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Abstract 

 

In practical asset management, traditional mean-variance portfolio optimization is frequently 

applied. Surplus optimization has a wide range of applications including benchmarking of 

portfolio returns with liabilities. In this thesis, mean-variance optimization models in absence 

and presence of liabilities are derived and expressed using simplifying notation that also 

explains certain properties of the optimal sets. Additional methods closely connected to 

surplus optimization are proposed. Asset allocation strategies in absence and presence of 

liabilities are compared in terms of generated surplus and performance. 

 

By defining a 33 symmetric matrix, whose elements are composed from the inputs to the 

surplus optimization model, the optimal portfolios and respective return variances can be 

expressed in a simple form, as a function of return requirements. Also the determinant of this 

matrix and it‘s sub-determinants provide an efficient way of understanding the difference 

between the traditional mean-variance frontier and surplus frontier(s) in risk return space. The 

surplus optimization approach allows for multiple index benchmarking as the hedge 

component can be decomposed into several components resulting from the different 

benchmark indices. The theoretical absolute minimum surplus return variance for all feasible 

portfolios can be found and the classic market portfolio in presence of liabilities can be 

hedged by including a separate liability hedging component. The log-returns assumption 

allows for a simple probabilistic measure on gaining positive surplus and also allows for the 

application of shortfall constraints on the funding ratio. Using historical data from July 2008 

to January 2012, a comparison of optimal allocation strategies in absence and presence of 

liabilities indicates that strategies considering liabilities are superior over their asset-only 

counterparts in terms of generating surplus and in recovering from the market downturn in 

2008. 

 

Keywords: Asset-Liability management, Mean-Variance optimization, Surplus optimization, 

Surplus risk-return frontier. 
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Útdráttur 

 
Titill ritgerðar á íslensku: Bestun eignasafna út frá áhættu og væntri ávöxtun með og án tillits 

til skuldbindinga: samanburðargreining lausna og tengdar aðferðir. 

 

Í hefðbundinni eignastýringu er oftar en ekki stuðst við bestun eignasafna út frá áhættu og 

væntri ávöxtun. Eignasöfn má besta með tilliti til ýmissra viðmiða, til að mynda 

skuldbindinga. Í þessari ritgerð eru líkön til bestunar eignasafna út frá áhættu og væntri 

ávöxtun með og án tillits til skuldbindinga leidd út og lausnirnar ritaðar með einföldum 

rithætti sem útskýrir einnig ákveðna eiginleika lausnamengjanna. Aðferðir sem nota má 

samhliða bestun eignasafna með skuldbindingaviðmiði eru lagðar fram. Fjárfestingastefnur 

með og án skuldbindingaviðmiðs eru bornar saman á grundvelli vaxtar eigna umfram 

skuldbindinga og frammistöðu. 

 

Með því að skilgreina 33 fylki, með stökum samsettum úr stærðum sem teknar eru inn í 

bestunarlíkanið með skuldbindingaviðmiði, er hægt að rita lausnir fyrir eignasöfn á framfalli 

og dreifni ávöxtunar þeirra á einfaldan hátt sem föll af ávöxtunarkröfu. Ákveða og 

undirákveður fylkisins segja ennfremur til um mismuninn á framföllum eignasafna með og án 

tillits til skuldbindinga á einfaldan hátt. Bestunarlíkanið með skuldbindingaviðmiði getur 

tekið tillit til margra viðmiða í einu þar sem að hægt er að kljúfa varnarsafn skuldbindinga 

niður í þætti tengda einstökum viðmiðum. Finna má fræðilega lágmarksdreifni milli 

ávöxtunar eigna og skuldbindinga á möguleg eignasöfn og hið hefðbundna markaðssafn í 

návist skuldbindinga má verja með sérstöku varnarsafni. Ef gert er ráð fyrir normaldreifingu 

lógaritmískrar ávöxtunar má setja fram einfaldan líkindamælikvarða á eignir umfram 

skuldbindingar og einnig má beita skammfallsskorðum á hlutfall eigna og skuldbindinga. 

Samanburður eignasafna með og án skuldbindingaviðmiðs með gögnum frá júlí 2008 til 

janúar 2012 leiðir í ljós að eignasöfn með skuldbindingaviðmiði stóðu sig betur í að ávaxta 

eignir umfram skuldbindingar ásamt því að ná sér hraðar upp úr niðursveiflunni frá árinu 

2008. 

 

Lykilorð: Eigna- og skuldbindingastýring, Bestun eignasafna út frá áhættu og væntri ávöxtun, 

Bestun umframeigna (eignasafna með skuldbindingaviðmiði), Framfall umframeigna. 
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1. Introduction 

 

Pension fund systems play various roles in developed communities. Initially, they should 

provide the basis for the accumulation of savings in order to cover the spending of the 

majority of the population after retirement. Second, they should provide some sort of a 

financial insurance due to longevity. Third, they should include some diversification of 

individual risks in society and provide a form of common public insurance. Fourth, it is 

somewhat desirable that pension systems include a form of income levelling amongst retirees 

(Guðmundsson, 2000).  

 

It is important to distinguish between the roles and objectives of pension funds. The role of 

pension funds is defined by law whereas the objectives are defined by the management of the 

funds. The objectives can be quite different unlike the predefined roles by law. Essentially, 

the role of pension funds is to secure pensions to their members or their surviving spouse or 

children according to provisions of laws and funds agreements. The laws imply that the 

objectives of pension funds are to provide highest possible pension at each time, but pension 

funds have certain flexibility in reaching that goal along with other objectives that can vary 

somewhat between funds. Their ability to enhance the rights in excess of minimum rights is 

mainly dependent on their members’ demographic composition and historical assets returns 

(Kaupþing, 2006). 

 

In modern economies, the increasing importance of pension plans has been recognized as a 

consequence of demographic trends in developed communities. The establishment of the 

pension systems in the last century introduced a great step forward, where the burden of the 

subsistence of older generation was systematically organized so that the coming generations 

would be better capable of financing their pensions themselves, without needing to rely on the 

subsistence of their children. In many societies, pension assets have been invested in capital 

markets in order to decrease present contributions and let the asset growth finance a greater 

portion of future pension payments. Long term growth has been intended to be stable and 

despite of individual market shocks, the long term growth has been presumed to be capable of 

growing pension assets well enough to cover pension liabilities.  

 

Many share the opinion that markets have become more volatile than the pension plans could 

afford. Two equity market shocks have occurred since the high-tech bubble burst in late 2000 

and a number of economies have not recovered from the 2008 crisis. In many cases, the 
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liability covering target has been missed and as a result, pension funds have been criticized 

for being too heavily invested in equities, irrespective of their liability structure and the ability 

to bear the equity-risk (Ryan, Fabozzi, 2002; Fabozzi, Focardi, Jonas, 2004; Martellini, 2006). 

World‘s pension systems have suffered repeatedly from losses and adverse market conditions 

have affected the funding status of pension plans, often to a severe degree. Declining values 

of equities have resulted in falling pension plan assets while at the same time, decrease in 

interest rates has pushed up the pension liabilities along with lowering yields and returns on 

the low-risk fixed income asset classes. The low interest rate environment combined with the 

poor performance of global stock markets has lowered the funding status of many pension 

plans even further (Martellini, 2006).  

 

The adverse market events occurring in the last two decades have shed light on the weakness 

of risk management and asset allocation practices in the pension fund industry. It is 

increasingly being recognized among academics and practitioners that pension fund risk 

management needs some rethinking and an extensive analysis of what went wrong and how 

the pension fund industry should adopt to a more volatile and cross-connected environment 

(Ryan, Fabozzi, 2002).  

 

A frequently asked question in the discussion of pension funds still remains unanswered: 

“Could the pension fund crisis have been avoided or could the consequences of the recent 

financial crisis on the pension funds have been smoothened with proper risk management 

practices?” No one can really tell, but academics argue that better risk management and 

broader base of knowledge would improve the current situation and help to guide the industry 

into better future prospects (Fabozzi, Focardi, Jonas, 2004; Martellini, 2006). 

 

Risk factors in pension fund management 

Pension fund management is exposed to many sources of uncertainty and a simple overview 

of risk factors in pension fund management can be found in table 1.1. The core role of asset 

allocation modelling is to get a better grip on uncertainty and to act as a helping tool in 

making important decisions. Modelling can help in managing uncertainty and suggest 

preventive or corrective actions against risk factors, using statistical analysis and a blend of 

various theoretical methods. In the pension fund industry, the growing importance of 

modelling is being recognized although the capabilities of implementing modelling 

techniques vary between and within countries (Fabozzi, Focardi, Jonas, 2004). 
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Table 1.1: Risk factors in pension fund and asset management (Crouhy, Galai, Mark, 2001; Icelandic pension fund 

association [1], 2010; Kaupthing 2006; Sigurðsson et. al 2010)  

 

As a consequence of the increasing frequency and magnitude of pension plan deficits, the 

regulatory environment of pension funds has been altered in many countries. Increased 

emphasis on the importance of Asset-Liability Management (ALM) in managing pensions 

and greater requirements in risk management, have increased the need for proper modelling 

techniques (Fabozzi, Focardi, Jonas, 2004; Martellini, 2006). But nice things cost money; the 

capabilities of implementing modelling often depend on the size of pension funds. Larger 

pension funds are more likely to use advanced models and are quicker to adopt new 

investment strategies than smaller funds, which are more likely to suffer from a lack of in-

house knowledge on proper risk management practices (Fabozzi, Focardi, Jonas, 2004). 

 

The net performance of pension funds and therefore the rights of its beneficiaries are mainly 

controlled by two factors – assets and liabilities. One of the largest risk factors in pension 

fund operation is the risk of whether the assets can cover the liabilities. The development of 

liabilities can be more of a concern than the return on assets as the observation of 

demographic trends in developed communities implies. The changing demographic factors 

have presented increasing problems for pension schemes and are one of many reasons for the 

current difficulties of pension systems in developed countries. In some countries, increased 

disability trends have raised concerns regarding public and private insurance and pension 

systems. The reasons for trends in disability rates are controversial but this development 

increases the burden of pension systems, regardless of the reasons for the trends.  
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Estimation of demographic trends for prediction purposes is a challenging task. Various 

models for the purposes of predicting these trends have been developed and applied; their 

prediction power will not be observed until decades have passed. These models include 

uncertainty factors and the analysis of trend behaviour of first or second degree, e.g. the Lee-

Carter mortality model (McCarthy and Miles, 2011; Ísleifsson 2012). One of many problems 

regarding the hedging of demographic risk factors is the autocorrelation in demographic 

trends and also, the correlation between demography and financial markets.  

 

A large risk factor in the interaction between assets and liabilities is the development of 

interest rates. Despite varying conventions between countries in discounting liabilities, 

movements in interest rates affect liabilities regardless of discounting conventions used. 

During the last decade, changes in regulatory environment in many countries have resulted in 

increasing number of pension funds discounting liabilities using market rates instead of fixed 

or semi-fixed discount rates (Fabozzi, Focardi, Jonas, 2004). This has resulted in more 

changes in liabilities due to changes in market rates and hence more volatility of liabilities. 

For the last years, market rates have been very low on historical basis in many economies, 

resulting in somewhat lower return on fixed income assets and increased liabilities which has 

increased pension fund deficits. In countries using fixed or averaging discount rates, the 

interest rate risk is somewhat hidden and does not emerge although it basically exists. 

 

Inflation risk is a large risk factor for pension funds providing indexed pensions. Obligatory 

full indexation of benefits creates a substantial risk for pension funds, especially in countries 

where inflation jumps are not uncommon, whereas their assets are only partially indexed. 

Accordingly, the funding status of a pension plan can deteriorate considerably if inflation is 

high. Risk management practices should account for how to respond to inflation jumps, when 

and especially before inflation is expected to increase.  

 

The contribution of country risk can be relatively large and countries facing high country risk 

can benefit from international risk diversification (Driessen and Laeven, 2007). International 

asset allocation includes risks due to underlying foreign assets as well as currency risk. 

Currency movements affect the return on foreign assets in domestic currency. As a result, 

hedging against currency fluctuations is considered as a natural response to risk caused by 

foreign investments. The estimation of foreign asset risk can be challenging as it can be 

difficult to predict short term currency fluctuations whereas long term fluctuations are 

generally more predictable. The long term mean reversion tendency of real currency rates 
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results in less long term currency risk. From that perspective, currency risk is not necessarily a 

major risk factor for properly diversified long term overseas investors. Nevertheless, large 

portions of assets invested internationally can induce considerable fluctuations in short term 

returns due to currency rate fluctuations (Magnússon, 2006).  

 

Asset-liability modelling issues 

The deficits of many pension plans in recent years are mainly the result of development in 

demographic trends, risk management and accounting practices along with asset performance. 

The sharp drop of stock markets around 2000 resulted in lower asset values along with a 

period of low interest rates which raised the value of liabilities. Another and greater market 

shock followed in 2008 in which equity prices fell dramatically and pension funds suffered 

further. In a comparative study by Fabozzi, Focardi and Jonas (2004), bad modelling or even 

absence of modelling was considered as a substantial explanation of the current pension fund 

crisis. Nevertheless, their results implied that there was a growing use of computer-based 

modelling in the pension funds industry in western societies. They concluded that modelling 

allows for better decision making by reducing uncertainty and those plans that have 

implemented a computer assisted decision making process are generally safer and more 

efficient with respect to cost, risk and performance than their less sophisticated peers. It 

would serve the interests of all parties concerned to accurately model a pension fund’s cash 

flow. Their report was based on conversations with over forty persons mainly from pension 

funds but also regulators, consultants and academics in Europe and the U.S.A. Funds with 

assets under EUR 1.5 billion were not included in this study as they typically depend on 

external consultants and have little in-house knowledge on modelling issues. Unfortunately in 

some cases examined by the study, modelling was used to justify investment decisions taken 

or even used as some kind of cosmetics to make the decisions look more sophisticated. 

 

According to article 3.4 in OECD guidelines on pension fund asset management, pension 

funds investment policies should include a sound risk management process that measures and 

seeks to appropriately control portfolio risk. Furthermore, assets and liabilities should be 

managed in a coherent and integrated manner (OECD, 2006). The guidelines suggest that 

asset management practices in pension funds should minimize any imbalance between assets 

and liabilities and that the risk structure of assets and liabilities is as similar as possible at 

each moment in time (Icelandic pension fund association [2], 2010; OECD, 2006; Sigurðsson 

et. al., 2010). Accordingly, the regulatory environment of pension funds has been adopting 

this methodology, posing challenges to the pension funds regarding duration matching of 
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assets and liabilities and to model assets and liabilities in more accurate manner. In the near 

future, regulatory requirements of asset-liability modelling are likely to force pension funds to 

respond and adopt some form of liability driven investment strategies. 

 

Questions have been raised on whether the practices and procedures used in the pension fund 

industry are sufficient following the market difficulties since the millennium. The market 

difficulties have motivated the development of risk management solutions, including asset-

liability management (ALM) methodology. The ALM literature suggests directly or indirectly 

that a fraction of portfolio wealth should be invested in a liability-hedging portfolio that is 

supposed to minimize the risk due to liabilities, i.e. reduce the likelihood and magnitude of 

shortfall caused by a mismatch between assets and liabilities. 

 

Various optimization methods in the field of ALM have been developed for allocating assets 

in the presence of liability constraints and some are used by institutional investors and 

pension funds. According to previously mentioned study by Fabozzi, Focardi and Jonas 

(2004), frequently used methods in pension fund applications are simulation and optimization 

under uncertainty. Flexible methods are provided by optimization under uncertainty, allowing 

for dynamic decision making where the portfolio policy is the output. The optimization 

methods can be distinguishing between as the modelling methods for uncertainty vary. The 

main methods for numerical optimization under uncertainty can be classified into stochastic, 

dynamic and fuzzy programming methods (Reynisson, 2012). According to Fabozzi, Focardi 

and Jonas (2004), the literature in ALM applications is highly concentrated on stochastic 

programming. In stochastic programming, various scenario generation techniques are used 

along with methods that use algorithms for solving problems numerically, since the main 

assumption in these methods is that analytic solutions do not exist. From the perspective of 

non-specialists, simulation methods are more easily understood as the portfolio policy is an 

input. 

 

Portfolio optimization 

The foundation of modern portfolio theory is based on Markowitz‘s (1952) famous article, 

Portfolio Theory. In his article, he introduced an idea of risk-return representation of 

portfolios, where the set of efficient portfolios could be represented via expected return and 

volatility. The common practice of focusing on maximizing expected returns only is rejected 

by Markowitz‘s portfolio theory. He showed in his article that volatility of returns should be 

minimized, given some level of expected returns, or equivalently, expected returns should be 
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maximized for given levels of volatility. In his approach, the efficient set results in well 

diversified portfolios where the minimization of volatility is achieved with diversification. 

The total asset risk is reduced by increasing the number of assets in a portfolio and by 

choosing the assets with respect to cross-correlation of asset returns. Although the systematic 

risk of the markets cannot be eliminated by diversification, specific asset risk can be reduced 

and theoretically diversified by selecting all assets from the market. As the inputs to risk-

return models are easily estimated, these models are nevertheless quite sensitive to the inputs 

and the optimal allocation can change substantially due to quite small changes in inputs. 

 

Markowitz‘s approach led to many innovative ideas in asset management, e.g. the “mutual 

fund separation theorem” where the set of optimal portfolios can be represented as a linear 

combination of other optimal portfolios. These ideas and the work that followed provided the 

foundation for modern asset management modelling techniques. Asset allocation models have 

improved since the early days of asset management and due to the growing importance of 

appropriate modelling techniques for large institutional investors, various classes of portfolio 

models taking miscellaneous factors and benchmarks into account have been developed.  

 

The mean-variance frontier can be interpreted as the set of all optimal portfolios, i.e. 

portfolios with minimum variance for a given value for expected return. The portfolio that has 

the absolute minimum variance is referred to as the minimum variance portfolio and 

represents the minimum return variance point on the efficient frontier. The risk-return space is 

a simple, yet an efficient way of reducing the investment problem‘s dimensionality from n 

dimensions (n + 1 if a risk-free asset is included) into two dimensions. 

 

The traditional mean-variance efficient portfolios can be decomposed into two separate 

portfolios; the minimum risk or minimum variance component and a return generating 

component. The minimum risk component is not dependent upon preferences whereas the 

return generating component is chosen by the investor upon return preferences and resulting 

risk. 

 

In general, modern portfolio theory assumes that returns on assets are normally distributed but 

models with other distributional assumptions have been developed. In financial modelling, 

logarithmic returns or continuously compounded returns are often assumed to be normally 

distributed, based on the roughly symmetric character of stock return distributions. The 

assumption on normality has strong empirical support (Stewart, Piros, Heisler, 2011). In 

general, normality tests of daily portfolio return do not reject the normality assumption, 
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suggesting that the assumption of normality for stock portfolio returns may be acceptable 

even if individual stock returns are not normally distributed. By lengthening the observation 

horizon, the assumption on normality appears to become more acceptable for individual stock 

returns. Another reason for the normality assumption is the central limit theorem, which states 

that, under mild conditions, the mean of a large number of random variables independently 

drawn from the same distribution is distributed approximately normally, irrespective of the 

form of the original distribution. Accordingly, the normality assumption of returns is merely a 

reasonable and a simplifying assumption for modelling purposes. 

 

Surplus management and surplus optimization 

By extending the traditional mean variance framework to take account of liabilities, one 

focuses on growing the pension asset portfolio in excess of the liability portfolio, i.e. 

achieving pension plan surplus. The pure surplus is generally defined as the total asset value 

being held by an investor, net of liabilities. As the investment problem is now affected by the 

presence of liabilities, the investor‘s strategy is not a traditional asset allocation problem, 

since the investment decisions must enable the investor to cover his liabilities without 

excessive risk of falling short of this goal. The objective of the problem has transferred into 

maintaining the value of assets above the value of liabilities, irrespective of actuarial or 

accounting rules used to calculate the present value of the liabilities. The investment problem 

has now been transferred from portfolio risk-return space into surplus risk-return space, where 

fluctuations in the funding ratio, i.e. the ratio of present value of assets to present value of 

liabilities, have emerged as units of financial risk. 

 

According to the previously mentioned study by Fabozzi, Focardi and Jonas (2004), many 

practitioners in the pension fund industry have been somewhat reluctant to take full account 

of liabilities into the mean-variance framework and still favour the traditional Markowitz 

approach in absence of liabilities. However, practitioners in the pension fund industry and 

regulatory bodies are slowly accepting the importance of considering liabilities in the 

investment process. Investors are frequently focused on the return on assets rather than the 

return on assets net of liabilities and as a consequence, the surplus risk might be undetected. 

On many occasions, it’s likely that the different dynamics of assets and liability returns are 

involved in generating an imbalance between assets and liabilities for many pension plans. As 

an initial step towards considering liabilities in the investment process, models with strong 

link to standard theory might be helpful since they provide simple and easily understood 

extensions to the widely applied risk-return analysis. In fact, the traditional mean-variance 
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optimization model is a special case of the surplus optimization model, where the liabilities 

are ignored. 

 

Surplus management can be thought of as liability benchmarking where investments are made 

by considering the dynamics of the liabilities. Benchmarking is commonly applied practice in 

asset management where the returns of portfolios are supposed to be closely related to or 

exceed some pre-specified benchmark. Liability benchmarking is only one type of 

benchmarking and as a result, surplus optimization can be applied in a much broader context. 

The goal of exceeding a benchmark return involves optimizing surplus returns on that 

particular benchmark. An investor with the goal of optimizing surplus might have a certain 

view on the typical asset return benchmark, but he might as well focus on the importance of 

benchmarking his asset return with liabilities returns. 

 

Along with gaining positive surplus, the surplus optimizer‘s strategy aims at investing in a 

portfolio which smoothes the fluctuation of the surplus returns caused by different volatility 

factors, i.e. in a liability hedge portfolio that has high return correlation with the most relevant 

risk factors. Surplus optimization presents a strategic asset allocation using asset classes that 

are not perfectly correlated with the liabilities. The investment in the liability hedge portfolio 

depends on the funding ratio and the preferences of the investor have not to be specified.  

 

From the regulators point of view, this allows for a simple technique to monitor pension funds 

asset management strategies as the liability hedge portfolio depends only on current funding 

ratio, not on preferences. In order to maximize pension fund‘s expected surplus return with 

respect to volatility, the fund should hedge the liabilities according to the financial status as 

the hedge portfolio for the liabilities is dependent on the funding ratio and the properties of 

liabilities. A pension fund should consider investing in a portfolio that provides the best hedge 

against fluctuations in wages and salaries, inflation, demographic trends etc. Pension funds, 

are legally obliged to cover their liabilities with their assets at each point in time during their 

lifetime. As a natural response, pension management should consider some sort of ALM 

practices in asset and risk management.  

 

Literature Review 

The foundation of modern portfolio theory was laid by Markowitz (1952), with his idea of 

risk-return representation of portfolios. In his approach, the efficient set results in well 

diversified portfolios where the minimization of volatility is achieved via diversification. 

Markowitz‘s approach led to many innovative ideas in asset management, e.g. the “mutual 
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fund separation theorem” where the set of optimal portfolios can be represented as a linear 

combination of any optimal portfolios. Solnik (1978) extended the traditional mean-variance 

approach with portfolio choice under inflation where it was assumed that assets have nominal 

payoffs where investors care about real returns. Keel and Muller (1995) refined Solnik‘s 

approach for portfolio choice under inflation and applied it to the asset-liability problem 

where they derived the surplus optimal set in terms of Lagrangian parameters. They showed 

that the presence of liabilities leads to a shift of the efficient set where the shift vector can be 

decomposed in different components. Furthermore, they showed how shortfall constraints for 

a pension fund can be reconciled with efficiency. Sharpe and Tint (1990) presented an 

approach that avoids either asset only or full surplus optimization by introducing an 

importance parameter that permits full or partial emphasis on liabilities They introduced a 

procedure that can be used to measure the exact relationships among expected returns, risks, 

and hedging characteristics via a hedging credit and the hedging ability of assets. 

 

Among the first steps forward in optimal portfolio selection theory in continuous-time was 

taken by Robert Merton in a series of papers on intertemporal selection analysis, e.g Merton 

(1969), (1971), (1973). Merton (1969) derived the optimality equations for a multi-asset 

problem when the rates of returns are generated by Wiener processes. His methods can be 

used to examine wide class of intertemporal economic problems under uncertainty. Several 

authors have extended Merton‘s intertemporal selection analysis which has resulted in a 

spectrum of continuous-time models considering various aspects of the asset allocation 

problem, including those who account for the presence of liability constraints in the asset 

allocation policy. Rudolf and Ziemba (2004) presented an intertemporal portfolio selection 

model for pension funds that maximizes the intertemporal expected utility of the surplus, 

where state variables are interpreted as currency rates that affect the value of the asset 

portfolio. The optimum occurs for investors holding four funds: the market portfolio, the 

hedge portfolio for the state variables, the hedge portfolio for the liabilities, and the risk-free 

asset. The model provides an intertemporal portfolio selection approach for surplus 

optimizers. Martellini 2006 considered an intertemporal portfolio problem in the presence of 

liability constraints. Using the value of the liability portfolio as a natural numéraire, he finds 

that the solution involves a three-fund separation theorem; the risk-free asset, the standard 

market portfolio and a liability hedging portfolio. 

 

The core of the continuous-time literature is that the presence of risk factors induces a specific 

hedging component in the optimal allocation strategy. These risk factors can be financial risks 
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such as liabilities, inflation, interest rates, currencies etc. and the optimal strategy aims at 

hedging one or more risk factors simultaneously. Stochastic models can be particularly useful 

in relation to risk-return space, where they allow for the representation of the uncertainty 

relating to a set of risk factors that impact the objectives of the portfolio strategy. 

 

Motivation and objectives 

The previously mentioned articles by Keel and Muller (1995) and Rudolf and Ziemba (2004) 

motivated the author of this thesis to understand and analyse the surplus optimization model 

in details and search for further explanations of the properties of the optimal solutions. The 

contents of Keel’s and Muller’s article provide the foundation in this thesis but different and 

perhaps more practical expressions of the optimal solutions are proposed in this thesis, using 

constrained Lagrangian optimization to find the optimal solutions. Keel and Muller expressed 

the optimal solutions in terms of Lagrangian parameters but since inputs into practical asset 

allocation models in terms of raw Lagrangian multipliers are somewhat inconvenient, the 

optimal solutions were modified so that return requirement could be used directly as an input. 

Also, a convenient notation for expressing the optimal solutions is introduced where elements 

of a matrix play the role of simplifying the expressions. Interestingly, this matrix can also be 

used to explain certain properties of the optimal solutions and the structure of the frontiers in 

risk-return space and surplus risk-return space.  

 

As the motivation behind the work has been stated, the goal of this thesis is:  

1. To derive simple and convenient expressions for the optimal portfolios and return 

variances of the surplus optimization problem so that the problem can easily be 

expressed and programmed in software. 

2. Provide relatively simple explanations of certain properties of optimal solutions of the 

surplus optimization problem and the difference between the risk-return frontiers in 

absence and presence of liabilities. 

3. Explore probabilistic measures and constraints that can be applied in parallel with 

surplus optimization. 

4. Apply the derived methodology by comparing asset allocation strategies in absence 

and presence of liabilities in terms of generating surplus, using recent historical asset 

and liabilities data. 

To address these topics and thereby the goals of this thesis, the optimal mean-variance 

portfolios in absence and presence of liabilities are derived in chapter 2 and additional 
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methods in close relation to mean-variance analysis are proposed. By introducing a 33 

symmetric matrix with elements consisting of the inputs to the surplus optimization model, 

the optimal portfolios and respective return variances can be expressed in a simple form as a 

function of return requirement. Also the determinant of this matrix and it‘s sub-determinants 

provide a simple method for understanding the difference between the traditional mean-

variance frontiers and surplus frontiers in risk-return space. The surplus optimization 

approach allows for multiple benchmarking, since the hedging component can be decomposed 

into different components resulting from each benchmark. The theoretical absolute minimum 

surplus return variance on all feasible portfolios can be found and a market portfolio in the 

presence of liabilities can be considered by including a separate liability hedging component. 

The log-returns assumption allows for a simple probability measure on gaining positive 

surplus and also allows for the application of shortfall constraints on the funding ratio. The 

derived methods are applied to a hypothetical pension fund where the value of its liabilities is 

assumed to follow the pension obligation index (POI) for employees in the Icelandic public 

sector (Statistics Iceland, 2013). Using historical data from July 2008 to January 2012, a 

comparison of optimal allocation strategies in absence and presence of liabilities indicates that 

strategies considering liabilities are superior to their asset-only counterparts in terms of 

generating surplus and recovering from the market downturn in 2008. 

 

Although the surplus optimization model is well studied, the main contribution of this thesis 

is to provide simple, yet detailed explanations of certain properties of the model. Such 

explanations can be helpful in academic studies since many published papers on the topic do 

not provide detailed derivations. The optimal solutions associated with risk-return 

optimization in absence and presence of liabilities are composed out of separate components. 

This thesis aims to analyze these components, to explain some of their characteristics and to 

give a geometrical interpretations of the optimal solutions in the associated risk-return space. 

This is done by proposing a simple notation that can be used in explaining the difference 

between the risk-return frontiers in absence and presence of liabilities and in expressing the 

optimal solutions. This thesis provides a numerical example of risk-return optimization in 

absence and presence of liabilities, using assets and liabilities return data with ISK returns. 

Also, the performance and the surplus generating ability of such asset allocation strategies is 

compared during and after the recent 2008 market downturn. 

 

The remaining text in this thesis is organized as follows: Section 2.1 states necessary 

definitions for later sections and a notation that is convenient for expressions and for 
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explaining certain properties of the optimal solutions. The standard mean-variance 

optimization problem is derived in section 2.2 and the results are explained and discussed. 

The risky asset market portfolio is derived in section 2.3. In section 2.4, the surplus 

optimization model is introduced by altering the model from section 2.3 to take account of 

liabilities. For a better understanding of the objective of the surplus optimization model, 

surplus return variance is analysed in section 2.5. The surplus optimization model and 

associated optimal solutions are derived and expressed in section 2.6, where the text aims to 

give a detailed explanation of the components of the optimal solutions. Section 2.7 covers 

additional assumptions on liabilities where the liability component is decomposed according 

to the assumption of linear dependence between the growth rate of the liabilities and other 

factors. The quadratic relationships between expected returns and return variances for the 

models from section 2.3 and 2.6 are shown in section 2.8. Section 2.9 is the surplus risk-

return counterpart of section 2.8 where the relationship between expected surplus returns and 

surplus return variance are shown. In section 2.10, certain properties of the optimal solutions 

are explained, using the notation from section 2.2. The funding ratio that minimizes surplus 

return variance is expressed and discussed in section 2.11. The market portfolio in presence of 

liabilities is expressed in section 2.12 and briefed on the connections with the ALM literature. 

Section 2.13 presents a probability measure for gaining positive surplus at the end of a 

specific horizon. In section 2.14, traditional shortfall constraints and shortfall constraints on 

funding ratio are introduced. In a numerical example in chapter 3, the methods derived in 

chapter 2 are applied to a hypothetical pension fund to analyse the characteristics of the 

optimal portfolios in absence and presence of liabilities. In the final section of the numerical 

example, asset allocation strategies in absence and presence of liabilities are compared in 

terms of performance and surplus generating ability, using recent historical asset class and 

liabilities data. Section 4 concludes the thesis. Appendices 1 - 26, provide proofs and 

derivations to pertinent expressions in chapter 2. Finally, appendices 27 - 28 cover 

fundamental topics of non-linear optimization methods.  
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2. Methods 

 

The mean-variance framework (MVF) attempts to maximize expected portfolio return for a 

given amount of portfolio risk, or equivalently, minimize risk for a given level of expected 

return by choosing the proportions of various assets. The MVF aims to select a collection of 

investment assets that have collectively lower risk than any individual asset due to the 

diversification of risk. The MVF models an asset's return as a normally distributed function, 

defines risk as the standard deviation of return, and models a portfolio as a weighted 

combination of assets, so that the return of a portfolio is the weighted combination of the 

assets returns. The fundamental concept behind the MVF is that the assets in an investment 

portfolio should not be selected individually but rather by considering how individual asset 

prices change relative to other asset prices. As a result, the best possible diversification 

strategy can be found in accordance with the given assumptions. 

 

With this brief foreword on the material under consideration in this chapter, the contents of 

the chapter are as following: 

 

Initially, a symmetric matrix is defined whose determinants are used in expressing and 

explaining certain properties of the optimal sets. In section 2, the optimal sets and their 

properties for the traditional mean-variance model are derived and explained. An optimal 

solution in presence of a risk-free asset is added in section 3. Surplus optimization is 

introduced in section 4 and a brief analysis of the objective function follows in section 5. The 

surplus optimization model is expressed, solved an explained in section 6. Section 7 covers 

additional assumptions on liabilities. In sections 8 and 9, the risk-return and surplus risk-

return relationships are analyzed. In section 10, the properties of the symmetric matrix 

determinants from the first section are explained further. Section 11 covers an analysis on 

minimum surplus variance from theoretical point of view. In section 12, optimal allocations in 

presence of liabilities is expressed and discussed where a risk-free asset is assumed to be 

available for investing. In section 13, a simple probability measure of surplus is derived and 

explained. Finally, section 14 covers certain type of shortfall constraints in absence and 

presence of liabilities. 

2.1 Definitions and convenient notation 

The definitions of scalars, vectors and matrices given in this section are used throughout the 

thesis. Vector notation is dominant for the derivations but component notation is used 
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occasionally for clarity. In the following derivations, it is assumed that n  risky assets are 

available for investing and where it is appropriate, there exists a risk free asset yielding the 

return f
r  per time unit. It is assumed that the risky assets are valued according to market 

prices at each point in time and those risky assets logarithmic returns are normally distributed 

with values for the first two moments, i.e. means and variances, estimated by an appropriate 

estimation method. For modelling the risky assets returns in presence of liabilities, it is 

assumed that liabilities are not readily marketable and do therefore not have a market value; 

specific accounting or actuarial rules are used to calculate the present value of liabilities. It is 

assumed that the first two moments for the growth rate of liabilities can be estimated by the 

same estimation methods as for assets at each point in time.  

 

For the clarity of the derivations in following sections, the notation behind the set of 

observations of a stochastic asset price process will be stated in the following lines. Initially, 

let the time period under examination be a time set  0 t T  , the set of risky assets is 

defined as  1,..., ,..., ,...,I i j n , a n by 1 vector of ones as  
1,...,

1i i n



 , a n by 1 vector of 

portfolio risky asset allocation as  
1,...,P i i n

w w


 , the n by 1 vector of risky asset mean returns 

as 

 
1,...,A i i n

 


  

ij
  is the covariance between assets i and j and  

, 1,...,A ij i j n



      

 is the n by n covariance matrix of the risky asset returns, a non-singular, symmetric and 

positive definite matrix. Also, it is assumed that 
i , ,  ji j I     . Finally, 

AL  is a n by 1 

vector containing the covariance elements between individual asset returns and returns on 

liabilities;  

 
1,...,AL iL i n




  Equation Chapter 2 Section 1 

The assumptions and definitions that have been listed already provide conditions for existence 

of unique solutions to the optimization problems under consideration in this thesis. The 

investment strategy of an investor is given by the choice of securities iw , i I  in accordance 

with the definition above. 
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Before the optimal solutions will be derived, a convenient and useful notation in expressing 

the optimal solutions is introduced. The following definition is essential for the formulation of 

the sets of optimal solutions. 

 

Definition 2.1.1: All optimal portfolios in the absence of liabilities, Pw
 , are elements in the 

optimal set W , Pw W

 , and all optimal portfolios in the presence of liabilities, 

,P S
w

 , are 

elements in the optimal set 
SW , 

,P S S
w W


  (Keel & Muller, 1995). 

 

As mentioned in the introduction, the traditional mean-variance optimization model (in 

absence of liabilities) is a special case of the surplus optimization model (in presence of 

liabilities) when no consideration is given to liabilities. In that case, SW W . 

 

For convenience and clarity of notation in expressing the optimal solutions and as well as for 

understanding certain properties of the frontier sets, the matrix Q  is introduced as: 

 

1 1 1

11 12 13

1 1 1

21 22 23

1 1 1

31 32 33

T T T

A A A A A A A AL

T T T

A A A A AL

T T T

AL A A AL A AL A AL

Q Q Q

Q Q Q Q

Q Q Q

    

    

 

  

  

  

     
  

       
            

  (2.1.1) 

The elements of this matrix are composed of the inputs to the optimization models d, defined 

before in this section. Since the elements of the matrix are scalar, it can be seen that 12 21Q Q

, 13 31Q Q  and 23 32Q Q , and this fact is used throughout the thesis in the formulation of 

optimal solutions and associated sizes. Accordingly, the matrix Q  is symmetric and can be 

rewritten for further convenience as:   

11 12 13

12 22 23

13 23 33

Q Q Q

Q Q Q Q

Q Q Q

 
 


 
  

  (2.1.2) 

The determinant of the matrix Q  can be written as 

2 2 2

11 22 33 12 13 23 11 23 12 33 13 22
2Q Q Q Q Q Q Q Q Q Q Q Q Q       (2.1.3) 
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Five sub-matrices of Q  are defined here as: 

11 12

#1

12 22

Q Q
Q

Q Q

 
  
 

,   
12 22

#2

13 23

Q Q
Q

Q Q

 
  
 

 (2.1.4) - (2.1.5) 

12 13

#3 #2

22 23

T
Q Q

Q Q
Q Q

 
   

 
,   

22 23

#4

23 33

Q Q
Q

Q Q

 
  
 

 (2.1.6) - (2.1.7) 

and 

11 13

#5

12 23

Q Q
Q

Q Q

 
  
 

  (2.1.8) 

Their determinants are, respectively: 

2

#1 11 22 12
Q Q Q Q  ,   

#2 #3 12 23 13 22
Q Q Q Q Q Q    (2.1.9) - (2.1.10) 

2

#4 22 33 23
Q Q Q Q     and   

#5 11 23 12 13
Q Q Q Q Q   (2.1.11) - (2.1.12) 

The matrix Q  is convenient for simplification in expressing optimal solutions through the 

derivations. Furthermore, the determinants of Q  and its sub-matrices are prove to be useful in 

determining the existence of the optimal solutions of the frontier sets, W  and SW , and 

determining certain properties of the surplus frontiers. These properties will be derived further 

in section 2.10 after the optimal solutions and sets have been derived. 

 

2.2 The mean-variance optimization model in absence of liabilities 

This section covers the fundamental modelling issues related to the well-known mean-

variance optimization model where liabilities are not taken into account. Complete proofs of 

the derivations in sections 2.2 – 2.3 are given in appendices 1 - 7. Equation Section (Next) 

 

The assumptions that have been listed already in section 2.1 provide conditions for the 

existence of unique solutions to the optimization problem derived in this section. As noted in 

last section, the investment strategy is given by the choice of securities iw , i I . For the 

investor‘s portfolio P  which is characterized by the asset allocation vector Pw , the expected 

value of returns on P , composed out of the n  risky assets, can be expressed as  

  T

P P A PE R w w    

where A  is the vector of risky asset mean returns as introduced in section 2.1. 
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The return variance on the portfolio P  is expressed as 

   2

P P P PVAR R w w    

The objective of the optimization model is to minimize the return variance resulting from the 

risky asset portfolio, 2

P , for a given value of expected return on the portfolio, Pr . 

Accordingly, the optimization model can be expressed as 

   
P P

w
Min VAR R w    

s.t. 

 P P PE R w r    

1

1
n

i

i

w


  

In order to obtain a solution to the optimization model, the model has to be expressed in more 

concrete mathematical way. The return variance on a portfolio P , containing n risky assets, is 

commonly expressed as 

 2

,

, 1

n

P P i i j j

i j

w w w 


     or     2 T

P P P A P
w w w    

Using the latter variance expression and multiplying the objective with ½ for convenience, the 

optimization problem from above can formally be rewritten as 

1
 
2

T

P A P
w

Min w w   (2.2.1) 

s.t. 

 
T

P A Pw r    (2.2.2) 

 1
T

Pw     (2.2.3) 

To solve this equality constrained optimization problem, a Lagrangian function is defined so 

that 

   1 2 1 2

1
( , , ) 1

2

T T T

P A P P P A PL w w w r w w             

The partial derivatives of L  w.r.t. Pw  yield necessary first order conditions for stationarity 

and primal feasibility as: 

1 2 0A P Aw    
    ,   T

P A Pw r     and   1
T

Pw    
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A second order sufficient condition for a minimum is satisfied as the covariance matrix is 

positive definite. Isolating the optimal allocation vector Pw
  from the first order stationarity 

condition gives 

  1

1 2

T

P A Aw     
    (2.2.4) 

Equation (2.2.4) is the general solution to the portfolio risk-return optimization problem 

(2.2.1) - (2.2.3) in terms of Lagrangian parameters and is used for deriving the solutions 

specified in theorems 1 – 3 and propositions 1 - 3 that follow. 

 

As a starting point in solving the model (2.2.1) - (2.2.3) for specific optimal solutions, 

theorem 1 gives the minimum return variance portfolio, with the shorthand notation of MVP 

or MVPw . The MVP is obtained by omitting the constraint on portfolio return, requiring 1 0   

and (2.2.4) simplifies accordingly to 

1

2P Aw   
    (2.2.5) 

 

Theorem 1: The minimum return variance portfolio. 

The minimum return variance portfolio allocation vector is obtained by solving (2.2.5) 

explicitly for Pw
  which results in 

1

22

A
MVPw

Q


   (2.2.6) 

The expected return on the minimum return variance portfolio is 

  12

22

P MVP MVP

Q
E R w r

Q
     (2.2.7) 

and the minimum return variance is 

  2

22

1
P MVP MVPVAR R w

Q
     (2.2.8) 

Proof: See Appendix 1. 

 

Equation (2.2.8) expresses the absolute minimum return variance that can be achieved when a 

portfolio consists of n risky assets and (2.2.6) is the portfolio in the set of optimal portfolios 

with the minimum return variance. All other portfolios in the set of optimal portfolios can be 

achieved using the general solution of the optimization problem that can be obtained from 

equation (2.2.4) The portfolios are distinguished between by different preferences on return 
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requirement, Pr , Using the general solution (2.2.4) where 1 0  , the optimal portfolio with a 

return requirement Pr  is given by theorem 2.  

 

Theorem 2: The optimal return variance portfolio. 

Given a preferred return requirement Pr , the optimal return variance portfolio asset 

allocation vector is obtained by solving (2.2.4) for Pw
  which results in 

1
1 122 12 12

22 #1 22

A P
rp A A A

r Q Q Q
w

Q Q Q


 


   

     
 

  (2.2.9) 

The optimal allocation vector (2.2.9) is composed out of two separate portfolios 

rp MVPw w w    (2.2.10) 

where 

1 122 12 12

#1 22

P
A A A

r Q Q Q
w

Q Q
    
    

 
  (2.2.11) 

and   0
T
w  . 

Proof: See Appendix 2. 

 

Theorem 2 states that optimal portfolios given by (2.2.9) can be distinguished between by 

different values of the preferred return requirement Pr . It should be noted in addition to 

definition 2.1.1, the optimal set W  is composed out of all optimal solutions of the constrained 

Lagrangian optimization problem (2.2.1) - (2.2.3), i.e. both MVPw  (2.2.6) and 
rpw  (2.2.9). 

Theorem 2 shows that the optimal portfolios are composed out of the minimum variance 

portfolio, MVPw  given by (2.2.6), and a separate return generating portfolio, w  (2.2.11). 

Equation (2.2.9) states that an optimal portfolio can be achieved for any return requirement Pr

. For further analysis of the optimal solution, it is convenient to decompose the return 

generating component (2.2.11) as 

w w     (2.2.12) 

where the return requirement multiplier 

22 12

#1

Pr Q Q

Q



   (2.2.13) 
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is a function of required rate of return, Pr , on a portfolio 
rpw , and  

1 112

22

A A A

Q
w

Q
    
    
 

  (2.2.14) 

is the portfolio component that shifts the optimal portfolio within the optimal set, W . The 

component w  is linear in A  and involves an investment in a optimal growth portfolio 

1

A A


  and selling the MVP proportionally to 12Q . In fact, 1

A A


  is a component that 

maximizes expected return for a given return variance. Interestingly, w  (2.2.14) involves no 

net additional investment as it serves as a rebalancing term in order to tune the asset portfolio 

rpw  so as to achieve the expected return of Pr . In other words, the sum of all asset weights in 

(2.2.11) is zero as theorem 2 implies. 

 

As the solutions of the optimal set have been stated in theorems 1 – 2, two definitions follow. 

 

Definition 2.2.1:  A portfolio Pw


 is called efficient if it solves the optimality problem for 

some P MVPr r  (Keel & Muller, 1995). 

Definition 2.2.2:  The set of all efficient portfolios, EW , is called the efficient set for the 

optimization problem (2.2.1) - (2.2.3); EW W  (Keel & Muller, 1995).. 

 

The optimal portfolios (2.2.9) form the efficient set if 0   in (2.2.12) which is equivalent 

to letting P MVPr r  in (2.2.9). This can easily be seen by inserting MVPr  (2.2.7) into (2.2.9). 

The return generating component, w , is linear in A  and shifts the optimal portfolio 
rpw  

within the optimal set, where the shift is proportional to   and therefore also proportional to 

Pr . This shift within the optimal set due to return requirement preferences is illustrated by 

figure 2.1 as different points on the line that represents the efficient set, EW . The figure is a 

geometrical interpretation of the optimization problem and illustrates the special case when 

the number of risky assets is 3. Accordingly, the triangle on the figure represents the 

Euclidian 2-simplex where allocations in each of the risky assets are between 0 and 1 as the 

triangle represents only a small part of the surface defining feasible allocations. If optimal 

allocations for some assets are negative, the point on the line representing the efficient set is 

outside the triangle.  
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Figure 2.1: Geometrical interpretation of the optimization problem for the special case when n = 3. By varying the return 

requirement, the optimal portfolio shifts within the optimal set, WE, due to that wα is linear in μA. 

 

As the optimal allocations of the traditional mean-variance model have been expressed, the 

associated expected returns and return variances are yet to be expressed. The expected return 

on the optimal portfolio is the sum of the expected return of two portfolio components as 

suggested by (2.2.10). Proposition 1 that follows, gives the expected return on the return 

generating component (2.2.11). 

 

Proposition 1: The expected return on the return generating component. 

The expected return on the return generating component (2.2.11) is 

  12

22

P P

Q
E R w r

Q


   
 

  (2.2.15) 

Proof: See Appendix 3. 

 

As a result of proposition 1, the expected return on the optimal portfolio (2.2.9) equals the 

return requirement on that portfolio. This can easily be seen as the sum of (2.2.7) and (2.2.15) 

equals the return requirement parameter Pr ; 

      12 12

22 22

P rp P MVP P P P

Q Q
E R w E R w E R w r r

Q Q


             
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Since the optimal portfolio is composed out of two portfolio components, the return variance 

is composed out of the return variances of the two components and a return covariance term, 

i.e. 

         2 ,
P rp P MVP P P MVP P

VAR R w VAR R w VAR R w COV R w R w 
              

 

Interestingly, the return covariance between the two portfolio components is zero as given by 

proposition 2 that follows. 

 

Proposition 2: The zero return covariance between the minimum return variance and 

the return generating components. 

Any optimal return variance portfolio can be written as rp MVP
w w w  . The return 

covariance between the minimum return variance component, MVPw , and the return 

generating component, w  is 

    ,  0
P MVP P

COV R w R w
  
 

  (2.2.16) 

Proof: See Appendix 4.  

 

Since the return covariance between the two portfolio components is zero, the return variance 

on the optimal portfolio is simply the sum of the variances of the portfolio components. 

Proposition 3 gives the return variance on the return generating component (2.2.11). 

 

Proposition 3: The return variance on the return generating component. 

The return variance associated with the return generating component (2.2.11) is 

 
 

2

22 122

22 #1

P

P

r Q Q
VAR R w

Q Q
 


   
    (2.2.17) 

Proof: See Appendix 5.  

 

As the return variances on both constituents of the optimal return portfolio have been given by 

theorem 1 and proposition 3, theorem 3 gives the expression for the variance on the optimal 

return portfolio (2.2.9). 
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Theorem 3: The return variance on the optimal return variance portfolio. 

Any optimal return variance portfolio can be written as rp MVP
w w w  . As a result of 

theorem 1 and propositions 2 and 3, the return variance associated with the optimal return 

variance portfolio (2.2.9) is 

 
2

22 122 2 2

22 #1

1
1

P

rp MVP

r Q Q

Q Q
  

 
    
 
 

 

Simplification of this expression results in 

 
2

2 22 12 11

#1

2P P
P rp rp

r Q r Q Q
VAR R w

Q


 
   
 

  (2.2.18) 

Proof: See Appendix 6. 

 

For a preferred return requirement parameter Pr , equation (2.2.18) expresses the return 

variance on the optimal portfolio 
rpw  associated with Pr .  

 

2.3 The optimal portfolio in presence of a risk-free asset – The market portfolio 

Now assume that in addition to the n risky assets available, there exists a risk-free asset 

yielding the risk-free rate f
r , and that this risk-free asset is available for investing in addition 

to the n risky assets. Let the allocation in the risk-free asset be 0w . Then the asset allocation 

vector becomes Equation Section (Next) 

  1

0 , ,  
T n

P P Pw w w w 
    (2.3.1) 

where Pw denotes the portfolio of risky assets as before, 1
T

Pw     where    
1,..., 1

1i i n


 
  

As a starting point, lets consider (2.3.1) fully invested in risky assets, i.e 0 0w   and 1
T

Pw 

. The expected return on the risky asset portfolio Pw  can be decomposed into the risk-free 

rate, f
r , and the portfolio‘s risk premium on the risk-free rate,  T

P A fw r  . Formally, the 

decomposed expected return on the portfolio of risky assets Pw , can be expressed as 

   T T

P P P A P A f fE R w w w r r          (2.3.2) 

Using (2.3.2) instead of (2.2.2) as a constraint in the optimization problem (2.2.1) - (2.2.3), 

the well-known market portfolio can be derived using the same method as before. The market 

portfolio is an optimal portfolio composed out of the n risky assets available and not including 
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the risk free asset. Solving the optimization problem (2.2.1) s.t. (2.3.2) yields the market 

portfolio expressed by theorem 4 that follows.  

 

Theorem 4: The market portfolio. 

Given the risk-free rate f
r , the risky assets market portfolio asset allocation vector is 

 
 

1

1

A A f

MKT T

A A f

r
w

r

 

  





 


 
  (2.3.3) 

The expected return on the market portfolio is 

 
 
 

1

1

T

A A A f

P MKT MKT T

A A f

r
E R w r

r

  

  





 
   

 
  (2.3.4) 

and the market portfolio return variance is 

 
   

  

1

2

2
1

T

A f A A f

P MKT MKT
T

A A f

r r
VAR R w

r

   


  





  
   

 

  (2.3.5) 

Proof: See Appendix 7. 

 

According to (2.3.3), the market portfolio can be considered as a risk premium portfolio that 

is linear in the risk premium vector  A fr  . The market portfolio is a unique portfolio for 

any given value of the risk-free rate and is expressed independently from the minimum 

variance portfolio, only dependent on A , A  and f
r  as implied by expression (2.3.3). The 

market portfolio is also referred to as the CAPM tangency portfolio as it is the optimal 

portfolio of risky assets where the capital market line (CML) is tangent to the set of optimal 

portfolios in risk-return space. At the CML, the investor invests in the portfolio given by 

(2.3.1); 0w  in the risk-free asset and  0
1

MKT
w w  in the risky asset market portfolio. The 

risk-return space will be given further attention in following sections, especially in section 

2.8. Furthermore, the market portfolio will be analyzed further in section 2.12, including the 

consideration of liabilities. 
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2.4 Introduction to surplus optimization 

In the introduction, a feasible method for incorporating liabilities into the traditional mean-

variance framework was discussed; surplus return optimization. In following sections, a 

surplus risk-return optimization model is derived including a simple extra term in addition to 

the traditional Markowitz model derived in section 2.2. As mentioned before, the traditional 

model is a special case of the surplus optimization model where the value of the liabilities is 

zero, the growth rate of the liabilities is zero or the covariance between assets and liabilities is 

zero. 

 

The surplus return optimization model depends upon a fixed initial funding ratio, i.e. the ratio 

of assets to liabilities and represents a static solution as the solution is not derived from a 

continuous-time framework. It should be noted that initial funding ratio is not a variable 

although the funding ratio varies with time as a result of changes in values of assets and 

liabilities. For solving the optimization problem derived in the following sections, the 

necessary conditions, assumptions and notation are given in section 2.1 and also added 

appropriately through the text. Complete proofs of the derivations in section 2.6 are given in 

appendices 8 - 20. 

 

The assumptions that have been listed already in section 2.1 provide conditions for the 

existence of unique solutions to the optimization problem derived in this and next sections. As 

in previous sections, the investment strategy of an investor is given by the choice of securities 

iw , i I .  

For the investor‘s risky asset portfolio P , which is characterized by the asset allocation vector 

Pw , the expected value of returns on P , composed out of the n  risky assets available is the 

same as given in previous section, i.e. 

  T

P P A PE R w w    

where A  is vector of risky asset mean returns as defined in section 2.1. 

 

The return on total assets, A, and on liabilities, L, can be written as, respectively, 

   

 
1 0

0

A

A t A t
R

A t


    and   

   

 
1 0

0

L

L t L t
R

L t


  

The surplus of a pension scheme at each time t  with the importance parameter   included 

(Sharpe & Tint, 1990), is defined as 

     S t A t L t      
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The importance parameter 0   allows for surplus optimization approach that avoids either 

asset only ( 0  ) or full surplus optimization ( 1  ). By incorporating  , an investor can 

choose the consideration level given to liabilities in his allocation process. This allows for 

flexibility in asset allocation and partial ALM consideration. This increases the potentials for 

the surplus optimization model applicability in asset management and allows for gradually 

increasing the application of ALM practices in pension schemes where ALM practices are 

being adopted, by increasing   with time. 

 

The funding ratio of a pension scheme at time t  w.r.t.  , is written as the ratio of assets to 

liabilities; 

 
 

 

A t
F t

L t
  

 

The value of the assets and liabilities at time 1t , can be written as 

    1 0
1

A
A t A t R     and       1 0

1
L

L t L t R   

According to the above, the pension plan surplus can be expressed as 

           1 1 1 0 0
1 1

A L
S t A t L t A t R L t R        

 

The change in surplus during the time interval is therefore 

                

   

1 0 0 0 0 0

0 0

1 1

                     

A L

A L

S t S t A t R L t R A t L t

A t R L t R

 



      

 
 

Using the same method as in Sharpe & Tint (1990), Keel & Müller (1995) and Rudolf & 

Ziemba (2004), the normalized return on surplus, where the change in surplus is written in 

terms of assets, can be written as Equation Section (Next) 

   

 

 

   
1 0 0

,

0 0 0

S n A L A L

S t S t L t
R R R R R

A t A t F t





       (2.4.1) 

The normalized return on surplus is used to avoid division with zero which could happen if 

the numerator was  0
S t . 

It now follows that the expected normalized return on surplus is written as 

   ,

T

S n P P P L A P L
E R w E R w R w

F F

 
 

 
        

 
  (2.4.2) 

where the growth rate of the liabilities has been replaced with its estimator; L LR  . 
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Also, a clear distinction is made between return on surplus, i.e. without the normalization of 

1 F  and the normalized return on surplus. Accordingly, the expected return on surplus is 

    T

S P P P L A P LE R w E R w R w              (2.4.3)  

In this thesis, the normalized surplus returns are mainly under consideration and the adjective 

“normalized” is not used except when both concepts are under consideration in parallel. 

Therefore, the expected normalized surplus returns and normalized surplus return variance are 

referred to as surplus returns and surplus return variance, except when a clear distinction is 

made between those two concepts. 

 

Since a feasible expression for the expected return on normalized surplus has now been 

written (2.4.2), the goal is now to find a set of portfolios where the assets are selected in such 

a way that the volatility of the surplus return is minimized. Before the derivation of the 

optimization model is continued, some properties of the surplus return variance are analyzed.  

 

2.5 Analysis of the surplus return variance.  

In order to prepare the ground for the surplus return optimization model, it is useful to analyze 

the normalized surplus return variance. Given the asset portfolio Pw , the variance of surplus 

returns is 

   2
VAR P P L S PR w R w     

and the variance of normalized surplus returns, mainly under consideration in this thesis, is 

   2

,
VAR

P P L S n P
R w R w

F




 
  

 
 

Using general methodology, the variance of the normalized surplus return can be decomposed 

asEquation Section (Next) 

   
2

2 2 2

, ,2

2
S n P P P L P L P Lw w

FF

 
         

and similarly, the decomposition of surplus return variance can be written as 

   2 2 2 2

,
2

S P P P L P L P L
w w          

where  2

P P
w  is the variance of asset portfolio returns, 2

L  is the variance of liability returns 

and ,P L
  is the correlation coefficient between portfolio returns and returns on liabilities.  
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As the general expression for the return variance of a portfolio Pw  is  2 T

P P P A P
w w w   , the 

variance of normalized surplus returns can equivalently be expressed as  

 
2

2 2

. 2

2T T

S n P P A P L AL Pw w w w
F F

 
        (2.5.1) 

where 
AL  is a vector containing the covariance elements between individual asset returns 

and returns on liabilities;  
1,...,AL iL i n




  . Similarly, the variance of surplus returns can be 

expressed as 

 2 2 2
2

T T

S P P A P L AL P
w w w w          (2.5.2) 

 According to Sharpe and Tint (1990), the third term in (2.5.1) is referred to as liability 

hedging credit (LHC) for the asset portfolio, i.e. 

2 T

P AL PLHC w
F


    (2.5.3) 

Surplus optimization involves a willingness to accept lower expected portfolio return and/or 

greater asset portfolio risk in order to increase the ability of an asset mix to hedge against 

changes in liabilities. The liability hedging credit relates to the ability of an asset portfolio to 

reduce the risk associated with surplus as can be directly seen from (2.5.1). As the name 

implies, the liability hedging credit provides certain credit in terms of reducing surplus return 

variance. 

 

From (2.5.1), it is readily observable that the variance of normalized surplus returns can be 

decomposed into three components; the variance of asset portfolio returns, the variance of 

liabilities returns and the covariance term between returns on assets and liabilities. This 

observation has important implications for asset allocation purposes in presence of liabilities. 

As the first two terms are positive and add together, the surplus return variance can be 

reduced by selecting the assets in such a way that the covariance between the assets and 

liabilities is positive and preferably high, i.e. select assets where their returns are highly 

correlated with the returns on liabilities. Theoretically, this implies that the investor should 

invest in assets that are perfectly correlated with the liabilities. Such a complete market 

situation does not exist in practice, as the growth of liabilities is driven by more uncertainty 

factors than market variables alone. The uncertainty of liabilities growth is frequently 

decomposed in academic studies into two separate factors that can be decomposed further; 

variability due to market movements and variability due to factors that are not directly 

connected to market behaviour. The second factor includes variability due to factors like 
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demographic trends, actuarial factors etc. The division of the surplus return risk makes sense 

as systematic market risk and specific liability risk are only subject to the same risk factors up 

to a certain point. The co-movement in the worth of liabilities and marketable securities 

differs between economies; liabilities in one economy may be more correlated with market 

variables than in other for a number of reasons. 

 

One question that rises naturally in relation to the surplus return variance (2.5.1), irrespective 

of asset allocation, is what value of importance given to liabilities,  , minimizes the variance 

of surplus returns. A necessary first order condition for a minimum is found via the partial 

derivative of 2

,S n
  w.r.t.   which yields 

 

 2

,T
P P LP AL

L L

COV R w Rw

F VAR R





   
    (2.5.4) 

By observing (2.5.4) and thinking in terms of CAPM, the liabilities can be considered as a 

“market index” where the performance of the assets is measured against liabilities in a similar 

way as stock   in the CAPM model; F  represents the   of the liabilities. The ratio F  

plays an important role in the asset allocation decision in presence of liabilities as it directly 

affects the optimal investment decision by determining the covariance between the liabilities 

and the optimal investment policy. If the ratio F  increases, the covariance between assets 

and liabilities must increase through the asset portfolio in order to maintain equilibrium 

in(2.5.4). This can be interpreted in the following way: If a fund manager wants to maintain a 

constant surplus return risk in his asset portfolio when the ratio F  increases, he must 

increase the covariance between assets returns and returns on liabilities via rebalancing the 

portfolio. According to this, the appropriate action against decreasing funding ratio or 

increasing importance is to select the assets so as to increase the covariance between asset and 

liabilities returns. One problem with this CAPM-like interpretation is that the liabilities risk 

can only be partially hedged for by the securities available in the market, i.e. the market is not 

“complete” with respect to liabilities as a random variable.  
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2.6 The surplus optimization model 

Some properties of the objective have now been explained and discussed in previous section. 

Since the purpose of the surplus optimization model should be clear, the model can be 

expressed as 

   VAR
P P L

w
Min R w R

F

 
 

 
 

s.t. 

 P P PE R w r    

1

1
n

i

i

w


  

where Pr  is a return requirement value for expected return on the portfolio as before. Using 

(2.5.1) from last section and dropping the irrelevant constant term for the liabilities return 

variance, the surplus return optimization model is expressed asEquation Section (Next) 

, , ,

1
  

2

T T

P S A P S P S AL
w

Min w w w
F


     (2.6.1)   

s.t.  

 
,

T

P S A P
w r    (2.6.2)  

 
,

1
T

P S
w     (2.6.3) 

For the problem (2.6.1) - (2.6.3), the Lagrangian is defined as 

     , 1 2 , , , 1 , 2 ,

1
, , 1

2

T T T T

P S P S A P S P S AL P P S A P SL w w w w r w w
F


              

The partial derivatives of L  w.r.t. ,P S
w  yield necessary first order conditions for stationarity 

and primal feasibility 

, 1 2 0A P S AL Aw
F


   

      ,   
,

T

P S A P
w r     and   

,
1

T

P S
w    

A second order sufficient condition for a minimum is satisfied as the covariance matrix is 

positive definite. Isolating the optimal allocation vector ,P S
w


 from the first order stationarity 

condition gives 

 1 1

, 1 2

T

P S A A AL
w F              (2.6.4) 
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Equation (2.6.4) is the general solution to the surplus risk-return optimization problem (2.6.1) 

- (2.6.3) in terms of Lagrangian parameters and is used for deriving the solutions specified in 

theorems 5 – 8 and propositions 4 - 12 that follow. 

 

As a starting point in solving the model (2.6.1) – (2.6.3) for specific optimal solutions, 

theorem 5 gives the minimum surplus return variance portfolio, with the shorthand notation of 

MSVP or MSVPw . The MSVP is obtained by omitting the constraint on portfolio return (2.6.2), 

requiring 1 0   and (2.6.4) simplifies accordingly to 

 1 1

, 2

T

P S A AL
w F            (2.6.5) 

 

Theorem 5: The minimum surplus return variance portfolio. 

The minimum surplus return variance portfolio (MSVP) allocation vector is obtained by 

solving (2.6.5) explicitly for 
,P S

w
  which results in 

1
1 123

22 22

A
MSVP A AL A

Q
w

Q F Q

 



  

      
 

  (2.6.6) 

The optimal allocation vector (2.6.6) is composed out of two separate portfolios 

MSVP MVP MSVPw w     (2.6.7) 

where MVPw  (2.2.6) is in accordance with theorem 1, the minimum surplus variance correction 

component is 

1 123

22

1
MSVP A AL A

Q

F Q
   

     
 

  (2.6.8) 

and   0
T

MSVP   . 

Proof: See Appendix 8. 

 

As (2.6.6) implies, the MSVP is composed out of two separate components; the traditional 

minimum variance portfolio, 
MVPw  (2.2.6), and an additional surplus return variance correction 

component, 
MSVP , that is linear in 

AL  and leads to a shift of the optimal set by 
MSVP . 

Equation (2.6.8) represents a separate liability hedging component added to 
MVPw , that plays 

the role of tuning the returns on the MVP with liabilities returns by minimizing surplus return 

variance. This correction is achieved by rebalancing the MVP allocation in proportion to F  
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where F  acts as a rebalancing multiplier or leveraging coefficient. The rebalancing 

resulting from the minimization of surplus return variance leads to a shift in the optimal set in 

proportion to F  and an increase in correlation between the MVP and the liabilities through 

1

A AL


  . Minimizing the variance of surplus returns is strongly related to maximizing the 

return covariance between assets and liabilities. From a certain point of view, minimizing 

surplus return variance involves maximizing the return covariance between assets and 

liabilities as the maximum asset-liability return covariance component, 1

A AL


  , is included in 

the minimum surplus return solution.  

 

The problem of maximizing the return covariance between assets and liabilities can be 

expressed in the following way: 

  
T

P AL
w

Max w     

s.t. 

 
2T

P A P Pw w      

Necessary first order conditions for stationarity and primal feasibility are 

0AL A Pw 
       and   2T

P A P Pw w    

and the second order sufficient condition for a maximum is satisfied as A  is positive 

definite. Isolating Pw
  from the first order stationarity condition gives 

11
COV A ALw




     (2.6.9)  

Equation (2.6.9) expresses the portfolio component that maximizes the return covariance 

between asset portfolio returns and returns on liabilities on the normalization basis of  . This 

component appears in the expression for the minimum surplus return variance correction 

component MSVP  (2.6.8) and plays the role of maximizing the return covariance between 

assets and liabilities. If the MSVP (2.6.6) is recalled,  

1

1 123

22 22

A

MSVP MVP MSVP A AL A

Q
w w

Q F Q

 
 



  
        

 
 

the minimum surplus return variance portfolio involves partial investment  23
1 Q F  in 

the MVP and partial investment in the covariance maximizing component  23
 Q F .  
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This is consistent with isolating   from (2.6.9) and under the normalization of 1
T

Pw  ,   

becomes 

23Q   

Accordingly, inserting this expression for   back into (2.6.9) gives the unit normalized 

maximum return covariance component 

1

cov

23

A ALw
Q


 

   (2.6.10) 

This component appears again in section 2.12 where its association with other optimal 

portfolios in presence of liabilities is discussed.  

Since the minimum surplus return variance allocation vector has been expressed, the 

associated expected returns and return variances are yet to be expressed. The expected return 

on the MSVP is the sum of the expected returns of the two portfolio components as suggested 

by (2.6.7) and proposition 4 confirms. 

 

Proposition 4: The expected return on the minimum surplus return variance portfolio. 

The expected return on the minimum surplus return variance correction component (2.6.8) is 

  #2

22

1
P MSVP

Q
E R

F Q
       (2.6.11) 

Accordingly, the expected return on the minimum surplus return variance portfolio (2.6.6) is 

     

12 #2

22

1
                        

P MSVP P MVP P MSVPE R w E R w E R

Q Q
Q F

 



           

 
  

 

  (2.6.12) 

Proof: See Appendix 9. 

 

Since the MSVP is composed out of two portfolio components, the return variance is 

composed out of the return variances of the two portfolio components and a return covariance 

term, i.e. 

     

   

2

                                                            2  ,  

P MSVP P MVP P MSVP

P MVP P MSVP

VAR R w VAR R w VAR R

COV R w R

 

 

           

   

 

In order to find an expression for the return variance on the MSVP (2.6.6), the expression for 

the return variance on the minimum surplus return variance correction component is given by 

proposition 5 that follows. 
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Proposition 5: The return variance on the minimum surplus return variance correction 

component. 

The return variance associated with the minimum surplus return variance correction 

component (2.6.8) is; 

  #42

2

22

1
P MSVP MSVP

Q
VAR R

F Q
       (2.6.13) 

Proof: See Appendix 10. 

As the return variance associated with both components of the MSVP have been found, 

proposition 6 that follows states that the return covariance between the two portfolio 

components is zero . 

 

Proposition 6: The zero return covariance between the minimum return variance 

component and the minimum surplus return variance correction component. 

The minimum surplus return variance portfolio is written as MSVP MVP MSVPw w   . The 

return covariance between the minimum return variance component, MVPw , and the minimum 

surplus return variance correction component, MSVP , is 

    ,  0P MVP P MSVPCOV R w R       (2.6.14) 

Proof: See Appendix 11. 

 

Since all components of the return variance on the MSVP have been stated in theorem 1, and 

propositions 5 - 6, theorem 6 gives the expression for the return variance on the MSVP. 

 

Theorem 6: The return variance on the minimum surplus return variance portfolio. 

The minimum surplus return variance portfolio is written as MSVP MVP MSVPw w   . The 

return variance associated with the minimum surplus return variance portfolio is 

  2

2 2 2

2

#42

22

                            

1
                            1

P MSVP MSVP

MVP MSVP

VAR R w

Q
Q F





  



  

 

 
  

 

  (2.6.15) 

This result is in accordance with the results of theorem 1, and propositions 5 - 6. 

Proof: See Appendix 12. 
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For given values of   and F , equation (2.6.15)  expresses the minimum surplus return 

variance that can be achieved when a portfolio consists of n  risky assets and (2.6.6) gives the 

portfolio in the set of optimal surplus return variance portfolios with the minimum surplus 

return variance.  

 

All other portfolios in the set of optimal surplus return portfolios, 
SW , can be achieved using 

the general solution of the optimization problem that can be obtained from equation (2.6.4). 

The optimal portfolios are distinguished between by different preferences on return 

requirement, Pr , Using the general solution (2.6.4) where 1 0  , the optimal portfolio with 

return requirement Pr  is given by theorem 7.  

 

Theorem 7: The optimal surplus return variance portfolio. 

Given the preferred return requirement Pr , the optimal surplus return portfolio asset 

allocation vector is obtained by solving (2.6.4) for 
,P S

w
  which results in 

1
1 123

,

22 22

1

22 12 #2 1 112

#1 22

          

A
rp S A AL A

P

A A A

Q
w

Q F Q

r Q Q F Q Q

Q Q

 



 


 



 

 
      

 

   
    

 

  (2.6.16) 

The optimal allocation vector is composed out of four separate portfolios 

, ,rp S MVP MSVP Sw w w w        (2.6.17) 

where MVPw , w  and MSVP  are in accordance with theorems 1, 2 and 5, respectively. The 

return generating correction component is 

#2 1 112
,

#1 22

1
S A A A

Q Q
w

F Q Q
    

    
 

  (2.6.18) 

and   ,
0

T

S
w  . 

Proof: See Appendix 13. 

 

Theorem 7 states that the optimal portfolios given by (2.6.16) can be distinguished between 

by different values of the preferred return requirement Pr . It should be noted in addition to 

definition 2.1.1, the optimal set SW  is composed of all optimal solutions of the constrained 
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Lagrangian optimization problem (2.6.1) – (2.6.3), i.e. both MSVPw  (2.6.6) and ,rp S
w  (2.6.16). 

Theorem 7 shows that the optimal portfolios are composed out of the minimum variance 

portfolio, MVPw  given by equation (2.2.6), the minimum surplus return variance correction 

component, 
MSVP (2.6.8), which is linear in 

AL  and leads to a shift of the optimal set by 

MSVP . Recall that these two are the components of the MSVP, i.e. MSVP MVP MSVPw w   . 

Additionally, two separate components are included; the return generating components w  

and ,S
w  which both shift the optimal portfolio within the optimal set. The shift resulting 

from w  is proportional to Pr  whereas the shift resulting from ,S
w  is proportional to F  as 

,S
w  results from considering liabilities. The former return generating component, w (2.2.11), 

is the component that shifts the optimal portfolio within the optimal set so as to achieve return 

requirement Pr  on the portfolio. The latter component, ,S
w  (2.6.18), corrects the return on 

the optimal portfolio ,rp S
w  as to neutralize the return shift that 

MSVP  adds. The expected return 

on the liability hedging component, MSVP , is included in the return on the optimal portfolio 

and must be corrected for if a specified return requirement input is used for the return 

generating component, w . The return generating correction component, ,S
w , corrects the 

additional return stemming from MSVP  so as to match the expected return on the portfolio and 

the return requirement input, Pr . This is confirmed by the results of proposition 7, after a little 

more discussion on the optimal set, where the sum of the expected returns on 
MSVP  and ,S

w  is 

zero.  

 

By closer examination of equation (2.6.16)/(2.6.17), an optimal surplus management policy 

involves investing in at least two “funds”; a liability hedging portfolio 
MSVP  for risk 

management purposes in proportion to the importance attached to it by  , and the standard 

optimal growth portfolio, 
MVPw w  (2.2.10), for conventional asset management purposes. 

The latter portfolio (2.2.10) is the standard mean-variance efficient portfolio; a conventional 

investment portfolio or an “alpha-boosting strategy” in addition to the liability hedge. In a 

simple way, the two/three portfolios (2.6.16)/(2.6.17) combine the classic performance-

seeking portfolio and a liability hedging portfolio.  
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For further analysis of the optimal solution, it is convenient to decompose the net return 

generating portfolio 
,Sw w   form (2.6.16)/(2.6.17) as 

,S
w w w       (2.6.19) 

where  

,S       (2.6.20) 

#2

,

#1

1
S

Q

F Q
    (2.6.21) 

and   and w  are according to (2.2.13) and (2.2.14), respectively; 

22 12

#1

P
r Q Q

Q



    and   

1 112

22

A A A

Q
w

Q
    
    
 

 

Accordingly, equation (2.6.20) becomes 

1

22 12 #2

,

#1

P

S

r Q Q F Q

Q
 


  


 

     (2.6.22) 

As w  is the portfolio component that shifts the optimal portfolio within the optimal set, W  

or SW  depending on the framework, the multiplier (2.6.22) ensures that required rate of 

return, Pr , on a portfolio is acquired. 

 

Since the solutions of the surplus optimal set have been stated in theorems 5 and 7, two 

definitions follow. 

 

Definition 2.6.1: A portfolio ,P S
w  is called efficient if it solves the optimality problem for 

some P MSVPr r  (Keel and Muller, 1995). 

Definition 2.6.2: The set of all efficient portfolios, ,E S
W , is called the efficient set for the 

surplus optimization problem; ,E S S
W W  (Keel and Muller, 1995). 

 

The optimal portfolios form the efficient set if 0   which is equivalent to letting P MSVPr r  

in (2.6.16). This can easily be seen by inserting MSVPr  (2.6.12) into (2.6.16). The return 

generating component, w , is linear in A  and shifts the optimal portfolio within the optimal 

set. The shift is proportional to   and therefore also proportional to Pr . The shift of the 

efficient set due to the liability hedge and the shift due to return requirement preferences is 
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illustrated by figure 2.2 where the occurrence of liabilities leads to a shift of the efficient set 

by 
MSVP . The figure illustrates the special case when the number of risky assets is 3 and is 

the same figure as figure 2.1, except it shows the shift of the efficient set due to the liability 

hedge. Just as for figure 2.1, the triangle on the figure represents the Euclidian 2-simplex 

where allocations in each of the risky assets are between 0 and 1 as the triangle represents 

only a small part of the surface defining feasible allocations. If optimal allocations for some 

assets are negative, the point on the line representing the efficient set is outside the triangle.  

 

  

Figure 2.2: Geometrical interpretation of the optimization problem in the presence of liabilities for the special case when n = 

3. The shift of the frontier set WE, due to , results in a shifted set WE,S. 

 

As discussed before, the return shift resulting from the liability hedging component, MSVP , is 

neutralized by the expected return on the return generating correction component ,S
w  as 

shown by proposition 7 that follows, 
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Proposition 7: The expected return on the return generating correction component. 

The expected return on the return generating correction component ,S
w  (2.6.18) is; 

  #2

,

22

1
P S

Q
E R w

F Q


  
    (2.6.23) 

From (2.6.11) and (2.6.23), it can be seen that 

   ,
0

P MSVP P S
E R E R w       

  (2.6.24) 

Proof: See Appendix 14. 

 

As a result of proposition 7, the expected portfolio return on the optimal portfolio (2.6.16) 

equals the return requirement on the optimal portfolio. This can easily be seen from (2.6.24) 

and that the sum of (2.2.7) and (2.2.15) equals the return requirement parameter Pr ; 

         , ,

# 2 # 212 12

22 22 22 22

                      

P rp S P MVP P MSVP P P S

P P

E R w E R w E R E R w E R w

Q QQ Q
r r

Q F Q Q F Q

   

 

                   

     
 

As the name implies, the purpose of the return generating correction component, ,S
w (2.6.18), 

is to correct the expected return stemming from the liability correction component 
MSVP  

(2.6.8). Including the ,S
w  in the optimal solution changes the return variance of the optimal 

portfolio ,rp S
w  by the return variance and covariance terms associated with ,S

w . Proposition 

8 that follows shows the return variance on ,S
w . 

 

Proposition 8: The return variance on the return generating correction component. 

The return variance associated with the return generating correction component (2.6.18) is; 

 
2

#22

, , 2

22 #1

1
P S S

Q
VAR R w

F Q Q
    

    (2.6.25) 

Proof: See Appendix 15. 

 

As the allocation and expected returns on the optimal surplus return portfolio components has 

been shown in the preceding text, the return variance has yet to be expressed. The return 

variances on the portfolio components have been stated in theorem 1 and propositions 3, 5 

and 8. Two return covariance terms between individual portfolio components have been stated 
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in propositions 2 and 6. For deriving the expression for the return variance on the optimal 

surplus return portfolio (2.6.16), propositions 9 - 12 provide the remaining covariance terms 

and the return variance is finally expressed in theorem 8. 

 

Proposition 9: The zero return covariance between the minimum return variance and 

the return generating correction component. 

The return covariance between the minimum return variance component, MVPw , and the return 

generating correction component, ,S
w , is 

   ,
 ,  0

P MVP P S
COV R w R w

  
 

  (2.6.26) 

Proof: See Appendix 16. 

 

Proposition 10: The return covariance between the minimum surplus return variance 

correction and the return generating components. 

The return covariance between the minimum surplus return variance correction component, 

MSVP , and the return generating component, w , is 

    #2 12

#1 22

1
 ,  P MSVP P P

Q Q
COV R R w r

F Q Q


 
      

 
  (2.6.27) 

Proof: See Appendix 17. 

 

 

Proposition 11: The return covariance between the minimum surplus return variance 

correction and the return generating correction components. 

The return covariance between the minimum surplus return variance correction component, 

MSVP , and the return generating correction component, ,S
w , is 

   
2

#2

, 2

22 #1

1
 ,  P MSVP P S

Q
COV R R w

F Q Q
   

    (2.6.28) 

Proof: See Appendix 18. 
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Proposition 12: The return covariance between the return generating and the return 

generating correction components. 

The return covariance between the return generating component, w , and the return 

generating correction component, ,S
w , is 

    #2 12
,

#1 22

1
 ,  P P S P

Q Q
COV R w R w r

F Q Q
 

 
     

 
  (2.6.29) 

Proof: See Appendix 19. 

 

As all necessary terms for expressing the return variance on the optimal surplus return 

portfolio have been derived, the return variance can be expressed in a clear and simple form 

as a function of the return requirement on the optimal portfolio, Pr . Furthermore, the return 

variance expression is the same as for the traditional model (2.2.18) except a simple term adds 

stemming from the presence of liabilities. Theorem 8 that follows provides the expression for 

the return variance on the optimal surplus return portfolio. 

 

Theorem 8: The return variance on the optimal surplus return variance portfolio. 

The optimal surplus risk-return portfolio is expressed as 
, ,rp S MVP MSVP Sw w w w      . 

The return variance associated with the optimal surplus risk-return portfolio is 

 
2 2 2

22 12 112

. ,

#1

2P P

P rp S rp S

r Q r Q Q F Q
VAR R w

Q





  

   
    (2.6.30) 

This result is in accordance with the results of theorems 1, 3, and  6, and propositions 2, 3, 5, 

6 and 9 - 12. 

Proof: See Appendix 20. 

 

For a preferred return requirement on the optimal portfolio, Pr , equation (2.6.30) expresses 

the return variance on the optimal surplus return variance portfolio ,rp S
w  associated with Pr . 

Equation (2.6.30) is basically the same as the return variance on the optimal portfolio in the 

absence of liabilities (2.2.18) but includes an additional term as a result of the liabilities hedge 

and the return correction stemming from the hedge. Recall that the optimal portfolio is 

composed out of four components, i.e. 
, ,rp S MVP MSVP Sw w w w      ,  and the return 

variance (2.6.30) is lower than the sum of the return variances of individual components. The 
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return covariance terms between MSVP  and w on the one hand and w  and ,S
w  on the other 

hand cancel each other. The negative covariance terms between MSVP  and ,S
w  reduce the 

return variance of the optimal surplus return portfolio and as a result, the total return variance 

is lower than if the components returns had zero covariance between them in all cases.  

 

The surplus return optimization model has been derived along with the optimal solutions in 

terms of asset allocations, expected returns and associated return variances. Before next steps 

are taken in further analysis of the model properties, further discussion of the model is 

necessary to complete certain interpretations of the equations that have already been derived. 

 

From the MSVP expression (2.6.6), it can also be seen that the funding ratio of a pension fund 

does not only determine the capability to bear risk but should also reflect the willingness to 

take risk. The higher the funding ratio is, the lower the necessity for liability hedging. This is 

also confirmed by (2.5.4); the higher the funding ratio is, the lower needs the return 

covariance between asset portfolio and liabilities to be if the volatility on liabilities is fixed. 

This makes intuitive sense; the better the funding status of a pension fund is, the lower is the 

need to hedge against liabilities and the pension fund can afford to take more risk by investing 

in a traditional growth portfolio. As a practical consequence of the relationship of the funding 

ratio with liabilities hedge, the hedging policy of pension funds could easily be monitored by 

authorities. This is due to the fact that for optimal portfolios with a fixed  , only the funding 

ratio is decisive for the liabilities hedge. From this discussion, it can be seen that the funding 

ratio provides an objective measure to quantify attitudes towards risk and that the funding 

ratio is directly related to the ability to bear risk. For a specific pension fund, the investment 

in the liability hedging portfolio thus depends on the funding status and the funding ratio 

value incorporates the dynamical properties that the asset portfolio should have as shown by 

(2.5.4). The lower the funding ratio, the higher should the portion invested in the liability 

hedge portfolio be as to establish proper dynamics between assets and liabilities. 

 

Furthermore, the widely used traditional risk-return optimization model derived in section 2.2 

is a special case of the surplus return optimization model derived in this section. This can 

easily be seen by setting zero importance to the liabilities ( 0  ), letting the funding ratio 

approach infinity, setting the growth rate of the liabilities to zero or if the covariance between 

assets and liabilities is zero. It can also be seen from the expressions for MSVPw  (2.6.6) and 

,rp S
w  (2.6.16), that the surplus optimization set converges with the traditional mean-variance 
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set MVPw  (2.2.6) and 
rpw  (2.2.9), if 0   or when the funding ratio approaches infinity. This 

makes intuitive sense; as the liabilities become very small in value compared to the assets, the 

liabilities play less role in the management of the fund and as the funding ratio approaches 

infinity, the liabilities can be ignored. 

 

2.7 Optimal portfolios under additional assumptions on liabilities. 

This section is based on Keel and Muller (1995) with small changes for adapting their 

approach to the solutions expressed in this thesis. 

 

In theorem 5, the liability correction component MSVP  was derived, which depends linearly on 

the vector containing the covariance elements between the returns on assets and liabilities, 

AL . If returns on liabilities, LR , are assumed to depend on several factors  1,..., M , we 

can assume thatEquation Section (Next) 

 
1

M

L m L m
m

R a b R


    (2.7.1) 

where  L m
R  is the return component resulting from return factor m . One way of applying 

(2.7.1), is to consider it as a multiple linear regression model by adding an error term  . 

According to (2.7.1), the return on liabilities is assumed to be linearly dependent upon the m  

factors. 

 

A direct consequence of (2.7.1) is that the covariance element between individual asset 

returns and liabilities is a linear combination of the covariance elements between individual 

asset return and each return factor: 

 
1

M

AL m AL m
m

b


     (2.7.2) 

with 

   ,
,    ,  

iAL i m L m
COV R R i I m     

 
   and        1, ,

,...,
T

AL m AL m AL n m
    
 

 

As a result of the above, (2.7.1) makes the liability portfolio component MSVP  a linear 

combination of return covariance vectors resulting from the return factorization (2.7.1), i.e. 

 
1

M

MSVP m MSVP m
m

b 


   (2.7.3) 

  



47 

with 

   

 
1

1 1

22

1
T

A AL m

A AMSVP m AL m
F Q


 



 
  

     
  

  (2.7.4) 

From (2.7.1) – (2.7.4), it can be seen that each of the m  factors  L m
R  leads to a liability 

correction  MSVP m
  on the optimal surplus return portfolio and the total correction is a linear 

combination of (1) ( ),...,MSVP MSVP M  . Hence as a consequence of (2.7.1), all optimal portfolios 

(2.6.16) can be written as 

 , ,

1

M

rp S MVP m SMSVP m
m

w w b w w   


      (2.7.5) 

All factors  L m
R  can be neglected, having 

 MSVP m
  sufficiently small or if coefficients of 

linear regression are not significant w.r.t. chosen confidence level. Equation (2.7.1) allows for 

using any statistically significant components as factors in generating returns on liabilities, 

e.g. inflation, wage growth, economic growth and demographic factors. The point that can be 

taken out of this section is that taking liabilities into account leads to a shift of the efficient set 

where the shift vector depends linearly on the investor's sensitivity to different factors 

(inflation, economic growth, etc.). This approach allows for risk-return optimization with 

respect to more than one benchmark instead of optimizing only with respect to one 

benchmark like the model in section 2.6 assumes. 

 

The shift due to the component wise liability hedge (2.7.3) is illustrated by figure 2.3 where 

the occurrence of different liability return factors leads to a shift of the efficient set in total of 

MSVP . The figure illustrates the special case when the number of risky assets is three and the 

number of factors affecting liability returns are two. Just as for figures 2.1 and 2.2, the 

triangle on the figure represents the Euclidian 2-simplex where allocations in each of the risky 

assets are between 0 and 1 as the triangle represents only a small part of the surface defining 

feasible allocations. If optimal allocations for some assets are negative, the point on the line 

representing the efficient set is outside the triangle.  
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Figure 2.3: Geometrical interpretation for the special case where it is assumed that return on liabilities depends on two factors     

(n = 3 and M = 2.) The minimum surplus return variance portfolio (MSVP) vector is a linear combination of the traditional 

minimum variance portfolio (MVP) vector and the two shift vectors. 

 

2.8 The mean-variance frontiers in absence and presence of liabilities in risk-return 

space. 

In this section, the relationship between expected returns and return variance are analysed, 

commonly known as the risk-return relationship. This relationship is analysed both in the 

absence and presence of liabilities. The optimal sets, W  in the absence and SW  in the 

presence of liabilities, can be rewritten as, respectively,Equation Section (Next) 

rp MVPw w w     (2.8.1) 

in accordance with (2.2.10)  - (2.2.14) and  

 
,

,
       

rp S MSVP

MSVP S

w w w

w w



  



 

 

  
  (2.8.2) 

in accordance with (2.6.17) - (2.6.18), and (2.6.19) - (2.6.22). 

The two coefficients,   and  , are multipliers for yielding excess return on the MVP and 

the MSVP, respectively, along with w  (2.2.14). Both optimal portfolios, 
rpw  and ,rp S

w , 

consist of two separate portfolio components according to (2.8.1) and (2.8.2); 
rpw  consists of 

the minimum return variance portfolio, 
MVPw , and the return generating portfolio, w   and 
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,rp S
w  consists of the minimum surplus return variance portfolio, 

MSVPw , and the net return 

generating portfolio, w . Since the MVP and MSVP can be considered as unique portfolios 

in terms of the risk-return relationship of the optimal portfolios and that they are components 

in other optimal portfolios, the relationship between expected return and return variance can 

built on that fact. Accordingly, for the optimal set in the absence of liabilities, the result of 

theorems 1 – 3, propositions 1 – 3 and equations (2.2.12) – (2.2.14) and (2.8.1) show that all 

portfolios 
rpw  satisfy  

     P rp P MVP P
E R w E R w E R w           

  (2.8.3) 

and 

     2

P rp P MVP P
VAR R w VAR R w VAR R w           

  (2.8.4) 

where   was defined according to (2.2.13) as 

 22 12

#1

P
r Q Q

Q



  

Equation (2.8.4) is equivalent to the expression (2.2.18) for optimal portfolio return variance 

in absence of liabilities. For a complete proof of (2.8.4), see Appendix 21.  

 

Hence it can be seen that there is a quadratic relationship between 

 P rp
E R w 
 

   and    P rp
VAR R w 

 
 

 

Furthermore, for the optimal set in presence of liabilities, the results of theorems 5 – 8, 

propositions 4 - 12 and equations (2.6.19) – (2.6.22) and (2.8.2) show that all portfolios ,rp S
w  

satisfy  

     ,P rp S P MSVP P
E R w E R w E R w          

  (2.8.5) 

and 

     

   

2

,

                           2  ,  

P rp S P MSVP P

P MSVP P

VAR R w VAR R w VAR R w

COV R w R w









          

   

  (2.8.6) 

where   was defined according to (2.6.22) as 

1

22 12 # 2

#1

Pr Q Q F Q

Q





 

  
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Equation (2.8.6) is equivalent to the much simpler expression (2.6.30) for optimal portfolio 

return variance in presence of liabilities. For a complete proof of (2.8.6), see Appendix 22. 

 

Hence it can also be seen that there is a quadratic relationship between 

 ,P rp S
E R w 
 

   and    ,P rp S
VAR R w 

 
 

The covariance term in (2.8.6) is only an extra term that survives according to section 2.6 and 

theorem 1; it does not influence the quadratic relationship between expected returns and the 

return variance of the surplus optimal set. 

 

Figure 2.4 shows the quadratic relationship between standard deviation of returns and 

expected returns, commonly known as the risk-return or mean-variance frontier(s). The 

blue/cyan (left/right) frontiers show the optimal sets in absence/presence of liabilites. The 

frontier for the surplus optimal portfolios is shifted to the right on the volatility axis due to the 

variance shift from the minimum surplus variance correction component MSVP , the return 

generating correction component 
,Sw  and return covariance terms between components. 

The blue frontier is in accordance with theorems 1 – 3 and propositions 1 – 3. For a specified 

return requirement of P
r  , the optimal portfolios contains both MVPw  and w  where 

P Pr r  . 

For the cyan colored (right) surplus optimal frontier, the component-wise buildup of the 

optimal portfolio, ,rp S
w , can clearly be seen in figure 2.4. The MSVP is formed by adding 

MSVP  to the MVPw  and to construct a suplus optimal portfolio with return requirement P
r  , w  

has to be added which results in MVP MSVP
w w  . This portfolio overshoots in terms of 

expected return and thus ,S
w  is added to correct the expected return to 

P Pr r  , resulting in 

a surplus optimal portfolio 
,rp Sw 

 with    ,P rp S P rp P
E R w E R w r  
    
   

. 
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Figure 2.4: The risk-return frontiers in the absence (blue) and presence (cyan) of liabilities. The shift due to adding individual 

portfolio components are shown for a return requirement value of rPψ. 

 

2.9 The surplus frontier(s) in surplus risk-return space. 

In this section, the relationship between expected surplus returns and surplus return variance 

are analyzed. A portfolio in the surplus optimal set, SW , was defined in accordance with 

(2.8.2) as 

,rp S MSVPw w w   

with 

1

22 12 # 2

#1

Pr Q Q F Q

Q





 

    and   
1 112

22

A A A

Q
w

Q
    
    
 

 

as given by (2.6.22) and (2.2.14), respectively. The parameter  can be considered as a return 

requirement parameter for yielding excess return on the MSVP along with w , as the only 

controllable parameter in   is Pr . Here, ,rp S
w  consists of two separate portfolio components; 

the minimum surplus return variance portfolio, 
MSVPw , and the net return generating portfolio, 

w . The surplus risk-return frontier can therefore be constructed in a similar way as the 

traditional risk-return frontier, i.e. composed out of the MSVP, MSVPw , and the net return 
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generating portfolio, w . Proposition 13 gives a useful result for the analysis of the surplus 

risk-return structure of the optimal set, SW .Equation Section (Next) 

 

Proposition 13: The zero surplus return covariance between the minimum surplus 

return variance and the return generating components. 

All portfolios in the frontier set, SW , can be written as 
,rp S MSVPw w w  . The surplus 

return covariance between the minimum variance component, MSVPw , and the return 

generating component, w , is 

    ,  0
P P MSVP L

COV R w R w R
F



 
  

 
  (2.9.1) 

Proof: See Appendix 23. 

 

From proposition 13, the results of theorems 5 – 8, propositions 4 - 12 and equations (2.6.19) 

– (2.6.22) and (2.8.2) show that all portfolios ,rp S
w  satisfy  

     ,P rp S L P MSVP L P
E R w R E R w R E R w

F F


 


   
         

   
  (2.9.2) 

and 

     2

,P rp S L P MSVP L P
VAR R w R VAR R w R VAR R w

F F


 


   
         

   
  (2.9.3) 

where   was defined according to (2.6.22) as 

1

22 12 # 2

#1

Pr Q Q F Q

Q





 

  

For a complete proof of (2.9.3), see Appendix 24. 

Hence it can be seen that there is a quadratic relationship between 

 ,P rp S L
E R w R

F

 
 

 
   and    ,P rp S L

VAR R w R
F

 
 

 
 

Just as the optimization problem in absence of liabilities in section 2.2 can be projected into 

risk-return space, the surplus optimization problem can be projected into surplus risk-return 

space. In both cases, the relationship between expected returns and variance are observed as 

quadratic functions. Figure 2.5 shows the relationship between expected surplus return and 

surplus return variance, i.e. the surplus risk-return frontier in surplus risk-return space. 
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Figure 2.5: The surplus risk-return frontier. The MSVP has the minimum surplus variance of all optimal surplus return 

portfolios. Recall from figure 2.4 that the MSVP does not have the minimum return variance in the set of optimal surplus 

return portfolios in risk-return space. 

 

2.10 Descriptive properties of the matrix Q. 

As the portfolios in the optimal sets have been derived and their respective expected returns 

and variances of returns, it‘s now time to inspect the certain characteristics of the optimal sets 

in both risk-return and surplus risk-return spaces. In section 2.1, the matrix Q  was introduced 

for convenience in expressing the optimal sets, the expected returns of the optimal sets and 

their respective return variances. As the watchful reader may have noted, the matrix Q and it‘s 

sub-matrices also shed light on more properties that have not been analyzed directly yet. 

These properties have to do with the existence of the optimal sets, expected returns, return 

variance shifts and the covariance between portfolio and liabilities returns.  

 

In section 2.1, the matrix Q , its sub-matrices and determinants were introduced in  

accordance with equations (2.1.1) – (2.1.12). The optimal portfolios derived in theorems 1, 2, 

5 and 7, are given by (2.2.6), (2.2.9), (2.6.6) and (2.6.16) respectively as 

1

22

A

MVP
w

Q




 ,Equation Section (Next) 

1

1 122 12 12

22 #1 22

A P

rp A A A

r Q Q Q
w

Q Q Q


 



   
     

 
, 
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1

1 123

22 22

A

MSVP A AL A

Q
w

Q F Q

 




  
      

 
 

and 

1

1 123

,

22 22

1

22 12 # 2 1 112

#1 22

          

A

rp S A AL A

P

A A A

Q
w

Q F Q

r Q Q F Q Q

Q Q

 



 



 



 

 
      

 

   
    

 

 

 Since both 
rpw  and ,rp S

w  contain #1Q  in the last term, it can easily be seen that  

#1 0
lim

rp MVP
Q

w w


    and   
,

#1 0
lim

rp S MSVP
Q

w w


  

as the last terms in both 
rpw  and ,rp S

w  are not defined when 
#1

0Q  . Therefore, the solutions 

to both optimization problems from sections 2.2 and 2.6 are limited if 
#1

0Q   and 

accordingly, the optimal sets W  and SW  consist out of only  /
MVP

W w   and 

 /
S MSVP

W w   when 
#1

0Q   as other solutions are undefined. This is also confirmed by 

the results of theorems 3 and 8, since the optimal portfolio return variances given by (2.2.18) 

and (2.6.30) as 

 
2

22 12 11

#1

2P P

P rp

r Q r Q Q
VAR R w

Q

 
  
 

 

and 

 
2 2 2

22 12 11

,

#1

2P P

P rp S

r Q r Q Q F Q
VAR R w

Q

 
  

  
   

 are not defined when 
#1

0Q  . The assumptions given in section 2.1 provide the conditions 

for 
#1 0Q   as is generally assumed for the mean-variance framework. Recalling the 

expressions for the return variance on the MVP and MSVP, given by (2.2.8) and (2.6.15) as 

 
22

1
P MVPVAR R w

Q
      and    

2

# 42

22

1
1P MSVPVAR R w Q

Q F

 
     

 
 

is can be seen that 
#1Q  is not included in these expressions. As a result from the above, it can 

be stated that the optimal sets W  and SW  consist out of only   /
MVP

W w   and  

 /
S MSVP

W w   when 
#1

0Q   as other solutions are undefined. Also, it can be seen that 

the return variance for the optimal portfolios 
rpw  and ,rp S

w  are proportional to 
1

#1Q


, i.e. 
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 
1

#1P PVAR R w Q


      and also that     # 4P MSVPVAR R w Q    

The effect due to that the return variances is inversely proportional to #1Q  is thus directly 

observable in both risk-return and surplus risk-return spaces. Keeping all other terms constant, 

as #1Q  decreases, the return variance of the portfolio increases for certain return requirement 

Pr . As #1Q  approaches zero, the curvature vanishes and the variance increases rapidly with 

infinitesimal increase in return until when 
#1

0Q  , the frontier cannot be defined as 

infinitesimal increase in return causes infinite variance. As this happens, the optimal sets 

consist only out of the MVP or MSVP, depending upon whether liabilities are included on 

not. 

 

Furthermore, comparing (2.2.8) and (2.6.15), it can easily be seen that 

   P MSVP P MVPVAR R w VAR R w          if   
# 4

0Q   

 which happens if AL  0 . The return variance on the MSVP and MVP can also be equal if 

F   or if the importance given to the liabilities via   is zero. In all cases, the surplus 

optimization problem converges to the traditional problem and SW W . Similarly, from the 

return variance expressions for 
rpw  and ,rp S

w , it can be seen that  

   ,P rp S P rp
VAR R w VAR R w   

   
   if   0Q   

which happens if AL  0 . The return variance on the ,rp S
w  and 

rpw  can also be equal if 

F   or the importance given to the liabilities via   is zero. In both cases, the surplus 

optimization problem converges to the traditional problem and SW W . 

 

In section 2.8, figure 2.4 allowed for a comparison of the traditional and surplus frontiers in 

risk-return space. On the figure, the expected return on the MSVP was not the same as for the 

MVP. The reason for that can be seen from equations (2.2.7) and (2.6.12), respectively 

  12

22

P MVP

Q
E R w

Q
      and     12 # 2

22

1
P MSVPE R w Q Q

Q F

 
     

 
 

From the two equations above for expected returns, it can clearly be seen that if 
# 2

0Q  then

   P MSVP P MVPE R w E R w        and also, if 
# 2

0Q  , then    P MSVP P MVPE R w E R w        

and vice versa if 
# 2

0Q  . Accordingly, the sign of 
# 2Q  thus tells whether the expected 

return on the MSVP is higher or lower than the expected return on the MVP. 
 



56 

The effects of the sub-determinants of Q  on the return covariance between any portfolio and 

liabilities is not as directly observable. By expressing the return covariance between the 

MSVP and liabilities as 

  # 423

22 22

 ,  
T

P MSVP L AL MSVP

QQ
COV R w R w

Q F Q


       

It becomes clear  that the MSVP return covariance value depends on the values for 
# 4Q ,  

and F . For the surplus optimal portfolio, the expression for the return covariance is 

 

 

, ,

1

22 12 # 2 # 2# 423

22 22 22 #1

 ,  

                                    

T

P rp S L AL rp S

P

COV R w R w

r Q Q F Q QQQ

Q F Q Q Q




   
 

 
  

 

Now, it can be easily seen that the return covariance between ,rp S
w  and liabilities is 

proportional to 
# 4Q , 

# 2P
r Q , and 

2

# 2Q , but inversely proportional to 
#1Q  and F . This 

directly tells that by increasing Pr , the return covariance increases if the sign of 
# 2Q  is 

negative and decreases if the sign of 
# 2Q  is positive as the following derivative confirms; 

  # 2

,

#1

 ,  P rp S L

P

Q
COV R w R

r Q


   
 

 

For convenience, the results from this section are summarized in table 2.1. This table is useful 

for explaining the properties of the optimal solutions that have been covered in this section 

and certain structural properties that are observed for the risk-return frontiers. From the 

expressions that have been derived in sections 2.2 – 2.10, the convenience of the Q matrix 

notation should be clear for the purposes of expressing the optimal solutions for portfolios, 

their respective expected returns and return variances. Also, this notation proposes a method 

in explaining certain differences in the characteristics of the optimal sets, W  and SW . 

 

 

Table 2.1: The value of the sub-determinants of Q explains certain properties of the optimal solutions and the structure of the 

frontiers in risk-return space. 
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2.11 Minimization of surplus return variance 

For the general surplus optimizer, the funding ratio at each point in time is assumed to be 

fixed as it represents the ratio of the values of assets to liabilities for the investor. 

Accordingly, initial funding ratio is not a variable although with time, the funding ratio is 

assumed to vary as the value of assets and liabilities change. Nevertheless, it is interesting to 

consider the effects of different funding ratios on surplus return variance from a mathematical 

point of view. For any given value of F , the minimum surplus return variance portfolio 

(MSVP) is the optimal portfolio for which the surplus return variance is at minimum as the 

name implies. Given any reasonable data for surplus optimization and assuming that F  can 

be varied within the feasible range of funding ratios,  0,F   , one might consider whether 

a unique funding ratio can be found which yields an absolute minimum surplus return 

variance for all feasible minimum surplus return variance portfolios. In order to find an 

answer to this consideration, the surplus return variance of the MSVP has to be analyzed and 

a condition for a minimum has to be found.Equation Section (Next) 

 

The MSVP was expressed according to (2.6.6) 
1

1 123

22 22

A

MSVP A AL A

Q
w

Q F Q

 




  
      

 
 

and the return variance on the MSVP was given by (2.6.15) 

2
2

# 42

22

1
1MSVP Q

Q F




 
  

 
 

The general expression for normalized surplus return variance on the MSVP can be written as 

 
2

2 2 2

, 2

2 T

S n MSVP MSVP L AL MSVPw w
F F

 
        (2.11.1) 

where the return covariance between the MSVP and liabilities is 

# 423

22 22

T

AL MSVP

QQ
w

Q F Q


    

As a result, (2.11.1) can be rewritten as 

 
2

#42 2 23
, 2

22 22 22

1 2
S n MSVP L

Q Q
w

Q F Q F Q

 
 

 
    

 
  (2.11.2) 

Let’s consider equation (2.11.2) for all feasible values of F , i.e.  0,F    and reasonable 

values for the elements of the matrix Q  and 2

L . If F   , then    2 2

,S n MSVP MSVP
w w   as 

the MSVP equals the MVP. As the value for F  is decreased from infinity, the third term in 

(2.11.2) grows faster than the middle term due to different power operators for F  in the 

equation. Depending on the data used in each case, this is likely to result in decreasing surplus 
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return variance on the MSVP as F  decreases from infinity and for some value of F , the 

change in (2.11.2) becomes zero. High return covariance values between portfolio and 

liabilities results from asset data with favourable hedging characteristics and can have 

considerable effects in decreasing surplus return variance for low values of  F . Accordingly, 

surplus return variance for MSVP‘s has a potential to reach a minimum for certain value of 

F . This minimum is found via the partial derivative of (2.11.2) with respect to F  and a 

necessary second order condition for a minimum. Proposition 14 gives the expression for the 

funding ratio that yields the absolute minimum surplus variance and the expression for the 

absolute minimum surplus variance. 

 

Proposition 14: The funding ratio for absolute minimum surplus return variance and 

the absolute minimum surplus return variance. 

Given any reasonable data used for surplus optimization, the absolute minimum surplus 

return variance for this data can be found. The funding ratio that minimizes the surplus return 

variance is  

 2

22 #4

23

L

MSV

Q Q
F

Q

  
   (2.11.3) 

This funding ratio exists if the condition 

 2

22 #4 23

3
2 0LQ Q Q

F


      (2.11.4) 

is satisfied for min maxF F F  . 

The absolute minimum surplus variance that can be achieved for any feasible surplus optimal 

portfolio is 

  2

,min

2

,

2

23

2

22 22 #4

                                             

1
                                             1

MSV

P MSV L S

MSV

S MSVP F F

L

VAR R w R
F

Q

Q Q Q










 
  

 



 
    

  (2.11.5) 

Proof: See Appendix 25. 

The funding ratio that minimizes the surplus return variance on the MSVP is given by MSVF  

(2.11.3), given that the data satisfy (2.11.4) for any min maxF F F  . Where (2.11.4) is not 

satisfied, the surplus return variance is an increasing function with decreasing F  and a 

minimum does not exist.  
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As a result of proposition 14, the MSVP that minimizes the surplus return variance can be 

found by inserting (2.11.3) into the expression for MSVP (2.6.6), i.e.  

1
1 123 23

2

22 22 #4 22

A
MSV A AL A

L

Q Q
w

Q Q Q Q







  

      
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  (2.11.6) 

The expected return and return variance on this portfolio are found by inserting MSVF  into 

(2.6.12) and (2.6.15), respectively; 

  23 #2

12 2

22 22 #4

1
P MSV

L

Q Q
E R w Q

Q Q Q

 
        

  (2.11.7) 

and 

 

 

2

2

23 #4

2
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22
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                           1

P MSV MSV

L

VAR R w

Q Q

Q Q Q





  

 
  
 
 

  (2.11.8) 

Figures 2.6 and 2.7 illustrate two examples of frontiers in surplus risk-return space and the 

absolute minimum surplus variance portfolio (MSV). In figure 2.6, the MSV (magenta 

coloured hexagram) is relatively far from the MVP (red dot on the blue/uppermost frontier) in 

comparison with the MSV in figure 2.7. This can be explained by the properties of the data; 

as the data provide more hedging characteristics against liabilities, the difference in surplus 

return variance between MVP and MSV tends to be greater as a consequence of the negative 

covariance term in the expression for surplus return variance (2.11.2). In figure 2.7, the MSV 

is very close to the MVP and therefore, MSVF  is relatively higher in figure 2.7 than in figure 

2.6. 
 

   
 

Figures 2.6 and 2.7: Surplus frontiers in surplus risk-return space for five different values of F where the blue/uppermost 

frontier has F = ∞ and the red dash-dotted frontier has F = 1. In both figures, the absolute minimum surplus return variance 

point (MSV) is shown by the magenta hexagram. In figure 2.6, the difference in expected surplus returns between the MSV 

and the MVP is greater than in figure 2.7. Apparently, FMSV is high in figure 2.7 as the MSV is close to the MVP where the F 

is considered to be infinity. 



60 

2.12 The market portfolio in presence of liabilities 

In section 2.3, it was assumed that a risk-free asset was available for investing, yielding the 

risk-free rate, rf. Theorem 4 gave the allocation vector for the traditional risky assets market 

portfolio, which does not incorporate any consideration of liabilities at all since it is an 

optimal portfolio in the absence of liabilities. The market portfolio is extensively used as an 

optimal investment portfolio in asset allocation theory and is often referred to as the CAPM 

tangency portfolio since it is the optimal portfolio of risky assets where the capital market line 

(CML) is tangent to the set of optimal portfolios in risk-return space. At the CML, the 

investor invests in the risky asset market portfolio given by (2.3.3); w0 in the risk-free asset 

and (1 – w0)wMKT  in the risky asset market portfolio. Accordingly, the asset allocation vector 

becomes  

 0 ,
T

P Pw w w , 
1n

Pw


  

where Pw denotes the market portfolio of risky assets as before, 1
T

Pw  where  
1,..., 1

1i i n


 
  

In the presence of liabilities, an investment in the risky asset market portfolio requires a 

liability hedge as to take account of liabilities in the asset allocation process. Just as for an 

optimal portfolio in presence of liabilities, a proper liability hedge with respect to the funding 

status and importance has to be established. The market portfolio in presence of liabilities is 

given in theorem 9 that follows. Equation Section (Next) 

 

Theorem 9: The market portfolio in presence of liabilities. 

The risky asset market portfolio, given in theorem 4, is expressed as (2.3.3) 

 
 
 
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 
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 
 

The allocation vector for the risky assets market portfolio in presence of liabilities is 

 
   

 
1 1

1 1

, 1 1

T
A A f A AL

MKT S A AL A A fT T
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r
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Fr r

  
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     

 
 

 

    
       

     

  (2.12.1) 

The portfolio (2.12.1) is composed out of two portfolios; 

,MKT S MKT MKTw w     (2.12.2) 

where MKTw  is in accordance with theorem 4, the market portfolio correction component is 

 
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1
1 1

1

1
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A AL
MKT A AL A A fT

A A f

r
F r


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  
      

   

  (2.12.3) 

and 0
T

MKT   . 

Proof: See Appendix 26. 
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Equation (2.12.1) includes the traditional market portfolio (2.3.3) with a liability hedge in 

proportion to the funding status. Just as for the minimum surplus variance hedging component 

(2.6.8), the market portfolio liability hedging component is linear in AL , where the asset 

portfolio is rebalanced in accordance with the funding status. Similar to the minimum surplus 

variance portfolio, the market portfolio liability hedging component leads to a shift of the 

market portfolio, just as the minimum surplus variance correction component did for the 

whole optimal set. Here, MKT  has great similarities with minimum surplus variance 

correction, MSVP although MKT  does not ensure minimum surplus variance correction directly. 

Instead, it provides liability correction via the maximum covariance component 1

A AL


   and 

does therefore indirectly provide normalized surplus correction through F  in accordance 

with section 2.6. 

 

In the presence of liabilities, ,MKT S
w  is not a CAPM tangency portfolio as the MKTw  is in 

absence of liabilities, neither in risk-return nor surplus risk-return spaces. In a number of 

articles on asset allocation in presence of liabilities, ,MKT S
w  appears in various forms derived 

from utility functions. Based on the work of Merton (1973), Rudolf & Ziemba (2004) 

presented an intertemporal portfolio selection model for pension funds that  maximizes the 

intertemporal expected utility of surplus returns, using continuous-time model with HARA 

(Hyperbolic absolute risk aversion) utility. Their solution involves ,MKT S
w  directly for log 

utility but indirectly as the investor‘s risk attitude changes. Martellini (2006) introduced a 

continuous-time intertemporal asset-liability model in the absence and presence of a 

constrained funding ratio where the optimal strategy also involves ,MKT S
w  indirectly. With log 

utility, the optimal strategy is equivalent to ,MKT S
w . Martellini and Milhau (2009) consider 

continuous-time dynamic asset allocation model for an investor facing liability commitments 

subject to inflation and interest rate risks. The optimal strategy involves ,MKT S
w  indirectly in a 

slightly different form. 

Interestingly, for a certain funding ratio, ,MKT S
w  and MSVPw  converge to the unit normalized 

covariance portfolio from section 2.6, COVw  (2.6.10), i.e.  

,MKT S MSVP COVw w w   

This happens for a unique funding ratio, COVF  which is 
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1

23

T

COV A ALF Q  
      (2.12.4) 

This can be easily seen by inserting (2.12.4) into the expression for the minimum surplus 

variance portfolio (2.6.6) and the expression for the market portfolio in presence of liabilities 

(2.12.1); in both cases, this results in the expression for COVw  (2.6.10). The expected return 

and return variance for this point of convergence where all three portfolios are equal, are 

  13
,

23

T

P S COV A COV

Q
E R w w

Q
       (2.12.5) 

and 

  33
, 2

23

T

P S COV COV A COV

Q
VAR R w w w

Q
        (2.12.6) 

Figure 2.8 illustrates the traditional risk-return frontier and several surplus frontiers in risk-

return space. The expected return on the market portfolio including the liability hedge 

decreases as F  decreases and ,MKT S
w  becomes inefficient in terms of surplus returns if  

   , , ,P S MKT S L P S MSVP L
E R w R E R w R

F F

    
     

   
   which happens for   COVF F . 

 

 

Figure 2.8: The traditional mean-variance frontier (blue/leftmost) with the classic market portfolio (red o) and surplus 

frontiers in risk-return space. The market portfolio in presence of liabilities (blue pentagrams) drifts away from the classic 

market portfolio as F decreases. The red asterisk illustrates the point where wMSVP = wMKT,S = wCOV. Similar pattern is 

observed in surplus risk return space. 

 



63 

2.13 Probability of assets covering liabilities. 

In this section, convenient probability measure will be derived as this measure is related to the 

other material in this thesis. Current funding ratio along with present asset allocation can give 

probabilistic information on the on the ability of an investor to cover its liabilities. 

 

Consider the simple question on how likely a pension fund is to cover its liabilities at a certain 

time point in future, given the necessary information and assumptions in section 2.1. More 

precisely, what is the probability that total assets value will exceed the value of the liabilities 

at certain time point in the future w.r.t. the importance parameter  , i.e.Equation Section 13 

                  , , , , ,
A A L L AL

P A T L T t t t t t F t       

In section 2.4, surplus was defined as      S T A T L T  , so accordingly; 

            0 0P A T L T P A T L T P S T         (2.13.1) 

As the funding ratio is defined as      F T A T L T , the probability measure can be 

written as 

             P A T L T P A T L T P F T         (2.13.2) 

As a result of (2.13.1) and (2.13.2), two completely equivalent expressions for the probability 

of assets exceeding liabilities at time T  can be written. The expressions (2.13.1) and (2.13.2) 

can be rewritten as 

       

    

    

 

 
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                     ln ln 0

                     ln 0

                     ln 0
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P A T L T

P A T L T

A T
P

L T

F T
P











  

 

  

 
   

 

 
  

 

  (2.13.3) 

From (2.13.3), it can be seen that the surplus and the natural logarithm of the funding ratio are 

equivalent expressions when 0  . In this thesis, it has been assumed that logarithmic 

returns are normally distributed which directly allows for the application of geometric 

Brownian motion processes for both asset portfolio and liabilities as, respectively 

  



64 

,

,

t w T T i

P A P A t

t w

dP
w dt w dW

P
     (2.13.4) 

and 

,

Lt

L L t L t

t

dL
dt dW dW

L



       (2.13.5) 

with  1,...,
T

A A An   ,  1,...,
T

A A An    and ,L   is specific liability risk that cannot be 

related to market variables, i.e. ,
0

Ai   . 

 

The distribution of the logarithmic asset portfolio and liabilities prices ( wP  and L ) are, 

respectively, 

       2 21
ln ~ ln  ,  

2

T

w w A P P PP T N P t w T t T t  
  

     
  

  (2.13.6) 

and 

       2 21
ln ~ ln  ,  
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L L LL T N L t T t T t  

  
     
  

  (2.13.7) 

From (2.13.3), it can be seen that      ln ln ln
w w

P T L T F T    and that the surplus and 

the logarithm of the funding ratio are equivalent processes with expected value of  

       2 2 2
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  (2.13.8) 

and variance 

      
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                       2
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  (2.13.9) 

as 
,

P L

t t P L
dW dW  , 0

L

t tdW dW

  and 0

P

t tdW dW

 . 

Accordingly, the distribution of the logarithmic funding ratio can be expressed as 

      2

ln
ln ~ ln ,  

w w F T
F T N E F T       (2.13.10) 

Therefore, the probability measure on that total assets value will exceed the value of the 

liabilities or equivalently, gaining positive surplus at a certain time point at the end of a time 

horizon  T t , can be expressed as  



65 

       

  

 

2

ln

0

                               ln 0

1
                               exp

22
w

S

w

w

E F t

P P T L T P S T

P F T

u
du













    
 
 

  

 

 
  

 


 

or in more convenient way as 
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  (2.13.11) 

where  2 2

P P L SR w R      in accordance with (2.5.2) and (2.13.9). 

Equation (2.13.11) can be expressed explicitly as 
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Equation (2.13.11)/(2.13.12) is applicable for no, partial or full consideration to surplus 

optimization, i.e. for  , 0,F   . If no consideration is given to surplus optimization by 

0   or by F  , then  

       1
w

P P T L T      

i.e. the probability of covering liabilities is 1. Conversely, if    or 0F  , then 

       0
w

P P T L T      

as a result of   
0

lim  ln
x

x


  . 
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2.14 Shortfall constraints and their properties 

A commonly known concept in both practical asset management and academic research are 

shortfall constraints on limiting the probability on earning a return on a portfolio below some 

specified threshold level. Under the log-returns normality assumption, the continuously 

compounded returns are normally distributed. Therefore, the probability of portfolio return 

being less than or equal to some threshold return, thrR , is given by multivariate normal CDF, 

n , evaluated at thrR . For the traditional risk-return optimizer, a typical shortfall constraint 

for limiting the probability of portfolio return being less than or equal to some threshold 

return, thrR , can be written as Equation Section (Next) 

  P P thr
P R w R     (2.14.1) 

or more precisely 
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  (2.14.2) 

with   T

P P A PE R w w    and  2 T

P P P A PR w w w      as before. 

 

This constraint can be added to both optimization problems from sections 2.2 and 2.6, 

rewritten as 
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  (2.14.3) 

A commonly observed behaviour in relation with shortfall constraints is that the shortfall 

probability declines as the horizon  T t  increases and as a result, a portfolio that violates a 

shortfall constraint at a short horizon may become feasible at longer horizon. Also, for 

different time horizons and an active shortfall constraint, the shorter the horizon is, the less 

risky the feasible portfolio can be as a result of the active shortfall constraint. 

 

Shortfall constraints can also be applied in ALM problems as in the surplus risk-return 

optimization under consideration in this thesis. The constraint (2.14.3) can be applied directly 

to the surplus optimization problem for the same purposes as in the absence of liabilities. It 

can also be applied whereas the threshold return, thrR , is considered to be an expense ratio, 

i.e. per period liabilities paid during the time period as a ratio of assets. The constraint 
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(2.14.3) limits the probabilities that returns on the asset portfolio are less than or equal to the 

expense ratio for chosen time period.  

 

A shortfall constraint can be in the form of limiting the probabilities of declining funding 

status, i.e. a constraint on the form 

  wP F T F     (2.14.4) 

Furthermore, under the assumptions and definitions in section 2.1, 2.2 and 2.6, an optimal 

surplus return variance portfolio Pw  is chosen. After a time period  T t , the expected 

funding ratio is given by 
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  (2.14.5) 

Equation (2.14.5) results directly from exponenting (2.13.8). 

 

The probability distribution for  1
,..., ,

A An L
R R R  is multivariate normal, 1n . From (2.14.5) 

and (2.13.8), the shortfall constraint (2.14.4) can be written as 
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with the cumulative distribution function 
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Under the surplus optimization model (2.6.1) - (2.6.3) and the shortfall constraint (2.14.6), 

any optimal portfolio ,rp S
w  (2.6.16) that does not violate (2.14.6) makes the optimal set ,E S

W , 

nonempty. Therefore, for the portfolio return coefficient   (2.6.22), i.e. 
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    

there exist some    min min max max
,  r r   where min max0    so that for every Pw  that does 

not violate (2.14.6);  

,P E S
w W    with   P MSVPw w w  ,    min max

,    
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Furthermore, from the above, the surplus optimization model (2.6.1) - (2.6.3) and the shortfall 

constraint (2.14.6), fixing the threshold funding ratio as 1F  , the funding ratio shortfall 

constraint (2.14.6) has the interesting property of being linear in the surplus risk-return space 

   ,    
P P L P P L

E R w R R w R
F F

 


   
    

   
 

The linearity makes the constraint easily applicable as if the portfolio returns associated with 

min  and max  have been found. By choosing a suitable value for   and fixing 1F  , the 

funding ratio shortfall constraint provides convenience via linearity; otherwise the constraint 

is not linear in the  surplus risk-return space as defined above. 

 

 

Figure 2.9 and 2.10: In figure 2.9, the 

funding ratio shortfall constraint is linear 

in surplus risk-return space due to 1F 

If 1F   as in figure. 2.10, the constraint 

is curved as for shortfall constraints in 

risk-return space. 
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3. Numerical Example 

 

In this chapter, the methods from chapter 2 are applied to a hypothetical Icelandic pension 

fund where the value of its liabilities is assumed to follow the pension obligation index (POI) 

for employees in the Icelandic public sector. Through all this chapter, full consideration is 

given to liabilities by setting the importance parameter 1  . Initially, return data are 

analyzed by descriptive statistics of logarithmic returns and return correlation analysis. Also, 

the values of the determinant and sub-determinants of Q show the characteristics of the 

optimal sets in accordance with section 2.10. Optimal allocations in the absence of liabilities 

are analyzed in parallel with surplus optimization for different funding ratios to demonstrate 

how the funding status of a pension fund affects the optimal asset allocation decisions and the 

characteristics of the liability hedge. From the optimal sets in absence and presence of 

liabilities, the risk-return frontiers and the surplus risk return frontiers are constructed. Market 

portfolio in presence of liabilities is added to the surplus risk-return analysis and the 

theoretical absolute minimum surplus return variance is found. Probabilities positive surplus 

and shortfall constraints are analyzed. and this chapter ends with a comparative analysis of the 

ability of asset allocation strategies in absence and presence of liabilities in generating 

surplus. 

 

The optimization models from chapter 2 are not constrained to long-only positions and the 

models are applied unchanged in this numerical example allowing short positions which 

provide more risk diversification and better hedge against the liability index. In many 

countries, short positions are not allowed for the purposes of pension management. This has 

been criticized for the fact that short positions result in more market efficiency and greater 

hedging ability of portfolios against negative effects. On the other hand, pension funds are 

large scale investors and relatively large as such in many economies. Therefore, large scale 

shorting of assets is often not possible as there might not be enough securities available for 

shorting on the market and many other arguments exist in limiting shorting in pension fund 

management. Despite of this, the models used in this thesis are applied here without any 

changes to prevent short positions as to observe the full functionality of the model and to 

observe how large the short positions are. The size of short positions in the optimal portfolios 

depends on the data used and the return preferences of the investor which is decisive for the 

optimal allocation as shown in chapter 2. 
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Matlab was used for all numerical calculations and programming. All programming codes 

were written from scratch and no predefined optimization functions were used since the 

methods from chapter 2, supported by the derivations in appendices 1 – 26, provide all 

necessary information on solving the problems and ideas stated in this thesis. 

 

3.1 Liability and asset class data analysis 

The data chosen for this numerical example consist out of the POI as an index for liabilities 

and eight asset class indices that are assumed to be representatives for the investments 

available for the pension fund at the time of the analysis. The pension obligation index (POI) 

for employees in the Icelandic public sector is calculated and published on monthly basis by 

Statistics Iceland, starting with base value of 100 in December 1996. The index is calculated 

according to the index of fixed salaries for day time work of employees in the public sector 

according to act no.1/1997 on pension rights for state employees (Statistics Iceland, 2013). 

 

The eight asset class indices used in this numerical example consist of four domestic 

(Icelandic) indices and four foreign indices. Four out of these eight asset class indices are 

bond indices; one foreign and three domestic indices. The other four are indices for riskier 

investments; domestic stocks, foreign stocks, hedge funds and private equities. The returns of 

the foreign indices are originally all in USD. The returns are corrected for currency returns so 

that all returns are in the domestic currency of ISK. Table 3.1 provides information on the 

asset classes and the representative indices.  

 

 

Table 3.1: Information on liability index, asset classes and representative indices for asset classes. 

 

The OMX Iceland All-Share Index includes all the shares listed on Nasdaq OMX Nordic 

Exchange Iceland with a base date of December 31, 1997, and a base value of 1000 

(Bloomberg, 2013). The MSCI World Index is a stock market index, including approximately 
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2000 securities from 23 countries but excluding stocks from emerging and frontier markets. 

The index includes a collection of stocks of all the developed markets in the world, as defined 

by MSCI Inc. Due to the index construction rules and company related events, the number of 

constituents significantly fluctuates while increasing over time (MSCI Inc., 2013). The 

domestic short maturity bond index constructed for this analysis was composed out of equally 

weighted returns of two non-indexed bond indices from Nasdaq OMX Nordic; the 3 month 

OMXI3MNI and the 1 year OMX1YNI indices. The non-indexed OMX5YNI bond index is 

used as domestic long maturity bond index as information on other indices with longer 

maturity was not available before 2005. The inflation index linked bond index used was 

composed out of equally weighted returns of two indexed bond indices from Nasdaq OMX 

Nordic; the 5 year OMXI5YI and the 10 year OMX10YI indices. The hedge fund index data 

are provided by Barclay Hedge Ltd. (USA) database; Barclay Hedge Ltd. is a privately owned 

corporation and is not affiliated with Barclays Bank or any of its affiliated entities. The 

Barclay Hedge Fund Index is a measure of the average return of all hedge funds (excepting 

Funds of Funds) in the Barclay database. The index is based on the average of the net returns 

of all the funds that have reported that month, generally in between 1,000 – 3,000 funds 

(Barclay Hedge Ltd., 2013). The foreign bond index is the Vanguard Total Bond Market 

index. The index is designed to provide broad exposure to U.S. investment grade bonds and 

consists of approximately 30% in corporate bonds and 70% in U.S. government bonds of all 

maturities (Yahoo finance, 2013). Finally, the private equity index is the Red Rocks Capital 

Global Listed Private Equity (GLPE) index. The GLPE index is designed to track the 

performance of private equity firms which are publicly traded on any nationally recognized 

exchange worldwide. These companies invest in, lend capital to, or provide services to 

privately held businesses. The index is comprised of 40 - 75 public companies and the 

securities of the index are selected and rebalanced quarterly per modified market 

capitalization weights (Red Rocks Capital LLC., 2013).  

 

The return data for the asset classes and liabilities consist out of 65 monthly data points from 

January 2003 to and including June 2008. Figures 3.1 and 3.2 illustrate normalized prices for 

the indices where all indices have initial price 100 in the beginning of January 2003. 

Figure 3.1 illustrates the four fixed income securities (A3, A4, A5, A7) and the liability index 

and figure 3.2 illustrates the other asset classes (A1, A2, A6, A8) and the liability index. 
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Figure 3.1: Price paths for the four fixed income securities and the liabiltiy index, starting at 100 in January 2003. 

 

  

Figure 3.2: Price paths for liability, stock, hedge fund and private equity indices, starting at 100 in January 2003. 

 

For further analysis of the return data, table 3.2 provides descriptive statistics for the 

logarithmic returns of the nine time series. The liability returns have a mean growth rate of 

6.9% with volatility of 2.9%, indicating a steady growth with small variation. The price path 

for the liability index in figure 3.1 rises in levels, frequently in the beginning of each year as 

changes of pension rights come into effect. In fact, none of the return values is negative in the 

liability return data series. Accordingly, skewness and excess kurtosis suggest a leptokurtic 
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distribution with positively skewed returns. This is also confirmed by the Jarque-Bera (JB) 

test result which clearly rejects the null hypothesis of a normal distribution for the liabilities 

returns. The data analysis suggests a leptokurtic distribution for all the asset classes with 

positively skewed returns, except for domestic stocks and domestic long maturity bonds 

where the returns are negatively skewed. The JB test rejects normality hypothesis for the 

domestic short and long bond indices (A3, A4) as for the liability index. 

 

 

Table 3.2: If JB tstat > JB critical tstat, the null hypothesis of normally distributed returns can be rejected 

 

Return correlation estimates can be seen in table 3.3 where return correlation between the 

asset classes and liabilities indicates that returns on all asset classes are positively correlated 

with the liabilities, except for domestic stocks and foreign bonds where returns are negatively 

correlated with the liabilities. This readily indicates that six out of eight assets classes have 

some liability hedging properties, individually. The highest return correlation with liabilities 

is from short maturity bonds, twice as good as for indexed bonds. Foreign stocks and long 

maturity bonds have the third and fourth highest correlation with liabilities. Foreign bonds 

have the second lowest return correlation with liabilities which can be largely explained by 

currency returns. This is confirmed by a simple linear regression where more than 90% of the 

variability in ISK returns of the foreign bond index is explained by currency returns. 

 

The value of the ISK against the USD rose considerably during the period from January 2003 

– January 2008, although it decreased to almost the same level by the end of June 2008 as 

figure 3.3 illustrates. The returns on foreign securities suffered due to the increase in 

USD/ISK and low yielding foreign bonds yielded negative returns in ISK for the years 2003 – 

2008 as figure 3.1 implies. During the largest part of the period under consideration, currency 

returns made most foreign investments unattractive in terms of ISK returns. Nevertheless, the 

lowest return correlation is between the liabilities and domestic stocks.  
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Table 3.3: σi σL ρi,L are the elements of the asset-liability return covariance vector ΣAL from chapter 2. The combined effect of 

individual security risk and correlation of individual asset with liabilities is obtained by σi ρi,L. 

 

The bottom line in table 3.3 shows the standard deviation of returns on liabilities and 

individual assets where domestic stocks are the riskiest asset class followed by the private 

equity asset class. The foreign bond index which contains 70% AAA rated U.S. government 

bonds is the third riskiest asset class; this is mainly explained by currency returns as written 

before. Hedging ability (Sharpe & Tint, 1990), i.e. the combined effect of correlation and risk 

is obtained by multiplying the correlation coefficient by the standard deviation ,i i L
   , is in 

the second row from the bottom in table 3.3. The highest values are for foreign stocks and 

private equity, followed by indexed and long maturity domestic bonds. The lowest value is for 

domestic stocks, showing the least preferable hedging characteristics of this relatively volatile 

and negatively correlated asset. The return covariance vector, AL , where the elements of the 

vector are the return covariance estimate between asset i  and liabilities, ,i L i L
    , is found in 

the third row from the bottom in table 3.3.  

 

 

Figure 3.3: The USD/ISK currency rate from January 2003 – June 2008 (Central bank of Iceland, 2013). 
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Table 3.4 shows the determinant and sub-determinants of the matrix Q  in accordance with 

section 2.10. The determinants Q , 
#1Q  and 

# 4Q , imply that the optimal sets in absence and 

presence of liabilities are not the same; the surplus optimal frontiers have higher return 

volatility than frontiers where liabilities are ignored. Furthermore, the expected returns on the 

MSVPs are higher than on the MVP since 
# 2

0Q   and increase with decreasing funding 

ratio. For the same reason, return covariance between efficient portfolios and liabilities 

increases as the return requirement on any portfolio is increased. 

 

 

Table 3.4: Values for the determinants and sub-determinants of Q with interpretation of the values. 

 

As a result of section 2.10, it can readily be read from table 3.4 that the surplus frontiers 

examined in this chapter are characterized by a rising return on the MSVP as F decreases, 

since 
# 2

0Q   and 

  12

22

P MVP

Q
E R w

Q
      and       # 2

22

P MSVP P MVP

Q
E R w E R w

F Q


         

This is confirmed by figure 3.4 that illustrates the risk-return frontiers in the absence and 

presence of liabilities. Figure 3.4 illustrates the well-known risk-return space where the 

leftmost frontier is the traditional risk-return frontier with no consideration on liabilities, i.e. 

where F    ,
0

P L
   or 0L  . The frontiers to the right of the traditional frontier are risk-

return surplus frontiers with funding ratios F = [1.5, 1.25, 1, 0.75, 0.5], where the rightmost 

frontier has the lowest funding ratio. Also, a frontier for FCOV = 0.6164 (see section 2.6 and 

2.12) lies between the frontiers with F = 0.75 and F = 0.5. 

 

As can be observed from figure 3.4, the MSVPs are not on the minimum variance point on 

their respective risk-return frontiers. As shown in section 2.10 and by table 3.4, this is due to 

the fact that  

   P MSVP P MVPE R w E R w          when   
# 2

0Q    
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as can be seen from the equations above. The MSVP is a portfolio that minimizes surplus 

return variance for a given funding ratio. Expected return on a MSVP equals the expected 

return on MVP if 
# 2

0Q  , 0   or F   . 
 

The return variance for the MVP and the MSVP are given by 

 
22

1
P MVPVAR R w

Q
      and      

2
# 4

2

22

P MSVP P MVP

Q
VAR R w VAR R w

QF


         

and return variance on any portfolio on respective frontiers is expressed as 

 
2

22 12 11

#1

2P P

P rp

r Q r Q Q
VAR R w

Q

 
  
 

 

and 

 
2 2 2

22 12 11

,

#1

2P P

P rp S

r Q r Q Q F Q
VAR R w

Q

 
  

  
   

 

The determinants 
# 4Q  and Q  explain the difference in return variance between the frontiers 

in absence and presence of liabilities as observed in figure 3.4. The positive value of 
# 4Q  

affects the return variance shift form the MVP to the MSVP whereas for any other portfolios 

on the surplus frontier, Q  explains the higher return variance. In both cases, 
2 2
F 

 acts as a 

scaling factor on the return variance shift and if 0   or F   , the surplus frontier 

converges with the traditional mean variance frontier. 
 

 

Figure 3.4: Risk-return frontiers in absence of liabilities (leftmost frontier, blue with wMVP as a red dot) and presence of 

liabilities (red with wMSVP‘s as magenta colored x‘s) for F = [1.5, 1.25, 1.0, 0.75, 0.5] and θ = 1. The red dash-dotted surplus 

frontier is for F = 1, the surplus frontiers to the left of the red dash-dotted one have F > 1 and the frontiers to the right of the 

red dash-dotted one have F < 1. The unit normalized return covariance portfolio (see sections 2.6 and 2.12), wCOV, is shown 

by a red asterisk on the dashed surplus frontier for FCOV = 0.6164. 
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3.2 Minimum variance and minimum surplus variance portfolios 

Table 3.5 shows the asset allocations for the MVP and the MSVP‘s using the previously 

mentioned set of funding ratios and table 3.6 shows risk-return values for these portfolios, 

expressed as 

1

22

A

MVP
w

Q




    and   MSVP MVP MSVPw w      with   
1 123

22

1
MSVP A AL A

Q

F Q
   

     
 

 

As the hedging ability in table 3.3 suggests, the MSVP portfolios have a short position in 

domestic stocks (A1) although a low one. Similarly, negative return correlation and low return 

estimate explains the shorting of foreign bonds (A7). The short positions increase as the 

funding ratio decreases as to hedge against negative return correlation between those asset 

classes and liabilities. Also, domestic long maturity bonds (A4) are shorted although having 

positive correlation, as a result of relatively low return estimate against volatility for domestic 

long maturity bonds. Although the foreign stocks (A2) and private equities (A8) have the 

highest hedging ability, the MSVP allocations in those asset classes are relatively low. 

 

 

Table 3.5: Asset class allocations for wMVP , ϕMSVP, wMSVP and wCOV  with θ = 1;  wMSVP = wMSVP  + θϕMSVP,    

wCOV = wMSVP for F = FCOV . 

 

As the funding ratio decreases, allocation in foreign stocks increases while allocation in 

private equities decreases. This may be explained by the lower risk and higher return 

correlation of foreign stocks than for private equities. The allocation in domestic short 

maturity bonds (A3) is higher than 1 for all funding ratios as a result of low volatility and a 

high return correlation between this asset class and liabilities. 

 

Table 3.6 shows further results for the MVP and MSVPs. The expected return on the MSVP 

increases as F decreases as table 3.4 suggests. Accordingly, the return on the liability hedge 
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portfolio, MSVP , is positive. The covariance between portfolio and liabilities returns increases 

as funding ratio decreases, resulting from increased concentration in the liability hedging 

portfolio. The liability hedging credit and the hedging ability increase for the same reason and 

indicate increasing hedging characteristics of the MSVP as the funding ratio decreases. 

The risk-return space representations of the portfolios given in tables 3.5 and 3.6 are shown in 

figure 3.4. 

 

Table 3.6: Results for the wMVP, wMSVP and wCOV according to sections 2.3 and 2.6 with θ = 1. 

 E [RP (wMSVP)] = E [RP (wMVP)] + θE [RP (ϕMVSP)], E [RS (wP)] - expected returns on surplus, σ [RS (wP)] - standard deviation of 

surplus returns, Cov[RP , L] – Cov[RMVP, L] confirms an increase in return covariance between optimal portfolio and 

liabilities as F decreases. Liability hedging credit: LHCP = 2θ σP σL ρP,L / F. 

 

3.3 Optimal portfolios in absence and presence of liabilities with return preferences 

Figure 3.5 illustrates the same risk-return frontiers as in figure 3.4 with optimal portfolios 

added, having return requirement parameters rP = [0.10, 0.11, 0.12]. These portfolios are 

analyzed on following pages. Tables 3.7 – 3.12 show the results for the specified values of Pr   

and F . 
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Figure 3.5: This is the same figure as 3.4 where optimal portfolios with return requirement rP = [0.10, 0.11, 0.12] (red and 

green +‘s) have been added. 

As the return requirement is raised above MVP/MSVP level, the magnitudes of the short and 

long positions change as indicated by tables 3.7 – 3.12. The optimal portfolios in absence and 

presence of liabilities with any return requirement of Pr  are given by, respectively; 

1

1 122 12 12

22 #1 22

A P

rp MVP A A A

r Q Q Q
w w w

Q Q Q



 



   
       

 
 

and 

, ,

1

1 123

22 22

1

22 12 # 2 1 112

#1 22

        

         

rp S MVP MSVP S

A

A AL A

P

A A A

w w w w

Q

Q F Q

r Q Q F Q Q

Q Q

  

 



 



 



 

   

 
      

 

   
    

 

 

 

For a return requirement of 10%, allocation in domestic stocks (A1) is nearly unchanged. 

Allocation in foreign stocks (A2) and bonds (A7) as well as domestic long maturity bonds 

(A4) decreases while an increased allocation in domestic short maturity (A3) and indexed 

bonds (A5), hedge funds (A6) and private equities (A8) is observed. The excess long position 

in domestic short maturity bonds is increased from the MVP/MSVP level as a result of high 

return vs. low risk characteristics of this asset class. 



81 

 

Table 3.7: Asset class allocations for portfolios with rP = 10%, 0.7% above the wMVP return and θ = 1. The portfolios shown 

in the table are: wrp = wMVP + θwη, wrp,S = wMVP + θϕMSVP + wη + θwη,S. The liability hedge portfolio allocation ϕMSVP is found 

in table 3.5. 

 

The first two rows in table 3.8 are the same as the first two rows in table 3.6. The third row 

provides the expected return on the return generating and return generating correction 

components, E [RP (wη)] and E [RP (wη,S)]. The return covariance increase, resulting from 

increased return requirement and suggested by table 3.4, is hardly noticeable for this small 

increase in return requirement above the MVP/MSVP level, but will become clearer in tables 

3.10 and 3.12 where the return requirement on the portfolios is increased further. The liability 

hedging credits and the hedging ability increase a little compared with the MVP/MSVPs. 

 

 

Table 3.8: Results for portfolios with rP = 10% and θ = 1. E [RP (wMSVP)] = E [RP (wMVP)] + θE [RP (ϕMVSP)],  

E [RP (wrp)] = E [RP (wMVP)] + E [RP (wη)], E [RP (wrp,S)] = E [RP (wMVP)] + θE [RP (ϕMVSP)] + E [RP (wη)] + θE [RP (wη,S)],   

E [RS (wP)] - expected return on surplus, σ [RS (wP)] - standard deviation of surplus return. Cov[Rrp,S , L] - Cov[RMSVP , L] 

confirms an increase in return covariance as rP > rMVP as table 3.4 suggests. 
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In tables 3.9 – 3.10, the return requirement on the optimal portfolios has been increased to 

11%. By increasing the return requirement from 10% to 11%, the same pattern is observed as 

when it was increased from the MVP/MSVP level to 10%. Allocation in domestic stocks (A1) 

is increases a little as a result of high historical return estimate. Allocation in foreign stocks 

(A2) and bonds (A7) as well as domestic long maturity bonds (A4) decreases while a still 

increased allocation in domestic short maturity (A3) and indexed bonds (A5), hedge funds 

(A6) and private equities (A8) is observed. The excess long position in domestic short 

maturity bonds is increased further from the MVP/MSVP allocation. 

 

 

Table 3.9: Asset class allocations for portfolios with rP = 11%, 1.7% above the wMVP return and θ = 1. The portfolios shown 

in the table are: wrp = wMVP + θwη, wrp,S = wMVP + θϕMSVP + wη + θwη,S. The liability hedge portfolio allocation ϕMSVP is found 

in table 3.5. 

 

The expected return on surplus along with the risk and surplus risk values increase as the 

return requirement on the portfolios is increased. The covariance increase is hardly noticeable 

and as a consequence, the values for the liability hedging credit and the hedging ability do not 

change in the tables although a very small increase is noticed by increasing the number of 

digits. 
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Table 3.10: Results for portfolios with rP = 11% and θ = 1. E [RP (wMSVP)] = E [RP (wMVP)] + θE [RP (ϕMVSP)],  

E [RP (wrp)] = E [RP (wMVP)] + E [RP (wη)], E [RP (wrp,S)] = E [RP (wMVP)] + θE [RP (ϕMVSP)] + E [RP (wη)] + θE [RP (wη,S)],   

E [RS (wP)] - expected return on surplus, σ [RS (wP)] - standard deviation of surplus return. Cov[Rrp,S , L] - Cov[RMSVP , L] 

confirms an increase in return covariance as rP > rMVP as table 3.4 suggests. 

 

Increasing the return requirement to 12% as shown in tables 3.11 – 3.12, the same allocation 

change pattern is observed as before. Slight increase and decrease in the same asset classes as 

before serves the role of minimizing surplus return risk with respect to the increased return 

requirement on the optimal portfolio. Interestingly, the optimal portfolios in the presence of 

liabilities follow the same allocation change pattern with increased return requirement as the 

optimal portfolios in absence of liabilities. The presence of liabilities does not seem to change 

this pattern. Instead, the liabilities only affect allocation in order to increase the correlation 

between portfolio and liabilities returns as the objective of the surplus optimization model 

implies via minimizing surplus return variance. 

 

 

Table 3.11: Asset class allocations for portfolios with rP = 12%, 2.7% above the wMVP return and θ = 1. The portfolios shown 

in the table are: wrp = wMVP + θwη, wrp,S = wMVP + θϕMSVP + wη + θwη,S. The liability hedge portfolio allocation ϕMSVP is found 

in table 3.5. 
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Table 3.12: Results for portfolios with rP = 12% and θ = 1. E [RP (wMSVP)] = E [RP (wMVP)] + θE [RP (ϕMVSP)],  

E [RP (wrp)] = E [RP (wMVP)] + E [RP (wη)], E [RP (wrp,S)] = E [RP (wMVP)] + θE [RP (ϕMVSP)] + E [RP (wη)] + θE [RP (wη,S)],   

E [RS (wP)] - expected return on surplus, σ [RS (wP)] - standard deviation of surplus return. Cov[Rrp,S , L] - Cov[RMSVP , L] 

confirms an increase in return covariance as rP > rMVP as table 3.4 suggests. 

 

As this example points out, full surplus optimization involves short sales of assets for 

diversification and to select the assets in such a way as to gain surplus on the liability 

benchmark with as little surplus volatility as possible, with respect to funding status and 

return preferences. The funding status determines the surplus return hedge, i.e. how much risk 

the plan can afford to take in gaining returns and how strong the hedge against surplus 

volatility should be in order to maintain surplus return at acceptable levels. As the funding 

ratio decreases, the ability to take risk decreases and so should the willingness to take risk 

also. Lower funding ratio increases the emphasis on hedging against changes in liabilities by 

increasing the allocation in assets that provide similarly behaving returns as the liabilities do 

and give the highest potential on receiving positive surplus returns with as little volatility as 

possible via diversification.  

 

3.4 Market portfolios in absence and presence of liabilities 

Since optimal portfolios with certain return requirement goals have been studied to some 

extent, the market portfolios in absence and presence of liabilities from section 2.12 remain 

untouched. Assuming a risk-free rate of 5.5%, little lower than the return estimate on 

domestic long term bonds, the market portfolios in absence (MKT) and presence (MKTS) of 

liabilities have been plotted on figure 3.6. Their expressions are, respectively, 
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and 

,MKT S MKT MKTw w      where   
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The capital market line (CML) and the market portfolios are illustrated  in figure 3.6. The 

decreasing return on the market portfolio in presence of liabilities as F decreases can be 

observed, as well as the expected return on the MSVP, the MKT and MKTS are the same at F 

= FCOV = 0.6164, denoted by the asterisk in figure 3.6. For a funding ratio below FCOV, the 

MKTS becomes surplus inefficient, i.e. is below the MSVP on the respective frontier. 

 

The MKT and MKTS asset allocations are found in table 3.13. As the allocations in MKT and 

MKTS are compared, the effects of the liability hedging component decrease the allocation in 

five out of eight asset classes as F decreases. The most significant increase in allocation as F 

decreases is in foreign stocks (A2). 

 

 

Figure 3.6: This is the same figure as 3.5 where market portfolio in absence of liabilities (red o) and market portfolios in 

presence of liabilities (blue pentagrams) with F = [1.5, 1.25, 1.0, 0.75, 0.5] have been added. Risk-free rate is assumed 5.5%, 

CML is the black dashed tangency line and portfolios with return requirement rP = [0.10, 0.11, 0.12] are marked with red and 

green +‘s. The red asterisk denotes the point in risk-return space where wMKT,S = wMSVP = wCOV for F = FCOV = 0.6164 
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Table 3.13: Asset class allocation for wMKT , ϕMKT, wMKT,S and wCOV  with θ = 1;  wMKT,S = wMKT  + θϕMKT,    

wCOV = wMKT,S for F = FCOV . 

 

As can be seen in table 3.14, the same liability hedging tendencies apply in the case of market 

portfolio in presence of liabilities as with other surplus optimal portfolios. Lower funding 

ratio increases the need for hedging against liabilities and optimal allocation selects assets in 

such a way as to increase the return covariance between the asset portfolio and the liabilities. 

The last four rows in table 3.14 confirm this fact when compared with tables 3.6, 3.8, 3.10 

and 3.12. 

 

 

Table 3.14: Results for wMKT , wMKT,S and wCOV according to sections 2.6 and 2.12 with θ = 1.  

E [RP (wMKT,S)] = E [RP (wMKT)] + θE [RP (ϕMKT)], E [RS (wP)] - expected returns on surplus, σ [RS (wP)] - standard deviation of 

surplus returns, Cov[RP , L] – Cov[RMKT , L] confirms an increase in return covariance between optimal portfolio and 

liabilities as F decreases due to increased hedging demand. LHC – Liability hedging credit. 
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3.5 Absolute minimum surplus variance 

As shown in section 2.11, a unique funding ratio exists where the surplus return variance on 

the MSVP for that particular F, has an absolute minimum for all funding ratios. This funding 

ratio, FMSV, has a relatively high value in this numerical example; FMSV = 11.4371. since it is 

unlikely that any pension fund has the ability to cover its liabilities more than eleven times, 

this analysis is not practical in terms of real asset management, Nevertheless, it sheds a light 

on certain properties of the surplus optimization model and the data from a theoretical point of 

view. Table 3.15 shows the asset allocation for the absolute minimum surplus variance 

portfolio (MSV), expressed as 

1

1 123 23

2

22 2222 # 4

         

MSV
MSV MSVP F F

A

A AL A

L

w w

Q Q

Q QQ Q










 



 
      

  

 

with 

 2

22 # 4

23

L

MSV

Q Q
F

Q

  
  

 

Table 3.15: Asset class allocation for wMSV with θ = 1: Absolute minimum surplus variance portfolio.  wMSV = wMSVP for F = 

FMSV. 

The absolute minimum surplus variance was 

expressed as 
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Table 3.16 shows numerical values for the MSV 

portfolio. As the FMSV is high, the MSV portfolio is 

very similar to the MVP since concentration in 

liability hedge is weak due to the high funding ratio. 

The difference in expected returns and standard deviation of returns cannot be noticed using 

three digits in respective numerical results for these portfolios. Small difference in return 

covariance between the portfolios and liabilities can though be observed from table 3.16.  

 

 

Table 3.16: Comparison of values; wMSV vs. 

wMVP 



88 

Figure 3.7 shows surplus return variance as a function of funding ratio. From the figure, the 

absolute minimum surplus return variance resulting from MSVw  can be observed.  

 

 

Figure 3.7 : An absolute minimum of surplus return variance for all optimal portfolios is the surplus return variance of wMSV 

(magenta colored hexagram). For comparison, the surplus return variance for wMVP is shown in the upper right corner (red o). 

The surplus return risk of these two portfolios is also shown in figure 3.8. 

 

3.6 Surplus risk return space 

Since the MSV portfolio has been added to this analysis, it‘s now timely to illustrate the 

surplus risk-return space. The classic risk-return space illustrates the quadratic relationship 

between expected return,  P PE R w   , and standard deviation of returns,  P PR w    , 

whereas in the surplus risk-return space, the quadratic relationship between expected surplus 

return and standard deviation of surplus returns are illustrated, i.e. 
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Figure 3.8 illustrates the surplus risk-return space, where all the portfolios in absence and 

presence of liabilities already analyzed in this chapter are shown. Figure 3.8 is the surplus 

risk-return counterpart of figure 3.6 where expected surplus returns and standard deviations of 

surplus returns for all previously analyzed portfolios are projected into surplus risk-return 

space. The blue leftmost frontier is the traditional asset-only frontier with the MVP as a red 

dot. Six surplus optimal frontiers for funding ratios of F = [1.5, 1.25, 1.0, 0.75, 0.5] and for 

FCOV = 0.6164 are shown with respective MSVPs. The portfolios with return requirement  
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rP = [0.10, 0.11, 0.12]  and market portfolios in absence and presence of liabilities are shown 

on respective frontiers.  

 

 

Figure 3.8: Surplus risk-return frontiers in 

absence of liabilities (leftmost frontier, 

blue with wMVP as a red dot) and presence 

of liabilities (red/cyan with wMSVP‘s as 

magenta coloured x‘s) for F = [1.5, 1.25, 

1.0, 0.75, 0.5] and for FCOV = 0.6164. The 

red dash-dotted surplus frontier is for F = 

1, the surplus frontiers to the left of the red 

dash-dotted one have F > 1 and the 

frontiers to the right of the red dash-dotted 

one have F < 1. The unit normalized return 

covariance portfolio, wCOV, is shown by a 

red asterisk on the dashed surplus frontier 

for FCOV = 0.6164. Portfolios with return 

requirement rP = [0.10, 0.11, 0.12] are 

marked with red and green +‘s, the market 

portfolio in absence of liabilities (red o) 

and market portfolios in presence of 

liabilities (blue pentagrams) with F = [1.5, 

1.25, 1.0, 0.75, 0.5]. Risk-free rate is 

assumed 5.5% and CML is the black dashed tangency line. The magenta coloured hexagram represents wMSV with FMSV = 

11.43, having almost the same risk and return as the wMVP. This figure and figure 3.6 are counterparts; figure 3.6 in risk-

return space and figure 3.7 in surplus risk return space. 

 

3.7 Probabilities of assets covering liabilities 

In section 2.13, a simple probability measure on gaining surplus, i.e. whether assets will cover 

liabilities in the end of a specified horizon was derived. As already discussed section 2.13, 

current funding ratio and present asset allocation can give probabilistic information on the on 

the ability of a pension fund to cover its liabilities. For the hypothetical pension fund in this 

numerical example, the probabilities of covering liabilities at a certain time point in future are 

analyzed in tables 3.17 – 3.20. Since the MSVPs and optimal portfolios with return 

requirement of 10%, 11% and 12% were analyzed before in this chapter, it‘s convenient to 

observe the probabilistic measure for these portfolios. The funding ratios used in this 

probability analysis are F = [1, 0.75, 0.5] and the probability values in tables 3.17 – 3.20 are 

found by using the results of section 2.13. As can be seen from the tables, higher funding 

ratios are quite likely to cover liabilities at the end of short horizons as the growth rate of the 

asset portfolio is higher than of the liabilities. Also, higher return requirement on the 

portfolios results here in higher probabilities of covering liabilities. It should be noted that 

surplus return volatility plays a great role here. Where the surplus return volatility values for 
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the optimal portfolios are low and F is fairly close to 1, the probability values are high. For 

low values of surplus return volatility, changes in F and the importance parameter θ can lead 

to large changes in this probability measure, given by 
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Table 3.17: P(A > θL), t = 0, wMSVP. 

 

Table 3.18: P(A > θL), t = 0, wrp,S , rP = 10%. 

 

Table 3.19: P(A > θL), t = 0, wrp,S , rP = 11%. 

 

Table 3.20: P(A > θL), t = 0, wrp,S , rP = 12%. 
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3.8 Shortfall constraints 

In section 2.14, shortfall constraints were introduced as 

an additional tool for risk-return and surplus risk-return 

analysis. Conventional shortfall constraints limit the 

probability on earning a return on a portfolio below some 

specified threshold level. Under the log-returns normality 

assumption, the continuously compounded returns are 

normally distributed. As the returns here are logarithmic, 

an example of two shortfall constraints is added to this numerical example. The constraints 

are expressed as  
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Table 3.21 and figure 3.9 show the two shortfall constraints and approximate values of 

expected returns and standard deviation of returns on optimal portfolios when the constraints 

are active. The constraint with higher threshold return narrows the set of feasible portfolios as 

can be observed form table 3.21. This is confirmed by the approximated constraint lines in 

figure 3.9.  

 

The two dotted lines in figure 3.9 represent the shortfall constraints having threshold returns 

of 0.08 and 0.07, respectively. The constraint with higher threshold return drives the shortfall 

constrained feasible set very close to the frontier. As a consequence, very limited flexibility in 

allocation away from optimal portfolios is allowed if the shortfall constraint is to be satisfied. 

Only one of the portfolios analyzed before in this chapter is feasible; the optimal portfolio in 

absence of liabilities with return requirement of 12%. Raising the return requirement of the 

surplus optimal portfolios to about 15% allows the surplus optimal portfolio with F = 1 to 

satisfy the constraint. Reducing the threshold return down to 7% increases the feasible area 

under the efficient frontier considerably and several of the surplus optimal portfolio analyzed 

before satisfy the shortfall constraint. Increasing the shortfall probability level above 1% also 

allows for larger area of feasibility under the frontiers. 

 

 

 
Table 3.21: Traditional shortfall 

constraints P(RP ≤ Rthr) ≤ ξ. 
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Figure 3.9: The same figure as figure 3.6 where traditional shortfall constraint lines are approximated: P(RP ≤ Rthr) ≤ ξ, ξ  = 

0.01,  

t = 0, T = 1, Rthr = [0.07, 0.08]. 

 

The second type of shortfall constraints from section 2.14 limits the probability of the funding 

ratio being below some threshold funding ratio at the end of a specified horizon. If this 

funding ratio is 1, the shortfall constraints are linear in the surplus risk return space. Tables 

3.22 and 3.23 provide examples of such shortfall constraints, expressed as  

 
 

   

 
 

2 2 21
ln

2

T

A P L P L

P P L

F
w T t

F t
z

F
R w R T t

F t




    




 
     
 


 

  
 

 

with    1
0,1z


   

 

 

Table 3.22: Funding ratio shortfall constraints  

P(F (T) ≤ 1) ≤ δ, varying funding ratio, F(t). 

 

Table 3.23: Funding ratio shortfall constraints  

P(F (T) ≤ 1) ≤ δ, varying shortfall probabilities, δ. 

 



93 

The approximated shortfall constraint lines accompanied with table 3.22 are illustrated in 

figures 3.10 and 3.11. Similarly, the approximated shortfall constraint lines accompanied with 

table 3.23 are illustrated in figures 3.12 and 3.13. Figures 3.10 and 3.12 show nonlinear 

constraint lines in risk-return space whereas figures 3.11 and 3.13 show linear constraint lines 

in surplus risk-return space. In table 3.22 and figures 3.10 – 3.11, the funding ratio is varied 

while the horizon and shortfall probability are held fixed. In table 3.23 and figures 3.12 – 

3.13, the shortfall probability is varied while the horizon and the funding ratio are held fixed. 

As shown by table 3.22, lower funding ratio decreases the feasible area under the frontiers in 

both risk-return spaces by raising the constraint lines in figures 3.10 – 3.11. For table 3.23 and 

figures 3.12 – 3.13, decreasing the shortfall probability level also decreases the feasible area 

under the frontiers in both risk-return spaces by raising the constraint lines in figures 3.12 – 

3.13. 
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Figure 3.10: The same figure as figure 3.6 where funding ratio shortfall constraint lines are approximated: P(F (T) ≤ 1) ≤ δ,  

δ  = 0.1, t = 0, T = 5, F(t) = [0.75, 1.00, 1.25]. The lowest shortfall constraint line on the figure is for F(t) = 1.25, the middle 

one is for F(t) = 1 and the uppermost one is for F(t) = 0.75. 

 

 

Figure 3.11: The surplus risk return space counterpart to figure 3.10 where funding ratio shortfall constraint lines are 

approximated: P(F (T) ≤ 1) ≤ δ, δ  = 0.1, t = 0, T = 5, F(t) = [0.75, 1.00, 1.25]. The lowest shortfall constraint line on the 

figure is for F(t) = 1.25, the middle one is for F(t) = 1 and the uppermost one is for F(t) = 0.75. 
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Figure 3.12: The same figure as figure 3.6 where funding ratio shortfall constraint lines are approximated: P(F (T) ≤ 1) ≤ δ,  

δ  = [0.01, 0.05, 0.1], t = 0, T = 5, F(t) = 1.00. The lowest shortfall constraint line on the figure is for δ = 0.1, the middle one 

is for δ = 0.05 and the uppermost one is for δ = 0.01. 

 

 

Figure 3.13: The surplus risk return space counterpart to figure 3.12 where funding ratio shortfall constraint lines are 

approximated: P(F (T) ≤ 1) ≤ δ, δ  = [0.01, 0.05, 0.1], t = 0, T = 5, F(t) = 1.00. The lowest shortfall constraint line on the 

figure is for δ = 0.1, the middle one is for δ = 0.05 and the uppermost one is for δ = 0.01. 
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3.9 Surplus analysis for optimal allocations in presence versus absence of liabilities 

In these final pages of the numerical example, optimal allocations are tested on historical data 

for the purposes of comparing the performance of and the surplus generated by optimal 

portfolios derived in chapter 2 and analyzed earlier in this section. In order to compare the 

performance of the optimal asset allocations in absence and presence of liabilities in parallel 

with the liabilities and their surplus generating ability, four allocation strategies are analyzed 

along with the liability index. To take account of different funding status for the hypothetical 

pension fund, the comparison is made for three different initial funding ratios. Also, three 

different rebalancing frequencies are implemented into the performance comparison and 

accordingly, the asset allocation process can be considered as semi-dynamic since the optimal 

portfolios are rebalanced during the historical test period. A detailed description of this 

surplus and performance analysis follows below. 

 

The four optimal allocation strategies under consideration are the minimum variance portfolio 

(MVP) and the minimum surplus variance portfolio (MSVP) and optimal portfolios in 

absence (wrp) and presence (wrp,S) of liabilities, with a return requirement of 12%. Initial 

funding ratios for the strategies are F = [0.75, 1, 1.25]. The same data for liabilities and asset 

classes is used as introduced in section 3.1 and accordingly, initial allocations for all strategies 

are the same as those given in tables 3.5 and 3.11. Initially, the index level of liabilities in 

June 2008 is set as 100 and the asset value for all portfolio strategies is set accordingly with 

respect to the funding ratio. Using additional historical return data from July 2008 to January 

2012 for the liabilities and the asset classes, the portfolio and the liability indices are plotted 

in parallel for a comparison between the strategies and comparing the strategies with the 

liabilities. This is done for portfolio rebalancing on annual, semi-annual and monthly basis as 

to compare the performance with respect to rebalancing frequency. When portfolios are 

rebalanced, the most recent historical data is added to the dataset for estimating new inputs 

into the optimization. The allocation process takes account of the funding status for the 

strategies when portfolios are rebalanced and allocates the assets accordingly. 

 

The performance of the allocation strategies and the liability index is illustrated on even 

numbered figures from 3.14 to 3.30. In the figures legends, „Optimal Portfolio“  and „Surplus 

Optimal Portfolio“ refer to the optimal portfolio in absence (wrp) and presence (wrp,S) of 

liabilities, respectively. The surplus associated with the allocation strategies is shown on odd 

numbered figures from 3.15 to 3.31. The first six figures (3.14 – 3.19) illustrate the 

performance of the allocation strategies with rebalancing on an annual basis and associated 
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surplus. The Next six figures (3.20 – 3.25) illustrate the same with rebalancing on a semi-

annual basis and the last six figures (3.26 – 3.31) illustrate performance and surplus with 

rebalancing on a monthly basis. For a numerical comparison between strategies from July 

2008 to January 2012 and rebalancing frequencies, tables 3.24 – 3.26 show average surplus 

associated with the strategies for rebalancing frequency of one year, half year and one month, 

respectively. 

 

The performance patterns for the four strategies are similar in all cases, i.e. for all three 

funding ratios and all three rebalancing frequencies, with few exemptions. In the beginning of 

the time period under consideration, just before the 2008 market collapse, the performance 

and surplus of the MVP indices are just a little above the MSVPs. When the market 

downswing starts in the last quarter of 2008, the MSVP indices show better performance than 

their MVP counterparts and drop less in value. In all cases, the growth of the MSVPs are a 

little higher on average than for the MVPs during 2009 which results in higher index value in 

the end of 2009. For the remainder of the time period, the MSVP indices grow a little faster 

than the MVP indices. From this, one can conclude that based on this data, the MSVPs 

outperforms the MVPs in terms of surplus  and portfolio value during the test period. This is 

also confirmed by tables 3.24 – 3.26 where the average surplus for the MSVPs is higher than 

for the MVPs. For a funding ratio of 0.75, where both the MVPs and the MSVPs start with a 

negative surplus (deficit) of - 25 in June 2008, the average surplus values in tables 3.24 – 3.26 

associated with the MSVP are higher than the initial value, despite the severe market 

downswing in 2008.  

 

The same characteristics are observed when comparing the optimal portfolios in absence 
rpw  

and presence ,rp S
w  of liabilities with a return requirement of 12%. When the markets collapse 

in October 2008, the index values of ,rp S
w  exceed those of the 

rpw , they drop less during the 

crisis and grow faster on average from March 2009 to January 2012. By comparing the 

surplus of the strategies, the odd numbered surplus figures and table 3.24 – 3.26 indicate a 

better performance in terms of surplus for the portfolios taking liabilities into account. 

Furthermore, the ,rp S
w  performance and surplus indices ascend above the respective MVP 

indices temporarily in the years 2010 or 2011, except for funding ratios of 1 and 1.25 and 

semi-annual rebalancing and also for funding ratio of 1.25 and monthly rebalancing. The 

effects of increased funding ratio result in that the ,rp S
w  index and surplus values exceed the  



98 

respective MVP values later in the year 2010 or 

2011, which results from lower concentration in 

liability hedge portfolio.Nevertheless, for all three 

funding ratios and rebalancing frequencies, the 

strategies taking liabilities into account outperform 

their asset-only counterparts in terms of average 

surplus and also in terms of portfolio values. 

 

By comparing the values for average surplus in 

tables 3.24 – 3.26 to analyze the effects of varying 

the rebalancing frequency, it can be seen that the 

MVP benefits in terms of average surplus from 

more frequent rebalancing whereas for the 
rpw , 

average surplus is highest for annual rebalancing 

and lowest for semi-annual rebalancing. The 

average surplus for the MSVPs is highest for 

monthly rebalancing but lowest for semi-annual 

rebalancing. For the ,rp S
w , annual rebalancing 

results in the highest average surplus. As more 

frequent updating of information and allocating 

accordingly is generally considered to result in 

better performance, this time period under consideration is relatively volatile in historical 

comparison and includes the greatest market collapse in the history of domestic (Icelandic) 

markets. As a result, rebalancing on the basis of updated information may not have given the 

best results in the unstable environment of the three years that followed the market collapse in 

2008. 

 

The same performance pattern is observed in all cases as the MSVPs and MVPs strategies are 

superior to the strategies with the return requirement preferences through the most volatile 

period. Increased funding ratio affects performance which can be observed by that the index 

value of the ,rp S
w  does not exceed those of the MVPs until in the last quarter of 2010 in the 

occasions where that happens. Higher funding ratio seems to delay the index value of the 

,rp S
w  in exceeding the MVPs, due to lower concentration in liability hedge. Nevertheless, the 

optimal strategies taking liabilities into account outperform their asset-only counterparts in all 

 

 

 

Tables 3.24, - 3.25: Average surplus for the four 

strategies, three funding ratios and three various 

rebalancing frequencies. 
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cases in terms of surplus. Therefore, using this data and considering the ability of the 

strategies in keeping pace with liabilities for the years 2010 - 2012, the strategies where 

liabilities are considered are superior to their classic asset-only counterparts for all funding 

ratios and all rebalancing frequencies.  

 

The sharp increase in liabilities in 2011 has a negative effect on surplus and can be observed 

in respective figures as a sharp drop in surplus for all strategies during in the latter half of the 

year 2011. Nevertheless, the strategies considering liabilities maintain higher surplus than 

their classic asset-only counterparts as indicated by the odd numbered figures from 3.15 to 

3.31. 

 

Given the data used in this analysis, the purpose of this section is to compare the surplus 

associated with the strategies where liabilities are taken into account with the surplus of those 

who don‘t on the basis of different funding ratios and rebalancing frequencies, irrespective of 

the market downturn in 2008. As already discussed, the superiority of the strategies 

considering liabilities over their asset-only counterparts in gaining surplus is confirmed by 

tables 3.24 – 3.26 and the odd numbered figures from 3.15 – 3.31. Interestingly, it can also be 

observed from the even numbered figures that a noticeable difference between the strategies 

in absence on one hand and presence of liabilities on the other, is that the portfolios taking 

liabilities into account seem to recover faster after the 2008 crisis and also, they grow a little 

faster on average than the asset-only strategies in the post-crisis era. Therefore, given the data 

used for this analysis, the surplus optimal strategies outperform the traditional mean-variance 

strategies in terms of surplus and provide better hedge against liabilities. Additionally, they 

seem to outperform the traditional strategies in terms of recovery after the 2008 crisis which 

can be largely explained with very little or no investment at all in domestic stocks that 

collapsed in value in October 2008 and equities in many firms became worthless. Also, 

greater exposure in domestic inflation indexed bonds provides partial explanation of the faster 

recovery as domestic inflation increased dramatically after the market collapse.  

 

Given the data used in this numerical example, three cases have been analyzed in this section 

where the asset allocation strategies taking liabilities into account are found by using surplus 

optimization. The results indicate that the strategies where liabilities are taken into account in 

the asset allocation process – surplus return variance optimal portfolios – are superior in 

keeping pace with liabilities than their classic mean-variance counterparts and are thus have 

the potential of providing higher returns on surplus by benchmarking asset allocation with 
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liabilities. Using other data might show the opposite since for normal market conditions, 

surplus optimal strategies are more conservative and allocate higher proportions in bonds and 

asset classes with growth similar to the growth of liabilities. Also, in normal market 

conditions, one might expect that the order of portfolios in terms of performance would be the 

other way around, i.e. the portfolios without a liability benchmark would have a superior 

performance to those who have such a benchmark. Furthermore, in a stable environment, one 

might expect that portfolios with higher return requirement would have a better performance 

than minimum variance portfolios. The explanation for the opposite pattern observed in the 

previous comparison can be seen directly from the different objectives of the two models. The 

traditional mean-variance optimization model aims at minimizing the portfolio return variance 

with respect to return preferences and selects the assets accordingly. Conversely, the objective 

of surplus optimization is to minimize surplus return variance, i.e. the return variance of assets 

net of liabilities, with respect to funding status, return preferences and importance given to 

liabilities. In other words, positive surplus return is desirable with as little surplus return 

volatility as possible. Since the liability index in this analysis had a stable growth with a low 

volatility, benchmarking portfolio returns with this liability index resulted in an investment 

strategy that suffered less from the 2008 market downswing than the traditional mean-

variance strategies. This might suggest that for periods of market volatility, benchmarking 

portfolios with steady-growth and low-volatile indices could reduce the negative effects of 

market downturns. 
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Figure 3.14: Four asset allocation strategies versus the liability index during the period June 2008 to January 2012, where 

initial funding status is 0.75 and the asset portfolios are rebalanced on an annual basis. Initial index level of liabilities in June 

2008 is 100. The allocations for the minimum variance portfolio and minimum surplus variance portfolio found in  table 3.5 

and table 3.11 show the allocations for the optimal portfolios in absence and presence of liabilities with a return requirement 

of 12%. 

 

 

 

Figure 3.15: The surplus counterpart to figure 3.14 where surplus for the portfolio strategies is shown.  
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Figure 3.16: Four asset allocation strategies versus the liability index during the period June 2008 to January 2012, where 

initial funding status is 1 and the asset portfolios are rebalanced on an annual basis. Initial index level of liabilities in June 

2008 is 100. The allocations for the minimum variance portfolio and minimum surplus variance portfolio found in  table 3.5 

and table 3.11 show the allocations for the optimal portfolios in absence and presence of liabilities with a return requirement 

of 12%. 

 

 

Figure 3.17: The surplus counterpart to figure 3.16 where surplus for the portfolio strategies is shown. The horizontal dash-

dotted line is shown for clarity as the line for zero surplus. 
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Figure 3.18: Four asset allocation strategies versus the liability index during the period June 2008 to January 2012, where 

initial funding status is 1.25 and the asset portfolios are rebalanced on an annual basis. Initial index level of liabilities in June 

2008 is 100. The allocations for the minimum variance portfolio and minimum surplus variance portfolio found in table 3.5 

and table 3.11 show the allocations for the optimal portfolios in absence and presence of liabilities with a return requirement 

of 12%. 

 

 

 

Figure 3.19: The surplus counterpart to figure 3.18 where surplus for the portfolio strategies is shown. 
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Figure 3.20: Four asset allocation strategies versus the liability index during the period June 2008 to January 2012, where 

initial funding status is 0.75 and the asset portfolios are rebalanced on a semi-annual basis. Initial index level of liabilities in 

June 2008 is 100. The allocations for the minimum variance portfolio and minimum surplus variance portfolio found in table 

3.5 and table 3.11 show the allocations for the optimal portfolios in absence and presence of liabilities with a return 

requirement of 12%. 

 

 

 

Figure 3.21: The surplus counterpart to figure 3.20 where surplus for the portfolio strategies is shown. 
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Figure 3.22: Four asset allocation strategies versus the liability index during the period June 2008 to January 2012, where 

initial funding status is 1 and the asset portfolios are rebalanced on a semi-annual basis. Initial index level of liabilities in 

June 2008 is 100. The allocations for the minimum variance portfolio and minimum surplus variance portfolio are in table 3.5 

and table 3.11 show the allocations for the optimal portfolios in absence and presence of liabilities with a return requirement 

of 12%. 

 

 

 

Figure 3.23: The surplus counterpart to figure 3.22 where surplus for the portfolio strategies is shown. The horizontal dash-

dotted line is shown for clarity as the line for zero surplus. 

 



106 

 

Figure 3.24: Four asset allocation strategies versus the liability index during the period June 2008 to January 2012, where 

initial funding status is 1.25 and the asset portfolios are rebalanced on a semi-annual basis. Initial index level of liabilities in 

June 2008 is 100. The allocations for the minimum variance portfolio and minimum surplus variance portfolio found in table 

3.5 and table 3.11 show the allocations for the optimal portfolios in absence and presence of liabilities with a return 

requirement of 12%. 

 

 

 

Figure 3.25: The surplus counterpart to figure 3.24 where surplus for the portfolio strategies is shown. 
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Figure 3.26: Four asset allocation strategies versus the liability index during the period June 2008 to January 2012, where 

initial funding status is 0.75 and the asset portfolios are rebalanced on a monthly basis. Initial index level of liabilities in June 

2008 is 100. The allocations for the minimum variance portfolio and minimum surplus variance portfolio found in table 3.5 

and table 3.11 show the allocations for the optimal portfolios in absence and presence of liabilities with a return requirement 

of 12%. 

 

 

 

Figure 3.27: The surplus counterpart to figure 3.26 where surplus for the portfolio strategies is shown. 
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Figure 3.28: Four asset allocation strategies versus the liability index during the period June 2008 to January 2012, where 

initial funding status is 1 and the asset portfolios are rebalanced on a monthly basis. Initial index level of liabilities in June 

2008 is 100. The allocations for the minimum variance portfolio and minimum surplus variance portfolio found in table 3.5 

and table 3.11 show the allocations for the optimal portfolios in absence and presence of liabilities with a return requirement 

of 12%. 

 

 

 

Figure 3.29: The surplus counterpart to figure 3.28 where surplus for the portfolio strategies is shown. The horizontal dash-

dotted line is shown for clarity as the line for zero surplus. 
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Figure 3.30: Four asset allocation strategies versus the liability index during the period June 2008 to January 2012, where 

initial funding status is 1.25 and the asset portfolios are rebalanced on a monthly basis. Initial index level of liabilities in June 

2008 is 100. The allocations for the minimum variance portfolio and minimum surplus variance portfolio found in table 3.5 

and table 3.11 show the allocations for the optimal portfolios in absence and presence of liabilities with a return requirement 

of 12%. 

 

 

 

Figure 3.31: The surplus counterpart to figure 3.30 where surplus for the portfolio strategies is shown. 
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4. Conclusion 

 

The material under consideration in this thesis is based on Keel and Muller (1995) that 

expressed the optimal sets for the surplus optimization problem in terms of Lagrangian 

parameters. In this thesis, their expressions are modified as to express the optimal solutions in 

terms of return requirements. By introducing a specific notation, the solutions associated with 

the return requirement parameter can be simplified and certain properties of the optimal 

solutions can be explained in a simple, yet efficient way. 

 

Initially, a 33 symmetric matrix Q is introduced whose elements are composed from the 

inputs to the surplus optimization model. The matrix determinant and sub-determinants are 

used throughout the thesis to give relatively simple expressions for the optimal sets and the 

associated return variances. Also, the determinants provide an efficient way of understanding 

the difference between the traditional mean-variance frontier and surplus frontiers in risk 

return space. The determinants are helpful in explaining shifts in expected return, return 

variance and return covariance change from the classic mean-variance frontier to its surplus 

optimization counterpart. 

 

An importance parameter introduced by Sharpe and Tint (1990) allows for a surplus 

optimization approach that avoids either asset only or full surplus optimization, as the 

consideration level given to liabilities can be set in the asset allocation process. This allows 

for flexibility in asset allocation and for partial ALM consideration.  

 

The solution of the traditional mean-variance problem is found by constrained Lagrangian 

optimization. Removing the return requirement constraint, results in the minimum return 

variance portfolio. Solving the optimization problem for other portfolios results in the general 

solution where the optimal set in absence of liabilities can be decomposed into the minimum 

return variance component and an additional return generating component. The latter 

component serves the role of tuning the expected return of the portfolio with return 

preferences. Interestingly, the return variance on the optimal portfolio is the sum of the two 

components return variances since the return covariance between the components is zero. 

 

Normalized surplus return variance is used as an objective function for surplus optimization, 

solved by constrained Lagrangian optimization as before. Solving the surplus return 

optimization problem without a return requirement constraint, results in the minimum surplus 
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return variance portfolio, composed of the traditional minimum variance portfolio and an 

additional liability hedging component. The concentration in the liability hedge is determined 

by the ratio of importance to funding ratio and the liability hedging component leads to a shift 

of the optimal set. The general solution of the surplus optimization can be decomposed into 

four components where the first two components are the same as in the minimum surplus 

return variance portfolio. The third component is the same return generating component as in 

the traditional mean-variance optimal portfolio. The fourth component corrects the expected 

return on the optimal portfolio to the preferred level, by neutralizing the shift in expected 

return generated by the liability hedging component. Using the Q matrix notation, the optimal 

solutions are proposed with relatively simple expressions. Furthermore, the return variance 

associated with the optimal solutions can be written as a relatively simple expression, similar 

to its asset-only counterpart, with a small term added stemming from the liabilities. 

 

Returns on liabilities can be assumed to be linearly dependent on several factors, e.g. 

economic growth, wage growth, inflation etc. A multiple linear regression model can be used 

to estimate coefficients for those factors, where the coefficients can be used in decomposing 

the return covariance elements between individual assets and liabilities. As a result, the 

liability correction component can be decomposed into separate components associated with 

each of these factors. This approach allows for multiple benchmarking in surplus optimization 

instead of using only one benchmark and increases the potentials in applying the surplus 

optimization model to a variety of problems with return benchmarking. 

 

The relationship between expected return and return variance for the traditional mean-

variance optimal set is quadratic as shown in section 2.8, commonly known as the risk-return 

frontier. Similarly, it is shown that the relationship between expected return and return 

variance for the surplus problem is also of quadratic nature. Since the optimal solutions for 

the surplus problem can be transferred into the surplus risk-return space, the quadratic 

relationship between expected return on surplus and surplus return variance is shown in 

section 2.9. 

 

The classic market portfolio can be modified to account for liabilities by including a separate 

market portfolio liability correction component. This portfolio appears in various forms in the 

continuous-time literature considering asset allocation in presence of liabilities and thus 

strongly connects the discrete-time surplus optimization problem with the continuous-time 

literature. 
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From the normality assumption of logarithmic returns on assets and liabilities, the prices of 

assets and liabilities can be assumed to follow geometric Brownian motion processes. 

Accordingly, a simple probability measure on gaining positive surplus at the end of a specific 

horizon is derived. This probability measure is easily applied where logarithmic returns on 

assets and liabilities are assumed to be normally distributed. 

 

In the final section in chapter 2, shortfall constraints of two types are analyzed. Traditional 

shortfall constraints are applicable in surplus optimization without any changes and such 

constraints were illustrated in risk-return space. Shortfall constraints on funding ratio are 

expressed and illustrated in risk-return and surplus risk-return spaces. Under certain 

conditions on the funding ratio, the shortfall constraints are linear in surplus risk return space  

 

In chapter 3, the methods derived in chapter 2 are applied on a hypothetical pension fund 

where the value of its liabilities was assumed to follow the pension obligation index (POI) for 

employees in the Icelandic public sector. Despite of the long-only restrictions on pension 

funds in general, the optimization model is applied unchanged as to observe the full 

functionality of the model and to observe how large the short positions became. The asset and 

liability data used for this analysis span the period from January 2003 to June 2008, just 

before the downturn of global markets. Currency returns affected the returns on foreign asset 

classes considerably during this period since the domestic currency of ISK strengthened 

against the USD. Correlation analysis shows that only two out of eight asset classes were 

negatively correlated with liabilities and thus the assets had some liability hedging 

characteristics. Analysis of the determinants and sub-determinants of the matrix Q shows that 

the expected returns on minimum surplus variance portfolio are higher than on the classic 

minimum variance portfolio and that return covariance between asset portfolio and liabilities 

increase with increasing return requirement. 

 

The optimal portfolios in presence of liabilities are analyzed for funding ratios of 1.5, 1.25, 1, 

0.75 and 0.5 along with their asset-only counterparts; both optimal strategies are analyzed for 

minimum variance and for a return requirement of 10%, 11% and 12%. The analysis confirms 

the previously noted characteristics of the optimal sets expressed in terms of the sub-

determinants of Q. The optimal strategies in presence of liabilities hold lower portions of 

assets with negative asset-liability return correlation than their classic mean-variance 

counterparts. As the return requirement on the optimal portfolios is increased, positive return 
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correlation between assets and liabilities is sacrificed in order to achieve the preferred return 

requirement, resulting in weaker liability hedge. 

 

The market portfolios in absence and presence of liabilities from sections 2.3 and 2.12 are 

analyzed assuming a risk-free rate of 5.5%. The liability correction component for the market 

portfolio in presence of liabilities has the same liability hedging characteristics as for other 

surplus optimal portfolios. With declining funding status, the need for hedging increases and 

the hedging component selects assets as to increase the return covariance between the asset 

portfolio and the liabilities. 

 

The theoretical funding ratio which minimizes surplus return variance is found to be little less 

than 11.5 which can be considered an unlikely multiplier for asset value to liabilities for a 

typical pension fund. Nevertheless, this funding ratio provides the theoretical minimum 

surplus return variance for this data, a little lower than for the classic minimum variance 

portfolio. 

 

Probabilities of assets covering liabilities for the horizon of 1 – 5 years are calculated for 

funding ratios of 1, 0.75 and 0.5. The asset allocation strategies under consideration are the 

same as analyzed earlier, i.e. the minimum surplus variance portfolio and optimal portfolios 

with return requirement of 10%, 11% and 12%. As expected, shorter horizon and lower 

funding ratio decrease the probabilities of covering liabilities. 

 

An example of a traditional shortfall constraint is considered for two different levels of 

threshold return which show, as expected, that higher threshold return tightens the feasible set 

of portfolios satisfying the constraint. Two cases of shortfall constraints on the funding ratio 

are analyzed; one with varying funding ratio and another with varying shortfall probabilities. 

In the former case, lowering the initial funding ratio results in a tighter constraint that narrows 

the range of portfolios satisfying the constraint. Decreasing the shortfall probabilities affects 

on the feasible range of portfolios in a similar way. For both cases, the approximation lines 

for the shortfall constraints on the funding ratio are linear in surplus risk return space, since 

the threshold funding ratio is 1. 

 

In the final section of the numerical example, four asset allocation strategies are tested on 

historical data for the purposes of comparing the surplus generated by and the performance of 

optimal portfolios in presence and absence of liabilities. This is done for three values of 

funding ratios and three portfolio rebalancing frequencies. In all cases, four strategies are 

compared where two out of the four strategies are the minimum variance and minimum 
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surplus variance portfolios. The third and fourth strategies are the optimal portfolios in 

absence and presence of liabilities with a return requirement of 12%. The initial allocations 

for the four strategies are set in accordance with earlier analysis using assets and liabilities 

data from January 2003 to June 2008. The index level for the liability index is set as 100 in 

July 2008 and portfolio index values set accordingly with respect to funding ratio. The 

historical returns for the asset classes and liabilities from July 2008 to January 2012 are used 

to calculate and plot the portfolio and the liability indices in parallel for a historical 

performance comparison between the strategies and also to compare the performance of the 

strategies with the liabilities. New optimal allocations are found on an annual, semi-annual 

and monthly basis and the optimal portfolios are rebalanced accordingly. The comparison is 

made in terms of portfolio and liability index values, surplus associated with the strategies 

and average surplus for the strategies for the time period from July 2008 to January 2012. 

 

The time series data used for this comparison include a time period with severely adverse 

market conditions, i.e. the 2008 market downturn. For the time period from July 2008 to 

January 2012, all comparative cases show that the strategies where liabilities were taken into 

account provide better hedge against increase in liabilities than their classic mean-variance 

counterparts, observed as higher surplus. The performance patterns for the four strategies are 

similar for all three funding ratios and all three rebalancing frequencies. In all cases, the 

minimum surplus variance portfolio performs the best, both in terms of asset performance and 

in assets net of liabilities. The classic minimum variance portfolio is the second best choice 

although the surplus optimal portfolio with a return requirement of 12%, a 2.7% in excess of 

the minimum variance portfolio return, manages to ascend above the minimum variance 

portfolio in terms of performance and surplus for some period in time. The traditional mean-

variance optimal portfolio with a return requirement of 12% gains the least surplus in all 

cases. Interestingly, the portfolios taking liabilities into account seem to recover faster after 

the 2008 crisis and also, they grow a little faster on average than their asset-only counterparts 

in the post-crisis era. As a result, using this historical data, the surplus optimal strategies 

outperform the traditional mean-variance strategies in terms of generating surplus and provide 

better hedge against liabilities. 

In stable market conditions, one might expect that the order of portfolios in terms of 

performance would be the other way around, i.e. that portfolios without a liability benchmark 

would have a superior performance to those who have such a benchmark. Also, in a stable 

environment, one might expect that portfolios with higher return requirement would perform 



115 

better than minimum variance portfolios. The opposite performance observed in the 

comparison can be explained by the different objectives of the two models and as a 

consequence of the liability index characteristics. The surplus optimal portfolios aim to 

minimize surplus return volatility for a given level of expected surplus return. Since the 

liability index in this analysis had a stable growth with a low volatility, benchmarking 

portfolio returns with this liability index resulted in a low-risk investment strategy that 

suffered less from the 2008 market downswing than the traditional mean-variance strategies. 

This might suggest that for periods of market volatility, benchmarking portfolios with steady-

growth and low-volatile indices could reduce the negative effects of market downturns. 

 

In surplus optimization, the funding status determines the concentration in the surplus return 

hedge, i.e. how much risk the optimizer can afford to take in gaining surplus and how strong 

the hedge against surplus volatility should be in order to maintain surplus risk at acceptable 

levels. As the funding ratio decreases, the ability to take risk decreases and so should the 

willingness to take risk. Lower funding ratio increases the emphasis on hedging against 

liabilities by increasing the allocation in assets that provide similarly behaving returns as the 

liabilities do and give the highest potential in gaining acceptable surplus returns with as little 

volatility as possible via diversification.  

 

Surplus optimization can easily be applied on problems outside the scope of managing 

pension assets. Index benchmarking is commonly applied practice in asset management where 

a portfolio is supposed to track and/or grow faster than a specified benchmark index. Instead 

of gaining surplus on a liability index, the surplus optimization model can be used to gain 

surplus on any preferred index in an efficient way via this benchmark approach. Also, by 

using the additional assumptions on benchmark returns from section 2.7, the surplus 

optimization approach allows for multiple index benchmarking as the hedge component can 

be decomposed into several components associated with each benchmark factor. 
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Appendices 

Appendices 1-26: Proofs of derivations in chapter 2. 

 

Appendix 1: 

Theorem 1: The minimum return variance portfolio. 

The minimum return variance portfolio allocation vector is obtained by solving (2.2.5) 

explicitly for Pw
  which results in 

1

22

A
MVPw

Q


   (2.2.6) 

The expected return on the minimum return variance portfolio is 

  12

22

P MVP MVP

Q
E R w r

Q
     (2.2.7) 

and the minimum return variance is 

  2

22

1
P MVP MVPVAR R w

Q
     (2.2.8) 

 

Proof: 

The minimum return variance portfolio 
MVPw is obtained by omitting the constraint on 

portfolio return (2.2.2). This requires
1 0  and equation (2.2.4) becomes 

1

2P Aw   
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Inserting (A1.1) into the constraint equation 1
T

Pw    and isolating 2  gives  

2 1

22

1 1
T

A
Q


 

 


 (A1.2) 

This yields the minimum return variance portfolio 
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The expected return on the minimum return variance portfolio (2.2.6) is 
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and the minimum return variance is 
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Appendix 2: 

Theorem 2: The optimal return variance portfolio. 

Given a preferred return requirement Pr , the optimal return variance portfolio asset 

allocation vector is obtained by solving (2.2.4) for Pw
  which results in 

1
1 122 12 12

22 #1 22

A P
rp A A A

r Q Q Q
w

Q Q Q


 


   

     
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  (2.2.9) 

The optimal allocation vector (2.2.9) is composed out of two separate portfolios 

rp MVPw w w    (2.2.10) 

where 
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and   0
T
w  . 

 

Proof: 

The optimal solution in terms of Lagrange parameters was 
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The equations for the constraints, (2.2.2) and (2.2.3), can be rewritten as  
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Inserting equation (2.2.4) into equation (A2.1) yields 

  1 11 12 11

2 12 22 21

T
P A

A AT

Q Qr

Q Q

 
 

 


        

          
        

 

Matrix multiplication yields a system of two linear equations 
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Expanding (A2.1) gives 
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Isolating 2  from (A2.3) gives 
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Inserting (A2.5) it into (A2.4) results in 
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or 
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Equation (A2.6) is the optimal solution in terms of the Lagrangian return parameter 1 . 

Inserting (A2.5) into (A2.2) gives 
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Isolating 1  gives 

1
2

12 12

1 11

22 22

P

Q Q
r Q

Q Q




  
    
  

 

The expression for 1  can be simplified by extending the fraction as 
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which gives 
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Finally, inserting (A2.7) into (A2.6) yields 
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The optimal allocation vector (2.2.9) is composed out of two separate portfolios 

rp MVP
w w w   (2.2.10) 

where the return generating component is 
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w

Q Q
    
    

 
 (2.2.11) 

Multiplying w  with 
T  from the left gives 
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12 22
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0
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r Q Q Q r Q Q Q
w Q Q

Q Q Q Q
         
         

   
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Appendix 3: 

Proposition 1: The expected return on the return generating component. 

The expected return on the return generating component (2.2.11) is 

  12

22

P P

Q
E R w r

Q


   
 

  (2.2.15) 

 

Proof: 

The expected return on the return generating component (2.2.11) is: 
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 

 
  

 


   


#122 12

#1 22
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                   P

QQ
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Q
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  (2.2.15) 

Therefore, the expected return on the optimal return variance portfolio can be written as 

     
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Appendix 4: 

Proposition 2: The zero return covariance between the minimum return variance and 

the return generating components. 

Any optimal return variance portfolio can be written as rp MVP
w w w  . The return 

covariance between the minimum return variance component, MVPw , and the return 

generating component, w  is 

    ,  0
P MVP P

COV R w R w
  
 

  (2.2.16) 

 

Proof: 

The return covariance between the portfolio returns on the minimum variance component, 

MVPw , and the return generating component, w , can be written as 

    ,  
T

P MVP P MVP A
COV R w R w w w 

   
 

 (A4.1) 

Inserting (2.2.6) transposed and (2.2.11) into (A4.1) results in 
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


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 

 
  

 
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   
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Thus 

    ,  0
P MVP P

COV R w R w
  
 

  (2.2.16) 

Similarly,     ,  0
T

P MVP P A MVP
COV R w R w w w 

    
 
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Appendix 5: 

Proposition 3: The return variance on the return generating component. 

The return variance associated with the return generating component (2.2.11) is 

 
 

2

22 122

22 #1

P

P

r Q Q
VAR R w

Q Q
 


   
    (2.2.17) 

 

Proof: 

The return variance associated with the return generating component can be found by 
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 (2.2.17) 

 

Appendix 6: 

Theorem 3: The return variance on the optimal return variance portfolio. 

Any optimal return variance portfolio can be written as rp MVP
w w w  . As a result of 

theorem 1 and propositions 2 and 3, the return variance associated with the optimal return 

variance portfolio (2.2.9) is 

 
2

22 122 2 2

22 #1

1
1

P

rp MVP

r Q Q

Q Q
  

 
    
 
 

 

Simplification of this expression results in 

 
2

2 22 12 11

#1

2P P
P rp rp

r Q r Q Q
VAR R w

Q


 
   
 

  (2.2.18) 



126 

Proof: 

The return variance of the optimal return variance portfolio can be expressed as 

         2 ,
P rp P MVP P P MVP P

VAR R w VAR R w VAR R w COV R w R w 
              

 

The results of proposition 2 yielded    , 0
P MVP P

COV R w R w
  
 

 and thus 

     P rp P MVP P
VAR R w VAR R w VAR R w

         
 

Therefore, the return variance of the optimal return variance portfolio can be expressed as the 

sum of the return variances of the minimum return variance component and the return 

generating component 

2 2
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Simplifying this expression yields 
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Appendix 7:   

Theorem 4: The market portfolio. 

Given the risk-free rate f
r , the risky assets market portfolio asset allocation vector is 

 
 

1

1

A A f
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A A f

r
w

r

 

  
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

 


 
  (2.3.3) 

The expected return on the market portfolio is 
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r
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


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   

 
  (2.3.4) 

and the market portfolio return variance is 

 
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2
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



  
   

 

  (2.3.5) 

 

Proof: 

The expected return on a portfolio can be decomposed into the risk-free rate, f
r , and the 

portfolio‘s risk premium on the risk-free rate,  T

P A fw r  . Formally, the decomposed 

expected return on any portfolio can be expressed as 

   T T

P P P A P A f f PE R w w w r r r          (2.3.2) 

To solve for the market portfolio, (2.2.1) is still the objective, subject to the decomposed 

expected portfolio return constraint (2.3.2); 

    
1

2

T T

P A P P P A f fL w w r w r r          

The partial derivatives of L  w.r.t. Pw  yield necessary and sufficient first order conditions: 

1 2 0A P Aw    
    ,   and    T

P A f f Pw r r r     

A second order condition for a minimum is satisfied since the covariance matrix is positive 

definite. Isolating the optimal allocation vector Pw
  from the initial first order condition gives 

 1

P A A fw r   
    (A6.1) 

The allocation vector is not unit normalized, so we consider the normalization constraint 

(2.2.3) 

1
T

Pw 
  (A6.2) 
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Inserting (A6.1) into (A6.2) yields 

 1
1

T

A A fr  
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Isolating   gives 
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
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Finally, inserting   into (A6.1) results in the commonly known expression for the market 

portfolio: 
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 (2.3.3) 

According to (2.3.3), the market portfolio can be considered as a risk premium portfolio that 

is linear in the risk premium vector  A fr  ; a unique portfolio, for any given value of the 

risk-free rate, f
r .  

The expected return on the market portfolio is 
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and the market portfolio return variance is 
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Appendix 8: 

Theorem 5: The minimum surplus return variance portfolio. 

The minimum surplus return variance portfolio (MSVP) allocation vector is obtained by 

solving (2.6.5) explicitly for 
,P S

w
  which results in 

1
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A
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Q
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  (2.6.6) 

The optimal allocation vector (2.6.6) is composed out of two separate portfolios 

MSVP MVP MSVPw w     (2.6.7) 

where MVPw  (2.2.6) is in accordance with theorem 1, the minimum surplus variance correction 

component is 
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and   0
T

MSVP   . 

 

Proof: 

The minimum surplus variance portfolio, 
MSVPw , is obtained by omitting the constraint on 

portfolio return (2.2.2). This requires
1 0  and equation (2.6.4) becomes 
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Expanding (A7.1) yields 
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
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Considering the normalization constraint(2.6.3), multiplying (A7.2) from left with 
T  gives 
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Isolating 2  from (A7.3) gives 

1

23

2

22

1 Q F

Q







  (A7.4) 

Inserting (A7.4) into (A7.2) gives 
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that results in 
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where 

MSVP MVP MSVPw w    (2.6.7) 

with 
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Multiplying MSVP  with 
T  from the left gives  
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Appendix 9: 

Proposition 4: The expected return on the minimum surplus return variance portfolio. 

The expected return on the minimum surplus return variance correction component (2.6.8) is 

  #2
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1
P MSVP

Q
E R

F Q
       (2.6.11) 

Accordingly, the expected return on the minimum surplus return variance portfolio (2.6.6) is 
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Proof: 

The expected return on the minimum surplus return variance correction component (2.6.8) is 
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From (2.2.7) and (2.6.11) it can readily be seen that the portfolio return on the MSVP (2.6.6) 

is 

     

12 # 2

22

1
                        

P MSVP P MVP P MSVPE R w E R w E R

Q Q
Q F

 



           

 
  

 

 (2.6.12) 



131 

Appendix 10: 

Proposition 5: The return variance on the minimum surplus return variance correction 

component. 

The return variance associated with the minimum surplus return variance correction 

component (2.6.8) is; 
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Proof: 

The return variance associated with the minimum surplus return variance correction 

component (2.6.8) is; 
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Appendix 11: 

Proposition 6: The zero return covariance between the minimum return variance 

component and the minimum surplus return variance correction component. 

The minimum surplus return variance portfolio is written as MSVP MVP MSVPw w   . The 

return covariance between the minimum return variance component, MVPw , and the minimum 

surplus return variance correction component, MSVP , is 

    ,  0P MVP P MSVPCOV R w R       (2.6.14) 

 

Proof: 

The return covariance between the portfolio returns on the minimum variance component, 

MVPw , and the minimum surplus return variance correction component, MSVP , can be written as 
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Inserting (2.2.6) transposed and (2.6.8) into (A10.1) results in 
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   
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   
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Thus 

    ,  0P MVP P MSVPCOV R w R      (2.6.14) 

Similarly,     ,  0
T

P MSVP P MVP MSVP A MVPCOV R R w w       
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Appendix 12: 

Theorem 6: The return variance on the minimum surplus return variance portfolio. 

The minimum surplus return variance portfolio is written as MSVP MVP MSVPw w   . The 

return variance associated with the minimum surplus return variance portfolio is 

  2

2 2 2

2

#42

22

                            

1
                            1

P MSVP MSVP

MVP MSVP

VAR R w

Q
Q F





  



  

 

 
  

 

  (2.6.15) 

This result is in accordance with the results of theorem 1, and propositions 5 - 6. 

 

Proof: 

As the MSVP (2.6.6) is composed out of two separated portfolios, MVPw  (2.2.6) and MSVP  

(2.6.8), the return variance associated with the MSVP can be expressed by 

     

                                                               2  ,  

P MSVP P MVP P MSVP

P MVP P MSVP

VAR R w VAR R w VAR R

COV R w R





           

   
 (A11.1) 

The results of proposition 6 (2.6.14) showed that 

        ,   ,  0P MVP P MSVP P MSVP P MVPCOV R w R COV R R w          

Therefore, the return variance associated with the MSVP simplifies to 

     P MSVP P MVP P MSVPVAR R w VAR R w VAR R              

Using (2.2.6) and (2.6.13) yields 

  2

2 2 2

2

# 42

22

                            

1
                            1

P MSVP MSVP

MVP MSVP

VAR R w

Q
Q F





  



  

 

 
  

 

 (2.6.15) 

The return variance associated with the MSVP (2.6.6) can equivalently be achieved from 

2 T

MSVP MSVP A MSVPw w    (A11.2) 
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Inserting (2.6.6) into (A11.2) gives 

2

1 1
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      

    
           

    

 
 
 

 

or 
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which simplifies to 
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Q
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







  

 
   

 

  

 
  

 

 (2.6.15) 

This proofs that the expressions (A11.1) and (A11.2) are equivalent and the return variance on 

the MSVP (2.6.6) can be expressed by (2.6.15). 
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Appendix 13: 

Theorem 7: The optimal surplus return variance portfolio. 

Given the preferred return requirement Pr , the optimal surplus return portfolio asset 

allocation vector is obtained by solving (2.6.4) for 
,P S

w
  which results in 

1
1 123

,

22 22

1

22 12 #2 1 112

#1 22

          

A
rp S A AL A

P

A A A

Q
w

Q F Q

r Q Q F Q Q

Q Q

 



 


 



 

 
      

 

   
    

 

  (2.6.16) 

The optimal allocation vector is composed out of four separate portfolios 

, ,rp S MVP MSVP Sw w w w        (2.6.17) 

where MVPw , w  and MSVP  are in accordance with theorems 1, 2 and 5, respectively. The 

return generating correction component is 

#2 1 112
,

#1 22

1
S A A A

Q Q
w

F Q Q
    

    
 

  (2.6.18) 

and   ,
0

T

S
w  . 

 

Proof: 

The optimal solution in terms of Lagrange parameters was 

 1 1

, 1 2

T

P S A A AL
w F             (2.6.4) 

The equations for the constraints, (2.6.2) and (2.6.3), can be rewritten as  

,
1

T
PA

P ST

r
w






   

   
  

 (A12.1) 

Inserting equation (2.6.4) into equation (A12.1) yields 

 
1 1

11 12 131

2 2

21 22 231 1
1

T
P A

A A ALT

Q Q Qr

Q Q Q
F F

 


   


 



 

   
        

           
           

 

Matrix multiplication yields a system of two linear equations 

1

11 1 12 2 13

1

12 1 22 2 23
1

Pr Q Q Q F

Q Q Q F

  

  





   
   

    
 (A12.2) – (A12.3) 
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Expanding (2.6.4) gives 

1 1 1

, 1 2P S A A A A ALw
F


      

        (A12.4) 

Isolating 2  from (A12.3) gives 

1

12 1 23

2

22

1 Q Q F

Q

 



 

  (A12.5) 

Inserting (A12.5) into (A12.4) results in 

1

1 1 112 1 23

, 1

22

1
P S A A A A AL

Q Q F
w

Q F

  
  
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  
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 

 

or 

1

1 1 1 123 12
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22 22 22

A

rp S A AL A A A A

Q Q
w

Q F Q Q

 
   



      
            

   
 (A12.6) 

Equation (A12.6) is the optimal solution in terms of the Lagrangian return parameter 1 . 

Inserting (A12.5) into (A12.2) gives 
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112 12 2312

1 11 13

22 22

P

Q Q Q FQ
r Q Q F

Q Q


 




  

    
 

 

Isolating 1  gives 

1
1 2

112 12 23 12

1 13 11
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P

Q Q Q F Q
r Q F Q

Q Q


 





  

     
  

 

The expression for 1  can be simplified by extending the fraction as 

1
1 2

112 12 2322 22 22 12

1 13 11

22 22 22 22 22

P

Q Q Q FQ Q Q Q
r Q F Q

Q Q Q Q Q


 





  

     
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which gives 

 1
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Q Q Q Q





  
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or 

 
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1
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1
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Pr Q Q F Q

Q


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
 

  (A12.7) 
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Finally, inserting (A12.7) into (A12.6) yields 
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 (2.6.16) 

The optimal allocation vector (2.6.16) is composed out of four separate portfolios 

, ,rp S MVP MSVP Sw w w w       (2.6.17) 

where the return generating correction component is 

# 2 1 112

,

#1 22

1
S A A A

Q Q
w

F Q Q
    

    
 

 (2.6.18) 

and MVPw , w  and MSVP  are in accordance with theorems 1, 2 and 5, respectively. 

Multiplying ,S
w  with 

T  from the left gives  
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Appendix 14: 

Proposition 7: The expected return on the return generating correction component. 

The expected return on the return generating correction component ,S
w  (2.6.18) is; 

  #2

,

22

1
P S

Q
E R w

F Q


  
    (2.6.23) 

From (2.6.11) and (2.6.23), it can be seen that 

   ,
0

P MSVP P S
E R E R w       

  (2.6.24) 
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Proof: 

The expected return on the return generating correction component (2.6.18) is; 

 
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 (2.6.23) 

It can seen from (2.6.11) and (2.6.23) that 

    # 2 # 2
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F Q F Q
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 (2.6.24) 

Therefore, the expected return on the surplus return variance portfolio can be written as 

         , ,
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which turns out to be 
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Appendix 15: 

Proposition 8: The return variance on the return generating correction component. 

The return variance associated with the return generating correction component (2.6.18) is; 

 
2

#22

, , 2

22 #1

1
P S S

Q
VAR R w

F Q Q
    

    (2.6.25) 

 

Proof: 

The return variance associated with the return generating correction component (2.6.18) can 

be found by; 
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Appendix 16: 

Proposition 9: The zero return covariance between the minimum return variance and 

the return generating correction component. 

The return covariance between the minimum return variance component, MVPw , and the return 

generating correction component, ,S
w , is 

   ,
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P MVP P S
COV R w R w

  
 

  (2.6.26) 

 

Proof: 

The return covariance between the portfolio returns on the minimum variance component, 

MVPw , and the return generating correction component, ,S
w , can be written as 
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 (A16.1) 

Inserting (2.2.6) transposed and (2.6.18) into (A16.1) results in 
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Thus 
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Similarly,    , ,
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Appendix 17: 

Proposition 10: The return covariance between the minimum surplus return variance 

correction and the return generating components. 

The return covariance between the minimum surplus return variance correction component, 

MSVP , and the return generating component, w , is 
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Proof: 

The return covariance between the portfolio returns on the minimum surplus return variance 

correction component, MSVP , and the return generating component, w , can be written as 
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Inserting (2.6.8) transposed and (2.2.11) into (A17.1) results in 
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or 
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 (2.6.27) 

Similarly,     # 2 12
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1
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Appendix 18: 

Proposition 11: The return covariance between the minimum surplus return variance 

correction and the return generating correction components. 

The return covariance between the minimum surplus return variance correction component, 

MSVP , and the return generating correction component, ,S
w , is 

   
2

#2

, 2

22 #1

1
 ,  P MSVP P S

Q
COV R R w

F Q Q
   

    (2.6.28) 

 

Proof: 

The return covariance between the portfolio returns on the minimum surplus return variance 

correction component, MSVP , and the return generating correction component, ,S
w , can be 

written as 

   , ,
 ,  

T

P MSVP P S MSVP A S
COV R R w w     

 
 (A18.1) 

Inserting (2.6.8) transposed and (2.6.18) into (A18.1) results in 
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1
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Q
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Similarly,    
2

# 2
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1
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T
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Q
COV R w R w

Q QF
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143 

Appendix 19: 

Proposition 12: The return covariance between the return generating and the return 

generating correction components. 

The return covariance between the return generating component, w , and the return 

generating correction component, ,S
w , is 

    #2 12
,

#1 22

1
 ,  P P S P

Q Q
COV R w R w r

F Q Q
 

 
     

 
  (2.6.29) 

 

Proof: 

The covariance between the portfolio returns on the return generating component, w , and the 

return generating correction component, ,S
w , can be written as 

   , ,
 ,  

T

P P S A S
COV R w R w w w   

   
 

 (A19.1) 

Inserting (2.2.11) transposed and (2.6.18) into (A19.1) results in 
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or 
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 (2.6.29) 

Similarly,     # 2 12

, ,

#1 22

1
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T
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Q Q
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F Q Q
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Appendix 20: 

Theorem 8: The return variance on the optimal surplus return variance portfolio. 

The optimal surplus risk-return portfolio is expressed as 
, ,rp S MVP MSVP Sw w w w      . 

The return variance associated with the optimal surplus risk-return portfolio is 

 
2 2 2

22 12 112

. ,

#1

2P P

P rp S rp S

r Q r Q Q F Q
VAR R w

Q





  

   
    (2.6.30) 

This result is in accordance with the results of theorems 1, 3, and  6, and propositions 2, 3, 5, 

6 and 9 - 12. 

 

Proof: 

The optimal surplus return portfolio is composed out of four separate portfolios and expressed 

by (2.6.17) as; 

, ,rp S MVP MSVP Sw w w w       

The return variance associated with the optimal surplus return portfolio can be found via two 

methods, i.e. 

I.   2

, , , ,

T

P rp S rp S rp S A rp S
VAR R w w w    

 
 (A20.1) 

II. If (2.6.17) is expressed as 
4

, ,

1

rp S P i

i

w w


 , then the return variance can be 

expressed as 

       
4 4
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 ,  P rp S P x P x P y

x x y
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

            (A20.2) 

As all return variance and covariance terms have been derived in theorems 1, 3, and 6, and in 

propositions 2, 3, 5, 6, and 8 – 12, both methods are used for consistency. 

Method I: 

As method I suggests, the return variance can be written as 
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Standard multiplication gives 
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Further simplification gives 
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Extending fractions so as to get a common numerator and expanding the second power term 

gives 
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Simplification along with changing expression for determinants gives 
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which simplifies to 
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Further simplification results in 
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Again, changing expressions for determinants gives 
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Now, factorizing results in 
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which finally gives the desired result 
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or more precisely: 

 
2 2 2

22 12 112

, ,

#1

- 2P P

P rp S rp S

r Q r Q Q F Q
VAR R w

Q





 

   
 

 (2.6.30) 

Method II: 

The return variance of the optimal surplus return portfolio can equivalently be expressed as 
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The return variances for the four components from theorem 1, and propositions 3, 5, and 8 are 

expressed as, respectively: 
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The covariances of returns between the four components are given by propositions 2, 6, and  

9 – 12, respectively as: 

        ,   ,   0
P MVP P P P MVP

COV R w R w COV R w R w 
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 (Prop. 2) 

        ,   ,  0P MVP P MSVP P MSVP P MVPCOV R w R COV R R w          (Prop. 6) 
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 (Prop. 9) 
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From propositions 10 and 12, it can be readily seen that 

       ,
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COV R R w COV R w R w      
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As all these results are combined into (A20.2), the return variance associated with the optimal 

surplus return variance portfolio can be expressed as: 
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Inserting (2.2.8), (2.2.17), (2.6.13), (2.6.25) and (2.6.28) into (A20.2) gives 
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This simplifies to 
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Extending fractions so as to get a common numerator gives 
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Rearranging terms gives 
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Expanding the second power term and changing expression for determinants yields 
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Simplifying the former fraction and multiplying in the second fraction gives 
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which simplifies to 
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Now, factorizing results in 
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which finally gives the desired result 
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22 12 112
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2P P
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r Q r Q Q F Q
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Q





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 

  (2.6.30) 

This proofs the expression for the optimal surplus portfolio return variance and that the two 

methods for finding the variance are equivalent. 
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Appendix 21: 

Proof of equation (2.8.4). 

The expression for the return variance on the optimal portfolio (2.8.4) was 

     
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22 12
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P rp P MVP P

r Q Q
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The return variance on the MVP (2.2.8) was 
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 (A21.1) 

Inserting (2.2.8) and (A21.1) into (2.8.4) gives 
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 (A21.2) 

Equation (A21.2) shows that (2.2.18) and (2.8.4) are equivalent expressions for the return 

variance on the optimal set in absence of liabilities. 
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Appendix 22: 

Proof of equation (2.8.6) 

The expression for the return variance on the optimal portfolio (2.8.6) was 

   
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The return variance on the MSVP (2.6.15) was 
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Equation (A21.1) was 
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Inserting these expressions into (2.8.6) results in 
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 (A22.1) 

Equation (A22.1) can be found in the derivation of  ,P rp S
VAR R w 

 
 in theorem 8, method I. 

This shows that (2.8.6) and (2.6.30) are equivalent expressions for the return variance on the 

optimal surplus return portfolio. 
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Appendix 23: 

Proposition 13: The zero surplus return covariance between the minimum surplus 

return variance and the return generating components. 

All portfolios in the frontier set, SW , can be written as 
,rp S MSVPw w w  . The surplus 

return covariance between the minimum variance component, MSVPw , and the return 

generating component, w , is 

    ,  0
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F
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  (2.9.1) 

 

Proof: 

The surplus return covariance between the MSVPw , and the total return generating component 

w , can be written as 
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 (A23.1) 

Inserting (2.2.14) transposed and (2.6.6) into (A23.1) results in 
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Thus 
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Appendix 24: 

Proof of equation (2.9.3) 

Equation (2.9.3) was 
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Equation (2.9.3) states that the surplus return variance for any portfolio on the frontier can be 

composed out of the minimum surplus return variance and additional surplus return variance, 

resulting from P MSVPr r . 

The surplus return variance for any portfolio on the frontier can also be achieved directly from 
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Expressions (2.9.3) and (A24.1) must be equal for (2.9.3) to be true. From the proof of 

theorem 8, the return variance of the optimal surplus return portfolio. (2.6.30) was written 

before simplification as 
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Then (A24.1) becomes 
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which simplifies to 
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or 
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For analyzing (2.9.3), the minimum surplus return variance from (A24.1) is 
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  

 
     

 

   

 

and the variance on w is 

  1 112 12

22 22

2
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#1
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T T

P A A A A

Q Q
VAR R w

Q Q

Q
Q

Q

Q

Q

        
          
   

 



 

Then (2.9.3) becomes 

   

 

,

2
1

22 12 # 2

#1

2
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2
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P

P
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Q
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Q F Q QF
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

   
     

   

  
      
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 
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2
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P

L

r Q Q F Q
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Q Q F
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or 

   
2

2 2 2
# 4 # 223

, 2 2 2

22 22 22 22 #1

2 2 2 1 1

22 12 22 12 22 # 2 12 #1

22 #1

1 2

2 2 2
                                       

P rp S L L

P P P

Q QQ
VAR R w R VAR R

F Q F Q Q Q QF F F

r Q r Q Q Q r Q F Q Q F Q

Q Q

    

  

 
      

 

   


  (A24.3) 

By comparing (A24.2) and (A24.3), the expressions (2.9.3) and (A24.1) are equal and thus 

(2.9.3) is true. 

 

Appendix 25: 

Proposition 14: The funding ratio for absolute minimum surplus return variance and 

the absolute minimum surplus return variance. 

Given any reasonable data used for surplus optimization, the absolute minimum surplus 

return variance for this data can be found. The funding ratio that minimizes the surplus return 

variance is  

 2

22 #4

23

L

MSV

Q Q
F

Q

  
   (2.11.3) 

This funding ratio exists if the condition 

 2

22 #4 23

3
2 0LQ Q Q

F


      (2.11.4) 

is satisfied for min maxF F F  . 

The absolute minimum surplus variance that can be achieved for any feasible surplus optimal 

portfolio is 

  2

,min

2

,

2

23

2

22 22 #4

                                             

1
                                             1

MSV

P MSV L S

MSV

S MSVP F F

L

VAR R w R
F

Q

Q Q Q










 
  

 



 
    

  (2.11.5) 
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Proof: 

The minimum surplus variance portfolio was defined according to (2.6.6) 

1

1 123

22 22

A

MSVP A AL A

Q
w

Q F Q

 




  
      

 
 

and the  return variance of (2.6.6) with (2.6.15) 

2
2

# 42

22

1
1MSVP Q

Q F




 
  

 
 

The return covariance between the MSVP and liabilities is 

# 423 23 23

33 23

22 22 22 22

T

AL MSVP

QQ Q Q
w Q Q

Q F Q Q F Q

  
      

 
 

The surplus return variance of the MSVP is written as 

2
2 2 2

, 2

2 2 2
# 4 # 42 23

2 2 2

22 22 22 22

2 2
# 4 2 23

2 2

22 22 22

2
# 42 23

2

22 22 22

2

1 2 2
            

1 2
            

1 2
            

T

S MSVP MSVP L AL MSVP

L

L

L

w
FF

Q QQ

Q Q F Q QF F F

Q Q

Q Q F QF F

Q Q

Q Q F QF

 
  

   


  


 


   

    

   

 
    

 

 (2.11.2) 

The minimum is found by 

2

, 0S MSVP
F






   and    

2
2

2
0S

F






 

Then 

2 22
# 42 23

, 3 3 2

22 22

22 2
0L

S MSVP

Q Q

F Q QF F F

  



   


 

or 

2 2 2
# 423

2 3 3

22 22

L
QQ

Q QF F F

  
   

Multiplying with 
3

F   gives 

# 4223

22 22

L

QQ
F

Q Q


   

from which the minimum surplus return variance funding ratio can be found: 
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 2

22 # 4

23

L

MSV

Q Q
F

Q

  
  (2.11.3) 

The second order condition for a minimum is 

2 22 2
# 42 23

,2 4 4 3

22 22

6 6 4
0L

S MSVP

Q Q

Q QF F F F

   



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or 

2
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4 3
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3 2
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Q Q

Q QF F

 

 

   
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Multiplying with 3

22Q F   gives 

 2

22 # 4 23

3
2 0LQ Q Q

F


     (2.11.4) 

For  MSVF F , the second order condition yields   23 23
3 2 0Q Q   . 

The minimum surplus variance is found by inserting (2.11.3) into (2.11.2) 
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Writing this expression with a common numerator yields 
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This simplifies to the expression for the absolute minimum surplus variance 
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 (2.11.5) 
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Appendix 26: 

Theorem 9: The market portfolio in presence of liabilities. 

The risky asset market portfolio, given in theorem 4, is expressed as (2.3.3) 

 
 
 

1

1

A A f

MKT T

A A f

r
w

r

 

  





 


 
 

The allocation vector for the risky assets market portfolio in presence of liabilities is 

 
   

 
1 1

1 1

, 1 1

T
A A f A AL

MKT S A AL A A fT T

A A f A A f

r
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Fr r

  
 

     

 
 

 

    
       

     

 (2.12.1) 

The portfolio (2.12.1) is composed out of two portfolios; 

,MKT S MKT MKTw w     (2.12.2) 

where MKTw  is in accordance with theorem 4, the market portfolio correction component is 

 
 

1
1 1
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1
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MKT A AL A A fT

A A f
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F r


  
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
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

  
      

   

  (2.12.3) 

and 0
T

MKT   . 

 

Proof: 

The expected return on a portfolio can be decomposed into the risk-free rate, f
r , and the 

portfolio‘s risk premium on the risk-free rate,  ,

T

P S A fw r  . Formally, the decomposed 

expected return on any portfolio can be expressed as (2.3.2) 

   , , , , ,

T T

P S P S P S A P S A f f P S
E R w w w r r r           

To solve for the market portfolio in presence of liabilities, (2.12.1) is used subject to the 

decomposed expected portfolio return constraint (2.3.2); 
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
            

The partial derivatives of L  w.r.t. Pw  yield necessary first order conditions for stationarity 

and primal feasibility: 

 , 0A P S AL A fw r
F


  

      ,   and    , ,

T

P S A f f P Sw r r r     
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A second order sufficient condition for a minimum is sufficient since the covariance matrix is 

positive definite. Isolating the optimal allocation vector ,P S
w


 from the initial first order 

condition gives 

 1 1

,P S A AL A A fw r
F


    

       (A26.1) 

The allocation vector is not unit normalized, so we consider the normalization constraint 

,
1

T

P S
w 

  (A26.2) 

Inserting (A26.1) into (A26.2) yields 
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Inserting   into (A26.1) gives 
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that finally results in expression for the market portfolio with the liability hedge: 
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 (2.12.1) 

This portfolio is composed out of two components: 

,MKT S MKT MKTw w    (2.12.2) 

where the market portfolio, MKTw , is in accordance with theorem 6 and the market portfolio 

correction component is 
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Multiplying MKT  with 
T  from the left results in  
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Appendix 27: The normality assumption of returns and the Jarque-Bera normality test 

 

In financial modelling, logarithmic returns or continuously compounded returns are often 

assumed to be normally distributed, based on the roughly symmetric character of stock return 

distributions.  The assumption on normality has strong empirical support. In general, 

normality tests of daily portfolio return do not reject the normality assumption, suggesting 

that the assumption of normality for stock portfolio returns may be acceptable even if 

individual stock returns are not normally distributed. By lengthening the observation horizon, 

the assumption on normality appears to become more acceptable for individual stock returns. 

Another reason for the normality assumption is the central limit theorem, which states that, 

under mild conditions, the mean of a large number of random variables independently drawn 

from the same distribution is distributed approximately normally, irrespective of the form of 

the original distribution. 

The first two moments of a random variable X, mean and variance, uniquely determine a 

normal distribution. For a normal distribution, the skewness is zero and kurtosis, K x
, is three. 

Excess kurtosis is defined as K 3x   and is therefore zero for a normal distribution.  

 

A distribution with positive excess kurtosis has relatively more of its probability mass in its 

tails than normal distribution does, i.e. it contains more extreme values. A distribution with 

positive (negative) excess kurtosis is said to be leptocurtic (platykurtic). 

Several tests for hypothesis testing on whether logarithmic returns are normally distributed 

are used. The Jarque–Bera test is a goodness-of-fit test of whether sample data have the 

skewness and kurtosis matching a normal distribution.  

 

Definition. The test statistic JB is defined as 

 
2

2 1ˆ ˆ 3
6 4

x x x

N
JB

 
     

 
 (A27.1) 

where N  is the number of observations or degrees of freedom for the random variable X , 

the sample skewness and the sample kurtosis are defined as ˆ
x

  and K̂
x
, respectively. 

 

If the data come from a normal distribution, the JB statistic asymptotically has a chi-squared 

distribution with two degrees of freedom, so the statistic can be used to test the hypothesis 

that the data on logarithmic returns are from a normal distribution. The null hypothesis for a 
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given p - value is a joint hypothesis of the skewness being zero and the excess kurtosis being 

zero. As mentioned before, samples from a normal distribution have an expected skewness 

and an expected excess kurtosis  K 3
x
  of zero. As the definition of JB shows, any deviation 

from this increases the JB statistic. 
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Appendix 28: Non-linear Optimization 

Appendices 28 and 29 on non-linear optimization and optimality conditions are based on 

Boyd & Vandenbergher (2004) and Rockafellar (1970). 

 

An optimization problem involves finding the maximum or minimum of a function f , with or 

without subject to some constraint functions 1 ,..., mg g  and 1 ,..., lh h  that are defined on some 

domain n
  . Let the goal be to find a minimum defined by f , ig  and j

h . Then for 

n
x , the optimization model has the form 

 min   f
x

x  (A28.1) 

s.t. 

   0   ,    1,...,
i

g x i I I m     (A28.2) 

   0   ,    1,...,
j

h x j J J l     (A28.3) 

 

Let the cost function/objective :
nf   and the constraint functions :

n

ig  , 

:
n

j
h   all be continuously differentiable on the domain  . Then 

x  is a local minimum 

of  f


x  if and only if the Karush-Kuhn-Tucker (KKT) first order conditions provide 

necessary conditions for a solution to be optimal. Under convexity, the KKT conditions are 

also sufficient. If some of the functions ig , j
h are non-differentiable, subdifferential versions 

of KKT conditions are available. The KKT approach to non-linear programming generalizes 

the method of Lagrange multipliers that is valid for equality constraints only. 

 

If 
x  is a local minimum that satisfies the KKT conditions, then there exist constants; KKT 

multipliers i , j
 , that provide necessary conditions for: 

Stationarity; 

     
1 1

m l

x i x i j x j

i j

f g h     

 

     x x x  (A28.4) 

Primal feasibility; 

  0   ig i I

  x  (A28.5) 

  0   jh j J

  x  (A28.6) 

Dual feasibility; 

0   i i I 
    (A28.7) 
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Complementary slackness; 

  0   i ig i I 
  x  (A28.8) 

 

In the particular case where no inequality constraints are present, i.e. 0i  , the KKT first 

order conditions turn into Lagrange first order conditions and the KKT multipliers are referred 

to as Lagrange multipliers;    
j

j J   . 

 

In some cases, the necessary conditions are also sufficient for optimality but in general, the 

necessary conditions are not sufficient for optimality and additional information is necessary, 

such as the second order sufficient conditions.  

 

For solving the problem (A28.1) - (A28.3), it is convenient to define the constraint functions 

as 
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T

i i m
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
   g x x ,      
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T

j j l
h


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and the KKT multipliers as 

 
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T

i i m



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T

j j l



   λ  

The Lagrangian is defined as 

       , ,
T T

L f  x μ λ x μ g x λ h x  (A28.9) 

 

If there exist unique i
  satisfying the KKT conditions, then 

x  is a local minimum on f .  

The KKT conditions (A28.4) – (A28.8) are found by the following: 

 

The partial derivative of the Lagrangian w.r.t. x  is set to zero for finding a stationary point: 

 , ,x L
  

 x μ λ 0  

Here, a constrained local optimum occurs at 
x  when  x f


 x  and  x


 h x  are parallel, 

i.e. 

     
1 1

0
m l

l

x i x i j x j

i j

f g h    

 

      x x x  (A28.10) 

The direction of the normal is arbitrary as the constraints can be imposed as either   0

h x  

or   0


 h x  and the same applies to the inequality constraints. Equation (A28.10) gives the 

formal stationarity condition: 
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     
1 1

m l

x i x i j x j

i j

f g h     

 

     x x x  (A28.4) 

Primal feasibility is found via the derivative of the Lagrangian w.r.t. each i  and j
 ; 

 , ,i L

  
 x μ λ    yields 

  0   ig i I

  x  (A28.5) 

and  

 , ,j L

  
 x μ λ    yields 

  0   jh j J

  x  (A28.6) 

As a result of the primal feasibility condition (A28.6), dual feasibility condition requires 

0   i i I 
    (A28.7)  

Since the gradient (A28.10) is zero for 
x x , then  

1

0
m

i i

i

g 



 x . Since every term in that 

sum is non-positive, each term is zero: 

  0   i ig i I 
  x  (A28.8) 

Equation (A28.8) refers to as the complimentary slackness conditions. They imply that if the  

i - th constraint is strictly satisfied, then the corresponding dual variable, i , is zero, 

Conversely, if 0i   then   0ig

x . 

The KKT conditions above are necessary first order conditions. In most cases, a sufficient 

second order condition is needed to ensure minimum/maximum, i.e. positive/negative semi-

definite Hessian. In the minimization problem (A28.1) – (A28.3), the Hessian at 
x  must be 

positive and the sufficient condition is 

  , 0,    
T n

xx
L  

   v x v v  (A28.11) 

 

Where a minimization problem is only subject to equality constraints, the problem can be 

stated as: 

 min   
x

f x


 

s.t. 

  0   
j

h x j   

The Lagrangian is defined as 

     , ,
T

L f   x x h x  
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As no inequality constraints are present, the KKT conditions turn into Lagrange conditions 

and as: 


x  is a local minimum  there exist unique 

j
  s.t. 

1.  ,x L  
 x 0  

This condition encodes the stationarity condition (A28.4);   

   
1

l

x j x j

j

f h  



  x x   

as        
1

, 0
l

x x j j

j

L f h   



    x x x  

2.  ,L  
 x 0  

This condition encodes the primal feasibility condition (A28.6);     h x 0   

as      ,L   
  x h x 0  

The conditions above are necessary first order conditions. In most cases, a sufficient second 

order condition is needed to ensure minimum/maximum, i.e. positive/negative semi-definite 

Hessian.  

 

For the minimization problem (A28.1) and (A28.3), the Hessian at 
x  must be positive and 

the sufficient condition is 

3.    0,    
T

xx
L


  v x v v     s.t.     0

T

x


 h x v  

This condition ensures minimum for  f


x . 

Note that for 
x ,      ,L f  

x x    as     h x 0 . 

 

As the optimization problems in this study do not contain inequality constraints, a step-by-

step explanation on the optimization process in the absence of inequality constraints is 

provided in appendix 29. 
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Appendix 29: Fundamental issues in equality constrained non-linear optimization 

 

The minimization problem is stated as: 

 min   
x

f x


 (A29.1) 

s.t. 

   0   ,    1,...,
j

h x j J J l     (A29.2) 

The constraints can be rewritten for convenience using vector notation as 

   
1,...,

T

j j l
h


   h x x 0  (A29.3) 

As the constraints imply, the feasible region is bounded by   h x 0 . Let Fx denote any 

feasible point in  , i.e. the point satisfies  F
h x 0 . To find a feasible point that decreases 

the cost function  f x , a change x  has to be found subject to 

  0
F

 h x x  

 and 

   F F
f f x x x  

for an appropriate  . 

At any point x , the direction of steepest decent of the cost function  f x  is given by 

 x
f x . To move x  from Fx  such that    F F

f f x x x , the move must result in 

   0
x

f  x x . Normals, perpendicular to the constraint surface are given by  x F
 h x . 

To move a small x  from Fx  and remain on the constraint surface, the move has to be in a 

direction orthogonal to  x F
 h x . If Fx  lies on the constraint surface, then: 

a) Setting x  orthogonal to  x F
 h x  ensures   0

F
 h x x  and 

b)    F F
f f x x x , only if    0

x
f 

 x x  

As this search continues in the direction of steepest decent of the cost function  f x , this 

should finally lead to the point when  x F
f x  and  x F

 h x  are parallel, i.e. 

   
1

l

x j x j

j

f h  



  x x  (A29.4) 

where    
j

j J   are scalar. 

When this occurs, if x  is orthogonal to  x F
 h x , then 
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      0
x x

f    
    x x x h x  

A decrease in the cost function,  x f


 x , cannot be achieved by remaining on the 

constraint surface and making a move from 
x  and thus 

x  corresponds to local optimum 

(minimum). In other words, constrained local optimum occurs at 
x  when  x f


 x  and 

 x


 h x  are parallel, i.e. 

   
1

l

x j x j

j

f h  



  x x  

for unique scalars    
j

j J   . 

From the above, the necessary and sufficient conditions for a solution to be optimal can be 

expressed in more concrete way as in appendix A28. As the optimization problem was 

defined according to (A29.1) – (A29.2), the Lagrangian is defined as 

     
1

,
l

j j

j

L f h 


 x x x  

Let 
x  be a local optimum (minimum)  there exist unique    

j
j J

   s.t. 

1.  ,x L  
 x 0  

This condition encodes (A29.4) for stationarity;      
1

l

x j x j

j

f h  



  x x   

as        
1

, 0
l

x x j j

j

L f h   



    x x x  

2.  ,L  
 x 0  

This condition encodes the equality constraints (A29.3) for primal feasibility;   

  h x 0   

as      ,L   
  x h x 0  

The conditions above are necessary first order conditions. In most cases, a sufficient second 

order condition is needed to ensure minimum/maximum, i.e. positive/negative semi-definite 

Hessian. In the case of (A29.1) – (A29.2), the Hessian at 
x  must be positive and the 

sufficient condition is 

3.    0,    
T

xx
L


  v x v v     s.t.     0

T

x


 h x v  

This condition ensures minimum for  f


x . 

Note that for 
x ,    ,L f  

x x    as     h x 0  


