second step of preimSd
we consider the inversions of each candidate, and compare

them to the inversions of the target pattern. In order for an inversion in the candidate to
remain an inversion in the target, after a pass through a stack, in general we must add
restrictions to the candidate. The same applies for inversions that become non-inversions.
In order to generalize the process of adding restrictions to patterns we present the notion
of a meta pattern.

2.1.1 Meta patterns

A meta pattern is a decorated pattern which we use to add restrictions to decorated pat-
terns. Given a meta pattern P , and a decorated pattern p, we can apply P to a subsequence
σ of the underlying pattern of p by stretching P over p, so that the underlying pattern of
P matches σ. We then add the restrictions from P to p. In order for P to be applicable to
σ, the following conditions must be met.

1. The subsequence σ has the same relative order as the underlying pattern of P .

2. The added restrictions from P must not conflict with the restrictions of p:

(a) No element of p can be contained in a shaded region of P .

(b) A containment decoration or marking cannot be contained in a shaded region.

(c) A containment decoration, marked with a classical pattern q, cannot be con-
tained in an avoidance decoration, marked with a classical pattern r, if con-
tainment of q implies containment of r.

(We will introduce a more expressive type of meta patterns in Section 2.5.)
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For example, if

P =
1

and

p = ,

we can apply P to 31 in p and obtain

1
= .

Note that we can remove the marking after applying P , since it contains an element from
p. Furthermore, since a shading is more restrictive than an avoidance decoration, we can
contract the avoidance decoration from P in p. It is not possible to apply P to 43 in p,
since in that case the elements 1 and 2 in p would land inside the shading from P .

With the notion of meta patterns, we can now describe decorateSd
, the second step of

preimSd
. Suppose we have a candidate λ ∈ candd(p) and a permutation π containing λ.

An inversion in λ, corresponding to the elements a and b in π, will remain an inversion
after a pass through a stack of depth d if either of the two cases below applies.

1. There is an element c, larger than a, that appears between a and b in π. In this case a
is pushed onto the stack, and subsequently popped off by c, before b is pushed onto
the stack. The relative order of a and b therefore remains the same after applying
the stack-sort operator. This corresponds to the meta pattern C1 in Table 2.1.

2. The stack contains d − 1 elements, all larger than a, when a appears in the input.
In this case a is pushed onto the stack, and immediately popped off, since the stack
becomes full, and thus a appears before b in the output. This happens precisely
when there is a sequence of d− 1 decreasing elements, all larger than a, that appear
in π before a. This sequence also has the property that all its elements are right-to-
left maxima in π. Otherwise, at least one element of the sequence would be popped
off the stack before a appears. This property is described by the pattern

Vd = ((d− 1)(d− 2) . . . 1, {(i, j) ∈ J0, d− 1K× J0, d− 1K : (d− 1− i) < j}) .
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As an example

V6 = .

This case corresponds to the meta pattern C2 in Table 2.1. Note that the shading is
not necessary, but is added to exclude the first case.

If neither of the two cases applies to an inversion in λ, it must become a non-inversion in
the output. This corresponds to the meta pattern C3 in Table 2.1.

Description Candidates Target

Inversions that stay in-
verted

C1 =
1

, C2 =
Vd

Inversions that become
non-inversions

C3 =
Vd

Table 2.1: Meta patterns applied to inversions in candidates to obtain inversions or non-
inversions in the target after a single pass through a stack of depth d

Algorithm 2.1 gives a formal description of decorateSd
. For comparison, Algorithm A.1,

which extends [5, Algorithm 1] and is written in a similar style, gives a description of
decorateSd

without the use of meta patterns.

We then define
preimSd

(p) =
⋃

λ∈candd(p)

decorateSd
(d, p, λ),

and present the following theorem.
Theorem 2.1.2. The preimage of the pattern class, defined by the avoidance of p, under

the stack-sort operator of depth d is

S−1d (Av(p)) = Av
(
preimSd

(p)
)
.

Proof. This statement holds since candd(p) contains all classical patterns that can become
p after a pass through a stack of depth d. In decorateSd

restrictions are then added to
the candidates, such that any occurrence of a restricted candidate in a permutation must
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Algorithm 2.1: decorateSd

Input: The depth d of the stack; a target pattern p; and λ ∈ candd(p)
Output: A (possibly empty) set of decorated patterns M

1 Let M = {(λ,∅,∅,∅,∅)};
2 for v ∈ inv(λ) do
3 for r ∈M do
4 Remove r from M ;
5 if v ∈ inv(p) then
6 for i ∈ {1, 2} do
7 if Ci is applicable to v in r then apply Ci to v in r and add to M ;

8 else
9 if C3 is applicable to v in r then apply C3 to v in r and add to M ;

10 return M ;

become an occurrence of p after the permutation has passed through a stack of depth
d.

Remark. Let C ′2 be the meta pattern C2 without the shading. As noted above, the shading
in C2 is not necessary, and is only added to exclude the cases to which C1 applies. Thus,
we can substitute C2 for C ′2 in decorateSd

. However, for an inversion in a candidate λ,
we need only apply C ′2 if C2 is applicable to that inversion. This holds since if C2 is not
applicable to an inversion in λ, because of the shading, then the case for the meta pattern
C1 applies to that inversion, and therefore it will remain an inversion after a pass through
a stack. Applying C ′2 to that inversion is therefore unnecessary.

We will denote the variation of decorateSd
, where non-exclusive shadings are applied, by

decorate′Sd
. Furthermore, we let preim′Sd

be the variation of preimSd
that uses decorate′Sd

.
Corollary 2.1.3. Stack-sortable permutations, with a stack of depth d, are precisely the

elements of

Av(231, (d+ 1)d . . . 21).

Proof. We note that the stack-sortable permutations, with a stack of depth d, are the
preimage of Av(21). We then have candd(21) = {21}, and

decorate′Sd
(d, 21, 21) = {p1, p2} =

 1

,
Vd

 .
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We have that exp(p1) = 231 and

exp(p2) = .

Now suppose we have an occurrence of (d+ 1)d . . . 1, the underlying classical pattern of
p2, in a permutation π. If a shaded region in p2 is occupied by an element of π, then π has
an occurrence of 231. This holds since all shaded boxes in p2 are located between descents
in the underlying classical pattern. We therefore have that stack-sortable permutations,
with a stack of depth d, are the elements of

Av(p1, p2) = Av(231, (d+ 1)d . . . 1).

Note that Goodrich et al. [9] independently discovered this corollary. This proposition
generalizes Knuth’s results, that stack-sortable permutations are the avoiders of 231 (we
set d = ∞). Furthermore, we have reproduced the results of [8, Proposition 2], which
states that bubble-sortable permutations are precisely the avoiders of 132 and 321.

To describe the permutations sortable by two passes through a stack of depth d, we need
to describe the preimage of Av(231). In this case candd(231) = {231, 321} (if d > 1).
Applying preim′Sd

then gives the following patterns.

s1 =

Vd 1

s2 =
1

s3 =

Vd

To complete the description, we also need to determine the preimage of (d + 1)d . . . 1.
In general preimSd

((d + 1)d . . . 1) yields a large set of patterns, which cannot easily be
reduced. We will therefore only give the preimage when d = 2, i.e. the preimage of the
bubble-sort operator.

If d = 2, we note that V2 = , which is contained in all non-empty permutations. We

can therefore replace containment decorations, marked with V2, with a marking and also
replace any avoidance decoration, marked with V2, with a shading. Applying preim′S2

to 321 and replacing decorations marked with V2, we then obtain the following pat-
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terns.

1
1

1 1
1

1 11
1

1 1

Let A denote the set of these patterns. We note that 4321, 3421 ∈ A and each pattern in A
either contains 4321 or 3421. Thus we have that Av(A) = Av(4321, 321). Furthermore,
we note that the shading and decoration in s1 are redundant, since if a permutation π

contains the underlying pattern of s1, but an element of π lands in either the shaded region
or the decorated region, then π contains either 4321 or 3421. Expanding the elements si
then gives us that the permutations sortable by two passes through a stack of depth 2

are

S−22 (Av(21)) = S−12 (Av(231, 321)) = Av(2341, 2431, 3241, 3421, 4231, 4321).

This is a special case of [8, Prop. 17] which gives a description of permutations sortable
with k passes of bubble sort.

2.2 Sorting with a queue

A queue is a list with the restrictions that elements can only be added to one end of the
list, called the front, and removed from the other end of the list, called the back. The act
of adding an element to a queue is called enqueuing, and the act of removing is called
dequeuing.

Given an input permutation π, let Q(π) be the permutation obtained by the following
procedure.

1. If the queue is empty or its last element is smaller than the first element of the input,
s, enqueue s.

2. Otherwise, dequeue elements from the queue and append them to the output permu-
tation until the front element of the queue is larger than s. Append s to the output
permutation.

3. Repeat this process until the input is empty.

4. Empty the queue into the output permutation.
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We callQ the queue-sort operator, and for π ∈ Sn, ifQ(π) = idn, we say that π is queue-

sortable. Strictly speaking, we have described the process of sorting with two parallel
queues (or a queue with a bypass). However, for simplicity, we refer to this process as
queue sort.

Figure 2.3 shows the result of applying the queue-sort operator to the permutation 45321.
First 2, 3 and 5 are enqueued. Since 4 is smaller than the back of the queue, all elements
larger than 4 are dequeued into the output, and 4 is subsequently appended to the output.
The 1 is smaller than the 5 on the queue, and also bypasses the queue. Finally, the 6 is
added to the queue and the queue is then emptied into the output.

235416

2

35416

23

5416

235

416 32

5

416 432

5

16

1432

5

6 1432

56

651432

Figure 2.3: Queue-sort operator applied to 235416

We will now give an algorithm preimQ for describing preimages of pattern classes, defined
by the avoidance of a classical pattern, under the queue-sort operator. This algorithm
proceeds in two steps, similar to preimSd

. Given a target pattern p, we first generate
candidate patterns that can possibly become p after a single pass through a queue and
then add decorations to the candidates, if possible.

We note that a non-inversion in a permutation must remain a non-inversion after a pass
through a queue. For a permutation π, we therefore have that inv(Q(π)) ⊆ inv(π). Thus
we can consider the candidates

gcand(p) = {λ : inv(p) ⊆ inv(λ)}.

Similar to preimSd
, in the second step of preimQ, we must consider all inversions in each

candidate. Suppose we have a candidate λ ∈ gcand(p) and a permutation π containing λ.
An inversion in λ, corresponding to the letters a and b in π, will remain an inversion after
a pass through the queue if either of the two cases below applies.

1. There is an element c, larger than a, that appears before a and b in π. In this case c is
enqueued first. When a becomes the first element of the input, either c or an element
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larger than c is at the end of the queue, and therefore a is appended to the output.
When b becomes the first element of the output, either c, or an element larger than
c, is at the end of the queue, and therefore b is appended to the output. The relative
order of a and b therefore remains the same after applying the queue-sort operator.
This case corresponds to the meta pattern Q1 in Table 2.2.

2. There are elements c > d, that appear between a and b in π, in that order. If a is
not enqueued, then a will appear before b in the output. Suppose, therefore, that
a is enqueued. When d becomes the first element of the input, it is appended to
the output, since c, or an element larger than c, is the last element in the queue.
Before d is appended to the output, a must be appended to the output, since if a is
in the queue, it will be dequeued before d is appended to the output. The relative
order of a and b will therefore remain the same after a pass through a queue. This
case corresponds to the meta pattern Q2 in Table 2.2. Note that the shading is not
necessary, but is added to exclude the first case.

If neither of the two cases applies to an inversion in λ, it becomes a non-inversion in
the output. This corresponds to the meta pattern Q3 in Table 2.2. Algorithm 2.2 gives a
formal description of decorateQ.

Candidates Target

Q1 =
1

, Q2 =

Q3 =

Table 2.2: Meta patterns applied to inversions in candidates to obtain inversion or non-
inversions in the target after a pass through a queue

We then define
preimQ(p) =

⋃
λ∈gcand(p)

decorateQ(p, λ),

and also define decorate′Q as the variation of decorateQ that does not apply exclusive
shadings, similar to decorate′Sd

, and we define preim′Q analogously to preim′Sd
.
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Algorithm 2.2: decorateQ
Input: A target pattern p; and λ ∈ gcand(p)
Output: A (possibly empty) set of decorated patterns M

1 Let M = {(λ,∅,∅,∅,∅)};
2 for v ∈ inv(λ) do
3 for r ∈M do
4 Remove r from M ;
5 if v ∈ inv(p) then
6 for i ∈ {1, 2} do
7 if Qi is applicable to v in r then apply Qi to v in r and add to M ;

8 else
9 if Q3 is applicable to v in r then apply Q3 to v in r and add to M ;

10 return M ;

Theorem 2.2.1. The preimage of the class of permutations, defined by the avoidance of

p, under the queue-sort operator is

Q−1(Av(p)) = Av(preimQ(p)).

Proof. The proof is analogous to the proof of Theorem 2.1.2.

Corollary 2.2.2. The permutations sortable by k passes through a queue are precisely

the elements of

Av((k + 2)(k + 1) . . . 1).

Proof. We will prove our proposition by induction on k. For k = 1, we are interested in
the preimage of Av(21), i.e., the permutations sortable with a single pass through a queue.
We then have gcand(21) = {21}, and therefore

preim′Q(21) =

 1

,

 = {321, 2431}.

Now, since 2431 contains the pattern 321, we have that Av(321, 2431) = Av(321). Thus
the permutations sortable by a single pass through a queue are Q−1(Av(21)) = Av(321).

We now want to describe the permutations sortable by k passes through a queue. By the
induction hypothesis, we know that the permutations sortable by k − 1 passes through a
queue are Av(r), where r = (k+1)k . . . 1. The permutations sortable by k passes through
a queue are therefore Q−1(Av(r)). First we note that gcand(r) = {r}, so we need only
apply decorateQ to r. Furthermore, since all inversions in the candidate must become
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inversions in the target, we need only consider the cases for Q1 and Q2. If we consider
the first inversion in r, i.e., ((k + 1), k), then both cases are applicable. Let us consider
these two cases.

1. If we apply Q1 to the first inversion, we obtain

r1 = (r,∅, {({(0, k + 1)}, 1)}) =
1

.

We now note that after this application, we cannot apply Q2 to any inversion in r1,
since the shading of Q2 will cover the marking of r1. Furthermore, we note that
applying Q1 to any other inversion in r1 has no effect since the marking in r1 is
contained in the marking added by applyingQ1 to any other inversion in r1, and the
new markings are therefore redundant.

2. If we apply Q2 to the first inversion, we obtain

r2 = (r, {(0, k + 1)},∅,∅, {({(1, k + 1)}, 21)}) = .

After this application, we note that we cannot apply Q1 to an inversion (k + 1, i)

in r2, since that would imply marking the box (0, k + 1) which is shaded in r2.
Furthermore, we note that applying Q2 to an inversion (k + 1, i) in r2 has no effect
since the containment decoration in r2 is contained in the containment decoration
added by such an application, and therefore the new decoration is unnecessary. For
all other inversions in r2, i.e., inversions (i, j) where i < k + 1, we have that Q2

is not applicable, since applying Q2 to (i, j) would imply shading over the element
k + 1 in r2. Furthermore, we note that applying Q1 to (i, j) has no effect, since the
element k + 1 in r2 is contained in the marking added by the application, and the
marking is therefore redundant.

We therefore have that preimQ((k + 1)k . . . 1) = {r1, r2}. We note that since r2 contains
r1, containment of r2 implies containment of r1. Therefore, we have that Av(r1, r2) =

Av(r1) and thus the permutations sortable by k passes through a queue are

Q−1(Av((k + 1)k . . . 1)) = Av(r1) = Av((k + 2)(k + 1) . . . 1).

Example 2.2.3. Suppose we want to find the preimage of Av(312) under the queue-
sort operator, i.e., Q−1(Av(312)). We have that gcand(312) = {321, 312}. Applying
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decorateQ to 321 yields no patterns, since the inversion (2, 1) in 321 must become a non-
inversion after a pass through a queue. However, the meta pattern Q3 is not applicable to
(2, 1) in 321 since in order to apply it we must shade over the element 3. We therefore
have

preimQ(312) = decorateQ(312, 312) = {p1, p2} =


1

,

 .

However, we note that p1 = 4312 is contained in p2, and therefore we have that

Q−1(Av(312)) = Av(4312).

2.3 Sorting with a pop-stack

A pop-stack, introduced by Avis and Newborn in [10], is a stack of unlimited depth, with
the added restriction that when the stack is popped, all the elements must be removed
from the stack.

Given an input permutation π, let T (π) be the permutation obtained by the following
procedure:

1. If the stack is empty or the topmost element is larger than the first element of the
input, s, push s onto the stack.

2. Otherwise, pop all the elements from the stack and append them to the output per-
mutation. Push s onto the stack.

3. Repeat this process until the input is empty.

4. Pop all elements off the stack and append them to the output permutation.

We call T the pop-stack-sort operator, and for π ∈ Sn, if T (π) = idn, we say that π is
pop-stack-sortable.

Figure 2.4 shows the result of applying the pop-stack-sort operator to the permutation
51243. First 5 and 1 are pushed onto the stack. Since 2 is larger than 1, the stack must
be emptied and 2 is subsequently pushed onto the stack. The 2 is then popped off the
stack, and both 4 and 3 are pushed onto the stack. Finally the stack is emptied into the
output.
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51243

5

1243

5
1

243 51 243

51

2

43 251 43 251

4

3 251

4
3

43251

Figure 2.4: Pop-stack-sort operator applied to 51243

The preimage algorithm for T , preimT , proceeds in two steps similar to preimSd
. Since

non-inversions remain non-inversions after a pass through a pop-stack, we consider the
candidates of gcand. For each candidate we then consider all inversions. Suppose we
have a candidate λ ∈ gcand(p) and a permutation π containing λ. An inversion in λ,
corresponding to the letters a and b in π, will remain an inversion after a pass through the
pop-stack if one of the three cases below applies.

1. There is an element c, larger than a, that appears between a and b in π. In this case a
is pushed onto the stack, and subsequently popped off by c, before b is pushed onto
the stack. The relative order of a and b therefore remains the same after applying
the pop-stack-sort operator. This corresponds to the meta pattern T1 in Table 2.3.

2. There is an element c, smaller than b, that appears between a and b in π. In this case
c is pushed onto the stack, and subsequently popped off by b. Since all elements
must be popped off the stack when c is popped, awill be popped off the stack before
b. The relative order of a and b therefore remains the same. This corresponds to the
meta pattern T2 in Table 2.3. Note that the shading is not necessary, but is added to
exclude the first case.

3. There is a non-inversion that appears between a and b in π, in which both elements
are larger than b and smaller than a. In this case the non-inversion will cause the
stack to be popped, and therefore a is popped off the stack before b. The relative
order of a and b therefore remains the same. This corresponds to the meta pattern
T3 in Table 2.3. Note that the shadings are not necessary, but are added to exclude
the first two cases.
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If none of the three cases applies to an inversion in λ, it becomes a non-inversion in the
output. This corresponds to the meta pattern T4 in Table 2.2. Algorithm 2.3 gives a formal
description of decorateT .

Candidates Target

T1 =
1

, T2 =

1

, T3 =

T4 =

Table 2.3: Meta patterns applied to inversions in candidates to obtain inversions or non-
inversions in the target after a single pass through a pop-stack

Algorithm 2.3: decorateT
Input: A target pattern p; and λ ∈ gcand(p)
Output: A (possibly empty) set of decorated patterns M

1 Let M = {(λ,∅,∅,∅,∅)};
2 for v ∈ inv(λ) do
3 for r ∈M do
4 Remove r from M ;
5 if v ∈ inv(p) then
6 for i ∈ {1, 2, 3} do
7 if Ti is applicable to v in r then apply Ti to v in r and add to M ;

8 else
9 if T4 is applicable to v in r then apply T4 to v in r and add to M ;

10 return M ;

We then define
preimT (p) =

⋃
λ∈gcand(p)

decorateT (p, λ),

and, as before, we let decorate′T and preim′T be the variations of decorateT and preimT

that do not use exclusive shadings.
Theorem 2.3.1. The preimage of the class of permutations, defined by the avoidance of

p, under the pop-stack-sort operator is

T−1(Av(p)) = Av(preimT (p)).
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Proof. The proof is analogous to the proof of Theorem 2.1.2.

Using preimT , we can now describe the pop-stack-sortable permutations, which was first
done by Avis and Newborn [10].
Corollary 2.3.2. The pop-stack-sortable permutations are precisely the elements of

Av(231, 312).

Proof. We have that gcand(21) = {21} and therefore

preimT (21) = {p1, p2, p3}

=

 1
,

1

,


= {231, 312, 4231}.

Since 231 is contained in 4231, we have that the permutations sortable by a single pass
through a pop-stack are

T−1(Av(21)) = Av(231, 312, 4231) = Av(231, 312).

2.4 Insertion sort

Let π = π1π2 . . . πn be a permutation, i be the leftmost descent in π and j ≤ i be the
leftmost index such that πj > πi+1. We then define the insertion-sort operator as

I(π) = π1π2 . . . πjπi+1πj+1 . . . πiπi+2 . . . πn.

In the case when π has no descents, i.e., when π = idn, we define I(idn) = idn. If
I(π) = idn, we say that π is insertion-sortable.

The definition of I is equivalent to the process of finding the first descent in π and inserting
the descent bottom in the proper place to the left of its position. For example, if we apply
the insertion-sort operator to π = 13524, we obtain I(π) = 12354. The first descent in π
is 3, i.e., in position 3 we have a 5 followed by a 2. The 2 is then moved to the left of its
position and inserted into π such that the first 4 elements of π are in ascending order, i.e.
between the 1 and the 3.
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We note that after applying the insertion-sort operator to a permutation, its non-inversions
remain the same. When finding candidates for the preimage of I we therefore use gcand.
For each candidate we then consider all inversions. Suppose we have a candidate λ ∈
gcand(p) and a permutation π containing λ. An inversion in λ, corresponding to the
letters a and b in π, will remain an inversion after a pass through insertion sort if one of
the three cases below applies.

1. There is an element c, larger than a, that appears before a and b in π. In this case
there is a descent to the left of b in π. Since b is not the descent bottom of this
descent, b will not be moved when insertion sort is applied, and the relative order
of a and b will therefore remain the same. This corresponds to the meta pattern I1
in Table 2.4.

2. There is an inversion that appears before both a and b. In this case there is a descent
in π to the left of a, whose descent bottom will be moved left, leaving a and b

untouched. This corresponds to the meta pattern I2 in Table 2.4. Note that the
shading is not necessary, but is added to exclude the first case.

3. There is an element c < a that appears between a and b in π. In this case there
will also be a descent to the left of b. This corresponds to the meta pattern I3 in
Table 2.4. Note that the avoidance decoration, forbidding an occurrence of 21, and
the shading are not necessary, but are added to exclude the first two cases.

4. There is an inversion (c, d) in π that appears between a and b, with d > a. In this
case there is a descent in π to the left of b, whose descent bottom will be moved left,
leaving b untouched. This corresponds to the meta pattern I4 in Table 2.4. Note that
the avoidance decoration, forbidding an occurrence of 21, and the shadings are not
necessary, but are added to exclude the first three cases.

If none of these four cases applies to an inversion in λ, it becomes a non-inversion in the
output. This corresponds to the meta pattern I5 in Table 2.2. Algorithm 2.4 gives a formal
description of decorateI .

We then define
preimI(p) =

⋃
λ∈gcand(p)

decorateI(p, λ),

and also define decorate′I and preim′I as the variation of decorateI and preimI that do not
use exclusive shadings or avoidance decorations.
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Algorithm 2.4: decorateI
Input: A target pattern p; and λ ∈ gcand(p)
Output: A (possibly empty) set of decorated patterns M

1 Let M = {(λ,∅,∅,∅,∅)};
2 for v ∈ inv(λ) do
3 for r ∈M do
4 Remove r from M ;
5 if v ∈ inv(p) then
6 for i ∈ {1, 2, 3, 4} do
7 if Ii is applicable to v in r then apply Ii to v in r and add to M ;

8 else
9 if I5 is applicable to v in r then apply I5 to v in r and add to M ;

10 return M ;

Theorem 2.4.1. The preimage of the class of permutations, defined by the avoidance of

p, under the insertion-sort operator is

I−1(Av(p)) = Av(preimI(p)).

Proof. The proof is analogous to the proof of Theorem 2.1.2.

Proposition 2.4.2. The insertion-sortable permutations are precisely the elements of

Av(312, 321, 2143).

Candidates Target

I1 =
1

, I2 = , I3 =
1

, I4 =

I5 =

Table 2.4: Meta patterns applied to inversions in candidates to obtain inversions or non-
inversions in the target after applying insertion sort
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Proof. We have that gcand(21) = {21} and thus we have

preim′I(21) =

 1

, ,
1

,


= {321, 3241, 3142, 2143, 312, 2431}.

However, we note that 321 is contained in 3241 and 2431 and that 312 is contained 3142.
Therefore, we have that the permutations sortable by a single pass through insertion sort
are

I−1(Av(21)) = Av(312, 321, 2143).

2.5 Pancake sort

A prefix reversal of a permutation π = π1π2 . . . πn is the process of selecting an index i
and reversing the first i elements of π, resulting in the permutation πiπi−1 . . . π1πi+1 . . . πn.
Pancake sort is a sorting algorithm where the only allowed operation is prefix reversal.
The name of the algorithm is derived from the way the algorithm is often visualized. We
imagine we have a stack of pancakes, where no two have the same diameter. Our aim is
to sort the pancakes in such a way that the diameter of pancakes increases from top to
bottom. The only allowed operation is to insert a spatula somewhere in the stack and use
it to flip all the pancakes on top of the spatula.

A few pancake-sorting algorithms have been proposed that aim to minimize the number
of prefix reversals (see e.g. [11] and [12]). Finding the minimum number of flips needed
to pancake-sort a permutation has, however, been proven to be NP-hard [13]. We will use
a simple deterministic pancake-sorting algorithm defined as follows. Let π ∈ Sn such
that π = αkβ(k + 1)(k + 2) . . . n and the last element of β is not a fixed point of π (β is
therefore non-empty). We then define the pancake-sort operator as

P (π) = βrαk(k + 1)(k + 2) . . . n.

Furthermore, if no such β exists, then π = idn and we define P (idn) = idn. If P (π) = idn,
we say that π is pancake-sortable.

This definition is equivalent to the following procedure (described in terms of pancakes).

1. Find the largest pancake that is out of place.
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2. Flip the stack at that pancake’s position, so that it moves to the top of the stack.

3. Flip the stack at the position where the pancake that is now on top of the stack is
supposed to be.

Figure 2.5 shows the result of applying the stack-sort operator to the permutation 214356.
First we locate the largest element that is out of place, in this case 4, located at position 3.
We then flip the stack at position 3, so the element 4 is now on top of the stack. Finally,
we flip the stack at position 4. Since the element 4 was on top of the stack, after the flip,
it ends in its correct position.

2
1
4
3
5
6

4
1
2
3
5
6

4
1
2
3
5
6

3
2
1
4
5
6

Figure 2.5: Pancake-sort operator applied to 214356

We note that the pancake-sort operator does not preserve non-inversions, unlike the sort-
ing operators we have explored so far. For example, in the definition above, if there is
a non-inversion in β, then it will become an inversion after the operator is applied. We
therefore consider all elements of Sn as candidates for a preimage for any pattern. For the
same reason, when applying restrictions to the candidates, we must now not only consider
inversions in the candidates, but also non-inversions.

Here, however, we face a problem. In order to determine whether or not an inversion
becomes a non-inversion, and vice versa, we must be able to determine where the inver-
sion is placed relative to α and β. To determine this placement, we must know where k
is placed in the pattern. There is, however, no guarantee that k will correspond to any
element of a contained pattern in π. Thus, if we have an inversion in a candidate pattern,
we have no way of determining where the elements in π, corresponding to the inversion
in the pattern, will be placed relative to α and β. To overcome this problem, we introduce
a more expressive notion of a meta pattern.



34 Sorting operators and their preimages

2.5.1 More expressive meta patterns

Our more expressive notion of a meta pattern is best demonstrated by an example:

P = .

Here we introduce a new attribute to meta patterns: circled dots (which appear on thick
lines). As in our previous definition of a meta pattern, the thin lines and solid dots cor-
respond to elements in the pattern to which the meta pattern is applied. When applied
to a pattern, a circled point can either match a point in the pattern, or a point can be
added to the pattern to match the circled point, as long as all constraints are satisfied.
When applying a meta pattern with circled dots, we can therefore obtain more than one
pattern.

If we apply P to the element 2 in

p =

we obtain the patterns

p1 = , p2 = , p3 = ,

p4 = , p5 = .

The pattern p1 is the result of using the element 3 in p as the circled point. The patterns
p2 and p3 are the results of inserting the circled point into boxes (2, 2) and (2, 3) in p,
respectively, and p4 and p5 are obtained by inserting into boxes (3, 2) and (3, 3). Note that
the circled point cannot be in boxes (1, 2) or (1, 3) since the added shading would then
cover the element 3 of p.
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As another example, let

Q = .

When we apply this meta pattern, we need to specify which lines we apply the pattern to,
as well as which element, since the pattern contains thin lines with no points.

If we apply Q to 23 in

q =

where Qh1 and Qh2 correspond to qh1 and qh2 , we obtain

.

We can also let Qh1 and Qh2 correspond to qh0 and qh1 , and obtain

.

Furthermore, we can let Qh1 and Qh2 correspond to qh0 and qh2 , and obtain

.

We can also require lines in meta patterns to have certain attributes. We draw those lines
as dotted. For example, let

R = ,
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where the dotted line is the line containing the rightmost point larger than Rh
4 , or the

beginning of the pattern if no such point exists. ApplyingR to 12 in

r = ,

whereRh
1 andRh

2 correspond to rh0 and rh1 , then yields

,

since the dotted line corresponds to rv1 , as it contains the rightmost element, to the left of
1, larger than 2. However, if we apply R to 24 in r and let Rh

1 and Rh
2 correspond to rh0

and rh1 , we obtain

,

since the dotted line corresponds to the rv0 , as there is no element larger than 4 to the left
of 2. Note that meta patterns containing dotted lines will not be used in this section.

With these more expressive meta patterns, we are now able to describe the preimage of
the pancake-sort operator. Suppose we have a candidate pattern λ = λ1λ2 . . . λm for a
target pattern p. Furthermore, suppose we have a permutation π that contains λ, where
we can write

π = αkβγ,

where γ = (k+1)(k+2) . . . n, and the last element of β is not a fixed point of π. By the
definition of the pancake-sort operator, we then have

P (π) = βrαk(k + 1) . . . n.

Suppose, finally, that we have two indices i < j, and let a and b be the elements in π
corresponding to λi and λj , respectively. We then consider the following cases.

1. An inversion in λ remains an inversion in p, i.e., (λi, λj) ∈ inv(λ) and (λi, λj) ∈
inv(p). This can only happen if both a and b are in α, since α remains the same
after P has been applied to π. If γ is empty, then k = n corresponds to the largest
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element in π. We represent this by the meta pattern P1 in Table 2.5. We add a
circled point to represent k, since it is not guaranteed that k will correspond to an
element of λ. We then add shadings above k, since k is the largest element outside
γ. The case when γ is non-empty is covered by the meta pattern P2. We consider
the leftmost point in γ, which is larger than k, and add that as a circled point to the
pattern since it is not guaranteed that it will correspond to an element in the pattern.
Since γ must be in increasing order, we add a restrictive decoration, forbidding 21

above and to the right of the leftmost point of γ, which corresponds to the rest of
γ. We then add shadings above k, since k is the largest element outside γ. We also
add a shading below the leftmost element of γ, since γ does not contain an element
smaller than k. Finally we add a marking to the right of the element corresponding
to k, since β cannot be non-empty.

We must consider the two cases γ = ε and γ 6= ε separately, since we want to
represent the “boundary” of γ in the meta patterns. The boundary of γ is the end
of the pattern, in the case when γ is empty. In the case when γ is non-empty, the
boundary is defined by the leftmost point in γ, which is represented by the right
circled point in P2.

2. A non-inversion in λ becomes an inversion in p, i.e., we have (λi, λj) ∈ ninv(λ)

and (λi, λj) ∈ inv(p). This can happen for two reasons.

(a) The subword β contains both a and b. Since β is reversed after P has been
applied to π, the relative order of a and b will change. This case is represented
by the meta patterns P9 and P10 in Table 2.6. Again, the left circled point
corresponds to k, so the region to the left of the circled point corresponds to
α and the region to the right of it, up to the shaded region, corresponds to
β. The meta pattern P9 covers the case when γ is empty and P10 when γ is
non-empty.

(b) The letter a is in α and b is in β. Since the relative order of α and β is reversed,
after P has been applied to π, the relative order of a and b will change. This
case is represented by the meta patterns P11 and P12.

3. An inversion in λ becomes a non-inversion in p, i.e., (λi, λj) ∈ inv(λ) and (λi, λj) ∈
ninv(p). There are three cases where this can happen.

(a) As shown in the previous case, if subword β contains both a and b or a is in
α and b is in β, the relative order of a and b will change. The first case is
represented by the meta patterns P3 and P4 and the second case by P5 and P6.
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(b) We have a = k and b is in β. Since β is moved to the left of k when P

is applied to π, the relative order of a and b changes. This corresponds to
the meta patterns P7 and P8. The meta pattern P7 covers the case when γ is
empty and P8 the case when γ is non-empty. In both meta patterns the point
representing the element corresponding to k is not circled, since in this case
λi corresponds to k in π.

4. A non-inversion in λ remains a non-inversion in p, i.e. (λi, λj) ∈ ninv(λ) and
(λi, λj) ∈ ninv(p). There are three cases where this can happen.

(a) The subword α contains both a and b. Since α remains unchanged after P
has been applied to π, the relative order of a and b remains the same. This
corresponds to the meta patterns P13 and P14.

(b) The subword α contains a and b = k. Since the relative order of α and k
remains the same, after P has been applied to π, the relative order of a and b
also remains the same. This corresponds to the meta patterns P15 and P16.

(c) The letter b is in γ. No matter where a is to the left of b, since γ remains
unchanged, after P has been applied to π, the relative order of a and b will
remain the same. This corresponds to the meta pattern P17. The avoidance
decoration above and to the right of the right point, along with the shading
below and to the left of it, guarantee that it is in γ.

For a permutation p ∈ Sn, we define

preimP (p) =
⋃
λ∈Sn

decorateP (p, λ),

and present the following theorem.
Theorem 2.5.1. The preimage of the class of permutations, defined by the avoidance of

p, under the pancake-sort operator is

P−1(Av(p)) = Av(preimP (p)).

Proof. The proof is analogous to the proof of Theorem 2.1.2.

Corollary 2.5.2. The pancake-sortable permutations are precisely the elements of

Av(132, 312, 3241).

Proof. We begin by applying the preimP to 21 to obtain the preimage of Av(21). The
candidates we use are S2 = {12, 21}. In decorateP (21, 12) we apply the meta patterns
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Candidates Target

P1 =
1

, P2 =

1

P3 = , P4 = ,

P5 = , P6 = ,

P7 = , P8 =

Table 2.5: Meta patterns applied to inversions in candidates to obtain inversions or non-
inversions in the target after pancake-sorting
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Candidates Target

P9 = , P10 = ,

P11 = , P12 =

P13 =
1

, P14 =

1

,

P15 =
1

, P16 =

1

,

P17 =

Table 2.6: Meta patterns applied to non-inversions in candidates to obtain inversions or
non-inversions in the target after pancake-sorting
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Algorithm 2.5: decorateP
Input: A target pattern p ∈ Sn; and λ ∈ Sn

Output: A (possibly empty) set of decorated patterns M
1 Let M = {(λ,∅,∅,∅,∅)};
2 for v ∈ inv(λ) do
3 for r ∈M do
4 Remove r from M ;
5 if v ∈ inv(p) then
6 for i ∈ {1, 2} do
7 if Pi is applicable to v in r then apply Pi to v in r and add to M ;

8 else
9 for i ∈ {3, 4, 5, 6, 7, 8} do

10 if Pi is applicable to v in r then apply Pi to v in r and add to M ;

11 for v ∈ ninv(λ) do
12 for r ∈M do
13 Remove r from M ;
14 if v ∈ inv(p) then
15 for i ∈ {9, 10, 11, 12} do
16 if Pi is applicable to v in r then apply Pi to v in r and add to M ;

17 else
18 for i ∈ {13, 14, 15, 16, 17} do
19 if Pi is applicable to v in r then apply Pi to v in r and add to M ;

20 return M ;

P9, . . . ,P12 and obtain

p1 = , p2 = , p3 = , p4 = .

In decorateP (21, 21) we apply the meta patterns P1 and P2 and obtain

p4 =
1
, p5 =

1

.

Let A denote the set of all pi and let B = {132, 312, 3241). We now want to show that
Av(A) = Av(B), or equivalently that Co(A) = Co(B). Since 312 is contained in p1 and
p2, 132 is contained in p3 and p4 and either 132 or 3241 is contained p4 and p5, we have
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that Co(A) ⊆ Co(B). To complete the poof we therefore need to show that if we have
a permutation π ∈ Co(B) then π ∈ Co(A). Now, suppose we have a permutation π that
contains 132 and let the following graph denote an occurrence of 132 in π such that there
is no other occurrence of 132 in π with a larger element corresponding to 3 in the pattern.

R1 R2 R3 R4

For the sake of brevity, we will talk about points in the regions Ri. What we mean by that
are the points in π that land in these regions after the pattern 132 has been matched to π.

Now, if the regions R2 or R3 contain a point, then there is an occurrence of 132 in π with
a larger element corresponding to 3, which contradicts our assumption, so we can assume
that R2 and R3 are empty. If the largest point in π is contained in R1, then π contains
the pattern p1. If R4 is empty, then either R1 contains the largest point in π, or R1 is also
empty and π contains p3. If, however, R4 is not empty, we consider the leftmost point in
that region. The following graph shows the occurrence of 132 after we have added a point
to the region R4 (the topmost and rightmost point).

R′1

R′2 R′3

R′4

R′5

R′6

R′7

By our previous argument we can consider R2 and R3 as shaded, and since we select the
leftmost point in R4, we shade everything to the left of that point in R4. We then note that
if R′3 contains an inversion, then π contains an occurrence of 132 with a larger element
corresponding to the 3, so we can assume that the elements in R′3 are in descending order.
By the same argument, the regions R′4, R′5 and R′6 must be empty.

R′1

R′2

R′7
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If R′2 contains the largest element of π then π contains p1. We therefore consider the case
when R′2 does not contain the largest element of π. The largest element in π must then
either be in R′3 or be the element we added to R4. Now if R′3 is empty, and R′7 contains
an element, then π contains the pattern p4. Suppose then that R′7 contains an element,
and let c be the rightmost such element, and suppose that R′3 is non-empty. If c is to
the right of the rightmost (and topmost) element in R′3, then π has an occurrence of p4.
Otherwise, there exist two adjacent elements a and b in R4 (i.e., R′3 along with the added
point) such that c appears between a and b. Now, if R′2 contains an element, then π has an
occurrence of p2, otherwise π has an occurrence of p5. We then consider the case when
R′7 is empty. Now, if either R′2 or R′1 contain an element, then π contains the pattern p2.
The only remaining case left to consider is when bothR′1 andR′2 are empty, in which case
π contains p4.

We have therefore shown that if π contains 132, then π ∈ Co(A). The cases for 312 and
3241 are analogous.

Thus we have shown that Co(A) = Co(B) and therefore the pancake-sortable permuta-
tions are

P−1(Av(21)) = Av(132, 312, 3241).

2.6 A linear-time algorithm for pattern avoidance

Let r : Sn → Sn, r(π) = πr, denote the reverse of a permutation, and c : Sn → Sn,
c(π) = πc, denote the complement of a permutation.
Theorem 2.6.1. A permutation π avoids 4312 if and only if (S ◦ r ◦ c ◦Q)(π) is sorted.

Proof. We have that preimS(21) = {231}, and that c(r(231)) = 312. Our goals is then
to find the preimage of Av(312) under the queue-sort operator, which we did in Exam-
ple 2.2.3. We therefore we have that

(S ◦ r ◦ c ◦Q)−1(Av(21)) = Q−1(312) = Av(4312).

Since all the maps in the composition S ◦ r ◦ c ◦Q are linear time operators, and it takes
linear time to check whether the output is sorted, this provides a linear time algorithm for
checking for the avoidance of 4312. Such linear time algorithms have only been known
for patterns of length at most 3 as well as the increasing and decreasing patterns of any
length (12 . . . k and k . . . 21). Also see Albert et al. [14] for algorithms with running time
n log n for patterns of length 4.
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Chapter 3

Preimages of mesh patterns

In this chapter we will extend the algorithm for finding preimages when sorting with a
stack of infinite depth, i.e., preimS∞ , to handle certain types of mesh patterns.

In Section 2.1 we introduced an algorithm preimSd
which was an extension of an algorithm

given by Claesson and Úlfarsson [5] for finding preimages of permutation classes under
the stack-sort operator (of unlimited depth). Algorithm 3.1 gives a restatement of [5,
Algorithm 1], described in terms of meta patterns. This algorithm is obtained by setting
d = ∞ in preimSd

. Since V∞ is avoided by all finite permutations, we can omit C2 from
the algorithm, and we can also simplify C3, and thus we define

C∞3 =

V∞

= .

We then define
preimS(p) =

⋃
λ∈cand∞(p)

decorateS(p, λ),

and therefore
S−1(Av(p)) = Av(preimS(p)).

As mentioned before, Knuth showed that permutations avoiding the pattern 231 are the
permutations sortable with a single pass through a stack. West then classified permu-
tations sortable with two passes through a stack, using barred patterns, which can be
expressed as mesh patterns with a single shaded box. In general, a permutation π ∈ Sn,
such that Sk(π) = idn, is called West-k-stack-sortable.
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By applying preimS to 21, we obtain the preimage of Av(21) under S, i.e., we obtain a
description of the stack-sortable permutations. The algorithm can therefore be used to
reproduce Knuth’s results. Furthermore, since the stack-sortable permutations are defined
by the avoidance of a classical pattern, we can apply preimS again to 231. By doing so
we reproduce West’s results and obtain a description of the West-2-stack-sortable permu-
tations, which are

preimS(231) =

 ,

 .

Now, since the West-2-stack-sortable permutations are described in terms of mesh pat-
terns, we cannot apply preimS again to obtain a description of West-3-stack-sortable per-
mutations. However, Úlfarsson, in [3], introduced decorated patterns to give a description
of permutations sortable with three passes through a stack. In this chapter we aim to gen-
eralize Úlfarsson’s approach, and give the preimage of a class of permutations, defined by
the avoidance of a certain type of mesh pattern, under the stack-sort operator.

Algorithm 3.1: decorateS
Input: A target pattern p; and λ ∈ cand∞(p)
Output: A decorated pattern r describing the preimage of p under S; otherwise, if no

such r exists, the execution results in an error
1 Let r = (λ,∅,∅,∅,∅);
2 for v ∈ inv(λ) do
3 if v ∈ inv(p) then
4 if C1 is applicable to v in r then
5 apply C1 to v in r;
6 else
7 error;

8 else
9 if C∞3 is applicable to v in r then

10 apply C∞3 to v in r;
11 else
12 error;

13 return r;
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3.1 Finding preimages of mesh patterns

We will now introduce an algorithm, meshpreimS , that finds the preimage of a class of
permutations, defined by the avoidance of a certain type of mesh pattern, under the stack-
sort operator. The domain of meshpreimS , i.e., the mesh patterns whose preimage we can
determine, denoted by M, is defined by the meta patternsMi, given in Table 3.1. More
precisely, a mesh pattern is in M if it is the result of applyingMi to a permutation. For
example, the patterns

, , ,

are in M, whereas

, , ,

are not.

Similar to the previously defined preimage algorithms, meshpreimS proceeds in two steps.
In the first step we find candidates by applying preimS to the underlying classical pattern
of the target permutation. In the second step, mdecorateS , we apply meta patterns to
the candidates to obtain the patterns that describe the preimage. We must consider 10
cases, corresponding to each of the meta patternsM1, . . . ,M10 that can be applied to a
permutation to obtain the target mesh pattern.

In mdecorateS we use the fact that if M is a set of decorated patterns, and p is a mesh
pattern, then if S−1(Av(p)) = Av(M) it follows that S−1(Co(p)) = Co(M). This holds
since for any permutation π we have that π ∈ Av(M) if and only if π /∈ Co(M).

For each candidate pattern q we obtain for a target pattern p, it holds that if a permutation
π contains q then S(π) contains the underlying classical pattern of p. What we therefore
do in the second step, mdecorateS , is to add restrictions to q to guarantee that π contains
q, only if S(π) contains p.
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M1 = M2 = M3 = M4 =

M5 = M6 = M7 =

M8 = M9 = M10 =

Figure 3.1: The meta patterns describing the domain of meshpreimS

To demonstrate this, let us consider the first case, the case when the target pattern was
obtained by applying

M1 =

to a permutation. Let p be the target pattern and π be the underlying classical pattern of
p. In the first step of meshpreimS , i.e., preimS(π), we obtain a set of patterns all of which
will have the following layout.

R1 R2

R3

The point in the layout, a, refers to the point to which M1 was applied in π to obtain
p, and the additional horizontal lines refer to the upper and lower bounds of the shaded
region in p. Note that after preimS has been applied to π, the position of the point may
change from π, but the upper and lower bounds of the shaded region will remain the
same.
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Our aim is now to show how shadings, markings and decorations can be added to the
pattern to make sure that the shaded region in M1 will be empty after a permutation
containing this pattern passes through a stack. What we mean by that is if a permutation
λ contains the pattern described by the layout, we know that it will contain π after a pass
through a stack. Our aim is that, for all occurrences of π in S(λ) (i.e. λ after a pass
through the stack), it holds that the shaded region of p will be empty. I.e., we want to
make sure that S(λ) contains p.

For the sake of brevity in our argument, we will refer to points in regions of the layout or
meta pattern. What we mean by that are the elements of any permutation λ containing the
pattern, that end up in the specified region of the pattern after the graph of the pattern has
been matched to the graph of λ.

Now, going back to our example, what we do not want is for a point to end up in the
shaded region, R′, of M1, after a pass through the stack. First of all, we note that if
a point is contained in R1, then it will be pushed onto the stack, and then subsequently
popped off by a (or possibly before), and therefore it will end up in R′. The region R1

must therefore be shaded in the layout.

Now, suppose we have an element b in R2. Since b is smaller than a, it can land on top
of a in the stack, and come out before a and therefore land in region R′. However, if an
element c, larger than a (i.e., c is in region R3), appears before b, then c will pop a off the
stack, before b arrives at the stack, and therefore b will not land in R′. We must therefore
consider two cases.

1. The region R3 is empty. In this case, R2 must also be empty, since if R2 contains an
element, then it will land above a on the stack and be popped off the stack before
a, and therefore it will land in R′. This case is described by the meta pattern

G1,1 = .

2. The region R3 contains an element c. Without loss of generality, we can assume
that c is the leftmost element in R3. We then note that, if an element b appears in
R2 between a and c, then b will land above a in the stack. Thus b will be popped
off the stack before a and will therefore land in R′. The region R2 must therefore
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be empty up to the point when c appears. This case is described by the meta pattern

G1,2 = .

The circled point corresponds to the element c. We shade everything in R3 to the
left of c to choose c as the leftmost element in R3.

Example 3.1.1. Suppose we want to find meshpreimS(p), where

p = ,

which is obtained by applyingM1 to 1, πh0 and πh1 in π = 12. In the first step we obtain

preimS(12) = {q, r} =

{
,

}
.

Applying the meta pattern G1,1 to 1, qh0 and qh1 in q we get

and applying G1,2 we obtain

, .

Applying G1,2 to 1, rh0 and rh1 in r we get

, , .
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Let us now consider the case when the target pattern was obtained by applying

M6 =

to a permutation. Let p be the target pattern and π be the underlying classical pattern of
p. In the first step of meshpreimS , i.e., preimS(π), we obtain a set of patterns all of which
will have the following layout (after C1 has been applied to the inversion in π).

1

R1 R2 R3

R4

We let R′ denote the shaded region ofM6 and let a and b denote the left and right points
in the layout, respectively. Our aim is, again, to add restrictions to the layout such that
R′ will be empty after the permutation matching the layout pattern passes through the
stack.

If R1 contains an element, that element will be popped off the stack by a (or even before
that), and will therefore appear before a in the output, and therefore not land in R′. The
candidate pattern requires there to be an element in R4, so a will be popped off the stack
before b appears. If an element is present in R3 then that element (or a previous element)
will pop b off the stack, and therefore appear after b in the output and not land in R′. We
therefore need only consider elements in R2.

First, we observe that the pattern requires there to be an element in R4. Let c be the
leftmost element in R4. Now, if an element in R2 appears before c, it will either end
above a in the stack, or be popped off the stack before c appears. The element a, however,
will not leave the stack until c appears, since it is the leftmost element larger than a. Thus
an element in R2 that appears before c cannot land in R′.

Now, after c appears, a has been popped off the stack. Therefore, if an element appears in
R2, after c, and is subsequently popped off the stack, before b appears, it will end in R′.
We must then consider two cases.
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1. The region R2 is empty after c appears, in which case no element will land in R′.
This case is described by the meta pattern

G6,1 = .

2. There is an element d in R2 that appears after c. Without loss of generality, we can
assume that d is the leftmost such element. Now, if there is an element larger than
d that appears after d, in R2, then d will be popped off the stack, and it will land in
R′. We must therefore forbid all larger elements than d after d and before b. There
can, however, appear an element smaller than d, after d, in R2. That element will
land on top of d in the stack, and if it is not popped off the stack before b appears,
b will go on top of the stack, and therefore appear before the two elements in the
output. Any number of elements can, in fact, come after d in R2, as long as they are
in decreasing order. If there is a non-inversion after d in R2, it will cause the stack
to be popped, and an element will land in R′. This case is described by the meta
pattern

G6,2 = .

In this pattern the left circled point represents c and the right circled point represents
d. We add a shading after and above d to forbid all elements larger than d before
b. We also add an avoidance decoration after and below d to denote a sequence of
decreasing elements.

Example 3.1.2. Suppose we want to find meshpreimS(p), where

p = ,
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which is obtained by applyingM6 to 21, πh1 and πh2 in π = 21. In the first step we obtain

preimS(21) = {q} =
1

= .

Applying the meta pattern G6,1 to 21, qh1 and qh2 in q we get

, , ,

and applying G6,2 we obtain

, , .

A complete list of meta patterns, applied for each of the 10 cases, is given in Appendix B.

3.2 West-3-stack-sortable permutations

Let w1 = 2341 and

w2 = .

We now have all the tools necessary to determine the West-3-stack-sortable permutations,
which are S−1 (Av(w1, w2)). The preimage of Av(w1), given by preimS(2341), is defined
by the avoidance of the following patterns.

1 1 1 1 1
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The preimage of Av(w2), given by meshpreimS(w2), is defined by the patterns given in
Table 3.1. Note that patterns containing 23451 (which is in Av(w1)) have been removed
since they are redundant. The West-3-stack-sortable permutations are therefore defined
by the avoidance of the union of these two sets of patterns.

We have now given algorithms that describe stack-sortable permutations, West-2-stack-
sortable permutations and West-3-stack-sortable permutations, and therefore completely
automated the proofs of the discoveries made by Knuth, West and Úlfarsson.
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Table 3.1: The patterns defining the preimage of w2 under S
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Chapter 4

Conclusions

In this thesis we give a general method for producing algorithms for describing preimages
of sorting operators. First we describe the cases when inversions in a candidate pattern
become inversions and non-inversions in a target pattern, in terms of meta patterns. We
can then give an algorithm to generate patterns that describe the preimage of the avoidance
class of the target. The process of finding the meta patterns, however, is done by hand.
It should be possible to, at least partially, automate this process Given a sorting operator
f with the property that inv(f(π)) ⊆ inv(π), we believe it should be possible to give an
algorithm that conjectures meta patterns that describe inversions that become inversions
and non-inversions. This could even be possible if we relax the condition that the operator
does not “create” inversions, such as in pancake sort.

Another possible extension to our work is finding preimage algorithms for general map-
pings, not just sorting operators. For the symmetries, i.e., reverse, inverse and comple-
ment, this is trivial, since we can define the reverse, complement and inverse of decorated
patterns. In general, for non-trivial mappings, finding candidates might become difficult,
and our approach of determining what happens to inversions and non-inversions, will in
general not be suitable. An entirely new approach might therefore be necessary.

We also suggest the following extension of meshpreimS to handle any mesh pattern target,
not just the elements of M. We note that the shadings of any mesh pattern p can be split up
into smaller shadings, s1, s2, . . . , sk, such that each of the smaller shadings is the result of
applying someMi to the underlying classical pattern of p. We can then apply meshpreimS

to each candidate, as if p only had the shading s1. We then apply meshpreimS again, to
the patterns obtained, as if p only had the shading s2, and so forth, for each si.

The final extension we propose is determining what type of pattern definitions are closed
under the preimage of the stack-sort operator (or any other sorting operator). We believe
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that the pattern definitions, described by the avoidance of a finite number of decorated
patterns, are not closed under the stack-sort operator. In particular, we believe that deco-
rated patterns are not expressive enough to describe, with a finite number of patterns, the
West-4-stack-sortable permutations.
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Appendix A

Implementation of preimage
algorithms

A.1 Implementation in Sage

All the algorithms discussed in this thesis, except preimP , have been implemented in
the computer algebra system Sage [15]. The code can be obtained from https://

bitbucket.org/hjaltim/thesis and is split into the following files.

pattern_classes.sage

Contains implementations of classical patterns, mesh patterns, marked mesh pat-
terns and decorated patterns as Sage classes.

preim.sage

Contains implementations of preimSd
, preimQ, preimT and preimI .

meshpreim.sage

Contain implementations of preimS and meshpreimS .

sorting_functions.sage

Contain implementations of the sorting operators S, Sd, Q, T , I and P .

preim_tests.sage

Contain correctness tests for the implementations of preimSd
, preimQ, preimT and

preimI .

meshpreim_tests.sage

Contain correctness tests for the implementations of meshpreimS .

https://bitbucket.org/hjaltim/thesis
https://bitbucket.org/hjaltim/thesis
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The installation instructions for Sage can be found on the project’s website. After starting
Sage (typing sage in a terminal) you can load the necessary code to run the preimage
algorithms with the following commands.

sage: load ’pattern_classes.sage’

sage: load ’preim.sage’

sage: load ’meshpreim.sage’

The set preimS3
(132) can be obtained by the following command.

sage: preimSd(3,[1,3,2])

The set preimQ(312) can similarly be obtained by the following command.

sage: preimQ([3,1,2])

The patterns defining the West-2-stack-sortable permutations can be obtained as fol-
lows.

sage: preimS([1,3,2])

The patterns defining the West-3-stack-sortable permutations can then be obtained as fol-
lows.

sage: west2 = preimS([1,3,2])

sage: exp_west2 = sum(map(lambda x: x.expand(),west2),[])

sage: sum(map(meshpreimS,exp_west2),[])

To visualize a pattern, we can call the show function. For example, to visualize the mesh
pattern (132, {(1, 3), (2, 3)}), we can use the following command.

sage: p = MeshPattern([1,3,2],[(1,3),(2,3)])

sage: show(p)

To visualize a list (or set) of patterns, we can use the function show_multiple. For
example, we can visualize the set preimQ(312) as follows.

sage: s = preimQ([3,1,2])

sage: show_multiple(s,3)
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A.2 Sorting with a stack of depth d

Algorithm A.1 gives a low-level description of preimSd
without the use of meta patterns.

Algorithm A.1: decorateSd
(without meta patterns)

Input: The depth d of the stack; a pattern p; and λ ∈ candd(p)
Output: A (possibly empty) set of decorated patterns T

1 Let T = {(λ,∅,∅,∅,∅)} and let n be the length of λ;
2 for (i, j) ∈ inv(λ) do
3 Let R1 = Jλ−1(i), λ−1(j)− 1K× Ji, nK;
4 Let R2 = J0, λ−1(i)− 1K× Ji, nK;
5 for r = (λ, S,M,D,C) ∈ T do
6 Remove r from T ;
7 if (i, j) ∈ inv(p) then
8 if R1 6⊆ S then
9 if An element of λ is contained in R1 then

10 Add r to T ;
11 else
12 Add (λ, S,M ∪ {(R1 \ S, 1)}, D, C) to T ;

13 if No element of λ, no marking in M , or decoration in C, is contained in
R1 ∪ S and R2 is not contained in any decoration in D then

14 Add (λ, S ∪R1,M,D,C ∪ {(R2, Vd−1))} to T ;

15 else if No element of λ, no marking in M , or decoration in C, is contained in
R1 ∪ S and no decoration from C is contained in R2 then

16 Add (λ, S ∪R1,M,D ∪ {(R2, Vd−1)}, C) to T ;
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Appendix B

Meta patterns for meshpreimS

Tables B.1–B.10 contain the meta patterns applied in each of the 10 cases in meshpreimS .
Where applicable, the dotted line refers to the rightmost element larger than the upper
bound of the shaded region of the target, or the beginning of the pattern, if no such element
exists. Note that Case 4, shown in Table B.4, is split into two sub-cases. The first case
applies when the shaded region in the target does not reach the top of the pattern, and the
second case applies when the shaded region does reach the top of the pattern.

Target Output from preimS Meta patterns applied in meshpreimS

Table B.1: Meta patterns for meshpreimS – Case 1

Target Output from preimS Meta patterns applied in meshpreimS

Table B.2: Meta patterns for meshpreimS – Case 2
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Target Output from preimS Meta patterns applied in meshpreimS

Table B.3: Meta patterns for meshpreimS – Case 3

Target Output from preimS Meta patterns applied in meshpreimS

1

Table B.4: Meta patterns for meshpreimS – Case 4

Target Output from preimS Meta patterns applied in meshpreimS

1

Table B.5: Meta patterns for meshpreimS – Case 5
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Target Output from preimS Meta patterns applied in meshpreimS

1

Table B.6: Meta patterns for meshpreimS – Case 6

Target Output from preimS Meta patterns applied in meshpreimS

1

1 1

Table B.7: Meta patterns for meshpreimS – Case 7
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Target Output from preimS Meta patterns applied in meshpreimS

1

1

Table B.8: Meta patterns for meshpreimS – Case 8
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Target Output from preimS Meta patterns applied in meshpreimS

1 1

1 1

Table B.9: Meta patterns for meshpreimS – Case 9
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Target Output from preimS Meta patterns applied in meshpreimS

1 1

Table B.10: Meta patterns for meshpreimS – Case 10
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