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SWEDISH	SUMMARY	‐	POPULÄRVETENSKAPLIG	
SAMMAFATTNING	

Den farligaste formen av hudcancer, melanom, uppkommer genom 
okontrollerad tillväxt av melanocyter som är celler specialiserade i 
pigmentproduktion. Dessa celler skyddar oss från den farliga UV-strålingen 
med hjälp av pigment som omvandlar ljusvågor till värme. I Sverige drabbas 
drygt 2000 personer per år av sjukdomen. Cirka 80-85 % av dessa botas 
genom kirurgi men hos 15-20 % av patienterna har cancern spridit sig till 
andra organ vilket gör att överlevnadschansen drastiskt sjunker till 7-19 %. I 
denna avhandling utforskas den cellulära kommunikationen i melanocyter. 
Genom att förstå de molekylära mekanismerna, bland annat 
cellkommunikation och cellsignalering, bakom sjukdomsförloppet av 
melanom, kan vår utökade kunskap leda till utveckling av förbättrade 
läkemedel mot sjukdomen. 

Cellsignalering är de processer som påverkar cellernas beteende. Till 
exempel kan en cell ta emot signaler från sin omgivning och startar 
signalfortledning (signaltransduktion) bestående av flera proteinnätverk. 
Genom dessa signaleringsvägar omvandlas signalerna från cellens utsida till 
cellulära svar med hjälp av så kallade transkriptions-faktorer som reglerar vilka 
gener som ska vara påslagna. Ett ökat eller minskat uttryck av vissa gener kan 
påverka celldelning, programmerad celldöd, tillväxt eller metabolism. 

Ett annat viktigt koncept inom cellsignalering är fosforylering av 
proteiner. Fosforylering är en biokemisk reaktion där proteinkinaser hjälper till 
att fästa en eller flera fosfatgrupper på ett protein. Fosforyleringen påverkar 
proteinet så att dess aktivitet antingen slås på eller stängs av, hur det kan 
interagera med andra proteiner eller dess stabilitet.  

KIT är en tillväxtfaktor-receptor som skickar signaler från utsidan till 
insidan av en cell. Ett av proteinerna som påverkas av signaler från KIT är 
transkriptions-faktorn MITF. Dessa proteiner spelar central roll i utvecklingen 
och funktionen hos melanocyter. Störningar i signaleringen mellan KIT och 
MITF och/ eller mutationer i dessa proteiner är ett vanligt förekommande 
fenomen i hudcancer. För att få djupare insikt i hur KIT och MITF kan 
påverka melanocyternas och melanoms utveckling och funktion har vi i denna 
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avhandling undersökt KIT och MITF med avseende på proteinstruktur, 
signaleringsvägar och fosforylering. 

I det första arbetet undersökte vi hur proteinstrukturen hos KIT reglerar 
receptorsignalering. Vi tillverkade KIT proteiner med olika längder på den del 
av receptorn som ligger alldeles utanför cell-membranet. Vi visade att det var 
just längden i den regionen som påverkade KIT fosforyleringens intensitet. 
Graden av receptorfosforylering in sin tur påverkade melanomcellers 
överlevnad i närvaro av cellgifter.  

I det andra arbetet kunde vi med hjälp av farmakologiska hämmare och 
strategiskt framkallade mutationer i KIT identifiera flera nya signaleringsvägar 
mellan KIT och MITF. Dessa signaleringsvägar visade sig vara viktiga för hur 
KIT reglerar celldelning. 

I det tredje arbetet analyserade vi MITFs tredimensionella struktur genom 
att använda röntgenkristallografi. Strukturen vi kom fram till medförde en 
ökad kunskap om hur MITF selektivt binder till andra transkriptionsfaktorer 
och DNA och förklarade hur vissa mutationer i MITF hämmar dess funktion 
mer än andra beträffande utvecklingen av melanocyter. 

I det fjärde och femte arbetet använde vi en molekylär metod som kallas 
för masspektrometri för att exakt identifierat var i MITF som fosfat binder. 
Tillsammans med egentillverkade antikroppar som är designade mot dessa 
fosforylerade platser upptäckte vi flera tidigare okända 
fosforyleringsmodifieringar på MITF. Hittills har dessa modifieringar visats sig 
vara viktiga för bland annat lokalisering av MITF till en specifik plats i cellen 
och reglering av genuttryck. 

Sammanfattningsvis har avhandlingen bidragit med förbättrad kännedom 
om signaleringsvägar mellan, och strukturs- och fosforyleringsförändringar av 
KIT och MITF som är väsentliga för den biologiska regleringen av melanocyter 
och melanomceller. 
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ICELANDIC	SUMMARY	‐	ÚTÐRÁTTUR	
Sortuæxli eru krabbamein litfruma (melanocytes). Himnubundni 

viðtakinn KIT og umritunarþátturinn MITF (microphthalmia associated 
transcription factor) eru bæði nauðsynleg fyrir eðlilega þroskun og starfsemi 
litfruma. Prótein þessi koma líka við sögu í sortuæxlum. Því er mikilvægt að 
skilja betur hvernig prótein þessi starfa í litfrumum og sortuæxlum og 
boðleiðirnar milli þeirra. 

Í ritgerð þessari eru tengslin milli KIT og MITF skoðuð á ýmsan hátt. Þær 
KIT-háðu boðleiðir sem senda boð til MITF og hafa áhrif á frumufjölgun voru 
skoðaðar. Tyrósín amínósýrurnar Y721 (sem er bindiset fyrir PI3 kínasann), 
Y568 og Y570 (sem er SRC bindiset) í KIT hafa áhrif á fosfórun MITF 
próteinsins sem bendir til að KIT sendi boð til MITF. Notkun hindra gegn 
SRC, PI3K, MEK, ERK og p38 kínösunum benda til að allar þessar boðleiðir 
sendi boð frá KIT til MITF. 

Vegna valvirkar splæsingar er KIT próteinið framleitt í tveimur útgáfum, 
með og án fjögurra amínósýra í “extracellular juxtamembrane” svæði 
próteinsins. Með því að útbúa stökkbreyttar útgáfur af þessu svæði sýndum við 
að lengd svæðisins, frekar en röðin sjálf, er mikilvæg til að stilla af virkni KIT 
próteinsins.  

Massagreining var notuð til að greina þau set í MITF sem eru fosfærð. 
Fosfó-sérvirk MITF mótefni voru síðan útbúin til að staðfesta fosfæringarnar. 
Fjöldi nýrra fosfæringarseta fundust. Setin Ser73 og Ser409, sem áður hafa 
verið talin vera undir stjórn MAPkínasa boðleiðarinnar, reyndust hvorki háð 
KIT né MAPkínasa boðleiðnum.  

Með því að greina krystalbyggingu MITF próteinsins tókst að útskýra 
hvernig MITF takmarkar tvenndarmyndunargetu sína við sig sjálft, auk TFE3, 
TFEB og TFEC próteinanna.  Krystallinn útskýrir einnig hvernig tiltekin 
MITF stökkbreyting veldur innangensuppbót (interalleleic complementation). 
 Rannsókn þessi á KIT og MITF hefur leitt í ljós að boðleiðirnar milli 
þessara próteina eru fleiri en áður var talið. Frekari greining þessara boðleiða er 
mikilvæg til að skilja hlutverk þeirra í venjulegri þroskun litfruma og í 
sortuæxlum.
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INTRODUCTION	
The receptor tyrosine kinase, KIT and the Microphthalmia-associated 

transcription factor (MITF) are expressed in a variety of tissues. The pigment 
producing cells, melanocytes, are one type of cells in which both KIT and 
MITF functions are critical for normal development. Dysregulation of KIT or 
MITF activity in melanocytes can lead to pigment-related diseases or to the 
development of melanoma. Thus, studying the molecular mechanisms 
governing the regulation of MITF and KIT activity will further our 
understanding in associated diseases. This thesis and the included articles aim 
to map out details surrounding: 
 The structural properties of MITF and KIT splice forms. 
 KIT ligand-dependent signaling pathways that activate MITF. 
 Oncogenic KIT activity in relation to MITF tyrosine phosphorylation 

in melanoma. 
 Serine phosphorylation-mediated MITF activities. 
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BACKGROUND	

Melanocytes	

Development	
Melanocytes are the cells responsible for the production and dispersal of 

pigments called melanin. In vertebrates, melanocytes are distributed in, to 
name a few, the skin, inner ear and eyes. These pigment producing cells 
originate from the neural crest (NC) which consists of a transient cell 
population that is unique to vertebrates [5]. Recently it was shown that cranial 
melanocytes stem from the nerve-derived Schwann cell (NSC) precursors [6]. 
From the NSC and NC, melanocyte precursor cells, the melanoblasts, undergo 
expansion and initiate the expression of distinct molecular markers that leads 
to cellular differentiation. The expression of such markers occurs during the 
migration throughout the embryo. Notably, the expression of the melanocytic 
markers such as the receptor tyrosine kinase receptor KIT, the G protein-
coupled Endothelin receptor type B (EDNRB), the melanogenic enzyme 
Tyrosinase-related protein-2 (Tyrp-2), the transcription factor SOX-10 and 
MITF, dictate cell fate and are therefore important steps in the development of 
melanocytes. Once the function of the master regulator of melanocytes, MITF, 
is established, the appearance of the rate-limiting enzyme Tyrosinase marks the 
melanoblast transition into mature melanocytes [7]. 

Function	
The outermost layer of the human skin; the epidermis is predominated by 

keratinocytes. These cells act as the first level of protection against pathogens, 
solar ultraviolet (UV) radiation and maintain homeostasis by preventing water 
and heat loss to the ambient environment [8]. However, some properties such 
as thermoregulation and photoprotection are directly contributed by the 
melanin produced by the neighboring melanocytes distributed along the basal 
layer of the epidermis [7]. Each melanocyte is surrounded by approximately 36 
keratinocytes, around 5-6 of which are in direct contact with the melanocyte. 
The structural arrangement known as the epidermal-melanin unit [9] is 
designed to facilitate distribution of melanin to protect the cells from the  
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addition, excessive sun exposure is associated with increased risk of melanoma 
development. 

Melanin	
Melanin is synthesized within melanosomes. The two major types of 

melanin produced are the red/yellow pheomelanin and the brown/black 
eumelanin [14]. These are the pigment-related products that give color to 
feathers, hair, skin and eyes. Humans skin color is determined by the ratio of 
the two types of melanin, the amounts of melanin in the skin and the size and 
distribution of melanosomes [15]. The photoprotective capacity of eumelanin 
is higher than pheomelanin, which is indicated by the observation that the risk 
of skin cancer development is 30- to 40-fold higher in light skin compared to 
dark skin. Not only is pheomelanin a poor photoprotectant, it is also 
considered to play a role in the development of melanoma independently of 
UV radiation [16]. 

Melanoma	

Epidemiology	
The major forms of skin cancers are basal cell carcinoma (BCC), 

squamous cell carcinoma (SCC) and melanoma. BCC is the most common 
type and represents about 75-80 % of all skin cancers. The second most 
common cancer of the skin is SCC, which represents about 16-20 % of all 
diagnosed skin cancer. Finally, melanoma a disease that originates from 
transformed melanocytes, is the rarest type and accounts for about 4 % of all 
diagnosed skin cancer cases [17]. Although the frequency of melanoma is very 
low, it is the most aggressive form of dermatological cancers and represents 80 
% of all skin cancer-related deaths. To date, there is no effective cure against 
metastatic melanoma, which contributes to the low survival rate. Only 14 % of 
patients diagnosed with metastatic melanoma survive for five years [17]. 
Cutaneous melanoma (CM) is almost exclusively limited to the Caucasian 
population. In contrast, CM rarely occurs in populations with darker skin 
pigmentation including Africans and Asians. The incidence rate of CM is 
among the highest of all cancers. Epidemiology studies of the disease incidence 
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in the Western world indicate 3-6 cases per 100,000 individuals and year in the 
beginning of the 1970s and 10-18 cases per 100,000 inhabitants and year at 
the beginning of 2000. Moreover, the study predicts further increasing 
incidence rate for at least two decades ahead [18]. 

Causes	of	disease	
The development of melanoma is commonly accepted to be contributed 

by the interplay between genetical and environmental factors. For example, 
exposure to UV radiation either naturally from sun light or artificially from 
tanning beds, is the most significant contributor [17]. The effect of UV 
radiation is clearly illustrated by the declining rate of CM incidence among 
younger people in Australia, which has been attributed to education aiming to 
reduce solar exposure [19]. Epidemiological studies have further identified 
intermittent sun exposure in contrast to chronic sun exposure, to be an 
important factor in CM development. In fact, some studies have proposed that 
chronic sun exposure is negatively associated to disease development. However, 
the intermittent sun exposure hypothesis is controversial, because intermittent 
and chronic sun exposure affect the development of CM differently depending 
on the anatomical site. CM found in the head and neck region is believed to be 
caused by chronic sun exposure whereas CM in the trunk is believed to develop 
as the result of intermittent sun exposure. These results demonstrate 
complexity of the hypothesis and indicate that melanocytes at different 
anatomical regions have different susceptibility to undergo malignant 
transformation [20]. 

Melanogenesis induced by UV radiation as a consequence of the release of 
paracrine acting factors by keratinocytes, is characterized by melanocyte 
differentiation or pigment production and proliferation in the epidermis. How 
melanocytes that are triggered into terminal differentiation by UV light are 
able to reenter the cell cycle and proliferate is still unclear [21]. However, the 
expansion of melanocytes in this event might not involve the differentiated 
cells, but rather the pre-melanocytic cells that are Tyrosinase-related protein 1 
(TYRP1) negative and KIT receptor positive [22]. As a consequence of the 
proliferative response either triggered by factors secreted from keratinocytes or 



19 
 

stimulated by the acquisition of genetic mutation that activates the Mitogen-
activated protein kinase (MAPK) signaling pathway, melanocytes form clusters 
that give rise to nevi or moles [23, 24]. Morphologically, melanocytes in nevi 
are very similar to normal melanocytes with the exception that these cells are 
more prone to growth due to abnormal expression of growth factors [25]. 
Additionally, abnormal activation of the MAPK pathway as the result of 
somatic mutation of the NRAS GTPase or the serine/threonine-protein kinase 
BRAF, also stimulates growth. However, nevus cells only grow to a certain 
stage before senescence, a key protection mechanism against cancer 
development, is triggered by the cell cycle inhibitor Cyclin-dependent kinase 
inhibitor 2A (CDKN2A) [26]. In other words, genetic alterations creating 
constitutively active BRAF or NRAS that promote growth in the combination 
with CDKN2A inactivation mutations can transform benign nevi into 
malignant cells. Indeed, mutations of the BRAF or NRAS genes or deletion of 
the CDKN2A gene are detected in melanomas in a frequency of around 50 %, 
13-25 %  and 25-40 %, respectively [27-31]. 

Classification	
The classification of melanoma is based on histological grading and stage 

of progression. The melanoma progression model or the Clark’s level is often 
used to describe the five steps of linear development of pigmented lesions [32] 
(Figure 3). According to this model the first event is the formation of benign 
nevus that consists of clustered melanocytes. Histologically, benign nevi arise 
from increased numbers of nested melanocytes located at the basal layer of the 
epidermis. The transition of benign nevi into dysplastic nevi is characterized 
with melanoma features including increasing size, uneven pigmentation, 
border irregularities and asymmetric lesions. Transition into the radial-growth 
phase (RGP) is marked by further melanocyte proliferation. Importantly, 
however, the mitogenic activity in this step is entirely confined within the 
epidermis. Once the lesion invades the dermis, the disease enters the vertical-
growth phase (VGP). The acquired ability of cells to invade and grow into 
adjacent tissues at this stage is a key property to metastatic potential [32]. The  
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constitutively active BRAF mutant V600E into human melanocytes results in 
enhanced proliferation that only leads to melanocyte cluster formation 
resembling human nevi [36]. Senescence triggered by BRAF-mediated 
proliferation was in this case accompanied by the upregulation of the p16 cell 
cycle inhibitor of kinase 4A (p16INK4A). Similarly, BRAFV600E expression did not 
fully transform melanocytes in zebrafish. However, in combination with a 
tumor suppressor TP53 deficient background, the BRAFV600E-induced nevi 
were able to progress into invasive melanoma [37]. Although it was observed 
that p16INK4A is frequently upregulated in nevi and epigenetically silenced in 
melanoma, the removal of p16INK4A did not contribute to melanomagenesis in 
the presence of BRAFV600E [35, 36]. Thus, despite being a potent senescence 
initiator, other unknown factors are believed to cooperate with p16INK4A to 
prevent uncontrolled melanocytic growth. 

After the formation of benign nevi according to Clark’s model, the next 
step is the development of abnormal growth and the formation of dysplastic 
nevi. Mutations acquired at this stage affect cell growth, DNA repair and the 
susceptibility to cell death. Two genes frequently found to lose expression at 
this point are the tumor suppressor CDKN2A and the Phosphatase and tensin 
homolog (PTEN) [38, 39]. The CDKN2A gene encodes for two pivotal tumor 
suppressors p14ARF and p16INK4A. Upon DNA damage, p14ARF inhibits the E3 
ubiquitin-protein ligase Mouse double minute 2 homolog (MDM2) that 
targets TP53 for degradation. By inhibiting MDM2, TP53 is stabilized and 
consequently facilitates apoptosis and suppresses proliferation [40].  The 
second product of CDKN2A is the cell cycle inhibitor p16INK4A. It is involved 
in the arrest of the cell cycle at the G1–S checkpoint by inhibiting the Cyclin-
dependent kinase 4 (CDK4). The action of this suppressor is produced by 
DNA damage and aberrant activation of oncogenes [41]. However, there are 
mutations that can override p16INK4A-dependent senescence. For instance, in 
sporadic melanoma it has been found that somatic mutations in CDK4 could 
block the interaction with p16INK4A [42, 43]. The second important tumor 
suppressor gene frequently mutated in dysplatic melanocytic lesions is the 
PTEN gene [44]. PTEN is a phosphatase that is indirectly engaged in the 
inhibition of the cell survival Protein kinase B (PKB/AKT)-survival pathway. 
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AKT facilitates cell proliferation and survival by the inactivation of cell cycle 
inhibitors and apoptosis initiators. Thus, lack of PTEN expression would favor 
hyperactivation of AKT resulting in cell survival and proliferation [45]. 
Although, PTEN and CDKN2a are powerful tumor suppressors in melanoma, 
mutation of either gene alone fails to induce melanoma in mice [46]. 

Cellular senescence can be divided into three different types, M0, M1 and 
M2 (Figure 4). The M0 type is mediated by p16INK4A under cellular stress such 
as hyperproliferation. The growth of melanocyte in a benign nevus lesion is 
characterized by M0 senescence [26]. Progression to dysplastic nevi occurs 
when p16INK4A function is deregulated, allowing the cells to escape from M0 
[47]. In order for the lesion to further progress into melanoma in the RGP, 
which is characterized by unlimited hyperplasia, cellular immortalization must 
be achieved. Rapid cell division that is associated with melanoma in the RGP, 
results in shortening of the repetitive nucleotides called telomeres that protect 
gene degradation. As telomeres become critically short as a consequence of 
rapid cell division, the tumor suppressor TP53 is activated by the stress signal 
and induces M1 senescence. Thus, to achieve unlimited hyperplasia, cells in 
the RGP must overcome this barrier either through inactivation of TP53 or 
maintenance of telomeres. Blocking the activity of TP53 would only be 
adequate to avoid M1 type of senescence. As the telomeres shorten, cells 
eventually reach their replicative limit and senesce due to genomic instability 
called crises or M2 senescence. Thus, in order to avoid M1 and M2 type of 
senescence, the integrity of telomeres must be maintained [26]. Telomere 
length can be sustained by the enzyme telomerase, which is not expressed in 
human somatic cells but abnormally expressed in more than 90 % of human 
cancers [48, 49]. For instance, telomerase activity and expression in benign and 
dysplastic nevi is very weak whereas a significant increase of telomerase activity 
can be found in melanomas [50, 51]. 
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expression allows melanoma cells to escape regulatory growth control imposed 
by keratinocytes and gain interaction with fibroblast in the dermis that favors 
melanoma growth [56]. It has been shown that N-cadherin expression in 
melanoma is associated with enhanced migration over fibroblasts and a more 
invasive phenotype during progression [55]. However, melanoma cell 
detachment from the epidermis is not sufficient to invade the dermis without 
first degrading the extracellular matrix surrounding the tumor tissue. The 
Matrix metalloproteinase-2 (MMP-2) and MMP-9 are highly involved in this 
process and the expression of these enzymes is associated with melanoma 
progression [57, 58]. Lastly, melanoma cell growth breaching the epidermal 
barrier of the skin marks the final histological phenotype of Clarks’ level, the 
vertical growth phase. 

Protein	phosphorylation	
Biochemically, the addition of the negatively charged phosphate group 

(PO4
2-) to a protein is called phosphorylation. Protein phosphorylation is one 

type of reversible post-translational modifications utilized in prokaryotic and 
eukaryotic organisms to achieve activity control of proteins. More specifically, 
phosphorylation can temporarily enhance or reduce enzyme activity, cause 
conformational changes, target proteins for degradation, alter subcellular 
localization and facilitate or disrupt protein-protein interactions. Although, 
protein phosphorylation is known to occur on nine amino acids including 
aspartic acid, cysteine, glutamic acid, histidine, lysine, serine, threonine and 
tyrosine, the latter three, due to their stable nature and the availability of 
specific antibodies, are the most well studied [59]. The global in vivo site-
specific phosphorylation distribution of serine, threonine and tyrosine is 79.3 
%, 16.9 % and 3.8 %, respectively [60]. Phosphorylation is carried out by a 
group of enzymes called kinases that transfer the phosphate groups from for 
example adenosine-5'-triphosphate (ATP). Protein phosphatases are another 
group of enzymes that reverse the process by removing the phosphate group 
from the target protein. For the reason that phosphorylation is reversible and 
rapid the reaction is very well suited and heavily utilized in most cellular signal 
transduction pathways. Not surprisingly, owing to its central role in many 
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biological processes, the dysregulation of kinases and phosphatases are often 
found in many diseases including cancer. 

The term kinome was coined by Manning and associates to describe all 
protein kinases in the human genome [61]. Significantly, protein kinases are 
one of the largest gene families in eukaryotes occupying 1.7 % of the human 
genome, which translates to 518 different kinases. Of these, 428 are predicted 
to be serine and threonine kinases and 90 are members of the tyrosine kinase 
family. In contrast, there are only around 200 predicted or identified 
phosphatases in the human genome [62]. The considerable magnitude of the 
kinome requires on average a single kinase to distinguish between one and a 
few hundred curated phosphorylation sites in a background of around 700,000 
potential phosphorylation sites [63]. Such a daunting task is mitigated by the 
many mechanisms evolved to ensure specific interactions. The structural design 
of the active site of a kinase acts as the first line of specific interaction. 
Although the structural characteristics of the interaction sites only partially 
differentiates binding specificity, observations suggest that the deeper catalytic 
site of the tyrosine kinases and phosphatases separates these proteins from their 
serine-specific counterparts [64]. Another mechanism of specificity is 
accommodated by the modulation of overall binding energy between the 
phosphorylation site of a substrate and a kinase. The mere presence of a 
phosphorylatable residue greatly enhances the binding energy and the 
combination with the consensus recognition sequence further improves 
binding specificity [65, 66]. Co-interaction with subunits is another important 
mechanism that regulates target to substrate contact. In addition, a regulatory 
subunit can provide property for a single kinase to interact with multiple 
targets. For example, the CDKs as implied in their name, is dependent on 
cyclins to become fully active. Besides allosterically activating CDKs, cyclin 
also sequesters CDK substrates via a docking domain and thereby controlling 
the accessibility to substrates [67, 68]. Moreover, cyclins can further aid 
substrate specificity of CKDs by transporting them into different subcellular 
compartments. This mode of specificity enhancement is also utilized by the 
active and inactive forms of ERK2 in the rat neuroendocrine tumor PC12 cells. 
Depending on the type of growth factor stimulation, ERK2 either translocates 
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to the nucleus to drive differentiation or stays in the cytoplasm to elicit 
mitogenesis. Thus, by altering subcellular location, the function of ERK2 is 
also changed to take advantage of the different substrates [69, 70]. Finally, the 
use of scaffolds also provides substrate specificity. In contrast to specificity 
achieved by subunit interactions with kinases, the association to scaffolds is 
more dynamic and allows for frequent protein complex dissociation. Also 
unlike subunit co-binding, scaffolding proteins typically bring together kinase 
interactions with other kinases or phosphatases [63]. 

  
There are numerous available methods for identification of protein 

phosphorylation sites. One way is to combine bioinformatics with 
biochemistry. For instance, phosphorylation sites predicted in silico can be 
further characterized by mutating the site to a non-phosphorylatable residue. 
The protein is then subjected to phosphorous isotopic labeling with 32P 
followed by enzymatic cleavage into peptide fragments that are separated in 
two-dimensional thin layer chromatography or SDS polyacrylamide gel 
electrophoresis and analyzed for loss of a phosphorylated 32P-labeled peptide 
[71] or by Edman degradation of phosphorylated peptides. Historically, this 
biochemical based approach has been the gold standard for phosphorylation 
site identification. However, advancement in mass spectrometry has allowed 
for more refined detection methods. Mass spectrometry offers major 
advantages over the conventional method. For example, the procedure is less 
time consuming and isotopic labeling is not required, which eliminates the 
handling with radioactive material [72]. For these reasons, mass spectrometry 
was the chosen method for phosphorylation site identification in this thesis. 

Receptor	tyrosine	kinase	
Proteins belonging to the receptor tyrosine kinase (RTK) family are 

classified as single-pass, type I transmembrane proteins located in the plasma 
membrane. Cell surface receptors in this family are engaged in signal 
transduction that mediates pivotal biological processes such as growth, 
differentiation, migration and metabolism. Although all receptors in the family 
of RTK are structurally related, the family is further divided into 20 
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subfamilies in which each subfamily comprises of members that have even 
higher structural homology. Each receptor in the RTK family consists of an 
extracellular ligand-binding domain, a single alpha-helical transmembrane 
domain and a cytoplasmic portion composed of a juxtamembrane domain, 
protein tyrosine kinase (PTK) domain and a C-terminal tail. The kinase 
domain of RTKs in the Platelet derived growth factor receptor (PDGFR) 
subfamily is also interrupted by a kinase insert. Upon receptor activation, 
phosphorylation sites located in the intracellular domain of RTKs are either 
subjected to autophosphorylation or phosphorylation by other protein kinases 
[73, 74]. Without ligand binding, the receptors are in their inactive state on 
the cell surface either as monomers or as pre-existing dimers like the insulin 
receptors [73, 75]. Among the RTKs, ligand binding is diverse. For instance, 
KIT ligand (also known as Stem cell factor (SCF), Mast cell growth factor 
(MGF) and Steel factor (SF)) binds to KIT receptor in a bivalent manner. 
Each of the KIT ligand monomer binds to one molecule of KIT, thus a 
complex of KIT ligands binds to two KIT receptors and facilitates receptor 
dimerization [76]. Another strategy is exemplified by the receptors belonging 
to the subfamily of insulin receptors that exist on the cell surface in a homo- or 
hetero-pre-dimeric form, maintained by a single disulfide link between the 
monomers. Although receptor dimerization is the default state, ligand binding 
is still a requisite for activation [77]. 

After ligand binding to the receptor, a dimeric active structure is produced 
by conformational changes that facilitate autophosphorylation. Phosphorylated 
tyrosine residues in the intracellular domain allow signaling cascade activation 
through the interaction with downstream signaling partners. Most of the 
phosphorylated residues of RTKs are located in the non-catalytic part of the 
intracellular domain. These sites, when phosphorylated, are recognized by 
proteins containing the SRC (sarcoma) homology-2 (SH2) or protein tyrosine 
binding (PTB) domain [78]. 

RTKs play major roles in many cancers. In fact, more than half of the 
known RTKs have been found mutated or overexpressed in different 
malignancies [74, 79]. Malignant transformation accelerated by RTKs could 
occur through four major routes. First, viral transduction of the KIT receptor 
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was demonstrated when it was first isolated from the Hardy-Zuckerman 4 
feline sarcoma virus. The high concentration of viral KIT (v-KIT) found in cat 
fibrosarcoma tissue indicates the transforming ability of v-KIT [80]. Second, 
genomic re-arrangements can produce active RTK fusion protein that 
generates constitutive signaling and consequently malignant transformation 
[81]. Third, RTK gain-of-function mutations are often detected in different 
tumors [82, 83]. Finally, gene amplification and overexpression of RTK have 
also been found in malignancies [84]. 

Stem	cell	factor	receptor	KIT	
 The first discovery of KIT was made in 1986 at which v-KIT was 

identified in the Hardy-Zuckerman 4 feline sarcoma virus [80]. Cellular KIT 
(c-KIT) was already then predicted to be a transmembrane receptor and it was 
believed to be expressed in human, cat and mouse. A year later, cloning of c-
KIT confirmed its existence in human tissue as well as its possession of a 
transmembrane domain [85]. Today, the KIT mRNA is known to be expressed 
in many different types of tissues. For example, KIT is a surface marker for 
hematopoietic stem cells and progenitor cells. At the early stages of 
development of these cells KIT is engaged in proliferation and survival [86, 
87]. However, KIT expression is lost during the differentiation of 
hematopoietic cells with the exception of mast cells and dendritic cells [88-90]. 
As mentioned, KIT is also involved in melanocyte development including cell 
migration, pigmentation, survival and proliferation. More specifically, the 
administration of the KIT blocking antibody, ACK2, during the different 
stages of melanocyte development identifies the requirement of KIT for 
melanocyte survival; during migration in the dermis, in the epidermal sheet 
prior to localization in the hair follicles and during the hair production growth 
phase, anagen [91]. Moreover, the role of KIT has also been implicated in 
fertility. The activation of KIT is important for the maintenance of primordial 
germ cells in both sexes of humans [92]. However, there are pathway specific 
differences between the genders. The Y719F point mutation of KIT that 
blocks receptor signaling to PI3K, resulted in obstruction of spermatogenesis 
and consequently completely sterile male mice, while impaired female follicle 
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development only led to reduced fertility [93]. The interstitial cells of Cajal 
(ICC) that regulates the movement of the gut is another tissue in which KIT 
serves as a marker. Inhibition of KIT activity in the ICC causes severe anomaly 
of gut movement in both humans and mice, indicating its importance in gut 
motility [94, 95]. Lastly, it is worth mentioning that KIT is also critical for 
function in the nervous system [96], cardiovascular system [97] and beta cells 
in the endocrine system [98]. 

Structural	regulation	of	activation	
KIT belongs to the class III receptor tyrosine kinase family and together 

with five other members including the PDGFR alpha and beta, Colony 
stimulating factor 1 receptor (CSF1R) and Fms-like tyrosine kinase 3 (FLT-3), 
forms the PDGFR family [99]. The class III tyrosine kinase receptors are 
structurally related in that they possess an extracellular domain with 5 
immunoglobulin (Ig)-like domains called D1-D5 and an intracellular kinase 
domain that is interrupted by a kinase insert. Although, the ligand binding part 
of the receptors is structurally similar, their cognate ligands are not.  Both 
helical and cysteine knot types of cytokines are involved in the activation of the 
receptors. More precisely, KIT, FLT-3 and CSF1R are activated by helical 
dimeric cytokines whereas PDGFRα and PDGFRβ bind to dimeric cysteine-
knot cytokines [79]. 

KIT ligand interacts with the KIT receptor through the first three 
extracellular domains, D1, D2 and D3. The KIT ligand-KIT complex brings 
about homotypic receptor-receptor interactions and conformational changes 
that allow interactions between D4-D4 and D5-D5 of the two KIT 
monomers. These are critical domains for the stabilization of the two 
ectodomains in a KIT dimer complex. Although, a mutation of the D4 domain 
strongly compromises receptor activation, D4 is dispensable for ligand binding 
(Figure 5) [100]. Autophosphorylation of KIT initiated by KIT ligand binding 
occurs in trans (i.e. cross-phosphorylation between receptor monomers) and 
targets tyrosine residues in the intracellular domain including the 
juxtamembrane domain, the kinase insert, the C-terminal domain and the 
activation loop [101, 102]. As the juxtamembrane domain locks KIT in an 
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autoinhibitory state by direct binding to the N-terminal ATP-binding lobe of 
the kinase domain, the residues Tyr-547, Tyr-553 Tyr-568 and Tyr-570 in 
this region are the first residues to be phosphorylated. Subsequently, the 
suppressive action of the juxtamembrane domain is released by 
phosphorylation-dependent structural change. Once unblocked, the catalytic 
activity is strongly favored, which leads to rapid receptor autophosphorylation 
[100, 103, 104]. The second region that undergoes autophosphorylation is the 
kinase insert in which Tyr-703 and Tyr-721 are subjected to phosphorylation. 
However, as KIT receptor mutants lacking the kinase insert still retain full 
kinase activity this region seems to be more important for the triggering of 
early signal cascade initiation than for the overall activity of the receptor. 
Lastly, the activation loop site Tyr-823 is phosphorylated at the near 
completion of overall KIT phosphorylation. In protein kinases, active loop 
phosphorylation is a conserved mechanism of activation control [105, 106]. 
Significantly, the activation loop of KIT prevents the active state of the 
receptor to revert back to an inactive conformation. Thus, the late event of 
Tyr-823 phosphorylation is believed to prolong KIT signaling [101]. Once 
fully activated KIT is phosphorylated at the tyrosine residues Y547, Y553, 
Y568, Y570, Y703, Y721, Y730, Y823 and Y900 and two serine sites including 
S937 and S943 [101, 107, 108]. Functionally, the phosphorylated tyrosine 
residues of KIT are recognized by proteins containing the SH2 or PTB 
domain. It is believed that the sequestering and assembly of downstream 
signaling molecules to phosphorylated residues of KIT may act as effector 
platform from which multiple singling cascades and subsequently biological 
processes are initiated [73]. 

It is important to recognize that the progression of KIT phosphorylation 
outlined here is based on observations performed in a cell-free system without 
the interference from other protein kinases [101]. In a cell, the sequence of 
KIT phosphorylation might be different as other tyrosine kinases could 
influence receptor phosphorylation. 
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ligase, Casitas B-lineage Lymphoma (CBL), which interacts with KIT both 
directly and indirectly. The KIT phosphorylation sites Tyr568 and Tyr936 
serve as docking sites and the isoleucine and leucine residues at the +3 position, 
respectively, direct the specificity of CBL KIT interactions [109]. The 
proposed direct interaction model suggests that SRC activated by KIT 
phosphorylates and activates CBL, which in turn catalyzes KIT receptor for 
ubiquitination. In addition to CBL, structural analysis show that the E3 
ubiquitin ligase, the Suppressor of cytokine signaling 6 (SOCS6) is also 
recruited to phosphorylated KIT Tyr-568 and associates with KIT through its 
SH2 domain [110]. Alternatively, KIT utilizes indirect routes of interaction 
with ubiquitin ligases. Again the multifunctional docking sites Tyr-568 and 
Tyr-936 are also involved in the interaction by recruiting and binding of CBL 
indirectly through the adaptor protein APS. Additionally, phosphorylated Tyr-
703 and Tyr-936 allow Growth factor receptor-bound protein 2 (GRB2) 
binding, which acts as a bridge between CBL and KIT [111]. To summarize, 
the process of receptor internalization is triggered by KIT ligand binding, 
which not only presents phosphorylated tyrosine residues for CBL interaction, 
but they also activate CBL in a SRC-dependent manner. Activated CBL then 
catalyzes the ubiquitination of KIT that is subsequently removed from the cell 
surface through internalization and finally targeted for proteolytic degradation 
in both lysosomes and proteasomes [109, 112, 113]. 

KIT	alternative	splicing	
Alternative splicing of exon 9 of the KIT gene product yields two 

isoforms, KIT(+) and KIT(-). They differ by the presence or absence of a 
tetrapeptide insert consisting of the amino acids sequence GNNK (glycine-
asparagine-asparagine-lysine) that is located just upstream of the 
transmembrane domain at amino acid position 510-513 (Figure 5). In 
addition, alternative splicing of the KIT transcript generates an extra insert of a 
serine residue in the cytoplasmic domain at position 715 [114]. All these 
isoforms are expressed in human normal and malignant tissues with a 
frequently high ratio of KIT(-) to KIT(+). There is also a truncated form of 
KIT (tr-KIT) lacking the extracellular and transmembrane domains as well as 
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the ATP-binding site of the kinase domain, which has been found in human 
and mouse germ cells [115, 116]. Despite lacking intrinsic kinase activity it is 
believed that tr-KIT could potentially act as a scaffold for protein-protein 
interactions. Functionally, it has been established that microinjection of tr-KIT 
into mouse eggs parthenogenetically activates the cells, possibly through the 
activation of Phospholipase C gamma by the interaction with Fyn kinase [117, 
118]. 

The best studied isoforms are the KIT(-) and KIT(+) isoforms. The short 
KIT(-)isoform without the GNNK insert, display a stronger transforming 
potential in vitro than KIT(+) that possesses the tetrapeptide insert [119]. 
Accordingly, KIT ligand stimulation of KIT(-) elicits a higher receptor 
phosphorylation and downstream signaling activity than KIT(+). Although, 
KIT(+) activation is characterized by a weakened overall receptor 
phosphorylation, phosphorylation of the receptor is extended over a longer 
time. It has long been thought that the distinct signaling differences between 
the isoforms were attributed to dissimilar affinity to KIT ligand. However, 
saturation binding analysis indicated that they do not differ in their affinity 
[119]. To date it is not known whether the differences are due to insert length 
or sequence specificity. Studies to address the mechanisms are discussed in 
Article I of this thesis.  

KIT‐associated	signaling	cascades	

The	MAPK	pathways	
The mitogen-activated protein kinase pathways are composed of highly 

conserved signaling proteins that transduce extracellular signals into a diverse 
array of fundamental cellular responses such as proliferation, apoptosis, mitosis 
and survival. This communication highway is designed to relay signals through 
a three-tier kinase module: MAPK kinase kinase (MAPKKK), MAPK kinase 
(MAPKK) and MAPK. At present, six groups of MAPKs have been identified: 
Extracellular signal-regulated kinase (ERK)1/2, ERK3/4, ERK5, ERK7/8, Jun 
N-terminal kinase (JNK)1/2/3 and the p38 isoforms α/β/γ (ERK6)/δ. The 
MAPK pathways, when deregulated, play a crucial role in the development of 
cancer. For instance, these signaling cascades may facilitate sustained cell 
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proliferation, resisting cell death, escape of growth suppressors, promote cell 
invasion or induce genomic instability [120]. Many if not all of the hallmarks 
of cancer are regulated by the MAPK pathways. Significantly, the RAS-RAF-
MEK-ERK cascade of often found to be hyperactivated in the majority of 
melanomas in which NRAS and BRAF mutations are overrepresented with a 
frequency of 15-20 % and 40-50 %, respectively [33]. Consequently, this 
signaling cascade offers many therapeutic targets against melanoma. As we in 
Article II identified the p38 signaling cascade to be involved in the activation 
of MITF in a KIT ligand-dependent manner [121], it is worth mentioning the 
p38 kinase is important in the normal function of melanocytes including the 
initiation of pigment synthesis. For instance, it has been shown that UV 
radiation or signaling input by α-MSH in melanocytes activates p38 [122]. 
KIT ligand stimulation activates the ERK1/2, JNK, p38 and ERK5 pathways. 
In contrast to the ERK-MAPK pathway, p38 activation by KIT is not as well 
characterized. However, it is known that p38 is indirectly activated by KIT 
phosphorylated at Tyr-567 (corresponding to human KIT Tyr-568) through 
SRC family of kinases in the mouse Ba/F3 pro-B-lymphocytes. In these cells 
the activation of p38 induces cellular influx of calcium that promotes 
chemotaxis [123]. 

The best characterized MAPK pathway is the ERK1/2 signaling cascade 
which is activated by KIT through the initiation of the SRC kinase by the 
phosphorylated KIT residues Tyr-568 and Tyr-570. Activated SRC further 
phosphorylates the adaptor protein SHC whereby the guanine nucleotide 
exchange factors Son of sevenless (SOS) in a complex with GRB2 is recruited 
and indirectly interacts with KIT through SHC. This action brings the 
SOS/GRB2 complex close to the plasma membrane so that colocalization with 
RAS occurs. SOS facilities RAS to exchange the bound guanosine diphosphate 
(GDP) to guanosine diphosphate (GTP) and thereby allows RAS association to 
RAF recruited to the plasma membrane. The ensuing interaction between RAS 
and RAF conformational changes of RAF and initiates the phosphorylation of 
the dual specificity kinases MEK1/2 through which the serine/threonine 
kinases ERK1/2 are finally activated [107]. Interestingly, the phosphatase 
SHP2 that binds to Y568 of activated KIT becomes phosphorylated and  
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PI3Ks are divided into three classes (I-III) based on primary structure, 
regulation and lipid substrate specificity [45]. Although all the classes of PI3K 
are essential regulators of biological function, only class I will be elaborated 
because of its regulation by RTKs and its frequent involvement in cancer. 
More specifically, the subgroup class IA is regulated by RTKs whereas class IB is 
mainly controlled by G-proteins. PI3Ks in this subclass are constitutive 
heterodimers that consist of a regulatory subunit and a catalytic subunit. There 
are three regulatory subunit isoforms (p85α, p85β and p55γ) and three 
catalytic subunit isoforms (p110α, p110β and p110δ). All the p85 subunits 
have SH2 domains that enable binding to tyrosine phosphorylated sites [45]. 
The direct binding of p85 to KIT occurs at phosphorylated Tyr-721 in the 
kinase insert of the receptor and indirectly through the GAB2 and GRB2 
complex that is associated to KIT phosphorylated at Tyr-703 and Tyr-936 
[127, 128]. Preceding RTK-mediated assembly of the p85 and p110 
heterodimer, p85 structurally inhibits p110 through an intermolecular 
interaction that is relieved by conformational changes induced by SH2 domain 
binding to phosphorylated RTK. Recruitment and activation of p110 in the 
proximity to the plasma membrane also allows access to the PI3K substrate 
phosphatidylinositol-4,5-bisphosphate (PIP2). PIP2 is converted to a second 
messenger by phosphorylation to phosphatidylinositol-3,4,5-trisphosphate 
(PIP3). However, the process can also be reversed by dephosphorylation. 
Namely, PTEN converts PIP3 back to PIP2 in order to keep a tight negative 
regulation of the PI3K signaling pathway. Generation and enhanced 
concentration of PIP3 near the plasma membrane sequesters proteins that 
recognize PIP3 via their Pleckstrin homology (PH) domain. The 
Phosphoinositide-dependent protein kinase 1 (PDK1) directly binds to PIP3 
and facilitates co-localization that assist the activation of AKT by PDK1-
dependent phosphorylation of Thr-308 located in the activation loop of AKT 
(Figure 6). However, additional phosphorylation on Ser-473 by the 
Mammalian target of rapamycin complex 2 (mTORC2) is required to achieve 
full AKT kinase activation. Upon a sequence of multiple phosphorylation 
events, AKT drives cell proliferation, survival and metabolism by 
phosphorylating numerous cellular proteins. Notably, the AKT substrates 
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BCL2, BAD, BIM, GSK3ɑ and ß, MDM2 and FOXO are among others to 
ultimately carry out cell survival and cell cycle entry. 

The	oncogenic	KITD816V	
 Several mutations affecting the activation loop of KIT are known to 
produce constitutive receptor activation. However, mutation of the D816 
residue in exon 17 is most frequently found in malignancies (Figure 5). Indeed, 
KITD816X (X: any amino acid) is detected in the vast majority of systemic 
mastocytosis cases (81-90 %) [129, 130] and in myeloid leukemia, germ cell 
tumors of the seminoma, sinonasal natural killer/T-cell lymphomas, 
intracranial teratomas and more recently also in melanoma [131-138]. By 
substituting the aspartic acid at 816 with a tyrosine, histidine or more 
commonly a valine, the structure of KIT is altered so that the inhibitory state 
of the activation loop maintained by the juxtamembrane domain is weakened 
[130]. Thus, the activation of KIT is rendered ligand- and surface localization-
independent. 

As a transmembrane glycoprotein KIT is dependent on N-linked 
glycosylation with the addition of complex carbohydrate residues on its 
extracellular domain for trafficking to the plasma membrane. In contrast, non-
glycosylated or generically glycosylated with N-linked high-mannose 
oligosaccharide KIT is not expressed in the cell surface and is considered an 
immature protein. Unlike wild-type KIT, oncogenic KITD816V displays an 
extensive high-mannose–type N-glycosylation pattern which correlates with its 
abnormal intracellular localization around the Golgi apparatus coupled with its 
low cell surface expression [139]. Although not entirely understood, it has been 
proposed that the sub-cellular behavior of KITD816V is one of the contributing 
factors for its potent oncogenic property. For example, the aberrant activation 
of FES [140] and the splice form independent phosphorylation of SRC [141] 
are potentially consequences of its intra-cellular localization [142]. Also, the 
interference of intracellular trafficking of KITD816V from the endoplasmic 
reticulum (ER) to the Golgi apparatus, effectively blocked downstream 
signaling including AKT, ERK and the survival factor Signal transducer and 
activator of transcription 3 (STAT-3) [139]. However, these events were not 
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observed when transportation of KITD816V to the plasma membrane was 
blocked, further supporting the notion that localization of KITD816V in the 
Golgi network is essential for its oncogenic nature. Similar to the differential 
function of endomembrane compartmentalized RAS that activates downstream 
signaling pathways distinct from RAS in the proximity of plasma membrane, 
activation of downstream signaling proteins by KITD816V is also believed to be 
achieved through non-canonical routes that yield different functional outcome 
[143]. Surely, tagging the receptor with localization domains demonstrated 
that Golgi compartment anchored KITD816V, but not cell surface destined 
KITD816V, can transform lymphocytes. Equally important to Golgi localization 
is its ability to stay active independently of receptor dimerization. It was 
illustrated that the deletion of the entire extracellular domain including the 
important regions for dimerization and ligand binding terminated the ability of 
wild-type receptor to phosphorylate in response to KIT ligand stimulation. 
However, despite lacking the capacity to dimerize with the aid of the 
extracellular domain, mutant KITD816V was still found to be sufficiently active 
to transform Ba/F3 pro-B-lymphocytes in the absence KIT ligand [144]. 

As mentioned, the D816X mutation in particularly the substitution with a 
valine is frequently detected in systemic mastocytosis. In melanoma the 
frequency of D816H mutation among KIT mutant melanomas is only around 
5 % and to date there is only one documented case of D816V found in 
mucosal melanoma [138]. Interestingly, the introduction of endogenous 
D814Y (corresponding to human D816Y) mutant KIT in mouse melanocytes 
did not suffice for malignant transformation. These melanocytes illustrated 
decreased pigmentation but contributed to larger pigmented patches in mice 
due to increased melanocyte migration in the epidermis [145]. In order for 
melanocyte transformation to occur in the presence of oncogenic KIT, 
secondary oncogene activation was required. It was found that hypoxia or the 
stabilization of the transcription factor Hypoxia-inducible factor 1-alpha 
(HIF1-ɑ) in addition to an activating KIT mutation resulted in signs of cellular 
transformation including increased melanocyte proliferation and growth on 
soft agar [146]. 
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KIT‐associated	melanoma	therapy	
Initial reports described KIT as an anti-melanoma factor that caused 

apoptosis and diminished metastatic potential in vitro [147]. Further 
strengthening this view was the observation that loss of KIT expression 
correlated to melanoma development from superficial to invasive metastatic 
phase [147-151]. Thus, not surprisingly, initial clinical trials with the tyrosine 
kinase inhibitor imatinib against KIT in patients suffering from metastatic 
melanoma did not demonstrate any therapeutic benefits [152-154]. In the 
same notion, using dasatinib for KIT inhibition in a phase II trial to evaluate 
the benefit in unselected advanced melanoma patients illustrated minimal 
activity. Interestingly, both studies saw partial response of melanoma patients 
harboring KIT mutations, which suggests the importance of KIT in the disease 
[155, 156]. In all types of melanoma the frequency of KIT mutations is low (2-
6 %) and the lack of selection of patients suffering from melanoma in which 
KIT was the driving oncogene, may have led to the misleading conclusions. 
However, more recently, findings have highlighted that KIT in melanoma is 
subtype specific and the subgrouping of melanomas into acral-, mucosal- and 
chronically sun-damaged subtypes facilitated the discovery of a much higher 
frequency (20-40 %) of KIT oncogenic mutations or copy number elevations 
[157-159]. Thus, previous studies suggesting the loss of KIT expression during 
disease development can be explained by the lack of information in regards to 
the specific subtype of the primary tumor. However, carefully planned studies 
including the selection of both patients and melanoma cells where KIT was the 
primary oncogenic driver have demonstrated high sensitivity to imatinib and 
significant clinical responses were achieved among patients with advanced 
melanoma harboring genetic KIT aberrations [158, 160-164]. 

Imatinib is a powerful therapeutic tool used to treat chronic myeloid 
leukemia and gastrointestinal stromal tumor, where it achieves disease control 
in 70-85 % [165] of patients and radically improves survival with a survival 
rate of 89-95 % [166, 167]. In contrast, despite positive clinical efficacy in 
melanoma patients, the majority of the patients will eventually progress during 
imatinib treatment. The mechanism of resistance includes increased MAPK 
signaling, PI3K/mTOR signaling, selection for N-RASQ61K mutation or the 
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development of a secondary KIT A829P or T670I mutations. Interestingly, the 
T670I mutation found in the imatinib resistance melanoma cells is also the 
most common secondary KIT mutation in imatinib resistant gastrointestinal 
stromal tumor (GIST) [168]. This indicates that natural selection for imatinib 
resistant cells is independent of tissue specificity.  

In addition to mutations in the ATP-binding pocket of KIT (exon 13 and 
14), including the gatekeeper mutation T670I that disrupts hydrogen bond 
formation between KIT and imatinib [169, 170], mutations located in the 
second part of the kinase domain (exon 17 and 18) are also resistance to 
imatinib. Because the efficacy of imatinib depends on targeting the inactive 
conformation of KIT, it is believed that the KIT activation loop mutation, 
D816V (exon 17) that alters the conformational equilibrium of the kinase 
toward the active form in a rapid rate, offers a smaller population of the 
molecular target to imatinib. This manifests as abrogated efficacy of the 
inhibitor [171]. To achieve inhibition of KITD816V, the BCR/ABL and SRC 
family tyrosine kinase inhibitor, dasatinib can be employed. Unlike imatinib, 
dasatinib is believed to bind to the active conformation of KIT and effectively 
inhibits KITD816V [172]. 

Microphthalmia‐associated	transcription	factor	

The	MITF/TFE	family	
MITF encodes for the basic helix-loop-helix leucine zipper (bHLHZip) 

protein. The mouse gene located on chromosome 6 was first cloned in 1993 by 
Hodgkinson et al. [173] and Hughes et al. [174]. One year later the human 
counterpart was identified by Tachibana et al. [175] and the gene was shown 
to be located on the human chromosome 3p12.3-14.1 [175, 176]. It was later 
discovered that the expression of MITF is restricted to certain cell types and its 
expression plays a major role in mast cells, cardiomyocytes, osteoclasts and 
melanocytes [173, 177-179]. As an active form the transcription factor acts 
either as a homo- or heterodimer. Heterodimerization occurs with the related 
TFE family of bHLHZip transcription factors, TFEB, TFEC and TFE3. 
Together with MITF this subfamily can bind to the symmetrical DNA 
enhancer sequence called the Ephrussi box (E-box) as 5'-CANNTG-3. More 
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importantly, MITF-TFE can recognize and bind to the regulatory element in 
the E-Box consisting of the DNA sequence CATGTG that is highly conserved 
in the promoters of the pigment synthesis enzyme genes Tyrosinase, and 
Tyrosinase-related proteins 1 and 2 [180]. Although the MITF-TFE subfamily 
regulates genes in the pigment production pathway, targeted disruption of 
TFEB in mice also showed defects in placental vascularization. However, this 
effect is restricted to TFEB since homozygotes carrying mutations at the TFE3, 
TFEC or MITF loci do not show signs of infertility or reduced viability [181]. 

MITF	isoforms	and	splice	forms	
To date there are more than 10 isoforms of MITF identified in various 

tissues. The MITF splice forms A/B/C/D/E/H/J/M/MC/CX are expressed as 
the result of different promoter use, while this has not been confirmed for the 
MITF-Mdel splice forms [3, 182, 183]. In all, the 10 characterized distinct 
promoters that give rise to the specific isoforms also differs in their first exons. 
Each MITF isoform transcript encodes an isoform-specific variable exon 1. 
During transcriptional processing the initial exon is spliced into that later part 
of exon 1B (1B1b) together with exons 2-9. The latter encodes the essential 
motifs of MITF including the bHLHZip, transactivation domains and 
important sites for post translational modifications (Figure 8). However, exon 
1B1b is excluded in the MITF-M transcript and the variable exon 1M of 
MITF-M is directly spliced onto exon 2-9 [3]. The exon 1B1b has been 
proposed to be important for cytosolic retention. Thus, the lack of exon 1B1b 
in the MITF-M isoform is believed to be one of the causes that explain its 
restricted nuclear localization in melanocytic cells [184]. In addition to these 
promoter regulated isoforms, a number of other isoforms lacking individual 
exons have also been identified [185]. However, the biological significance of 
these is yet to be uncovered. 

The majority of the MITF isoforms are broadly expressed and only the M-
, CX- and MC-isoforms are tissue restricted to melanocytes [186], cervical 
stromal cells [182] and mast cells [187], respectively. Although, these isoform 
are cell type specific, cells express a variety of MITF isoforms. Moreover, the 
MITF isoforms A, B, E, H and J are expressed in most cell types. Although 
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MITF-D is mainly expressed in cells important for bone tissue removal 
including osteoclasts, bone marrow-derived osteoclasts and osteoclast 
progenitors, there is no known osteoclast-specific isoform. In human 
osteoclasts, the A-, E-, H-, and B-isoforms are expressed whereas the A-, C-, E-
, H-, D-, and B-isoforms are expressed in mouse osteoclasts [3]. Examination 
of the retinal pigment epithelium (RPE) cells that express enzymes involved in 
the pigment production pathway, showed expression of MITF-A, MITF-C, 
MITF-D, MITF-H and MITF-J [3, 188, 189]. Notably, despite being the 
melanocyte specific isoform, MITF-M in a recent study has been found to also 
be expressed in human RPE cells [190]. 
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proline-threonine) that is located upstream of the DNA binding basic region. 
Both products are expressed at similar level [173]. Importantly, these splice 
forms are distinct in two aspects: one, the MITF(+) has a higher binding 
affinity to the DNA E-box sequence [180] and two, the MITF(+) isoform 
exhibits a strong inhibitory effect on DNA synthesis in HEK293T cells [191]. 
However, the latter does not seem to be dependent on the E-box binding 
capacity. Evidence presented illustrates that the MITF(+)E213A mutant that was 
unable to correctly interact with the E-box, was still capable of interfering with 
DNA synthesis as determined by bromodeoxyuridine (BrdU) incorporation. 
This suggests that direct DNA binding is not the mechanism through which 
DNA incorporation is facilitated [191]. In melanoma the ratio of MITF(+) to 
MITF(-) is regulated by the ERK-MAPK pathway. Specifically, the inhibition 
of the MAPK pathway excludes the 6a exon from the MITF-A/H/J/M 
isoforms [192]. Interestingly, although the expression ratio between the splice 
forms are dependent on MEK-1 and ERK-2, the mutational status of BRAF or 
NRAS in melanoma cells is not affecting this ratio. Consistent with the 
observation that MITF(-) favors proliferation in the HEK293T cells, it was 
found that MITF(-) is predominantly expressed in metastatic melanoma 
whereas MITF(+) is expressed in the surrounding epidermis [192]. 

MITF	mutations	
The Mitf gene has been found in many different species and determined 

to be highly conserved [193]. Numerous mutations have been identified in the 
gene and characterized in several vertebrate species. However, most of these 
mutations are studied in humans and mice. Mice are the best studied in vivo 
model system for Mitf mutations, and to date more than 25 Mitf mutations are 
known in mice whereas only 9 mutations have been found in humans [193-
197]. Collectively, as MITF is the master regulator of melanocytes, all the 
mutations known thus far affect the function of melanocytes. Nearly all the 
homozygous and many of the heterozygous Mitf mutations produce 
diminished pigment in the coat and inner ear of mice. Moreover, the majority 
of these mutations also generate microphthalmia that is characterized by 
abnormal eye development, due to deficiencies in RPE cells. Some of the 
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mutations are also linked to hearing loss, abnormal mast cells and defective 
osteoclasts that could give rise to osteopetrosis associated with excess and brittle 
bone formation [193]. The most severe Mitf phenotype in mice is due to 
mutations in the basic domain that is important for DNA binding [198, 199]. 
Interestingly, the phenotypic severity of some Mitf mutants in heterozygotes 
does not necessarily produce the expected more severe phenotype in 
homozygous condition. For example, homozygous Mitf Microphthalmia-white (Mitf mi-

wh) mice are completely devoid of pigmentation and exhibit intermediate 
microphthalmia. Heterozygotes have grey coat color, white belly spot but 
normal eye development. However, Mitf vga9/Mitf vga9 mice are completely white 
with severe microphthalmia whereas heterozygotes are perfectly normal (Figure 
9). Interestingly, when these mice are crossed, creating Mitf mi-wh/Mitf vga9 mice, 
the mice are white but with normal eye development. This is termed 
interallelic complementation. [198, 199]. These inconsistencies are attributed 
to the dominant negative activities exerted by atypical DNA binding and the 
intact ability for interaction or dimerization with other proteins. The crystal 
structure of MITF that helped us explain the property of interallelic 
complementation unique to the Mitf mi-wh mutation is further elaborated in 
Article III. The Mitf mi-spotted (Mitf mi-sp) mutation is another interesting mutation 
as it has no effects in either homo- or heterozygous condition except for 
reduced tyrosinase activity in the skin. A similarly mild allele is Mitf mi-vitiligo 
(Mitf mi-vit) that affects melanocyte stem cells in the hair bulb niche. The loss of 
such cells results in gradual depigmentation of the coat over time [200]. 
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genetic disorder related to Tietz syndrome and depending on the severity the 
clinical presentations are hypopigmentation, craniofacial deformities, deafness 
and microphthalmia. WS is divided into four subtypes (WS1-4) in which the 
core auditory and pigmentary features are shaped by haploinsufficiency of the 
MITF gene [194, 205]. More recently, it has been revealed that an MITF 
germline mutation is linked to the increased risk of the development of 
melanoma and renal cell carcinoma. The causative factor is the substitution 
mutation E318K that prevents a posttranslational modification, SUMOylation 
and thereby mildly hyperactivates MITF. Patients carrying the mutation had 
more than a fivefold increased risk of disease development [197, 206, 207]. To 
conclude, MITF mutations affects many different tissues with diverse 
biological functions that span from normal physiological development to 
tumorigenesis. 

MITF	phosphorylation	and	KIT‐related	signaling	
As the one of the most potent proteins in melanocyte regulation, the 

expression and activity level of MITF is strictly controlled. MITF activity is 
tightly regulated by several post-translational modifications of which, serine 
phosphorylation by the MAPK signaling cascade is the best characterized. 
Initially, the functional interaction between MITF and the KIT receptor was 
predicted with the observation that mice heterozygous for both Mitf mi-wh and 
Kit W-36H exhibited much more extensive white spotting than heterozygous mice 
with a mutation in either of the genes alone [208-210]. Indeed, first reports 
highlighted the requirement of the KIT-ERK-MAPK pathway for Ser-73 and 
Ser-409 phosphorylation of MITF after KIT ligand stimulation. The activation 
of KIT triggers ERK2 to directly phosphorylate MITF at Ser-73 and mediates 
MITF Ser-409 phosphorylation via the Ser/Thr kinase p90RSK-1 [211, 212]. 
The MAPK-ERK signaling pathway increases MITF activity in luciferase 
reporter assay and the activity were observed to be phosphorylation-dependent 
as the introduction of constitutive active ERK mediated the activity of wild-
type MITF but not the S73A or S409A MITF mutants. Moreover, 
phosphorylation of the serine sites also subjects MITF to polyubiquitination on 
Lys-201 which finally leads to protein degradation [211-213]. One of the 
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genes identified to be activated as a result of KIT-MITF signaling was the cell 
death regulator B-cell lymphoma 2 (BCL2) that implicates the survival role of 
KIT and MITF in the melanocyte lineage [213]. Even though the biochemical 
data suggest the importance of the phosphorylation sites Ser-73 and Ser-409 in 
melanocyte cell line, in vivo data supporting this notion is lacking. Rather, 
mice with white coat color and severe microphthalmia carrying the Mitf mi-vga9 
loss-of-function mutation were rescued with the bacterial artificial 
chromosome (BAC) containing Mitf mutation S73A, S409A or S73/409A 
[214]. The BAC Mitf mutants or BAC wild-type Mitf mice displayed normal 
dark coat color and did not show any degree of microphthalmia. Thus, the 
absence of results that link MITF phosphorylation to in vivo function, indicate 
that KIT signaling might affect additional phosphorylation sites of MITF 
[214]. For this reason, we decided to identify novel MITF phosphorylation 
sites using mass spectrometry and phospho-specific antibodies discussed in 
Article IV and V. 

Although the transactivational activity of MITF is elevated by 
phosphorylation, it does not alter nuclear localization, DNA binding or 
dimerization. Conversely, KIT-mediated ERK activation facilitates selective 
recruitment of the co-activator histone acetyl transferase (HAT) p300/CBP 
which interacts with MITF to cooperatively enhance transactivation activity 
[215]. The p300/CBP enzyme is best known for its chromatin remodeling 
properties; however, in this case it is not known if the target is MITF itself or 
the chromatin of MITF target genes. Alternatively, p300/CBP might also act 
as a scaffolding protein that facilitates MITF activity by stabilizing the 
transcriptional machinery [193]. 

Located in a region C-terminal to the bHLHZip domain of MITF, the 
Ser-298 phosphorylation site was discovered to be mutated to a proline in WS2 
patients [203]. Further, in vitro kinase assays established that the Glycogen 
synthase Ser/Thr kinase 3 (GSK3) directly phosphorylated MITF on Ser-298 
and thereby considerably enhancing the ability of MITF to interact with the 
tyrosinase promoter E-box DNA element [196]. In melanoma cells, the 
replacement of Ser-298 with either the non-phosphorylatable residues proline 
or alanine impaired the ability of transactivation by more than half. The effect 
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does not seem to be due to protein stability, because in contrast to S73A and 
S409A, the S298A MITF mutant displayed expression and stability 
comparable with wild-type MITF [196]. Another phosphorylation site located 
close to Ser-298 is Ser-307 which to date is the only site that has been verified 
to be phosphorylated by site-specific antibodies. Signaling by the stress kinase 
p38 after Receptor activator of nuclear factor kappa-B ligand (RANKL) 
stimulation in osteoclasts leads to the phosphorylation of Ser-307. 
Significantly, the elevation of Ser-307 phosphorylation of MITF was observed 
to occur in parallel to the increase of MITF osteoclast target gene expression. 
This indicates that Ser-307 is important for osteoclast function. Although the 
study was limited to osteoclasts, the p38 stress pathway is also involved in 
melanocytes where it is activated by UV radiation, thus this site might also be 
of relevance in melanocytic cells [216]. 

Transcriptional	regulation	of	MITF	
In addition to the numerous post-translational modifications that modify 

the activity of MITF, expression regulation is another level of control to ensure 
proper function. The transcription factors known to directly regulate the level 
of MITF through promoter binding are CREB, SOX10, PAX3, and LEF1. As 
mentioned above, the binding of α-MSH to the seven-transmembrane MC1R 
protein leads to elevation of cAMP concentrations in melanocytes which 
switches on the bZip transcription factors CREB and ATF1. Activated CREB 
and ATF1 in turn bind to the CRE in the promoter of MITF, whereby 
transcription is initiated [217, 218]. As a consequence of MITF transcription 
the MITF downstream key proteins for melanin synthesis including 
Tyrosinase, Tyrosinase-related protein-1 and -2 (also known as Dopachrome 
tautomerase (DCT)) are elevated [219-221]. For the reason that the cAMP 
response pathway can be activated by numerous signaling cascades and is 
involved in many different cell types, the mechanism that keeps MITF-M 
expression limited to melanocytes is regulated by the SOX10 transcription 
factor. Specifically, it was found that ectopic expression of SOX10 in addition 
to cAMP signaling was required for the transactivation of CRE in the MITF 
promoter [222]. Although SOX10 and MITF mutations are found in different 
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subtypes of WS, the observation that mutations of SOX10 caused deafness and 
pigmentary abnormalities similar to MITF helped to identify SOX10 as a 
potential regulator of MITF.  Later, SOX10 was shown to be essential for the 
development of melanocytes owing to its ability to directly regulate MITF-M 
via several consensus promoter and distal enhancer binding sites [223-226]. 
Evidence that SOX10 is a direct modifier of MITF expression was further 
strengthened by the use of a SOX10 dominant negative mutant found in 
human WS4. This mutant prominently reduced the transactivation of MITF 
promoter in melanoma cells [223]. 

The PAX3 transcription factor is mutated in the WS subtypes 1 and 3. 
Interestingly, symptoms such as pigmentary disorder and hearing loss of WS1 
patients overlap with the MITF-related WS2 phenotype, which suggests a 
genetic connection between PAX3 and MITF. The epistatic link between 
PAX3 and MITF was confirmed by electrophoretic mobility shift assay that 
showed direct binding of PAX3 to the MITF promoter and luciferase assay, 
establishing that the transactivation of MITF promoter by PAX3 [227]. 
Moreover, PAX3 and MITF also share the downstream target gene Tyrosine 
related-protein-1 which further implicates the role of PAX3 in melanocyte 
development and function [228]. 

The WNT signaling pathway is implicated in the development of 
melanocytes. Several lines of observations support this view. First, knockout 
mice lacking the expression of the secreted paracrine acting factors WNT1 and 
WNT3a completely terminate that expression of Tyrosine-related protein 
(Trp) -2 in melanoblasts [229]. Second, overexpression of the ß-catenin 
transcription factor, a protein that is stabilized by WNT binding to the G 
protein-coupled Frizzled receptor, by mRNA injection into the premigratory 
neural crest cells of zebrafish promotes pigment cell formation at the expense of 
neurons and glia cells [230]. Third, WNT- signaling activation promotes the 
accumulation of ß-catenin that mediates synergistic transactivation of the early 
marker of melanoblast differentiation, Trp-1 promoter. Transactivation of the 
Trp-1 promoter is executed by the functional cooperation between ß-catenin, 
MITF and the Lymphoid enhancer-binding factor-1 (LEF-1). Importantly, 
LEF-1 also directly upregulates the expression of MITF by complexing with ß-
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catenin or alternatively by the interaction between all three factors that directly 
transactivates the M promoter on MITF [231]. This mode of regulation 
establishes a feedback loop that enhances MITF expression and drives the 
development of melanoblasts. 

MITF	target	genes	
As the master regulator of melanocyte development, MITF is involved in 

essentially all aspects of melanocyte function. To date, more than 40 MITF 
direct target genes have been reported and verified [232, 233] and for 
simplification they are classified into 4 different groups. 

Differentiation	
 Tanning response is a phenomenon in which melanocytes are triggered to 
produce and distribute melanin to the surrounding cells. This coordinated 
action requires regulation of numerous MITF-dependent genes (Figure 10). As 
mentioned, melanin is synthesized within specialized vesicular melanosomes. 
The formation of these organelles is facilitated by MITF that was identified in 
an electrophoretic shift assay to be bound to the promoters of the melanosome 
structure- and maturation-related genes SILVER and MLANA. [234]. Once 
the melanosomes are formed MITF transcribes the melanin producing 
enzymes Tyrosinase, Trp-1 and Trp-2 which catalyze the production of 
melanin in the melanosomes. However, in order for the desired ratio between 
eumelanin and pheomelanin to be produced, the pH within the melanosomes 
has to be critically controlled [235]. The ionic equilibrium in melanosomes is 
suggested to be modified by MITF through the membrane transporter Solute 
carrier (SLC) genes [233]. As soon as melanin is ready for distribution, MITF 
ensures melanosome trafficking and distribution by transcribing the RAB27A 
and DIAPH1 that allow melanosome interaction with the actin network and 
regulate the actin dynamics for the formation of melanocyte dendrites [236, 
237]. Thus, many if not all essential aspects of melanocyte function and 
development are regulated by the transcription network of MITF. 
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dependent changes [213, 238, 239]. Moreover, genomic analysis of melanoma 
cell has identified MITF as an amplified lineage survival oncogene [240].  
 The transcription factor hypoxia inducible factor 1ɑ (HIF1ɑ) is stabilized 
during cellular oxygen deprivation and promotes genes engaged in 
angiogenesis. However, in melanoma it has been found to be constitutively 
active in normoxic conditions. The MITF target gene BCL2 prevents HIF1ɑ 

degradation by involving the molecular chaperone Heat shock protein 90 
(HSP90) and forming a trimeric complex consisting of BCL2, HSP90 and 
HIF1ɑ [241]. Alternatively, MITF can also directly transactivate the HIF1ɑ 
gene and thereby facilitate its activity [242]. In melanoma cells, HIF1ɑ 
stimulates survival by interfering with the activity of caspases. In light of these 
observations it is tempting to speculate that the anti-apoptotic activities in 
melanoma cells via HIF1ɑ are controlled by MITF via two different 
mechanisms. In addition to BCL2 and HIF1ɑ, MITF also regulates the 
expression of melanoma oncogenes MET receptor tyrosine kinase and 
melanoma apoptosis inhibitor BIRC7. It has been shown that MITF directly 
binds to the promoters of these genes and the silencing of BIRC7 and MET 
reduces melanocytic cell viability and migration [243, 244]. In short, MITF 
controls a broad network of genes that is significantly required for melanoma 
cell survival. 

Pro‐	and	anti‐proliferation	
The acquisition of control over cell cycle proteins and overcoming senescence 
are hallmarks of melanoma growth. As noted, the cell cycle inhibitors and 
senescence mediators p16INK4A and p14ARF encoded by the CDKN2A and 
p21Cip1 encoded by WAF1 are frequently mutated in melanoma cells. Also, the 
cell cycle mediator Cyclin D1 (CCDN1) gene is amplified in around 25 % of 
human melanomas [245]. All these genes are direct targets of MITF which has 
been found to positively mediate expression [246-248]. However, indirect 
regulation of the p21Cip1 and p19ARF also encoded by the CDKN2A gene, is 
implicated by the T-Box transcription factor 2 (TBX2). This transcription 
factor TBX2 is overexpressed and plays an important role in maintaining 
proliferation and suppression of senescence in melanoma cells [249, 250]. 
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Interestingly, TBX2 is the first characterized target gene of MITF that is not 
involved in melanin synthesis. Moreover, because TBX2-mediates control of E-
cadherin expression it is suggested that MITF through TBX2 not only 
regulates melanoma growth but also plays a role during radial to vertical 
growth phase transition [251]. Another melanoma proliferation and invasion 
gene is the DIAPH1 gene which is engaged in the regulation of actin 
polymerization. The study performed by Carreira et al. [237] demonstrated 
that the depletion of MITF led to the downregulation of DIAPH1 and 
subsequently reorganization of the cytoskeleton via the actin network that 
favored melanoma invasion. In contrast, since DIAPH1 indirectly promoted 
the degradation of the cell cycle inhibitor p27Kip1, depressed levels of MITF 
contributed to elevated p27Kip1 which in turn put melanoma into cell cycle 
arrest [237]. 

In order to understand and describe the dual edged nature of MITF, a 
rheostat model was invented to reconcile the pro- and anti-proliferative roles 
[237]. This model describes MITF as a rheostat that dynamically fine-tunes 
melanoma behavior (Figure 11). Significantly, it predicts that at the lowest 
level of MITF activity melanoma cells are in a state of senescence and at an 
intermediate low level of MITF, cells possess a stem-cell like behavior but with 
a heightened invasive potential. Intermediate high levels of MITF generate 
proliferative cells. At the highest level of MITF activity, cells switch over to a 
differentiated pigment producing phenotype. Thus, according to this model, 
MITF does not simply act as an on/off switch but rather as a dynamic 
molecular gatekeeper that, depending on protein level and the addition of post-
translational modifications, regulates the behavior of melanocyte/melanoma 
cells [252]. 
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PRESENT	INVESTIGATION	

Summary	and	discussion	

Article	I.	
Elucidation of functional differences between KIT splice forms 

KIT activation is an essential component in normal physiological and 
oncogenic development of many different tissues [107]. Thus, delineation of 
mechanisms regulating receptor activation facilitates the finding of therapeutic 
intervention against disease in which KIT plays an important role. KIT 
activation by KIT ligand starts in the extracellular domain of the receptor 
which not only captures the ligand but also structurally stabilizes the ensuing 
homodimerization [100]. The extracellular domain is coupled to the 
transmembrane domain which in turn is joined to the kinase intracellular 
kinase interface [79]. Therefore, conformational changes in the extracellular 
region are believed to be relayed to the intracellular parts of the receptor. 
Illustration of this concept is demonstrated by the distinct phosphorylation 
pattern observed with receptor splice forms KIT(-) and KIT(+) [119]. The 
receptor splice forms are produced by alternative splicing of mRNA encoding 
KIT [114]. These protein isoforms are different in that KIT(+) possesses an 
amino acid tetrapeptide, GNNK, located in the juxtamembrane domain at the 
carboxyl-terminus of the extracellular domain. In contrast, the lack of 
tetrapeptide insert in KIT(-) generates increased receptor phosphorylation, 
ubiquitination, internalization and downstream signaling [119]. Although, the 
expression ratio of the splice forms are clinically relevant in diseases such as 
multiple myeloma [253], testicular germs cell tumors [254] and acute myeloid 
leukemia [255], it is unclear how the tetrapeptide insert modulated KIT. To 
clarify this, different KIT splice forms and mutants with different insert length 
were generated. In addition to the following isoforms and mutants: KIT(-), 
KIT(G), KIT(GN), KIT(GNN) and KIT(+), the KIT(AAAA) mutant with an 
alanine substituted tetrapeptide insert was also generated to identify whether 
the length or the specific sequence of the insert controls KIT activity. Transient 
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overexpression and stimulation of these receptors in mouse melanoma B16F0 
cells showed that the increase of the insert length in a stepwise manner 
gradually reduced receptor tyrosine phosphorylation, downstream signaling, 
ubiquitination and receptor internalization. Likewise, the insert length also 
contributed to a measurable cellular output that suggested increasing insert 
length is associated with a corresponding sensitivity to melanoma drug 
treatment. Melanin extraction from B16F0 cells transfected with different KIT 
isoforms and insert mutants stimulated with KIT ligand, illustrated that 
pigment production was gradually improved by increasing KIT peptide insert 
length. The more rapid induction of differentiation or pigment production by 
longer insert length might explain the counteracting effect on 
survival/proliferation. Interestingly, the KIT(AAAA) mutant did not behave 
either like KIT(-) or KIT(+), but rather like KIT(G) or KIT(GN) in all of the 
mentioned experiments. 

Based on previous observations by Bell et al. [256] on the rotation of the 
intracellular kinase interface of the related NEU receptor tyrosine kinase, we 
propose that the tetrapeptide insert of KIT modulates receptor activity in a 
similar fashion. The study showed that alteration of the alpha-helical structure 
of the receptor in the transmembrane domain by gradually increasing the 
length of the helix progressively shifted the orientation of the kinase interface 
[256]. Indeed, focus formation assays of cells transfected with the different 
transmembrane modified NEU mutants demonstrated that the increased 
length of the region was correlated to increasing foci detection to a point at 
which further length increments were negatively linked to foci formation. The 
latter was observed because rotation of the internal kinase domains until they 
face one another favors receptor activation. However, further lengthening of 
the transmembrane region of the receptor also additional rotates the kinase 
domains beyond optimal position of activation.  In essence, the study suggests 
kinase regulation by structural means in the receptor transmembrane domain. 
In line with this, the tetrapeptide insert location in the extracellular 
juxtamembrane domain that is coupled to the kinase interface most likely 
modifies the kinase orientation of KIT. In absence of the tetrapeptide insert, 
the kinases of a KIT homodimer are facing one another and are consequently 
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in a favorable position for effective trans-phosphorylation. Thus, insertion of 
extra residues in this region turns the kinases away from each other and reduces 
trans-phosphorylation efficiency. Unlike, the NEU receptor, the tetrapeptide 
insert of KIT is not an alpha-helical structure. One full rotation in an alpha-
helix would require 3.6 amino acids, thus the tetrapeptide GNNK would in 
that case be positioning the kinase interface similar to KIT receptor without 
the insert. However, since GNNK is predicted to be a coiled-coil structure, the 
tetrapeptide insert turns the kinase interfaces 180 °, hence turning them away 
from one another that lead to an unfavorable position for receptor activation. 
Unlike the GNNK tetrapeptide insert the AAAA insert consist of alanine that 
together are less bulky and therefore do not generate a mutant that behave like 
KIT(+). Instead the KIT(AAAA) mutant is similar to KIT(G) or KIT(GN), 
which suggests that these mutants have similar lengths. Finally, our results 
provide an explanation to the modulating function of the extracellular 
juxtamembrane domain of KIT receptor. 

Article	II.	
Identification and characterization of MITF-activating and KIT ligand-dependent 
signaling pathways 

The function of both MITF and KIT is essential for the development of 
melanocytes. It has been proposed that KIT-mediated activation of MITF 
regulates melanocyte differentiation and pigment production. Consequently, 
the loss of function mutation of MITF in mice results in phenotypes 
resembling mutations that disrupt the KIT ligand or the KIT gene. In these 
animals, melanocytes do not develop normally, they fail to migrate or 
differentiate [257-259]. To date, there are two mechanisms by which KIT is 
suggested to activate MITF. First, KIT ligand stimulation triggers ERK2 of the 
MAPK pathway to directly phosphorylate MITF at S73 that results in 
increased transcriptional activity and reduced protein half-life via 
ubiquitination and subsequent degradation of MITF [211]. Second, KIT 
ligand-dependent activation of ERK engages the serine/threonine kinase 
p90RSK-1 to phosphorylate MITF at S409 which further enhances 
transactivation activity. Supporting this notion was the observation that MITF 
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transactivational activity of the tyrosinase promoter was severely reduced by 
single or double mutation of S73A or S409A [212]. However, these signaling 
events are not evident in in vivo models using knock-in and BAC transgene 
rescue strategies to study the function of melanocyte with respect to mice coat 
color development. Mice with S73A, S409A or S73/409A MITF expressing 
melanocyte displayed a coat color phenotype similar to wild-type MITF 
expressing mice [214]. Thus, additional mechanisms for regulating MITF 
function are likely present and a mapping effort is needed to better understand 
the role of MITF in melanocytes. 

In Western blot (WB) the MITF protein is observed as a double protein 
band. Upon KIT ligand stimulation the lower band undergoes a mobility shift, 
and the signal ratio between the two bands becomes dominated by the higher 
molecular weight upper band. However, the MITF mutants S73A and S409A 
only resolve as a single lower protein band. Thus, this distinctive shift is 
believed to be caused by phosphorylation of either S73 or S409. We employed 
the mobility shift strategy to pinpoint the specific tyrosine phosphorylation 
residues of KIT required to activate MITF. Using HEK293T cells and the 
mouse melan-a melanocytes, in Article II we showed that the KIT mutants 
Y568F and Y721F that are defective in SRC-RAS-RAF-MEK-ERK and p85-
p110-AKT signaling, respectively, did not induce MITF mobility shift. This 
was further verified with inhibitors against SRC, MEK, PI3K and AKT. In 
addition, inhibition of the p38 stress MAPK pathway in the melan-a and 
HEK293T cells demonstrated that p38 is needed for MITF activation in a KIT 
ligand-dependent manner. The mitogenic response of the signaling events was 
also measured in HEK293T cells, in which co-transfection with the Y568F or 
Y721F KIT mutants, together with MITF resulted in lower proliferation upon 
KIT ligand stimulation compared to samples transfected with wild-type KIT 
and MITF. This indicates that the KIT ligand-dependent PI3K-AKT and 
SRC-MAPK signaling pathways that mediate MITF activation are important 
for HEK293T cell proliferation. 

Overall, our article identified several signaling proteins and pathways that 
participate in the MITF mobility shift. The observation that the inhibition of 
one specific downstream protein of KIT was sufficient to completely terminate 
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the mobility shift, suggests the participation of all the studied KIT pathways 
are required for such alteration. However, as we only studied protein mobility 
shift which indicates change of phosphorylation, it does not provide direct 
measurement of MITF activity. Thus, it would be of interest to determine how 
these signaling pathways individually affect MITF activity, in for instance, a 
luciferase assay. However, the identification of the additional signaling partners 
downstream of KIT that engage MITF signaling is important for recognizing 
the complex pathways that enhance MITF phosphorylation. Moreover, our 
study also links the proliferative effects of specific KIT signaling cascades via 
MITF and establishes a biological effect that further progresses our 
understanding of KIT and MITF interaction at the cellular level. 

Article	III.	
MITF crystal structure determination 

MITF is one of the most important regulators of melanocyte 
development, survival and differentiation. In addition, MITF is also needed for 
the normal development and function of osteoclasts, mast cells, retinal pigment 
epithelium and stem cells of the hair bulge [193]. To regulate genes, MITF 
either act as a homodimer or as a heterodimer with the related TFE family of 
bHLHZip transcription factors, TFEB, TFEC and TFE3. Despite common 
recognition of the E-box sequence by the basic residues in their DNA-binding 
regions, MITF does not form heterodimers with the other bHLHZip 
transcription factors, MYC, MAX or USF [180]. Unlike transcription factors 
in the bHLHZip family MITF also binds to the distal enhancer element M-
box [260]. To elucidate the restricted heterodimerization ability as well as the 
unique recognition of the M-box, we determined the crystal structure of 
MITF. 

Article III shows that the dimeric apo structure of MITF consists of two 
interacting protomers forming a four-helical bundle. This leucine zipper 
assembly facilitates protein dimerization. Distinct from the other bHLHZip 
transcription factors, dimerized MITF is not symmetric and contains a kink 
that spans a length of 3 amino acids in one of the protomers. The discovery of 
such out-of-register structure helped to explain the selective dimerization 
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towards TFEB, TFEC and TFE3 but not to MYC, MAX or USF. Strategically 
deleting the three residues generated the MITF mutant, Δ260-262 that 
possessed a leucine zipper in the same register as MAX. As predicted, this 
mutant was observed in electrophoretic mobility assays to assemble with MAX. 
Moreover, the structure of MITF in complex with E-box and M-box DNA 
elements revealed critical residues in DNA binding recognition. His-209 was 
determined to aid in the overall binding of both M- and E-Box, whereas Ile-
212 regulates the binding specificity towards M-box. Indeed, the H209R 
MITF mutant showed reduced M- and E-box binding affinity as well as 
increased non-specific DNA binding, whereas the I212N MITF mutant 
displayed decreased M-box binding, enhanced E-box binding and a slight 
increase in non-specific DNA binding. 

Article III not only explains the structural basis of MITF that enables the 
selective dimerization with TFEB, TFEC and TFE3 and the M-box binding 
specificity mediated by Ile-212, but also the MitfMi-Wh (I212N) mouse 
phenotype. Mice homozygotes for this mutation are white with mild or 
intermediate microphthalmia that is a condition characterized by abnormally 
small eyes. Heterozygous MitfMi-Wh mice have large white belly spot and diluted 
coat color which are the most severe heterozygous phenotype of all known Mitf 
mutations. Strikingly, MitfMi-Wh mice crossed with the loss-of-expression Mitfvga9 
mutations exhibit interallelic complementation. Homozygous Mitfvga9 mice 
displays severe microphthalmia, but MitfMi-Wh/vga9 mice have normal eye 
development. As the result of reducing the MitfMi-Wh (I212N) concentration by 
half the effect of the mutation on microphthalmia is rescued. This phenotype 
can be explained by our structural data suggesting that interallelic 
complementation by these two mutations is simply the result of decreased non-
specific DNA binding caused by MitfMi-Wh alone. Thus, reducing the dose of 
MitfMi-Wh also mitigates the destructive effects of non-specific DNA binding. In 
conclusion, the crystal structure of MITF helped to explain the dominant 
negative effects of MITF mutants and its restricted dimerization capacity 
towards related transcription factors. 
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Article	IV.	
Identification of KITD816V-mediated MITF tyrosine phosphorylation and gene 
regulation 

Signaling between KIT and MITF is well established to be important for 
melanocyte function [209]. However, how MITF is regulated by constitutively 
active KIT that harbors oncogenic mutations is not well understood. Recently 
the D816V mutation of KIT, located in the second part of the kinase domain, 
has been found to control the expression of MITF through miRNAs. More 
specifically, the forced expression of KITD816V in mast cells suppressed the 
expression of miR-381 and miR-539 and thereby robustly increased the levels 
of MITF proteins [261]. These observations together with the fact that wild-
type KIT mediates phosphorylation of MITF [211, 212], suggest a causal link 
between oncogenic KIT and MITF. In Article IV, we sought to identify and 
characterize phosphorylation sites of MITF induced by KITD816V. 

Using mass spectrometry we found three tyrosine phosphorylation sites 
located in the N-terminus of MITF to be phosphorylated in the presence of 
KITD816V, namely Y22, Y35 and Y90. We made phosphorylation site-specific 
antibodies and verified that these tyrosine sites are phosphorylated in vitro. 
Furthermore, using general tyrosine phospho-specific antibodies we also 
determined that MITF tyrosine phosphorylation was completely absent when 
co-transfected with wild-type KIT in the presence of KIT ligand. Because 
phosphorylation of MITF could alter subcellular localization of the protein 
[262] we also studied the effects of tyrosine phosphorylation on nuclear 
localization. Interestingly, KITD816V but not wild-type KIT mediated cytosolic 
retention of MITF. This was tyrosine phosphorylation-dependent as the 
Y22/35/90Y MITF mutant was localized to the nucleus despite being co-
expressed with oncogenic KIT. Analysis of our confocal microscopy images of 
subcellular localization also showed elevated co-localization between KITD816V 
and MITF which prompted us to investigate the possibility of direct protein 
interactions. Immunoprecipitation of KIT in B16F0 cells co-expressed with 
MITF and KIT pulled down MITF. Accordingly, MITF was only co-
immunoprecipitated with oncogenic KIT but not wild-type KIT irrespective of 
KIT ligand stimulation. However, the specific sites of MITF that directly 



64 
 

interact with KIT receptor are yet to be determined. In addition to the effects 
on subcellular localization and direct interaction, we also observed differential 
regulation of MITF-dependent target genes by wild-type KIT and KITD816V. 
For the qPCR gene array experiments we chose to analyze the expression of 
genes verified to be direct targets of MITF and are involved in 
melanocyte/melanoma activities such as proliferation, survival, angiogenesis, 
cell cycle initiation, cell cycle inhibition differentiation and tumor suppression. 
The treatment of siRNA against MITF (siMITF) in the mouse melanoma 
B16F0 cells resulted in decreased expression all genes (p35, TBX2, BCL2, 
Sox10, Cdk2, Hif1a, Diap1, Cdkn1a, Dct, Cdkn2a, Tyr, Trp1, Mlana, Runx3 
and S100a) assayed in the study, confirming that these genes are in fact targets 
of MITF. Stimulation of endogenous mouse KIT by the addition of mouse 
KIT ligand selectively increased the expression of genes engaged in 
differentiation, tumor suppression and cell cycle inhibition. In contrast, cells 
stably transfected with KITD816V displayed a gene expression pattern in which 
genes important for melanocyte/melanoma proliferation, survival, angiogenesis 
and cell cycle initiation were upregulated and genes involved in differentiation, 
tumor suppression and cell cycle inhibition were suppressed. To determine the 
role of the tyrosine phosphorylation sites of MITF in gene regulation imparted 
by KITD816V, we transiently transfected B16F0 cells with either wild-type 
MITF or Y22/35/90F MITF triple mutant together with KITD816V. As 
expected, samples co-transfected with KITD816V and wild-type MITF displayed 
elevated expression of genes involved in proliferation, survival, angiogenesis 
and cell cycle initiation whereas genes involved in differentiation, tumor 
suppression and cell cycle inhibition did not significantly increase. Notably, 
this pattern of expression was severely diminished in the sample in which 
MITF triple mutant and KITD816V were co-expressed, indicating that intact 
tyrosine phosphorylation sites of MITF are required for the specific gene 
regulation induced by KITD816V. 

In this study we are the first to report cytosolic localization of the 
melanocyte specific MITF-M isoform. The expression of MITF-M, as 
mentioned in the background of this thesis, is restricted to melanocytes 
(recently, also in RPE) and its subcellular localization has so far been found to 



65 
 

be limited to the nucleus [184, 190]. However, mutated MITF-M has been 
demonstrated to localize in the nucleus. A WS2-associated mutation that 
terminates part of the nuclear localization signal of MITF protein is so far the 
only reported study of MITF-M cytosolic localization in melanocytic cell lines. 
The specific mutation terminates part of the nuclear localization signal of 
MITF and was identified as the causative factor [263]. Another region of 
MITF thought to be important for cytosolic localization is the 1B1b exon 
(Figure 8) which, in contrast to other MITF isoforms, is missing from the 
MITF-M isoform [3]. For example, MITF expressed in monocytes, cells 
closely related to osteoclasts, is primarily located in the cytosol and only upon 
the addition of osteoblast factors CSF-1 and RANKL, is MITF translocated to 
the nucleus. In this case, the 14-3-3 interacting protein directly binds to MITF 
in the absence of CSF-1 and RANKL and keeps MITF in the cytosol [264]. 
However, upon differentiation CSF-1 and RANKL inactivate the interaction 
of MITF with C-TAK1 that is important for the MITF/14-3-3 complex 
formation and consequently facilitates nuclear entry of MITF [262]. Similar to 
our study, the cytosolic localization of MITF is phosphorylation-dependent. 
Ser-173 is predicted to be phosphorylated by C-TAK1 that enables MITF 
interaction with 14-3-3. Thus, unlike tyrosine phosphorylation, the mutation 
of this site keeps MITF in the nucleus. The 14-3-3 protein may potentially be 
interacting with tyrosine phosphorylated MITF to keep the transcription factor 
in the cytosol. However, to date, consensus 14-3-3 binding motifs only consist 
of sequences that are either threonine or serine phosphorylated [265]. 

As mentioned above, the oncogenic KITD816V mutation is unlike the wild-
type receptor, extensively modified with the addition of high-mannose-type N-
glycosylation which contributes to its intracellular expression pattern [139]. 
This type of post-translational modification allows KITD816V to be aberrantly 
localized to the Golgi-network where oncogenic activities are taking place. For 
instance, the unique ability of KITD816V to activate the transcription factors 
STAT-1 and STAT-5 is believed to be critical for mast cell accumulation 
typical of indolent systemic mastocytosis [266]. In accordance with this model, 
we believe that the intracellular expression pattern of KITD816V is essential for 
tyrosine phosphorylation of MITF. Supporting this notion, we observed that 
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KITD816V was indeed more diffusely expressed in the cells which indicates 
intracellular localization. More importantly, our finding that KITD816V co-
immunoprecipitated with MITF further supports this hypothesis. 

Not only is the localization of MITF controlled by KITD816V signaling but 
also the regulation of downstream target genes. In the presence of KITD816V, 
MITF was observed to stay both in the nucleus and in the cytoplasm. At a first 
glance, the fraction of MITF in the nucleus might not seem to be affected by 
KITD816V signaling. However, co-transfecting cells with both KITD816V and 
Y22/35/90F triple MITF mutant displayed a gene expression pattern that was 
severely reduced compared to samples transfected with wild-type MITF and 
KITD816V. Based on the notion that gene regulation by MITF occurs in the 
nucleus and that our experiments show differential regulation by MITF triple 
phospho-mutant, we propose that nuclear MITF in the presence of KITD816V is 
affected by receptor signaling. One possible explanation for the observation 
could be that tyrosine phosphorylation not only retains MITF in the cytosol 
but also changes the activity of MITF so that only a certain set of genes are 
transcribed. 

In summary, our study reveals oncogenic gene regulation by KITD816V 
through MITF tyrosine phosphorylation and potentially also via changed 
subcellular localization. However, more studies are required to establish the 
melanoma cellular phenotype generated by the interaction between KITD816V 
and MITF. 

Article	V.	
Biochemical characterization of MITF serine phosphorylation sites- with focus on 
Ser-73 and Ser-409 

Serine phosphorylation is one of the best characterized post-translational 
modifications of MITF. It was early recognized that the activation of KIT 
contributed to the phosphorylation of Ser-73 and Ser-409 of MITF by ERK2 
and p90RSK of the MAPK pathway [211, 212]. Interestingly, as observed in 
Article II of this thesis, the phosphorylation of Ser-73 and Ser-409 is believed 
to initiate electrophoretic mobility shift of the MITF protein. Significantly, the 
addition of KIT ligand causes the double protein bands of MITF as visualized 
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on a Western blot, to shift towards the upper band. However, the lack of 
convincing phosphatase treatment of MITF together with the lack of phospho-
specific antibodies to support this conclusion, calls for further investigations 
[211]. 

Located in the bHLHZip domain of MITF Ser-298 is phosphorylated by 
the Glycogen synthase kinase 3 in vitro. Similar to the Ser-73 and Ser-409 
phosphorylation sites, Ser-298, when mutated to alanine, also negatively affects 
the transcriptional activity of MITF that was demonstrated to be caused by 
MITF binding to DNA [196]. However, recently, the WS2A and Tietz 
syndrome associated S298P mutation was shown to have equal DNA binding 
capability as wild-type MITF in addition to increased transactivation potential 
[267]. Thus, further studies are needed to determine the role of Ser-298. To 
date, the only phosphorylation site verified by phospho-specific antibodies is 
the Ser-307 phosphorylation site of MITF. In contrast to the other 
phosphorylation sites that were discovered to be biochemically important for 
melanocytes, Ser-307 was found to be phosphorylated in RANKL stimulated 
primary osteoclasts. This specific phosphorylation is critical for the regulation 
of genes important for osteoclast differentiation [216]. 

In Article V, using mass spectrometry we found Ser-100, Ser-307, Ser-384 
and Ser-397 to be phosphorylated in vitro. In addition, we generated phospho-
specific antibodies and showed that Ser-73, Ser-307, Ser-384, Ser-387 and Ser-
409 were phosphorylated in melanoma cells. In line with previous predictions, 
our antibodies revealed that Ser-73 phosphorylation of MITF only occurs in 
the upper protein band. Moreover, Ser-73 phosphorylation was completely 
absent in the S409A MITF mutant which suggests the need of Ser-409 
phosphorylation to obtain Ser-73 phosphorylation. Unlike, Ser-73 
phosphorylation, Ser-409 phosphorylation of MITF was recognized in both 
the lower and upper protein bands. Similarly, phospho-specific antibodies 
against Ser-307, Ser-384 and Ser-397 also detected phosphorylation in both 
bands of MITF. Also unlike Ser-73 phosphorylation, these sites did not 
demonstrate dependency of other phosphorylation sites including, Ser-73, Ser-
100, Ser-298, Ser-307, Ser-384, Ser-397 or Ser-409 of MITF. 
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To determine the cause of a second protein band and to characterize how 
an electrophoretic mobility shift occurs in the MITF protein upon KIT ligand 
treatment, we subjected immunoprecipitated MITF proteins to phosphatase 
treatment. We observed that the upper protein band of MITF disappeared 
after dephosphorylation. More importantly, the lower protein band that was 
present after the treatment migrated faster than the lower band of wild-type, 
S73A and S409A forms of MITF. This suggests that the migration of the lower 
protein band of wild-type, S73A and S409A forms of MITF in an SDS-PAGE 
is also influenced by phosphorylation and that the upper band of MITF is only 
visible in the presence of Ser-73 phosphorylation. 

The transactivational activity of the different MITF serine phospho-
mutants including S73A, S100A, S298A, S307A, S384, S397A, S409A, 
S73/409A and S73/307/409A was measured in a luciferase reporter assay. The 
results showed significantly higher activity of all the mutants in the HEK293T 
cells compared to wild-type with the exception of the S307A MITF mutant. 
This can be explained with the decreased expression level of this particular 
mutant. In the B16F0 mouse melanoma cell line that endogenously expresses 
MITF, the activity of all mutants was elevated except S298A and S409A. The 
different results between the cell lines are most likely attributed to the 
endogenous expression of MITF in the melanoma cells.  

As our transactivation assays data conflict with previous results that 
showed reduced transcription activation potential of the S73A, S298A and 
S409A MITF mutants, we also re-analyzed the importance of ERK signaling 
for the phosphorylation of MITF Ser-73 and Ser-409. To do this, MITF was 
overexpressed in the human melanoma 501 mel cells that harbors the 
BRAFV600E mutation. A BRAF specific inhibitor, RAF-265, was used to block 
the ERK signaling pathway. Phosphorylation of Ser-73 and Ser-409 was still 
detected after 3 hours of incubation of the inhibitor. Indeed, the 
phosphorylation of these sites was comparable to the untreated samples which 
indicates that the ERK-MAPK pathway might not be involved in the 
phosphorylation of Ser-73 or Ser-409. 

In summary, the generation of phospho-specific antibodies against MITF 
allowed us to determine that Ser-73, Ser-307, Ser-384, Ser-397 and Ser-409 
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are phosphorylated in vitro. More importantly, the antibodies also showed that 
these phosphorylation sites are constitutively phosphorylated without 
additional stimulation. Our results are in stark contrast to previously published 
data in that we showed constitutive MITF phosphorylation, MITF 
phosphorylation independent of the ERK pathway and phospho-mutants to 
have elevated transcription activity. These discrepancies can be explained by 
the fact that previous studies lacked phospho-specific antibodies against MITF. 
Although, earlier reports correctly identified the Ser-73 phosphorylation of 
MITF as being responsible for the upper protein band, concluding that Ser-73 
phosphorylation is dependent on the ERK-MAPK pathway because inhibition 
of this pathway blocked the mobility shift of MITF protein, seems flawed. The 
differences between our transactivation data and previous results can be 
explained by several lines of observation we have made. For instance, neither 
Wu et al. [212] nor Takeda et al. [196] described the accuracy of their data. 
Statistical analysis, definition of error bars and the number of repetition of the 
luciferase assays were completely left out. More striking, is the protein 
migration pattern of the S73/409A MITF double mutant that showed the 
most significant reduction in transactivation assays performed by Wu et al. 
[212]. In agreement with our study, this mutant was seen as a single protein 
band in an SDS-PAGE. However, the protein of this double mutant migrated 
approximately 20 kDa below wild type MITF, which might suggest 
inadvertent protein truncation introduced by mutagenesis. Another line of 
inconsistency is also revealed by our observation that Ser-73 phosphorylation 
of MITF is dependent on Ser-409 phosphorylation. In other words, the S409A 
mutation which lacks Ser-73 phosphorylation should, in a transactivation 
assay, behave like the S73/409A double mutant. It is, however, also important 
to mention these discrepancies might be caused by different cell lines used for 
the assay. We used the B16F0 melanoma and HEK293T cell lines whereas Wu 
et al. used the NIH 3T3 fibroblasts to test S73A, S409A and S73/409A and 
Takeda et al. employed the NIH 3T3 cells and CV 1 monkey kidney cells to 
evaluate the activity of S298A and S298P mutants of MITF. 

Collectively, our data strongly suggest the need of revising the current 
dogma of MITF phosphorylation. However, more work is needed to identify 
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the kinases involved in the phosphorylation of MITF and to establish the 
functional significance of these phosphorylation sites in melanocytes and 
melanoma.  
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Materials	and	methods	
Cell culture conditions 
The HEK293T, B16F0, 501 mel, melan-a and A375 cells (ATCC) were 
cultured in Dulbecco’s modified Eagle’s medium and supplemented with 10 % 
fetal bovine serum and 100 units/ml penicillin streptomycin. TPA (200nM, 
Sigma-Aldrich) was also added to the culture media of the melan-a cells 
(Wellcome Trust Functional Genomics Cell Bank). The BaF3 pro-B (ATCC) 
were kept in RPMI-1640 medium with 100 units/ml penicillin-streptomycin, 
10 % heat inactivated fetal bovine serum and 10 ng/ml of IL-3. All cell lines 
were maintained in cell culture incubator at 37 °C with an atmospheric 
content of 95 % ambient air and 5 % CO2. 
Transient and stable transfection of cells 
TurboFect (Fermentas) transfection reagent was used in the ratio of 1 μg of 
DNA to 1.4 μl of reagent. Transfection reagent and DNA were mixed and 
incubated for 20 minutes at room temperature before adding to cells. Cells 
were incubated for 5 hours with the transfection complex. 
JetPEI (Polyplus) transfection reagent was used in the ratio of 1 μg of DNA to 
3 μl of reagent. DNA and reagent were mixed and incubated (15 minutes) at 
room temperature and added to suspended cells (reverse transfection). Cells 
were then incubated for 15-24 hours with the transfection complex. The 
pcDNA 3.1 vector was used for stable transfection. Transfected (JetPEI) 
B16F0 cells were selected with neomycin (1 mg/ml). 
MITF phosphatase treatment 
MITF proteins were overexpressed in the HEK293T cells and isolated with 
immunoprecipitation after overnight serum-deprivation. Proteins immobilized 
on protein G beads were washed three times with reaction buffer (10 mM, pH 
7.5, Tris-HCl, 37 °C, 10 µM MgCl2 and 0.1 mg/ml BSA) (Thermo Scientific). 
Dephosphorylation reaction was initiated using 10 units of calf intestine 
alkaline phosphatase (Thermo Scientific) and 4 units of shrimp alkaline 
phosphatase (Thermo Scientific) added immobilized MITF proteins suspended 
in reaction buffer. The reaction was allowed to occur at 37 °C for 40 minutes 
with light vortexing. In control samples phosphatase inhibitors (50 mM of β-
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glycerophosphate and 50 µM of sodium orthovanadate) were added prior to 
phosphatase treatment. 
Inhibitor treatment 
The following inhibitors were used in the study: 10 µM (30 minutes) of 
SU6656 (CalBiochem), U0126 (Promega), LY294002 (Sigma-Aldrich) and 3 
µM (30 minutes) of AKT IV (CalBiochem), 10 µM (1 hour) of dasatinib 
(Shanghai Yingxuan) and 5 µM (3 hours) of RAF265/CHIR-265 (Novartis). 
Incubation occurred in cell culture medium at 37 °C in cell culture incubator. 
Conservation of MITF tyrosine phosphorylation sites 
Multiple sequence alignment of MITF sequences from H. sapiens, M. 
musculus, B. taurus, E. caballus, C. L. familaries, D. rerio, D. melanogaster 
and X. laevis (obtained from NCBI) was performed using Clustal Omega.  
Luciferase assay analysis 
Transfection (1 ng of pRL Renilla luciferase reporter vector (Promega), 10 ng 
of mouse MITF-M either wild-type or mutated, 100 ng of tyrosinase reporter 
construct and 30 ng of KIT) was carried out in 48-well plate format. 
Incubation was allowed for 24 hours and cells were then serum starved prior to 
lysis and measurement in a luminometer (Wallac Victor 2 1420 Multilabel). 
Site directed mutagenesis 
Mutagenesis was performed with the QuikChange mutagenesis (Stratagene) 
kit. The following primer sequences were used to obtain the desired mutations: 
(MITF S73A) 
FWD-5'AGCGCACCCAACGCCCCTATGGCTATGCTCACTCT-3' 
REV-5'AGAGTGAGCATAGCCATAGGGGCGTTGGGTGCGCT-3' 
(MITF S100A) 
FWD- 5'GCAGGGCAGAGGCTGAGTGCCCAGG3' 
REV- 5'CCTGGGCACTCAGCCTCTGCCCTGC3' 
(MITF S298A) 
FWD- 5'CGCATGGACTTGCCCTTATCCCATCC3' 
REV- 5'GGATGGGATAAGGGCAAGTCCATGCG3' 
(MITF S307A) 
FWD- 5'CCGGTCTCTGCGCGCCTGATCTGGTGAATC3' 
REV- 5' GATTCACCAGATCAGGCGCGCAGAGACCGG 3' 
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(MITF S384A) 
FWD-5'CTGATGGACGATGCCCTCGCACCTGTTGGAGTCAC3' 
REV-5'GTGACTCCAACAGGTGCGAGGGCATCGTCCATCAG3' 
(MITF S397A) 
FWD- 5'CTGTCATCAGTGGCGCCAGGAGCTTCAAAAAC3' 
REV- 5'GTTTTTGAAGCTCCTGGCGCCACTGATGACAG3' 
(MITF Y22F) 
FWD- 5'CCCCACCAAGTTCCACATACAGCAAGC3' 
REV- 5'GCTTGCTGTATGTGGAACTTGGTGGGG3' 
(MITF Y35F) 
FWD- 5'GCACCAGGTAAAGCAGTTCCTTTCTACCAC3' 
REV- 5' GTGGTAGAAAGGAACTGCTTTACCTGGTGC 3' 
(MITF Y90F) 
FWD-5' 
CTGTGAAAAAGAGGCATTTTTTAAGTTTGAGGAGCAGAGC 3' 
REV-5' GCTCTGCTCCTCAAACTTAAAAAATGCCTCTTTTTCACAG 
3' 
siRNA transfection 
Predesigned siRNA primers (Mm_Mitf_7 FlexiTube siRNA) against mouse 
MITF and negative control siRNA (AllStars Negative Control) were obtained 
from Qiagen. Gene silencing was carried out using Lipofectamine 2000 
(Invitrogen). B16F0 cells seeded in 60 mm well plates were incubated with 
reaction mixture of 30 µl of Lipofectamine 2000 dispensed in 570 µl 
Optimem (Invitrogen) that was mixed with 24.9 µl of siRNA (Qiagen stock 
concentration) in 575 µl Optimem. The gene silencing reaction was allowed to 
occur for 48 hours in a cell culture incubator. Cells were then serum-starved 
overnight prior to RNA extraction. 
RNA extraction and cDNA synthesis 
RNeasy kit (Qiagen) was used for RNA extraction and genomic DNA removal. 
The total of 1 μg of RNA was used for the cDNA synthesis reaction. The 
synthesis was carried out using the RevertAid First strand cDNA synthesis KIT 
(Thermo Scientific). 
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Quantitative reverse transcription PCR 
SYBR green master mix (Thermo Scientific) was used for the reaction in an 
Applied Biosystems 7500 Real-Time PCR System. The housekeeping genes, 
glucuronidase beta (GUSB), hypoxanthine phosphoribosyltransferase (HPRT) 
and 18S ribosomal RNA (18SrRNA) were selected as normalizers for qPCR 
analysis and their corresponding primers were predesigned by Qiagen. The 
following predesigned primers were obtained from Qiagen: P35, TBX2, BCL2, 
SOX10, CDK2, HIF1a, DIAPH1, CDKN1a, DCT, CDKN2a, TYR, TRP1, 
MLANA, RUNX3 and S100A. 
Heatmap construction 
Heatmap of qPCR data was created using "heatmap.2" function in "gplots" 
package of "R". Further hierarchical clustering was obtained using the 
complete linkage method which sets the cluster distance between two clusters 
into the maximum distance between their individual values. In the clustering 
process, nearest two clusters were merged into a new cluster in every cycle and 
the process was repeated until the whole data set clustered into one single 
cluster. 
Immunoblotting and immunoprecipitation 
Cells were lysed in ice cold RIPA buffer for 15 minutes and cell debris was 
removed by centrifugation. Immunoprecipitation was performed using 1 μg of 
antibodies in 1 ml of lysate. Binding reaction was performed at 4 °C for 1.5 
hours and 20 μl of protein G sepharose beads (GE Healthcare) were added and 
further incubated (4 °C, 30 minutes) to pull-down antigen/antibody complex. 
Immunoprecipitates were then washed three times in RIPA buffer before 
denaturing through boiling (98 °C, 5 minutes) in loading buffer. Proteins were 
subsequently separated in SDS-PAGE. Transfer of protein was performed in 
iBlot 7-Minute Blotting System (Life Technologies). Non-fat dry milk (4 %) 
in water was used to block (room temperature, 30 minutes) the membrane 
(either PVDF or nitrocellulose). After incubation with primary antibodies 
(either overnight at 4 °C or 1 hour at room temperature), excessive antibodies 
were removed by washing with PBS-T (0.05 % TWEEN 20). Secondary 
antibodies (either HRP coupled or IRDye (Li-Cor), 0.5 μl of stock 
concentrated antibodies/50 ml PBS-T) were added to the membrane 
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(incubation 1 hour at room temperature). Either a chemiluminescence imaging 
system (Bio-rad and Fujitsu) or a Li-Cor Odyssey scanner was used to develop 
the membrane. 
Mitf mobility shift quantitation 
Subsequent to protein signal quantitation by ImageJ (NIH), the value of the 
upper protein band was subtracted from the value of the lower protein band of 
MITF. The resulting positive value indicates protein mobility shift that is 
observed after KIT ligand (Prospec or Orf Genetics) stimulation (100 ng/ml, 
15 minutes). A resulting negative value suggests the lack of mobility shift. 
Statistical analysis 
One way ANOVA statistical (Graphpad) test was performed on results from 
qPCR experiments, luciferase assays, proliferation assays and survival assays. 
Significant results (P ≤0.05) were further evaluated by an appropriate post-hoc 
test (Graphpad). Output results were indicated by n.s (not significant), * (P≤ 
0.05), ** (P≤ 0.01) or *** (P≤ 0.001). 
Two tailed non-parametric sign test was performed on c-KIT phosphorylation, 
ubiquitination, AKT phosphorylation, ERK phosphorylation and receptor 
internalization experiments for Article I. 
Cell proliferation assay 
Four million HEK293T cells were seeded in 75 cm2 cell culture flask, 
transfected with different constructs and serum-starved overnight. Cells were 
then trypsinized, suspended in DMEM, stained with trypan blue and 
proliferation analyzed with the Countess automated cell counter (Invitrogen) 
after 48 hours of SCF stimulation. 
Cell survival assay 
B16F0 cells were plated in 96 well plates in a final cell count of 3500 
cells/wells. They were then treated with KIT ligand (50 ng/ml), rapamycin 
(Sigma-Aldrich) or dacarbazine (Santa Cruz Biotechnology) for 24 hours. To 
evaluate cell survival, alamarBlue (Life Technologies) was added to each well 
and incubated for 4 hours. Absorbance was measured (Varian Cary 50 
microplate reader) at 570 nm and 600 nm. 
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Receptor internalization 
B16F0 cells reverse transfected with KIT constructs were pre-treated (30 
minutes) with Ready-Made Solution cycloheximide (100 μg/ml) (Sigma-
Aldrich) prior to KIT ligand stimulation (50 ng/ml). The reaction following 
ligand stimulation was stopped by adding ice cold PBS to the cells. 
Biotinylation of cell surface proteins was performed by adding freshly prepared 
biotin solution containing 0.2 mg/ml EZ-Link Sulfo-NHS-Biotin (Thermo 
Scientific). Incubation was carried out on ice for 40 minutes. Cells were then 
washed with cold PBS (pH 8) and cold Tris (50 mM) was added to the cells to 
block (5 minutes) excessive reactive biotin. RIPA buffer was used to lyse cells 
which, after debris removal through centrifugation, were subjected to pull-
down with immobilized Avidin Agarose (Thermo Scientific) for 30 minutes at 
4 °C. Subsequent steps were carried out similar to the description outlined in 
the Immunoblotting and immunoprecipitation section. 
Melanin production assay KIT  
After stable transfection, the B16F0 cells were plated in 100 mm cell culture 
dishes and treated with KIT ligand in a final concentration of 50 ng/ml in 
complete medium for 72 hours. Cells were then collected, counted and washed 
with PBS. A solution of 2M NaOH with 10 % DMSO as prepared for the 
isolation of intracellular melanin. Cells were incubated with the solution for 2 
hours in room temperature and debris was removed by centrifugation. Finally, 
isolated melanin was quantified by absorbance measurements at 405 nm. 
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