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Abstract 

Chitosan is a promising natural substances used in biomaterials research as it has several essential 

properties that can be applied in tissue engineering. This polymer can be easily combined with other 

biomaterials and it can be rapidly and economically processed to deliver growth factors and drugs. In 

the work presented in this thesis, the effect of natural, chitin-derived biomaterials on stem cell biology 

and osteogenic differentiation was determined and important properties of chitosan for tissue 

engineering applications were examined. Furthermore, it was evaluated how chitosan derivatives 

affect the expression and potentially regulate the chitinase-like protein YKL-40 in stem cells, which has 

been indicated to be involved in tissue remodeling, inflammation and disease pathogenesis.  

In paper I, we investigated the biological effects of the aminosugar glucosamine, which is the 

smallest, completely deacetylated subunit of chitin. Glucosamine is best known as a dietary 

supplement for chondro-protection, yet we were able to demonstrate that it upregulates the expression 

of osteogenic marker genes, which was strongly correlated to YKL-40 expression. This proposes a so 

far unknown role for YKL-40 in late-stage osteogenic differentiation. 

Chito-oligomers, derived from chitosan and chitin, are being increasingly studied owing to their 

bioactivity and water solubility. The biological potential is strongly dependent on the chemical 

properties and particularly hexamer and heptamer fractions are being considered most potent. The 

application of chito-oligomers is frequently limited to antitumor activity and inhibition of angiogenesis, 

but these chito-oligomers similarly affect gene expression and cytokine secretion, as described in 

paper II. The potency of hexamer fractions of chito-oligomers is strongly dependent on the degree of 

deacetylation, ultimately requiring the appropriate choice of chito-oligomer for any particular 

application.  

Endotoxin contamination is difficult to avoid during the handling of natural substances, and the 

biological effects of endotoxins on the body are extensive. Strict regulations are in place to reduce the 

risk of adverse health effects induced by medical devices, yet these recommendations remain 

inadequate and insufficiently specified. In paper III, we showed that endotoxin contamination in 

chitosan derivatives can result in false-positive results, completely altering product performance in 

vitro.  

In order to determine relevant properties of chitosan for tissue engineering applications, we 

prepared chitosan membranes as bioactive coatings. In paper IV, we compared chitosan membranes 

prepared from a wide range of degree of deacetylation and derived from different sources in terms of 

surface characteristics and bioactivity. This work resulted in paper V with the development of a 

standardized protocol for solution casting methods for chitosan membranes, in-house prediction of 

successful experimental outcome and long-term cell attachment comparable to commonly used tissue 

culture plastic. 

 

Keywords:  
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1. Introduction  

 

 

 

“Science is a way of thinking,  

much more than it is a body of knowledge” 

 

Carl Edward Sagan, American astrophysicist (1934-1996) 

 

 

 

The human body, unlike that of fish and amphibians, cannot functionally regenerate organs and 

tissues lost due to injury or ageing (1). The main processes in response to tissue injury are repair 

mechanisms aimed at restoration by scar tissue formation, rather than regeneration of function and 

structure (2, 3). The objectives of promoting the body’s self-healing capability, restoration of normal 

cellular function, and the ability to recreate complex organs “at the bench”, are the basis of the 

interdisciplinary fields of tissue engineering and regenerative medicine (4, 5).  

Because regeneration is by no means a spontaneous process, approaches aimed at replicating 

tissue function need to provide the essential microenvironment, - be it cells, biomaterials, or signaling 

molecules, - to support a body’s self-healing capabilities (2). While the field of regenerative medicine 

relies primarily on cues from stem cell biology to promote innate regeneration processes, tissue 

engineering sets out on solving the technical aspects, i.e., the support and restoration of function 

based on the principles of structural support (6). Ultimately, only a combination of the two approaches 

may succeed to fulfill the promise of recreating a process as complex as genuine regeneration.   

 

1.1 Stem cells 

Stem cells are a rare and diverse group of cells present at different developmental stages (7). These 

cells are not restricted to embryonic development, but are likewise present in adult tissues (somatic 

stem cells or adult stem cells), contributing to tissue remodeling and repair processes (8, 9). In 

general, stem cells are defined by the abilities of self-renewal, multipotency and clonogenicity (7). Self-

renewal is a strictly controlled process involving symmetric and asymmetric division (10). Symmetric 

division results in the maintenance of a pool of undifferentiated stem cells by producing two identical 

daughter stem cells, whereas asymmetric division generates one mature cell and one stem cell (10). 

Multipotency describes the ability to differentiate into specialized tissues, which strongly depends on 

the developmental stage and the specific tissue location of the cells (11). Finally, clonogenicity is the 

ability of a single stem cell to produce genetically identical clones with indistinguishable properties 

(12). 

Stem cells can be classified into four groups depending on the level of multipotency (9). The most 

potent cells are totipotent stem cells, i.e., the fertilized oocyte or the first blastomer, with the ability to 

generate an embryo and placenta (10). During early embryonic development, pluripotent stem cells 

emerge from the inner cell mass of the blastocyst and give rise to cells from all three germ layers, but 
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not the placenta (9). Multipotent stem cells, also called progenitor cells, are already partially committed 

and can only generate cells from one of the three germ layers, i.e., ectoderm, mesoderm, and 

endoderm (9). Monopotent stem cells are fully committed to the tissue they reside in and only give rise 

to cells of one specific lineage (10). The best characterized monopotent stem cells are hematopoietic 

stem cells that give rise to the blood cell lineage (13).  

 

1.1.1 Mesenchymal stem cells (MSCs) 

MSCs are multipotent progenitor cells residing as a heterogeneous cell population in the bone marrow 

stroma, adipose tissue, umbilical cord blood and other tissues (14-16). In fact, MSCs may even reside 

as pericytes in all tissues of the body to perform functions in tissue homeostasis and repair 

mechanisms (17). The quantity of MSCs in the bone marrow stroma is very low, i.e., 0.001-0.01% of 

nucleated cells, and it further decreases with age (18). This cell population is generally defined by the 

following criteria: 1) plastic adherence; 2) surface antigen expression of CD73, CD90, and CD105; 3) 

lack of expression of surface antigens associated with hematopoietic cells (CD45, CD34, CD14, and 

CD19); and 4) tri-lineage differentiation potential towards osteogenic, adipogenic, and chondrogenic 

lineages (19).  

In the bone marrow, MSCs support the hematopoietic stem cell niche in providing the appropriate 

tissue framework for maintenance in a quiescent stage or activation by secreting hematopoietic 

cytokines and proteins associated with the extracellular matrix (ECM) (20). Furthermore, MSCs 

participate in the regeneration of tissue damage by migrating to the location of inflammation in 

response to damage-associated chemokines and cytokines, and they attract immune cells to the site 

of injury (21, 22). Tissue damage is decreased through secretion of paracrine mediators that favor 

angiogenesis and prevent apoptosis (23). In addition, MSCs mobilize tissue-resident progenitors to 

promote repair and decrease the development of scar tissue at the site of tissue damage (23, 24). 

MSCs play an important role in immunity and can modulate immune responses by cell contact-

dependent mechanisms and secretion of cytokines and growth factors, affecting regeneration and 

inflammation at the sites of tissue injury (24, 25). In particular, MSCs have been shown to suppress T-

cell, B-cell, and natural killer cell proliferation by secreting soluble factors, i.e., transforming growth 

factor beta (TGF- ), hepatocyte growth factor (HGF), prostaglandin E2 (PGE2), interleukin-10 (IL-10), 

and others (26-29). In addition, dendritic cell differentiation and function are blocked, while regulatory 

T-cells and regulatory antigen-presenting cells are activated (30, 31). MSCs primarily affect T-helper 1 

cell responses, resulting in the decrease of interferon-gamma (IFN- ) secretion, which can adjust 

immune responses to anti-inflammatory T-helper 2 responses (32). 

 

1.1.1.1 Osteogenesis 

Osteoblasts are the major bone forming cells and originate from MSCs via tightly regulated expression 

of bone-specific transcription factors and matrix proteins (33, 34). In vitro, differentiation is induced by 

a cocktail of dexamethasone, ascorbic acid 2-phosphate, and -glycerophosphate; however, it strongly 

depends on the donor-specific osteogenic differentiation potential (35). The mechanism of osteogenic 

differentiation can be divided into two stages: initiation and maturation phases (36). During initiation of 
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osteogenic differentiation, cells slowly proliferate, express several osteogenic marker genes, and 

secrete collagen type I, which is the main structural component of bone ECM (33). Mineralization of 

the matrix by deposition of calcium phosphate substituted hydroxyapatite characterizes the maturation 

phase, commonly initiated 2-3 weeks after induction of the differentiation process (37). During the 

temporal sequence from commitment to terminal differentiation, three cell maturation levels can be 

distinguished, i.e., mesenchymal osteoblast progenitors, osteoblast precursors, and active/mature 

osteoblasts (Figure 1) (34). Furthermore, cell shape changes mark the transition from mesenchymal 

progenitor cells (spindle-shaped) to mature osteoblasts (cuboidal) (38). 

The three factors in the induction cocktail used for in vitro differentiation of MSCs play specific roles 

in the differentiation process and are essential components in the cell culture media. The 

glucocorticoide dexamethasone initiates cell shape changes during differentiation and induces the 

expression of alkaline phosphatase (ALP), an early marker of osteogenic differentiation (39, 40). 

Ascorbic acid 2-phosphate, a vitamin C derivative, participates in the induction of collagen type I 

matrix deposition, increases proliferation, and promotes matrix mineralization (41, 42). Finally, -

glycerophosphate provides essential phosphate ions for the deposition of hydroxyapatite during the 

mineralization phase (37, 43).  

Successful osteogenic 

differentiation in vitro is 

accompanied by the 

sequential expression of 

functional matrix proteins, 

i.e., collagen type I, 

osteopontin, and 

osteocalcin (Figure 1) 

(33, 34). Collagen type I 

is secreted during the 

initiation phase of the 

differentiation process 

and is an essential part of 

the final mineralized ECM 

(33). Osteopontin, an 

intermediate stage 

marker expressed by immature osteoblasts, is believed to have functions in the stabilization of the 

matrix, whereas osteocalcin, a late-stage osteogenesis marker, may participate in the final 

mineralization of the ECM (33).  

 

 

 

Figure 1. Cell maturation during osteogenic differentiation 
 

The process of osteogenic differentiation is tightly regulated by the sequence of cell 

maturation from the mesenchymal osteoblast progenitor to the osteoblast precursor and 

finally to the active osteoblast. This is accompanied by cell shape changes from spindle 

shape morphology to a cuboidal cell shape in the active osteoblast. Functionally mature 

osteoblasts express major matrix proteins, i.e., collagen type I, osteocalcin, 

osteopontin, and bone sialoprotein. The transient expression of alkaline phosphatase 

provides phosphate ions for the deposition of hydroxyapatite during matrix 

mineralization. Adapted and modified from Fauci, AS et al. Harrison’s principles of 

Internal Medicine, 17
th
 Edition. 

 



16 

The appropriate expression 

of matrix proteins and the 

commitment of mesenchymal 

progenitor cells to the 

osteogenic lineage are 

dependent on the regulation by 

three main transcription factors: 

runt-related transcription factor 

2 (runx-2), osterix, and 

activating transcription factor 4 

(ATF4) (Figure 2) (34, 44). 

Runx-2, also known as the 

master regulator of osteogenic 

differentiation, is expressed in 

osteochondro-progenitor cells, 

which are MSCs that are not yet 

completely committed to 

osteogenic differentiation and may still undergo chondrogenesis (45, 46). Regulation of bone matrix 

formation is achieved by runx-2-mediated induction of the major matrix protein genes, i.e., collagen 

type I, osteopontin, and osteocalcin (47, 48). Downstream of runx-2, osterix is the main transcription 

factor directing the differentiation of osteochondro-progenitor cells toward the osteogenic lineage, and 

it may play a further role in mineralization processes (44). Finally, ATF4 is induced in completely 

committed osteoprogenitor cells and governs the expression of osteocalcin and receptor activator of 

NF- B ligand (RANKL), based on interaction with runx-2 (49, 50). 

 

1.1.1.2 Clinical application 

MSCs have emerged as an attractive cell source of tissue engineering and regenerative medicine 

applications based on their favorable properties (51). Isolation protocols for MSCs are well-defined, 

and extensive cell numbers can be obtained due to their vast proliferative abilities (52). Furthermore, 

MSCs can be readily preserved by cryopreservation, and they do not pose the ethical issues 

commonly associated with the use of embryonic stem cells (51). In clinics, the use of MSCs is 

generally considered as safe and feasible, and indeed several reports have described the absence of 

adverse reactions to allogeneic and autologous MSC transplantation (6). This favorable lack of 

immune response, especially after allogeneic transplantation, is attributed to the exclusive presence of 

major histocompatibility complex (MHC) class I molecules, the absence of MHC class II surface 

markers, and the lack of co-stimulatory molecule expression (53). 

MSCs have been proposed for the treatment of various diseases, predominantly based on their 

beneficial properties in tissue repair, i.e., tri-lineage differentiation potential, immune-modulatory 

properties, and secretion of growth factors and cytokines (27). Although the use of MSCs is 

considered safe and the formation of teratomas has been shown to be absent, there is reluctance 

 

Figure 2. Control of MSC lineage commitment 
 

The commitment of mesenchymal progenitor cells to the osteogenic lineage 

and the subsequent time-dependent expression of matrix proteins are 

dependent on the regulation by transcription factors. Runx-2 is expressed at the 

osteochondro-progenitor stage. Osterix acts downstream of runx-2 and directs 

differentiation of osteochondro-progenitor cells towards mature osteoblasts. 

ATF4 is only expressed in fully committed osteoprogenitor cells and regulates 

osteoblastic gene expression. Adapted and modified from Long, F. Building 

strong bones: molecular regulation of the osteoblast lineage. Nature Reviews. 

2012, 13; 27-38 
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believing in the universal application of these cells (54, 55). In fact, there are indications that MSC 

transfusion might induce the development of malignant tumors and promote tumor growth based on 

the same properties that are generally attributed to their role in tissue repair (56-58). 

Nevertheless, MSCs are considered for the treatment of orthopedic injuries, graft-versus-host disease, 

and myocardial infarction (59-61). The differentiation potential is particularly promising for applications 

in the treatment of non-union bone injuries, osteogenesis imperfecta, and craniotomy defects, both 

with and without the use of scaffolds (62-64). Many studies have also focused on the use of MSCs in 

the treatment of osteoarthritic conditions, promotion of spinal fusion, and provision of relief in 

autoimmune diseases (65-67). The only approved use of MSCs in the clinics today is in combination 

with hematopoietic stem cell transplantation after myeloablative therapy to promote engraftment and 

prevent secondary tissue injuries (68, 69). 

 

1.2 Bone and the bone environment 
Bone is a complex tissue 

defined by constant turn-

over and remodeling in 

response to environmental 

and endogenous stimuli (70). 

In addition to maintaining the 

rigid structure of the skeletal 

system to allow movement 

and loading, bone needs to 

be both light and flexible 

(71). The sophisticated and 

tightly controlled interplay of 

several cell types is the 

basis for the regulation of 

this intricate process, 

providing appropriate cues 

for the maintenance of bone 

structure, function, and 

remodeling (Figure 3) (71). 

 

 

Among the vast number of 

cell types involved, the most 

important players are cells of the osteoblastic, osteoclastic, and endothelial lineages (72, 73). 

Osteoblasts, originating from MSC progenitors, are the major bone forming cells in the body and are 

responsible for ECM deposition and mineralization (33, 46). Antagonizing the action of osteoblasts is a 

bone-resorbing cell type, called osteoclast (72). Osteoclasts are derived from the hematopoietic 

lineage by NF- B-mediated cell fusion of macrophages, giving rise to multinucleated cells (74, 75). 

 

Figure 3. Interplay of cell types in the bone environment 

The intricate processes of bone remodeling and turn-over are regulated by the tightly 

controlled interplay of several cell types. Osteoblasts are the major bone forming cells 

and originate from mesenchymal stem cells. Osteoclasts are derived from the 

hematopoietic lineage and mediate bone resorption. Osteoclasts secrete cytokines 

and chemokines that can regulate the action of immune cells and engage in tight 

reverse crosstalk with osteoblasts to maintain bone homeostasis. Adapted from 

Gruber R. Cell biology of osteoimmunology. Wien Med. Wochenschr. 2010, 160; 438-

445 
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Several factors are known to promote osteoclastogenesis that can influence both the activation and 

migration of osteoclast precursor cells. Among these factors, RANKL and macrophage colony-

stimulating factor (M-CSF) are considered as the two main regulators of osteoclastogenesis. However, 

ECM proteins, such as osteocalcin and collagen type I, have been similarly shown to participate in the 

activation process (74). In addition to bone resorption, osteoclasts regulate other cell types, especially 

hematopoietic stem cells and immune cells, by secreting cytokines, and engage in tight reverse cross-

talk with osteoblasts to maintain bone homeostasis (76). 

Because bone is metabolically active and requires transport of nutrients throughout the tissue, 

initiation of angiogenesis is essential during bone repair and remodeling (77). Furthermore, endothelial 

cells secrete growth factors, which provide essential cues for the regulation of osteoblast and 

osteoclast activation (78). This intercellular cross-talk occurs via paracrine interactions mediated by 

soluble factor release and direct cell-to-cell contact via gap junctions (79, 80). Endothelial cells secrete 

several cytokines known to play major roles in osteogenesis, i.e., RANKL, osteoprotegerin (OPG), 

bone morphogenic protein 2 (BMP2), and IL-6 (80, 81). The process of angiogenesis is tightly 

controlled by the microenvironment, direct cell contact-dependent interplay, and factors embedded in 

the ECM, ensuring the appropriate sequence of endothelial cell activation and migration required for 

vessel formation (82, 83). In addition, endothelial cells are known to participate in responses to 

inflammatory stimuli as well as wound healing and repair processes (84). 
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1.3  Innate immunity 

The vertebrate immune system with its crucial role in protecting the organism against invading 

pathogens is composed of two elements: innate immunity and acquired/adaptive immunity (85, 86). 

 

Innate immunity represents an 

organism’s initial defense device 

and acts by detecting 

evolutionary conserved microbial 

surface fragments, so-called 

pathogen-associated molecular 

patterns (Figure 4) (85, 87). 

Effective recognition together with 

distinction between self and non-

self is mediated by pattern-

recognition receptors on myeloid 

cells, e.g., Toll-like receptors 

(TLRs) (88, 89). The cellular 

component of innate immunity 

includes mononuclear and 

polymorphonuclear phagocytes 

responsible for the destruction of 

invading pathogens, cytokine 

secretion, and antigen 

presentation to cells of the 

acquired immune system (89). 

TLR-mediated recognition of 

invading pathogens induces 

cytokine and chemokine 

secretion, which is an essential 

requirement for the activation of 

acquired immune responses (90, 

91).  

In vertebrates, a second line of defense evolved as a prerequisite for the prevention of reinfections 

and offered further protection against invading microbial pathogens (92). Acquired immunity involves 

mobilization of antigen-presenting cells, maturation of dendritic cells, and differentiation of naïve T-

cells into activated T helper 1 cells (Figure 4) (93). Specific, yet in comparison to innate immune 

responses delayed, recognition of invading pathogens is mediated by antigen receptors on T- and B-

cells (94).  

 

 

 

Figure 4. Role of Toll-like receptors in immunity 

The activation of innate immune responses is based on the removal of 

invading pathogens by macrophages and the detection of conserved 

structural motifs via pattern-recognition receptors, e.g., Toll-like receptors. 

Ligand binding induces the secretion of cytokines and chemokines, in turn 

mobilizing acquired immunity. This involves the maturation of dendritic cells 

and antigen-presenting cells as well as the differentiation of naïve T-cells into 

T-helper 1 and T-helper 2 cells. Adapted from Kaisho T. Elucidating the 

mechanism behind immunity using dendritic cells. Riken Research. 2007; 2 
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1.3.1 TLRs 

Mammalian TLRs are evolutionary conserved, type I transmembrane proteins that are structurally 

related to the IL-1 receptor superfamily (95). The extracellular domain consists of leucine rich repeats 

that are believed to partially mediate ligand recognition, while the cytoplasmic domain is shared with 

the IL-1 receptor family, including three conserved boxes required for the induction of downstream 

signaling events (96, 97). Despite the evolutionary conserved structure, TLRs can sense pathogens of 

diverse origin and are expressed on several immune and non-immune cells (98). TLRs contribute 

essentially to innate and acquired immunity, where they may even exert crucial functions non-related 

to the recognition of pathogens (88, 95). In man, 11 members of the TLR family have been identified, 

each responsible for the recognition of different subsets of pathogen-associated molecular patterns of 

microbial surface fragments (96). 

TLR2 is implicated in the cell-surface recognition of several structural components of gram-positive 

bacteria, including lipoproteins, peptidoglycan, and lipoteichoic acid, mediated by dimerization with 

related TLRs or extracellular proteins (99, 100). TLR3 recognizes viral double-stranded RNA and 

initiates antiviral processes through a unique signaling pathway resulting in the secretion of type I 

interferon-inducible genes (101, 102). The primary receptor activated after stimulation with 

lipopolysaccharides (LPS) is TLR4 (103, 104). This receptor has also been implicated in the 

recognition of endogenous ligands, e.g., heat-shock proteins, oligosaccharides of hyaluronic acid, and 

fibronectin; however, the assumption of the immune system responding to signals that signify potential 

harm rather than non-self molecules remains highly controversial (105-108). TLR5 and TLR9 are 

associated with responses to bacteria, whereas TLR7 and TLR8 recognize single-stranded virus RNA 

and react to several synthetic compounds (109, 110). 

TLR ligand recognition induces intracellular signaling cascades resulting in the activation of 

transcription factors and subsequent NF- B-mediated induction of proinflammatory cytokines, 

including IL-6, tumor necrosis factor-alpha (TNF-  and IL-12 (95). Signaling is transmitted by either 

one of the two pathways: MyD88-dependent signaling associated with the initiation of cytokine 

secretion and MyD88-independent signaling/TRIF signaling responsible for the induction of type I 

interferon-inducible genes and delayed activation of NF- B in response to LPS (96, 111).  

Because uncontrolled production of inflammatory cytokines is associated with poor clinical 

prognosis, TLRs have been linked to the development and/or maintenance of disease state in several 

inflammatory and immune system-related pathologies, including Crohn’s disease, rheumatoid arthritis, 

and atherosclerosis (112, 113). Apart from their approved role in innate and acquired immunity, TLRs 

are believed to maintain epithelial homeostasis and participate in fibroblast maturation processes 

(114, 115). 

 

1.3.1.1 Effect of TLRs on MSCs 

MSCs have been shown to actively express TLR1-6 under in vitro conditions, whereas the expression 

of TLR7-10 remains controversial and may depend on specific experimental settings (116, 117). 

Based on the crucial role of TLRs in innate and adaptive immune responses, the participation in MSC-

mediated immune-modulatory functions, roles in tissue remodeling after injury and functions in stem 
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cell biology have been proposed (118, 119). The role of TLRs in MSC biology has been studied 

extensively in cells derived from different tissue locations and species; however, the consequences of 

TLR stimulation remain contradictory (117, 120). Particularly TLR-agonist concentration and duration 

of exposure can strongly affect the experimental outcome (112, 121). Generally, activation of TLR3-

mediated signaling is believed to promote anti-inflammatory actions and participate in MSC stress 

responses, whereas TLR4 activation enhances the secretion of proinflammatory cytokines (119). 

TLR4 stimulation was shown to prevent oxidative stress-mediated apoptosis and promote survival in a 

rat model of myocardial infarction (120, 122). 

Overall, the activation of TLR signaling has been associated with the modulation of MSC migration, 

differentiation, and immune-modulatory properties, but it does not affect proliferation in the human 

system (116, 119). In human bone marrow-derived MSCs (hBMSCs), only long-term exposure to LPS, 

a TLR4 ligand, can enhance osteogenic differentiation, whereas the short-term exposure to any TLR 

agonist did not affect the tri-lineage differentiation potential (121, 123). Immune-modulatory properties 

were demonstrated to be either enhanced or inhibited, depending on the T-cell population and the 

experimental setting (117, 123). Regarding adipose tissue-derived MSCs, the general consensus 

indicates a role of TLR stimulation in promoting osteogenic differentiation while inhibiting 

adipogenesis, yet no effect on MSC-mediated suppression of T-cell proliferation was observed (116, 

119).  

 

1.3.2 Endotoxins 

Endotoxins, a characteristic feature of gram-negative bacteria, were found to consist of LPS linked to 

proteins and other cell membrane-related components (124). Endotoxins are an integral part of the 

outer membrane of gram-negative bacteria, but are only secreted in minute amounts during cell 

division and normal life cycle (124). Substantial amounts of endotoxins can be released during the 

destruction of the bacterial cell wall either by antibiotics or the actions of the host immune system 

(125). 

The toxicity inducing substance in endotoxins, LPS, is built of three main parts: a lipid moiety, 

called Lipid A, linked to an oligosaccharide, the core oligosaccharide, which in turn is attached to a 

sequence of repetitive subunits, named O-specific antigen (Figure 5) (126). The Lipid A moiety is 

characterized by a disaccharide backbone with two negatively charged phosphate groups and can 

carry as much as six acyl chains with 14-16 carbon atoms (127). The amphiphilic nature of Lipid A, 

having both hydrophobic and hydrophilic features, causes aggregation in aqueous solutions to form 

three-dimensional supra-molecular structures, called micelles (128). The O-specific antigen is used to 

classify the bacterial serotype and enables bacteria to evade the attack of serum complements from 

the host immune system (129, 130). The general properties of endotoxins include that they are 1) 

negatively charged in solutions, 2) thermally stable up to 180°C, 3) UV-resistant, and 4) insoluble in 

methanol and ethanol (131).  
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The immune system is able to detect 

and react to LPS at levels of < 1 ng/ml 

(132). Even without signs of bacterial 

infection, LPS can be detected in 

human tissues. Low levels of LPS may 

even aid in the development of several 

chronic diseases, but higher 

concentrations are known to induce 

high fever, hypotension, and septic 

shock (133, 134). Multi-organ failure, 

adult respiratory distress syndrome, and 

disseminated intravascular coagulation 

are further consequences of increased 

endotoxin levels in the blood (134). 

The term sepsis describes a medical 

condition in which an overwhelming 

bacterial infection can promote an 

inflammatory state of the whole body, 

accompanied by fever, increased heart, 

and respiratory rate (135). Antibiotics, 

one of the most common treatments for 

sepsis, can deteriorate the disease by 

destroying the bacterial cell wall and 

releasing even higher quantities of 

endotoxins into the blood stream (136). 

Highly sensitive bioassays are needed 

to determine the presence of LPS in 

human plasma, since the compound 

has a very short serum half-life, is 

poorly immunogenic, and exhibits 

extreme potency (135, 137). 

 

1.3.2.1 Aseptic implant loosening 

The role of endotoxins in the clinical setting of aseptic implant loosening is controversial, but 

increasingly more evidence is being accumulated that indicates endotoxins as at least partially 

responsible for osteolysis and the loosening of medical devices (138-140). LPS was detected in the 

tissue surrounding the implant in patients diagnosed with aseptic implant loosening, who did not show 

any signs of microbial infection (141). In addition, the prophylactic use of antibiotics, systemically or as 

part of the implant, resulted in a 50% reduction in the incidence of aseptic implant loosening (142). 

 

 

 

Figure 5. Bacterial endotoxin from E.coli O111:B4 

The chemical structure of lipopolysaccharides is composed of three 

main parts, i.e., Lipid A, core-oligosaccharide, and O-antigen. The 

Lipid A moiety contains a disaccharide backbone with two negatively 

charged phosphate groups and is linked to the core-oligosaccharide. 

The O-specific antigen is built of repetitive subunits and is used to 

classify the bacterial serotype. 

Hep (L-Glycero-D-manno-heptose), Gal (galactose), Glc (glucose), 

KDO (2-keto-3-deoxyoctonic acid), NGa (N-Acetyl-galactosamine), 

NGc (N-Acetyl-glucosamine). Adapted from Ohno, N et al. 

Lipopolysaccharide interactions with lysozyme differentially affect 

lipopolysaccharide immunostimulatory activity. Eur. J. Biochem.1989, 

186; 629-636 
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Furthermore, endotoxins have been associated with 1) inflammation in response to wear particles, 

2) acceleration of the foreign body reaction, 3) proinflammatory cytokine release, and 4) macrophage 

activation (143, 144). This assumption was based on the notion that macrophages at the bone-

biomaterial interface express endotoxin receptors, markedly TLRs, which are highly sensitive to even 

minute amounts of endotoxins and could be responsible for the induction of cytokine secretion, 

impairing osseo-integration and, finally, causing the failure of the implant (145, 146).  

There are a number of potential sources for endotoxins in the peri-prosthetic tissue, including the 

bacterial biofilm on the surface of the implant, endotoxin contamination during the implant 

manufacture, and endotoxins derived from wear particles, absorbing LPS from systemic infections or 

the intestinal flora (147). This notion also reinforces the call for strict monitoring of endotoxin 

contamination during the evaluation of wear debris in in vitro models (148). 

 

1.3.2.2 Endotoxin-induced signaling pathways in vitro 

The human body is unusually 

responsive to the biological effects of 

LPS as compared to other species, and 

it is the response to LPS rather than the 

biological potency itself that causes 

severe inflammatory reactions (135).   

The recognition of LPS and the 

downstream activated cell machinery 

varies between human cells and mouse 

cells, which greatly affects the 

comparability of studies (149). 

The possible development and 

course of sepsis is dependent on the 

activation of the innate immune system 

and the subsequently induced cellular 

machinery (150). In the human body, 

TLR4 was identified as the primary 

receptor for bacterial LPS (104).  

 

 

 

The correct presentation of LPS to its receptor is mediated by two proteins (Figure 6) (132). LPS 

binding protein (LBP), an acute phase plasma protein derived from the liver, binds LPS aggregates 

and delivers them in the form of monomers to a second protein, CD14 (137). The biological activity of 

LPS is based on the interaction in the form of aggregates, since the encounter with monomer 

structures of LPS does not induce cytokine production in vivo (128). Furthermore, LBP acts in a 

concentration-dependent manner with low concentrations enhancing the activation of downstream 

 

Figure 6. Simplified endotoxin-mediated signaling in 
vitro 

LBP binds LPS aggregates and converts them to monomers, which are 

presented to the glycoprotein CD14. In turn, CD14 transfers LPS 

monomers to the adaptor protein MD-2. The resulting LPS-MD-2 

complex interacts with cell-surface bound TLR4, the primary receptor for 

bacterial LPS. Activation of TLR4 results in the translocation of NF- B 

into the nucleus, which is crucial for the secretion of proinflammatory 

cytokines and chemokines.  

LPS (lipopolysaccharide), LBP (LPS binding protein), TLR4 (Toll-like 

receptor 4), MAPK (mitogen-activated protein kinase), JNK/SAPK (c-Jun 

N-terminal kinase signaling pathways). Adapted and modified from 

Triantafilou M et al. Sepsis: molecular mechanisms underlying 

lipopolysaccharide recognition. ERMM. 2004, 6;1-18 
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receptors and high concentrations inhibiting stimulation (151, 152). The glycoprotein CD14, expressed 

by myelo-monocytic cells, transfers the LPS monomers to the extracellular adaptor protein MD-2 and 

can be present either in a soluble state or membrane bound as glycosylphosphatidylinositol-anchored 

(GPI-anchored) molecule (153). The resulting LPS-MD-2 complex then interacts with cell-surface 

bound TLR4 through the formation of dimeric structures (135). 

 

Activation of TLR4 results in the induction of two 

distinctive signaling pathways, the MyD88-dependent 

and the TRIF-dependent pathway, subsequently causing 

translocation of NF- B into the nucleus (Figure 7) (104). 

This translocation is crucial to the activation of LPS 

responsive genes, i.e., cytokines, chemokines, and 

acute phase proteins (135). 

To prevent the full induction of biological responses, 

susceptibility can be reduced by innate agonists in the 

blood stream (149). These antagonists include 1) 

bactericidal/permeability increasing protein (BPI), which 

can neutralize LPS, 2) apolipoproteins that reduce the 

production of pro-inflammatory cytokines, and 3) 

lactoferrin, which inhibits the binding of LPS to CD14 

through competitive interaction (149, 154). 

 

 

 

 

 

 

 

 

1.3.2.3 Biological effects of endotoxins 

The chemical structure of the Lipid A moiety and the final concentration of LPS directly affect the 

interaction with its receptor TLR4 and influence the biological potency (155). High concentrations of 

LPS induce toxic effects in the body, including irreversible shock and pyrogenicity, whereas low 

concentrations can act as stimulants for the immune system to withstand general bacterial and viral 

infections (155, 156). 

In the body, LPS can affect cell proliferation and the secretion of cytokines and chemokines along 

with delaying wound healing. The secretion of bioactive mediators can be altered, and endotoxins 

were shown to directly inhibit collagen production in osteoblasts (157, 158). The primary biological 

effect of endotoxins includes the activation of immune cells but subsequently also affects bone 

homeostasis and the performance of biomaterials in vivo (159, 160). Bone resorption during the bone 

 

Figure 7. TLR4 signaling cascade 

Unlike any other TLR, the activation of TLR4 

results in the induction of both the MyD88- 

dependent and the TRIF-dependent/MyD88- 

independent pathway. Ligand binding initiates 

the translocation of NF- B into the nucleus and 

the induction of IFN-inducible genes, which is 

crucial for the expression of cytokines, 

chemokines, and acute phase proteins in 

response to LPS stimulation. Adapted from Akira 

S. et al. Toll-like receptor signaling. Nature 

Reviews Immunology. 2004, 4; 499-511 
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remodeling process can be strongly influenced by proinflammatory cytokines secreted from immune 

cells, modifying both survival and activation of osteoclasts. The same cytokines are known to similarly 

affect osteoblasts in vitro (161, 162). Several regulatory mechanisms are shared between the immune 

and the musculoskeletal system, and they modulate not only osteoblast function but also bone 

formation (163).  

 

1.3.2.4 Regulations for medical devices 

In human application of medical devices and parenteral drugs, endotoxins constitute a major health 

threat (131, 164). The Food and Drug Administration (FDA) has therefore established 

recommendations for endotoxin measurements and safety limits that describe the allowed amount of 

contamination depending on the application site of the medical device (131, 164). The current 

protocols include the immersion of the medical device in endotoxin-free water for at least 1 h at room 

temperature and then measuring the endotoxin content in the extract (131). The FDA guidelines 

recommend endotoxin levels < 0.5 EU/ml for medical devices and levels < 0.06 EU/ml for devices in 

contact with cerebrospinal fluid (131, 164). 

The use of extracts instead of the actual medical device raises concern over the accuracy of 

endotoxin levels (131, 164-166). The amount of LPS that is released into solution during the 

immersion of a medical device is strongly dependent on the properties of the biomaterial, and the 

dissolution of hydrophobic LPS into a polar solvent such as water is slow (166, 167). 

The difficulty in accurately measuring endotoxin levels exponentially increases with specimens that 

are not transparent or have complex shapes, making direct determination of endotoxin levels on 

medical devices challenging (164). This creates serious issues in the field of biomaterials research, 

because the biological response to the presence of endotoxins in vitro can overrule the actual effect of 

the biomaterial (164, 165).  

Despite the concern about the measurement of endotoxins in extracts of water-immersed 

biomaterials based on the unknown amount of endotoxins that is released into the solution, the 

regulations have proven sufficient over the years for in vivo applications (168). Nevertheless, these 

recommendations may be inadequate for the in vitro evaluation of biomaterials (131). Depending on 

the cell type used, the amount of endotoxin that can be tolerated without biological response can be 

different and this is not sufficiently specified at present (157, 169). Furthermore, there is a lack of 

standard guidelines in the in vitro evaluation of biomaterials, including the need for regular endotoxin 

testing and publication of all values along with biomaterial characteristics (131). 

 

1.4 Chitinases and chitinase-like proteins (CLPs) 

Chitinases (EC 3.2.1.14) and CLPs belong to the family 18 glycosyl hydrolases and have only recently 

been discovered in mammals (170, 171). Two active chitinases, namely, acidic mammalian chitinase 

(AMCase) and chitotriosidase, as well as four CLPs (YKL-40, YKL-39, oviductin, and stabilin-1 

interacting CLP) have been identified in men (172-177). 

Structurally, chitinases contain a chitin-binding domain and a catalytic domain, capable of digesting 

chitin polymers and preventing the enrichment of chitin in the environment (170). A glutamate residue 
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in the catalytic domain acts as proton donor on the glycosidic bond, catalyzing the hydrolysis of the -

(1-4) linkage between the N-acetyl-glucosamine residues (173, 178). Although the catalytic domain is 

highly conserved, CLPs lack enzymatic activity because of the substitution of the essential glutamic 

acid residue by leucine, which is evolutionary favored as determined by phylogenetic analysis (179). 

The binding cleft is composed of six solvent-exposed cysteine residues and is typically absent in CLPs 

(177, 178). Despite the lack of the typical chitin-binding domain, CLPs can still bind chitin and chito-

oligosaccharides (ChOS) with high affinity (180).  

 

1.4.1 Biological role 

Chitinases and CLPs have first been described 25 years ago, yet biological function and putative 

endogenous substrates remain speculative (181, 182). Roles in defense mechanisms against chitin-

containing particles and participation in host immune response by attracting cells of the acquired 

immune system to the site of infection, have been proposed (170, 183). Since CLPs are strongly 

secreted during inflammatory and allergic conditions, it is assumed that the proteins have a function in 

tissue remodeling, inflammation and disease pathogenesis (183-185).  

Expression and secretion of chitinases can have both advantages and disadvantages, as is the 

case for AMCase and chitotriosidase in human pathologies. AMCase has been suggested to 

participate in the development of human asthma and allergic airway inflammation by adjusting T-

helper 2 inflammation and remodeling processes (186); whereas chitotriosidase is thought to have 

essential fungistatic effects, participating in defense mechanisms (187). Whether the proposed 

biological functions are mediated directly by the chitinases and CLPs or are dependent on the 

induction of downstream cytokines and growth factors, remains elusive (183); however, the in vivo 

scenario is most likely represented by a combination of the two mechanisms. 

 

1.4.2 The CLP YKL-40 

YKL-40 (also known as chitinase 3-like protein 1 or HCgp39) is a secreted, 40 kDa mammalian 

glycoprotein, expressed by articular chondrocytes, differentiated macrophages, synoviocytes, and 

osteoblasts (188, 189). Even though in vivo biological function remains controversial, crystallographic 

analysis showed that binding of a putative ligand can induce conformational changes in the protein, 

indicating a potential signaling role (180). Moreover, two distinct binding sites, interacting with either 

long or short ChOS, in addition to possible binding sequences for heparin and hyaluronan, have been 

identified (180, 190).  

Upregulation of YKL-40 in several inflammatory and degenerative diseases, including rheumatoid 

arthritis, osteoarthritis, and certain cancers, implies that YKL-40 in particular might prevent damage to 

the ECM by reducing the deleterious effects of proinflammatory cytokines (191, 192). Furthermore, 

YKL-40 has been linked to the process of fibrosis, based on its expression during cirrhosis of the liver 

and scleroderma (185, 193). Since YKL-40 is expressed in normal bone marrow, a connection 

between the host response to inflammation and the process of tissue repair seems plausible (191, 

194). 
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Several studies indicate YKL-40 as a macrophage and chondrocyte differentiation marker; in the 

latter promoting the expression of the essential transcription factor SOX9 and synthesis of collagen 

type II (195, 196). Furthermore, roles in tissue remodeling, inflammation, mitogenesis, and 

differentiation of various cell types have been proposed (195, 197). In vivo, stimulation of proliferation 

was shown for synoviocytes and skin fibroblasts, and was correlated to the induction of mitogen-

activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI-3K) signaling cascades (198, 

199). Based on the promotion of endothelial cell adhesion, migration, and tubulogenesis, YKL-40 was 

linked to the processes of angiogenesis (200, 201).  

In addition, YKL-40 is expressed during embryonic development with proposed function in 

proliferation, differentiation, and tissue morphogenesis; particularly in the embryonic heart and the 

musculoskeletal system (202). Expression in undifferentiated human embryonic stem cells and 

progenitor cells in all three germ layers has only recently been demonstrated, and could indicate a role 

for YKL-40 in the differentiation of pluripotent stem cells towards more differentiated lineages (203). 

 

1.5 Chitin 

Chitin, a polymer of -(14)-linked poly-N-acetyl D-

glucosamine, is after cellulose the second most 

abundant organic compound in nature, but is not 

enriched in the environment due to enzymatic 

degradation by chitinases (204, 205). The structural 

difference between cellulose and chitin is limited to 

the substitution of the C2 hydroxyl group in cellulose 

by an acetamido group (Figure 8) (204). Chitin is a 

structural component in the cell walls of bacteria, 

fungi, crustaceans, and insects (206, 207). 

Characterization and application are challenging due 

to the insolubility in aqueous solutions (208, 209). In 

nature, chitin occurs in alpha and beta crystalline 

polymorphic forms, with alpha chitin being the 

commonly used form; it is characterized by repeating 

units of parallel and anti-parallel chains (210, 211). 

 

 

 

Despite the historical assumption that chitin may only have structural properties, the polymer was 

found to positively affect wound healing by influencing platelet function and alternatively activated 

macrophages (212, 213). Furthermore, chitin was demonstrated to mediate immune responses 

depending on the size of its fragments (214, 215). Large polymers are processed by endogenous 

chitinases and oxidants into smaller-sized fragments, rather than directly stimulating immune 

responses, resulting in cytokine-mediated modulation of type 2 immune responses (214). However, 

 

Figure 8. Structural comparison of chitin, 
chitosan, and cellulose 

The structural difference between cellulose and chitin is 

limited to C2, where the hydroxyl group of cellulose is 

substituted by an acetamido group in chitin. Chitosan is 

derived from chitin by removal of at least 50% of N-

acetyl groups in aqueous alkali. Adapted from Nosal 

W.H. et al. UV-vis-infrared optical and AFM study of 

spin-cast chitosan films. Colloids and Surfaces B: 

Biointerfaces, 2005, 43; 131-137 
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chitin can also induce the migration of neutrophils and stimulate non-specific reactivity to bacterial and 

viral pathogens (216, 217). 

Since processing of chitin is laborious, the polymer has mainly been used to obtain chitosan, ChOS 

and the aminosugar glucosamine, by deacetylation and/or hydrolysis (218). Chitin derivatives are 

interesting for the use in regenerative medicine and tissue engineering applications, based on their 

favorable properties, i.e., non-toxic, biodegradable, and biocompatible (206, 219). Other applications 

of chitin include 1) the immobilization of enzymes in food industry; 2) affinity chromatography columns; 

3) waste water treatment based on the adsorption of metal cations, dyes, and aromatic hydrocarbons; 

4) biosensors; and 5) dietary supplements to reduce the uptake of lipids during digestion (220-222). 

 

1.5.1 Chitosan 

Partial deacetylation of the chitin acetamido group by aqueous alkali yields chitosan, a heterogeneous 

polymer of N-acetyl-glucosamine and glucosamine components (Figure 8) (209). Chitosan is 

characterized by three functional groups, i.e., an amino and acetamido group, and hydroxyl groups in 

primary and secondary formation, which are reactive to chemical modifications (223, 224). The 

deacetylation process introduces a cationic charge to the polymer and favors interactions with 

negatively charged cytokines and growth factors, as well as the negatively charged phosphate groups 

in LPS (208, 225). The affinity for endotoxins is in fact so strong that cross-linked chitosan 

microfiltration membranes have been used for the removal of endotoxin contamination from medical 

preparations (226). Furthermore, the cationic nature of chitosan is the basis for its solubility in dilute 

aqueous acids, as opposed to the insolubility of chitin, favoring its versatile use in tissue engineering 

applications (204, 209).  

Since chitosan is a heterogeneous polymer, its properties are strongly dependent on the number of 

charged groups (degree of deacetylation; DD), the molecular weight or its distribution (polydispersity 

index), and the successive order of acetylated and deacetylated residues in the chain (227).  As a 

general rule, chitosan is considered to have < 50% N-acetyl-glucosamine units, however, there is no 

conclusive definition on the DD (227). 

In addition to the general properties attributed to chitin derivatives, the key properties of chitosan 

include that it is fungicidal, bactericidal, and has immune-enhancing properties (204, 228).  The 

bactericidal activity is related to the cationic charge with high affinity for the microbial cell wall, 

inhibiting nutrient flow into the microorganism while at the same time mediating the release of 

cytoplasmic components (229). Concerning its role in enhancing immune responses, chitosan was 

shown to stimulate cytokine secretion by macrophages and fibroblasts, modulate migration of immune 

cells, and attract polymorphonuclear cells to aid in tissue regeneration processes (230-232). By 

attracting macrophages and neutrophils, chitosan is exerting positive effects on wound healing and 

skin regeneration, both in early and late stages of regeneration processes (232, 233). Chitosan acts 

as natural hemostat and analgesic, and may even induce healing without scar tissue formation (234, 

235). Inconsistency in reports concerning the biological performance of chitosan is frequently due to 

the lack of detailed information on source, sample preparation, and chemical properties of the 
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polymer, which ultimately causes unnecessary difficulties in the comparison of results from different 

studies (236). 

Chitosan is a versatile polymer with diverse applications in many fields, including agriculture, food 

industry, tissue engineering, waste water treatment, and gene therapy (237, 238). Tissue engineering 

approaches are based on the favorable effects of chitosan on osteogenesis in vitro and in vivo, where 

it promotes cell attachment and supports the formation of the natural ECM, critically aiding in bone 

regeneration (239, 240). In gene therapy, chitosan is considered for the delivery of DNA, providing a 

feasible replacement for traditional viral gene-transfer systems (237). Finally, chitosan can also be 

used as raw material for the production of water-soluble low molecular weight chitosan and highly 

deacetylated ChOS preparations (223, 241). 

 

1.5.2 ChOS 

ChOS can be derived from chitosan and chitin either by chemical or regioselective enzymatic 

degradation (209, 242). However, mass production of sufficient quantities of pure oligomer fractions is 

laborious and economically undesirable, which is why many studies focus on the use of ChOS 

mixtures to determine biological function (243, 244). Because the use of ChOS mixtures instead of 

purified fractions of oligomers introduces a higher level of complexity, rigorous characterization to 

ensure reproducibility is essential (209). Despite advanced analysis methods, biological potency can 

be impaired by the simultaneous presence of active and inhibitory oligomer fractions (209). However, 

the application of ChOS in the development of potential drugs for the treatment of asthma, vectors in 

gene therapy, and as wound dressings is attractive, since chitin and chitosan can hardly be dissolved 

under aqueous, acid-free conditions (170, 245, 246). 

The biological potential strongly depends on the chemical properties, including DD, degree of 

polymerization (DP), molecular weight, and the distribution pattern of acetylated and deacetylated 

residues in the macromolecule chain (247, 248). In general, ChOS can be easily adsorbed and is 

considered non-toxic as it is quickly eliminated from the tissue (249, 250). Notably, both hexamer and 

heptamer fractions of ChOS, independent of the DD, have been associated with strong biological 

activities (247, 248). Currently, the most appealing properties of ChOS include antitumor activity, 

inhibition of angiogenesis, immune-stimulatory effects, and the promotion of osteogenesis (243, 249, 

251, 252). 

The inhibitory effect on tumor activity and progression is associated with the cationic and 

hydrophobic properties of the macromolecule as well as the inhibition of angiogenesis (243, 244). 

Strongest antitumor activity was shown for completely acetylated hexamers, which can decrease 

angiogenesis by regulating endothelial cell growth, migration, and vascular endothelial growth factor 

(VEGF) mRNA expression (243, 248). In fact, antitumor potency is strongly dependent on the DP, with 

both pentamers and fractions higher than hexamers proven ineffective (244, 253). 

Immune-stimulation and beneficial effects on inflammatory processes are related to the promotion 

of macrophage migration to the sites of inflammation, induction of chemotaxis, and the stimulation of 

immune cells (254, 255). In addition, ChOS has been shown to size-dependently enhance the 

synthesis of nitric oxide and TNF-  in RAW 264.7 macrophages after stimulation with LPS or IFN-  
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(256, 257). Clinical treatment of sepsis could benefit from the use of ChOS, based on the decrease of 

circulating proinflammatory cytokines and the prevention of oxidative tissue damage by free radical 

scavenging activity (258, 259). In particular, ChOS has been shown to decrease IL-6 production in 

human umbilical vein endothelial cells (HUVECs) stimulated with LPS, which is mediated by the down-

regulation of NF- B activity (260). 

In the bone environment, ChOS has been impressively shown to promote the differentiation of 

MSC progenitors into osteoblasts, stimulate calcium deposition by increasing calcium-ion 

bioavailability, and enhance bone strength and decrease bone turn-over in models of osteoporosis 

(249, 261, 262). 

 

1.5.3 Glucosamine 

Glucosamine is widely known as a dietary supplement for chondro-protection and is commercially 

produced by hydrolysis of crustacean chitin (263). In the human body, glucosamine is naturally found 

as an aminosugar in connective tissues and as a subunit in glycosaminogylcans and proteoglycans of 

the cartilage ECM (264). Glucosamine is easily absorbed in the intestines and is generally considered 

safe (265, 266). Its potential biological functions include cartilage protection, anti-inflammatory 

activities, and beneficial effects on the balance of bone remodeling (267, 268). However, the exact 

mechanism of biological efficacy is only poorly understood (264, 269). 

In cartilage and osteoarthritis models, glucosamine was shown to enhance proteoglycan synthesis, 

prevent proteoglycan and collagen degradation, and promote mitogenesis (270, 271). Furthermore, 

catabolic downstream events of IL-1  induction in osteoarthritic chondrocytes was ameliorated by 

glucosamine, including 1) positive effects on matrix gene expression, 2) reduced NF- B activation, 

and 3) downregulation of nitric oxide production and cyclo-oxygenase 2 (COX-2) expression (267, 

272, 273). In cell culture models of MSC chondrogenic differentiation, glucosamine was linked to the 

promotion of differentiation, enhanced chondrogenic marker expression, and the prevention of 

dedifferentiation in the presence of serum (267). 

Glucosamine has been studied repeatedly for potential clinical use in the treatment of 

osteoarthritis, where it is associated with decreased joint space loss and analgesic activities (269, 

274). Particularly, the anti-inflammatory properties of glucosamine were linked to modulating the 

disease pathology by inhibiting neutrophil function, decreasing the activation of immune cells, and 

preventing the expression of inducible nitric oxide synthase (275-277). 

Bone resorption and remodeling were similarly shown to be beneficially affected by glucosamine. 

Osteogenic differentiation of dental pulp stem cells was enhanced in vitro, mediated by increased 

osteogenic marker gene expression and stimulation of matrix mineralization (278). At the same time, 

glucosamine has been linked to the downregulation of osteoclast differentiation in late-stage 

osteoarthritis, directly resulting in decreased bone resorption (279).The inhibitory effect on osteoclasts 

is mediated primarily by decreased RANKL expression, attenuation of IL-6 levels, and the increase in 

anti-inflammatory cytokine IL-10 (279). In  addition, glucosamine is believed to enhance the healing of 

dental pulp wounds, suggesting potential applications in dentistry (232, 280). 

 



31 

1.6 Bone tissue engineering and biomaterials 

The field of tissue engineering focuses on the technical aspects of regenerative medicine, particularly 

on supporting and restoring the function of injured tissues by using a structural support matrix, i.e., 

biomaterials (2). A biomaterial per definition can be any implantable construct or scaffold, intended at 

providing the microenvironment necessary to promote the replication of natural tissue function (2). In 

bone tissue engineering, autograft and allograft bone materials have been extensively used in the 

clinics; however, the limitations include the potential for infection at the site of graft harvest (donor-site 

morbidity), rejection in the case of allograft transplantation, and the restricted quantity of graft material 

(281, 282). Alternatively, inorganic, natural, or synthetic biomaterials are frequently used and offer the 

potential for chemical modifications to meet the requirements of any particular application (283, 284). 

1.6.1 Bone-biomaterial interface 

The integration of an implant and its interaction with the surrounding tissue at the bone-biomaterial 

interface crucially determine the success of an orthopedic fixation (Figure 9) (285, 286). The 

successful integration crucially depends on the surface characteristics of the material, i.e., surface 

chemistry, topography, charge, and wettability (285, 286). Moreover, mechanical properties such as 

stiffness, limit of fatigue, and degradation rate affect the biological performance (285, 286). Loose 

integration of the implant can result in the failure of the fixation by causing micromotion at the bone-

biomaterial interface, favoring the formation of a fibrous tissue capsule around the implant (286, 287).  

 

 

After implantation, the 

biological environment 

strongly influences the 

interaction of the 

biomaterial with the 

surrounding tissue and 

approaching cells, which 

is mediated by the 

unspecific adsorption of 

matrix proteins (Figure 

9) (288). A material’s 

surface characteristics 

critically determine the 

initial amount and 

conformation of proteins 

adsorbed to the implant 

surface, and it is this 

outermost atomic layer 

of adhesive proteins that 

 

Figure 9. Interaction of biological environment at the bone-
biomaterial interface 

After implantation, it is the biological environment that primarily interacts with the 

biomaterial by unspecific adsorption of matrix molecules, release of wear particles, and 

surface-mediated changes in cell responses. Adapted from Barrère F. et al. Advanced 

biomaterials for skeletal tissue regeneration: Instructive and smart functions. Mat Sci Eng 

R, 2008, 59; 38-71 
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primarily affects integrin signaling, cell responses, and tissue regeneration (289, 290). In addition, 

friction at the bone-implant interface or between parts of the metallic implant can lead to the 

generation of wear particles, which negatively affect the quality and the life-time of the fixation (291, 

292).   

Fibronectin is one of the main adhesion proteins at the bone-biomaterial interface, and it contains 

an integrin-specific binding sequence (RGD-sequence) (293). This protein is particularly important for 

the attachment and differentiation of osteoblastic cells (294, 295). The conformation of fibronectin at 

the biomaterial surface strongly depends on the surface wettability, with generally higher bioactivity on 

hydrophilic surfaces due to decreased denaturation of the secondary structure (296, 297). The 

negatively charged protein is frequently used to coat biomaterials in order to promote cell attachment 

in vitro, and it has been shown that the structural changes upon surface interaction mediate the 

protein’s bioactivity (298, 299).   

The geometrical architecture of the surface (surface topography) is one of the parameters that 

strongly affect initial protein adsorption and cell interactions (286, 300). Generally, rougher surfaces 

are associated with enhanced osteoblastic differentiation and can be created by mechanical and 

chemical processes, though with questionable reproducibility (301-303). In terms of wettability, 

moderately hydrophilic surfaces are considered to favor cell attachment, mediated by surface-induced 

changes in protein conformation (304, 305). 

The role of surface charge in modulating cellular functions is controversial, as both positive and 

negative charges are associated with increased bone formation (306, 307). A strong positive charge at 

the biomaterial surface can induce unnaturally strong focal adhesion and integrin binding; however, 

from a chemical point of view, the cell membrane is negatively charged, thus favoring electrostatic 

interactions with positively charged surfaces (308-310). In addition, the osteoblast-mediated secretion 

of a mineralized matrix has been shown to be particularly enhanced on cationic surfaces (311, 312). 

Furthermore, the effect of surface charge is closely related to the chemical groups present at the 

biomaterial surface. Amino functionalities (-NH2) at the surface are especially desirable as they are 

associated with 1) increased cell adhesion and proliferation, 2) high adsorption of matrix proteins, 3) 

stimulation of integrin binding, and 4) enhanced mineralization and osteogenic gene expression (313, 

314). 

Although the general parameters affecting cell responses and protein adsorption are known, the 

optimal surface characteristics and the detailed processes at the bone-biomaterial interface are only 

partially understood (286). The use of two-dimensional in vitro cell culture models to gain knowledge 

about the intricate mechanisms at the bone-biomaterial interface is advantageous, as it allows for 

straight-forward control of experimental conditions and identification of factors contributing to cell 

activation and gene expression (315, 316). The in vivo environment can be much more closely 

represented by three-dimensional models, accounting for variations in integrin-mediated cell adhesion 

and the dynamic physiologic environment (317, 318). Conclusions derived from the evaluation of two-

dimensional in vitro cell culture models can be only partially translated to understand the processes 

occurring in vivo (317). 
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1.6.2 Titanium implants 

Clinical treatment of orthopedic tissue injuries often requires fixation via bone implant material (319). 

Implants produced from titanium and titanium alloys have been the gold standard in load-bearing 

orthopedic applications for many years because of their favorable biological and mechanical 

properties (320, 321). The advantages of titanium and its alloys used for biomedical devices include 1) 

high corrosion resistance, 2) biocompatibility due to the spontaneous formation of oxide layers, 3) high 

ratio of tensile strength to density (specific strength) and, 4) lack of toxicity (321, 322). However, there 

is still room for improvement, particularly concerning the stabilization of the implant, osseointegration 

at the bone-implant interface, and the prevention of bone stress shielding (323, 324). 

Successful integration and stabilization of the implant critically depends on the surface 

characteristics, i.e., surface chemistry, roughness, topography, and wettability (285). Increasing 

surface roughness and modifying surface topography by sandblasting, plasma spraying, or acid 

etching has been extensively used to enhance initial stabilization of the implant and promote bone 

formation at the peri-implant region (325, 326). Osseointegration is another factor critically determining 

the life-time of the implant, and it describes the direct interaction of the implant with the bone tissue, 

resulting in bone growth on the implant surface (285). During implantation, damage to the bone 

environment and the direct contact of the implant with body fluids can induce the formation of a fibrous 

tissue capsule, preventing osteoblastic cell attachment to the implant surface (286, 327). This may 

ultimately lead to the loosening of the implant and decreases the patient’s quality of life (286).  

A major drawback of metallic implants is associated with the high modulus of elasticity, resulting in 

stress shielding of the bone and ultimately leading to implant failure or complications (328). Stress 

shielding is defined as the translation of stress through the implant rather than the bone, which is 

mediated by a higher stiffness (Young’s modulus) of implant materials as compared to physiologic 

bone tissue (321, 329). Bone remodeling and repair relies on environmental stimuli, such as 

mechanical loading, to appropriately adjust for movement and flexibility; particularly, the lack of 

mechanical stimulation can result in bone resorption (71). Generally, the Young’s modulus of titanium 

implants is 3-10 times higher than that of natural bone, yet it remains more suitable for biomedical 

applications than stainless steel or cobalt/chrome-based alloys (321, 328). 

Titanium has a high affinity for oxygen, which makes the implant surface sufficiently reactive for 

chemical modification, including the deposition of bioactive coatings that enhance bioactivity, 

osseointegration, and implant stabilization (284). Frequently used surface modifications include 1) 

coating with calcium phosphate, hydroxyapatite, or bioactive glass; 2) anodization; or 3) immobilization 

of integrin recognition sequences (e.g., RGD-sequence) (330-332). Currently, the performance of 

ceramic coatings (e.g., calcium phosphate, bioactive glass) is insufficient because the materials are 

too brittle to obtain adequate strength at the interface between the implant and the coating (333, 334). 
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1.6.3 Chitosan membranes 

One particular group of materials under investigation as bioactive coatings for titanium and its alloys 

are polysaccharides, i.e., chitosan, starch, and mucopolysaccharides (335). For applications in various 

systems, chitosan can be pressed into various forms and combined with other biomaterials; excellent 

basic properties for application as bioactive coating and scaffolds in tissue engineering (204). 

Chitosan membranes can be prepared by solution casting methods, but bioactivity and surface 

properties strongly depend on the chemical properties of the starting material (236, 336). A higher DD 

is associated with 1) increased wettability (higher hydrophilicity), 2) higher degree of crystallinity, 3) 

enhanced tensile strength and elastic modulus, 4) increased adsorption of negatively charged 

proteins, and 5) decreased surface roughness (335, 337). The appropriate choice of substrate for the 

solution casting process critically determines the final degree of crystallinity, as the crystal structure is 

crucially influenced by the surface structure of the substrate (338). 

Cross-linking methods are commonly used in biomaterials research to prolong the stability and 

improve the properties of biomaterials, i.e., degradation, chemical resistance, porosity, and 

mechanical properties (339, 340). Chitosan materials with a DD of around 50% are soluble in aqueous 

solutions and require cross-linking to improve stability (341). Solubility of these materials is attributed 

to the degradation of the secondary structure and the subsequent increase in hydrophilicity (341).  

Before use in cell culture experiments and animal models, chitosan membranes require 

sterilization; however, even the commonly used sterilization methods can induce chemical 

modifications in the polymer structure and ultimately affect the biological performance (340, 342, 343). 

Autoclaving and dry heat have been shown to decrease the molecular weight and negatively affect 

aqueous solubility (342, 343). Sterilization via gamma irradiation or ethylene oxide is associated with 

chain scission; thereby, decreasing mechanical properties and increasing degradation susceptibility 

(340, 342).     

 

1.6.3.1 Biological performance 

For ease of handling and simplicity, the evaluation of chitosan membrane bioactivity is generally 

performed on tissue culture plastic before coating titanium implants, which allows initial 

characterization of surface properties and biological performance. The coating of titanium is attempted 

only after ensuring that the general properties of the membranes meet the requirements for coated 

implants in tissue engineering applications. 

The bioactivity of any chitosan membrane is crucially affected by the surface characteristics and 

the DD, which was reported repeatedly to alter cellular behavior depending on the cell type (344). A 

higher DD is generally considered to increase cell attachment and proliferation, yet a lower DD has the 

promising ability to induce healing without scar tissue formation (234, 336). The cationic charge has 

been proposed to mediate the attachment of osteoblasts rather than fibroblasts, which would be 

remarkably useful for the prevention of fibrous tissue capsule formation around medical implants 

(345). 

Chitosan membranes as biological substrates have been studied for a variety of cell types, 

including osteoblastic and pre-osteoblastic cells as well as non-osteoblastic cell lines and primary cells 
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. Generally, osteoblastic cell attachment and proliferation is favored on high DD chitosan membranes, 

supporting differentiation and secretion of ECM molecules (239, 261). Attachment and proliferation of 

MSC seems to be more complex, strongly depending on the thickness of the membrane and requiring 

a DD of at least 96% (338, 346). Non-osteoblastic cell lines and primary rat hepatocytes were 

demonstrated to adhere to chitosan membranes, but no induction of differentiation was observed (338, 

347). 

 

1.6.3.2 Chitosan-coated titanium 

Coating of titanium and titanium alloys with chitosan membranes can be achieved by a number of 

methods, e.g., solution casting, silanization, electrophoretic deposition, and layer-by-layer self-

assembly (348, 349). The use of solution casting methods is limited to non-complex shapes of titanium 

and is associated with insufficiently low bonding strength of the coating to the medical device (350). 

Silanization is based on the reaction of APTES, an aminosilane, with the titanium oxide layer, followed 

by secondary ketimine formation with glutaraldehyde and, finally, cross-linking between 

glutaraldehyde and chitosan (351, 352). This chemical process provides significantly increased 

bonding strength of the coating (350). Electrophoretic deposition is an inexpensive, fast, and easily-

scalable technique for biomaterial processing based on the principles of electrophoresis (353, 354). 

Finally, layer-by-layer self-assembled coatings are generated by alternate solution casting with 

positively charged chitosan followed by a negatively charged biomaterial solution (355, 356).  

Titanium coated with chitosan via silanization was shown to improve osteoblast attachment in 

comparison to uncoated titanium, remain stable for more than 8 weeks and positively affect integration 

of the implant at the bone-biomaterial interface (239, 348). Similarly, chitosan membranes deposited 

using layer-by-layer self-assembly methods, performed consistently better than uncoated titanium 

films in terms of cell attachment and stimulation of osteogenic differentiation (355, 356). However, 

numerous challenges remain before chitosan-coated titanium implants can be successfully translated 

into the clinics. 
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2. Aims 

The general aim of this thesis was to analyze the role of natural biomaterials derived from chitin, i.e., 

chitosan and chitosan derivatives, in stem cell biology (Part 1) and tissue engineering applications 

(Part 2).  

Part 1 was intended at identifying the impact of chitosan derivatives (glucosamine, hexa-oligomers, 

and a heterogeneous mixture of ChOS) on osteogenesis and the expression of the CLP YKL-40 in 

human MSCs. YKL-40 has been strongly indicated to play a role in tissue regeneration and 

remodeling, yet its expression and regulation by chitosan derivatives in MSCs had not been 

determined.  

Part 2 was focused on identifying important properties of chitosan for tissue engineering 

applications, including the analysis of surface characteristics and three-dimensional clues that may 

enhance osteogenesis and the interaction with titanium implant surfaces. Based on the lack of 

consistent literature concerning casting methods for chitosan membranes, the studies in this part 

included the development of standard protocols for solution casting of chitosan membranes onto 

tissue culture plastic. 

 

The specific aims for respective papers in each part of this thesis are summarized below. 

 

2.1. Part 1 – Chitosan derivatives in stem cell biology 

I. Study the effect of the aminosugar glucosamine on expansion, osteogenic differentiation, and 

expression of the CLP YKL-40 in human MSCs. 

II. Compare the biological effect of chitin-derived hexamers (N-acetyl chitohexaose) and 

chitosan-derived hexamers (chitohexaose) on osteogenesis, cytokine secretion, and 

expression of the CLP YKL-40 in human MSCs. 

III. Investigate the potential impact of endotoxin contamination in ChOS preparations on 

bioactivity, including effects on osteogenic differentiation, gene expression, and cytokine 

secretion in human MSCs. 

 

2.2. Part 2 – Chitosan in tissue engineering 

IV. Relate surface characteristics of chitosan membranes prepared from chitosan starting material 

with a wide range of DD to in vitro bioactivity of the mouse pre-osteoblastic cell line 

MC3T3-E1. 

V. Develop standard protocols for solution casting of chitosan membranes, enabling the use of 

chitosan starting material from different sources, with different DD and chemical 

modifications. 

 

 

“A fact is a simple statement that everyone believes. It is innocent until found guilty.  

A hypothesis is a novel suggestion that no one wants to believe. It is guilty, until found effective”  

 

Edward Teller, nuclear physicist (1908-2003) 
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3. Materials and methods  

3.1. Cell culture models 

Studying separate cell populations in in vitro experiments has impressively contributed to the 

understanding of numerous signaling pathways and the regulation of cell differentiation and maturation 

(357). Regarding the investigation of complex tissues, including the bone environment, the 

approximation by studying single-population cell culture models cannot sufficiently represent the in 

vivo situation (357, 358). The physiological processes underlying bone remodeling and fracture repair 

are dependent on an elaborate network of different cell types and tightly controlled cross-talk (81).  

Nevertheless, the in vitro study of single-population cell cultures offers several enticing advantages, 

including 1) reduced complexity, 2) stable cell metabolism, 3) homogeneity, 4) easy characterization, 

and 5) induction of specialized differentiation programs. Thereby, in vitro cell culture studies can 

create invaluable models for the screening of potential drug compounds and innovative coating 

materials for implants in orthopedic research, as well as for advancement in the understanding of 

regulatory processes during differentiation. This holds true as far as the limitations of a single-cell 

population model are recognized (357). 

 

3.1.1. hBMSCs 

Stem cells hold a great promise as an attractive cell source for tissue engineering and regenerative 

medicine applications. Potential therapeutic utility is based on migratory abilities, immune-modulatory 

functions, and promotion of tissue repair and regeneration (359). In the first part of this thesis (papers 

I-III) hBMSCs were used as model cell culture system to evaluate the effect of chitosan derivatives on 

stem cell biology and the process of osteogenic differentiation. 

Low passage (2-5) cells were used in all experiments and cell surface antigen expression was 

analyzed in compliance with the criteria posed by the International Society for Cellular Therapy (19). 

All experiments included control cultures without the addition of chitosan derivatives. Stock solutions 

of chitosan derivatives were stored in aliquots at - 20° C to prevent degradation. 

In paper I, a single donor was used in all experiments and supplemented with 200 µg/ml 

glucosamine (YSK – Yaizu Suisankagaku Industry, Japan). Glucosamine stock solutions were 

prepared by dissolving D-glucosamine hydrochloride salt in sterile phosphate buffered saline (PBS) 

and subsequent filtration through 0.45 µm and 0.22 µm filters.  

In paper II, two independent donors were supplemented with 200 µg/ml chitosan hexamers 

(chitohexaose 6HCl; 1203.73 g/ml, 100% DD, and 96% purity per high performance liquid 

chromatography (HPLC); Carbosynth Limited, UK) and one donor received 200 µg/ml chitin hexamers 

(hexa-N-acetyl chitohexaose; 1237.1 g/ml, 0% DD, and 95% purity per HPLC; IsoSep AB, Sweden). 

Before use in cell culture systems, hexamer preparations were run through Detoxi-Gel Endotoxin 

Removing Columns with immobilized Polymixin B. 

In paper III, three independent donors were supplemented with 10 ng/ml LPS, 400 µg/ml ChOS 

(ChOS mixture; 60% DD; Genis ehf, Iceland) or a combination of the two. ChOS preparations were 

run through the Detoxi-Gel Endotoxin Removing Columns with immobilized Polymixin B and were 

independently endotoxin tested by Lonza (Belgium). 
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3.1.2. Mouse preosteoblastic cell line, MC3T3-E1 

The mouse preosteoblastic cell line MC3T3-E1 is a spontaneously immortalized, clonal cell line 

derived from mouse calvariae, which can be induced to mineralize in response to ascorbic acid and -

glycerophosphate (360, 361). This cell line was shown to express osteogenic marker genes and react 

with osteotropic hormones in a manner similar to that of primary calvarial osteoblasts, resulting in a 

well-suited cell model to reliably study osteogenic differentiation processes, transcriptional regulation 

and ECM deposition (362, 363). MC3T3-E1, subclone 4, cells were used in papers IV and V to 

determine the bioactivity of chitosan membranes prepared from chitosan with different DD and for the 

development of standard protocols for solution casting methods. 

 

3.2. Validation of osteogenic phenotype 

Successful osteogenic differentiation was determined by several methods: 1) Alizarin red staining 

(specific for calcification) and quantitation, 2) von Kossa staining (staining of mineral deposits), 3) ALP 

activity assay, and 4) gene expression analysis of osteogenic marker genes. 

In papers I-III, calcium deposition was assessed by incubation with a 2% alizarin red solution at pH 

4.1, which in paper I was additionally quantified after incubation with 10% cetyl-pyridinium chloride and 

analysis at 562 nm in a spectrometer. In papers IV and V, alizarin red staining was used to assess 

homogeneous membrane casting. Based on the chemical characteristics of chitosan, acidic dyes, 

including alizarin red, are strongly retained. 

In addition, mineral deposition in papers I and III was determined by von Kossa staining following 

standard protocols. The silver nitrate stain reacts with mineral deposits to form dark brown 

precipitates. 

In papers III and IV, ALP activity was determined in cell lysates by incubation in 1 mg/ml p-

nitrophenyl phosphate solution. After 30 min of incubation, optical density was measured at 400-405 

nm in a spectrometer. The conversion of p-nitrophenyl phosphate to p-nitrophenol by ALP was 

calculated using the general Beer-Lambert law. In paper IV, ALP activity was further normalized to 

protein content, determined by bicinchoninic acid (BCA) assay, to account for differences in cell 

proliferation. 

Finally, osteogenic differentiation was, without exception, validated by the expression of osteogenic 

marker genes, including human osteocalcin (paper I), human osteopontin (papers I and III), human 

ALP (papers I-III), human runx-2 (papers I-III), human collagen type I (papers II and III), mouse ALP 

(paper IV), mouse runx-2 (paper IV), and mouse osteopontin (paper IV). 

 

3.3. Molecular biology 

RNA isolation was performed using Qiagen BioRobot workstation and the EZ-1 RNA Cell Mini Kit. 

Samples from osteogenic differentiation experiments in papers II and III were homogenized in a 

FastPrep 24-instrument using Lysing Matrix D tubes containing 1.4 mm ceramic spheres before RNA 

isolation. RNA was transcribed with the High-Capacity cDNA Reverse Transcription Kit from Applied 

Biosystems. A total of 10 µl of RNA sample was added to a master mix containing 2.0 µl 10x RT 
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buffer, 0.8 µl 25x dNTP (100 mM), 2.0 µl 10x Random Primers RT, 1.0 µl Multiscribe Reverse 

Transcriptase, 1.0 µl RNase Inhibitor, and 3.2 µl Nuclease-free H2O. Cycling conditions were the 

following: 25 °C for 10 min, 37 °C for 120 min, 85 °C for 5 sec, and then 4 °C until transferred to the - 

20 °C freezer for storage until use. 

Selected genes were quantified in a 7500 Real Time PCR System with 9 µl of 1:10 diluted sample 

cDNA, 1 µl Taqman assay, and 10 µl Taqman master mix. Data were analyzed using GenEX 5.3.2.13 

software and included preprocessing to identify outliers and handle missing data. Raw data was 

averaged based on quantitative polymerase chain reaction (qPCR) repeats, normalized to the 

expression of a reference gene or globally normalized (paper III), and relative quantities were 

determined.  

 

3.4. Solution casting of chitosan membranes 

A standard protocol was developed for the solution casting of chitosan membranes, detailed in paper 

V. Briefly, a 1% (w/w) chitosan solution in deionized H2O with 50 mM glacial acetic acid (100%) was 

stirred on a magnetic stirrer until fully dissolved. Homogeneous membrane casting and removal of 

undissolved particles was asserted by 1 h centrifugation at 5000 rpm before solution casting. A total of 

0.1 ml chitosan solution/cm
2
 was cast into tissue culture-treated plates and dried over-night in an 

incubator at 37°C. Next, chitosan membranes were neutralized with 0.1 M NaOH, sterilized with 70% 

ethanol, and further sterilized under UV-light. To improve attachment, membranes were incubated with 

a 5 µg/ml fibronectin solution in sterile PBS for 3 h at 37°C. Equilibration was performed in Dulbecco’s 

modified eagle medium (DMEM/F12) media supplemented with penicillin/streptomycin and 10% heat-

inactivated fetal bovine serum (FBS). 

To improve stability of low DD chitosan membranes during long-term cultures of osteogenic 

differentiation, respective membranes were internally cross-linked using 0.02% glutaraldehyde 

solution (papers IV and V). 

 

3.5. Surface characterization of chitosan membranes 

In paper IV, chitosan membranes of different DD were analyzed regarding their surface 

characteristics, including 1) water contact angle measurements to estimate surface wettability, 2) 

atomic force microscopy (AFM) to evaluate surface topography and to calculate average surface 

roughness, and 3) fibronectin adsorption studies to determine the amount of protein retained after the 

initial fibronectin-coating procedure. 

Water contact angle measurements were performed in an optical contact angle meter with a 

droplet of 5 µl distilled H2O and calculated using the Laplace and Young equation. Surface topography 

was determined in an XE-100 atomic force microscope, operating at a scan size of 5 µm and a scan 

rate of 0.15 Hz in noncontact mode. The average mean surface roughness was derived from at least 8 

measurements. Fibronectin adsorption studies were performed with in-house enzyme-linked 

immunosorbent assay (ELISA) using rabbit anti-fibronectin antibody and goat anti-rabbit IgG ALP-

conjugated antibody. After incubation with the substrate p-nitrophenyl phosphate, optical density was 

measured at 405 nm in a spectrometer. 
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3.6. Statistical analysis 

Statistical analysis was performed using Prism 5.01 software and GenEx 5.3.2.13 software (for qPCR 

analysis). For direct comparison between control and treatment groups, t-test was used (papers I-IV). 

In addition, one-way analysis of variance (ANOVA; papers II-IV) with Tukey’s Multiple Comparison 

Post Test, two-way ANOVA (papers II and III), and three-way ANOVA (paper III) were practiced 

wherever applicable. Heatmaps generated from qPCR data were based on hierarchical clustering of 

autoscaled, preprocessed relative fold changes (papers I and III). The gene expression data visualized 

in the heatmap set-up was further validated by Spearman Correlation analysis (paper I); p < 0.05 was 

considered statistically significant. 

 

“No amount of experimentation can ever prove me right; 

a single experiment can prove me wrong”  

 

Albert Einstein, theoretical physicist (1879-1955) 
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4.  Summaries and discussion of individual papers 

4.1. Paper I – The effect of glucosamine on osteogenic marker genes 

Glucosamine is a chitin-derived aminosugar that naturally occurs in connective tissues and as subunit 

in the cartilage ECM; however, it is best known as a dietary supplement for chondro-protection (264). 

In the bone environment, glucosamine has been shown to reduce excessive bone formation and bone 

remodeling while simultaneously decreasing bone resorption (279). Chemically, glucosamine can be 

described as a subunit of the natural substrate for chitinases and CLPs, with the latter being indicated 

to participate in tissue remodeling, inflammation, and disease pathogenesis (181, 219). YKL-40 is the 

most studied CLP in men and recent reports have implied particular roles in preventing damage to the 

ECM and promoting tissue repair in normal bone marrow (191). Crystallographic analysis revealed 

that binding of a putative ligand could induce conformational changes in the YKL-40 protein, indicating 

a potential signaling role; yet, biological function and possible endogenous substrates remain 

speculative (190, 364). Therefore, we studied the expression of YKL-40 during expansion and 

osteogenic differentiation of hBMSCs and determined the effect of glucosamine on YKL-40 expression 

and its impact on bone biology.  

A single donor of hBMSCs was treated with 200 µg/ml D-glucosamine hydrochloride salt (in PBS) 

during short-term (7 days) expansion and osteogenic differentiation (28 days). In the presence of 

glucosamine, no changes in the expression of cell surface markers, pluripotency, morphology, and 

proliferation were observed during cell expansion, proving that basic cell characteristics remained 

unaltered. YKL-40 was expressed in control cultures at similar levels after 3 days and 7 days of short-

term culture, without significant effects of glucosamine on the gene expression levels. During 

osteogenic differentiation, a trend of increased YKL-40 expression in the presence of glucosamine 

was observed, yet statistical significance was not met (p=0.083). 

Osteogenic marker genes followed the expected expression profile during the course of 28 days of 

differentiation in control cells. Glucosamine treatment significantly increased the expression of ALP, 

osteocalcin (OCN) and RUNX-2 after 28 days in culture. Osteopontin (OPN) expression was not 

significantly different between the two groups (p=0.097), yet a trend towards higher gene levels was 

observed in the presence of glucosamine. Clustering by means of a heatmap was applied to visualize 

gene expression correlations between YKL-40 and osteogenic marker genes. Thereby, late stage 

osteogenesis (28 days) was characterized by peak expression of YKL-40, OCN, RUNX-2, and ALP, in 

combination with low OPN expression. Spearman correlation coefficient (r
2
) was calculated to be 

77.64% for YKL-40/RUNX-2, 90.45% for ALP/RUNX-2, and 78.87% for OCN/RUNX-2. This correlation 

suggests that YKL-40 in combination with increased osteogenic marker gene expression might play a 

role during the late stages of osteogenic differentiation of hBMSCs and was successfully modified in 

the presence of glucosamine. The active chitinases, AMCase, and chitotriosidase (CHIT) were not 

detected in any of the experimental conditions applied. 

Overall, mineralization was impaired following treatment with glucosamine as compared to the 

control cultures, most likely due to acidosis of the cell culture media. However, the observed effect of 

glucosamine on osteogenic marker gene expression was not affected by the general effects attributed 

to acidosis during osteogenic differentiation (365). Other groups have reported similar changes in 
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gene expression following glucosamine treatment (268) and control experiments adjusting 

glucosamine culture pH to 7.4 by sodium bicarbonate solution resolved the delay in mineralization.  

The secretion of ten selected cytokines was not affected by glucosamine over 28 days of 

osteogenic differentiation. No expression of IL-1 , IL-12p(40), epidermal growth factor (EGF), and 

RANTES was observed in any of the cultures. The anti-inflammatory cytokines IL-4, IL-10, and TNF-  

were expressed at low levels, whereas the growth factor VEGF was secreted at intermediate levels. 

Comparatively high secretion of the proinflammatory cytokines IL-6 and IL-8 was observed, yet no 

effect could be attributed to the presence of glucosamine.  

In conclusion, we showed that YKL-40 was expressed both during short-term (7 days) expansion 

and osteogenic differentiation in hBMSCs, whereas the active chitinases could not be detected under 

any of the experimental conditions. Glucosamine did not affect basic cell characteristics, including 

proliferation, pluripotency, and surface antigen expression. During osteogenic differentiation, 

glucosamine increased the expression of YKL-40, yet expression during short-term expansion was 

unaltered. Glucosamine significantly amplified osteogenic marker gene expression, while 

mineralization was delayed in response to acidosis of the cell culture media. The strong correlation of 

YKL-40 and osteogenic marker gene expression proposes a yet unknown role for YKL-40 in late stage 

osteogenic differentiation of hBMSCs.  

 

4.2. Paper II – Chitooligomers have different bioactivity 

Chitosan derivatives, particularly chitooligomers prepared from chitosan and chitin, are appealing as 

potential drugs for asthma, vectors in gene therapy, and as wound dressings, owing to their water 

solubility and promising bioactivity (243, 246). The biological potential is strongly dependent on the 

chemical properties, particularly the molecular weight, size of the oligomers, and the DD (247, 248). 

The general features attributed to chitooligomers include 1) antitumor activity, 2) inhibition of 

angiogenesis, 3) immune-stimulatory effects, 4) lack of toxicity, and 5) rapid elimination from the tissue 

(251, 252). Particularly, hexamer and heptamer chitooligomers, independent of the DD, display 

highest bioactivity; however, mass production of industrial quantities of pure oligomer fractions is 

challenging and expensive (243, 244). Because the use of chitooligomers has been increasing over 

the last decades, mostly focusing on antitumor and anti-angiogenesis potency, we compared the 

effect of 200 µg/ml chitosan hexamers (chitohexaose, 100% DD) and 200 µg/ml chitin hexamers (N-

acetyl chitohexaose, 0% DD) on expansion and osteogenic differentiation potential of hBMSCs. 

Basic hBMSC cell characteristics, i.e., proliferation, morphology, and attachment, remained 

unaltered in the presence of chitooligomers. Although both hexamer chitooligomers were prepared to 

guarantee the absence of endotoxins, we estimated innate immune system activation by evaluating 

the expression of TLRs. These first line defense receptors of the innate immune system recognize 

molecular patterns in substances that could pose potential harm to the host. Activation of these 

receptors induces signaling cascades, resulting in the secretion of cytokines and chemokines that are 

essential for the subsequent progression of acquired immune responses (96). TLR4 is the primary 

receptor recognizing endotoxins, whereas TLR3 is believed to participate in hBMSC stress responses 

(119). During short-term expansion, no effect on the expression of TLR4 was detected, whereas chitin 
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hexamers significantly increased the expression of TLR3 on day 7. Similarly, the expression of YKL-40 

was elevated at the end of the expansion period after treatment with chitin hexamers, however, 

chitosan hexamers also caused a significant increase, though smaller than the fully acetylated 

chitooligomer fraction. TLRs were shown to participate in epithelial homeostasis, proposing a potential 

role in tissue remodeling similar to the CLPs (123). Analysis of cytokine secretion patterns displayed 

increased levels of IL-6 and IL-8 following treatment with hexamer preparations, despite the absence 

of endotoxins. Hexamer chitooligomers have been shown previously to cause elevated IL-8 levels, 

which was linked to promoting wound healing process by attracting cells of the acquired immune 

system (231).  

The expression of selected osteogenic marker genes, i.e., RUNX-2 and collagen type I (COL1A2), 

was significantly higher in the presence of chitin hexamers, whereas chitosan hexamers had no effect. 

Despite the increase in osteogenic marker gene expression, mineralization and morphology were 

comparable in all groups during the culture period. YKL-40 protein and gene expression did not differ 

in any of the samples, regardless of the initial increase observed during short-term expansion. This 

could indicate a short-lived effect of hexamer preparations on YKL-40 expression; however, there 

have been publications proposing that ligand interaction is not required for YKL-40 activation (199). In 

contrast, the increase in TLR3 expression was prolonged and could be observed for chitin hexamers, 

as initially described, yet additionally also for chitosan hexamers during the differentiation period. 

However, the potency of chitin hexamers was again significantly higher. Finally, cytokine secretion 

patterns followed the same trend as observed during short-term expansion, showing significantly 

higher levels of IL-6 and IL-8 secretion after treatment with either hexamer chitooligomers. The 

induction of proinflammatory cytokines is tightly linked to bone biology, promoting osteogenesis in 

single-population cell cultures, yet inducing increased rates of bone turn-over in co-cultures that mimic 

the in vivo environment more closely (366, 367).  

In this study, we showed that chitooligomers can significantly affect gene expression and cytokine 

secretion, both during short-term expansion (7 days) and osteogenic differentiation; however, the 

observed potency of hexamer preparations is strongly dependent on the DD. Chitin hexamers (N-

acetyl chitohexaose) induced significantly higher levels of gene expression, i.e., YKL-40, TLR3, and 

selected osteogenic marker genes, which is why the choice of chitooligomer strongly depends on the 

intended application.  
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4.3. Paper III – Endotoxins feign bioactivity of chitosan derivatives 

Metal implants and polymeric devices applied in the clinical treatment of orthopedic tissue injuries are 

increasingly being coated with bioactive materials derived from natural substances to induce favorable 

biological effects (337, 368). Since the field of biomaterials research has been expanding over the last 

decade, an increasing number of non-chemists and non-biologists have entered the field, often lacking 

the necessary knowledge to understand the complex chemical interaction mechanisms and the 

presence of contaminating biota found in most natural substances. One of the materials under 

investigation as potential bioactive coating for metal implants is chitosan, the partly deacetylated form 

of chitin (369). The deacetylation process introduces a cationic charge to the polymer and favors 

interactions with the negatively charged phosphate groups of endotoxins (225, 370). The affinity for 

endotoxins is in fact so strong that cross-linked chitosan microfiltration membranes have been used 

for the removal of endotoxin contamination from medical preparations (226). Endotoxins are an 

integral part of the outer membrane of gram-negative bacteria, but are only secreted in minute 

amounts during cell division and the normal life cycle of the bacteria (124). However, substantial 

quantities of endotoxins can be released during the destruction of the bacterial cell wall by antibiotics 

or the actions of the host immune system (125). The biological effects of endotoxins on the human 

body are extensive and strict regulations are in place to reduce the risk of adverse health effects 

induced by medical devices (131, 371). However, these recommendations may be inadequate for the 

in vitro evaluation of biomaterials and at the moment the amount of endotoxins that may be tolerated 

without biological response is insufficiently specified (157, 169). In addition, there is a lack of standard 

guidelines for in vitro evaluation of biomaterials, including the need for regular endotoxin testing and 

publication of these values along with other biomaterial characteristics (131).    

In this study, we used 10 ng/ml LPS –applied here as a synonym for endotoxins– in combination 

with 400 µg/ml of water-soluble chitosan derivatives (ChOS; DD = 60%; DP 6-12 = 78.5%; 0.38 ± 0.13 

EU/mg endotoxin) to evaluate the effect of endotoxin contamination on in vitro bioactivity studies. Prior 

to the application in cell culture systems, ChOS was subjected to endotoxin removal and independent 

endotoxin testing. Initial characterization by HPLC, Infrared spectroscopy, and 
1
H-nuclear magnetic 

resonance (NMR) proved that the endotoxin removal procedure had no effect on material properties, 

i.e., DD, DP, and structure. 

During short-term expansion (7 days), the presence of LPS did not affect proliferation, morphology, 

or the expression levels of selected genes, i.e., TLR3 (hBMSC stress responses), TLR4 (endotoxin 

receptor), and YKL-40 (CLP indicated in innate immune responses). However, the evaluation of 

cytokine secretion patterns indicated the presence of LPS as early as 3 days after culture initiation via 

significantly increased secretion of IL-6, IL-8, IL-12(p40), and RANTES. The proinflammatory 

cytokines IL-6 and IL-8 belong to the innate repertoire of host defense, yet similarly affect bone 

metabolism (366). Similarly, IL-12(p40) plays a role in cell-mediated immune responses and 

participates in the activation of acquired immune system progression (372). RANTES is generally 

expressed at sites of inflammation and was identified as a key player in the uncontrolled expression of 

proinflammatory cytokines during inflammatory immune responses (373). 
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The evaluation of osteogenic marker genes after 21 days of differentiation revealed increased 

expression of collagen type I (COL1A2) after treatment with ChOS, which was completely abrogated 

in the presence of LPS. The effect on COL1A2 expression might be explained by the heparin binding 

site in this particular protein, as the ChOS mixture applied in this study is structurally similar to heparin 

(374). Because ChOS can strongly interact with LPS by the formation of hydrogen bonds and 

electrostatic interaction, the thus formed stable complex could sterically hinder the interaction with the 

collagen type I protein (370). However, the biological potency of LPS would remain unaffected, 

because approximately 30% of the endotoxin will remain free to interact with cellular receptors (375).  

In the presence of LPS, the expression of ALP and RUNX-2 was significantly upregulated, 

accompanied by increased ALP activity and calcium hydroxyapatite deposition. The increase in 

osteogenic marker gene expression was highly correlated to increased expression of TLR3 and YKL-

40, as determined by hierarchical clustering. The effect of LPS on osteogenic differentiation in 

hBMSCs has been described previously and was linked to the activation of the extracellular signal-

regulated kinase (ERK) pathway (116, 376).  

The presence of LPS in ChOS preparations could not be conclusively determined from the quality 

of osteogenic differentiation, yet it required the analysis of cytokine secretion patterns. Several 

cytokines were strongly secreted in the presence of LPS, including IL-6, IL-8, IL-12p(40), RANTES, IL-

4, and TNF- . Because osteoclasts and immune cells are both derived from the hematopoietic 

lineage, the former can strongly react to cytokines secreted during inflammation and consequently 

activate bone remodeling pathways in vivo (377). Particularly, IL-6 induced after the ligation of 

endotoxins with TLR4 was tightly linked to osteoclast-induced bone resorption (367). 

In conclusion, we have shown that endotoxin contamination in chitosan derivatives can result in 

false-positive results, altering product performance in vitro. The presence of endotoxins promoted 

osteogenic differentiation, yet it did not elicit cytotoxicity. Improvement of osteogenic differentiation 

was completely abrogated after appropriate endotoxin removal. Endotoxin contamination is difficult to 

avoid during the handling of natural substances, which in combination with sensitive cell-based assays 

could lead to inaccurate evaluation of biomaterials. Hence, there should be a genuine concern for the 

possible effects of endotoxin contamination, including the implementation of simple quality control 

procedures. 

 

4.4. Paper IV – Potential coating material for titanium implants 

Clinical treatment of orthopedic tissue injuries often requires fixation via bone implant material (321). 

Implants produced from titanium and titanium alloys are recommended for a number of load-bearing 

applications, yet improving the performance at the bone-biomaterial interface could further increase 

the success of orthopedic fixations (324). Successful integration and stabilization of the implant 

critically depend on surface characteristics and osseointegration (285). During implantation, damage 

to the bone environment and the direct contact of the implant with bodily fluids can promote the 

formation of a fibrous tissue capsule, ultimately resulting in the loosening of the implant (286). 

Chitosan is one of the natural materials under investigation in order to improve implant 

osseointegration and cellular attachment due to its favorable key properties (350). The main 
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characteristics attributed to chitosan include 1) lack of toxicity, 2) biocompatibility, 3) degradation in 

vivo, 4) fungistatic properties, and 5) bacteriostatic effects (204). In addition, the straight-forward use 

of chitosan in combination with an ample amount of different biomaterials and the easy molding 

abilities make this polymer an attractive tool for tissue engineering applications (378). The biological 

properties of chitosan are strongly dependent on the number of charged groups (DD) and the 

molecular weight and its distribution (polydispersity index) (227). Cellular behavior of any cell type is 

crucially affected by the surface characteristics and the DD, with distinct effects depending on the cell 

type (336). Generally, cell attachment and proliferation are superior on membranes prepared from 

higher DD chitosan, yet lower DD chitosan coatings hold the promising ability to induce healing 

without scar tissue formation (379). The cationic charge of the polymer is indicated in mediating the 

attachment of osteoblasts, rather than fibroblasts, offering a remarkably useful strategy for the 

prevention of fibrous tissue capsule formation around medical implants (345). However, the detailed 

mechanism of how chitosan membranes affect bone cell attachment and proliferation remain 

insufficiently understood, and, particularly, attachment rates to lower DD chitosan coatings remain 

unsatisfactorily low for clinical applications (380).    

Consequently, in this study, we evaluated the surface characteristics and bioactivity of different DD 

chitosan in the form of chitosan membranes. Crab shell chitosan with 87% DD served as positive 

control for the innovatively prepared range of shrimp shell chitosan (47% DD, 68% DD, 87% DD, and 

94% DD). However, a direct comparison of physicochemical properties of chitosan preparations from 

different natural sources is challenging. Crab shell-derived chitosan requires longer deacetylation 

processes, causing a decrease in molecular weight, subsequently affecting bioactivity (381).  

Prior to bioactivity studies, chitosan membranes were coated with fibronectin to improve initial cell 

attachment. The interaction of a biomaterial with approaching cells is mediated by the unspecific 

adsorption of matrix proteins and fibronectin is one of the main adhesion proteins at the bone-

biomaterial interface, containing an integrin-specific binding sequence (290). The negatively charged 

protein is particularly important for attachment and differentiation of osteoblastic cells and is, therefore, 

frequently used to coat biomaterials (294, 382). Finally, since chitosan membranes with a DD close to 

50% are particularly soluble in aqueous solutions, they require cross-linking to improve stability. The 

solubility of these materials is attributed to the degradation of the secondary structure and the 

subsequent increase in hydrophilicity (341). Cross-linking methods are commonly used in biomaterials 

research to prolong material stability and improve chemical resistance (339). Glutaraldehyde is by far 

the most widely used cross-linking reagent for chitosan membranes and acts via the formation of an 

imine bond between the primary amino group of chitosan and the aldehyde group (383). In the present 

study, a low degree (0.02%) of glutaraldehyde cross-linking was applied to 47% DD and 68% DD 

chitosan membranes to improve stability during long-term cultures of osteogenic differentiation.   

Surface characteristics and the biological microenvironment surrounding any biomaterial, strongly 

influence the interactions with approaching cells and determine bioactivity (384). Therefore, 

membranes were characterized in terms of surface topography, wettability and fibronectin adsorption. 

AFM showed that there was no significant difference in surface roughness between chitosan 

membranes and the tissue culture plastic control. Yet, surface patterns diverged, since chitosan 
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membranes displayed a valley and hill-like topography, whereas tissue culture plastic presented 

evenly distributed fibers. Rougher surfaces are associated with enhanced osteoblastic differentiation 

and cell attachment, while fibroblastic cells prefer smooth surfaces (302). The geometrical architecture 

at the micrometer and millimeter scale is important for the successful integration of a biomaterial; 

however, the nano surface roughness mediates the cell-specific interactions (385). Concerning 

wettability, a trend of increase of the contact angle from lowest to highest DD was observed. Water 

contact angle measurements are used as an estimation of the hydrophilicity and hydrophobicity of a 

material surface (386). Low water contact angles are generally associated with superior cell 

responses, yet matrix protein adsorption may be thermodynamically undesirable. Hydrophobic 

surfaces attract high levels of matrix proteins, but strong adsorption may damage the protein 

conformation and hence reduce bioactivity (387). Despite the statistical differences in contact angle 

measurements between high and low DD chitosan membranes, either surface is still considered 

hydrophilic. The interaction of fibronectin with chitosan membranes is based on the hydrophilicity and 

the cationic charge, which plays an important role in decreasing the denaturation process (296). In the 

present study, high DD chitosan membranes were shown to adsorb similar or even higher amounts of 

fibronectin to their surface than tissue culture plastic, while low DD chitosan membranes displayed 

significantly reduced fibronectin retention. These results are in agreement with previously published 

studies, showing a direct correlation of fibronectin adsorption to increases in the DD (346). 

 The influence of chitosan membranes on the bioactivity of the preosteoblastic, mouse cell line 

MC3T3-E1 was determined in terms of attachment, proliferation, and osteogenic differentiation. Cell 

attachment was observed on all chitosan membranes and could be sustained for extended periods of 

time (at least 24 days in culture). Cell morphology varied at early time points depending on the DD, but 

all cell layers were confluent after 1 week of culturing. Compared to the tissue culture plastic controls, 

proliferation was decreased but similar to that of the fibronectin-coated controls, except for minimal 

proliferation on 47% DD and 68% DD chitosan membranes. Fibronectin coating increases cell 

attachment, which in turn decreases the ability of cells to proliferate. Regarding osteogenic 

differentiation, no spontaneous induction of osteogenic differentiation was observed, but 94% DD 

chitosan membranes caused significantly higher ALP activity even in the absence of an osteogenic 

stimulus. Osteogenic marker gene expression revealed no adverse effects of chitosan membranes on 

osteogenesis, although morphological changes associated with osteogenic differentiation could be 

observed during the culture period. An increase in ALP activity was observed with higher DD chitosan 

membranes and the tissue culture plastic control, whereas lower DD chitosan membranes did not 

secrete active ALP enzyme, independent of the presence of an osteogenic stimulus. However, since 

the analysis of ALP activity was only a momentary snapshot, upregulation of enzyme activity at 

different time points could not be excluded.  

In conclusion, we showed that higher DD chitosan membranes are associated with increased 

surface roughness, increased fibronectin adsorption, and improved bioactivity. Osteogenic 

differentiation was not affected and membranes could not spontaneously induce differentiation 

processes in the absence of an osteogenic stimulus. Furthermore, cell attachment on low DD chitosan 

membranes was successfully achieved and cross-linking protocols established to enable long-term 
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cultures. Much research has focused on the use of chitosan membranes as bioactive coatings, but the 

opportunities in tissue engineering applications are far from being exhausted. An increase of implant 

biocompatibility and early strength development at the bone-biomaterial interface could significantly 

improve the existing practices in the clinical treatment of orthopedic tissue injuries.  

 

4.5. Paper V – Standard protocol for solution casting of chitosan 

membranes 

Implants produced from titanium and titanium alloys have been the gold standard in load-bearing 

orthopedic applications for several years because of their beneficial biological and mechanical 

properties. The advantages of titanium and its alloys for biomedical devices include 1) high corrosion 

resistance, 2) biocompatibility due to spontaneous formation of oxide layers, 3) high specific strength, 

and 4) lack of toxicity (321). High affinity for oxygen makes the surface of titanium implants sufficiently 

reactive for chemical modifications, including the deposition of bioactive coatings to enhance 

bioactivity, osseointegration, and implant stabilization (284). One of the materials under investigation 

as a bioactive coating for titanium and its alloys is chitosan (378). The prerequisite for the preparation 

of coatings and membranes is the cationic nature of chitosan, which is the premise for its solubility in 

dilute aqueous acids. Following dissolution, membranes can be cast on virtually any substrate, and 

the resulting coating becomes insoluble in aqueous solutions after a simple neutralization step (388). 

For ease of handling, the validation of a new coating procedure or starting material and subsequent 

evaluation of bioactivity are generally performed on tissue culture plastic rather than on the final 

substrate. This allows straightforward characterization of surface properties and biological 

performance. 

The biological properties of chitosan are strongly dependent on the DD, the molecular weight, the 

polydispersity index, and the successive order of acetylated and deacetylated residues in the chain 

(227). Inconsistency in reports describing the biological performance of chitosan coatings are 

frequently due to the lack of detailed information on source, sample preparation, and chemical 

properties of the polymer, which strongly affects the comparability of results from different studies 

(236). Furthermore, there are a vast number of protocols available for solution casting methods of 

chitosan membranes, but they are often restricted to the use of a specific DD (338, 346, 383). In 

addition, the often scarcely detailed methodological sections in biomaterial-related publications 

strongly impede reproducibility. 

Consequently, we developed a standardized and easily applied protocol for the solution casting of 

chitosan membranes. This protocol is suitable for chitosan material derived from different sources, 

spanning a wide DD, and even for the use of chitosan derivatives with innovative properties. The 

protocol includes a detailed description of preparation steps and quality control methods that ultimately 

result in long-term attachment and bioactivity similar to that of tissue culture plastic. Furthermore, 

simple in-house methods for the early prediction of successful experimental outcome were included. 

This protocol, therefore, allows selection of promising chitosan materials in accordance to the general 

requirements for coated implants in tissue engineering applications.  
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5. Concluding Remarks 

In this thesis, I determined the effect of natural, chitin-derived biomaterials on stem cell biology and 

examined important properties of chitosan for tissue engineering applications. I accomplished this task 

by comparing the effect of three chitosan derivatives on osteogenesis and the expression of the CLP 

YKL-40 in hBMSCs. The chitosan derivatives in question included 1) the aminosugar glucosamine, 

which is the smallest, completely deacetylated subunit of chitin; 2) pure hexamer chitooligomer 

preparations derived either from chitin or chitosan; and 3) a heterogeneous, well-characterized ChOS 

mixture, mimicking commonly used ChOS preparations in previously reported studies. I evaluated how 

chitosan derivatives affect the expression of and potentially regulate YKL-40 in hBMSCs, which has 

not been attempted before. I also demonstrated that strong consideration needs to be placed upon the 

choice of chitosan derivatives depending on the intended application. Finally, I raise awareness 

concerning endotoxin contamination in biomaterials derived from natural substances, because current 

recommendations for in vitro evaluation of bioactivity remain inadequate and insufficiently specified. 

Following a different approach, I determined relevant properties of chitosan for tissue engineering 

applications based on chitosan membranes as bioactive coatings with potential applications in the 

surface modification of titanium implants. I compared chitosan membranes prepared from a wide 

range of DD (47% - 94%) and derived from different sources (crab shell versus shrimp shell) in terms 

of surface characteristics and bioactivity. This work resulted in the development of a standardized 

protocol for solution casting processes of chitosan membranes, in-house prediction of successful 

experimental outcome, and long-term cell attachment comparable to that of commonly used tissue 

culture plastic.  

 

I would like to emphasize that the biomaterial community is well aware of the effects of endotoxins on 

in vivo validation assays, especially due to the stringent guidelines imposed by governing bodies such 

as the FDA. However, if the biomaterial community was generally aware of the effects of endotoxins 

on in vitro assays, I would expect a more open discussion about this topic in the literature. To the 

best of my knowledge, there is only a handful of groups that report endotoxin testing or endotoxin 

removal prior to the use of natural substances, and I am not aware of any standard guidelines, to date, 

that request the analysis of endotoxin levels prior to in vitro evaluation of natural substances and more 

importantly prior to publication of the results of such evaluations.  

Furthermore, I would like to point out that because tissue engineering, biomaterial development, 

and evaluation are interdisciplinary fields, the potential for misunderstandings and negligence is 

eminent. The evaluation of a biomaterial not only requires knowledge in engineering and materials 

science for development and production but also demands skills in sterile cell culturing techniques, the 

understanding of molecular biology, and the ability to appropriately interpret biological results. 

Scientists working in this field come from a variety of backgrounds, which is one of the reasons why 

endotoxins in biomaterials research should be more openly discussed. Scientists in this field need to 

be made aware of the difficulties in detecting endotoxins in natural substances during in vitro 

evaluation of bioactivity. 
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However, inflammation, as among other stimuli induced by endotoxins, is and stays an important 

part of wound healing; however, the inflammation process needs to be controlled. Bone is a complex 

tissue that strongly reacts to environmental and endogeneous stimuli (70). The regulation of bone 

turn-over and remodeling is regulated by the tightly controlled interplay of several cell types in order to 

provide appropriate cues for the maintenance and repair of bone structure and function (71). These 

cell types include osteoblastic cells as well as cells derived from hematopoietic and endothelial 

lineages (73). Endotoxins are well known for their effects on cellular functions, including the activation 

of immune cells, but subsequently also the modulation of bone homeostasis (169). Bone resorption 

during the bone remodeling process can be strongly affected by proinflammatory cytokines secreted 

from immune cells that modify survival and activation of osteoclasts (389). The same cytokines are 

also known to similarly affect osteoblasts in vitro (390). Several regulatory mechanisms are shared 

between the immune and the musculoskeletal system and were reported not only to influence 

osteoblast function but also bone formation (163). Concerning the endothelial cell lineages, these cells 

are also strongly influenced by endotoxins, upregulating NF- B - mediated secretion of inflammatory 

cytokines, and the expression of surface adhesion molecules (391, 392). Furthermore, endotoxins can 

affect actin organization, monolayer barrier function, and cell attachment to the ECM (393, 394). The 

response of endothelial cells may in fact contribute to the pathogenesis of systemic inflammation, 

because endotoxins induce a non-tolerant inflammatory response and the upregulation of adhesion 

molecules, which may result in injury to the tissue (395). There are a number of potential sources for 

endotoxins found in the peri-prosthetic tissue, including the bacterial biofilm on the surface of the 

implant, endotoxin contamination during the implant manufacture, and endotoxins derived from wear 

particles that can adsorb endotoxins from systemic infections or the intestinal flora (148). 

The role of endotoxins in the clinical setting of aseptic implant loosening may remain controversial 

but more and more evidence is accumulated to indicate that endotoxins are at least partially 

responsible for osteolysis and the loosening of a medical device (138, 165). Endotoxins were detected 

in the tissues surrounding implants in patients diagnosed with aseptic implant loosening, although no 

signs of microbial infections were detected (141). In addition, the prophylactic use of antibiotics, 

systemically or as part of the implant, resulted in 50% reduction in the incidence of aseptic implant 

loosening (142). Furthermore, endotoxins have been associated with inflammation in response to 

wear particles, accelerating the foreign body reaction, proinflammatory cytokine release, and 

macrophage activation (143). This hypothesis is based on the notion that macrophages at the bone-

biomaterial interface express TLRs, which are highly sensitive to even minute amounts of endotoxins 

(139, 146). Consequently, the activation of these receptors could be responsible for the induction of 

cytokine secretion, impairing osseointegration, and causing the failure of the implant (165). However, I 

would like to stress that the removal of endotoxins has been shown to have greater impact in in vitro 

cell culture studies than in in vivo studies (143).  
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Chitosan is one of the most promising natural substances used in biomaterials research and provides 

several essential key properties for the use in tissue engineering applications (206). The polymer can 

be easily combined with other biomaterials for virtually any application, rapidly processed; cost-

effectively with the possibility of delivering growth factors and drugs to the site of implantation (204). 

An increase of implant biocompatibility and early strength development at the bone-biomaterial 

interface could significantly improve existing practices in the clinical treatment of orthopedic tissue 

injuries.  

Much research has focused on the use of chitosan membranes as bioactive coatings, however, 

numerous challenges remain prior to the successful translation into the clinics. The batch-to-batch 

variability of chitosan starting materials complicates the prediction of the clinical outcome, and the 

bonding strength of chitosan-coated implants often remains insufficiently low to sustain the pressure 

during implantation (206). Furthermore, the effects of long-term storage of coated titanium implants 

prior to implantation remain unknown and current coating procedures require a more profound 

understanding of the relationship between processing parameters and the structure of the final coating 

(396, 397). 

Personally, I hope to see an increased understanding and application of the parameters that are 

involved in the design of chitosan membranes as bioactive coatings for titanium implants. The 

optimization of these coatings requires intricate knowledge of mechanisms that influence bioactivity, 

surface properties, and bonding strength. In addition, more extensive in vivo evaluation of chitosan-

coated titanium implants is necessary prior to clinical applications. I strongly believe that the use of 

innovative chitosan derivatives could revolutionize bioactive coatings prepared from chitosan. 

However, certain standards need to be established for publishing reports on the use of chitosan, which 

should at the very least include the DD, molecular weight, source, detailed processing parameters, 

and potential contaminants.  
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Abstract: Human mesenchymal stem cells (hMSC) can be expanded in vitro and differentiated towards osteogenic, chondrogenic 
or adipogenic lineages, making them an attractive source for tissue engineering and regenerative medicine. Chitinase-like-proteins 
(CLPs) belong to the family 18 glycosyl hydrolases and are believed to play a role in inflammation and tissue remodelling. The aim 
of this study was to determine the effect of the aminosugar glucosamine on the expression of the CLP YKL-40 during osteogenic 
differentiation of hMSC. Glucosamine did not affect multipotency of hMSC nor proliferation rate of undifferentiated hMSC.  
YKL-40 was expressed during both expansion of undifferentiated hMSC and during osteogenic differentiation. A slight but non-
significant increase in YKL-40 expression was observed with glucosamine, accompanied by a pH-dependent delay in mineralization.
However, glucosamine induced higher expression of osteogenic marker genes. 

Keywords: YKL-40, mesenchymal stem cells, osteogenic differentiation, chitinase-like-protein

Introduction 

Stem cells hold a great promise as a tool in basic research 
and development of drugs and new treatments in regenerative 
medicine. Human multipotent mesenchymal stromal cells 
(hMSC) is a commonly used term for a heterogeneous  
population of cells that can be derived from human bone  
marrow, adipose tissue, peripheral blood or umbilical cord 
blood1,2. These cells can differentiate into cells of the  
mesenchymal lineage, e.g. to osteoblasts, chondrocytes,  
fibroblasts and adipocytes, as well as, stromal cells of the bone 
marrow3. 

In connection to the regeneration of the osteogenic matrix, 
chitinases and chitinase-like-proteins (CLP) have been  
suggested to have a role in defence mechanisms against chitin-
containing particles or organisms and to participate in tissue 
remodelling and inflammation4,5. Whether triggering of the 
immune response and the potential role in tissue remodelling is 
directly affected by the chitinase-like-proteins or dependent on 

the downstream induction of cytokines and growth factors has 
not been investigated5. There have been indications that the 
chitinase-like-proteins are expressed during tissue damage or 
regeneration in an attempt to counter the negative effect of 
inflammatory cytokines6. In humans, three chitinase-like-
proteins are known, YKL-39, YKL-40 and oviductin, as well 
as the active chitinases acidic mammalian chitinase (AMCase) 
and chitotriosidase7. The active chitinases belong to the family 
18 glycosyl hydrolases, the same family as the CLPs. CLPs 
have lost the ability to degrade chitin due to an amino acid 
substitution in the binding cleft7,8, but the ability to bind chitin 
and chitooligosaccharides is still retained9. Binding of the  
ligand induces a large conformational change in YKL-40 
which indicates a potential signalling role of the enzyme10. 
YKL-40 is expressed by articular chondrocytes, synoviocytes, 
osteoblasts and differentiated macrophages and is up-regulated 
in inflammatory diseases like rheumatoid arthritis and  
osteoarthritis6,11. YKL-40 expression has been suggested to be 
regulated by the transcription factor NF-Beta6. Also, it has 
been proposed that YKL-40 might prevent damage to the  
extra-cellular matrix during inflammation by reducing the 
deleterious effect of pro-inflammatory cytokines12. 
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Due to chitinases, chitin, the second most abundant  
compound in nature, does not accumulate in the environment13. 
Chitin, a structural component in the cell wall of crustaceans 
and fungi, can be used for the production of glucosamine, 
chitooligosaccharides and chitosan, which have wide ranging 
uses in biotechology, agriculture and food science13.  
Glucosamine is an aminosugar that naturally occurs in the 
body and has been claimed to have beneficial effects on  
osteoarthritis as it constitutes one of the subunits in  
glycosaminoglycans found in the extra-cellular matrix of  
cartilage14. It is unknown how glucosamine might work to 
ameliorate arthritis, but a connection to nitric oxide production 
has been suggested14,15. The effect of glucosamine on bone 
resorption and remodelling has been evaluated in a  
collagenase-induced osteoarthritis model in mice16. It was 
shown that excessive bone formation and bone remodelling 
were reduced and bone resorption was decreased16. The effect 
of glucosamine on the CLPs and its role during osteogenesis of 
hMSC has not been investigated. 

In this study, we show that the chitinase-like-protein YKL-40
is expressed in hMSC and is maintained during osteogenic 
differentiation of these cells. The effect of glucosamine on the 
expression of YKL-40 and osteogenic differentiation was  
analysed. 

 

Results and Discussion 

hMSC Morphology and Proliferation. Short-term  
expansion of cells (single passage) in control media and  
glucosamine supplemented media did not lead to changes in 
the expression of cell surface markers and the cells comply 
with the characteristics of bone-marrow derived mesenchymal 
stromal cells (supplementary Figure 1)17. Cell morphology was 
typical of hMSC-small spindle-shaped cells attached to the 
surface of tissue culture plastic (Fig. 1A). Glucosamine did not 
affect cell attachment or morphology during expansion. During
osteogenic differentiation, cell morphology changed to a more 
cuboidal and flattened shape. In later stages of differentiation, 
osteoblastic cells deposited calcium hydroxyapatite crystals 
and cell layers pulled together. No difference in phenotype 
was observed in the presence of glucosamine, except for the 
lack of calcium deposition. 

Proliferation was similar during short-term expansion of 
hMSC in control media and glucosamine media, with a  
decrease in proliferation on days 5 and 7 (Fig. 1B). 

Furthermore, the cells could be successfully differentiated 
towards the osteogenic, chondrogenic and adipogenic lineage, 
proving multi-lineage potential (supplementary Fig. 2). 

 

Expression of the Chitinase-Like-Proteins (CLPs) in 
hMSC. CLPs have putative roles in defence mechanisms 
against chitin-containing particles and participate in tissue 
remodelling and inflammation4,5. Crystallography studies  
revealed that the enzyme can bind chitin and chitooligosaccha-
rides with high affinity9,10. We therefore examined, whether 
the aminosugar glucosamine could affect the expression of the 
CLPs during short-term expansion of hMSC. 

hMSC expressed the chitinase-like protein YKL-40 at day 3 
and day 7 during expansion (supplementary Fig. 3). No  
statistical difference was found between control samples (0.85 
± 0.85 fold increase over 7 days) and glucosamine treated 

samples (3.24 ± 2.17 fold increase over 7 days) in the  
expression of YKL-40. The active chitinases, chitotriosidase 
(CHIT1) and acidic mammalian chitinase (AMCase) were not 
detected (data not shown). 

During osteogenic differentiation, YKL-40 was expressed 
both in control (1.82 ± 0.53 fold increase over 28 days) and 
glucosamine treated samples (3.52 ± 0.63; p = 0.0828 fold 
increase over 28 days) (Fig. 2A). A trend in which glucosamine
increased YKL-40 expression during osteogenic differentia-
tion was observed, but statistical significance (p < 0.05) was 
not met. 

 

Osteoblast Gene Expression. The following osteogenic 
marker genes: alkaline phosphatase (ALP), osteocalcin (OCN), 
osteopontin (OPN) and runt-related transcription factor 2 
(RUNX-2) were expressed both in control and glucosamine 
treated samples during osteogenic differentiation (Fig. 2A). A 
statistically significant increase in the presence of glucosamine 
was observed for ALP (0.63 ± 0.24 fold increase in control vs. 
1.84 ± 0.13 fold increase in glucosamine; p = 0.0011), OCN 
(1.41 ± 0.41 fold increase in control vs. 2.85 ± 0.18 fold  
increase in glucosamine; p = 0.0087) and RUNX-2 (1.06 ± 
0.31 fold increase in control vs. 2.39 ± 0.17 fold increase in 
glucosamine; p = 0.0037) gene expression. The difference in 
OPN expression (0.20 ± 0.41 fold increase in control vs. 1.56 
± 0.62 fold increase in glucosamine; p = 0.097) was not  
statistically significant but a trend was observed that suggested 
glucosamine could increase the expression of OPN. 

To visualize the correlation between the expression of 
YKL-40 and the expression of the osteogenic marker genes, a 
heatmap was generated (Fig. 2B)18. Clustering divided the 
sample population into three distinct groups: (1) control  
samples from day 7 to day 25 of osteogenic differentiation; (2) 
glucosamine treated samples from day 7 to day 21; and (3) late 
osteogenesis including control samples at day 28 and  
glucosamine treated samples from day 25 to day 28. In the first 

 
Figure 1.  Effect of glucosamine on hMSC phenotype and 
proliferation. (A) Phenotype consistency in the expansion and 
osteogenic differentiation of hMSC (representative pictures); 
(B) Proliferation of hMSC grown in control media and media 
supplemented with 200 µg/mL Glucosamine. Bars illustrate 
proliferation on days 1, 3, 5 and 7 (n = 42 measurements). 
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group overall expression of genes was low, except for the  
expression of OPN. The second group, i.e. early glucosamine 
treated samples, showed high expression of all osteogenic 
genes but only intermediate expression of YKL-40. Late  
osteogenesis, the third group, was characterized by peak  
expression of YKL-40 as well as OCN, RUNX-2 and ALP, 
but lower expression of OPN. 

The increased expression of YKL-40 was correlated to the 
increased expression of the osteogenic marker genes, with the 
exception of OPN, which was highest in early glucosamine 
treated samples (Fig. 2B). Correlation was determined by cal-
culating the Spearman correlation coefficient (r2), which was 
shown to be 77.64% for YKL-40/RUNX-2, 90.45% for 
ALP/RUNX-2 and 78.87% for OCN/RUNX-2. Visualization 
by means of a heatmap suggested furthermore that glucosa-
mine might modify osteogenic gene expression to match late  
osteogenesis compared to control samples. How and why  

glucosamine is affecting the expression of YKL-40 during 
long-term cultures was not investigated. 

Our data suggest that YKL-40, in combination with  
increased expression of ALP, RUNX-2 and OCN, could play a 
role during late osteogenic differentiation of hMSC and this 
process could be modified by glucosamine, a subunit of the 
natural substrate for chitinases. YKL-40 is known to take part 
in tissue remodelling and regeneration but also protects the 
tissue from negative effects of pro-inflammatory cytokines12. 
This indicates that up-regulation of YKL-40 in developing and 
regenerating tissues might benefit the remodelling process. 

 

Mineralization. Control cells increased the amount of  
mineralization deposited over a period of 28 days, as shown in 
von Kossa staining (Fig. 3A). Glucosamine treatment resulted 
in an overall impairment of mineral deposition with the first 
deposits visible after 21 days. Alizarin Red Staining showed 
the typical increase of calcium deposition expected in control 
cultures, whereas glucosamine supplemented cells did not 
show any sign of calcification (Fig. 3B). Photometric  
evaluation of Alizarin Red Staining visualized the lack of  
calcification in the presence of glucosamine, while control 
cells mineralized from day 21 onward (data not shown). 

A likely explanation for the lack of mineralization in  
glucosamine supplemented cultures could be acidosis of the 
cell culture media. All glucosamine stock solutions were  
prepared in PBS, but when the final concentration of  
glucosamine was added to the cell culture media, a pH change 
of the media was observed. Acidosis has been shown to delay 
mineralization in hMSC-derived osteoblasts and to increase 
OCN and RUNX-2 expression as well as decrease ALP,  
osterix (OSX) and OPN gene expression19. However, acidosis, 
as shown by Disthabanchong et al., does not explain the effect 
of glucosamine on gene expression observed in the present 
study, apart from the delay in mineralization in hMSC19. ALP 
mRNA expression and activity have been shown as well by 
other groups to be increased in the presence of glucosamine, 
when pH was stabilized at 7.420. Furthermore, when media pH 
was adjusted using sodium bicarbonate solution in our study, 

 
Figure 2.  Effect of glucosamine on gene expression during 
osteogenic differentiation of hMSC. (A) Average expression 
of YKL-40, Alkaline Phosphatase (ALP), Osteocalcin (OCN), 
Osteopontin (OPN) and runt-related transcription factor 2 
(RUNX-2) in control (white bars) and glucosamine (black bars) 
supplemented cultures over a period of 28 days of osteogenic 
differentiation. Bars describe average fold change with stand-
ard error. n = 2; * = p < 0.05; (B) Heatmap and hierarchical 
clustering of gene expression data auto-scaled to genes. Red 
colour depicts high expression and green colour depicts low 
expression (n = 2). 

 
Figure 3.  Characterization of mineralization processes during 
osteogenic differentiation of hMSC. (A) von Kossa Staining of 
hMSC differentiated for 28 days towards the osteogenic 
lineage. Dark brown colour is indicative of mineralization. (B) 
Alizarin Red Staining of hMSC differentiated for 28 days 
towards the osteogenic lineage. Dark red colour is indicative of 
calcification. Pictures are representative from 9 experiments. 
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delay in mineralization was resolved (data not shown). 

 

Effect of Glucosamine on Cytokine Expression. Whether 
the influence of YKL-40 on the activation of the immune  
system and the tissue remodelling process is due to the proteins
themselves or the secondary induction of growth factors and 
cytokines is not known5. Furthermore, increased levels of 
YKL-40 are believed to protect the tissue from the negative 
effects of pro-inflammatory cytokines6. Therefore, we  
determined the secretion of several pro- and anti-inflammatory 
cytokines and growth factors during the osteogenic  
differentiation of hMSC. 

No secretion of IL-1, IL-12p (40), EGF and RANTES was 
observed in control cells or glucosamine supplemented cells. 
The anti-inflammatory cytokines IL-4 (3.9 ± 2.4 pg/mL in 
control vs. 3.5 ± 2.0 pg/mL in glucosamine), IL-10 (8.0 ± 3.5 
pg/mL in control vs. 7.3 ± 1.1 pg/mL in glucosamine) and  
TNF- (16.5 ± 6.9 pg/mL in control vs. 15.1 ± 6.4 pg/mL in 
glucosamine) were secreted in low amounts over 28 days of 
osteogenic differentiation (Fig. 4A). The growth factor VEGF 
(174.5 ± 133.1 pg/mL in control vs. 390.7 ± 27.7 pg/mL in  
glucosamine) showed intermediate secretion and the inflam-
matory cytokines IL-6 (1725.6 ± 307.3 pg/mL in control vs. 
1321.9 ± 538.2 pg/mL in glucosamine) and IL-8 (344.6 ± 
133.1 pg/mL in control vs. 390.7 ± 165.4 pg/mL in glucosa-
mine) showed high secretion (Fig. 4B). The differences in 
secretion levels between control samples and glucosamine 
treated samples were not statistically significant with any of 
the cytokines determined. 

 

Experimental Section 

Cell Culture. Human, bone-marrow-derived, mesenchymal 
stromal cells (hMSC) (Lonza, Basel, Switzerland) were  
cultured in Standard Mesenchymal Stem Cell Basal media 
(Lonza) supplemented with L-Glutamine, Gentamicin Sulfate/
Amphotericin, and hMSC growth supplement following  
manufacturer’s instructions. For osteogenic differentiation, 
Differentiation Basal Medium Osteogenic (Lonza)  
supplemented with dexamethasone, ascorbate, L-Glutamine, 
Streptamycine/Penicilline, -Glycerophosphate and hMSC 
growth supplement was used. MTT proliferation assays were 
performed in DMEM/F12 media (Gibco, Carlsbad, California, 

USA) supplemented with Penicillin/Streptomycin (Invitrogen) 
and 10% hMSC-approved fetal calf serum (Stem Cell,  
Vancouver, BC, Canada). To determine the effect of  
glucosamine on hMSC, standard media and osteogenic  
differentiation media were supplemented with 200 µg/mL D-
glucosamine hydrochloride-salt (YSKYaizu Suisankagaku 
Industry, Shizuoka, Japan). Glucosamine stock solutions were 
prepared by dissolving glucosamine in sterile PBS and filtered 
through 0.45 µm and 0.22 µm filters.  

To prove multi-lineage differentiation potential, unstimulated
cells were differentiated towards the osteogenic, chondrogenic 
and adipogenic lineage after appropriate expansion. All  
experiments were done at minimum in triplicate and hMSC 
from passage 3–5 were used in all experiments. 

 

MTT Proliferation Assays. hMSC were expanded in a  
96-well-plate and proliferation determined with the ATCC 
MTT proliferation kit (ATCC Bioproducts, Boras, Sweden) 
following manufacturer‘s instructions. 

 

RNA Isolation and cDNA Transcription. RNA isolation 
was performed using Qiagen BioRobot workstation (Quiagen, 
Hilden, Germany) and the EZ-1 RNA Cell Mini Kit (Qiagen), 
following manufacturer’s instructions. High-Capacitiy cDNA 
Reverse Transcription Kit from Applied Biosystems (Foster 
City, California, USA) was used in all experiments. 

 

Gene Expression. To quantify gene expression of selected 
genes, qPCR was performed in a StepOne Real Time PCR 
System (Applied Biosystems). 10 µL aliquots of Taqman  
master mix and 1 µL of Taqman assay (Applied Biosystems) 
were added to 9 µL of 1:10 diluted sample cDNA for each 
reaction.  

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was 
used as a reference gene. Taqman assays included YKL-40 
(Hs00609691_m1), acidic mammalian chitinase (AMCase) 
(Hs00757767_m1), chitotriosidase (CHIT1) (Hs00185753_m1),
osteocalcin (OCN) (Hs00609452_g1), osteopontin (OPN) 
(Hs00167093_m1), alkaline phosphatase (ALP) (Hs01029141_
g1) and runt-related transcription factor 2 (RUNX-2) 
(Hs00231692_m1), all from Applied Biosystems. 

Data were analysed using GenEX 5.3.2.13 software (MultiD 
Analyses, Gothenburg, Sweden). Data pre-processing was 
based on averaged qPCR repeats, normalized to the reference 
gene GAPDH and relative quantities were calculated relative 
to the earliest control sample (3 days expansion during  
short-term expansion and 7 days osteogenic differentiation of 
control samples for osteogenesis experiments). Graphs were 
created from averaged fold changes over 28 days relative to 
the respective control sample. 

 

Luminex 10Plex Human Cytokine Assay. Luminex 
10Plex Human Cytokine Assay (Panomics, Fremont, California,
USA) was performed using media supernatants from stimulated
and unstimulated cells during osteogenic differentiation. The 
following cytokines were analysed: Interleukin-1 (IL-1,  
IL-4, IL-6, IL-8, IL-10, IL-12 (p40), tumor necrosis factor- 
(TNF-), RANTES, vascular endothelial growth factor 
(VEGF) and epidermal growth factor (EGF) (detection limit of  
cytokines: 1.3 pg/mL). 

 
Figure 4.  Average cytokine secretion during osteogenic 
differentiation of hMSC in control media or glucosamine (200 
µg/mL) supplemented media. (A) Anti-inflammatory cytokines
IL-4, IL-10 and TNF-. (B) Inflammatory cytokines IL-6, 
IL-8 and growth-factor VEGF (average expression over 28 
days); error bars describe standard error; n = 2. 
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Alizarin Red Staining and Quantitation. Cells were 
washed with phosphate-buffered saline (PBS) and fixed in 4% 
paraformaldehyde. Next, cells were washed with distilled H2O 
(dH2O) and stained with a 2% Alizarin Red Solution (Sigma 
Aldrich Inc., St. Louis, MO, USA) in dH2O at pH 4.1 for 20 
min. Cells were then washed with dH2O and pictures were 
taken in a scanner (ScanJet ADF, Hewlett Packard).  

For quantification, dried and stained wells were hydrated 
over-night in dH2O and incubated with 10% cetyl-pyridinium 
chloride (Sigma) in dH2O for 15 min on a shaker. Cells were 
spun down and supernatant aliquots were analysed in a  
MultiSkan spectrometer (Thermo Scientific) at 562 nm. 

 

Von Kossa Staining. Cells were washed with PBS and 
fixed in 4% paraformaldehyde. Standard protocols were used 
to perform von Kossa staining and pictures were taken in a 
fluorescent microscope (Olympus BX51) using Cell A Imaging
Software (Olympus, Center Valley, PA, USA). 

 

Statistical Analysis. Data are presented as means and 
standard deviations, with the exception of gene expression 
data and cytokine secretion, where standard error was used. 
Statistical analysis was performed using GenEx 5.3.2.13  
software. To evaluate treatment effect, t-test was used and a 
heatmap based on hierarchical clustering was constructed from 
autoscaled, pre-processed relative fold changes. Correlation of 
gene expression data visualized in the heatmap set-up was 
evaluated by Spearman correlation; p < 0.05 was considered 
statistically significant. 

 

Conclusion 

In this study, we showed the expression of the chitinase-
like-protein YKL-40 in hMSC, both during expansion of  
undifferentiated cells and after osteogenic differentiation.  
Glucosamine did neither affect the maintenance of hMSC  
pluripotency nor proliferation. The active chitinases, chitotrio-
sidase (CHIT1) and acidic mammalian chitinase (AMCase), 
were not detected. Glucosamine increased the expression of 
YKL-40 during osteogenic differentiation, but did not affect 
expression during short-term expansion. Glucosamine was 
furthermore associated with an increase in the expression of 
osteogenic marker genes during osteogenic differentiation of 
hMSC. 
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Supplemental Figures  

 

Supplementary Figure 1. Surface marker antigen expression during short-term expansion of 

hMSC in control media and media supplemented with 200 µg/ml glucosamine. (A) dot plot with size (x-

axis) and granularity (y-axis) of analysed cells. Histogram plots of (B) expression of CD29, (C) 

expression of CD44, (D) expression of CD45, (E) expression of CD73, (F) expression of CD105, (G) 

expression of CD166 and (H) expression of HLA-DR; for each graph 5000 events were obtained; n=2. 

 

 

 



 

 

Supplementary Figure 2. Characterization of chondrogenic and adipogenic differentiation of 

hMSC with and without glucosamine.  (A-B) Toluidine blue staining of hMSC differentiated for 28 days 

towards the chondrogenic lineage with glucosamine (A) and without glucosamine (B). Purple color and 

arrangement of cells are indicative of chondrogenic differentiation. (C-D) Oil red O staining of hMSC 

differentiated for 14 days towards the adipogenic lineage with glucosamine (C) and without 

glucosamine (D). Red color is indicative of lipid deposition which confirms adipogenic differentiation. 

Images are representative from 3 experiments. 

 

 

Supplementary Figure 3. Effect of 200 µg/ml glucosamine on the expression of the chitinase-like-

protein YKL-40 during short-term expansion of undifferentiated hMSC. Expression was averaged from 

Ct values at days 3 and 7 for control cultures (white bars) and glucosamine supplemented cultures 

(black bars). Bars describe average fold change with standard error (n=2). 
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  “The great tragedy of science -   

the slaying of a beautiful hypothesis by an ugly fact.” 

 

Thomas Henry Huxley, English biologist (1825-1895) 

 



 

  



International Journal of Biological Macromolecules 51 (2012) 675– 680

Contents lists available at SciVerse ScienceDirect

International  Journal  of  Biological  Macromolecules

jo u r n al hom epa ge: ww w.elsev ier .com/ locate / i jb iomac

Chitosan  and  Chitin  Hexamers  affect  expansion  and  differentiation  of
mesenchymal  stem  cells  differently

Ramona  Liedera,b, Finnbogi  Thormodssonc,  C.-H.  Ngd,  Jon  M.  Einarssond,  Johannes  Gislasond,
Petur  H.  Petersenc,e,  Olafur  E.  Sigurjonssona,b,e,∗

a The Blood Bank, Landspitali University Hospital, Snorrabraut 60, 105 Reykjavik, Iceland
b School of Science and Engineering, Reykjavik University, Menntavegur 1, 101 Reykjavik, Iceland
c Department of Anatomy, Medical Faculty, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland
d Genis ehf, Vatnagordum 18, 104 Reykjavik, Iceland
e Biomedical Center, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 8 May  2012
Received in revised form 28 June 2012
Accepted 3 July 2012
Available online xxx

Keywords:
Chitosan Hexamer
Chitin Hexamer
Mesenchymal stem cell
YKL-40
Osteogenesis

a  b  s  t  r  a  c  t

Chitooligosaccharides  are  of interest  as  potential  drugs  due  to their  bioactivity  and  water  solubility.  We
compared  the effect  of acetylated  and  deacetylated  chitooligomers  (Hexamers)  on  short-term  expan-
sion (7  days)  and  osteogenic  differentiation  of  bone-marrow  derived,  human  mesenchymal  stem  cells
in terms  of gene  expression,  cytokine  secretion  and  quality  of  osteogenic  differentiation.  We  show  that
chitooligomers  affect  hMSC  gene  expression  and  cytokine  secretion,  but  not  mineralization.  The  effect  of
chitooligomers  was shown  to  be  dependent  on  the  acetylation  degree,  with  significantly  stronger  effects
when  cells  are  stimulated  with  chitin-derived  Hexamers  (N-Acetyl  Chitohexaose)  than  with  Chitosan
Hexamers  (Chitohexaose).

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Chitinases and chitinase-like-proteins (CLPs) belong to the fam-
ily 18 glycosylhydrolases [1,2]. The latter lack enzymatic activity
due to an amino acid substitution in the binding cleft, but can bind
chitin and chitooligosaccharides with high affinity [1,2]. YKL-40,
one of the three CLPs known in man, is expressed by articu-
lar chondrocytes, differentiated macrophages, synoviocytes and
osteoblasts [3,4]. Binding of the putative ligand induces a con-
formational change, indicating a potential signaling role for the
protein, but the definite in vivo function is still controversial [5].
The expression of YKL-40 has been suggested to affect remodeling
of the extra-cellular matrix and protect the tissue from the degener-
ative effect of pro-inflammatory cytokines [3].  Furthermore, there
is an indication that CLPs are able to sense the presence of invading
microorganisms through recognition of chitin containing parti-
cles and subsequently activate immune responses [6,7]. Whether
these actions are mitigated by the proteins themselves or by sec-
ondary induction of cytokines and growth factors is not known
[7].  Based on the changes in YKL-40 expression in patients with

∗ Corresponding author at: The Blood Bank, Landspitali University Hospital,
Snorrabraut 60, 105 Reykjavik, Iceland. Tel.: +354 5435523; fax: +354 5435532.

E-mail address: oes@landspitali.is (O.E. Sigurjonsson).

inflammation, the protein is expected to play a role in the body’s
acute phase response system [8,9].

Chitin, which is the second most abundant compound in nature,
does not accumulate in the environment due to the activity of chiti-
nases [10]. The structural component in the cell wall of fungi and
crustaceans can be used to derive chitosan, chitooligosaccharides
(ChOS) and glucosamine, which are widely used in biotechnol-
ogy and food science [10]. Since dissolution of chitin and chitosan
in aqueous solutions without organic acids is difficult, the inter-
est in ChOS as potential drugs for asthma, as vectors in gene
therapy and as wound dressings has been increasing [11–14].
Additionally, ChOS have been shown to exhibit appealing prop-
erties including antitumor activity, inhibition of angiogenesis and
immune-stimulatory effects [11,15,16].  The potential effect of
ChOS depends on the degree of acetylation, the size of the oligomers
(pentamers, hexamers or higher) and the molecular weight [17,18].
Particularly the hexamer and heptamer oligomers both acety-
lated and deacetylated, display highest levels of biological activity
[15,18,19].

Human multipotent mesenchymal stem cells (hMSC) are a
heterogeneous population of cells that can be isolated from the
bone marrow, adipose tissue, peripheral blood and umbilical cord
blood [20–23].  These cells can be differentiated into cells of the
mesenchymal lineage including osteoblasts, chondrocytes, stromal
cells and adipocytes [24]. Stem cells hold a great promise as a tool

0141-8130/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
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in basic research, drug development and in developing new treat-
ments in regenerative medicine [25].

In this study, we showed the effect of Chitosan Hexam-
ers (Chitohexaose) and Chitin Hexamers (N-Acetyl Chitohexaose)
on expansion (7 days) and osteogenic differentiation potential
of human, bone-marrow derived, mesenchymal stem cells. We
evaluated gene expression, secretion of selected cytokines and
quality of osteogenic differentiation. The results demonstrate that
chitooligomers can affect hMSC gene expression and cytokine
secretion, but do not affect mineralization and that the degree of
influence depends on the deacetylation of the oligomers. Chitin
Hexamers were shown to exhibit significantly stronger effects on
hMSC than do Chitosan Hexamers.

2. Methods and materials

2.1. Cell culture

Human, bone marrow-derived, mesenchymal stem cells (hMSC)
(Lonza, Basel, Switzerland) were cultured in DMEM/F12 media
(Gibco, CA, USA) supplemented with Penicillin/Streptomycin
(Invitrogen, CA, USA) and 10% MSC-approved fetal calf serum
(Stem Cell, Vancouver, Canada). Osteogenic differentiation was
induced in Differentiation Basal Medium Osteogenic (Lonza)
supplemented with dexamethasone, ascorbate, l-Glutamine,
Streptomycin/Penicllin, �-Glycerophosphate and MSC  growth sup-
plement. Two independent donors were used for control and
Chitosan Hexamer stimulated cells, one donor was  used for stimu-
lation with Chitin Hexamers.

For stimulation, hMSC culture media was supplemented during
the culture period with 200 �g/ml Chitosan Hexamers (Chito-
hexaose 6 HCl, chemical formula: C36H68N6O25–6HCl, molecular
weight: 1203.73 g/mol, 96% purity per HPLC, 100% degree of
deacetylation; cat. no. OC09273, Carbosynth Limited, UK) or
200 �g/ml Chitin Hexamers (hexa-N-acetyl-Chitohexaose, chem-
ical formula: C48H80N6O3, molecular weight: 1237.1 g/mol, 95%
purity per HPLC, 0% degree of deacetylation; cat. no. 56/11-
0050, IsoSep AB, Sweden). To ensure the absence of endotoxins,
Chitosan Hexamers and Chitin Hexamers were run through Detoxi-
Gel Endotoxin Removing Columns (Thermo Scientific, USA) with
immobilized Polymyxin B before use in cell culture systems.

Proliferation and viability were assessed with MTT  proliferation
assay (ATCC Bioproducts, Boras, Sweden) following manufacturer’s
instructions.

2.2. Analysis of gene expression

RNA isolation was performed using Quiagen BioRobot worksta-
tion (Quiagen, Germany) and the EZ-1 RNA Cell Mini Kit (Quiagen)
following manufacturer‘s instructions. Samples from osteogenic
differentiation experiments were homogenized in a FastPrep 24
instrument (MP  Biomedicals, USA) using Lysing Matrix D tubes
(MP  Biomedicals) containing 1.4 mm ceramic spheres before RNA
isolation.

High Capacity cDNA Reverse Transcription Kit (Applied Biosys-
tems, USA) was used for reverse transcription of RNA with a master
mix  containing: 2.0 �l RT buffer, 0.8 �l 25× dNTP (100 mM),  2.0 �l
10× Random Primers RT, 1.0 �l Multiscribe Reverse Transcriptase,
1.0 �l RNase Inhibitor and 3.2 �l Nuclease free H2O per sample.
Cycle conditions were as following: 25 ◦C for 10 min, 37 ◦C for
120 min, 85 ◦C for 5 s and then 4 ◦C. Samples were stored at −20 ◦C
before qPCR analysis.

Gene expression of selected genes was quantified using the
7500 Real Time PCR System (Applied Biosystems). 10 �l ready-
made Taqman master mix  (Applied Biosystems), 1 �l Taqman assay

(Applied Biosystems) and 9 �l of 1:10 diluted sample cDNA were
prepared per sample. Samples were analyzed at least in dupli-
cate for each of the donors. GAPDH (glyceraldehyde 3-phosphate
dehydrogenase) was used as internal reference gene. Taqman
assays used during this study were: YKL-40 (Hs00609691 m1),
TLR3 (Hs00152933 m1), TLR4 (Hs00152939 m1), COL1A2 (collagen
I; Hs01028970 m1), ALP (Alkaline Phosphatase; Hs01029141 g1)
and RUNX-2 (runt-related transcription factor 2; Hs00231692 m1).

Data analysis of qPCR results was performed using GenEX
5.3.2.13 software (MultiD, Sweden). Missing data was handled
with RT-PCR replicates and outliers determined and deleted using
Grubb‘s test. qPCR repeats were averaged and normalized to the
reference gene GAPDH for hMSC data. Osteogenic differentiation
results from qPCR were globally normalized with a cut off at Ct = 34.

2.3. Analysis of osteogenic differentiation

For specific staining of calcification during osteogenic differen-
tiation, media was removed and cell layers washed three times
with 1 ml  PBS before fixation in 4% para-formaldehyde for 15 min
at 22 ◦C. Fixation agent was  removed and cell layers washed three
times for 5 min  with distilled H2O (dH2O) on a shaker and then
stained with a 2% Alizarin Red Solution (Sigma Aldrich Inc.) in
dH2O at pH 4.1 for 20 min  on a shaker (pH was adjusted with 0.5%
ammoniumhydroxide). Cell layers were then washed four times for
5 min  with dH2O on a shaker and then dried upside down. Pictures
were taken in an inverted microscope (Leica DM IRB) with Infinity
Capture 5.0.2 software.

2.4. Cytokine immunoassay

Secretion of eight cytokines into media supernatants was
detected using a custom designed Procarta 8Plex Human Cytokine
assay (Panomics/Affymetrix, USA) with a detection limit of 1 pg/ml.
Supernatant aliquots were stored at −80 ◦C and analyzed in dupli-
cates. Analysis was done on a Luminex instrument that was
calibrated and cleaned as recommend by the manufacturer. Con-
centration of cytokines was derived from a standard curve and
corrected for the blank (basic cell culture media). The assay was
performed according to manufacturer’s instructions.

2.5. YKL-40 ELISA

Levels of YKL-40 in the media supernatants of cells were deter-
mined using a sandwich enzyme immunoassay ELISA (Quidel, USA)
with a detection limit of 5.4 ng/ml. Supernatant aliquots were
stored at −80 ◦C and analyzed in duplicates. ELISA was performed
according to manufacturer’s instructions and concentration of YKL-
40 determined from a standard curve as ng/ml.

2.6. Statistical analysis

Data are presented as means plus/minus standard errors. Statis-
tical analysis was  performed using Prism 5.01 software (GraphPad
Software Inc., USA) and for qPCR analysis using GenEX 5.3.2.13
software. One-way ANOVA was  used to evaluate the effect of stim-
ulation during osteogenesis and two-way ANOVA for analysis of
time-dependent effect of stimulation with chitosan oligomers dur-
ing expansion. p < 0.05 was  considered statistically significant.

3. Results and discussion

3.1. hMSC morphology and proliferation

Cell morphology was  typical of hMSC with small, spindle-
shaped cells attached to the surface of tissue culture plastic.
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Fig. 1. Short-term effect of hMSC stimulation with 200 �g/ml Chitosan Hexamers or 200 �g/ml Chitin Hexamers. (a) Expression of YKL-40, TLR 3 and TLR 4 after 3 days and
7  days of expansion. Error bars are standard errors (n = 2 measurements/donor) (*p < 0.05; **p < 0.01). (b) and (c) Cytokine secretion of IL-6 and IL-8 after 3 days and 7 days
in  expansion. Error bars are standard errors (n = 2 measurements/donor) (*p < 0.05;**p < 0.01; ***p < 0.001).

Stimulation with Chitosan Hexamers or Chitin Hexamers did
not affect cell attachment or morphology during 1 passage
expansion (7 days) (data not shown). During osteogenic differ-
entiation, cell morphology changed to a cuboidal and flattened
shape. In later stages of the differentiation process, osteoblastic
cells deposited calcium hydroxyapatite crystals and cell lay-
ers pulled together, most likely due to collagen I secretion.
Morphology and mineralization during differentiation were also
not affected by the presence of Chitosan Hexamers and Chitin
Hexamers.

An important issue in the clinical application of hMSC is the
restricted ability for in vitro expansion [26]. Proliferation and via-
bility can be affected by substances present in the cell culture media
and change the usual latent exponential growth curve observed for
this cell type [26]. Proliferation was similar in control cells and stim-
ulated cultures, with a slight decrease in proliferation after 5 days
of expansion (Supplementary Fig. 1). No statistical difference was
found in proliferation and viability of hMSC over a period of 7 days
in the presence of Chitosan Hexamers and Chitin Hexamers.

Chitooligomers did not affect proliferation, morphology or cell
attachment of hMSC, therefore the bioactivity observed in subse-
quently performed experiments is expected to be due to the effect
of the chitooligomers and not based on the alteration of hMSC basic
characteristics.

3.2. Gene expression during short-term expansion

One of the first events in sensing substances that pose potential
harm to the host is based on the activation of Toll-like receptors
(TLR), which play an important role in innate immunity [27]. Bind-
ing of a ligand to this group of receptors activates signaling cascades
that lead to the induction of cytokines and chemokines [27]. We
determined the expression of TLR 4, sensor of endotoxins and gram-
negative pathogens, and TLR 3, which is believed to play a role in
facilitating stress responses in hMSC [28]. The expression of TLR
4 did not change between 3 day and 7 day periods of culture and
was likewise not affected by the presence of the chitooligomers
(Fig. 1a). An increase in expression of TLR 3 was observed for Chitin
Hexamers after 7 days of stimulation (p < 0.05), whereas Chitosan
Hexamers did not affect the expression of this gene. TLRs have been
linked to epithelial homeostasis by inducing proliferation and tis-
sue repair after injury, indicating a potential tissue remodeling role
[29].

We determined the effect of chitooligomers on the expression
of YKL-40 and found that after 7 days both Chitosan Hexamers
and Chitin Hexamers strongly induce the expression of this gene
(Fig. 1a). The effect of Chitin Hexamers is stronger than the increase
observed in the presence of Chitosan Hexamers (p < 0.01). In con-
trol cells, the expression of YKL-40 increases over time. YKL-40 is
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indicated in the functions of the innate immune system and the
increase in expression might therefore be related to the expres-
sion of TLR 3, a first-line defense receptor in the innate immune
system. TLRs and YKL-40 share some signaling molecules includ-
ing the transcription factor NF-�Beta and crystallography studies
revealed that the protein can bind chitin and chitooligosaccharides
with high affinity [3,30].

3.3. Cytokine secretion during expansion

The activation of TLRs induces a signaling cascade that can result
in the secretion of cytokines and chemokines such as IL-6, IL-8,
TNF-� and IFN-� [31]. These cytokines can create an inflamma-
tory environment that attracts cells of the adaptive immune system
[32]. hMSC are known to secrete factors that can alter immune
responses and several studies have evaluated the ability of MSC
to inhibit dendritic cell maturation, suppress T- and B-cell activa-
tion and inhibit the action of antigen-presenting cells [32,33].  Since
TLR 3 is significantly up-regulated in the presence of Chitin Hexam-
ers we determined the secretion of 8 human cytokines in the cell
culture media during short-term expansion. No secretion of IL-1�,
IL-10, RANTES or TNF-� was observed in control cells or stimulated
cultures. Base line levels of IL-4 and IL-12p(40) were detected in all
samples (data not shown). The secretion of IL-6 was increased in
the presence of Chitosan Hexamers (p < 0.05) and Chitin Hexamers
(p < 0.01) as compared to the control samples (Fig. 1b). No effect
was observed after 3 days in culture, but an overall decrease of
IL-6 secretion over time was noted. Similarly, the secretion of IL-8
was significantly higher in Chitosan Hexamer (p < 0.001) and Chitin
Hexamer (p < 0.01) stimulated cultures, whereas the secretion in
control samples did not change over time (Fig. 1c). The increase in
secretion of IL-6 and IL-8 can be seen as an important step in host
defense to regulate inflammatory responses and can directly affect
bone metabolism [34]. Furthermore, pro-inflammatory cytokines
are thought to decrease wound healing through the increase in
cellular activation and chemotaxis [35]. The ability of Hexamer
oligomers to induce secretion of IL-8 was shown before in rat
fibroblasts in vitro and was assumed to be connected to the wound
healing process by attracting polymorphonuclear cells [36]. Other
studies on the effect of chitooligosaccharides on the secretion of
cytokines have shown the down-regulation of IL-6 and TNF-� in
murine macrophages after challenge with lipopolysaccharide and
suggested that chitooligosaccharides might prevent inflammatory
processes through inhibition of NF-�Beta [37]. The difference to our
study is in so far as murine macrophages express CD14 receptors,
which are known to bind chitooligosaccharides and can there-
fore compete with the binding of lipopolysaccharide, reducing the
induction of cytokines [38]. hMSC do not express CD14 per defi-
nition and the presence of chitooligosaccharides after stimulation
with lipopolysaccharide does not decrease the secretion of pro-
inflammatory cytokines (unpublished observations).

3.4. Osteogenic marker gene expression

The ability of hMSC to differentiate along the osteogenic lin-
eage makes them an attractive tool in tissue engineering [39].
The level of differentiation can be monitored by the expression of
selected osteogenic marker genes, such as Alkaline Phosphatase
(ALP), runt-related transcription factor 2 (RUNX-2), osteocalcin
(OCN) and osteopontin (OPN) [40,41]. Not only will the expres-
sion of the marker genes be increased, the process of differentiation
will be accompanied by the deposition of calcium hydroxyapatite
and other morphological changes [40,41]. The expression of the
osteogenic marker genes RUNX-2 (p < 0.01) and collagen I (COL1A2)
(p < 0.05) was only affected by the presence of Chitin Hexamers, but
not after stimulation with Chitosan Hexamers as compared to the

Fig. 2. Quality of osteogenic differentiation in hMSC. (a) Expression of Alkaline Phos-
phatase (ALP), runt-related transcription factor 2 (RUNX-2) and collagen I (COL1A2)
after 21 days of osteogenic differentiation. Error bars are standard errors (n = 2
measurements/donor) (*p < 0.05; **p < 0.01) and (b) Alizarin Red Staining of calci-
fication at 21 days of osteogenesis. Red staining is specific for calcium deposition (a
representative picture of two donors).

control group (Fig. 2a). The difference in expression levels between
the chitooligomers was significant in the case of RUNX-2 (p < 0.05),
but not COL1A2. The expression of ALP was not significantly dif-
ferent between the stimulated groups and the control samples.
Runx-2 is also known as the master-regulator of osteogenic differ-
entiation and can be detected throughout the process of osteogenic
and chondrogenic differentiation [42,43]. This transcription factor
is essential for the expression of down-stream genes important for
osteogenesis, i.e. OPN, OCN and COL1A2 [44,45].

3.5. Mineralization

The deposition of calcium hydroxyapatite crystals in the course
of osteogenic differentiation can be visualized by Alizarin Red Stain-
ing. In control cultures, the typical increase of calcium deposition
can be observed over a period of 21 days (Fig. 2b). The amount
of mineralization and changes in osteoblast morphology was  very
similar in the presence of Chitosan Hexamers and Chitin Hexam-
ers. Despite the increase in osteogenic marker genes, RUNX-2 and
COL1A2, the process of mineralization was not affected. There is a
possibility that the effect on calcium deposition was not obvious
after 21 days in culture, but may  become prominent after longer
differentiation periods.

3.6. YKL-40 and TLR 3 gene expression during osteogenic
differentiation

The expression of YKL-40 was  similar in all samples and was
accompanied by equal amounts of secreted YKL-40 protein in the
different groups (Fig. 3a and b). The effect of chitooligomers on
YKL-40 gene expression could be short-lived, since increased gene
expression can be observed during the expansion of hMSC for 7
days but not after osteogenic differentiation for 21 days. There have
been indications that the interaction of YKL-40 with its possible
ligand chitooligosaccharides might not be a pre-requisite for acti-
vation and that in some cases a lack of potential activation through
interaction could be observed [46].
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Fig. 3. Long-term effect of hMSC stimulation with 200 �g/ml Chitosan Hexamers or 200 �g/ml Chitin Hexamers. (a) Expression of YKL-40 and TLR 3. Error bars are standard
errors  (n = 2 measurements/donor) and (b) YKL-40 protein secretion during osteogenic differentiation of hMSC. Error bars are standard errors (n = 2 measurements/donor).

In contrast to this, the effect of Chitosan Hexamers and Chitin
Hexamers on the expression of TLR 3 is prolonged (Fig. 3a). Both
chitooligomers induced significantly greater expression of TLR 3
compared to the control samples (p < 0.001), but again the differ-
ence between the two chitooligomers was clear. The expression
of TLR 3 was additionally significantly higher in Chitin Hexamer
(p < 0.01) stimulated cells than in the presence of Chitosan Hex-
amers. This might indicate a prolonged stress response in hMSC
induced by the chitooligomers.

3.7. Effect on cytokine expression during differentiation

The effect of chitooligomers on cytokine secretion during
osteogenic differentiation was very similar to the observations
made during short-term expansion of hMSC. No secretion of IL-1�,
IL-10 or RANTES could be detected in any of the samples. Base line
levels of IL-4, IL-12p(40) and TNF-� were observed, but there was
no significant difference between the groups. The secretion of both
IL-6 and IL-8 was increased in the presence of Chitosan Hexamers
(p < 0.001 for IL-6 and p < 0.01 for IL8 secretion) and Chitin Hexam-
ers (p < 0.001 for IL-6 and IL-8 secretion) (Fig. 4). Nevertheless, the
increase in cytokine secretion between the two oligomers was very
similar.

The main event connecting innate immune responses to bone
biology in this study is the induction of pro-inflammatory cytokines

Fig. 4. Effect of hMSC stimulation with 200 �g/ml Chitosan Hexamers or 200 �g/ml
Chitin Hexamers on cytokine secretion during osteogenesis. Secretion of IL-6 and
IL-8  at 20 days of osteogenic differentiation. Error bars are standard errors (n = 2
measurements/donor) (**p < 0.01; ***p < 0.001).

like IL-6. This cytokine was tightly linked to osteoclast-induced
bone resorption and plays an important role in endotoxin-mediated
responses of hMSC [34,47]. In vitro, the increased secretion of IL-6
and IL-8 can promote osteogenic differentiation and mineraliza-
tion, but in vivo or in co-culture with pre-osteoclasts, increased
rates of bone-turnover will be induced.

4. Conclusion

Acetylated and deacetylated Hexamer oligomers derived from
chitosan are of interest as potential anti-tumor drugs, immune-
stimulating agents and inhibitors of tumor-related angiogenesis
[11,16]. In this study, we  compared the effect of acetylated and
deacetylated Hexamers, derived from chitin on the short-term
expansion (7 days) and osteogenic differentiation of bone-marrow
derived, human mesenchymal stem cells. Chitooligomers can affect
gene expression (YKL-40 during expansion, TLR 3, RUNX-2 and
COL1A2) and cytokine secretion of IL-6 and IL-8, but not mineraliza-
tion during osteogenic differentiation. The effect of chitooligomers
was shown to depend on the degree of acetylation, with sig-
nificantly stronger effects after stimulation with chitin-derived
Hexamers (N-Acetyl Chitohexaose) than with chitosan-derived
Hexamers (Chitohexaose). Based on these findings, we believe
that the appropriate use of either acetylated or deacetylated chi-
tooligomers has strong impact on the outcome of cell-based assays
and strong considerations should be placed upon the decision for
either chitooligomer considering the desired effect in vitro and
in vivo.
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Supplementary Figure Legends 

 

Supplementary Figure 1. Proliferation of hMSC during short-term expansion. Proliferation was 

determined using MTT proliferation assay at days 1, 3, 5 and 7. Error bars are standard errors (n=15). 
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“There is one thing even more vital to science than intelligent methods; 

And that is the sincere desire to find out the truth, whatever it may be.” 

 

Charles Sanders Peirce, Mathematician (1839-1914) 
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a b s t r a c t

Biomaterials research has been expanding over the last decade, in part to provide improved medical
devices for the treatment of orthopedic tissue injuries. In the quest to provide the best performance com-
bined with low cost for medical implants, an increasing number of non-chemists have entered the field of
biomaterials research without the profound knowledge of chemistry needed to understand the complex
interaction mechanisms and characteristics of natural substances. Likewise, non-biologists often lack
understanding when it comes to the presence of the contaminating biota frequently found in natural sub-
stances. This lack of knowledge by researchers in the field, combined with sensitive in vitro cell-based
assays, can lead to inaccurate evaluation of biomaterials. Hence, there should be both an active effort
to assemble multi-disciplinary teams and a genuine concern for the possible effects of contamination
on in vitro assays. Here, we show that the presence of bacterial endotoxins in chitosan derivatives can
result in false-positive results, profoundly altering product performance in in vitro assays. False-positive
results through uncritical use of natural substances in vitro can be avoided by proper endotoxin testing
and careful evaluation of cytokine secretion patterns.

� 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Clinical treatment of orthopedic tissue injuries often involves
the use of metal implants coated with bioactive materials to im-
prove osseointegration and performance at the bone–biomaterial
interface [1]. One of the materials used for this purpose is chitosan,
the partly deacetylated form of chitin [2]. Flexible molding abilities,
fungistatic and bacteriostatic properties, and recent reports on the
positive influence of chitosan on osteogenesis in vitro and in vivo
make this polymer a promising candidate for use in regenerative
medicine [3–5]. The cationic charge of the polymer, introduced by
the removal of the N-acetyl group in the deacetylation process,
accounts for its interaction with negatively charged cytokines and
growth factors [4]. However, the positive charge also predisposes
chitosan to interaction with harmful endotoxins derived from
Gram-negative bacteria, based on the formation of hydrogen bonds

and electrostatic interactions [6,7]. In fact, chitosan so strongly
binds to endotoxins that it was used for the removal of endotoxins
from medical preparations before its introduction into biomaterials
research and use in clinical applications [8].

Endotoxins are located in the outer cell membrane of Gram-
negative bacteria and are released upon cell death, growth and
division. Endotoxins and lipopolysaccharide (LPS) are often used
as synonyms, even though LPS is only the toxicity-inducing com-
ponent in endotoxins [9]; here, they are used interchangeably.
Endotoxins signal the presence of bacteria to eukaryotic cells.
The building blocks of endotoxins include a core oligosaccharide,
an O-antigen and a lipid A component, which is the main factor
contributing to the induction of immune responses in the host
[10]. One of the first events in sensing Gram-negative pathogens
and endotoxins is based on the activation of Toll-like receptor 4
(TLR 4) and its interaction with co-modulators, such as MD2 and
CD14 [11]. The TLR group consists of receptors that play an impor-
tant role in innate immunity, and binding of their ligands activates
signaling cascades that lead to the secretion of various cytokines
and chemokines [11].
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Chitinase-like proteins, e.g. YKL-40 and YKL-39, have putative
roles in defense mechanisms against chitin-containing particles,
indicating the presence of invading microorganisms, and partici-
pate in tissue remodeling and inflammation [12]. Whether activa-
tion of immune responses and tissue remodeling are affected by
the proteins themselves or by secondary induction of cytokines
and growth factors remains unknown [13]. Up-regulation of YKL-
40 in inflammatory and degenerative diseases, such as rheumatoid
arthritis, osteoarthritis and certain cancers, suggests that the YKL-
40 protein acts in the prevention of damage to the extracellular
matrix by reducing the effect of proinflammatory cytokines [14].
Not only is the induction of YKL-40 dependent on the transcription
factor nuclear factor kappa Beta (NF-jB), the main transcriptional
pathway activated by the Toll-like receptors, but crystallography
studies have also revealed that the enzyme binds chitin and chi-
tooligosaccharides (ChOS) with high affinity [15,16].

Endotoxins are known for their effect on cellular functions,
including the stimulation of cytokine secretion, activation of
monocytes and macrophages, and an increase in bone turnover
in vivo [17,18]. In high concentrations, LPS can cause septic shock
and acute renal failure in humans [17]. Therefore, in clinical prac-
tice strict regulations are in place to decrease the risk of endotoxin
contamination in medical preparations. However, during the
in vitro evaluation of biomaterials for clinical applications, endo-
toxin testing is often neglected. This negligence may ultimately re-
sult in erroneous interpretation of bioactivity, posing the risk for
undesired health complications during subsequent clinical trials.

Here, we show that the presence of bacterial endotoxins
(10 ng ml–1) in chitosan derivatives can result in false-positive re-
sults, profoundly altering bioactivity in in vitro assays. False-posi-
tive results through uncritical use of natural substances in vitro can
be avoided by proper endotoxin testing and careful evaluation of
cytokine secretion patterns. We intend to raise awareness in the
field of biomaterials research to the threat of endotoxin contami-
nation in natural substances, and the resulting discrepancies be-
tween in vitro and in vivo studies.

2. Materials and methods

2.1. Production of ChOS

Chitin Flakes (Primex, Iceland) were deacetylated in 50 wt.%
aqueous NaOH at 60 �C for 40 min at 25 rpm. The suspension
was washed in flowing cold water at 6 �C for 10–12 min in double
bag cheesecloth. The resulting chitosan was mixed with water and
the pH adjusted to 3.8 with 30% HCl. Degradation of chitosan was
performed using chitinase from Penicillium species (750 chitinolyt-
ic units per g) for 22 h at 25 �C at 50 rpm. ChOS were then sepa-
rated by ultrafiltration with a Helicon SS50 spiral-wound
ultrafiltration membrane (PTGC, 10 kDa cut-off, Millipore, USA)
using tangential flow in a Millipore PUF-200-FG pilot module.
The filtrate was desalted and subjected to a 1 kDa cut-off Helicon
SS50 membrane using the same module. The volume of filtrate
was kept constant by the addition of deionized water until oligo-
saccharides with a degree of polymerization (DP) of 1–3 comprised
less than 10% of the total composition of ChOS, as determined by
high-performance liquid chromatography (HPLC; HP-SEC with a
TSK-oligo column, TosoHaas, Japan).

Before use in cell culture systems, all ChOS were subjected to
endotoxin cleaning using Detoxi-Gel Endotoxin Removing Gel
(Thermo Scientific, USA). Successful removal of endotoxins was as-
sessed with the PyroGene Recombinant Factor C Endotoxin Detec-
tion System (Lonza, USA). For comparison, sample batches were
also analyzed by Lonza (Verviers, Belgium) using the same
protocol.

2.2. Characterization of ChOS

HP-SEC in a Beckman Gold System with a TSK-oligo column and
5 mM ammonium hydroxide (pH 10.0) as eluent at a flow rate of
0.5 ml min–1 was used to determine the distribution and quantity
of different degree of polymerization oligomers. Twenty microli-
ters of 10 mg ml–1 ChOS solution was injected and analyzed with
an ultraviolet detector at 205 nm. Ethanol served as an internal ref-
erence for the inclusion volume and Beckman Gold analysis soft-
ware was used for peak analysis.

The degree of deacetylation was analyzed using 1H-nuclear
magnetic resonance (NMR) and Fourier transform infrared (FTIR)
analysis. 1H-NMR samples were measured in a Bruker AVANCE
400 spectrometer (Bruker Biospin GmbH, Germany) at
400.14 MHz at 298�K. Measurements were performed without
water suppression in either D2O or D2O/DCl (deuterium chloride)
as solvent. The sample concentration was 20–25 mg ml–1 and the
N-acetyl peak was used as an internal reference. The degree of acet-
ylation was calculated using the combined integrals of the proton
peaks. IR measurements were performed in an AVTAR 370 FTIR
instrument (Thermo Nicolet Corporation, USA). For this, 2–5 mg of
samples was thoroughly mixed with KBr and then pressed into pel-
lets with a Specac compressor (Specac Inc. USA).

2.3. Cell culture

Cell culture experiments were carried out with human bone
marrow-derived mesenchymal stem cells (Lonza, Switzerland) in
DMEM/F12 medium (Gibco, USA) supplemented with penicillin/
streptomycin (Invitrogen, USA) and 10% MSC-approved fetal calf
serum (Stem Cell, Canada) at 37 �C, 5% CO2 and 95% humidity. To
induce osteogenic differentiation, the basal expansion medium
was switched to Differentiation Basal Medium Osteogenic (Lonza)
supplemented with dexamethasone, ascorbate, L-glutamine,
streptomycin/penicillin, b-glycerophosphate and MSC growth sup-
plement, and 4000 cells cm–2 were seeded on vacuum gas plasma-
treated tissue culture plastic. Three independent donors were used
to determine the effect of 10 ng ml–1 LPS (Sigma Aldrich Inc., USA),
400 lg ml–1 ChOS (Genis ehf, Iceland) and 10 ng ml–1 LPS in
combination with 400 lg ml–1 ChOS. Proliferation and viability
was assessed using the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyl-
tetrazolium bromide (MTT) proliferation assay (ATCC Bioproducts,
Sweden) following the manufacturer’s instructions.

2.4. Analysis of gene expression

RNA isolation was performed using a Quiagen BioRobot work-
station (Quiagen, Germany) and the EZ-1 RNA Cell Mini Kit (Qui-
agen). Samples from osteogenic differentiation experiments were
homogenized in a FastPrep 24-instrument (MP Biomedicals, USA)
using Lysing Matrix D tubes (MP Biomedicals) containing 1.4 mm
ceramic spheres before RNA isolation. RNA was transcribed with
a High-Capacity cDNA Reverse Transcription Kit (Applied Biosys-
tems, USA) and gene expression of selected genes was quantified
in a 7500 Real Time PCR System (Applied Biosystems) and analyzed
using GenEx 5.3.2.13 software (MultiD, Sweden). Samples were
analyzed at least in duplicate for each of the three donors. GAPDH
(glyceraldehyde 3-phosphate dehydrogenase) was used as the
internal reference gene. Taqman assays used during this study in-
cluded: YKL-40 (Hs00609691_m1), TLR2 (Hs00152932_m1), TLR3
(Hs00152933_m1), TLR4 (Hs00152939_m1), COL1A2 (collagen type
I; Hs01028970_m1), ALP (Alkaline phosphatase; Hs01029141_g1),
OPN (osteopontin; Hs00167093_m1) and RUNX-2 (runt-related
transcription factor 2; Hs00231692_m1).
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2.5. Validation of osteogenic differentiation

Osteogenic differentiation was evaluated by Alizarin Red stain-
ing and subsequent quantitation using 10% cetylpyridinium chlo-
ride (Sigma Aldrich Inc.), and validated by von Kossa staining,
following standard protocols [19]. Alkaline phosphatase activity
was determined in cell lysates by adding p-nitrophenyl phosphate
solution (Sigma Aldrich Inc.) and measuring the optical density at
405 nm in a MultiSkan spectrometer. Alkaline phosphatase activity
was calculated as nmol of p-nitrophenol per min following the
general Beer–Lambert law.

2.6. Polystyrene beads cytokine assay

Secretion of eight cytokines into cell culture medium superna-
tants was determined using a custom-designed Luminex 8Plex Hu-
man Cytokine assay (Panomics, USA). The cytokines determined
were IL-1b, IL-4, IL-6, IL-8, IL-10, IL-12p(40), RANTES and TNF-a
with a limit of detection of 1 pg ml–1 in medium supernatant.

2.7. YKL-40 enzyme-linked immunosorbent assay

YKL-40 protein concentration in medium supernatants was
analyzed with MicroVue YKL-40 enzyme immunoassay (Quidel,
USA). The limit of detection was 5.4 ng ml–1 and the assay was per-
formed according to the manufacturer‘s instructions.

2.8. Statistical analysis

Data are presented as mean ± standard error. Statistical analysis
was performed using Prism 5.01 software (GraphPad Software Inc.,
USA) and for quantitative real-time polymerase chain reaction
(qPCR) analysis using GenEx 5.3.2.13 software. One-, two- and
three-way analyses of variance (ANOVAs) were used to evaluate
the effect of endotoxin contamination in ChOS biomaterials. For
experiments other than qPCR, one-way ANOVA was used to evalu-
ate the effect of endotoxin contamination. Student’s t-test was
used for direct comparison between two groups; p < 0.05 was con-
sidered statistically significant. Three independent donors were
used in all experiments.

3. Results

3.1. Characterization of ChOS

ChOS preparations were analyzed for degree of acetylation, ash
content, solubility and appearance, and are summarized in
Table 1. The degree of acetylation was calculated using the com-
bined integrals of the proton peaks (Supplementary Fig. 1). The
integral of the protons H-2 (GluNAc), H-3, H-4, H-5, H-6 and H-
60, belonging to the sugar backbone of ChOS, were found to be
at d 3.3–3.9 ppm and H-2 (GluN) was found at d 2.7 ppm (for

D2O/DCl as solvent at d 3.2 ppm). The integrals of these protons
were compared to the integral for the N-acetyl peak at d
2.08 ppm. Detailed results regarding characterization of ChOS
using 1H-NMR and FTIR are summarized in Supplementary Table 1
and Supplementary Fig. 2.

Before use, ChOS were characterized regarding the distribution
of the DP using HPLC (Fig. 1). The effect of endotoxin removal on
the structure of the ChOS was determined with 1H-NMR and re-
vealed that the endotoxin cleansing procedure did not affect the
ChOS structure, the degree of acetylation or the DP (Fig. 1, Supple-
mentary Figs. 1 and 2, and Supplementary Table 1). The NMR and
IR investigations showed that there was no change in ChOS mate-
rials subsequent to endotoxin removal (Supplementary Fig. 1 and
Supplementary Table 1). All characteristic NMR and IR peaks were
identical and the degree of acetylation was unaltered. Furthermore,
the absence of changes in the intensity of the H-1 a peak, signaling
the reducing end, and the HPLC elution pattern (Supplementary
Fig. 2) also confirmed that the DP had not been affected by the
endotoxin removal step.

3.2. Short-term effect of LPS and ChOS on human mesenchymal stem
cells (hMSC)

We estimated proliferation rate and viability with an MTT pro-
liferation assay and determined that 10 ng ml–1 LPS over a 7 day
period did not affect the proliferation potential of hMSC (Supple-
mentary Fig. 3).

During the analysis of cytokine secretion patterns, the presence
of LPS is apparent after 3 days in culture (Fig. 2a and b), manifest-
ing in a significant increase (p < 0.05) in the secretion of the
inflammatory cytokines IL-6 and IL-8, as expected. RANTES and
IL-12p(40), two cytokines not usually secreted under standard
culturing conditions in hMSC, could also be detected with LPS
present.

However, during the standard evaluation of proliferation, mor-
phology and expression levels of genes previously shown to be
sensitive to endotoxins, the effect of 10 ng ml–1 LPS could not be
detected during the 7 day evaluation period of expansion (Fig. 2c
and d). An increase in the expression of TLR3 was observed be-
tween days 3 and 7 during the expansion of hMSC, but neither
LPS nor ChOS affected its gene expression (Fig. 2c). The expression
of TLR4 did not change between 3 and 7 day periods of culture, and
was likewise not significantly affected by the presence of LPS
(Fig. 2c). The expression of YKL-40 in the presence or absence of
LPS and ChOS did not vary significantly, but a time-dependent in-
crease was observed (Fig. 2d).

3.3. Quality of osteogenic differentiation in hMSC

The osteogenic differentiation potential of hMSC makes them
an attractive tool to treat osteogenesis-related injuries, with or
without the use of scaffolds and implants [20]. We therefore exam-
ined the expression of osteogenic marker genes in the presence of
ChOS and LPS.

ChOS alone increased the expression of COL1A2 (p < 0.01),
whereas the presence of LPS completely abrogated this effect. No
difference in the expression of ALP and RUNX-2 was detected with
ChOS. The expression of the osteogenic marker genes ALP
(p < 0.001) and RUNX-2 (p < 0.01) was significantly up-regulated
with LPS.

Furthermore, we observed an increase in ALP activity
(p < 0.001) and the deposition of calcium hydroxyapatite crystals
in the presence of LPS or LPS in combination with ChOS, though
no increase was detected when cells were differentiated with ChOS
alone (Fig. 3b and c; Supplementary Fig. 4).

Table 1
Characterization of ChOS.

Characterization of ChOS

FA (degree of acetylation) 0:40ðdetermined by 1H-NMRÞ

Ash content 8.3%
Solubility in H2O 100%
Appearance White powder (spray-dried)
Escherichia coli Absent
Coliform bacteria Absent
Salmonella spp. Absent
Endotoxin 0.38 ± 0.13 EU mg�1
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Fig. 1. HPLC characterization of ChOS. Distribution and quantity of different degree of polymerization oligomers was determined with HPLC using a TSK-Oligo column.

Fig. 2. Short-term effect of LPS and ChOS on hMSC. (a and b) Cytokine secretion of IL-4, IL-12p(40), RANTES, IL-6 and IL-8 after 3 and 7 days in expansion. A significant
increase in IL-6 and IL-8 secretion was observed in the presence of endotoxins, as well as the induction of RANTES and IL-12p(40) secretion. Error bars are standard errors
(n = 2) (⁄p < 0.05; ⁄⁄p < 0.01; ⁄⁄⁄p < 0.001). (c and d) Expression of YKL-40, TLR4 and TLR 3 after 3 and 7 days of expansion. A time-dependent increase in expression can be
observed for YKL-40 independent of the presence of endotoxins. Error bars are standard errors (n = 6).
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The increase in the expression of osteogenic marker genes is
highly correlated with the increase in gene expression of YKL-40
and TLR3, as demonstrated by the heatmap in Fig. 4b (also see
Fig. 4a). Since YKL-40 has been suggested to play a role in the
remodeling of the extracellular matrix [12], the correlation of this
gene with two osteogenic marker genes (ALP and RUNX-2) is not
unexpected. The increase in YKL-40 gene expression is furthermore
consistent with increased secretion of YKL-40 protein into the cell
culture medium (Fig. 4c).

3.4. Effect of LPS on cytokine secretion during osteogenesis

As observed during the expansion of hMSC, the presence of
10 ng ml–1 endotoxins during osteogenic differentiation cannot
be conclusively determined from the quality of osteogenesis, i.e.
gene expression, ALP activity and mineralization, but requires the
analysis of the cytokine secretion profile. With 10 ng ml–1 LPS,
the secretion of IL-4 (p < 0.001), IL-12p(40) (p < 0.001) and the pro-
inflammatory cytokine TNF-a (p < 0.001) is up-regulated as com-
pared to the control samples and ChOS alone (Fig. 5a). Again,
RANTES was only induced in endotoxin-spiked samples. In

Fig. 3. Quality of osteogenic differentiation in hMSC. (a) Expression of alkaline
phosphatase (ALP), runt-related transcription factor 2 (RUNX-2) and collagen type I
(COL1A2) after 21 days of osteogenic differentiation. ALP and RUNX-2 were
significantly increased in the presence of endotoxins, whereas chitooligosaccacha-
rides alone but not in combination with LPS were able to significantly induce
expression of COL1A2. Error bars are standard errors (n = 6) (⁄p < 0.05; ⁄⁄p < 0.01;
⁄⁄⁄p < 0.001); (b) alkaline phosphatase activity at 18 days during osteogenesis.
Alkaline phosphatase activity was significantly induced in the presence of endo-
toxins. Error bars are standard errors (n = 9) (⁄⁄⁄p < 0.001); c, Alizarin Red staining of
calcification at 21 days of osteogenesis. Red staining is specific for calcium
deposition (a representative picture of three donors).

Fig. 4. Long-term effects of LPS and ChOS. (a) Expression of YKL-40 and TLR3. Both
genes were significantly increased in the presence of endotoxins. Error bars are
standard errors (n = 6) (⁄p < 0.05; ⁄⁄p < 0.01; ⁄⁄⁄p < 0.001); (b) heatmap and hierar-
chical clustering of gene expression data autoscaled to genes. High expression of
YKL-40 is correlated with the expression of the osteogenic genes alkaline
phosphatase (ALP) and RUNX-2, as well as Toll-like-receptor 3 (TLR3). A red color
indicates high expression and green ndicates low expression (n = 6); (c) YKL-40
protein secretion during osteogenic differentiation of hMSC. Secretion of YKL-40
protein into medium supernatants was significantly increased in the presence of
endotoxins. Error bars are standard errors (n = 6) (⁄p < 0.05; ⁄⁄p < 0.01; ⁄⁄⁄p < 0.001).
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addition, a substantial increase (p < 0.001) in the secretion of IL-6
and IL-8, corresponding to the results obtained during short-term
culturing, was observed (Fig. 5b).

4. Discussion

Here, we report the effects of 10 ng ml–1 endotoxin contamina-
tion on the in vitro evaluation of the bioactivity of chitosan deriv-
atives and how the presence of endotoxins can modify the results
of in vitro bioactivity testing, in general leading to false-positive re-
sults. During standard evaluation of bioactivity, i.e. proliferation,
morphology and gene expression of selected genes, the presence
of endotoxins can escape notice unless cytokine secretion patterns
are analyzed.

After 3 days in culture, the presence of LPS induced a significant
increase in the secretion of inflammatory cytokines in hMSC. The
activation of the innate immune system through interaction of li-
gands with TLRs induces a signaling cascade that results in the
secretion of cytokines and chemokines, such as IL-6, IL-8, TNF-a
and IFN-c [21]. The increase in expression of IL-6 and IL-8 is an
important part of the host defense in regulating inflammatory re-
sponses, and can directly affect bone metabolism [22]. The secre-
tion of inflammatory cytokines can in turn activate the adaptive
immune system, including the mobilization of antigen-presenting
cells, the maturation of dendritic cells and the differentiation of na-
ive T cells into activated T-helper 1 cells [23,24]. The activation of
TLRs creates an inflammatory environment that stimulates cells of
the adaptive immune system to migrate to the site of inflammation
and remove the invading pathogens [23]. Mesenchymal stem cells
(MSC) are known to secrete factors that can alter immune re-
sponses [25]. Several studies have shown that MSC suppress T-
and B-cell activation, and inhibit the action of antigen-presenting
cells as well as dendritic cell maturation [26]. TLRs 1–7 are ex-
pressed in MSC in vitro, and triggering of these receptors can alter
migration and immunomodulatory functions of these cells [27].

Among the cytokines induced after challenge with LPS, IL-8 and
TNF-a are known to be up-regulated in the T-helper 1 cell re-
sponse, whereas IL-4 and IL-6 are associated with T-helper 2 cell
responses [28]. The proinflammatory cytokines TNF-a, IL-6 and
IL-8 are expected to decrease wound healing by increasing cellular
activation and chemotaxis [28]. IL-12p(40) is a potent regulator of
cell-mediated immune responses and activates natural killer cells
and T cells [29]. RANTES is known as a chemoattractant to mono-
cytes, memory T cells and basophils, and has been shown to be in-
creased in patients suffering from sepsis. This cytokine was
identified as a key player in the uncontrolled expression of proin-

flammatory cytokines during inflammation, which is further sup-
ported by the notion that RANTES is rarely expressed in normal
adult tissues but can be found at sites of inflammation [29–31].

TLRs were established as important parts of innate immunity,
providing a link between innate and adaptive immune system acti-
vation [21]. The conserved structure of these receptors aids in the
pattern recognition of conserved motifs in the make-up of invading
microorganisms, and TLRs have been linked to epithelial homeo-
stasis by inducing proliferation and tissue repair after injury [25].
We determined the effect of LPS on the expression of its direct
receptor counterpart TLR4 and the closely related receptor TLR3,
which is believed to be important in facilitating stress responses
in hMSC [27]. TLR3 not only reacts to its known ligand, poly(I:C),
but can also respond to ligands that bind to closely related TLRs
[11]. In the present study, small amounts of LPS did not affect
the expression levels of genes in hMSC previously shown to be sen-
sitive to the presence of endotoxins.

With the aid of a heatmap based on hierarchical clustering, the
correlation between gene expression and the presence of LPS was
visualized [32]. The increase in the expression of the osteogenic
marker genes ALP and RUNX-2 is highly correlated to the gene
expression levels of YKL-40 and TLR3. RUNX-2 is one of the key play-
ers involved in osteogenic differentiation [33]. It can be detected
throughout osteogenic and chondrogenic differentiation, and is
essential for the expression of downstream transcription factors
[34]. Even though RUNX-2 is not specific for osteogenic differentia-
tion, it maintains a pool of undifferentiated osteoprogenitor cells
and induces the expression of osteogenesis-related genes like OPN
(osteopontin), OCN (osteocalcin) and COL1A2 [35,36]. An early event
during osteogenic differentiation of hMSC is the reduction of prolif-
erative abilities, accompanied by increased expression of the early
marker gene ALP (alkaline phosphatase) [37].

A large subset of signaling molecules and receptors expressed
during bone turnover are shared with the immune system [38].
This is caused, in part, by the fact that osteoclasts, the bone resorb-
ing cells, and immune cells are both derived from the hematopoi-
etic lineage [39]. Osteoclasts can react to cytokines produced by
macrophages and other immune cells during inflammation, and
can activate bone remodeling pathways in vivo [40].

The expression of the osteogenic marker genes ALP and RUNX-2
was not affected by ChOS alone, whereas the expression levels of
COL1A2 were significantly increased. The presence of LPS com-
pletely abrogated this effect on COL1A2 gene expression. The
up-regulation of COL1A2 expression in the presence of ChOS alone
might be explained by the heparin binding site found in the colla-
gen type I protein. Heparin is a glycosaminoglycan with a variable

Fig. 5. Effect of endotoxins on cytokine secretion during osteogenesis. (a and b) Secretion of IL-4, IL-12p(40), TNF-a, RANTES, IL-6 and IL-8 at 20 days of osteogenic
differentiation. Previously mentioned cytokines were significantly increased in the presence of endotoxins. RANTES secretion was only induced in samples containing LPS.
Error bars are standard errors (n = 6) (⁄p < 0.05; ⁄⁄p < 0.01; ⁄⁄⁄p < 0.001).
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structure, but one of the typical building blocks is the amino sugar
D-N-acetylglucosamine [41]. This amino sugar comprises approxi-
mately 40% of the ChOS mixture used in this study and might be
able to interact with the heparin binding site on the collagen type
I protein. This effect is not observed when ChOS is used in combina-
tion with LPS. One possible explanation for this might lie in the di-
rect interaction between the two compounds. Chitosan was shown
to form stable complexes with LPS, based on the formation of
hydrogen bonds and electrostatic interactions [7]. Water-soluble
derivatives with a high degree of deacetylation, such as the ChOS
used in this study, are expected to interact with the lipid A moiety
of endotoxins and bind with high affinity [7]. A high degree of inter-
action of the chitosan derivative with endotoxins could sterically
hinder possible binding sites of ChOS in the cell and might therefore
be responsible for the abrogation of increased COL1A2 expression.
However, the effect of the endotoxin itself on cellular functions
should not be affected by this interaction. Even under optimal inter-
action conditions, approximately 30% of the endotoxin will be un-
bound and able to interact with cellular receptors [42].

Chitosan is considered to be a promising candidate for applica-
tions in regenerative medicine and tissue engineering, partly due
to recent reports on the positive influence of chitosan on osteogen-
esis in vitro and in vivo [3,4]. Lahiji et al. [43] showed that human
osteoblasts grown on chitosan membranes with a 90% degree of
deacetylation sustained a spherical morphology as compared to
spindle-shaped cells on tissue culture plastic, and preserved colla-
gen type I expression during short-term culture. Similarly, Amaral
et al. [5] demonstrated that chitosan membranes could promote
the differentiation of osteoprogenitor cells and aid in bone forma-
tion. Neither study reported endotoxin testing of the chitosan start-
ing material and both focused on the use of chitosan as a biological
growth substrate for cells in the form of membranes and bioactive
coatings. ChOS, as used in the present study, are low-molecular-
weight derivatives of chitosan that has undergone regioselective
enzymatic degradation. Since the biological potential strongly de-
pends on chemical properties, differences in bioactivity between
chitosan and ChOS can be assumed [44]. Additionally, we have re-
cently shown that pure, endotoxin-free hexamer fractions of chito-
san and chitin oligomers increase the expression of TLR3, RUNX-2
and COL1A2 during osteogenic differentiation of hMSC, but do not
affect the mineralization process [45]. Mass production of pure oli-
gomer fractions with a well-defined degree of polymerization is
laborious and expensive, which is why many studies focus on the
use of ChOS mixtures to evaluate bioactivity [46,47]. This intro-
duces a higher level of complexity despite advanced analysis meth-
ods, since both active and inhibitory oligomer fractions might be
present simultaneously, affecting the biological activity [48].

The presence of LPS resulted in increased osteogenic marker
gene expression, elevated ALP activity and increased deposition
of calcium hydroxyapatite crystals. Improvement of osteogenic dif-
ferentiation in MSC in the presence of LPS has been described in
several studies and was shown to be coupled with increased acti-
vation of the ERK pathway and dependent on the duration of endo-
toxin exposure [49,50]. The main event connecting the presence of
endotoxins to bone biology is the induction of proinflammatory
cytokines such as IL-6 after ligation with TLR4. IL-6 was tightly
linked to osteoclast-induced bone resorption [22,51]. This also ex-
plains why an increase in osteogenic differentiation of hMSC can be
observed in vitro, whereas increased rates of bone-turnover are in-
duced in vivo or in co-culture with preosteoclasts.

5. Conclusion

We have shown that the presence of endotoxins in chitosan
derivatives can profoundly alter the performance of a potential
biomaterial in vitro. Endotoxin-contaminated ChOS will improve

osteogenic differentiation and deposition of calcium hydroxyapa-
tite crystals without affecting cell viability of hMSC. This positive
effect on osteogenesis is abrogated after appropriate endotoxin
removal.

Endotoxin contamination is difficult to avoid completely during
production and handling of natural substances. With the proper
testing and handling of starting materials derived from natural
materials and the evaluation of cytokine secretion patterns, such
materials can be useful tools in biomaterials research. Spiking sam-
ples with known amounts of endotoxins can be beneficial, as well
as testing bioactivity in the presence of endotoxin inhibitors such
as polymyxin B [52]. The inclusion of simple quality control proce-
dures to standard evaluation protocols of biomaterials will reduce
the potential discrepancies between in vitro and in vivo studies,
where a formerly bioactive and successful biomaterial has reduced
bioactivity because of the strict rules for material safety in clinical
practice.
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Appendix A. Figures with essential color discrimination

Certain figures in this article, particularly Figs. 1–5, are difficult
to interpret in black and white. The full color images can be found
in the on-line version, at doi: http://dx.doi.org/10.1016/
j.actbio.2012.08.043.

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.actbio.2012.08.
043.
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Supplementary Figures 

 

Supplementary Fig. 1. HPLC characterization of endotoxin removal procedures on the degree 

of polymerization of chitooligosaccharides. Distribution and quantity of different degree of 

polymerization oligomers was determined with HPLC using TSK-Oligo column. DP = degree of 

polymerization. No effect on the distribution and quantity of different DP oligomers could be accounted 

to the endotoxin removal treatment. 

 

 



 

 

Supplementary Fig. 2. 
1
H-NMR analysis and FT-IR analysis of oligosaccharides. 

1
H-NMR 

analysis overlay of endotoxin cleaned chitooligosaccharides (ChOS) and chitooligosaccharides with 

LPS (ChOS/LPS). Measurements were performed at 400.14 MHz at 298°K without water suppression. 

D2O or D2O/DCl were used as solvents; IR measurements were performed with 2-5 mg of samples 

that were thoroughly mixed with KBr and then pressed into pellets. 



 

 

Supplementary Fig. 3. Proliferation of hMSC during expansion. Proliferation was determined 

using the MTT proliferation assay at days 1, 3, 5 and 7 in three independent donors. No effect of 

chitooligosaccharides or LPS either alone or in combination was observed. Error bars are standard 

error (n=15). 

 

 

Supplementary Fig. 4. Validation of successful osteogenic differentiation in hMSC. a, Alizarin 

Red Quantitation with cetyl-pyridinium chloride. Significant accumulation of Alizarin Red Stain was 

observed in the presence of endotoxins. Error bars are standard error (n=9) (***p<0.001); b, Von 

Kossa staining of mineral deposition during osteogenic differentiation. Brown color depicts 

mineralization. Pictures are representative from three donors.   

 

 

 

 

 

 

 



 

 
(ChOS endotoxin removed) 

ChOS 

(ChOS before endotoxin removal) 

ChOS + LPS 

1
H-

NMR 

(400 MHz, D2O): δ 2.08 (s, CH3C=O), 2.67-

2.76 (m, H-2 GluN), 3.37–3.99 (m, H-2 

GluNAc, H-3, H-4, H-5, H-6, H-6´), 4.46-4.64 

(m, H-1), 5.21 (weak s, H-1 α) ppm. 
1
H NMR (400 MHz, D2O/ DCl): δ 2.09 (s, 

CH3C=O), 3.14-3.23 (m, H-2 GluN), 3.46–3.96 

(m, H-2 GluNAc, H-3, H-4, H-5, H-6, H-6´), 

4.61-4.96 (m, H-1), 5.21 (weak s, H-1 α) ppm. 

(400 MHz, D2O): δ 2.08 (s, CH3C=O), 2.67-

2.76 (m, H-2 GluN), 3.37–3.99 (m, H-2 

GluNAc, H-3, H-4, H-5, H-6, H-6´), 4.46-4.64 

(m, H-1), 5.21 (weak s, H-1 α) ppm. 
1
H NMR (400 MHz, D2O/ DCl): δ 2.09 (s, 

CH3C=O), 3.14-3.23 (m, H-2 GluN), 3.46–

3.96 (m, H-2 GluNAc, H-3, H-4, H-5, H-6, H-

6´), 4.61-4.96 (m, H-1), 5.21 (weak s, H-1 α) 

ppm. 

FT-IR 
ν 3369 (br, OH), 2879 (m, C–H), 1657 (vs, 

C=O amide I),1557 (vs, C=O amide II) cm
-1

. 

ν 3374 (br, OH), 2879 (m, C–H), 1659 (vs, 

C=O amide I),1563 (vs, C=O amide II) cm
-1

. 
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Paper IV 
 

  

“Aerodynamically, the bumblebee shouldn’t be able to fly, 

But the bumblebee doesn’t know it, so it goes on flying anyway.” 

 

Mary Kay Ash, American business woman (1918-2001) 
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Abstract: Clinical treatment of orthopaedic tissue injuries of-

ten involves the use of titanium and titanium alloys with con-

siderable research focusing on the surface modification of

these materials. Chitosan, the partly deacetylated form of chi-

tin, is one of the materials under investigation as surface

coating for orthopaedic implants in order to improve osteo-

integration and cellular attachment. In this study, we deter-

mined the effects of the degree of deacetylation (DD) of chito-

san membranes on attachment, proliferation and osteogenic

differentiation of MC3T3-E1 mouse preosteoblasts. Chitosan

membranes were coated with fibronectin to promote biocom-

patibility and cellular attachment. Membranes were charac-

terized in terms of wettability and surface topography using

water contact angle measurements and atomic force micros-

copy. The results in this study indicate that the surface

roughness and fibronectin adsorption increase with increased

DD. A higher DD also facilitates attachment and proliferation

of cells, but no induction of spontaneous osteogenic differen-

tiation was observed. Lower DD chitosan membranes were

successfully prepared to sustain attachment and were modi-

fied by crosslinking with glutaraldehyde to promote long-

term studies. The chitosan membranes used in this study are

suitable as a potential coating for titanium implants. VC 2012

Wiley Periodicals, Inc. J Biomed Mater Res Part A: 00A:000–000, 2012.
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Gı́slason J, Örlygsson G, Sigurj�oonsson ÓE 2012. In vitro bioactivity of different degree of deacetylation chitosan, a potential
coating material for titanium implants. J Biomed Mater Res Part A 2012:00A:000–000.

INTRODUCTION

Clinical treatment of orthopaedic tissue injuries often
involves the use of titanium or titanium alloys with consid-
erable research focusing on the surface modification of
these materials.1,2 The integration of the implant and its
performance at the bone-biomaterial interface crucially
determine the progress of the fixation.3 Successful integra-
tion depends on surface characteristics including surface
chemistry, topography, charge, and wettability, as well as the
mechanical properties of the implant.3,4 During implanta-
tion, damage to the bone environment can lead to the fail-
ure of the implant by inducing the formation of a fibrous
tissue capsule before osteoblastic cells can attach to the
implant surface.5 Cell-based approaches furthermore
increased the desire to coat implants with suitable biode-
gradable materials to promote cell attachment, proliferation

and possibly a guided differentiation into the desired
phenotype.6

At the bone-biomaterial interface, the surface character-
istics determine the initial amount and conformation of pro-
teins adsorbed to the implant surface.7 This layer of
adsorbed proteins constitutes the primary interaction site
for the cells, as interaction on that level only occurs at the
outermost atomic layer, and critically regulates integrin sig-
nalling and the ability of cells to regenerate the damaged
tissue.8,9 Materials under investigation as bioactive coatings
for titanium and titanium alloys are the polysaccharide chi-
tosan, starch, and mucopolysaccharides.10–12 Chitosan can
be derived from chitin, a polymer of b-(1!4)-linked-2-acet-
amido-2-deoxy-D-glucopyranose, which is a structural com-
ponent in the cell walls of bacteria and fungi, as well as
crustaceans and insects.13,14 Because chitin is the second

Additional Supporting Information may be found in the online version of this article.
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most abundant organic compound in nature, the production
of chitosan is economically and ecologically profitable.13

N-deacetylation of chitin using aqueous alkali yields chito-
san with three functional groups that allow for chemical
modification to obtain modified chitosan derivatives.13,15

The key properties of chitosan include that it is nontoxic,
biodegradable, and biocompatible.16 Fungistatic and bacter-
iostatic effects as well as an influence on tumour growth
have been reported.13 For applications in various systems,
chitosan can be pressed into various forms and combined
with different biomaterials, thereby offering to be a promis-
ing polymer in regenerative medicine, for scaffolds in tissue
engineering, gene therapy, and drug delivery systems.13,17 In
addition, chitosan has been shown to have favorable effects
on osteogenesis in vitro and in vivo, by promoting cell
attachment and supporting the formation of a natural extra-
cellular matrix, which is critical for bone regeneration.10

The cationic charge of chitosan can be held responsible for
negatively charged cytokines and growth factors to bind to
its surface which in turn can induce polymorphonuclear
cells to migrate to the implantation site to aid in the tissue
regeneration process.18 Via the amino group, chitosan can
be chemically bonded to titanium implants thereby improv-
ing cellular attachment over uncoated implants with oligo-
saccharides as degradation products that can take part in
the regeneration of the mineralized bone matrix.18 Because
there is no distinct definition on the degree of deacetylation
(DD) that constitutes chitosan but rather a general consider-
ation that less than 50% N-acetyl-glucosamine in the chain
is considered to be chitosan, the influence of this property
was reported repeatedly to alter cellular behavior with dif-
ferent effects on different cell types.19,20 A higher DD is gen-
erally considered to increase cell attachment and prolifera-
tion but a lower DD has the promising ability to induce
healing without scar tissue formation.21,22

The aim of this study was to investigate the effects of
different DD of chitosan in the form of chitosan membranes,
as a potential coating for titanium implants. For this pur-
pose, the influence on cellular attachment, proliferation and
gene expression of MC3T3-E1 mouse preosteoblastic cells
was determined. Membranes were characterized in terms of
wettability and surface topography, using water contact
angle measurements and atomic force microscopy. Lower
DD chitosan membranes were successfully prepared to sus-
tain attachment and were modified by crosslinking with glu-
taraldehyde to promote long-term cultures.

METHODS AND MATERIALS

Analysis of chitosan powder
DD of chitosan powder was determined using 1H-NMR
in Bruker AVANCE 400 (Bruker Biospin GmbH, Karlsruhe,
Germany) at 400.14 MHz at 298K. D2O/DCl (deuterium
hydrochloride) or D2O/TFA (trifluoro acetic acid) was used
as solvent and measurements were taken without water
suppression. Sample concentration was 10–15 mg/mL.

Preparation of chitosan membranes
Shrimp shell chitosan with a DD of 47, 68, 87, and 94%
(DD47, DD68, DD87, and DD94, respectively) (Genis ehf.,

Reykjavik, Iceland) and crab shell chitosan with a DD of
87% (Sigma DD87) (Sigma Aldrich, St. Louis, MO) were
used. A 1% (w/w) chitosan solution in deionized H2O
(dH2O) with 50 mM 100% acetic acid was prepared and
stirred until solution was clear. Chitosan solutions were cen-
trifuged before casting to remove undissolved particles and
to ensure homogeneous membrane casting. 0.1 mL chitosan
solution/cm2 was cast into tissue culture treated plates
(Falcon) and dried over night in an incubator at 37�C. Chito-
san membranes were neutralized with 0.1 M NaOH and
sterilized with 70% ethanol. Membranes were additionally
sterilized under UV-light and then incubated with a 5 lg/
mL fibronectin solution (Gibco, Carlsbad, CA) in sterile PBS
for 3 h. Before cell seeding, chitosan membranes were equi-
librated in DMEM/F12 media (Gibco) supplemented with
penicillin/streptomycin (Invitrogen) and 10% heat-inacti-
vated FBS (Gibco).

For osteogenic differentiation experiments, DD47 and
DD68 chitosan membranes were additionally internally
crosslinked with 0.02% glutaraldehyde (Sigma) before coat-
ing with fibronectin to prevent degradation of the chitosan
membranes during long-term experiments.

Water contact angle measurements
Water contact angles were determined using a KSV CAM 200
optical contact angle meter (KSV Instruments) and a droplet
volume of 5 lL distilled water. The contact angle measure-
ment was started 10 s after drop down and calculated using
the Laplace & Young equation. Measurements were per-
formed at room temperature and ambient humidity.

AFM surface topography
Surface topography of chitosan membranes was evaluated
using an XE-100 atomic force microscope (Park Systems)
with a scan size of 5 lm and a scan rate of 0.15 Hz in
noncontact mode. Two samples were analysed per DD
and mean surface roughness determined from eight
measurements.

Fibronectin adsorption studies
Chitosan membranes and tissue culture plastic controls
were incubated with a 5 lg/mL fibronectin solution in PBS
over night at 4�C. Samples were then washed four times
with PBS and nonspecific adsorption was blocked with 1%
BSA (Sigma) in PBS for 2 h. After washing three times with
PBS, samples were incubated with rabbit anti-fibronectin
antibody (1:15000) (Sigma) for 2 h. Samples were then
washed three times with PBS and incubated with goat anti-
rabbit IgG Alkaline Phosphatase-conjugated antibody
(1:50000) for 2 h. Samples were then washed three times
with PBS and incubated with the substrate p-nitrophenyl
phosphate (Sigma) for 30 min. Optical density was
measured at 405 nm in a MultiSkan spectrometer (Thermo
Scientific, Vantaa, Finland).

Cell cultures
MC3T3-E1 (CRL 2593, subclone 4, ATCC) cells were main-
tained in a-MEM media (Gibco) supplemented with
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penicillin/streptomycin and 10% heat-inactivated FBS. Dur-
ing experiments on chitosan membranes, expansion media
was replaced by DMEM/F12 media supplemented with pen-
icillin/streptomycin and 10% heat-inactivated FBS to
enhance attachment and proliferation (observation from
pilot studies).

To induce osteogenic differentiation, MC3T3-E1 cells
were maintained in DMEM/F12 media supplemented with
penicillin/streptomycin, 10% heat-inactivated FBS, 2 mM b-
glycerophosphate (Sigma) and 0.1 mM ascorbic acid
(Sigma). For qPCR and alkaline phosphatase activity assays,
6-well plates and 12-well plates were used respectively,
seeded with 4000 cells/cm2.

Attachment and morphology
Cells were periodically checked in an inverted microscope
(Leica DM IRB) for phenotype consistency and morphology.
Attachment and morphology was determined in 6-well
plates seeded with 5000 cells/cm2. Images were taken after
24 and 48 h as well as periodically during osteogenic differ-
entiation with IC Capture 2.0 Software. 0.5% crystal violet
solution (Sigma Aldrich) in methanol was used to stain cells
and images were taken in an inverted microscope with IC
Capture 2.0 software.

Proliferation studies
Proliferation was assessed using the MTT proliferation assay
(ATCC bioproducts, Boras, Sweden) with the optimal cell
density at 3000 cells/well in a 96-well plate. Ten microliters
of MTT reagent (ATCC bioproducts) was added and the
plate incubated at 37�C in the dark for 4 h. After that, 100
lL of MTT detergent (ATCC bioproducts) was added and the
plate incubated at 37�C on a shaker for 3 h in the dark. Col-
orimetric analysis was performed by measuring optical den-
sity at 570 and 650 nm in a MultiSkan spectrometer
(Thermo Scientific). Measurements were corrected by the
blank (tissue culture plastic without cells) and the values
from the OD650. Chitosan membranes were clear and did
not affect the colorimetric measurement.

Gene expression
RNA isolation was performed using Qiagen BioRobot work-
station (Qiagen, Hilden, Germany) and the EZ-1 RNA Cell
Mini Kit (Qiagen), following manufacturer’s instructions.
Samples from osteogenic differentiation experiments were
homogenized in a FastPrep instrument using Lysing Matrix
D tubes (MP Biomedicals) before RNA isolation. High-
Capacity cDNA Reverse Transcription Kit was purchased
from Applied Biosystems (Foster City, CA) and was used in
all experiments. A master mix was prepared, containing 2.0
lL 10x RT buffer, 0.8 lL 25xdNTP (100 mM), 2.0 lL 10x
Random Primers RT, 1.0 lL Multiscribe Reverse Transcrip-
tase, 1.0 lL RNase Inhibitor and 3.2 lL Nuclease free H2O
per sample. Ten microliters of the master mix and 10 lL of
RNA samples were mixed and then transferred to a Thermal
Cycler 2720 (Applied Biosystems). Cycling conditions were
as following: 25�C for 10 min, 37�C for 120 min, 85�C for
5 s and then cooled down to 4�C.

To quantify gene expression of selected genes, qPCR was
performed in a StepOne Real Time PCR System (Applied
Biosystems). 10 lL Taqman master mix (Applied Biosys-
tems) with 1 lL of Taqman assay (Applied Biosystems) and
9 lL of 1:10 diluted sample cDNA was prepared for each
sample. GAPDH was used as a reference gene. Taqman
assays included alkaline phosphatase, runx-2, and osteopon-
tin. Data were analysed in GenEX 5.3.2.13 software (MultiD
Analyses, Gothenburg, Sweden) and calculated relative
to the control sample at 7 days during osteogenic
differentiation.

Alkaline phosphatase activity
Alkaline phosphatase activity assay was performed to deter-
mine the quality of osteogenic differentiation with and with-
out osteogenic stimulus after 4 and 7 days. To determine
alkaline phosphatase activity, cell lysates were incubated for
30 min in a solution of 1 mg/mL pNPP (p-Nitrophenyl
phosphate) and 0.2 M Tris buffer prepared in dH2O and
optical density measured at 400 nm in a MultiSkan spectro-
meter. Protein content of cell lysates was determined using
the Pierce BCA Protein Assay Kit (Thermo Scientific) in a
microplate design according to manufacturer’s instructions.
Alkaline phosphatase activity is presented as nMol (p-Nitro-
phenol)/min*mg/mL protein.

Statistical analysis
Data are presented as mean and standard deviation. Statisti-
cal analysis was performed using Prism 5.01 software
(GraphPad Software) and for qPCR analysis using GenEx
5.3.2.13 software. To evaluate the effect of different DD chi-
tosan membranes, one-way ANOVA with Tukey’s Multiple
Comparison Post-Test was used, for the effect of time on the
expression of osteogenic genes, t-test was used; p < 0.05
was considered statistically significant.

RESULTS

Analysis of chitosan powder
Integral values of 1H-NMR peaks were used to evaluate the
DD of chitosan material. This was based on the ratio
between the integral of the sugar backbone protons H-2, H-
3, H-4, H-5, H-6, and H-6’ in the range d3.1–4.0 ppm and
the integral of the N-acetyl (CH3) peak at 2.08. DD was cal-
culated according to following equation:

DAð%Þ ¼ ð½CH3ðN-acetylÞ�=½H-2� H-60�Þ � ð6=3Þ � 100

DD was confirmed to be 47, 68, 87, 87, and 94% for DD47,
DD68, DD87, Sigma DD87, and DD94, respectively (Support-
ing Information Figure 1).

Water contact angle measurement
Water contact angle measurements were performed on chi-
tosan membranes of different DD coated with fibronectin
(Figure 1). Contact angles for DD47 (68.3 6 3.6�) and DD68
(70.1 6 3.5�) were comparable to Sigma DD87 (72.7 6
2.4�) values, whereas DD87 (78.9 6 3.9�) and DD94 (77.9
6 2.2�) contact angle values were higher (p < 0.05).
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Overall, a trend of increase of the contact angle can be
observed from lowest to highest DD.

AFM surface topography
Surface roughness analysis showed, that DD47 (1.49 6
0.11 nm) to DD87 (1.56 6 0.16 nm) chitosan membranes
displayed a mean surface roughness (mean Ra) similar to
the tissue culture plastic control (1.57 6 0.21 nm) (Figure
2). DD68 (1.63 6 0.19 nm) and Sigma DD87 (1.73 6 0.10
nm) membranes were rougher but not statistically different.
DD94 displayed a much smoother surface than any other
membranes tested with a mean Ra of 0.91 6 0.07 nm. Even
though surface roughness did not vary significantly between
membranes and the tissue culture plastic, surface topogra-
phy showed differences in surface patterns. Tissue culture
plastic control displayed long fibres stretching over the
whole surface with even distribution whereas chitosan

membranes of different DD showed a more valley and hill
like structure without fibre formation.

Fibronectin adsorption studies
Highest fibronectin adsorption was observed on DD87 chito-
san membranes (0.707 6 0.055; p < 0.001) (Figure 3).
Relative adsorption to DD94 (0.5836 0.036), and Sigma DD87
chitosan membranes (0.542 6 0.055) was comparable to the
tissue culture plastic control (0.522 6 0.059; p ¼ not signifi-
cant). DD68 (0.359 6 0.027; p < 0.001) and DD47 (0.129 6
0.012; p < 0.001) showed decreased fibronectin adsorption as
compared to the other chitosan membranes, with DD47 chito-
san membranes adsorbing the least amount of fibronectin.

Cell attachment, morphology, and proliferation
Staining of cell bodies with crystal violet after 24 and 48 h
showed attachment of MC3T3-E1 cells on all chitosan mem-
branes and the tissue culture plastic control [Figure 4(A) ].
Cell layers grew until almost confluent after 48 h and could
be sustained for at least 7 days in culture (data not shown).
Morphology on DD47 was more round after initial attach-
ment and cells started to grow in star-like structures. After
7 days, cell layers on DD47 chitosan membranes were
grown to almost confluency and cells showed the typical
spindle-shaped morphology (data not shown). Cells on
tissue culture plastic and chitosan membranes, except for
DD47, were spindle-shaped after 24 h and a change of cell
shape could be observed over a period of 14 days. Cells
appeared to be more cuboidal in shape and 100% confluent
[Figure 4(A)]. Attachment on lower DD chitosan membranes
slightly decreased after 10–14 days and could not be sus-
tained more than 24 days in culture (data not shown).

Highest proliferation was shown in the tissue culture
plastic control, followed by tissue culture plastic coated
with fibronectin and chitosan membranes DD94, DD87, and
Sigma DD87 [Figure 4(B)]. Fibronectin coated tissue culture

FIGURE 1. Water contact angle measurements on chitosan mem-

branes with different degree of deacetylation coated with fibronectin.

n ¼ 4 (*p < 0.05).

FIGURE 2. Average surface topography of chitosan membranes with different DD. Surface roughness was determined in an XE-100 atomic force

microscope with a scan size of 5 lm and a scan rate of 0.15 Hz in noncontact mode. Representative images of each DD chitosan membrane are

presented. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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plastic lowered the proliferation rate of the cells similar
to the values observed with cells grown on chitosan mem-
branes. Proliferation on DD68 membranes was slightly lower,
followed by minimal proliferation on DD47 membranes.

Gene expression
qPCR analysis of the osteogenic marker genes alkaline phos-
phatase, osteopontin and runx-2 showed that fibronectin
did not affect the expression of these genes. When no osteo-
genic stimulus was provided during the culture period, no
induction of spontaneous osteogenic differentiation was
observed on chitosan membranes (data not shown).

The presence of ascorbic acid and b-glycerophosphate
for 7 and 14 days, respectively, did not show any statistical
difference in gene expression patterns between the tissue
culture plastic control and chitosan membranes. Fibronectin
coating could be excluded to affect osteogenic gene expres-
sion. Chitosan membranes of different DD did not negatively

FIGURE 3. Fibronectin adsorption assay on chitosan membranes with

different degree of deacetylation. Fibronectin adsorption was detected

by ELISA. n ¼ 8 (***p < 0.001)

FIGURE 4. (A) Attachment of mouse preosteoblastic MC3T3-E1 cells on chitosan membranes with different DD coated with fibronectin. Cells

were stained with crystal violet solution and pictures taken after 24 and 48 h. Osteogenic differentiation of MC3T3-E1 mouse preosteoblasts for

14 days; pictures were taken in an inverted microscope. n ¼ 5 (B) Proliferation of mouse preosteoblastic MC3T3-E1 cells grown on chitosan

membranes with different DD coated with fibronectin for 1, 3, 5, and 7 days. n ¼ 30. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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affect osteogenic differentiation (Supporting Information
Figure 2).

Alkaline phosphatase activity
Alkaline phosphatase activity assay was performed to deter-
mine the quality of osteogenic differentiation with and with-
out osteogenic stimulus after 4 and 7 days (Figure 5). At
day 4, no difference in the activity of alkaline phosphatase
was found between the different DD chitosan membranes
and the tissue culture plastic control, both with and without
osteogenic stimulus. After 7 days of culture, the activity of
alkaline phosphatase was significantly higher (p < 0.01) in
cultures supplemented with ascorbic acid and b-glycero-
phosphate than without osteogenic stimulus. DD94 induced
significantly higher (p < 0.01) alkaline phosphatase activity
without osteogenic stimulus than did the tissue culture
plastic control. No difference was found in the remaining
chitosan membranes as compared to the tissue culture plas-
tic control, when no osteogenic stimulus was present. High-
est induction of alkaline phosphatase activity was detected
in tissue culture plastic control and DD94 chitosan mem-
branes (p < 0.001), followed by DD87 and Sigma DD87 chi-
tosan membranes. There, the induction of DD87 chitosan
membranes was significantly higher after seven days in
osteogenic media than in Sigma DD87 chitosan membranes
(p < 0.001). The same trend was observed for the induction
of alkaline phosphatase in these membranes without osteo-
genic stimulus (p < 0.01).

DISCUSSION

In this study, the effect of a wide range of DD chitosan
membranes, as potential coating for titanium implants, was
evaluated in terms of surface characteristics and bioactivity.
Surface roughness was shown to be comparable to tissue
culture plastic, except for DD94 chitosan membranes, which
were much smoother. Water contact angle measurements

revealed that DD87 and DD94 showed similar contact angle
values whereas DD47, DD68, and Sigma DD87 were more
hydrophilic. Despite the difference in water contact angles,
the ability of high DD chitosan membranes (DD87, DD94,
and Sigma DD87) to adsorb fibronectin was similar. The
lower the contact angle and the more acetylated the mem-
brane, the less likely fibronectin is supposed to be retained
at the surface to promote attachment and proliferation of
cells. This observation could be explained by the number of
amine groups available for interaction with fibronectin and
should be addressed in further research by the determina-
tion of the number of amine groups as a function of the chi-
tosan deacetylation degree. DD47 and DD68 chitosan mem-
branes showed low adsorption of fibronectin, whereas
Sigma DD87 and DD94 could adsorb comparable amounts
of fibronectin as the tissue culture plastic control. Highest
adsorption of fibronectin was observed for DD87 chitosan
membranes, which was significantly higher than the tissue
culture plastic control.

During bioactivity studies, it was observed that MC3T3-
E1 mouse preosteoblastic cells were able to attach to all DD
chitosan membranes and formed a confluent cell layer after
1 week in culture, even though DD47 and DD68 chitosan
membranes showed reduced adsorption of fibronectin and
lower water contact angle values. Proliferation, as compared
to tissue culture plastic controls, was decreased but similar
to fibronectin coated controls. Fibronectin coating increases
cell attachment, which in turn decreases the ability of the
cells to proliferate. Even though proliferation on lower DD
membranes was low, a confluent cell layer was obtained
after 7 days and attachment could be sustained for at least
24 days in culture.

To determine, whether preosteoblastic cells will undergo
spontaneous osteogenic differentiation due to surface char-
acteristics of chitosan membranes, osteogenic genes were
analysed for their expression. No statistical difference was
found between chitosan membranes and tissue culture plas-
tic controls, except for an indication that some sort of action
was taking place, as cells grown on chitosan membranes
underwent the morphological changes associated with
osteogenic differentiation. Analysis of the activity of alkaline
phosphatase, an early enzyme active during osteogenic dif-
ferentiation, showed that the enzyme was not active in
membranes with a lower DD (DD47 and DD68), independ-
ent of the presence of an osteogenic stimulus. When cells
were cultured in osteogenic media, alkaline phosphatase ac-
tivity was present in chitosan membranes with a higher DD.
Highest activity was observed in the tissue culture plastic
control and DD94 chitosan membranes, but the latter also
induced significantly higher induction of alkaline phospha-
tase activity without the presence of an osteogenic stimulus.
As this was only a momentary snapshot, upregulation of
alkaline phosphatase activity during earlier or later time
points on lower DD membranes could not be excluded.

In the presence of ascorbic acid and b-glycerophosphate
to induce osteogenic differentiation of MC3T3-E1 preo-
osteoblasts, no negative effect of chitosan membranes of dif-
ferent DD was indicated. No effect could be attributed to

FIGURE 5. Alkaline phosphatase activity of mouse preosteoblastic

MC3T3-E1 cells grown on chitosan membranes with different DD for 4

and 7 days, with or without osteogenic stimulus. n ¼ 2 (**p < 0.01;

*** p < 0.001).
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the presence of fibronectin used to increase attachment on
chitosan membranes nor to crosslinking with glutaraldehyde
in membranes prepared from DD47 and DD68 chitosan.
Crosslinking with glutaraldehyde is commonly used in bio-
materials research to prolong the stability and improve the
properties of biomaterials, that is, degradation, chemical re-
sistance, porosity and mechanic properties.23,24 In chitosan
materials, the use of a low percentage of glutaraldehyde
crosslinking has the advantage to enhance the biominerali-
zation abilities of the biomaterial.23 This is in accordance
with our experience in the use of glutaraldehyde in cross-
linking processes. Lower degrees of crosslinking improve
cell survival and proliferation on the membranes, which
might be due to decreased leakage of glutaraldehyde into
the cell culture media and less modification of surface char-
acteristics (unpublished observations). The notion of chito-
san materials with a DD of around 50% dissolving in aque-
ous solutions is not new. Better solubility of these materials
was attributed to the degradation of secondary structures
and the increase in hydrophilicity.25 Therefore, we cross-
linked chitosan membranes with low DD during long-term
experiments with low levels of glutaraldehyde, since experi-
ments in stimulated body wet environment showed that
crosslinked chitosan formulations are stable for at least 60
days after an initial release of low molecular mass
fractions.26

Furthermore, the physicochemical characteristics of chi-
tosan cannot only be attributed to the DD, but are also de-
pendent on the natural source of chitin.27 In this study, two
preparations of chitosan with the same DD (87%) were
used, one derived from shrimp shells (Genis ehf.) and the
other one from crab shells (Sigma Aldrich). Crab shell chito-
san served as positive control in this study to evaluate the
bioactivity and surface characteristics of different DD chito-
san membranes derived from shrimp shells, as it has been
successfully used by several researchers. A direct compari-
son of the physicochemical characteristics of chitosan prepa-
rations from different natural sources of chitin revealed a
strong dependence on the taxonomy of the chitin source,
affecting both the DD and the molecular weight. The prepa-
ration of crab shell chitosan with a DD of 87% requires a
longer deacetylation process as compared to shrimp shell
chitosan, which results in the hydrolysis of the polysaccha-
ride backbone (decrease in molecular weight), thereby ulti-
mately influencing performance during the evaluation of
bioactivity.27

Fibronectin coating was used in this study to promote
cellular attachment to chitosan membranes. The fibronectin
layer on the surface, which is the initial interaction site for
the cells, can alter integrin signalling, thereby affecting gene
expression and the osteoblastic phenotype.28 High adsorp-
tion of fibronectin to chitosan membranes can be explained
by the high hydrophilicity and positive surface charges of
chitosan. Thereby, the membranes can adsorb comparable
or even higher amounts of fibronectin than the tissue cul-
ture plastic control. Water contact angle and the thereby
indicated hydrophilicity and hydrophobicity can take an
impact on the conformation of the fibronectin adsorbed to

the surface. Hydrophilic surfaces favor a more flexible and
extended conformation, whereas hydrophobic surfaces sup-
port a more rigid structure.29 The conformation of the fibro-
nectin adsorbed to the chitosan membranes was not deter-
mined during this study, but it seems highly unlikely that
the small difference in water contact angle measurements
observed would be enough to cause a large conformational
change in fibronectin structure. Especially, since best attach-
ment and high fibronectin adsorption was observed in the
most hydrophobic surfaces. Nevertheless, since fibronectin
is negatively charged under physiological conditions, the
adsorption could be influenced by the presence of cationic
groups, which in turn decreases the likelihood of denatura-
tion.30,31 The conformation of adsorbed fibronectin and the
orientation of the cell binding domain should still be
addresses in further research to exclude the possibility of
minor conformational changes affecting the cell interaction
properties. The results obtained during this study regarding
the adsorption of fibronectin can be compared to the results
published previously in the literature. It has been shown by
Amaral et al.32 that a high DD correlates with a significantly
higher adsorption of fibronectin as compared to membranes
with a lower DD, including a higher specificity of chitosan
to fibronectin as in comparison to tissue culture plastic.
These results also correlate with the notion that self-assem-
bling monoloayers with amine groups can adsorb higher
levels of fibronectin than monolayers with methyl groups.
Because cell culture experiments in our study were per-
formed in media containing 10% FBS, the interference of
the proteins present in the serum, that is, albumin, vitronec-
tin and fibronectin, needs to be evaluated in further studies.

The contribution of surface topography and roughness to
osteoblastic cell attachment and differentiation are controver-
sial.33 Osteoblastic cell attachment was shown to be elevated
on smooth surfaces even though rougher surfaces have been
associated with increased differentiation.34 As there were
only small differences observed in surface roughness and
only minimal variations in the visual examination of surface
topography, except for DD94 chitosan membranes, it seems
more likely that the differences in bioactivity in our study
were due to differences in the surface chemistry, the water
contact angle values and the ability to adsorb fibronectin to
the surface. It is generally accepted that a higher DD favors
cellular attachment associated with the increase of amine
groups but that more acetyl groups could have the promising
ability to induce healing without scar tissue formation.21,22

The amine groups in the chitosan polymer chains allow
the membrane to be covalently bonded to titanium via silani-
zation and in employing its bioactivity and positive effects on
wound healing and tissue regeneration make it an interesting
tool to coat titanium implants for orthopaedic applications.
The effect of the difference in DD on bonding strength and
degradation rate has not been investigated yet.11

CONCLUSION

We conclude that the surface roughness and fibronectin
adsorption increase with increased DD. A higher DD also
facilitates attachment and proliferation of preosteoblastic
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MC3T3-E1 cells without inducing spontaneous osteogenic
differentiation. No negative effects on osteogenic differentia-
tion in the presence of ascorbic acid and b-glycerophos-
phate were observed.

Lower DD chitosan membranes were successfully pre-
pared to sustain attachment and were modified by cross-
linking with glutaraldehyde to promote long-term studies.
The possibility of preparing chitosan membranes by selec-
tion from chitosan types with a wide range of DD and
thereby displaying different bioactivity will be a useful
advancement in the coating of titanium for orthopaedic
applications.
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Supplementary Figures 

 

Supplementary Figure 1. 
1
H NMR analysis of chitosan powder at 400.14 MHz at 298K. D2O/DCl 

(deuterium hydrochloride) or D2O/TFA (trifluoro acetic acid) was used as solvent and measurements 

were taken without water suppression. Sample concentration was 10-15 mg/ml. 

 



 

 

 

Supplementary Figure 2. Effect of different DD Chitosan membranes on the expression of 

osteogenic genes at 7 and 14 days after osteogenic induction of MC3T3-E1 mouse pre-osteoblasts. 

(A) Average expression of Alkaline Phosphatase, (B) average expression of Osteopontin and (C) 

average expression of runx-2. Bars describe average fold change at days 7 and 14. n=2. 
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Abstract  

 

Considerable research is focusing on the surface modification of titanium implants for the treatment of 

orthopaedic tissue injuries to increase the success of orthopaedic fixations. Chitosan is one of the 

natural materials under investigation based on several favourable properties. Numerous techniques 

have been described for the preparation of chitosan membranes, including solution casting methods 

for the investigation of bioactivity before applying coatings onto potential titanium implants. Solution 

casting enables the easy in-house evaluation of chitosan membranes and allows for the selection of 

promising chitosan materials. We present a method for the standardized and easily applied 

preparation of chitosan membranes by solution casting. This protocol is suitable for chitosan materials 

spanning a wide degree of deacetylation, being derived from different chitin sources and chitosan 

derivatives with novel properties. We detail the preparation and quality control methods in order to 

prepare membranes with favourable bioactivity, sustaining cell attachment and proliferation for 

extended culture periods. 

 

 

 

  



 

1. Introduction  

Titanium implants for the treatment of orthopaedic tissue injuries are recommended for a number of 

load-bearing applications, but still lack improvement at the bone-biomaterial interface [1, 2]. Research 

focusing on the surface modification of these materials could considerably increase the success of 

orthopaedic fixations. Chitosan, the partly deacetylated configuration of chitin, is one of the natural 

materials under investigation to improve implant integration and cellular attachment [3-5]. Several 

promising properties are attributed to chitosan, including biocompatibility, non-toxicity and in vivo 

degradation [6]. Based on the chemical nature of chitosan, negatively charged cytokines and growth 

factors can be retained at its surface and exert favourable effects on osteogenesis in vitro and in vivo 

[7, 8]. The straight-forward use of chitosan and the easy molding abilities have long been recognized, 

and make this polymer an attractive tool for tissue engineering and regenerative medicine applications 

[9, 10].  

Several properties of chitosan have been reported to strongly influence cell attachment and 

bioactivity in vitro, including the degree of deacetylation (DD), origin of the chitin source and the 

surface characteristics of the final membrane/coating [11, 12].  The effect on cellular behaviour was 

shown to be cell-type specific, but generally a lower degree of deacetylation is thought to induce 

healing without scar tissue formation, whereas higher degrees of deacetylation are more beneficial for 

cell attachment and proliferation [13, 14]. 

Numerous techniques have been developed for the preparation of chitosan membranes, including 

solution casting, layer-by-layer-self-assembly and silanization methods for bonding to titanium 

implants [3, 15, 16]. Solution casting of chitosan membranes on tissue culture plastic is a widely used 

method for the in vitro evaluation of bioactivity before applying coatings onto potential titanium 

implants. This technique provides an easy in-house investigation of cell attachment following standard 

laboratory protocols and allows for the selection of promising chitosan materials in accordance to 

general requirements for coated implants in tissue engineering applications. However, there are a vast 

number of protocols available for solution casting of chitosan membranes, often restricted to the use of 

a specific degree of deacetylation [17-19]. Additionally, cell attachment and proliferation are frequently 

significantly lower than on traditionally used tissue culture plastic and cannot be sustained for 

extended periods of time [1].  

 

We have recently developed a standardized and easily applied protocol for the solution casting of 

chitosan membranes spanning a wide degree of deacetylation, displaying favourable bioactivity by 

sustaining cell attachment and proliferation for extended culture time. This protocol is suitable for the 

use of chitosan materials derived from varying chitin sources and the investigation of chitosan 

derivatives with modified properties. 

 

 

 

 

 



 

2. Materials 

2.1. Solution Casting of Chitosan Membranes 

1. Chitosan powder or flakes (e.g. Chitosan from crab shells; Cat. No.50494, Sigma) 

2. 100% Glacial Acetic Acid (Merck) 

3. Transfer pipettes (Cat. No. 86.1172.010, Sarstedt) 

4. Glass test tubes (Sigma) 

5. 15 ml plastic conical tubes (Falcon) 

6. Centrifuge with buckets for 15 ml tubes (5 000 rpm acceleration) 

7. Flat bottom plates with low evaporation lid; tissue culture treated by vacuum gas plasma (Falcon) (See 

Note 1) 

8. Incubator heated at 37°C, no CO2 injection, no humidity control 

9. Sodium hydroxide pellets (Cat. No. 6482.5000, Merck). Dissolve pellets in water to obtain 0.5 M 

solution. 

10. 96% ethanol. Dilute in dH2O to obtain 70% ethanol. 

11. Fibronectin from Human plasma (Cat. No. 356008, BD Biosciences). Aliquot (100 µl/ eppendorf) and 

store frozen at -20°C. 

 

2.2. MC3T3-E1 Culture on Chitosan Membranes 

12. Mouse pre-osteoblastic cell line MC3T3-E1 (subclone 4; Cat. No. ATCC-CRL-2593, ATCC) 

13. Dulbecco’s Modified Eagle Medium: Nutrient Mixture F-12 (DMEM/F12 1:1) with GlutaMAX (Cat. No. 

31331, Gibco) 

14. Minimum Essential medium alpha ( MEM) without ascorbic acid (Cat. No A10490, Gibco) 

15. Heat-inactivated fetal bovine serum (FBS; Cat. No. 10500, Gibco). Aliquot and store frozen at -20°C. 

16. Antibiotics: Penicillin-streptomycin- glutamine mix (100x solution; Cat. No. 10378, Gibco). Aliquot and 

store frozen at -20°C. 

17. -glycerophosphate disodium salt hydrate (Cat. No. G9422, Sigma ) 

18. L-Ascorbic acid (Cat. No. A4403, Sigma) 

19. 75 cm
2
 cell culture flasks (Nunc) 

20. 2-well chamber slides with cover (Cat. No. 177429, Lab-Tek) 

21. Cell incubator set at 95% humidity, 37°C and 5% CO2 in air 

 

2.3. Materials needed for Quality Control 

22. Glutaraldehyde Solution Grade I 50% (Cat. No. G7651, Sigma Aldrich). Store frozen at -20°C and thaw 

in the dark. 

23. Alizarin Red S powder (Cat. No. A5533, Sigma Aldrich) 

24. Ammonium hydroxide (Merck). Prepare 0.5% solution. 

25. Crystal Violet powder (Cat. No. C3886, Sigma Aldrich) 

26. Phosphate buffered saline (1x PBS; pH 7.2; Cat. No 10010-015, Gibco) 



 

27. Bovine Serum Albumin (BSA; Cat. No. A-4503, Sigma) 

28. Rabbit anti-fibronectin antibody (Cat. No. F3648, Sigma Aldrich) 

29. Goat anti-rabbit IgG Alkaline Phosphatase conjugated antibody (Cat. No. A9919, Sigma Aldrich) 

30. Sigma FAST p-Nitrophenyl phosphate tablets (1mg/ml p-Nitrophenyl phosphate and 0.2 M Tris buffer; 

Cat. No. N2770, Sigma) 

 

3. Methods 

3.1. Solution Casting of Chitosan Membranes - Day 1 

The preparation of chitosan membranes using solution casting methods follows a three day 

procedure. For best results, the procedure should be performed without stopping points in order to 

ensure best bioactivity results. However, after initial sterilization on day 3, chitosan membranes can be 

stored for several weeks until use in experiments or analysis of surface characteristics. The 

preparation of chitosan membranes can be performed on the bench. An overview of the work flow 

required for membrane preparation is shown in Figure 1. 

 

We have found that the preparation of chitosan solution for membrane casting should follow slightly 

different procedures depending on the volume needed (also see Note 2). For optimal thickness of 

chitosan membranes, 0.1 ml of chitosan solution are cast per cm
2
 of tissue culture plastic. At least 

10% extra should be prepared to account for losses during the preparation. Both chitosan powder and 

chitosan flakes with different degree of deacetylation (DD) can be used in this protocol. However, 

chitosan flakes are generally more difficult to handle than chitosan powders. Depending on the 

molecular weight of chitosan, the solutions will differ in viscosity, with less viscous solutions being 

easier to process. The protocol can be easily scaled to the volume required, and is here described for 

“high volume” (See Subsection 3.1.1.) and “low volume” (See Subsection 3.1.2.) set-up. Solution 

casting methods are described for the coating of 6-well plates. Respective volumes needed for smaller 

sized tissue culture plastic are described in Table 1. 

 

3.1.1. High Volume (4-20 ml) 

1. Weigh in 10 mg of chitosan material per ml of solution to be prepared in a small plastic cup (~50-100 

ml flat bottom cup) 

2. Add 0.985 g/ml of dH2O using a transfer pipette 

3. Add 5 µl/ml of 100% Acetic Acid in a fume hood 

4. Stir solution on a magnetic stirrer. This may take between 5 min to 1 h depending on the chitosan 

material. Cover the plastic cup with aluminium foil and assure that stirring is not too strong, to avoid 

splashing of the solution onto the sides of the cup. (See Note 3). 

5. Transfer chitosan solution into 15 ml Falcon tubes. 

6. Centrifuge at 5 000 rpm for 1 h to remove air bubbles and un-dissolved particles. 

7. (See Section 3.5. for glutaraldehyde cross-linking of membranes with low DD) 



 

8. For coating a 6-well plate, carefully place 1 ml of Chitosan solution into the middle of the well.  Air 

bubbles should be avoided. 

9. Spread chitosan solution to the corners of the well with a continuous smooth hand movement. Be 

sure to completely cover the well with solution. 

10. Occasional bubbles in the solution after casting can be removed by using a needle or a small pipette 

tip. All bubbles need to be removed before drying the membranes. 

11. Dry membranes over night in an incubator at 37°C without CO2 injection or humidity control. Plates 

need to be uncovered to allow evaporation. 

 

3.1.2. Low Volume (1-3 ml) 

1. For 2 ml of Chitosan Solution, weigh in 10 mg/ml of Chitosan powder or flakes in a clear test tube. 

2. Add 0.7 g/ml of dH2O using a transfer pipette. 

3. Add 100 µl/ml of 100% Acetic Acid in a fume hood (See Note 2). 

4. Re-suspend chitosan solution using a transfer pipette to wash off any chitosan material from the test 

tube walls. 

5. Cover test tube with aluminium foil. 

6. Heat test tube in a water bath at 50°C for at least one hour or until dissolved. 

7. Transfer chitosan solution into 15 ml Falcon tubes. 

8. See Subsection 3.1.1 and follow Steps 6-10. 

 

3.2. Neutralization of Chitosan Membranes – Day 2 

Proper casting of the chitosan membranes can be inspected by visual examination of the plastic ware 

against a light source. Small areas of in-homogenous casting then become visible. Since Acetic Acid 

is used to decrease the pH of the chitosan solution and enable solubility, chitosan membranes need to 

be neutralized after the drying process to render them water insoluble. 

 

1.  Add 2 ml of 0.5 M NaOH to each well. 

2. Incubate for 30 min on a shaker at room temperature. Shaking should be slow and solution should be 

just moving. To account for the increased concentration of acetic acid during “low volume” 

preparations, neutralization time needs to be increased to 4 h. 

3. Invert plates to remove NaOH and tap on a piece of paper to remove excess liquid. 

4. Wash three times with 2 ml of dH2O for 10 min on a shaker at room temperature. 

5. Invert plates to remove dH2O and tap on a piece of paper to remove excess liquid.  

6. Dry membranes over night in an incubator at 37°C, without CO2 injection or humidity control. Pates 

should be uncovered to allow for evaporation. 

 

 

 

 



 

3.3. Sterilization and Fibronectin Coating of Chitosan Membranes – Day 3 

In order to not compromise cell culture studies, chitosan membranes follow a dual sterilization 

procedure, using both 70% ethanol and UV-light. After sterilization, all work with chitosan coated 

plastic ware should be performed in a sterile fume hood. Coating with the adhesion protein fibronectin 

is used to promote initial cell attachment to the chitosan surface and is therefore essential for the 

success of the in vitro cultures. 

 

3.3.1. Sterilization of Chitosan Membranes 

1. Prepare 70% ethanol for sterilization. 

2. Add 2 ml of 70% ethanol into each well and incubate 30 min at room temperature without shaking. 

3. Invert plates to remove ethanol and tap on a piece of paper to remove excess liquid. 

4. Dry membranes for 1 h in an incubator at 37°C without CO2 injection or humidity control. Plates 

should be uncovered to allow for evaporation. 

5. At this point, chitosan coated plastic ware can be covered with parafilm for storage at 4°C in the dark 

until further use. 

 

6. Place uncovered chitosan coated plastic ware under the UV-light lamp in a fume hood for 30 min.  

7. (See Subsection 3.6.1. for fibronectin adsorption studies). 

 

3.3.2. Fibronectin Coating of Chitosan Membranes 

1. Prepare a 5 µg/ml Fibronectin solution in 1x PBS into each well, by diluting frozen 1 mg/ml fibronectin 

stock solution. 

2. Add 2 ml of Fibronectin solution into each well and incubate on a shaker for 3 h at 37°C. Solution 

should be just moving on the shaker to allow fibronectin to attach to the surface. 

Invert the plate to remove fibronectin solution and tap plastic ware on a paper to remove excess 

liquid. 

3. (See Section 3.6. for surface characterization of chitosan membranes). 

 

4. Equilibrate chitosan membranes for 20 min in DMEM/F12 media supplemented with 10% FBS and 

penicillin/streptomycin. Culture media will turn pink due to the high pH of the fibronectin solution. 

Equilibration is needed both for removal of excess fibronectin and buffering of pH.  

5. Discard equilibration media before cell seeding. 

 

3.4. MC3T3-E1 Cell Seeding and Culture – Day 3 - Day 24 

The mouse pre-osteoblastic cell line MC3T3-E1 can be grown on chitosan membranes in an 

undifferentiated state using basic growth media or induced to undergo osteogenic differentiation. Cell 

attachment can be maintained for up to 24 days under differentiation conditions. Generally, it is 

sufficient to set-up MC3T3-E1 cultures two days before initiation of the chitosan casting protocol, at a 

density of 3 500 cells/cm
2
. In our experience, subclone 4 of this particular cell line is best suited for 



 

induction of osteogenic differentiation. Representative images of cells grown on different sources of 

chitin and chitosan derivatives used for chitosan membrane casting are shown in Figure 2 and Figure 

3. 

 

1. Expand MC3T3-E1 cells in MEM media supplemented with 10% FBS and streptomycin/penicillin until 

80% confluent. 

2. 5 000 cells/cm
2
 are required for seeding on chitosan coated plastic ware. 

3. Trypsinize and count cells. 

4. Re-suspend cells in DMEM/F12 media supplemented with 10% FBS and streptomycin/penicillin (basic 

expansion media). 

5. Place 5 000 cells/cm
2
 into the well and cover with appropriate volume of basic expansion media (see 

Table 1). 

6. Incubate cell cultures at 37°C, 95% humidity and 5% CO2. 

7. Fully replace cell culture media every second day. (See Note 4). 

 

8. To induce osteogenic differentiation of MC3T3-E1 cells, incubate cells for one night in basic expansion 

media to allow for initial attachment. 

9. Osteogenic induction media is prepared from basic expansion media by addition of 2 mM -

Glycerophosphate and 50 µl/ml ascorbic acid.  Mix thoroughly on a vortexer. 

10. Remove basic expansion media and replace with osteogenic induction media. Again, culture media 

should be fully replaced every second day. First signs of osteogenic differentiation will be visible after 

7-10 days (calcification, collagen type I deposition, cell contraction and change in phenotype). 

 

3.5. Glutaraldehyde Cross-linking 

The lower the DD, the more soluble chitosan membranes generally become based on the degradation 

of secondary structures [20]. From our experience with membranes prepared from a low DD (40-70%), 

cross-linking with glutaraldehyde is required to avoid dissolution during long term cultures. Membranes 

prepared from low DD materials will only be stable for one week in culture media before substantial 

dissolution can be observed. In order to avoid glutaraldehyde-related toxicity (“leaking of 

glutaraldehyde into the culture media”) and still provide sufficient stability, a fine balance concerning 

the amount of glutaraldehyde needs to be achieved. We have found that chitosan membranes with 

low DD  that are internally cross-linked with 0.02% glutaraldehyde are stable for long-term cultures 

and still retain favourable bioactivity and cell attachment.   

 

1. See Subsection 3.1.1. and Subsection 3.1.2. for “high” and “low volume” preparation. Follow the 

procedure until Step 6. 

2. During the centrifugation time (Step 6), thaw glutaraldehyde solution in the dark 

3. Prepare an eppendorf tube containing 100 µl distilled water. (See Note 5). 



 

4. Prepare a 0.02% glutaraldehyde solution (0.02% of the final volume of chitosan solution). Add into the 

eppendorf tube containing 100 µl distilled water. Mix well! 

5. Transfer chitosan solution after centrifugation into a fresh 15 ml Falcon Tube. 

6. Add the glutaraldehyde – distilled water solution to the chitosan solution. 

7. Mix thoroughly on a vortexer. 

8. Cast Membranes according to Step 8-10 in Section 3.1.1. (See Note 6). 

9. See Section 3.2. and Section 3.3. for neutralization and sterilization of cross-linked chitosan 

membranes 

 

3.6. Surface Characterization of Chitosan Membranes 

Bioactivity and cell attachment are not only dependent on the DD and the origin of the chitin source, 

but are strongly influenced by surface characteristics, water contact angles and the ability of chitosan 

membranes to retain fibronectin [11, 12, 21, 22]. Fibronecting adsorption can be determined by in-

house ELISA. 

Water contact angle measurements are best performed on microscopy slides to avoid unnecessary 

manipulation of the specimen. We have found that 2-well chamber slides from LabTek are well suited 

for solution casting of chitosan membranes, providing easy handling and the appropriate tissue culture 

plastic surface. 

In order to determine the average surface roughness and topography, chitosan membranes can be 

prepared in 12-well plates. This decreases the amount of sample needed and still enables successful 

analysis after cutting the plastic sides off the well. Since the area studied during Atomic Force 

Microscopy is very small, the cutting does not affect the surface characteristics in the middle of the 

well. 

 

3.6.1. Fibronectin Adsorption studies 

Fibronectin adsorption can be examined by simple in-house ELISA and measured in a 

spectrophotometer at 400 nm. This protocol has been adapted from Uygun et al. [19] and modified 

appropriately. 

 

1. Prepare chitosan membranes in a 96-well plate following the procedure described in Section 3.1., 

Section 3.2 and Section 3.3 (Step 6). 

2. Prepare a 5 µg/ml Fibronectin solution in 1x PBS, by diluting frozen 1 mg/ml fibronectin stock solution 

3. Add 100 µl of fibronectin solution into each well and incubate over night at 4°C. Include non-coated 

tissue culture plastic as positive control for fibronectin adsorption. 

4. Invert the plate to remove fibronectin solution and tap on paper to remove excess liquid. 

5. Wash four times for 30 min with 200 µl 1x PBS at room temperature. 

6. Tap plates on paper to remove excess liquid in-between washing steps. 

7. Block unspecific adsorption by incubation with 1% BSA in 1x PBS for 2 h at room temperature. 

8. Wash three times for 10 min with 200 µl 1x PBS at room temperature. 



 

9. Tap plates on paper to remove excess liquid in-between washing steps. 

10. Prepare a 1:15 000 dilution of primary antibody (rabbit anti-fibronectin antibody). 

11. Add 100 µl of primary antibody and incubate for 2 h at room temperature. 

12. Wash three times for 10 min with 200 µl 1x PBS at room temperature. 

13. Tap plates on paper to remove excess liquid in-between washing steps. 

14. Prepare a 1:50 000 dilution of secondary antibody (goat anti-rabbit IgG Alkaline Phosphatase-

conjugated antibody). 

15. Add 100 µl of secondary antibody and incubate for 2 h at room temperature 

16. Wash three times for 10 min with 200 µl 1x PBS at room temperature 

17. Tap plates on paper to remove excess liquid in-between washing steps. 

18. Prepare p-nitrophenyl phosphate solution in dH2O and mix thoroughly until fully dissolved. Store at 

37°C in the dark until used. 

19. Add 100 µl of p-Nitrophenyl phosphate solution and incubate for 30 min at 37°C in the dark. 

20. If necessary, reaction can be stopped by addition of 3 M sodium hydroxide. 

21. Measure optical density at 400 nm in a spectrophotometer. 

 

3.7. Quality Control 

3.7.1. Alizarin Red Staining 

The in vitro success of chitosan membranes used for cell attachment strongly depends on the 

homogeneity of the final membrane. This can be easily assessed using a modified Alizarin Red 

Staining protocol. Based on the chemical characteristics of chitosan, acidic dyes, including Alizarin 

Red S, are robustly retained. Thereby, defects in the membrane casting can be easily spotted. This 

method is also useful for the investigation of dissolution after extended culture periods on chitosan 

membranes. Representative images of homogeneously and in-homogeneously distributed chitosan 

membranes after staining with Alizarin Red are shown in Figure 4. 

 

1. Prepare a 2% Alizarin Red Solution and mix thoroughly on a vortexer until completely dissolved. 

2. Adjust pH to 4.2 by adding 0.5% ammonium hydroxide (See Note 7).  

3. Wash chitosan coated culture ware three times with 2 ml dH2O for 5 min on a shaker.  

4. Add 2 ml of Alizarin Red solution and incubate for 5 min on a shaker at room temperature. 

5. Carefully remove Alizarin Red Solution using a pipette.  

6. Wash four times for 5 min with 2 ml dH2O on a shaker at room temperature. 

7. Dry upside down over night. 

8. Images can be taken in an inverted microscope equipped with a camera. 

 

3.7.2. Crystal Violet Staining 

Cells grown on chitosan membranes can be easily visualized by standard Crystal Violet Staining. 

Based on the chemical characteristics of the Crystal Violet Dye, chitosan membranes will remain 



 

unstained. However, lipophilic chitosan derivates can react with the triphenyl methane structure, which 

will result in dark violet staining of chitosan membranes. In that case, cell bodies are best observed 

using an inverted microscope equipped with a camera. 

 

1. Remove cell culture media. 

2. Wash carefully with 2 ml 1x PBS. 

3. Remove PBS and add 2 ml of 0.5% crystal violet solution. 

4. Incubate for 30 min at room temperature without shaking. 

5. Carefully remove crystal violet solution without disturbing the cell layer. 

6. Wash four times with 2 ml 1x PBS. 

7. Wash once with 2 ml tap water. 

8. Dry upside down over night. 

9. Images can be taken in an inverted microscope equipped with a camera. 

 

4. Notes 

1. Appropriate surface characteristics of tissue culture plastic used for coating with chitosan membranes 

is essential for the outcome of the experiment. We have tested three commercially available 

brands/surface treatments for tissue culture plastic, including “Primaria” (surface modified 

polystyrene; Falcon), “Nunclone” (Nunc) and non-tissue culture treated polystyrene plates (Falcon). 

Cell attachment on membranes prepared on these plates could not be sustained for more than a few 

days, whereas the identical procedure on the vacuum gas plasma treated plates allows for several 

weeks of cell attachment. Since the chitosan membranes prepared with this protocol are very thin, the 

surface of the tissue culture plastic can certainly affect elementary surface characteristics [19]. 

Furthermore, the differences in surface treatment could result in slight changes in the charge of the 

plate, thereby affecting the bonding of chitosan membrane to the plate surface. 

2. Since chitosan solution during the “low volume” preparation process is not directly stirred, but rather 

heated, a higher concentration of acetic acid is required for full dissolution. We have found that 

concentrations up to 10% of acetic acid do not affect bioactivity of MC3T3-E1 cells in vitro. 

3. The suitability of chitosan derivatives for solution casting of membranes can be assessed by their 

ability to completely dissolve during this step. Dispersion of particles, even after increasing the 

concentration of acetic acid to 10% -using either low or high volume preparation steps-, will result in 

sedimentation during the centrifugation step and finally in in-homogeneously cast membranes. 

Generally, in-homogeneously cast membranes do not sustain cell attachment. However, as long as the 

chitosan solution is clear, any differences in colour do not affect bioactivity. 

4. We have found that complete replacement of cell culture media every second day is critical to sustain 

cell attachment on chitosan membranes, especially with lower degree of deacetylation preparations. 

The use of DMEM/F12 media instead of the generally recommended MEM media for this cell type, 

results in better bioactivity of chitosan membranes and increased cell attachment. Nevertheless, 



 

expansion of MC3T3-E1 cells before seeding on chitosan membranes should be performed in MEM 

media for best growth behaviour.  

5. Since the volume of glutaraldehyde used for 0.02% cross-linking reactions is generally very low (~4 µl), 

preparing a 100 µl mixture in water will provide better distribution in the relatively high volume of 

chitosan solution. The small amount of 100 µl distilled water will not statistically affect the final 

concentration of the chitosan solution.   

6. Chitosan membranes cross-linked with 0.02% glutaraldehyde turn slightly yellow/orange based on the 

reaction between the primary amino group of chitosan and the aldehyde group of glutaraldehyde, 

resulting in the formation of an imine bond.  

7. A pH of 4.2 is recommended for the use of Alizarin Red to stain calcium deposits [23]. However, we 

have observed that Alizarin Red strongly stains chitosan membranes also in the pH range of 4.1 – 4.7.  

 

8. Conclusions 

 

The possibilities associated with the use of chitosan in tissue engineering applications are far from 

being exhausted and numerous challenges remain prior to successful translation into the clinics. 

However, a vast body of conflicting literature is available describing the attachment, proliferation and 

osteogenic differentiation of osteo-progenitor cells grown on chitosan membranes with different 

degrees of deacetylation [24]. This is mainly due to the lack of consistency in providing sufficient data 

on molecular weight, source of chitosan and sample preparation in order to compare and draw 

conclusions [24]. The often scarcely detailed methodological sections in biomaterials-related 

publications strongly impede reproducibility.  

 

Here we describe a protocol for the solution casting of chitosan membranes that is suitable for the use 

of chitosan from different chitin sources, chitosan with a wide range of degree of deacetylation and 

chitosan derivatives with novel properties. We provide a step-by-step procedure that results in cellular 

attachment comparable to tissue culture plastic controls and allows for the maintenance of cultures for 

extended periods of time. Based on our experience, we have developed simple in-house methods for 

quality control of homogeneous membrane casting and early prediction of successful experimental 

outcome.   
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Figure Legends 

 

Figure 1. Work flow chart for the solution casting of chitosan membranes. The preparation scheme is 

visualized stepwise for the successful casting of chitosan membranes on tissue culture plastic. 

Additional analysis and quality control are indicated where appropriate. 

Figure 2. Images of MC3T3-E1 pre-osteoblastic cells grown on chitosan membranes prepared from 

different chitin sources. A) Is an image of cells after 48 h grown on crab shell derived chitosan with 

87% degree of deacetylation. B) Is an image of cells after 48 h grown on shrimp shell derived chitosan 

with 87% degree of deacetylation. Images were taken in an inverted microscope. 

Figure 3. Images of MC3T3-E1 pre-osteoblastic cells grown on chitosan membranes prepared from 

chitosan derivatives. A) Is an image of cells grown on a chitosan free base derivative for 7 days. B) Is 

an image of cells grown on Chitosan p-Toluensulfonic acid-salt (PTSA salt) for 7 days. C) Is an image 

of cells grown on Chitosan-Bromide salt for 7 days. Cells were stained with crystal violet and images 

were taken in an inverted microscope. 

Figure 4. Images of chitosan membranes stained with Alizarin Red Stain for comparison of 

homogeneous and in-homogenous membrane casting. A) Is an image of a homogeneously distributed 

chitosan membrane prepared from crab shell chitosan with 87% degree of deacetylation. B) Is an 

image of an in-homogeneously distributed chitosan membrane prepared from modified crab shell 

chitosan with 87% degree of deacetylation. A spiral-like distribution of the membrane can be 

observed. C) Is an image of an in-homogeneously distributed chitosan membrane prepared from N-

lauroyl chitosan derivatives with a degree of substitution of 0.05%.  
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 Chitosan 

Solution 

NaOH 

(neutralization) 

70% ethanol 

(sterilization) 

Fibronectin 

solution 

Cell 

culture 

media 

Alizarin 

Red 

Stain 

Crystal 

Violet 

Stain 

6-well 

plate 
1 ml 2 ml 2 ml 2 ml 3 ml 2 ml 2 ml 

12-well 

plate 
500 µl 1 ml 1 ml 1 ml 1.5 ml 1 ml 1 ml 

24-well 

plate 
250 µl 500 µl 500 µl 500 µl 1 ml 1 ml 1 ml 

96-well 

plate 
100 µl 200 µl 200 µl 200 µl 100 µl   100 µl   100 µl 

2-well 

slide 

chamber 

500 µl 1 ml 1 ml 1 ml 2 ml 1 ml 1 ml 

Table 1. Volume for preparation of chitosan membranes dependent on the type of 
culture plate. 
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