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Abstract

This study examines empirical evidence regarding long-run relative purchasing
power parity (PPP) convergence for Iceland. The aim is to examine whether
the Icelandic króna’s fluctuating exchange rate exhibits a tendency towards
mean-reversion; that is, to determine if an equilibrium real exchange rate exists
for the ISK. Long-run trade-weighted nominal and real effective exchange rate
indices are constructed, spanning a 117-year period of the ISK’s history. Annual
and monthly data are used to construct the indices. The historical exchange
rates are calculated as geometrically weighted chain indices with current trade
weights based on Iceland’s foreign trade in goods. The consumer price index
(CPI) is used for deflation. Data are based on 13 to 15 of Iceland’s largest
trading partners, which accounted for at least 64 per cent of Iceland’s total
foreign trade in goods each year, during the period in question.

Empirical estimations are applied to the new time-series. Unit-root and
single-equation cointegration tests are performed for stationarity estimation.
Mean-reversion from PPP deviation is analysed via autoregressive models, with
half-life calculations based on ordinary least squares (OLS) parameter estim-
ates. Empirical estimations are applied to the period as a whole, as well as
individual estimations for two sub-periods, due to a structural break in the
series. Separate estimations are also carried out for post-1988 period, using
monthly data.

The results are consistent with results from similar studies on purchasing
power parity. Evidence supporting relative PPP convergence is found for all but
one of the periods, (post-1988), where results from unit-root and cointegration
tests contradict, indicating failure of PPP convergence for the period. Half-life
estimates, are around four years for the period as a whole. The most rapid mean
reversion appears during the inter-war and post-1981 periods. The inter-war
period also shows the least volatility in the real exchange rate of the ISK.
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1 Introduction

In the modern world, currency exchange rate developments are a fundamental part
of international economics. Exchange rates can have a substantial effect on external
trade and other financial transactions between countries. The more dependent a
country is on external trade, the more currency fluctuations can affect its economy.

Unpredictable exchange rate volatility can sometimes have adverse effects on fin-
ancial stability. The fluctuating exchange rate of the Icelandic króna have played a
major role in the history of the Icelandic economy. Iceland is a small, open economy
that relies on external trade, with exports and imports averaging around 30 per cent
of GDP during the past century, cf. Appendix III, Figure 1.

The aim of this study is to examine whether the ISK’s fluctuating exchange rate
exhibits a tendency towards mean-reversion; i.e, to determine whether an equilibrium
real exchange rate exists for the ISK in the long run.

Long-run trade-weighted nominal and real effective exchange rate indices are con-
structed for the ISK from 1895 to 2012, or almost from its introduction as a currency1.
Annual data are used for the period between 1895 and 1988 for the construction of
the indices. For the period from 1988 to 2012 monthly data are used. The historical
exchange rates are constructed as geometrically weighted chain indices with current
trade weights based on Iceland’s foreign trade in goods. The consumer price index
(CPI) is used for deflation. Annual data are based on 13 of Iceland’s largest trading
partners, which accounted for at least 70 per cent of Iceland’s total foreign trade in
goods each year, during the period. For the monthly data, two more countries are
added to the dataset, for a total of 15 trading partners which accounted for at least
64 per cent of Iceland’s total foreign trade in goods each month, during the period.

Empirical estimations are applied to the new time series. Unit-root and single-
equation cointegration tests are performed for stationarity estimation. The mean
reversion from PPP deviation is analysed via autoregressive models, with half-life
calculations based on ordinary least squares (OLS) parameter estimates. Empirical
estimations are applied to the period as a whole, as well as individual estimations for
two sub-periods, that emerged after a structural-break estimation revealed a break-
point at 1960. Separate estimations are also carried out for the post-1988 period,
using monthly data.

The results are consistent with similar PPP studies. Evidence supporting relative

1 The first 10 years, between 1885 and 1895, could not be included due to data shortage.
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PPP convergence is found for all but one of the periods (post-1988), where unit-root
and cointegration test results contradict, indicating a failure of PPP convergence.
Half-life estimates are around four years for the period as a whole. The most rapid
mean reversion appears during the inter-war and post-1981 periods. The inter-war
period also shows the least amount of volatility in the real exchange rate of the ISK.

The paper is structured as follows: Section 2 contains a brief overview of the
purchasing power parity theory. Description of the data set and methodology for the
calculations of the historical indices are found in Section 3. Section 4 contains an
overview of the empirical methodology for PPP estimations, followed by empirical
findings in Section 5. The final section contains the conclusions and a brief discussion
of the scope for further research2.

2 Detailed data descriptions, figures, tables, and regression outputs are included in accompanying
appendices.
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2 Purchasing Power Parity (PPP)

Purchasing power parity (PPP) is one of the fundamental theories in international
economics. The theory postulates that currency exchange rates adjust over time to
offset divergent movements in national price levels. Persistence of real exchange rates
can be used for validation of the purchasing power parity theory, e.g. by estimation
of the real exchange rate mean-reversion behaviour. Despite its simplicity, the theory
is widely debated in the literature. The general consensus seems to be that the theory
holds in the long run, although short-run parity convergence is generally not accepted
(Kulkarni, 1990-1991).

2.1 Law of One Price

Although the term purchasing power parity was originally coined by Gustav Cassel
in 1922, the idea behind the theory has been around for much longer and exists today
in a number of variations. The Big Mac index, published by The Economist, is an
example of a well-known variation of PPP. It shares the same fundamental premise as
PPP, the so-called law of one price (LOOP). According to LOOP, due to arbitrage,
any price difference in an internationally trade-able good between countries should
not exist, at least not in the long run. The cheaper good would simply be exported
and transported to the more expensive location until equilibrium in price and quantity
was reached between the two locations3. LOOP is given by:

pt(i) = p∗t (i) +vt

vt = pt(i)−p∗t (i)

pt(i)−vt = p∗t (i)

where pt(i) is the log of the time-t domestic-currency price of good i, p∗(i) is the
analogous foreign-currency price, and vt is the log of the time-t domestic-currency
price of foreign exchange.

3 Internationally integrated and open markets are necessary for LOOP to hold.
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2.2 Absolute PPP

PPP and LOOP are essentially two sides of the same coin. The main difference
between the two is that PPP uses a basket of goods for comparison instead of just
one individual item. If LOOP holds for every individual item, an assumption can be
made that for any identical variation of baskets of goods, LOOP should also hold.
Absolute PPP, or strong PPP, assumes that the price of identical baskets of goods
should be identical between two separate economies. Absolute PPP is given by:

pt(CPI) = p∗t (CPI) +vt

vt = pt(CPI)−p∗t (CPI)

pt(CPI)−vt = p∗t (CPI)

2.3 Relative PPP

Due to strict conditions of the absolute version, empirical testing focuses rather on
the relative form of PPP, also known as weak PPP. Relative PPP uses relative (per-
centage) change in exchange rates over a given period. The difference in inflation
rates during that same period should offset the difference in price between two eco-
nomies over the same period. Nominal exchange rates should be equal to the ratio
of aggregate price levels between the two economies, so that a currency unit of one
country will have the same purchasing power in a foreign country (Taylor, 2004).
Relative PPP is given by:

∆pt(CPI) = ∆p∗t (CPI) + ∆vt
∆vt = ∆pt(CPI)−∆p∗t (CPI)

∆pt(CPI)−∆vt = ∆p∗t (CPI)

From the relative version of purchasing power parity, a simple equation can be derived
and transformed for empirical testing of the theory (Taylor, 1996).

In reality many things stand in the way of PPP convergence. Essentially anything
that increases marginal costs, can drive a wedge between buyers and sellers and lead
to failure of PPP convergence; e.g., transaction costs, transportation costs, import
restrictions, tariffs, etc.

PPP convergence can be a relatively slow process. It can prove challenging to
empirically distinguish a slow reverting stationary real exchange rate, from a random
walk. Noise from volatile exchange rates can mask slow convergence toward an ex-
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isting equilibrium. Estimating longer time series that incorporate different exchange
rate policies, e.g. combining fixed and floating exchange rate periods in one con-
tinuous series can increase the accuracy of empirical testing. Using a multi-country
environment for estimation is also important for increased accuracy.

A drawback of the purchasing power parity theory is the assumption that trading
relations are the sole contributing factor to price and exchange rate developments.
This is an understatement as many other factors influence exchange rate dynam-
ics. The interest rate spread is thought to be one of those influencing factors. The
uncovered interest rate parity theory (UIP) relies on the premise that the interest
rate difference between two financial assets should be offset by the expected rate
of change in the exchange rate between two currencies over the period to maturity
(Beirne, 2010).

A wealth of literature concerning deviations from purchasing power parity exists.
Rogoff (1996) writes about the reluctance of real exchange rate mean-reversion when
estimated4. He points out that storage costs, labour costs, transportation costs, tariffs
and non-tradable components of tradable goods, drive a wedge between domestic and
foreign prices.

The Balassa-Samuelson effect, one of the driving factors of real currency exchange
rates, could be an underestimated culprit behind the failure of PPP convergence5.
Government spending could also be a contributing factor, leading to PPP failure, as
the non-tradable sector is usually more influenced by government spending than the
tradable sector.

Possible methodology errors in PPP estimation might lead to non-stationary and
slow mean-reversion estimations. Temporal aggregation and linear specification are
underestimated factors contributing to slow mean reversion estimates of real exchange
rates, according to Taylor (2000). Linear restrictions force shocks to adjust back in a
linear fashion, and therefore cannot account for mean reversion adjustments, which,
might damp out at a faster rate than it began. Half-life estimation using aggregated
data, whether of annual, quarterly or monthly frequency, usually overestimates half-
life times, because high-frequency adjustment processes can never be evaluated by
low-frequency data; the greater the aggregation, the greater the bias. Combining the
two errors can exacerbate the problem even further.

Finally, the speed of reversion to parity is likely to depend on goods-specific

4 Rogoff’s (1996) purchasing power parity puzzle is as follows: “How can one reconcile the enormous
short-term volatility of real exchange rates with the extremely slow rate at which shocks appear to
damp out?”.

5 The Balassa-Samuelsson effect states that measured in the same unit, price levels in high income
countries are higher than those in low income countries, due to differences in productivity in the
tradable and non-tradable sectors. The non-tradable sector is more affected than the tradable
sector, consequently the Balassa-Samuelsson effect is more pronounced in the CPI than WPI
(Rogoff, 1996).
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characteristics, and is therefore not homogeneous across sectors. Failure to account
for cross-sectoral heterogeneity in the dynamic properties of the typical price index
components affects the estimated half-lives (Imbs et al., 2002).
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3 Historical ISK Exchange Rate

The Central Bank of Iceland is responsible for official exchange rate calculations
for the ISK. The bank bases calculations of the nominal exchange rate on predeter-
mined weights. The composition of Iceland’s external trade from the previous year
determines weight composition. Nominal exchange rate movements reflect appre-
ciation/depreciation vis-à-vis the currencies of the major trading nations that are
included in the calculations.

Two separate real exchange rates for the króna are published by the Central Bank.
One is based on relative consumer prices and the other is based on relative unit labour
costs. An increase in the real exchange rate describes a real appreciation of the ISK
relative to its trading partners. Real exchange rates are essentially indicators of
developments in a country’s international competitiveness (Central Bank of Iceland,
2013).

Annual real exchange rates for the ISK are available from the Central bank dat-
ing back to 1980. Monthly data are available from 1985. No official real exchange
rate data are available prior to 1980. In an article published in 1985 the real ISK
exchange rate is calculated back to 1914 (Nordal & Tómasson, 1985). Calculations
were based on data from three of Iceland‘s largest trading partners: the US, the UK,
and Denmark. No real exchange rate data for the ISK are available for the period
before 1914.

To construct historical time-series for PPP analysis, a multi-country environment
is needed in order to reflect changes in trade patterns on a current basis. Using data
from two countries for estimation, is unlikely to yield an adequate explanation of
exchange rate behaviour that is driven by interactions of multiple trading partners
(Beirne, 2010).

3.1 The Data Set

For historical exchange rate calculations, annual external trade data for Iceland were
compiled for 13 of Iceland’s largest trading partners during the period from 1895 to
1988. The trading partners are Denmark, Finland, France, Germany, Italy, Japan,
the Netherlands, Norway, Portugal, Spain, Sweden, the UK, and the US. During
the period, these countries accounted for at least 70 per cent of total foreign trade
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and an average of 87 per cent6. Monthly data were compiled from January 1988
through December 2012. In addition to the previous list of trading partners, two
more countries are added for the monthly data: Belgium and Switzerland. In all,
these countries accounted for at least 64 per cent of Iceland’s total external trade,
with an average of 83 per cent7.

Annual averages of consumer price indices were compiled for the previously listed
countries, for the period from 1895 to 1988. Monthly averages were compiled from
1988 through 2012. When available, the consumer price index is replaced by the
Harmonized index of consumer prices (HICP)8.

Annual averages of bilateral exchange rates of the Icelandic króna versus the
currencies of the previously listed countries were compiled for the period from 1895
to 1988. Monthly averages were used for the period between 1988 and 2012. Further
data details can be found in the appendices.

The following time-series were constructed:

1. XcN : Nominal effective exchange króna rate. Annual observations from
1895 to 1988. Monthly observations from 1988m01 through 2012m12. An
increase in the nominal index represents an appreciation of the ISK’s nominal
value versus the currencies of Iceland’s main trading partners.

2. XcR: Real effective exchange króna rate. Annual observations from 1895
to 1988. Monthly observations from 1988m01 through 2012m12. An increase
in the real index represents an appreciation of the ISK’s real value versus the
currencies of Iceland’s main trading partners.

3. CPII : Consumer price index for Iceland. Annual observations from 1895
to 1988. Monthly observations from 1988m01 through 2012m12.

4. CPIF : Foreign consumer price index. Annual observations from 1895 to
1988 and monthly observations from 1988m01 through 2012m12. The index is
constructed as geometrically weighted average of Iceland’s trading partners.

The consumer price index (CPI), wholesale price index (WPI) and producer price
index (PPI) are all commonly used as deflators for PPP estimation. The structure of
these price indices can vary across countries, especially in older data (Froot & Rogoff,
1994). Different index structure can distort comparison, causing biased convergence
estimations. Other factors including different preferences, traditions, and others, can
also affect the index structure in each country, reducing reliability for comparison9.
6 With an exception during the 1950s, cf. Appendix III.
7 Cf. Appendix III, Figures 3 & 4.
8 Initial starting dates of HICP measurements, vary from country to country.
9 HICP should eliminate this distortion. cf. Appendix I, for details.
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The use of WPI or PPI seem to give more accurate results when it comes to PPP es-
timations. They usually place greater emphasis on tradable goods than the consumer
price index, which ordinarily includes substantial amounts of non-tradable goods, as
well as being generally more susceptible to effects caused by indirect taxes and sub-
sides (Taylor & Taylor, 2004). Nonetheless, the consumer price index can serve as a
good substitute for the WPI and PPI10.

3.2 Nominal Effective Exchange Rate Index

In order to calculate the historical real exchange rate for the ISK, historical nominal
exchange rates must be constructed first. The nominal exchange rate index is cal-
culated as a geometrically weighted chain index with current weights based on trade
statistics for each period since 1895. The index is based on Iceland’s total foreign
trade in goods11. The weights used for calculating the index are based on the sum
of total bilateral imports and exports of goods vis-à-vis the major trading partners
that are included in this study.

The historical nominal effective króna rate index (XcN ) is calculated as a geomet-
rically weighted chain index with current weights based on trade statistics for each
period. The relative change in the XcN index is given by:

XcNt
XcNt−1

=
n∏
t=1

(
BEit
BEit−1

)wi
t−1

where
n∑
i=1

wit−1 = 1

where BEit is the bilateral exchange rate between the Icelandic króna and currency
i in period t (amount of foreign currency i per Icelandic króna). The index is a
geometrically weighted chain where wit−1 represents the weight for currency i from
period t−1 to period t. The weight is structured as follows:

wit−1 =

(
IP it−1 +XP it−1

)
(∑IP t−1 +∑

XP t−1)

wit−1 is based on the sum of the Icelandic bilateral imports and exports of goods
in period t− 1 vis-à-vis country i relative to total Icelandic imports and exports of
goods vis-à-vis the previously listed countries. Changes in the currencies from 1895
to 1896 are thus weighted with trade weights reflecting the trade pattern in year 1895
etc. An increase in the XcN describes an overall appreciation of the króna vis-à-vis
the currencies of the major trading partners (Abildgren, 2004).

10The consumer price index is the only available deflator for Iceland, covering such a long period.
11Data aggregated, i.e. no category distinction.
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3.3 Real Effective Exchange Rate Index

The historical real effective króna rate index (XcR) is given by:

XcRt = XcNt CPI
I
t

CPIFt

where XcNt is the historical nominal effective króna rate index in period t. CPIIt

represents the consumer price index for Iceland in period t and CPIFt represents
the consumer price index for Iceland’s trading partners in period t, calculated as a
geometrically weighted chain index with current weights based on trade statistics for
each period. The relative change in CPIFt is given by:

CPIFt
CPIFt−1

=
n∏
i=1

(
CPIit
CPIit−1

)wi
t−1

where
n∑
i=1

wit−1 = 1

where CPIit is the consumer price index for country i in period t and wit−1 is the
weight used for the change in the consumer price index for country i from period t−1
to period t, based on the sum of Icelandic bilateral imports and exports of goods in
period t− 1 vis-à-vis country i relative to total Icelandic imports and exports of
goods vis-à-vis the trading partners. Changes in the CPIFt from 1895 to 1896 are
thus weighted with trade weights reflecting the trade composition in year 1895, etc.
An increase in XcR describes an overall real appreciation of the króna vis-à-vis the
currencies of Iceland’s trading partners (Abildgren, 2004).
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Figure 3.1: Comparison of the new historical real effective exchange rate of the Icelandic
króna (XcR) & the official real exchange rate, annual frequency: 1895 to 2012 (1914 =
100)
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Appreciation of the real exchange rate usually suggests that the country is growing
wealthier, with increased competitiveness. This generally applies to foreign trade.
Increased efficiency and competitiveness in non-exportable domestic services usually
carries no weight in the fluctuations of a country’s currency exchange rate (Froot &
Rogoff, 1994).

Comparison of the developments between the new historical real effective exchange
rate (XcR) and official data can be seen in Figure 3.112. Figure 3.2 shows the de-
velopment of the new historical nominal effective exchange rate (XcN ) and relative
prices (RelCPI) for the period, in logarithmic scale13.

 0

 50

 100

 150

 200

 1900  1920  1940  1960  1980  2000

Xc^N
RelCPI

1895=100

Figure 3.2: Historical nominal effective exchange rate of the Icelandic króna (XcN ) &
relative prices (RelCPI= (CPIF

t /CPI
I
t )) in logarithmic scale, annual frequency: 1895 to

2012 (1895 = 100)

12In order to make one continuous time-series covering the whole period, annual averages are cal-
culated from monthly data post-1988.

13For more figures, cf. Appendix III.
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4 Econometric Methodology

4.1 Stationarity

The mean reverting behaviour of the real exchange rate is commonly estimated via
unit-root and cointegration testing procedures. The basic idea is to test whether the
XcR behaves like a random walk, where a variable’s value equals its previous value
with a stochastic term added. In such a case the time series is said to contain a unit
root, i.e. it is non-stationary14.

The alternative hypothesis of the unit-root test in its basic form can be formulated
as equation (1), where b1 < 1, b0 is a constant and the error term (e) is assumed to
be independently normally distributed with a zero mean and a constant variance:

XcRt = b0 + b1Xc
R
t−1 + et (1)

Under the alternative hypothesis, the XcR follows a first-order autoregressive process
(AR(1)) with non-zero mean, i.e. XcR is a stationary process that is consistent with
long-run PPP convergence. Equation (1) can be rewritten as (2):

XcRt =XcRt−1 + (1− b1)
(

b0
1− b1

−XcRt−1

)
+ et (2)

= b0
1− b1

+ b1

(
XcRt−1−

b0
1− b1

)
+ et

The alternative hypothesis thus implies that the XcR evolves around a constant long-
run level given by b0/(1− b1). If the XcR in year t−1 is below (above) the long-run
level, there will be a tendency for the XcR in year t to appreciate (depreciate). The
null hypothesis of the test is b1 = 1; i.e., that the XcR follows a random walk (with
drift if the constant b0 differs from zero). Under the null hypothesis, the XcR is
a non-stationary process, which is inconsistent with the existence of long-run PPP
convergence.

So far, the alternative hypothesis in the basic version of the unit-root test, the
XcR evolves around a constant long-run level. This rules out the presence of a

14Mean and variance change with time.
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deterministic trend in the real effective exchange rate. Unit-root presence can lead
to spurious correlation in regression analysis which causes parameter estimation for
adjusted R2 and t-scores to be overestimated. A trend-stationary variable is subject
to non-stationary estimation, if the trend is not accounted for. Adding a time trend
parameter to the model, can prevent spurious regression. A deterministic trend could
be formalised in a unit-root test where the alternative hypothesis in its basic version
is given by equation (3):

XcRt = b0 + b1Xc
R
t−1 +dt+ et (3)

This alternative hypothesis, where b1 < 1, thus implies that the XcR evolves around
a deterministic time trend (i.e. a trend-stationary process). The forces of the relative
PPP ensure a long-run mean reversion towards the trend. The null hypothesis of the
test is b1 = 1, i.e. that the XcR follows a random walk (with drift if the constant
b0 6= 0) around a deterministic trend (Abildgren, 2004).

4.1.1 Unit-root: Augmented Dickey Fuller

The ADF test has become the “standard” test for stationarity in the literature.
However, it should be noted that the power of the ADF test is not very strong.
It can therefore be difficult to reject the null hypothesis of non-stationarity even
when it is false, especially if the stationary alternative has a sum of autoregressive
parameters (∑bj) close to one (i.e. in cases where convergence towards PPP is slow).

A test of the null hypothesis (b1 = 1) based on Equation (1), can be made via the
basic Dickey-Fuller test (DF test) for the presence of a unit root (without a trend
included). The test is based on the auxiliary regression in:

D_XcRt = b0 + (b1−1)XcRt−1 + et (4)

where D_ denotes the first difference operator; i.e. D_XcRt = XcRt – XcRt−1. The
null hypothesis (b1 = 1) corresponds to g = b1− 1 = 0, and the test-statistic is the
usual t value for g. However, under the null hypothesis the distribution of this
statistic does not follow the usual Student’s t distribution, but a special distribution
with larger (absolute) critical values. An appropriate number(ρ) of lags of D_XcRt
may have to be added on the right hand side of Equation (4), in order to remove
any autocorrelation in the residuals. This gives the Augmented Dickey Fuller test
(ADF (ρ)test). The ADF (1) test is based, for instance, on the auxiliary regression
in (5): ADF (1):

D_XcRt = b0 +
 2∑
j=1

bj−1
XcRt−1− b2D_XcRt−1 + et (5)

13



and ADF (ρ) is based on:

D_XcRt = b0 +
ρ+1∑
j=1

bj−1
XcRt−1 +

ρ∑
j=1

b∗jD_XcRt−j + et (6)

where b∗j are functions of b2, ..., bp+1. The null hypothesis of non-stationarity of the
ADF (ρ) test is that g =∑

bj−1 = 0 and the test-statistic is the usual t value for g.
However, as it was the case in the DF-test, the distribution of this statistic is non-
standard. With no significant lags, the ADF (0) test is identical to the DF test. With
ρ significant lags in an ADF (ρ) test, the XcR follows an (ρ+1)-order autoregressive
path under the alternative hypothesis(∑bj < 1)15:

XcRt = b0 +
ρ+1∑
j=1

bjXc
R
t−j + et (7)

(7) can be rewritten as (8):

XcRt = b0

1−∑ρ+1
j=1 bj

+
ρ+1∑
j=1

bj
XcRt−j− b0

1−∑ρ+1
j=1 bj

+ et (8)

The alternative hypothesis thus implies that the XcR evolves around a constant
long-run level given by b0/(1−

∑
bj) (Abildgren, 2004).

4.1.2 Cointegration: Engle-Granger Single-Equation

After unit-root testing, determining order of integration is the next logical step in
determining whether the variables share a similar stochastic trend; that is, discovering
whether cointegration relationships exist between them. Consider again the simple
first-order autoregressive model in Equation (1). If XcRt follows a random walk, then
b1 = 0. If the error term et is stationary, i.e., does not follow a random walk then the
first difference D_XcRt =XcRt −XcRt−1 is also stationary:

XcRt = b0 + b1Xc
R
t−1 + et

D_XcRt = XcRt −XcRt−1 = et

The cointegration test is essentially a stationarity test of the residuals. (Griffiths
et al., 2008). Cointegration entails that the error terms et are stationary, which
means that they never diverge too far from each other. Cointegration holds that the

15The number of lags in the ADF test, has been chosen so that autocorrelation is minimized in the
residuals from the auxiliary regression.
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combination of two or more non-stationary series can yield a long-run relationship as
long as the series are integrated of the same order, non-stationarity can therefore be
cancelled out, and a stationary relationship observed instead (Beirne, 2010).

Cointegration consists of matching the degree of non-stationarity of the variables
in an equation in a way that makes the error term and residuals of the equation
stationary and rids the equation of any spurious regression estimation (Studenmund,
2011).

The Engle-Granger single-equation cointegration test is an alternative way to the
unit-root for relative PPP assessment. Should relative PPP hold, the real effective
króna rate must be equal to a constant (K):

XcR = XcNCPIIt
CPIFt

= XcNt
(CPIFt /CPIIt )

= XcNt
RelCPIt

=K (9)

Where XcN is the nominal effective króna rate and RelCPI = (CPIFt /CPIIt ) is the
ratio between the domestic and foreign price indices. Adding an error term (e) which
is assumed to be independently normally distributed with a zero mean and constant
variance, (9) becomes:

ln(XcNt )− ln(RelCPIt) = ln(K) + et (10)

If ln(XcNt ) and ln(RelCPIt) are both integrated of first order (I(1)), they are
cointegrated if the natural logarithm of the real effective króna rate is stationary
(ln(XcRt ) = ln(XcNt )− ln(RelCPIt)). This can be evaluated via ADF tests on
ln(XcNt ), ln(RelCPIt) and ln(XcRt ). If ln(XcNt ) and ln(RelCPIt) are I(1) and
ln(XcRt ) is stationary, the results support a hypothesis of long-run relative PPP con-
vergence, and the cointegrating relationship implied by equation (10) can be viewed
as the long-term relationship between ln(XcNt ) and ln(RelCPIt). If ln(XcNt ) and
ln(RelCPIt) are both stationary, then the ln(XcRt ) is also stationary. This also gives
support for long-run relative PPP. If stationarity of ln(XcRt ) is rejected, there is no
support for relative PPP (Abildgren, 2004).

4.2 Mean-Reversion

4.2.1 Half-Life Estimation

The validity of long-run PPP depends not just on the absence of a unit-root in
time series. A sufficient degree of mean-reversion in the real exchange rate is also
important if PPP assumption-based models are to have real-world meaning (Cashin
& McDermott, 2003).

In a first-order autoregressive process (AR(1)) such as Equation (2), parameter
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b1 determines the speed of mean reversion, since (1− b1) per cent of the absolute
deviation from the long-run level is expected to close each year. The number of years
before one-half of a deviation from the long-run level of the real effective exchange
rate is extinguished, the so-called Half-life (HL) can be found as:

HLin(1) = ln(0.5)
ln(b1) (11)

where ln denotes the natural logarithmic function. For an AR(ρ) process, a commonly
used approximate formula for the number of years before one-half of a shock to the
real effective exchange rate is extinguished when estimating is given by:

HLin(6) = ln(0,5)
ln
(∑p+1

j=1 bj
) (12)

Ordinary least squares (OLS) estimates of the parameters to the lagged dependent
variables in Equations (1), and (6) will be downward biased in finite even when the
XcR is stationary. In a linear framework, half-lives can only be considered as a simple
“summary measure” of mean reversion, as speed of adjustment may not always be
uniform (Abildgren, 2004)16.

4.2.2 Bias-Adjusted Half-Life Estimation

More accurate estimations for half-life analysis in a linear autoregressive framework
might be achieved through bias adjusted estimation. A downward bias in the para-
meters implies that point estimates for half-lives will be too low when calculated
from OLS estimates (Abildgren, 2004). In the case of the AR(1)-model for XcR,
a bias-adjusted half-life may be calculated from the OLS estimate as bias-adjusted
OLS estimate for half-life in AR(1) model for XcR:

ln(0,5)
ln
(
b1N
N−3 + 1

N−3

)

where N denotes the number of observations. In the case of an AR(2)-model for the
XcR, a bias-adjusted approximate half-life may be calculated from the OLS estimates
as the bias-adjusted OLS estimate for half-life in AR(2) model for XcR.

ln(0,5)
ln
(
b1N
N−1 + 1

N−1 +
(

1
N−1 + 1

)(
b2N
N−4 + 2

N−4

))

16A time trend parameter, is usually not included in half-life estimation, as it is not consistent with
the idea of mean reversion (Cashin & McDermott, 2003).
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5 Empirical Findings

5.1 1895 to 2012

5.1.1 Unit-Root

Table 5.1: Unit-root test results for the period 1895-2012, annual data.

Unit-root tests for the period 1895 to 2012 No trend Trend incl.

ADF test statistic on XcR (lags)(I) -3.55** (1 ) -3.5** (1 )
AR-model Parameter estimates (OLS)(II)

d n.a. -0.005
b0 15.3** 15.55**
b1 1.06** 1.058**
b2 -0.23** -0.23**

Adjusted R2 0.75 0.74
LM test for autocorrelated residuals(III)

Lag 1 0.24 0.25
Lag 1-2 0.16 0.17
Lag 1-3 0.19 0.18
Lag 1-4 0.49 0.52

Test for heteroskedasticity in residuals(IV)

Levels & squares of regressors (squares only) 24.64** 24.98**
Levels squares & cross products of regressors 25.23** 28.43**

Test of normality of residuals(V) 73.72** 72.71**
OLS estimates of half-life in years (Adj. estm.) 3.6 (4.4 ) 3.7 (4.4 )

“*” & ”**” denotes rejection of the null hypothesis at a 10% and 5% significance level respectively

(I): Null hypothesis is Non-stationarity. (II): Null hypothesis: Coefficiant equal to zero. (III): F-
test null hypothesis is no autocorrelation. (IV): Chi-square null hypothesis is no heteroskedasticity.
(V): Chi-square null hypothesis is Normality.
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Estimation results for the period as a whole support long-run relative purchasing
power parity convergence. The null hypothesis of non-stationarity is rejected at a 5
per cent significance level, both with and without a trend parameter present. Estim-
ations show no trace of autocorrelation in the residuals; however, heteroskedasticity
and non-normality of the residuals are evident. The underlying univariate autore-
gressive models explain around 75 per cent of the linear variation in the real effective
exchange rate for the period.

Although insignificant, the negative sign for the trend parameter could indicate a
slow decline in Iceland’s competitiveness relative to its major trading partners over
the period. Another possible explanation could be due to biased parameter estimates,
caused by an unknown structural-break in the series.

5.1.2 Cointegration

Table 5.2: Single-equation cointegration test result for the period 1895-2012, annual
data.

Cointegration tests for the period 1895 to 2012 No trend (lags)

ADF test statistic on log(XcR)(I) -3.43** (1)
LM test for autocorrelated residuals(II)

Lag 1 0.012
Lag 1-2 0.014
Lag 1-3 0.065
Lag 1-4 0.408

Test for heteroskedasticity in residuals(III)

Levels & squares of regressors (squares only) 17.19**
Levels squares & cross products of regressors 17.87**

Test of normality of residuals(IV) 49.50**

ADF test statistic on log(XcN )(I) 1.117 (1)

ADF test statistic on D_log(XcN )(I) -7.22** (0)

ADF test statistic on log(RelCPI)(I) -0.360 (5)

ADF test statistic on D_log(RelCPI)(I) -4.97** (0)

“*” & ”**” denotes rejection of the null hypothesis at a 10% and 5% significance level respectively

(I) Null hypothesis: Non-stationarity (II) F-test null hypothesis: No autocorrelation (III) Chi-
square null hypothesis: No heteroskedasticity. (IV) Chi-square null hypothesis: Normality.
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OLS half-life estimates for the period are around 3.6 years, and around 4.4 years when
adjusted for bias17. Results from single-equation cointegration tests confirm previous
results of stationarity. Unit-root presence is rejected in log(XcR) at a 5 per cent
significance level. Although unit-root presence in log(XcN ) and log(RelCPI) cannot
be rejected, it is rejected for the first difference of both series which makes them
integrated of first order I(1). Stationarity of log(XcR) also indicates a cointegration
relationship between log(XcN ) and log(RelCPI).

17Bias-adjusted half-life estimates produce longer half-life times, which is consistent with a priori
expectations.
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5.2 Structural Break Estimation

5.2.1 QLR Unknown Breakpoint Estimation

Structural breaks in time-series that are not accounted for, can lead to biased para-
meter estimates. They can also lead unit-root tests to falsely accept a null hypothesis
of non-stationarity (Byrne & Perman, 2006).

Although visual inspection of time-series can give indication of structural breaks,
empirical testing is necessary to determine specific breakpoint dates. The Chow test
is commonly used to test for structural breaks. The test essentially splits the sample
into two sub-periods, evaluates the parameters for each sub-period, and compares the
F statistics. The Chow test is given by:

Fn

(
m

n

)
= Fn(λ) = (SSR1,n− (SSR1,m+SSRm+1,n))/k

(SSR1,m+SSRm+1,n)/(n−2k)

where SSR is the sum of squared residuals. The main disadvantage of using the Chow
test is that it requires a priori knowledge about brake dates. Choosing a breakpoint
based on knowledge about the data can lead to true break dates being overlooked.
Possible candidates can be endogenous; e.g., correlated with the data, etc.

An alternative approach to the Chow test is Quandt’s LR test with an unknown
break date, also known as the QLR test (Hansen, 2001). The QLR test does not
require knowledge about breakpoints beforehand. The QLR test applies a series of
Chow tests to all possible breakpoints in the time-series and plots the test statistic.
The QLR test is given by:

QLR = max
m∈[m0,m1]

Fn

(
m

n

)
= max
λ∈[λ0,λ1]

Fn(λ)

λi = mi

n
= trimmingparameters, i= 0,1

When testing for unknown break dates, the usual χ2 likelihood distribution is not
appropriate. χ2 critical values can lead to breakpoints being estimated as significant
when they are not. Andrews (1993) provides a table of asymptotic critical values
that give a more accurate likelihood distribution, appropriate for the Quandt statistic
assessment. These values are considerably larger than χ2 asymptotic critical values
and therefore less likely to reject a null hypothesis of no structural break18.

18The largest break test-point on the graph is called the Quandt statistic, after Richard E. Quandt
who proposed the test.
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Figure 5.1: QLR unknown structural break test for the period 1913 to 1994, w. 15 per
cent trimming (λ0.15)

In Figure 5.1, estimated Chow statistics have been plotted as a function of break
dates, covering the period from 1913 through 199419. The visible peaks at 1960
are the Quandt statistics with the estimated values 40.1 and 49.3 for the solid
and dotted line, respectively. Also plotted on the graph are horizontal lines rep-
resenting the following asymptotic critical values: χ2

0.95(3) = 7.81, χ2
0.95(4) = 9.49,

Andrews CV0.9(ρ3, λ0.15) = 12.28 and Andrews CV0.9(ρ4, λ0.15) = 14.3620. Break-
points too close to the beginning or end of a sample cannot be considered, as there
are not enough observations to identify the sub-sample parameters (Hansen, 2001).
Andrews (1993) recommends 15 per cent trimming (λ0.15) of each end if no prior
knowledge of brake-dates exists.

Both critical values for the χ2 likelihood distribution reject the null hypothesis
of no structural break at a 5 per cent significance level by a substantial margin.
Andrews CV0.9(ρ3, λ0.15) also rejects the null hypothesis of no structural break at a
10 per cent significance level. For the period de-trended, structural break presence
cannot be rejected at 10 per cent significance level based on AndrewsCV0.9(ρ4, λ0.15).

A CUSUMQ test supports the previous QLR test results, by rejecting variance
stability at a 95 per cent confidence level at the same breakpoint, i.e. 1960 (cf. Figure
5.2).

Historical interpretations might support a possible structural breakpoint at 1960.
During the years leading up to 1960 a complex multiple exchange rate system was in
place. The official ISK exchange rate during the period from 1951 to 1960 was not
19The dotted line represents the time period de-trended.
20χ2critical values are at a 5 per cent significance level. Andrews critical values are at a 10 per cent
significance level.
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registered correctly. The period is characterized by heavy import restrictions, tariffs,
and strict capital controls (Magnússon, 2012)21.
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Figure 5.2: CUSUMQ parameter stability tests for the period 1895 to 2012.

21A so-called “Boat-currency-system” was put in place to support the marine export sector, mostly
at the expense of the importing sectors.
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5.3 1895 to 1960

5.3.1 Unit-Root

Table 5.3: Unit-root test results for the period 1895-1960, annual data.

Unit-root tests for the period 1895 to 1960 No trend Trend incl.

ADF test statistic on XcR (lags)(I) -2.81* (1 ) -3.07 (1 )
AR-model Parameter estimates (OLS)(II)

d n.a. n.a.
b0 15.97** n.a.
b1 1.24** n.a.
b2 -0.42** n.a.

Adjusted R2 0.76 n.a.
LM test for autocorrelated residuals(III)

Lag 1 1.01 0.53
Lag 1-2 0.59 0.44
Lag 1-3 0.48 0.41
Lag 1-4 0.50 0.38

Test for heteroskedasticity in residuals(IV)

Levels & squares of regressors (squares only) 13.31** 13.01**
Levels squares & cross products of regressors 13.57** 19.68**

Test of normality of residuals(V) 44.25** 44.91**
OLS estimates of half-life in years (Adj. estm.) 3.5 (4.7 ) n.a.

“*” & ”**” denotes rejection of the null hypothesis at a 10% and 5% significance level respectively

For the 1895-1960 period, non-stationarity is rejected at a 10 per cent significance
level without trend22. Estimations show no trace of autocorrelation in the residuals.
Heteroskedasticity and non-normality presence in the residuals is not rejected. The
underlying univariate autoregressive models explain around 76 per cent of the linear
variation in the real exchange rate for the period. Mean-reversion estimation produces
similar results to the half-life estimates for the period as a whole, around 3.5 years,
and 4.7 years when adjusted for bias.

(I) Null hypothesis: Non-stationarity (II) Null hypothesis: Coefficiant equal to zero (III) F-test
null hypothesis: No autocorrelation (IV) Chi-square null hypothesis: No heteroskedasticity. (V)
Chi-square null hypothesis: Normality.

22For the de-trended period, unit-root presence could not be rejected, parameter estimates were
therefore omitted.
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5.3.2 Cointegration

Table 5.4: Single-equation cointegration test result for the period 1895-1960, annual
data.

Cointegration tests for the period 1895 to 1960 No trend (lags)

ADF test statistic on log(XcR)(I) -2.62* (1)
LM test for autocorrelated residuals(II)

Lag 1 0.25
Lag 1-2 0.12
Lag 1-3 0.10
Lag 1-4 0.19

Test for heteroskedasticity in residuals(III)

Levels & squares of regressors (squares only) 10.25**
Levels squares & cross products of regressors 10.39*

Test of normality of residuals(IV) 37.32**

ADF test statistic on log(XcN )(I) -0.414 (0)

ADF test statistic on D_log(XcN )(I) -4.72** (0)

ADF test statistic on log(RelCPI)(I) -0.92 (1)

ADF test statistic on D_log(RelCPI)(I) -5.08** (0)

“*” & ”**” denotes rejection of the null hypothesis at a 10% and 5% significance level respectively

Cointegration tests confirm the results for the period. Non-stationarity of log(XcR)
is rejected at a 10 per cent significance level. Unit-root presence in log(XcN ) and
log(RelCPI) cannot be rejected. The two variables are both integrated of first or-
der (I(1)), as unit-root presence is rejected for the first difference of both series.
The stationarity result for log(XcR) suggests that log(XcN ) and log(RelCPI) are
cointegrated.

(I) Null hypothesis: Non-stationarity (II) F-test null hypothesis: No autocorrelation (III) Chi-
square null hypothesis: No heteroskedasticity. (IV) Chi-square null hypothesis: Normality.
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Figure 5.3: OLS estimates of half-lives in a 20-year rolling-window regression of
AR(2)-model for XcR. Period 1916 to 1942, annual frequency.

Prior to 1922, during the classical gold standard period, the Icelandic króna was
pegged to the Danish krone. The two currencies were separated in 1922 due to
imbalances that had developed during World War I. The years leading up to World
War II were characterized by relative stability in Iceland (Guðmundsson et al., 2001).
Uniform and stable half-life estimates are seen throughout the period, cf. Figure 5.323.

23Rolling half-life estimates for the period between 1943 and 1960 were omitted.
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5.4 1960 to 2012

5.4.1 Unit-Root

Table 5.5: Unit-root test results for the period 1960-2012, annual data.

Unit root tests for the period 1960 to 2012 No trend Trend incl.

ADF test statistic on XcR (lags)(I) -3.13** (3 ) -2.85 (0 )
AR-model Parameter estimates (OLS)(II)

d n.a. n.a.
b0 27.1** n.a.
b1 0.85** n.a.
b2 -0.17 n.a.

Adjusted R2 0.51 n.a.
LM test for autocorrelated residuals(III)

Lag 1 0.28 0.64
Lag 1-2 0.45 0.42
Lag 1-3 1.1 0.32
Lag 1-4 1.21 0.48

Test for heteroskedasticity in residuals(IV)

Levels & squares of regressors (squares only) 1.11 8.13*
Levels squares & cross products of regressors 8.96 9.19

Test of normality of residuals(V) 1.74 2.06
OLS estimates of half-life in years (Adj. estm.) 1.8 (2.3 ) n.a.

“*” & ”**” denotes rejection of the null hypothesis at a 10% and 5% significance level respectively

Estimations for the post-1960 period reject a null hypothesis of non-stationarity at
a 5 per cent significance level with no trend24. No traces of autocorrelation, hetero-
skedasticity or non-normality are evident in the residuals. Around 51 per cent of the
linear variations in the real exchange rate for the period are explained by the under-
lying autoregressive models. Mean-reversion estimation produce significantly lower
half-life estimates for the period, compared to the pre-1960 period, with half-life
estimates at 1.8 years, bias-adjusted at 2.3 years.

(I) Null hypothesis: Non-stationarity (II) Null hypothesis: Coefficiant equal to zero (III) F-test
null hypothesis: No autocorrelation (IV) Chi-square null hypothesis: No heteroskedasticity. (V)
Chi-square null hypothesis: Normality.

24For the de-trended period, unit-root presence could not be rejected, parameter estimates were
therefore omitted.
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5.4.2 Cointegration

Table 5.6: Single-equation cointegration test result for the period 1960-2012, annual
data.

Cointegration tests for the period 1960 to 2012 No trend (lags)

ADF test statistic on log(XcR)(I) -3.07** (3)
LM test for autocorrelated residuals(II)

Lag 1 0.24
Lag 1-2 0.46
Lag 1-3 1.21
Lag 1-4 1.26

Test for heteroskedasticity in residuals(III)

Levels & squares of regressors (squares only) 0.4
Levels squares & cross products of regressors 9.8*

Test of normality of residuals(IV) 4.27

ADF test statistic on log(XcN )(I) -1.46 (0)

ADF test statistic on D_log(XcN )(I) -4.16** (0)

ADF test statistic on log(RelCPI)(I) -2.38 (0)

ADF test statistic on D_log(RelCPI)(I) -2.43 (0)

“*” & ”**” denotes rejection of the null hypothesis at a 10% and 5% significance level respectively

Previous results are supported by unit-root rejection for log(XcR) at a 5 per cent
significance level. However, log(XcN ) and log(RelCPI) are not integrated, as unit-
root presence is not rejected for log(RelCPI), or for the first difference of the series
(D_log(RelCPI)).

Rolling half-life estimates show increased volatility leading up to the collapse of
Bretton-Woods, cf. Figure 5.4. Post Bretton-Woods, floating became widespread
and so did currency fluctuations and volatility25. The majority of Iceland’s trading
partners floated their currencies. Managed floating better describes the Icelandic
currency scheme during the period (Guðmundsson et al., 2001)26.

(I) Null hypothesis: Non-stationarity (II) F-test null hypothesis: No autocorrelation (III) Chi-
square null hypothesis: No heteroskedasticity. (IV) Chi-square null hypothesis: Normality.

25The króna was replaced with a “new” króna at a 100:1 ratio in January of 1981.
26Alongside increased floating came inflation, which went rampant in Iceland during the 1980s.
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Figure 5.4: OLS estimates of half-lives in a 20-year rolling-window regression of
AR(2)-model for XcR. Period 1960 to 1992, annual frequency.

A considerable difference between unadjusted half-life estimates (solid line) and
the bias-adjusted half-life estimates (dotted line) is visible. Unadjusted estimates
show no dramatic changes during the period27. Bias-adjusted estimates show a sub-
stantial increase in half-life duration early in the period, peaking around 1970, with
close to 9 year estimates, before slowly subsiding from then on28.

27In early 1990 a national stability pact was signed. The pact was an agreement between the labour
force and the Government, calling for an end to the wage-price spiral caused by wage demands
on top of increasing prices. Formal Government policy emphasizing exchange rate stability at the
same time, drove inflation down. Relative stability ensued (Snævarr, 1993).

28Price Indexation was implemented in the early 1980s, might help explain lower half-life estimates
post-1980.
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5.5 Monthly Data

5.5.1 Unit-Root

Table 5.7: Unit-root test results for the period 1988-2012, monthly data.

Unit root tests for the period 1988m01 to 2012m12 No trend Trend incl.

ADF test statistic on XcR (lags)(I) -2.45 (1 ) -3.25* (1 )
AR-model Parameter estimates (OLS)(II)

d n.a. -0.004**
b0 n.a. 4.39**
b1 n.a. 1.31**
b2 n.a. -0.48**
b3 n.a. 0.19*
b4 n.a. -0.11
b5 n.a. 0.09
b6 n.a. -0.11
b7 n.a. 0.33**
b8 n.a. -0.25**

Adjusted R2 n.a. 0.97
LM test for autocorrelated residuals(III)

Lag 1 2.02 1.42
Lag 1-2 2.02 2.01
Lag 1-3 1.38 1.45
Lag 1-4 1.08 1.09

Test for heteroskedasticity in residuals(IV)

Levels & squares of regressors (squares only) 75.05** 116.14**
Levels squares & cross products of regressors 186.7** 209.83**

Test of normality of residuals(V) 59.40** 67.67**
OLS estimates of half-life in years (Adj. estm.) n.a. n.a. (1.1 )

“*” & ”**” denotes rejection of the null hypothesis at a 10% and 5% significance level respectively

(I) Null hypothesis: Non-stationarity (II) Null hypothesis: Coefficiant equal to zero (III) F-test
null hypothesis: No autocorrelation (IV) Chi-square null hypothesis: No heteroskedasticity. (V)
Chi-square null hypothesis: Normality.
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Using monthly data, non-stationarity is rejected at a 10 per cent significance level for
the period, with trend included29. No traces of autocorrelation are evident; however,
the presence of heteroskedasticity and non-normality of the residuals cannot be rejec-
ted. The underlying univariate autoregressive models explain around 97 per cent of
the linear variation in the real effective exchange rate for the period. Bias-adjusted
half-life estimates are around 1.1 years, in duration.

The negative sign for the time trend parameter is statistically significant. It
could indicate that Iceland’s competitiveness relative to its trading partners declined
during the period. Another explanation might be due to the fact that carry trade
was prevalent during a large portion of the period. High interest rates in Iceland,
during the so-called “boom years” attracted significant capital inflows, resulting in
a considerable appreciation of the ISK. Such effects on exchange rates caused by
capital movements, not involving trade with goods, are not accounted for in the PPP
framework30.

A 10-year rolling window of half-life estimates, shows substantial fall in half-life
duration, after the floating of the ISK in early 2001 (cf. Figure 5.5), from estimates
just over two years in duration, down to 10 months. A sharp rise noticeable at the
end of 2008, when the global recession struck.
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Figure 5.5: OLS estimates of half-lives in a 120-month rolling-window regression of
AR(2)-model for XcR. Period 1998 to 2012, monthly frequency.

29For the period without a trend parameter, unit-root presence could not be rejected, parameter
estimates were therefore omitted.

30Cf. uncovered interest rate parity discussion in Section 2.
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Two sharp peaks in late 2005 and early 2006, are likely caused by a so-called mini-crisis
that occurred at the time when the Icelandic banks began to attract international
attention, due to critical coverage concerning they’re rapid growth in previous years
(Guðmundsson, 2010).

5.5.2 Cointegration

Table 5.8: Single-equation cointegration test result for the period 1988-2012, monthly
data

Cointegration tests for the period 1988m01 to 2012m12 No trend (lags)

ADF test statisitc on log(XcR)(I) -2.22 (1)
LM test for autocorrelated residuals(II)

Lag 1 2.01
Lag 1-2 1.99
Lag 1-3 1.62
Lag 1-4 1.32

Test for heteroskedasticity in residuals(III)

Levels & squares of regressors (squares only) 106.28**
Levels squares & cross products of regressors 216.54**

Test of normality of residuals(IV) 125.23**

ADF test statistic on log(XcN )(I) -1.419 (1)

ADF test statistic on D_log(XcN )(I) -10.80** (1)

ADF test statistic on log(RelCPI)(I) -1.64 (0)

ADF test statistic on D_log(RelCPI)(I) -10.62** (0)

“*” & ”**” denotes rejection of the null hypothesis at a 10% and 5% significance level respectively

Results from cointegration tests contradict previous results for the period. Station-
arity is rejected for log(XcR). Unit-root presence in log(XcN ) and log(RelCPI),
cannot be rejected, as well. The first differences of both variables reject unit-root
presence, which indicates first order integration (I(1)), between the two series, but
cointegration relationship does not exists.

(I) Null hypothesis: Non-stationarity (II) F-test null hypothesis: No autocorrelation (III) Chi-
square null hypothesis: No heteroskedasticity. (IV) Chi-square null hypothesis: Normality.
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6 Conclusion

This study has explored the validity of the purchasing power parity in the case of
Iceland. New historical nominal- and real effective exchange rate indices were con-
structed for the Icelandic króna, covering the period from 1895 through 2012. The
indices are based on annual data for the period between 1895 and 1988 and monthly
data from 1988 through 2012. They are constructed as geometrically weighted chain
indices with current trade weights based on Iceland’s foreign trade in goods. Con-
sumer prices (CPI) are used for deflators. The annual data are based on 13 of Ice-
land’s largest trading partners, which accounted for at least 70 per cent of Iceland’s
total foreign trade in good each year during the period. For the monthly data, two
countries are added to the previous list of trading partners. Adding up to a total of
15 of Iceland’s largest trading partners, which accounted for at least 64 per cent of
Iceland’s total foreign trade in goods each month throughout the period.

For empirical estimation, unit-root and cointegration tests were performed on the
new time-series as a whole, and for two sub-periods that emerged after structural
break estimation revealed a breakpoint at 1960. Empirical tests were also performed
separately for the monthly data. The mean-reversion from PPP deviation was ana-
lysed via autoregressive models, with half-life calculations using ordinary least squares
(OLS) parameter estimates.

The results of unit-root and cointegration tests support long-run relative purchas-
ing power parity convergence for Iceland. Estimations from both sub-periods showed
similar results in support of PPP convergence31. Contradicting test results for the
post-1988 period, indicates a failure of PPP convergence for that period.

Half-lives for the period as a whole, are estimated at around four years in duration,
pre-1960 half-lives are also estimated at around four years. The post-1960 period
produces slightly lower half-life estimates, at around two years in length.

The most rapid mean-reversion is seen in the floating period between 2001 and
2008, with half-life estimates around 10 months. Excluding the floating period the
inter-war and post-1981 periods show the most rapid mean reversion, with half-life
estimates ranging from 18 to 24 months. The inter-war period is also the least volatile
in the ISK’s history, relative to the trading countries32.

31Stationarity is rejected for both de-trended sub-periods individually, but not for the period as a
whole, which might be explained by a structural break presence at 1960.

32Unfortunately rolling estimates do not extend back further than 1915 due to data shortage. His-
torically, the pre-1914 period was characterized by relative stability. Iceland was under Danish
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The results are consistent with results from similar studies on purchasing power
parity. Evidence in support of PPP validation in the long run is found, with half-life
estimates from PPP deviations that fall right in the middle of the average half-life
duration of 3-5 years, seen in similar studies (Rogoff, 1996). The relatively low
half-life estimates in the post-Bretton-Woods are also consistent with the results of
Cashin & McDermott (2003). They concluded that shocks to the real exchange rate
do not appear to be very persistent in the case of the Icelandic króna, relative to real
exchange rates of other currencies they examined.

The various tests for relative PPP in this study have been simple and should be
considered as a first exploratory examination of the new historical time-series for the
real effective exchange rate of the ISK. A combination of the PPP and UIP framework
for estimation, might shed light on the results obtained here, especially for the period
between 2001 and 2008. For a robustness review of the results proposed here, a
non-linear framework using non-aggregated deflator indices as suggested by Taylor
(2004), could prove an interesting next step in purchasing power parity examination
for Iceland.

rule and was therefore, by extension, a part of the Nordic Council Monetary Union, which meant
that all the Nordic currencies, i.e. the Danish-, Norwegian-, Swedish- and Icelandic Krona had
the same value. This was during the classical gold standard period, when Nordic and most trading
partner’s currencies were pegged to gold (Guðmundsson et al., 2001).
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I Appendix

Annual data:
Bilateral exchange rates for the Danish krona vis-à-vis Finland, France, Germany,
Italy, Japan, the Netherlands, Norway, Portugal, Spain, Sweden, the UK, and the
US, for the period 1895-1988 were obtained from Abildgren (2004). Based on an
assumption of perfect international arbitrage cross-currency calculations were made
vis-à-vis the Icelandic króna and other currencies, using the bilateral exchange rate
of the ISK vis-à-vis the Danish krone, with an exception during the period 9 April
1940 to 8 September 1945, when the US dollar is used as a cross reference due to
the quotation suspension of the Danish krone. Official exchange rate quotations for
the ISK versus foreign currencies began on 13 June 1922. Exchange rates before that
date are calculated from the króna’s gold value (Iceland historical statistics, 1997).
Consumer Price indices for Denmark, Finland, France, Germany, Italy, Japan, the
Netherlands, Norway, Portugal, Spain, Sweden, the UK, and the US covering the
period 1895 to 1987 were obtained from Abildgren (2004). The Icelandic consumer
price index is constructed for the period by linking several different price indices, with
the aim of presenting an index of general prices. 1849–98: Price index based on a
basket of 27 selected domestic commodities and imported goods. 1899 to 1938: Price
index 1899 to 1912 based on sources from the Laugarnes Leprosery (Reykjavík); 1913
is an estimate; the years 1914 to 1938 are based on price observations of Statistics
Iceland made in July 1914 and October each year from 1914 to 1938. 1939 to 1988:
Consumer price index excluding housing costs, by Statistics Iceland. Source: Iceland
Historical Statistics, 1997.
External trade data for Denmark, Finland, France, Germany, Italy, Japan, the Neth-
erlands, Norway, Portugal, Spain, Sweden, the UK, and the US were collected. Im-
ports are at cif value and exports at fob value. Data for the Faeroe Islands are
included with the data for Denmark. Data for East Germany are included in the
data for Germany 1946 to 1988 (Iceland Historical Statistics, 1997)
Terms of trade. Data source: Iceland Historical Statistics, 1997 & the Central Bank
of Iceland, 2013.
Official real exchange rate (REER). Data source: Central Bank of Iceland, 2013
(www.cb.is).
Gross Domestic Product. GNP is replaced by the GDP post-1945. GNP is in the
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table deflated with a weighted index composed of the consumer price index (2/3) and
building cost index (1/3). Iceland Historical Statistics (1997).

Monthly data:
Bilateral exchange rates for the Icelandic króna vis-à-vis Belgium, Denmark, Finland,
France, Germany, Italy, Japan, the Netherlands, Norway, Portugal, Spain, Sweden,
Switzerland, the UK, and the US were obtained from the Central Bank of Iceland
(2013). In September 2002 the following countries adopted the euro: France, the
Netherlands, Portugal, Spain, Germany, Belgium, Finland and Italy. From 2002
onwards, the exchange rates for those countries are calculated on basis of the euro
exchange rate versus the Icelandic króna and exchange rates of the euro vis-à-vis the
currencies of the previously listed countries.
External trade data for Belgium, Denmark, Finland, France, Germany, Italy, Japan,
the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, the UK, and the US
were collected. Data for the Faeroe Islands and Greenland are included in the data
for Denmark. Imports are at cif value and exports at fob value (Statistics Iceland,
2013).
Consumer Price indices (CPI) and Harmonized Indices of Consumer Price (HICP)
for Belgium, Denmark, Finland, France, Germany, Italy, Japan, the Netherlands,
Norway, Portugal, Spain, Sweden, Switzerland, the UK, the US, and Iceland were
collected. Data source: OECD database (2013) & BIS database (2013). HICP re-
place normal CPI’s when available. The Harmonized consumer price index provides
a standard measurement for the index and is therefore a better choice as deflator for
this kind of survey. HICP data do not exist prior to January 1990. To incorporate
HICP into the CPI in order to construct one continuous time-series, relative change
in each country’s CPI is applied to the starting value of the HICP and calculated
backwards. The starting date for HICP measurements varies from country to coun-
try. HICP data are available for Denmark, France, Netherlands, Portugal, Sweden,
the UK, Finland, and Italy from January 1990, for Spain from January 1992, for
Iceland and Germany from January 1995, for Belgium from January 1991, for the US
from December 1997, for Japan and Norway from January 1996, and for Switzerland
from December 2004. HICP are consumer price indices compiled on the basis of a
harmonised coverage and methodology. For further details, cf. Harmonized Indices
of Consumer Prices. A Short Guide for Users (HICPs), 2004.
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II Appendix

Augmented Dickey-Fuller test for Xc_R, including one lag of (1-L)Xc_R (max was
1). Sample size 116 unit-root null hypothesis: a = 1, test with constant, model:
(1-L)y = b0 + (a-1)*y(-1) + ... + e. 1st-order autocorrelation coeff. for e: 0,011,
estimated value of (a - 1): -0,173268, test statistic: tau_c(1) = -3,54514, asymptotic
p-value 0,006932.

Augmented Dickey-Fuller regression
OLS, using observations 1897-2012 (T = 116)
Dependent variable: d_Xc_R

coefficient std.error t-ratio p-value
const 15,2971 4,44133 3,444 0,0008 ***
Xc_R_1 -0,173268 0,04887 -3,545 0,0069 ***
d_Xc_R_1 0,231712 0,09174 2,525 0,0129 **
AIC: 884,556 BIC: 892,817 HQC: 887,909

with constant and trend, model: (1-L)y = b0 + b1*t + (a-1)*y(-1) + ... + e.
1st-order autocorrelation coeff. for e: 0,011. Estimated value of (a - 1): -0,172488.
Test statistic: tau_ct(1) = -3,49982. Asymptotic p-value 0,03932

Augmented Dickey-Fuller regression
OLS, using observations 1897-2012 (T = 116)
Dependent variable: d_Xc_R

coefficient std.error t-ratio p-value
const 15,551 4,687 3,318 0,001 ***
Xc_R_1 -0,172 0,049 -3,500 0,039 **
d_Xc_R_1 0,231 0,092 2,495 0,014 **
time -0,0053 0,030 -0,176 0,860
AIC: 886,524 BIC: 897,538 HQC: 890,995

Augmented Dickey-Fuller test for l_Xc_R , including one lag of (1-L)l_Xc_R
(max was 1). Sample size 116 unit-root null hypothesis: a = 1, test with constant,
model: (1-L)y = b0 + (a-1)*y(-1) + ... + e. 1st-order autocorrelation coeff. for
e: 0,002, estimated value of (a - 1): -0,165752, test statistic: tau_c(1) = -3,43032,
asymptotic p-value 0,009997
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Augmented Dickey-Fuller regression.
OLS, using observations 1897-2012 (T = 116)
Dependent variable: d_l_Xc_R

coefficient std.error t-ratio p-value
const 0,7383 0,215648 3,424 0,0009 ***
l_Xc_R_1 -0,1657 0,048319 -3,430 0,0100 ***
d_l_Xc_R_1 0,222 0,09210 2,412 0,0175 **
AIC: -182,218 BIC: -173,957 HQC: -178,864

Augmented Dickey-Fuller test for l_Xc_N, including one lag of (1-L)l_Xc_N
(max was 1). Sample size 116 unit-root, null hypothesis: a = 1, Test with constant,
model: (1-L)y = b0 + (a-1)*y(-1) + ... + e. 1st-order autocorrelation coeff. for
e: -0,024, estimated value of (a - 1): 0,00599407, test statistic: tau_c(1) = 1,11729,
asymptotic p-value 0,9977

Augmented Dickey-Fuller regression
OLS, using observations 1897-2012 (T = 116)
Dependent variable: d_l_Xc_N

coefficient std.error t-ratio p-value
const -0,0894 0,0489 -1,825 0,0707 *
l_Xc_N_1 0,0059 0,0054 1,117 0,9977
d_l_Xc_N_1 0,347 0,0897 3,876 0,0002 ***
AIC: -110,916 BIC: -102,656 HQC: -107,563

Dickey-Fuller test for d_l_Xc_N. sample size 116 unit-root, null hypothesis: a =
1. Test with constant, model: (1-L)y = b0 + (a-1)*y(-1) + e. 1st-order autocorrela-
tion coeff. for e: -0,034, estimated value of (a - 1): -0,626694, test statistic: tau_c(1)
= -7,21607, p-value 3,547e-009

Dickey-Fuller regression
OLS, using observations 1897-2012 (T = 116)
Dependent variable: d_d_l_Xc_N

coefficient std.error t-ratio p-value
const -0,0372 0,0147 -2,531 0,0127 **
d_l_Xc_N_1 -0,627 0,0868 -7,216 3,55e-09 ***
AIC: -111,642 BIC: -106,135 HQC: -109,406

Augmented Dickey-Fuller test for l_RelCpi, including 5 lags of (1-L)l_RelCpi
(max was 5). Sample size 112 unit-root null hypothesis: a = 1, test with constant,
model: (1-L)y = b0 + (a-1)*y(-1) + ... + e. 1st-order autocorrelation coeff. for
e: 0,029, lagged differences: F(5, 105) = 18,059 [0,0000], estimated value of (a - 1):
-0,00133539, test statistic: tau_c(1) = -0,360434, asymptotic p-value 0,9134
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Augmented Dickey-Fuller regression
OLS, using observations 1901-2012 (T = 112)
Dependent variable: d_l_RelCpi

coefficient std.error t-ratio p-value
const -0,006860 0,019714 -0,348 0,7286
l_RelCpi_1 -0,001335 0,003704 -0,360 0,9134
d_l_RelCpi_1 0,501489 0,095816 5,234 8,56e-07 ***
d_l_RelCpi_2 0,106433 0,105916 1,005 0,3173
d_l_RelCpi_3 0,190460 0,104932 1,815 0,0724 *
d_l_RelCpi_4 -0,187186 0,10643 -1,759 0,0815 *
d_l_RelCpi_5 0,195784 0,097236 2,013 0,0466 **
AIC: -202,47 BIC: -183,441 HQC: -194,749

Dickey-Fuller test for d_l_RelCpi, sample size 116 unit-root null hypothesis: a =
1. Test with constant, model: (1-L)y = b0 + (a-1)*y(-1) + e. 1st-order autocorrela-
tion coeff. for e: -0,142, estimated value of (a - 1): -0,355016, test statistic: tau_c(1)
= -4,96875, p-value 5,784e-005

Dickey-Fuller regression
OLS, using observations 1897-2012 (T = 116)
Dependent variable: d_d_l_RelCpi

coefficient std.error t-ratio p-value
const -0,02097 0,009953 -2,107 0,0373 **
d_l_RelCpi_1 -0,35501 0,071449 -4,969 5,78e-05 ***
AIC: -209,074 BIC: -203,567 HQC: -206,838

Augmented Dickey-Fuller test for Xc_R, including one lag of (1-L)Xc_R (max
was 1), sample size 64 unit-root null hypothesis: a = 1. Test with constant, model:
(1-L)y = b0 + (a-1)*y(-1) + ... + e. 1st-order autocorrelation coeff. for e: 0,066,
estimated value of (a - 1): -0,178154, test statistic: tau_c(1) = -2,80973, asymptotic
p-value 0,05686

Augmented Dickey-Fuller regression
OLS, using observations 1897-1960 (T = 64)
Dependent variable: d_Xc_R

coefficient std.error t-ratio p-value
const 15,9700 6,04058 2,644 0,0104 **
Xc_R_1 -0,17815 0,06340 -2,810 0,0569 *
d_Xc_R_1 0,42156 0,164075 2,569 0,0127 **
AIC: 514,199 BIC: 520,675 HQC: 516,75
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with constant and trend, model: (1-L)y = b0 + b1*t + (a-1)*y(-1) + ... + e.
1st-order autocorrelation coeff. for e: 0,053, estimated value of (a - 1): -0,265034,
test statistic: tau_ct(1) = -3,07434, asymptotic p-value 0,1124

Augmented Dickey-Fuller regression
OLS, using observations 1897-1960 (T = 64)
Dependent variable: d_Xc_R

coefficient std.error t-ratio p-value
const 17,8047 6,1122 2,913 0,0050 ***
Xc_R_1 -0,26503 0,0862 -3,074 0,1124
d_Xc_R_1 0,45243 0,16388 2,761 0,0076 ***
time 0,1785 0,12133 1,471 0,1464
AIC: 513,93 BIC: 522,566 HQC: 517,332

Augmented Dickey-Fuller test for l_Xc_R, including one lag of (1-L)l_Xc_R
(max was 1). Sample size 64 unit-root null hypothesis: a = 1, test with constant,
model: (1-L)y = b0 + (a-1)*y(-1) + ... + e. 1st-order autocorrelation coeff. for
e: 0,032, estimated value of (a - 1): -0,159082, test statistic: tau_c(1) = -2,61791,
asymptotic p-value 0,08926

Augmented Dickey-Fuller regression
OLS, using observations 1897-1960 (T = 64)
Dependent variable: d_l_Xc_R

coefficient std.error t-ratio p-value
const 0,70943 0,2727 2,601 0,0116 **
l_Xc_R_1 -0,15908 0,0607 -2,618 0,0893 *
d_l_Xc_R_1 0,40012 0,1653 2,421 0,0185 **
AIC: -79,6157 BIC: -73,1391 HQC: -77,0643

Dickey-Fuller test for l_Xc_N, sample size 65 unit-root null hypothesis: a = 1,
test with constant, model: (1-L)y = b0 + (a-1)*y(-1) + e. 1st-order autocorrelation
coeff. for e: 0,227, estimated value of (a - 1): -0,0259043, test statistic: tau_c(1) =
-0,413977, p-value 0,9

Dickey-Fuller regression
OLS, using observations 1896-1960 (T = 65)
Dependent variable: d_l_Xc_N

coefficient std.error t-ratio p-value
const 0,2565 0,65496 0,3917 0,6966
l_Xc_N_1 -0,0259 0,06257 -0,4140 0,9000
AIC: -58,2537 BIC: -53,9049 HQC: -56,5378
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Dickey-Fuller test for d_l_Xc_N, sample size 64 unit-root null hypothesis: a = 1,
test with constant, model: (1-L)y = b0 + (a-1)*y(-1) + e. 1st-order autocorrelation
coeff. for e: 0,013, estimated value of (a - 1): -0,78259, test statistic: tau_c(1) =
-4,72, p-value 0,0001

Dickey-Fuller regression
OLS, using observations 1897-1960 (T = 64)
Dependent variable: d_d_l_Xc_N

coefficient std.error t-ratio p-value
const -0,01426 0,018951 -0,753 0,4545
d_l_Xc_N_1 -0,78259 0,165803 -4,720 0,0001 ***
AIC: -57,8941 BIC: -53,5764 HQC: -56,1932

Augmented Dickey-Fuller test for l_RelCpi, including one lag of (1-L)l_RelCpi
(max was 1), sample size 64 unit-root null hypothesis: a = 1, test with constant,
model: (1-L)y = b0 + (a-1)*y(-1) + ... + e. 1st-order autocorrelation coeff. for e:
-0,073, estimated value of (a - 1): -0,0275863, test statistic: tau_c(1) = -0,92002,
asymptotic p-value 0,7825

Augmented Dickey-Fuller regression
OLS, using observations 1897-1960 (T = 64)
Dependent variable: d_l_RelCpi

coefficient std.error t-ratio p-value
const 0,1559 0,18005 0,8664 0,3897
l_RelCpi_1 -0,0275 0,02998 -0,920 0,7825
d_l_RelCpi_1 0,4336 0,11932 3,634 0,0006 ***
AIC: -102,6 BIC: -96,1233 HQC: -100,048

Dickey-Fuller test for d_l_RelCpi, sample size 64 unit-root null hypothesis: a =
1, test with constant, model: (1-L)y = b0 + (a-1)*y(-1) + e. 1st-order autocorrela-
tion coeff. for e: -0,055, estimated value of (a - 1): -0,590563, test statistic: tau_c(1)
= -5,08045, p-value 7,241e-005

Dickey-Fuller regression
OLS, using observations 1897-1960 (T = 64)
Dependent variable: d_d_l_RelCpi

coefficient std.error t-ratio p-value
const -0,0092 0,0133 -0,6903 0,4926
d_l_RelCpi_1 -0,5905 0,1162 -5,080 7,24e-05 ***
AIC: -103,718 BIC: -99,4002 HQC: -102,017
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Augmented Dickey-Fuller test for Xc_R_1960_2012
including 3 lags of (1-L)Xc_R_1960_2012 (max was 3), sample size 49 unit-root null
hypothesis: a = 1, test with constant, model: (1-L)y = b0 + (a-1)*y(-1) + ... +
e. 1st-order autocorrelation coeff. for e: -0,016, lagged differences: F(3, 44) = 1,433
[0,2459], estimated value of (a - 1): -0,482749, test statistic: tau_c(1) = -3,13359,
asymptotic p-value 0,02419

Augmented Dickey-Fuller regression
OLS, using observations 1964-2012 (T = 49)
Dependent variable: d_Xc_R_1960_2012

coefficient std.error t-ratio p-value
const 40,658 13,084 3,107 0,0033 ***
Xc_R_1960_2012_1 -0,4827 0,1540 3,134 0,0242 **
d_Xc_R_1960_20~_1 0,2957 0,1649 1,793 0,0798 *
d_Xc_R_1960_20~_2 0,1179 0,1574 0,748 0,4579
d_Xc_R_1960_20~_3 0,2659 0,1592 1,670 0,1020
AIC: 329,861 BIC: 339,32 HQC: 333,45

Dickey-Fuller test for Xc_R_1960_2012, sample size 52 unit-root null hypothesis:
a = 1, with constant and trend, model: (1-L)y = b0 + b1*t + (a-1)*y(-1) + e. 1st-
order autocorrelation coeff. for e: 0,085, estimated value of (a - 1): -0,279732, test
statistic: tau_ct(1) = -2,85408, p-value 0,1856

Dickey-Fuller regression
OLS, using observations 1961-2012 (T = 52)
Dependent variable: d_Xc_R_1960_2012

coefficient std.error t-ratio p-value
const 31,776 10,6421 2,986 0,0044 ***
Xc_R_1960_2012_1 -0,2797 0,09801 -2,854 0,1856
time -0,0915 0,06099 -1,501 0,1398
AIC: 345,664 BIC: 351,518 HQC: 347,908

Augmented Dickey-Fuller test for l_Xc_R_1960_2012, including 3 lags of (1-
L)l_Xc_R_1960_2012 (max was 3), sample size 49 unit-root null hypothesis: a
= 1, test with constant, model: (1-L)y = b0 + (a-1)*y(-1) + ... + e. 1st-order
autocorrelation coeff. for e: -0,010, lagged differences: F(3, 44) = 1,573 [0,2094],
estimated value of (a - 1): -0,46579, test statistic: tau_c(1) = -3,06756, asymptotic
p-value 0,02907
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Augmented Dickey-Fuller regression
OLS, using observations 1964-2012 (T = 49)
Dependent variable: d_l_Xc_R_1960_2012

coefficient std.error t-ratio p-value
const 2,0621 0,6733 3,062 0,0037 ***
l_Xc_R_1960_20~_1 -0,465 0,1518 -3,068 0,0291 **
d_l_Xc_R_1960_~_1 0,3162 0,1644 1,923 0,0610 *
d_l_Xc_R_1960_~_2 0,1169 0,1577 0,740 0,4627
d_l_Xc_R_1960_~_3 0,2797 0,1637 1,708 0,0947 *
AIC: -103,173 BIC: -93,7141 HQC: -99,5844

Dickey-Fuller test for l_Xc_N_1960_2012, sample size 52 unit-root null hypo-
thesis: a = 1, test with constant, model: (1-L)y = b0 + (a-1)*y(-1) + e. 1st-order
autocorrelation coeff. for e: 0,459, estimated value of (a - 1): -0,0141904, test stat-
istic: tau_c(1) = -1,459, p-value 0,5463

Dickey-Fuller regression
OLS, using observations 1961-2012 (T = 52)
Dependent variable: d_l_Xc_N_1960_2012

coefficient std.error t-ratio p-value
const -0,0288 0,0619 -0,466 0,6434
l_Xc_N_1960_20~_1 -0,0141 0,0097 -1,459 0,5463
AIC: -48,0732 BIC: -44,1707 HQC: -46,5771

Dickey-Fuller test for d_l_Xc_N_1960_2012, sample size 51 unit-root null hy-
pothesis: a = 1, test with constant, model: (1-L)y = b0 + (a-1)*y(-1) + e. 1st-order
autocorrelation coeff. for e: -0,027, estimated value of (a - 1): -0,524971, test stat-
istic: tau_c(1) = -4,15546, p-value 0,001864

Dickey-Fuller regression
OLS, using observations 1962-2012 (T = 51)
Dependent variable: d_d_l_Xc_N_1960_2012

coefficient std.error t-ratio p-value
const -0,0590 0,0239 -2,460 0,0174 **
d_l_Xc_N_1960_~_1 -0,5249 0,1263 -4,155 0,0019 ***
AIC: -56,8859 BIC: -53,0222 HQC: -55,4094

Dickey-Fuller test for l_RelCpi_1960_2012, sample size 52 unit-root null hypo-
thesis: a = 1, test with constant, model: (1-L)y = b0 + (a-1)*y(-1) + e. 1st-order
autocorrelation coeff. for e: 0,753, estimated value of (a - 1): -0,0179279, test stat-
istic: tau_c(1) = -2,38101, p-value 0,1519
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Dickey-Fuller regression
OLS, using observations 1961-2012 (T = 52)
Dependent variable: d_l_RelCpi_1960_2012

coefficient std.error t-ratio p-value
const -0,0842 0,01996 -4,219 0,0001 ***
l_RelCpi_1960_~_1 -0,0179 0,00753 -2,381 0,1519
AIC: -74,7991 BIC: -70,8966 HQC: -73,3029

Dickey-Fuller test for d_l_RelCpi_1960_2012, sample size 51 unit-root null hy-
pothesis: a = 1, test with constant, model: (1-L)y = b0 + (a-1)*y(-1) + e. 1st-order
autocorrelation coeff. for e: -0,145, estimated value of (a - 1): -0,219185, test stat-
istic: tau_c(1) = -2,42779, p-value 0,1394

Dickey-Fuller regression
OLS, using observations 1962-2012 (T = 51)
Dependent variable: d_d_l_RelCpi_1960_2012

coefficient std.error t-ratio p-value
const -0,0238 0,01496 -1,588 0,1186
d_l_RelCpi_196~_1 -0,2192 0,09028 -2,428 0,1394
AIC: -114,114 BIC: -110,25 HQC: -112,637

Augmented Dickey-Fuller test for Xc_R, including one lag of (1-L)Xc_R (max
was 1), sample size 298 unit-root null hypothesis: a = 1

test with constant, model: (1-L)y = b0 + (a-1)*y(-1) + ... + e. 1st-order auto-
correlation coeff. for e: 0,041, estimated value of (a - 1): -0,025077, test statistic:
tau_c(1) = -2,44929, asymptotic p-value 0,1283

Augmented Dickey-Fuller regression
OLS, using observations 1988:03-2012:12 (T = 298)
Dependent variable: d_Xc_R

coefficient std.error t-ratio p-value
const 2,1594 0,9374 2,304 0,0219 **
Xc_R_1 -0,0250 0,0102 -2,449 0,1283
d_Xc_R_1 0,2811 0,0556 5,058 7,46e-07 ***
AIC: 1251,15 BIC: 1262,24 HQC: 1255,59

with constant and trend, model: (1-L)y = b0 + b1*t + (a-1)*y(-1) + ... + e.
1st-order autocorrelation coeff. for e: 0,038, estimated value of (a - 1): -0,0472946,
test statistic: tau_ct(1) = -3,25189, asymptotic p-value 0,07448
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Augmented Dickey-Fuller regression
OLS, using observations 1988:03-2012:12 (T = 298)
Dependent variable: d_Xc_R

coefficient std.error t-ratio p-value
const 4,7879 1,5424 3,104 0,0021 ***
Xc_R_1 -0,0472 0,0145 -3,252 0,0745 *
d_Xc_R_1 0,2927 0,0555 5,272 2,62e-07 ***
time -0,004 0,0019 -2,138 0,0333 **
AIC: 1248,55 BIC: 1263,34 HQC: 1254,47

Augmented Dickey-Fuller test for l_Xc_R, including one lag of (1-L)l_Xc_R
(max was 1), sample size 298 unit-root null hypothesis: a = 1, test with constant,
model: (1-L)y = b0 + (a-1)*y(-1) + ... + e. 1st-order autocorrelation coeff. for
e: 0,045, estimated value of (a - 1): -0,0227047, test statistic: tau_c(1) = -2,2185,
asymptotic p-value 0,1997

Augmented Dickey-Fuller regression
OLS, using observations 1988:03-2012:12 (T = 298)
Dependent variable: d_l_Xc_R

coefficient std.error t-ratio p-value
const 0,1009 0,04609 2,190 0,0293 **
l_Xc_R_1 -0,0227 0,01023 -2,218 0,1997
d_l_Xc_R_1 0,2911 0,05563 5,233 3,17e-07 ***
AIC: -1400,56 BIC: -1389,47 HQC: -1396,12

Augmented Dickey-Fuller test for l_Xc_N, including one lag of (1-L)l_Xc_N
(max was 1), sample size 298 unit-root null hypothesis: a = 1, test with constant,
model: (1-L)y = b0 + (a-1)*y(-1) + ... + e. 1st-order autocorrelation coeff. for e:
0,045, estimated value of (a - 1): -0,00648686, test statistic: tau_c(1) = -1,41897,
asymptotic p-value 0,5746

Augmented Dickey-Fuller regression
OLS, using observations 1988:03-2012:12 (T = 298)
Dependent variable: d_l_Xc_N

coefficient std. error t-ratio p-value
const 0,02649 0,02064 1,283 0,2005
l_Xc_N_1 -0,00649 0,00457 -1,419 0,5746
d_l_Xc_N_1 0,37902 0,05372 7,054 1,24e-011 ***
AIC: -1399,25 BIC: -1388,16 HQC: -1394,81
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Augmented Dickey-Fuller test for d_l_Xc_N, including one lag of (1-L)d_l_Xc_N
(max was 1), sample size 297 unit-root null hypothesis: a = 1, test with constant,
model: (1-L)y = b0 + (a-1)*y(-1) + ... + e. 1st-order autocorrelation coeff. for
e: 0,009, estimated value of (a - 1): -0,690755, test statistic: tau_c(1) = -10,8036,
asymptotic p-value 8,366e-022

Augmented Dickey-Fuller regression
OLS, using observations 1988:04-2012:12 (T = 297)
Dependent variable: d_d_l_Xc_N

coefficient std.error t-ratio p-value
const -0,0028 0,00135 2,107 0,0360 **
d_l_Xc_N_1 -0,6907 0,06394 -10,80 8,37e-022 ***
d_d_l_Xc_N_1 0,1129 0,05732 1,969 0,0499 **
AIC: -1401,97 BIC: -1390,89 HQC: -1397,53

Dickey-Fuller test for l_RelCpi, sample size 299 unit-root null hypothesis: a = 1,
test with constant, model: (1-L)y = b0 + (a-1)*y(-1) + e. 1st-order autocorrelation
coeff. for e: 0,445, estimated value of (a - 1): -0,00388599, test statistic: tau_c(1) =
-1,6364, p-value 0,4627

Dickey-Fuller regression
OLS, using observations 1988:02-2012:12 (T = 299)
Dependent variable: d_l_RelCpi

coefficient std.error t-ratio p-value
const -0,0026 0,000415 -6,285 1,17e-09 ***
l_RelCpi_1 -0,0039 0,002375 -1,636 0,4627
AIC: -2102,74 BIC: -2095,34 HQC: -2099,78

Dickey-Fuller test for d_l_RelCpi, sample size 298 unit-root null hypothesis: a =
1, test with constant, model: (1-L)y = b0 + (a-1)*y(-1) + e. 1st-order autocorrela-
tion coeff. for e: -0,074, estimated value of (a - 1): -0,551834, test statistic: tau_c(1)
= -10,6151, p-value 1,441e-018

Dickey-Fuller regression
OLS, using observations 1988:03-2012:12 (T = 298)
Dependent variable: d_d_l_RelCpi

coefficient std.error t-ratio p-value
const -0,0014 0,00037 -3,623 0,0003 ***
d_l_RelCpi_1 -0,5518 0,05198 -10,62 1,44e-018 ***
AIC: -2158,82 BIC: -2151,42 HQC: -2155,86
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OLS, using observations 1897–2012 (T = 116)
Dependent variable: Xc_R

Coefficient Std. Error t-ratio p-value
const 15,2971 4,4413 3,4443 0,0008
Xc_R_1 1,0584 0,0915 11,5649 0,0000
Xc_R_2 −0,2317 0,0917 −2,5255 0,0129

Mean dependent var 88,43992 S.D. dependent var 21,48312
Sum squared resid 13219,81 S.E. of regression 10,81617
R2 0,750924 Adjusted R2 0,746515
F (2,113) 170,3380 P-value(F ) 7,81e–35
Log-likelihood −439,2780 Akaike criterion 884,5560
Schwarz criterion 892,8168 Hannan–Quinn 887,9094
ρ̂ 0,010775 Durbin’s h 0,603017

LM test for autocorrelation up to order 1 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 0,241768
with p-value = P (F (1,112)> 0,241768) = 0,623894

LM test for autocorrelation up to order 2 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 0,16029
with p-value = P (F (2,111)> 0,16029) = 0,852093

LM test for autocorrelation up to order 3 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 0,194025
with p-value = P (F (3,110)> 0,194025) = 0,900275

LM test for autocorrelation up to order 4 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 0,498338
with p-value = P (F (4,109)> 0,498338) = 0,73698

White’s test for heteroskedasticity –
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 25,2318
with p-value = P (χ2(5)> 25,2318) = 0,00012568

White’s test for heteroskedasticity (squares only) –
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 24,6408
with p-value = P (χ2(4)> 24,6408) = 5,94063e-005

Test for normality of residual –
Null hypothesis: error is normally distributed
Test statistic: χ2(2) = 73,7181
with p-value = 9,82452e-017
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OLS, using observations 1897–2012 (T = 116)
Dependent variable: Xc_R

Coefficient Std. Error t-ratio p-value
const 15,5511 4,68723 3,3178 0,0012
time −0,00534073 0,0302825 −0,1764 0,8603
Xc_R_1 1,05802 0,0919486 11,5067 0,0000
Xc_R_2 −0,230509 0,0923979 −2,4947 0,0141
Mean dependent var 88,43992 S.D. dependent var 21,48312
Sum squared resid 13216,14 S.E. of regression 10,86284
R2 0,750993 Adjusted R2 0,744323
F (3,112) 112,5954 P-value(F ) 1,14e–33
Log-likelihood −439,2619 Akaike criterion 886,5238
Schwarz criterion 897,5382 Hannan–Quinn 890,9950
ρ̂ 0,010908 Durbin’s h 0,702478

LM test for autocorrelation up to order 1 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 0,248408
with p-value = P (F (1,111)> 0,248408) = 0,619185
LM test for autocorrelation up to order 2 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 0,166767
with p-value = P (F (2,110)> 0,166767) = 0,84661
LM test for autocorrelation up to order 3 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 0,17564
with p-value = P (F (3,109)> 0,17564) = 0,912687
LM test for autocorrelation up to order 4 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 0,518602
with p-value = P (F (4,108)> 0,518602) = 0,722216
White’s test for heteroskedasticity –
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 28,4342
with p-value = P (χ2(9)> 28,4342) = 0,000806822
White’s test for heteroskedasticity (squares only) –
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 24,9801
with p-value = P (χ2(6)> 24,9801) = 0,000344368
Test for normality of residual –
Null hypothesis: error is normally distributed
Test statistic: χ2(2) = 72,7118
with p-value = 1,62494e-016
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OLS, using observations 1897–2012 (T = 116)
Dependent variable: l_Xc_R

Coefficient Std. Error t-ratio p-value
const 0,738339 0,215648 3,4238 0,0009
l_Xc_R_1 1,05639 0,0917358 11,5156 0,0000
l_Xc_R_2 −0,222144 0,0921041 −2,4119 0,0175
Mean dependent var 4,456912 S.D. dependent var 0,219033
Sum squared resid 1,340639 S.E. of regression 0,108922
R2 0,757007 Adjusted R2 0,752706
F (2,113) 176,0167 P-value(F ) 1,93e–35
Log-likelihood 94,10888 Akaike criterion −182,2178
Schwarz criterion −173,9570 Hannan–Quinn −178,8644
ρ̂ 0,002317 Durbin’s h 0,138442

LM test for autocorrelation up to order 1 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 0,0121513
with p-value = P (F (1,112)> 0,0121513) = 0,912422
LM test for autocorrelation up to order 2 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 0,0141038
with p-value = P (F (2,111)> 0,0141038) = 0,985997
LM test for autocorrelation up to order 3 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 0,0650737
with p-value = P (F (3,110)> 0,0650737) = 0,978243
LM test for autocorrelation up to order 4 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 0,408025
with p-value = P (F (4,109)> 0,408025) = 0,802528
White’s test for heteroskedasticity –
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 17,875
with p-value = P (χ2(5)> 17,875) = 0,00310719
White’s test for heteroskedasticity (squares only) –
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 17,1959
with p-value = P (χ2(4)> 17,1959) = 0,00177069
Test for normality of residual –
Null hypothesis: error is normally distributed
Test statistic: χ2(2) = 49,509
with p-value = 1,77522e-011
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OLS, using observations 1897–1960 (T = 64)
Dependent variable: Xc_R

Coefficient Std. Error t-ratio p-value
const 15,9700 6,04058 2,6438 0,0104
Xc_R_1 1,24341 0,159570 7,7922 0,0000
Xc_R_2 −0,421560 0,164075 −2,5693 0,0127
Mean dependent var 92,40288 S.D. dependent var 27,06588
Sum squared resid 10526,06 S.E. of regression 13,13615
R2 0,771923 Adjusted R2 0,764445
F (2,61) 103,2269 P-value(F ) 2,64e–20
Log-likelihood −254,0993 Akaike criterion 514,1986
Schwarz criterion 520,6753 Hannan–Quinn 516,7501
ρ̂ 0,065507 Durbin–Watson 1,529369

LM test for autocorrelation up to order 1 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 1,01045
with p-value = P (F (1,60)> 1,01045) = 0,318832
LM test for autocorrelation up to order 2 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 0,59232
with p-value = P (F (2,59)> 0,59232) = 0,556298
LM test for autocorrelation up to order 3 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 0,482729
with p-value = P (F (3,58)> 0,482729) = 0,695575
LM test for autocorrelation up to order 4 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 0,50306
with p-value = P (F (4,57)> 0,50306) = 0,733583
White’s test for heteroskedasticity –
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 13,5652
with p-value = P (χ2(5)> 13,5652) = 0,0186207
White’s test for heteroskedasticity (squares only) –
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 13,3138
with p-value = P (χ2(4)> 13,3138) = 0,00983987
Test for normality of residual –
Null hypothesis: error is normally distributed
Test statistic: χ2(2) = 44,2471
with p-value = 2,46531e-010
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OLS, using observations 1897–1960 (T = 64)
Dependent variable: Xc_R

Coefficient Std. Error t-ratio p-value
const 17,8047 6,11229 2,9129 0,0050
time 0,178521 0,121336 1,4713 0,1464
Xc_R_1 1,18740 0,162587 7,3032 0,0000
Xc_R_2 −0,452437 0,163880 −2,7608 0,0076
Mean dependent var 92,40288 S.D. dependent var 27,06588
Sum squared resid 10159,52 S.E. of regression 13,01251
R2 0,779865 Adjusted R2 0,768859
F (3,60) 70,85346 P-value(F ) 1,06e–19
Log-likelihood −252,9651 Akaike criterion 513,9303
Schwarz criterion 522,5658 Hannan–Quinn 517,3323
ρ̂ 0,053213 Durbin–Watson 1,520910

LM test for autocorrelation up to order 1 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 0,528047
with p-value = P (F (1,59)> 0,528047) = 0,470302
LM test for autocorrelation up to order 2 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 0,443305
with p-value = P (F (2,58)> 0,443305) = 0,644068
LM test for autocorrelation up to order 3 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 0,409194
with p-value = P (F (3,57)> 0,409194) = 0,746989
LM test for autocorrelation up to order 4 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 0,378875
with p-value = P (F (4,56)> 0,378875) = 0,822779
White’s test for heteroskedasticity –
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 19,6845
with p-value = P (χ2(9)> 19,6845) = 0,0199628
White’s test for heteroskedasticity (squares only) –
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 13,0133
with p-value = P (χ2(6)> 13,0133) = 0,0428252
Test for normality of residual –
Null hypothesis: error is normally distributed
Test statistic: χ2(2) = 44,9109
with p-value = 1,76895e-010
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OLS, using observations 1897–1960 (T = 64)
Dependent variable: l_Xc_R

Coefficient Std. Error t-ratio p-value
const 0,709431 0,272753 2,6010 0,0116
l_Xc_R_1 1,24104 0,161581 7,6806 0,0000
l_Xc_R_2 −0,400127 0,165307 −2,4205 0,0185
Mean dependent var 4,487903 S.D. dependent var 0,271622
Sum squared resid 0,983399 S.E. of regression 0,126970
R2 0,788428 Adjusted R2 0,781491
F (2,61) 113,6588 P-value(F ) 2,67e–21
Log-likelihood 42,80787 Akaike criterion −79,61574
Schwarz criterion −73,13909 Hannan–Quinn −77,06426
ρ̂ 0,031547 Durbin–Watson 1,557157

LM test for autocorrelation up to order 1 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 0,245716
with p-value = P (F (1,60)> 0,245716) = 0,621918
LM test for autocorrelation up to order 2 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 0,121415
with p-value = P (F (2,59)> 0,121415) = 0,885887
LM test for autocorrelation up to order 3 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 0,101124
with p-value = P (F (3,58)> 0,101124) = 0,959053
LM test for autocorrelation up to order 4 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 0,191
with p-value = P (F (4,57)> 0,191) = 0,942147
White’s test for heteroskedasticity –
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 10,3855
with p-value = P (χ2(5)> 10,3855) = 0,0650219
White’s test for heteroskedasticity (squares only) –
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 10,2512
with p-value = P (χ2(4)> 10,2512) = 0,0364019
Test for normality of residual –
Null hypothesis: error is normally distributed
Test statistic: χ2(2) = 37,3186
with p-value = 7,87714e-009
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OLS, using observations 1962–2012 (T = 51)
Dependent variable: Xc_R_1960_2012

Coefficient Std. Error t-ratio p-value
const 27,1306 9,22864 2,9398 0,0050
Xc_R_1960_2012_1 0,850368 0,142144 5,9824 0,0000
Xc_R_1960_2012_2 −0,174376 0,144981 −1,2028 0,2350
Mean dependent var 83,82926 S.D. dependent var 9,479373
Sum squared resid 2104,277 S.E. of regression 6,621110
R2 0,531647 Adjusted R2 0,512132
F (2,48) 27,24335 P-value(F ) 1,24e–08
Log-likelihood −167,2234 Akaike criterion 340,4467
Schwarz criterion 346,2422 Hannan–Quinn 342,6613
ρ̂ −0,014845 Durbin–Watson 2,010122

LM test for autocorrelation up to order 1 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 0,277671
with p-value = P (F (1,47)> 0,277671) = 0,60071
LM test for autocorrelation up to order 2 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 0,446407
with p-value = P (F (2,46)> 0,446407) = 0,642666
LM test for autocorrelation up to order 3 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 1,09831
with p-value = P (F (3,45)> 1,09831) = 0,359695
LM test for autocorrelation up to order 4 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 1,20654
with p-value = P (F (4,44)> 1,20654) = 0,32158
White’s test for heteroskedasticity (squares only) –
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 1,11055
with p-value = P (χ2(4)> 1,11055) = 0,892595
White’s test for heteroskedasticity –
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 8,95846
with p-value = P (χ2(5)> 8,95846) = 0,110733
Test for normality of residual –
Null hypothesis: error is normally distributed
Test statistic: χ2(2) = 1,74447
with p-value = 0,418016
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OLS, using observations 1961–2012 (T = 52)
Dependent variable: Xc_R_1960_2012

Coefficient Std. Error t-ratio p-value
const 31,7764 10,6421 2,9859 0,0044
time −0,0915501 0,0609988 −1,5008 0,1398
Xc_R_1960_2012_1 0,720268 0,0980111 7,3488 0,0000
Mean dependent var 83,56243 S.D. dependent var 9,581168
Sum squared resid 2090,938 S.E. of regression 6,532396
R2 0,553384 Adjusted R2 0,535155
F (2,49) 30,35701 P-value(F ) 2,65e–09
Log-likelihood −169,8320 Akaike criterion 345,6641
Schwarz criterion 351,5178 Hannan–Quinn 347,9082
ρ̂ 0,084836 Durbin’s h 0,848284

LM test for autocorrelation up to order 1 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 0,644903
with p-value = P (F (1,48)> 0,644903) = 0,4259
LM test for autocorrelation up to order 2 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 0,422911
with p-value = P (F (2,47)> 0,422911) = 0,657605
LM test for autocorrelation up to order 3 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 0,321171
with p-value = P (F (3,46)> 0,321171) = 0,810007
LM test for autocorrelation up to order 4 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 0,477526
with p-value = P (F (4,45)> 0,477526) = 0,752004
White’s test for heteroskedasticity –
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 9,189
with p-value = P (χ2(5)> 9,189) = 0,101759
White’s test for heteroskedasticity (squares only) –
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 8,13327
with p-value = P (χ2(4)> 8,13327) = 0,0868165
Test for normality of residual –
Null hypothesis: error is normally distributed
Test statistic: χ2(2) = 2,06003
with p-value = 0,357002
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OLS, using observations 1962–2012 (T = 51)
Dependent variable: l_Xc_R_1960_2012

Coefficient Std. Error t-ratio p-value
const 1,34632 0,466962 2,8832 0,0059
l_Xc_R_1960_2012_1 0,890284 0,141582 6,2881 0,0000
l_Xc_R_1960_2012_2 −0,194835 0,145016 −1,3435 0,1854
Mean dependent var 4,422121 S.D. dependent var 0,118509
Sum squared resid 0,306502 S.E. of regression 0,079909
R2 0,563523 Adjusted R2 0,545336
F (2,48) 30,98569 P-value(F ) 2,29e–09
Log-likelihood 58,05022 Akaike criterion −110,1004
Schwarz criterion −104,3050 Hannan–Quinn −107,8858
ρ̂ −0,015092 Durbin–Watson 2,011493

LM test for autocorrelation up to order 1 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 0,244237
with p-value = P (F (1,47)> 0,244237) = 0,623465
LM test for autocorrelation up to order 2 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 0,456462
with p-value = P (F (2,46)> 0,456462) = 0,636359
LM test for autocorrelation up to order 3 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 1,20547
with p-value = P (F (3,45)> 1,20547) = 0,318629
LM test for autocorrelation up to order 4 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 1,25688
with p-value = P (F (4,44)> 1,25688) = 0,301277
White’s test for heteroskedasticity –
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 9,80269
with p-value = P (χ2(5)> 9,80269) = 0,081023
White’s test for heteroskedasticity (squares only) –
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 0,39525
with p-value = P (χ2(4)> 0,39525) = 0,982864
Test for normality of residual –
Null hypothesis: error is normally distributed
Test statistic: χ2(2) = 4,26947
with p-value = 0,118276
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OLS, using observations 1988:09–2012:12 (T = 292)
Dependent variable: Xc_R

Coefficient Std. Error t-ratio p-value
const 1,80308 0,927708 1,9436 0,0529
Xc_R_1 1,32112 0,0575423 22,9592 0,0000
Xc_R_2 −0,486482 0,0952540 −5,1072 0,0000
Xc_R_3 0,192453 0,0991324 1,9414 0,0532
Xc_R_4 −0,118765 0,0993243 −1,1957 0,2328
Xc_R_5 0,0920799 0,0982011 0,9377 0,3492
Xc_R_6 −0,112666 0,0956860 −1,1775 0,2400
Xc_R_7 0,327422 0,0906987 3,6100 0,0004
Xc_R_8 −0,236149 0,0553814 −4,2640 0,0000
Mean dependent var 90,27052 S.D. dependent var 10,88166
Sum squared resid 946,8075 S.E. of regression 1,829101
R2 0,972522 Adjusted R2 0,971746
F (8,283) 1252,037 P-value(F ) 5,9e–216
Log-likelihood −586,0760 Akaike criterion 1190,152
Schwarz criterion 1223,243 Hannan–Quinn 1203,407
ρ̂ 0,021373 Durbin’s h 1,909239

LM test for autocorrelation up to order 1 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 2,01786
with p-value = P (F (1,282)> 2,01786) = 0,156563
LM test for autocorrelation up to order 2 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 2,02437
with p-value = P (F (2,281)> 2,02437) = 0,133999
LM test for autocorrelation up to order 3 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 1,37573
with p-value = P (F (3,280)> 1,37573) = 0,250412
LM test for autocorrelation up to order 4 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 1,08183
with p-value = P (F (4,279)> 1,08183) = 0,365743
White’s test for heteroskedasticity –
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 186,716
with p-value = P (χ2(44)> 186,716) = 1,69401e-019
White’s test for heteroskedasticity (squares only) –
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 75,0501
with p-value = P (χ2(16)> 75,0501) = 1,28097e-009
Test for normality of residual –
Null hypothesis: error is normally distributed
Test statistic: χ2(2) = 59,4075
with p-value = 1,25841e-013
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OLS, using observations 1988:09–2012:12 (T = 292)
Dependent variable: l_Xc_R

Coefficient Std. Error t-ratio p-value
const 0,0872586 0,0463734 1,8817 0,0609
l_Xc_R_1 1,31253 0,0579003 22,6689 0,0000
l_Xc_R_2 −0,478637 0,0957294 −4,9999 0,0000
l_Xc_R_3 0,153323 0,0995662 1,5399 0,1247
l_Xc_R_4 −0,0929228 0,0994900 −0,9340 0,3511
l_Xc_R_5 0,149534 0,0991742 1,5078 0,1327
l_Xc_R_6 −0,122374 0,0980757 −1,2478 0,2132
l_Xc_R_7 0,281488 0,0938175 3,0004 0,0029
l_Xc_R_8 −0,222584 0,0571830 −3,8925 0,0001
Mean dependent var 4,494924 S.D. dependent var 0,128696
Sum squared resid 0,134947 S.E. of regression 0,021837
R2 0,972001 Adjusted R2 0,971210
F (8,283) 1228,079 P-value(F ) 8,4e–215
Log-likelihood 706,8958 Akaike criterion −1395,792
Schwarz criterion −1362,701 Hannan–Quinn −1382,537
ρ̂ 0,019442 Durbin’s h 2,121418

LM test for autocorrelation up to order 1 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 2,00912
with p-value = P (F (1,282)> 2,00912) = 0,15746
LM test for autocorrelation up to order 2 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 1,99863
with p-value = P (F (2,281)> 1,99863) = 0,137443
LM test for autocorrelation up to order 3 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 1,62489
with p-value = P (F (3,280)> 1,62489) = 0,183791
LM test for autocorrelation up to order 4 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 1,32055
with p-value = P (F (4,279)> 1,32055) = 0,262451
White’s test for heteroskedasticity –
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 216,543
with p-value = P (χ2(44)> 216,543) = 1,22252e-024
White’s test for heteroskedasticity (squares only) –
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 106,282
with p-value = P (χ2(16)> 106,282) = 2,27342e-015
Test for normality of residual –
Null hypothesis: error is normally distributed
Test statistic: χ2(2) = 125,234
with p-value = 6,39354e-028
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OLS, using observations 1988:09–2012:12 (T = 292)
Dependent variable: Xc_R

Coefficient Std. Error t-ratio p-value
const 4,39434 1,54109 2,8514 0,0047
time −0,00382659 0,00182335 −2,0987 0,0367
Xc_R_1 1,30978 0,0574543 22,7968 0,0000
Xc_R_2 −0,483225 0,0946989 −5,1028 0,0000
Xc_R_3 0,190629 0,0985453 1,9344 0,0541
Xc_R_4 −0,118996 0,0987323 −1,2052 0,2291
Xc_R_5 0,0907490 0,0976177 0,9296 0,3534
Xc_R_6 −0,114202 0,0951184 −1,2006 0,2309
Xc_R_7 0,330258 0,0901682 3,6627 0,0003
Xc_R_8 −0,247983 0,0553393 −4,4811 0,0000
Mean dependent var 90,27052 S.D. dependent var 10,88166
Sum squared resid 932,2474 S.E. of regression 1,818197
R2 0,972945 Adjusted R2 0,972081
F (9,282) 1126,799 P-value(F ) 2,4e–215
Log-likelihood −583,8133 Akaike criterion 1187,627
Schwarz criterion 1224,394 Hannan–Quinn 1202,354
ρ̂ 0,018813 Durbin’s h 1,616572

LM test for autocorrelation up to order 1 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 1,42423
with p-value = P (F (1,281)> 1,42423) = 0,233716
LM test for autocorrelation up to order 2 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 2,01047
with p-value = P (F (2,280)> 2,01047) = 0,135855
LM test for autocorrelation up to order 3 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 1,44505
with p-value = P (F (3,279)> 1,44505) = 0,229924
LM test for autocorrelation up to order 4 –
Null hypothesis: no autocorrelation
Test statistic: LMF = 1,08877
with p-value = P (F (4,278)> 1,08877) = 0,362337
White’s test for heteroskedasticity –
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 209,833
with p-value = P (χ2(54)> 209,833) = 3,11608e-020
White’s test for heteroskedasticity (squares only) –
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 116,142
with p-value = P (χ2(18)> 116,142) = 2,23481e-016
Test for normality of residual –
Null hypothesis: error is normally distributed
Test statistic: χ2(2) = 67,6665
with p-value = 2,02491e-015
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III Appendix
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Figure III.1: Total annual share of exports and imports of GDP, each year for the
period 1901-2012, at current prices. Data source: cf. Appendix I.
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Figure III.2: Development of the new XcR & terms of trade for Iceland, annual
frequency: 1895 to 2012 (1895=2012). Data source: cf. Appendix I.
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Figure III.3: Share of the exports & imports that are included in this study, of Iceland’s
total exports & imports, each year. 1895 to 1987. Data source: cf. Appendix I.
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Figure III.4: Share of the exports & imports that are included in this study, of Iceland’s
total exports & imports, each month. 1988 to 2012. Data source: cf. Appendix I.

The drop in annual imports and exports during the 1950s is due to external trade between Iceland
and the USSR during the period. USSR is not included in this research.
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Figure III.5: Comparison of the new real effective exchange rate of the Icelandic króna
(XcR) & the official real exchange rate of The Central Bank, monthly frequency: 1988 to
2012 (Jan 1988 = 100). Data source: cf. Appendix I & calculations in Section 3.
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Figure III.6: The new nominal effective króna exchange rate (XcN ) and Relative prices
(RelCPI), monthly frequency: 1988 to 2012 (Jan 1988 = 100). Data source: cf.
Appendix I & calculations in Section 3.
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Figure III.7: Comparison of the Icelandic (CPII) & foreign consumer price indices
(CPIF ), monthly frequency: 1988 to 2012 (Jan 1988 = 100). Data source: cf. Appendix I
& calculations in Section 3.
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Figure III.8: Comparison of the Icelandic & foreign consumer price indices in
logarithmic scale, annual frequency: 1895 to 2012 (1895 = 100). Data source: cf.
Appendix I & calculations in Section 3.
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Table III.1: Historical indices 1895 to 1987, annual observations.

Date XcR CPII CPIF XcN XcR CPII CPIF XcN

1895=100 1895=100

’95 100,00 100,00 100,00 100,00 ’36 100,32 253,82 454,55 179,67
’96 99,35 98,50 99,45 100,31 ’37 106,91 266,76 464,70 186,24
’97 100,86 98,30 98,01 100,56 ’38 105,21 273,16 483,85 186,35
’98 99,41 98,11 100,13 101,46 ’39 88,25 283,54 494,97 154,06
’99 95,64 99,48 104,17 100,15 ’40 105,42 371,73 500,77 142,02
’00 98,95 102,07 103,60 100,43 ’41 116,58 475,44 569,27 139,59
’01 95,77 103,39 109,11 101,06 ’42 141,65 623,30 613,43 139,41
’02 93,40 102,05 109,27 100,01 ’43 172,89 787,85 635,27 139,41
’03 95,99 103,38 108,33 100,59 ’44 176,30 822,52 650,38 139,41
’04 97,32 104,72 108,42 100,76 ’45 180,11 852,13 660,18 139,54
’05 98,11 105,98 108,27 100,23 ’46 190,40 907,51 677,77 142,20
’06 95,89 107,25 110,56 98,86 ’47 197,09 981,02 702,81 141,20
’07 98,11 111,11 111,73 98,65 ’48 189,27 993,78 770,86 146,81
’08 98,22 113,66 114,36 98,82 ’49 176,88 1018,62 834,59 144,92
’09 99,76 114,91 113,31 98,37 ’50 136,23 1348,65 862,56 87,13
’10 100,22 114,91 112,79 98,37 ’51 168,69 1813,94 894,75 83,21
’11 102,53 120,09 115,32 98,46 ’52 174,60 2064,26 983,82 83,21
’12 104,13 122,73 115,89 98,32 ’53 165,63 2041,56 1025,04 83,16
’13 103,06 126,66 120,87 98,35 ’54 166,08 2064,01 1032,20 83,05
’14 106,77 134,38 123,57 98,18 ’55 172,40 2158,96 1042,37 83,24
’15 122,50 157,63 126,14 98,03 ’56 187,37 2409,40 1070,51 83,25
’16 134,84 195,14 146,63 101,32 ’57 189,05 2517,82 1120,49 84,13
’17 178,26 299,74 172,94 102,85 ’58 202,33 2684,00 1147,00 86,47
’18 204,39 412,15 204,91 101,62 ’59 201,15 2724,26 1178,91 87,05
’19 163,85 458,72 246,37 88,00 ’60 98,26 3004,85 1194,63 39,07
’20 119,47 544,04 277,90 61,02 ’61 96,71 3356,42 1216,95 35,07
’21 111,16 460,26 322,28 77,84 ’62 98,08 3755,84 1245,62 32,53
’22 101,75 369,59 297,67 81,95 ’63 106,38 4221,56 1292,96 32,58
’23 111,38 347,78 288,36 92,35 ’64 123,16 5048,99 1336,07 32,59
’24 113,97 383,95 510,91 151,66 ’65 128,12 5422,61 1380,14 32,61
’25 119,55 368,59 561,21 182,02 ’66 138,67 6116,70 1438,03 32,60
’26 108,89 323,26 571,14 192,39 ’67 131,94 6318,56 1501,24 31,35
’27 98,29 293,52 538,53 180,34 ’68 112,23 7342,16 1551,01 23,71
’28 97,98 284,42 524,55 180,70 ’69 94,55 9111,62 1613,30 16,74
’29 103,77 285,84 510,83 185,46 ’70 102,22 10414,58 1687,37 16,56
’30 105,64 278,12 509,51 193,54 ’71 102,16 11174,85 1785,83 16,33
’31 99,78 253,65 494,86 194,67 ’72 105,39 12784,03 1896,64 15,64
’32 94,43 243,25 467,96 181,67 ’73 112,17 15941,68 2010,57 14,15
’33 97,11 242,03 448,84 180,09 ’74 133,33 22669,07 2180,45 12,82
’34 98,66 244,69 440,26 177,52 ’75 112,61 34048,95 2469,40 8,17
’35 96,97 247,38 448,77 175,91 ’76 122,24 45489,39 2771,62 7,45
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Table III.1 contd.
Date XcR CPII CPIF XcN XcR CPII CPIF XcN

1895=100 1895=100

’77 133,96 59363,6 3045,5 6,87 ’83 116,58 838580,9 5128,0 0,71
’78 120,68 85661,7 3353,8 4,72 ’84 122,92 1092670,9 5449,9 0,61
’79 119,93 124809,2 3624,9 3,48 ’85 121,39 1449974,3 5727,4 0,48
’80 126,84 198446,6 3961,5 2,53 ’86 120,38 1748669,1 5902,1 0,41
’81 132,63 298860,6 4400,2 1,95 ’87 130,68 2079167,5 6100,4 0,38
’82 121,58 451578,3 4791,5 1,29
Source: cf. calculations in section 3
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Table III.2: Historical indices 1988 to 2012, monthly observations.

Date XcR CPII CPIF XcN XcR CPII CPIF XcN

2005=100 2005=100

01’88 117,90 41,27 63,68 181,90 06’91 101,11 66,80 74,89 113,35
02’88 118,44 41,59 63,91 181,99 07’91 102,13 67,65 75,09 113,35
03’88 111,84 41,91 64,16 171,21 08’91 102,55 68,19 75,27 113,21
04’88 112,21 42,34 64,50 170,95 09’91 102,70 68,72 75,61 113,00
05’88 106,82 42,98 64,70 160,83 10’91 102,56 69,04 76,06 112,99
06’88 104,41 43,72 64,84 154,84 11’91 102,66 69,57 76,34 112,65
07’88 108,70 45,21 64,91 156,08 12’91 102,98 69,89 76,29 112,41
08’88 112,13 46,70 65,16 156,47 01’92 102,55 69,78 76,34 112,20
09’88 113,62 47,76 65,52 155,86 02’92 102,59 69,99 76,68 112,39
10’88 110,48 48,08 65,74 151,06 03’92 102,61 70,10 77,05 112,77
11’88 109,76 48,19 65,90 150,10 04’92 102,10 70,21 77,44 112,62
12’88 109,79 48,29 66,01 150,06 05’92 101,45 70,21 77,63 112,18
01’89 104,61 48,40 66,37 143,45 06’92 101,02 70,10 77,70 111,97
02’89 103,57 49,15 66,62 140,41 07’92 101,42 70,42 77,62 111,80
03’89 102,31 49,89 66,92 137,23 08’92 101,57 70,53 77,71 111,91
04’89 104,32 51,27 67,46 137,26 09’92 101,78 70,53 77,97 112,53
05’89 105,20 52,34 67,72 136,11 10’92 102,83 70,53 78,09 113,86
06’89 103,69 53,40 67,84 131,73 11’92 101,55 70,53 78,22 112,63
07’89 103,01 55,00 67,97 127,31 12’92 97,43 70,42 78,27 108,29
08’89 101,39 55,42 68,13 124,65 01’93 98,03 70,85 78,56 108,71
09’89 100,45 56,17 68,47 122,45 02’93 99,43 71,70 78,91 109,44
10’89 99,17 57,23 68,81 119,24 03’93 99,40 72,12 79,28 109,27
11’89 98,85 58,40 68,94 116,70 04’93 98,71 72,23 79,65 108,84
12’89 98,24 59,25 69,09 114,55 05’93 98,73 72,44 79,79 108,74
01’90 99,17 60,53 69,57 113,98 06’93 97,57 72,65 79,80 107,16
02’90 99,23 60,85 69,86 113,93 07’93 91,19 72,55 79,82 100,33
03’90 100,24 61,80 70,24 113,93 08’93 92,32 73,29 80,02 100,80
04’90 100,28 62,34 70,68 113,71 09’93 93,46 73,93 80,25 101,45
05’90 100,26 62,55 71,00 113,80 10’93 93,58 74,14 80,40 101,48
06’90 100,84 63,08 71,13 113,70 11’93 94,00 74,57 80,39 101,34
07’90 101,01 63,51 71,21 113,27 12’93 93,54 74,57 80,41 100,86
08’90 100,37 63,93 71,71 112,59 01’94 92,15 74,14 80,50 100,05
09’90 100,15 64,14 72,33 112,92 02’94 91,11 73,93 80,81 99,59
10’90 99,19 64,14 72,82 112,61 03’94 90,78 74,04 81,08 99,42
11’90 99,25 64,36 72,81 112,29 04’94 90,48 74,14 81,35 99,27
12’90 100,13 64,78 72,76 112,46 05’94 90,37 74,14 81,51 99,35
01’91 99,87 64,89 73,12 112,54 06’94 90,32 74,14 81,57 99,37
02’91 99,88 65,31 73,52 112,43 07’94 90,42 74,25 81,51 99,26
03’91 100,66 65,53 73,74 113,28 08’94 90,40 74,46 81,80 99,31
04’91 100,29 65,63 74,39 113,67 09’94 90,12 74,46 81,98 99,22
05’91 100,37 65,95 74,68 113,65 10’94 89,66 74,67 82,07 98,54
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11’94 89,79 74,57 82,10 98,86 07’98 93,48 79,82 87,82 102,85
12’94 89,77 74,57 82,15 98,90 08’98 93,03 79,42 87,84 102,89
01’95 90,12 75,10 82,45 98,93 09’98 91,45 79,42 88,06 101,40
02’95 90,49 75,10 82,73 99,68 10’98 91,14 79,72 88,11 100,74
03’95 89,88 75,10 83,00 99,33 11’98 90,99 79,92 88,14 100,34
04’95 89,24 75,20 83,26 98,80 12’98 90,85 79,72 88,13 100,44
05’95 89,22 75,40 83,39 98,68 01’99 91,71 79,92 88,09 101,08
06’95 89,41 75,40 83,44 98,94 02’99 91,75 79,82 88,25 101,45
07’95 89,92 75,60 83,25 99,01 03’99 91,94 80,12 88,61 101,68
08’95 89,85 75,90 83,40 98,73 04’99 91,64 80,52 89,01 101,30
09’95 89,53 76,00 83,72 98,61 05’99 91,53 80,82 89,11 100,91
10’95 89,63 76,41 83,72 98,21 06’99 92,53 81,33 89,09 101,37
11’95 89,39 76,31 83,73 98,09 07’99 92,97 81,53 88,93 101,41
12’95 89,21 76,20 83,82 98,13 08’99 93,12 81,83 89,11 101,40
01’96 89,40 76,41 83,86 98,13 09’99 93,89 82,43 89,41 101,83
02’96 89,26 76,51 84,17 98,20 10’99 95,38 83,03 89,49 102,80
03’96 89,32 76,71 84,51 98,41 11’99 96,14 82,93 89,59 103,86
04’96 89,62 77,01 84,82 98,72 12’99 96,77 83,23 89,75 104,34
05’96 89,84 77,31 84,99 98,76 01’00 97,26 83,63 89,63 104,23
06’96 89,70 77,31 84,96 98,57 02’00 97,98 83,33 89,98 105,79
07’96 89,62 77,41 84,92 98,31 03’00 98,71 83,84 90,39 106,43
08’96 89,83 77,71 84,98 98,23 04’00 100,03 84,54 90,57 107,17
09’96 89,47 77,71 85,31 98,22 05’00 100,67 84,84 90,76 107,69
10’96 89,62 77,91 85,47 98,32 06’00 98,63 85,24 91,06 105,36
11’96 89,42 77,91 85,45 98,06 07’00 97,59 85,74 90,94 103,50
12’96 89,35 77,71 85,57 98,39 08’00 97,31 85,24 90,93 103,81
01’97 89,50 77,91 85,76 98,51 09’00 96,09 85,34 91,51 103,04
02’97 89,28 78,01 85,95 98,36 10’00 95,81 86,24 91,54 101,68
03’97 89,47 78,01 86,10 98,75 11’00 93,68 86,35 91,62 99,40
04’97 90,40 78,71 86,38 99,21 12’00 91,76 86,24 91,75 97,62
05’97 90,24 78,51 86,62 99,56 01’01 90,96 86,55 91,65 96,33
06’97 90,66 78,51 86,68 100,09 02’01 90,92 86,55 92,11 96,77
07’97 91,65 78,61 86,58 100,93 03’01 90,62 87,25 92,49 96,07
08’97 92,18 78,82 86,76 101,48 04’01 86,64 88,25 93,00 91,29
09’97 91,87 79,22 87,03 100,93 05’01 82,18 89,66 93,50 85,70
10’97 90,89 79,52 87,09 99,54 06’01 82,18 91,27 93,51 84,20
11’97 90,23 79,42 87,11 98,97 07’01 84,80 92,07 93,13 85,78
12’97 91,03 79,32 87,25 100,14 08’01 84,84 92,07 93,16 85,84
01’98 91,76 79,62 87,18 100,48 09’01 83,00 92,87 93,54 83,60
02’98 92,15 79,52 87,34 101,21 10’01 81,95 93,37 93,44 82,00
03’98 92,15 79,72 87,52 101,17 11’01 79,87 93,78 93,28 79,45
04’98 92,48 79,82 87,76 101,68 12’01 81,83 94,18 93,43 81,19
05’98 92,61 80,12 88,01 101,73 01’02 84,97 94,98 93,55 83,69
06’98 93,70 80,22 87,94 102,71 02’02 86,36 94,78 93,79 85,45
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03’02 86,54 95,18 94,25 85,69 11’05 109,58 101,31 100,69 108,92
04’02 88,07 95,08 94,69 87,71 12’05 106,29 101,51 100,85 105,60
05’02 90,39 95,08 94,81 90,13 01’06 107,95 101,41 100,59 107,08
06’02 90,60 95,68 94,77 89,73 02’06 104,15 101,20 101,00 103,94
07’02 91,51 95,78 94,65 90,43 03’06 96,28 102,31 101,38 95,40
08’02 91,11 95,28 94,77 90,62 04’06 88,48 103,11 102,04 87,56
09’02 89,39 95,78 95,08 88,73 05’06 89,50 104,32 102,33 87,80
10’02 89,38 96,18 95,25 88,51 06’06 87,93 105,72 102,37 85,14
11’02 89,50 95,98 95,15 88,73 07’06 88,68 106,12 102,28 85,47
12’02 90,70 95,98 95,48 90,23 08’06 93,10 106,63 102,52 89,52
01’03 92,17 96,08 95,68 91,78 09’06 94,87 107,43 102,60 90,60
02’03 92,94 95,88 96,21 93,25 10’06 98,26 107,53 102,46 93,62
03’03 93,47 96,99 96,62 93,11 11’06 95,24 107,53 102,45 90,74
04’03 94,48 96,89 96,64 94,24 12’06 92,76 107,53 102,61 88,52
05’03 94,68 96,79 96,52 94,42 01’07 93,77 107,83 102,19 88,86
06’03 92,96 96,89 96,46 92,55 02’07 96,69 107,93 102,71 92,01
07’03 91,20 96,69 96,31 90,85 03’07 95,02 107,23 103,38 91,61
08’03 89,11 96,29 96,53 89,33 04’07 95,58 107,53 103,89 92,35
09’03 89,23 96,99 96,90 89,15 05’07 99,69 108,53 104,16 95,67
10’03 89,48 97,29 96,90 89,13 06’07 101,25 108,94 104,15 96,81
11’03 90,03 97,39 96,83 89,51 07’07 102,99 108,84 103,85 98,27
12’03 90,07 97,69 96,93 89,37 08’07 96,08 108,53 103,93 92,00
01’04 92,57 97,59 96,84 91,86 09’07 96,97 109,64 104,37 92,32
02’04 92,74 97,19 97,14 92,69 10’07 99,82 110,04 104,74 95,02
03’04 91,88 97,99 97,63 91,54 11’07 97,28 110,44 105,25 92,70
04’04 90,71 98,29 97,98 90,42 12’07 96,60 111,24 105,42 91,54
05’04 90,74 99,00 98,34 90,14 01’08 93,11 111,14 105,34 88,25
06’04 91,78 99,60 98,32 90,60 02’08 90,56 112,75 105,94 85,09
07’04 91,93 99,30 98,09 90,80 03’08 81,21 114,56 106,71 75,65
08’04 92,23 99,20 98,16 91,27 04’08 80,72 118,98 107,05 72,63
09’04 92,09 99,60 98,42 91,01 05’08 81,44 121,29 107,71 72,33
10’04 92,53 100,10 98,80 91,32 06’08 78,09 122,59 108,11 68,86
11’04 93,76 100,20 98,69 92,35 07’08 78,61 123,69 108,19 68,75
12’04 97,71 100,50 98,79 96,04 08’08 79,99 125,10 108,27 69,23
01’05 99,80 100,10 98,40 98,11 09’08 74,98 126,61 108,71 64,38
02’05 100,91 100,00 98,81 99,71 10’08 66,24 129,82 108,47 55,34
03’05 102,70 100,30 99,38 101,76 11’08 60,24 132,33 107,82 49,09
04’05 99,78 99,90 99,78 99,66 12’08 65,45 134,64 107,34 52,18
05’05 96,94 99,60 99,95 97,28 01’09 66,83 135,44 106,98 52,79
06’05 100,00 100,00 100,00 100,00 02’09 74,92 137,15 107,80 58,89
07’05 101,49 99,80 99,96 101,65 03’09 73,30 137,35 108,24 57,76
08’05 101,21 99,60 100,27 101,89 04’09 65,73 138,35 108,58 51,59
09’05 104,85 101,20 100,89 104,53 05’09 64,54 140,36 108,76 50,01
10’05 109,28 101,71 101,01 108,53 06’09 63,93 143,07 108,96 48,69
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07’09 64,20 144,08 108,13 48,18 04’11 72,06 158,43 113,54 51,64
08’09 63,38 145,08 108,42 47,36 05’11 72,43 160,94 113,63 51,14
09’09 63,72 145,88 108,73 47,49 06’11 72,37 161,45 113,30 50,78
10’09 63,66 147,59 108,86 46,95 07’11 71,97 161,04 113,28 50,62
11’09 63,70 148,69 108,87 46,64 08’11 72,54 161,24 113,36 51,00
12’09 64,65 149,80 108,89 46,99 09’11 73,64 162,05 113,99 51,80
01’10 65,49 149,90 108,58 47,44 10’11 74,77 162,65 114,03 52,42
02’10 66,96 151,81 109,28 48,20 11’11 74,56 162,25 113,91 52,35
03’10 67,92 153,21 110,35 48,92 12’11 74,29 163,25 114,00 51,88
04’10 68,42 153,71 110,69 49,27 01’12 73,61 162,65 113,71 51,46
05’10 71,19 154,32 110,66 51,05 02’12 72,84 165,66 114,66 50,42
06’10 73,41 154,02 110,39 52,62 03’12 72,11 168,88 115,57 49,35
07’10 73,35 153,01 109,97 52,71 04’12 72,11 169,78 115,89 49,22
08’10 75,02 153,61 110,18 53,81 05’12 74,10 170,68 115,76 50,26
09’10 75,46 153,41 110,60 54,40 06’12 76,28 172,59 115,34 50,98
10’10 75,49 154,42 110,83 54,18 07’12 76,92 169,78 115,24 52,21
11’10 75,93 154,42 110,91 54,54 08’12 78,94 168,57 115,44 54,06
12’10 75,65 155,02 111,39 54,36 09’12 75,48 170,58 116,08 51,36
01’11 73,54 153,21 111,06 53,31 10’12 71,62 165,16 116,52 50,53
02’11 72,76 155,32 111,89 52,41 11’12 70,86 165,66 116,26 49,73
03’11 72,09 156,73 112,93 51,95 12’12 70,06 165,76 116,46 49,23
Source: cf. calculations in section 3
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