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ABSTRACT 

This document presents how a face recognition system can be designed with artificial neural 
network. Face recognition involves mapping of the images of a person’s face to the identity of that 
person. 
I have implemented a neural network that uses a back-propagation algorithm to recognize and 
classify four aspects of image of a person’s face. These include the identity of the person, the 
expression of the person in the image, the orientation of the face in the image and whether the person 
sports sunglasses. 

The final results was a MatLab built software application with an images provided by Dr. Tom 
Mitchell and utilizes the features of the images of the people taken with varying pose (straight, left, 
right, up) expressions (neutral, happy, sad, angry)  eyes, i.e. wearing sunglasses or not and 
resolution. 

The structure of the final software application is illustrated. Furthermore, the results of its 
performance are illustrated by a detailed example. 
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INTRODUCTION 

Human often uses faces to recognize individuals. Advancement in computing capabilities over the 
years now enables similar recognition automatically. Face recognition is a pattern recognition task 
usually performed on human faces. Humans are very good at recognizing faces and complex 
patterns. Even with passage of time, it does not affect these capabilities and therefore, it would help 
if computers become as robust as human in face recognition. 

Face recognition system can help in many ways; face recognition can be used for both verification 
and identification. Today, recognition technology is applied to a wide variety of problems like 
passport fraud, human computer interaction and support for law enforcement. This has motivated 
researchers to develop computational models to identify faces, which are relatively simple and easy 
to implement. 

 

PROJECT DESCRIPTION 

The learning task here involves classifying camera images of faces of various people in various pose. 
Images of 20 different people were collected, including approximately 32 images per person, 
varying the person’s expression (happy, sad, angry, neutral), the direction in which they were 
looking (left, right, straight, up), and whether or not they are wearing sunglasses. There is also a 
variation in the background behind the person, the clothing worn by the person, and the position of 
the person’s face within the image. In total 640 grayscale images were collected, the scale of the 
image and this has 3 values: (1, 2, and 4) 1 indicates a full resolution image of (128 columns by 120 
rows); with each image pixel described by a grayscale intensity value between 0 (black) and 
255(white), 2 indicate a half resolution image (64 by 60); 4 indicates a quarter resolution image (32 
by 30). The image data set was provided by Tom Mitchell and obtained from 
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-8/faceimages/faces. 

 

PROJECT OBJECTIVES 

The objective of this project is to design a neural network that uses a backpropagation algorithm to 
recognize and classify three aspects of image of a person’s face. These are: the identity of the image, 
the orientation of the face in the image and whether the person sports sunglasses or not. 
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OVERVIEW OF THE REPORT  

The document is structured as follows: 
 
Chapter 1 gives the introduction, project description, and project objectives. Chapter 2 gives 
motivation for the work. Chapter 3 gives background information and a brief introduction to some 
related work.Chapter 4 gives information about the system design and the architecture used. Chapter 
5 gives information about the implementation of the system, also gives information about the 
software used in this project and the issues about the implementation of the system. 
Chapter 6 gives information about the evaluation process of the system. Chapter 7 gives my 
contribution. 
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MOTIVATION FOR THE WORK 

This project has been developed to get people interest in computer vision and face recognition. 
Through the development of techniques like neural network computers can now outperform humans 
in many face recognition task, particularly those in which large database of faces must be searched.  

WHY THIS WORK IS DONE 

Face recognition has recently received a blooming attention and interest from the scientific 
community as well as from the general public. The interest from the general public is mostly due to 
the recent events of terror around the world, which has increased the demand for useful security 
systems. This work has been done to find out the various problems relating to face recognition and 
possible solution to these problems. 

PROBLEMS ENCOUNTERED 

There are several problems encountered in the development of this project. This includes the 
following: 

The first problem encountered was the image data to be used in developing this project. It was 
observed that 16 of the 640 images taken have glitches due to problems with the camera setup. Some 
people had more glitches than others. These bad images have been shown below:  
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FIGURE 1: BAD IMAGES 

 

The second problem encountered was the programming language to use to get the work done. 

The third problem encountered was the data size to be used to be able to achieve the aim of this 
project. 

The overall problem is to be able to design neural network capable of recognizing a person´s 
identity, pose, and expression. 

PROPOSED SOLUTIONS 

The problem with glitches on pictures where solved by ignoring those pictures. To reduce the data 
size only pictures with the smallest resolution (30 x 32) where taken into account. 
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BACKGROUND READING AND RELATED WORK 

The most intuitive way to carry out face recognition is to look at the major features of the face and 
compare these to the same features on other faces. Some of the earliest studies on face recognition 
were done by Bledsoe [1966a] was the first to attempt semi-automated face recognition with a 
hybrid human-computer system that classified faces on the basis of fiducially marks entered on 
photographs by hand. Parameters for the classification were normalized distances and ratios among 
points such as eye corners, mouth corners, nose tip, and chin point. Later work at Bell Labs 
developed a vector of up to 21 features, and recognized faces using standard pattern classification 
techniques.  

Fischer and Elschlager, attempted to measure similar features automatically. They described a linear 
embedding algorithm that used local feature template matching and a global measure of fit to find 
and measure facial features. This template matching approach has been continued and improved by 
the recent work of Yuille and Cohen. Their strategy is based on deformable templates, which are 
parameterized models of the face and its features in which the parameter values are determined by 
interactions with the face image.  

Connectionist approaches to face identification seek to capture the configurationally nature of the 
task. Kohonen and Kononen and Lehtio describe an associative network with a simple learning 
algorithm that can recognize face images and recall a face image from an incomplete or noisy 
version input to the network. Fleming and Cottrell extend these ideas using nonlinear units, training 
the system by back propagation.  

Others have approached automated face recognition by characterizing a face by a set of geometric 
parameters and performing pattern recognition based on the parameters. Kanade's face identification 
system was the first system in which all steps of the recognition process were automated, using a 
top-down control strategy directed by a generic model of expected feature characteristics. His 
system calculated a set of facial parameters from a single face image and used a pattern 
classification technique to match the face from a known set, a purely statistical approach depending 
primarily on local histogram analysis and absolute gray-scale values.  

Recent work by Burt uses a smart sensing approach based on multiresolution template matching. 
This coarse to fine strategy uses a special purpose computer built to calculate multiresolution 
pyramid images quickly, and has been demonstrated identifying people in near real time. 
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NEURAL NETWORKS 

An artificial neural network (ANN) is an information processing system that has certain performance 
characteristics in common with a biological neural network. Neural networks are composed by a 
large number of elements called neurons and provide practical methods for learning real valued, 
discrete-valued, and vector-valued target functions. There are several network architectures; the 
most commonly used are: feed forward networks and recurrent networks. 

Given network architecture the next step is the training of the artificial neural network (ANN). One 
learning algorithm very commonly used is back-propagation. This algorithm learns the weights for a 
multilayer network, given a network with a fixed set of units and interconnections. It uses gradient 
descent to minimize the squared error between the network output values and the target values. 

APPROPRIATE PROBLEMS FOR NEURAL NETWORK LEARNING 

Artificial neural network (ANN) learning is well-suited to problems in which the training data 
corresponds to noisy, complex sensor data, such as input from cameras and microphones. It is also 
applicable to problems for which more symbolic representations are often used, such as the decision 
tree learning tasks. In these cases ANN and decision tree learning often produce results of 
comparable accuracy (Mitchell, 1997). 

The back-propagation algorithm is the most commonly used ANN learning technique. It is 
appropriate for problem with the following characteristics (Mitchell, 1997): 

Instances are represented by many attribute value pairs. The target function to be learned is defined 
over instances that can be described by a vector of predefined features, such as the pixel values. 
These input attributes may be highly correlated or independent of one another. Input values can be 
any real values. 

The target function output may be discrete-valued, real-valued, or a vector of several real – or 
discrete-valued attributes. 

The training examples may contain errors. ANN learning methods are quite robust to noise in the 
training data. 

Long training times are acceptable. Network training algorithms typically require longer training 
times than, say, decision tree learning algorithms. Training times can range from a few seconds to 
many hours, depending on factors such as the number of weights in the network, the number of 
training examples considered, and the setting s of various learning algorithm parameters. 

Fast evaluation of the learning target function may be required. Although ANN learning times are 
relatively long, evaluating the learned network, in order to apply it to a subsequent instance, is 
typically very fast.  
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The ability of humans to understand the learned target function is not important. The weights 
learned by neural networks are often difficult for humans to interpret. Learned neural networks are 
easily communicated to humans than learned rules.  

APPLICATIONS 

The 1988 DARPA Neural Network Study (1) lists various neural network applications, beginning 
with the adaptive channel equalizer in about 1984. This device, which is an outstanding commercial 
success, is single-neuron network used in long distance telephone systems to stabilize voice signals. 
The DARPA report goes on to list other commercial applications, including a small word recognizer, 
a process monitor a sonar classifier and a risk analysis system. Neural networks have been applied in 
many fields since the DARPA report was written.  
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SYSTEM DESIGN  

DATA CHARACTERISTICS 

The task here involves classifying camera images of faces of people in various pose. Images of 20 
different people were collected, including approximately 32 images per person, varying the person’s 
identity, pose, expression, eyes, and size. 

<Userid> is the user id of the person in the image and this filed has 20 values shown below. 

 
FIGURE 2: USERID IMAGES 
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<Pose> is the head position of the person, and this field has 4 values: right, left, straight, up 

 

FIGURE 3: POSE IMAGES 

<Expression> is the facial expression of the person, and this has 4 values: happy, sad, neutral, sad 

 

FIGURE 4: EXPRESSION IMAGES 
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<Eyes> is the eye state of the person and this field has 2 values: sunglasses and open 

 
FIGURE 5: EYE IMAGES 

 

<Size> is the scale of the image and this filed has 3 values: 1, 2, and 4. 1 indicates a full resolution 
image (128 columns by 120 rows); 2 indicates a half resolution (64 x 60); 4 indicates a quarter 
resolution image (32 x 30). 

 
FIGURE 6: RESOLUTION IMAGES 

 

REQUIREMENTS 

FUNCTIONAL REQUIREMENTS 

• The software should be able to recognize a sample face from a set of given faces 
• Given some representation of image, the software should be able to preprocess the image and 

then input these features into the network. 
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• The artificial neural network should identify the direction in which the person is looking 
(left, right, up, or straight). 

• The artificial neural network should identify whether the person is wearing sunglasses 
• The artificial neural network should identify the id of the person 
• Use a simple approach for recognition and training. 

NON-FUNCTIONAL REQUIREMENTS 

This project is intended to meet the following non functional requirements:  

• The software would be available at University library, to enable the users to use, at any time. 
• The program should be platform independent. 

NEURAL NETWORK 

An artificial neural network (ANN) is an information processing system that has certain performance 
characteristics in common with a biological neural network. Neural networks are composed by a 
large number of elements called neurons and provide practical methods for learning real valued, 
discrete-valued, and vector-valued target functions. There are several network architectures; the 
most commonly used are: feed forward networks and recurrent networks. 

NEURONS 

A neural network consists of layers of interconnected “artificial neurons”, as shown in Figure 7 
below “neuron” in a neural network is sometimes called a “node” or “unit. 

WHY NEURAL NETWORK 

Neural networks can be trained to solve problems that are difficult for conventional computers or 
human beings. 

Neural networks can also been trained to perform complex functions in various fields, including 
pattern recognition, identification, classification, speech, vision, and control systems. 

NETWORK GRAPH STRUCTURE 

A multilayer feedforward neural network consists of a layer of input units, one or more layers of 
hidden units, and one output layer of units. A neural network that has no hidden units is called a 
Perceptron. However, a perceptron can only represent linear functions, so it is not powerful enough 
for the kind of application I want to solve. On the other hand, a multilayer feed-forward neural 
network can represent a very broad set of nonlinear functions. So, it is very useful in practice. 
 For the purpose of this project, I will concentrate on the multilayer feed-forward neural networks 
which can express most nonlinear functions. 
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FIGURE 7: STRUCTURE OF MULTILAYER FEEDFOWARD ARTIFICIAL NEURAL NETWORK  

 
Here, there is one layer of input nodes (shown in the bottom row), one layer of hidden nodes (i.e., 
the middle row), and one layer of output nodes (at the top). The number of nodes per layer is 
application-dependent. 

This structure is called multilayer because it has a layer of processing units (i.e., the hidden units) in 
addition to the output units. These networks are called feedforward because the output from one 
layer of neurons feeds forward into the next layer of neurons. There are never any backward 
connections, and connections never skip a layer. Typically, the layers are fully connected, meaning 
that all units at one layer are connected with all units at the next layer. So, this means that all input 
units are connected to all the units in the layer of hidden units, and all the units in the hidden layer 
are connected to all the output units. Usually, determining the number of input units and output units 
is clear from the application.  

However, determining the number of hidden units is a bit of an art form, and requires 
experimentation to determine the best number of hidden units. Too few hidden units will prevent the 
network from being able to learn the required function, because it will have too few degrees of 
freedom. Too many hidden units may cause the network to tend to over fit the training data, thus 
reducing generalization accuracy. In many applications, some minimum number of hidden units is 
needed to learn the target function accurately, but extra hidden units above this number do not 
significantly affect the generalization accuracy, as long as cross validation techniques are used. Too 
many hidden units can also significantly increase the training time. Each connection between nodes 
has a weight associated with it. In addition, there is a special weight (called w0) that feeds into every 
node at the hidden layer and a special weight (called z0) that feeds into every node at the output 
layer. These weights are called the bias, and set the thresholding values for the nodes. Initially, all of 
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the weights are set to some small random values near zero. The training of the network will adjust 
these weights using the backpropagation algorithm that so that the output generated by the network 
matches the correct output. 

 

PROCESSING THE NODE 

Every node in the hidden layer and in the output layer processes its weighted input to produce an 
output. This can be done slightly differently at the hidden layer, compared to the output layer. Here 
is shown how it works. 

INPUT ENCODING  

The input data we provide to the network comes through the inputs units. No processing takes place 
in an input unit. It simply feeds data into the system. For example, if we are inputting a grayscale 
image into the network, the picture will be divided into pixels (say, 120 x 128 pixels), each of which 
is presented by a number typically in the range from 0 to 255 that says what the grayscale value is 
for that piece of the image. One pixel 0 to 255 will be fed into each input unit. So if you have an 
image of 120 x 128 pixels you will have 15360 input units. The value coming out of an input is 
labeled xj, for j going from 1 to d, representing d input units. There is also a special input unit labeled 
x0, which always has the value of 1. This is used to provide the bias to the hidden nodes. 

 

HIDDEN UNITS 

The connections coming out of an input unit have weights associated with them. A weight going to 
hidden unit zh from input unit xj would be labeled whj. The bias input node, x0, has a weight of w0. In 
the training, this bias weight, w0, is treated like all other weights, and is updated according to the 
backpropagation algorithm; the value coming out of x0 is always 1. 

Each hidden node calculates the weighted sum of its inputs and applies a thresholding function to 
determine the output of the hidden node. The weighted sum of the inputs for hidden node zh is 
calculated as: 

 
EQUATION 1: WEIGHTED SUM OF INPUTS 

The thresholding function applied at the hidden node is typically either a step function or a sigmoid 
function. For the purpose of this project, I will stick with the sigmoid function. The general form of 
the sigmoid function is: 
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EQUATION 2:SIGMOID FUNCTION 

Often, we preprocess the input to reduce the number of input units in the network. So, in this case, 
we might average several pixels to reduce the resolution down to, say, 30 x 32, which are just 960 
input units. 

The sigmoid function is sometimes called the “squashing” function, because it squashes its input to a 
value between 0 and 1. At the hidden node, we apply the sigmoid function to the weighted sum of 
the inputs to the hidden node, so we get the output of hidden node zh is:

EQUATION 3:OUTPUT OF HIDDEN NODE 

for h going from H, where H is the total number of hidden nodes. 

 

OUTPUT ENCODING 

Now, we can do a similar computation for the output nodes. The computation also depends on 
whether we have 1 output unit or multiple output units. 

We start out in the same way as we did with the hidden units, calculating the weighted sum. We 
label the weights going into output unit i from hidden unit h as vih. Just like the input layer, we also 
have a bias at the hidden layer. So, each output unit has a bias input from hidden unit z0, where the 
input from z0 is always 1 and the weight associated with that input is trained just like all the other 
weights. 
So, output unit i computes the weighted sum of its inputs as: 
 

EQUATION 4:WEIGHTED SUM OF ITS INPUTS 

If there is just one output unit then, we omit the i subscripts and we have: 
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EQUATION 5:WEIGHTED SUM OF ITS INPUTS 2 

Now, we have to decide what function we are going to apply to this weighted sum to generate yi,
which is the output of unit i.

TRAINING THE NETWORK  

TRAINING 

Training the neural network to produce the correct outputs for the given inputs is an iterative 
process, in which you repeatedly present the network with an example, compare the output on this 
example, sometimes called the actual output with the desired output sometimes called the target 
output, and adjust the weights in the network to hopefully generate better output. By training the 
network over and over with various examples, and using the backpropagation algorithm to adjust the 
weights, the network should learn to produce better result. Ideally, the “better result” is not just the 
right answer for the data that you train your network on, but also for generalizations of that data.  

We can train the network using a data set of examples (called training data). For each example, you 
know the correct answer, and you tell the network this is correct answer. We will call the process of 
running 1 example through the network and training the network on that example, weight update 
iteration. Training the network once on each example of the training set is called an epoch.
Typically, we have to train your network for many epochs before it converges, meaning that the 
network has settled in on a function that it thinks is the best predictor of your input data. 

 

BACKPROPAGATION ALGORITHM 

The algorithm used to train the network is the backpropagation Algorithm. The general idea with the 
backpropagation algorithm is to use gradient descent to update the weights so as to minimize the 
squared error between the network output values and the target output values. The update rules are 
derived by taking the partial derivative of the error function with respect to the weights to determine 
each weight’s contribution to the error. Then, each weight is adjusted, using gradient descent, 
according to its contribution to the error.  

This process occurs iteratively for each layer of the network, starting with the last set of weights, and 
working back towards the input layer, hence the name backpropagation. 
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The backpropagation algorithm is the most common network learning method and has been 
successfully applied to a variety of tasks, such as handwriting recognition and robot control. The 
hypothesis space considered by the back-propagation algorithm is the space of all functions that can 
be represented by assigning weights to the given, fixed network of interconnected units. 
Feedforward networks containing three layers of units are able to approximate any function to 
arbitrary accuracy, given a sufficient (potentially very large) number of units in each layer. Even 
networks of practical size are capable of representing a rich space of highly nonlinear functions, 
making feedforward networks a good choice for learning discrete and continuous functions whose 
general form is unknown in advance. (Mitchell, 1997, p. 122). 

Back-propagation searches the space of possible hypothesis using gradient descent to iteratively 
reduce the error in the network fit to the training example. Gradient descent converges to a local 
minimum in the training error with respect to the network weights. More generally, gradient descent 
is potentially useful method for searching many continuously parameterized hypothesis spaces 
where the training error is a differentiable function of hypothesis parameters. (Mitchell, 1997, p. 
123). 

One of the most intriguing properties of back-propagation is its ability to invent new features that are 
not explicit in the input to the network. In particular, the internal (hidden) layers of multilayer 
networks learn to represent intermediate features that are useful for learning the target function and 
that are only implicit in the network inputs. (Mitchell, 1997, p. 123). 

Although back-propagation is the most common Artificial Neural Network (ANN) learning 
algorithm, many other have been proposed, including algorithms for more specialized tasks. For 
example, recurrent neural network methods train networks containing directed cycles; algorithms 
such as CASCADE CORRELATION alter the network structure as well as the network weights. (Mitchell, 
1997, p. 123).  

ONLINE LEARNING 

Offline learning occurs when we compute the weight updates after summing over all of the training 
examples. 

ONLINE UPDATE 

Online learning occurs when we update the weights after each training example. The theoretical 
difference between the two approaches is that offline learning implements what is called Gradient 
Descent, whereas online learning implements Stochastic Gradient Descent. The general approach for 
the weight updates is the same, whether online or offline learning is used. The only difference is that 
offline learning will sum the error over all inputs, while the online learning will compute the error 
for each input one at a time. 
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OTHER LEARNING ALGORITHM PARAMETERS 

MOMENTUM 

As the learning is generally slow, momentum was used to increase the performance. In this method 
the weight update of the previous iteration are taken into account, by adding α (momentum) times 
the previous weight update to the current one, this can be seen on the following equation:  

 
EQUATION 6: MOMENTUM 

LEARNING RATE 

In these weight updates, we also use a positive constant learning rate, that moderates the degree to 
which weights are changed at each step. It is usually set to some small value (e.g., 0.3), and is 
sometimes made to decay as the number of weight-tuning iterations increases. 

NETWORK OVERFIT 

The best way to determine whether your network has reached the best set of weights for the training 
data is to validate the results using a validation set of data. This is a separate data set that you do not 
use during training. Instead, you use the validation data to detect when your network is beginning to 
overfit to the training data. We dont want the network to generalize its inputs, so that it can correctly 
answer classification queries not only for the training data, but also for other examples. If we train 
the network too long, it will overfit to the training data, which means that it will correctly answer 
only examples that are in the training data set. 

 To help ensure that the network does not overfit, we can use a cross validation procedure.  

CROSS VALIDATION 

In cross validation the input set is split into a separate training and a validation set. The network is 
trained for several iterations and the error calculated. Afterwards the error in applying the network to 
the validation set is calculated as well. This training and validation process is repeated until the 
validation error begins to increase, i.e. overfitting takes place. The training should be stopped then as 
the network approaches the patterns of the training set rather than the ones of the input set. Training 
can be also stopped if there is no significant increase in accuracy any more.  

In case of 10-fold-cross validation the dataset is split into 10 sets. For each of these sets the network 
is trained with the other 9 sets and validated with the one excluded. Error an accuracy after a certain 
number of iterations is recorded. Finnally the average of errors and accuracies is calculated.  
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SYSTEM IMPLEMENTATION 

SOFTWARE USED 

Matlab is an interpreted language (and as such can be much slower than compiled software) for 
numeric computation and visualization. It offers high level facilities for dealing directly with 
mathematical constructs.  

BENEFIT OF USING MATLAB 

Benefits that it offers for this project are: 

1. Excellent support for linear algebra and matrix operations. The basic type in Matlab is a double 
precision matrix. The software was originally developed as a linear algebra package (Matlab stands 
for MATrix LABoratory) and has efficient and numerically reliable algorithms for matrix inversion, 
eigenvalues etc. 

2. Visualization facilities. The in-built graphing and plotting functions are easy to use for both 2d 
and 3d plots. 

3. Ease of extension. Functions and scripts can be written in the Matlab language (in `M-files') and 
these can then be called in exactly the same way as the core functionality of Matlab. In fact, the 
`toolboxes' that extend the functionality of Matlab to more specialist areas are written in this way. 
Netlab (a Matlab toolbox for neural networks) consists of a set of M-files. 

4. Portability. Software written in the Matlab language is portable to any platform that runs Matlab, 
including UNIX machines, PCs and Macintoshes. 

IMPLEMENTATION ISSUES 

GRAPHICAL USER INTERFACE  

The Graphical User Interface was constructed using MatLab GUIDE or Graphical User Interface 
Design Environment. Using the layout tools provided by GUIDE, I designed the following graphical 
user interface figure (face_viewer.fig) for the face recognition user application: 
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FIGURE 8: FACE VIEWER 

The above design yields the following application window on run time: 

 
FIGURE 9: FACE VIEWER 
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PREPROCESSING 

Several MatLab files were created responsible for extracting the picture information into a MatLab 
.mat file. The idea is to scan each of the folders containing the images and load each of the pictures 
into a matrix. The target matrix in dimension number of cases * total number of pictures is filled in 
the following manner: The weight 0.9 is assigned to the actual target class for each picture, while 0.1 
is assigned to all other non-target classes. E.g. if a mat-file for the pose recognizer should be created 
the target classes are (left, right, straight and up). If a picture points left the entry in the target matrix 
would look like (0.9, 0.1, 0.1, 0.1), further details are outlined in the following table.  

Point direction Left Right Straight Up 

Left 0.9 0.1 0.1 0.1 

Right 0.1 0.9 0.1 0.1 

Straight 0.1 0.1 0.9 0.1 

Up 0.1 0.1 0.1 0.9 

TABLE 1: TARGET MATRIX 

EXPERIMENTS 

For each experiment (e.g. determine the pose of a person) first the mat file created is loaded into the 
program. The number of neurons, as well as iterations is decided beforehand. For each iteration the 
backpropagation algorithms is applied, and after a specified number of epochs the error and the 
accuracy recorded. 

The error was calculated using the sum of squares of error method. 

POSTPROCESSING 

After retrieving the results from the actual experiment attempts were made to decide the optimal 
number of weight updates, by determining after how many iterations no significant improvement of 
the accuracy can be achieved, i.e. when overfitting towards the training data occurs.  

SUMMARY 

MatLab has been used as programming because of its great support for matrix operations, its 
portability, visualization features and extendibility.  
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EVALUATION 

SUNGLASS RECOGNIZER 

The learning task here involves training a neural net which, when given an image as input, indicates 
whether the in the image is wearing sunglasses or not. 

LEARNING PARAMETERS 

This is a three layer fully connected feed-forward neural network, which uses the back propagation 
network to tune its weights. The code is setup to learn to recognize 2 states the eye can be in: open 
and sunglasses. Sunglasses recognizer implements a neural net that accepts an image as input, and 
outputs the state of the eye of the person.  

Here a 960 x 2 x 2 network is trained on grey level images, to predict whether a person is wearing 
sunglass or not. Each pixel gray scale value is given as input to the node. The number of hidden 
nodes has been zeroed on 2 and the number of output is 2.The network has been trained using a 
default learning parameter of 0.3 learning rate and momentum respectively. 

NETWORK WEIGHT 

The network weights are shown after 100 weight tuning iteration. Each output unit (open, sunglass) 
has four weights, shown by dark (negative). 

 
FIGURE 10: NETWEIGHT AFTER 2000 WEIGHT UPDATES  

ACCURACY 

After training on 642 such images, the network achieves an accuracy of 92% over a separate test set 
shown below.  
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FIGURE 11: NETWORK ACCURACY AFTER 2000 WEIGHT UPDATES 
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ERROR 

FIGURE 12: NETWORK TRAINING AND VALIDATION ERROR AFTER 2000 WEIGHT UPDATES 

FACE RECOGNIZER 

The learning task here involves training a neural net that accepts an image as input, and output the 
userid of the person. 

LEARNING PARAMETERS 

This is a three layer fully connected feedforward neural network, which uses the back propagation 
network to tune its weights. The code is setup to learn to recognize who the person in a picture is 
among a group of 20 possible people.  

Here a 960 x 10 x 20 network is trained on grey level images. Each pixel gray scale value is given as 
input to the node. The number of hidden nodes has been zeroed on 10 and the number of output is 
20.The network has been trained using a default learning parameter of 0.3 learning rate and 
momentum respectively, to recognize who the person in a picture is among a group of 20 possible 
people. 
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NETWORK WEIGHT 

After training on 642 such images, the network achieves an accuracy of 92% over a separate test set 
shown below.  

 
FIGURE 13: NETWORK WEIGHTS AFTER 1500 WEIGHT UPDATES 
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ACCURACY 

After training on 642 such images, the network achieves an accuracy of 95% over a separate test set 
shown below.  

 

FIGURE 14: NETWORK ACCURACY AFTER 1500 WEIGHT UPDATES 
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ERROR 

FIGURE 15: NETWORK TRAINING AND VALIDATION ERROR AFTER 1500 WEIGHT UPDATES 

POSE RECOGNIZER 

This is a three layer fully connected feed-forward neural network, which uses the back propagation 
network to tune its weights. The code is setup to learn to recognize 4 states left, right, straight and 
up.. The pose recognizer implements a neural net that accepts an image as input, and outputs the 
pose of the person.  

LEARNING PARAMETERS 

Here a 960 x 3 x 4 network is trained on grey level images, to predict whether a person is looking to 
the left, right straight or up. Each pixel gray scale value is given as input to the node. The number of 
hidden nodes has been zeroed on 3 and the number of output is 4.The network has been trained using 
a default learning parameter of 0.3 learning rate and momentum respectively. 
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NETWORK WEIGHT 

FIGURE 16: NETWORK WEIGHTS AFTER 2000 WEIGHT UPDATES 
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ACCURACY 

After training on 642 such images, the network achieves an accuracy of 92% over a separate test set 
shown below.  

 

FIGURE 17: NETWORK ACCURACY AFTER 2000 WEIGHT UPDATES 
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ERROR 

FIGURE 18: NETWORK  TRAINING AND VALIDATION ERROR AFTER 2000 WEIGHT UPDATES 

(OTHER OUTPUT ENCODING (0.9/0.1 OR 1/0)) 

If instead of 0.9 and 0.1 for the values in the target matrix 1 and 0 are used, the accuracy is generally 
lower than incase of 0.9 and 0.1. The reason for this is that the sigmoid function cannot handle 
absolute values like 0 and 1, the weights for certain pixels will grow up to infinity. As 0.9 and 0.1 
allow a certain tolerance for the weights the sigmoid function can be used here. 
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10 FOLD CROSS VALIDATION 

The 10-fold cross validation was applied to the pose dataset. 

ERROR 

The following figure shows overfitting. First the validation error is less than the training error, but 
after ca. 50 weight updates the validation error decreases less than the training error, i.e. the 
networks is more concentrated on the patterns of the training set.  

 
FIGURE 19: NETWORK TRAINING AND VALIDATION ERROR AFTER 100 WEIGHT UPDATES 
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ACCURACY 

After training on 642 such images, the network achieves an accuracy of 53% over a separate test set 
shown below.  

 

FIGURE 20: ACCURACY AFTER 100 WEIGHT UPDATES 
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CONCLUSIONS 

MY WORK 

• learnt how to program in Matlab 
• Read a lot on neural network 
• design a graphical user interface for the system 
• write up matlab code to accomplish the task 
• Evaluating accuracy and error result obtained by the training example 
• Find out how to tune the network so that it can function better.  
• Had discussions with my supervisor. 
• Held presentation 
• Make user manual for the system 
• write the final dissertation 

IMPORTANCE AND CONTRIBUTION 

The main contribution made to this project is the performance of a 10 fold cross validation 
experiment using the image data set provided by Dr. Tom Mitchell. 

REFLECTION 

Working on this project has made me realize how much work in designing and implementing system 
could be. It has been a good experience. 

Working on this project has made me more capable of doing the following. 

• writing reports 
• Organizing myself 
• Organizing my work 
• Designing a system 
• implementing a system based on designs 
• presenting my work 
• Avoiding problems. 
• Finding resources 
• working with neural network 
• implementing the system in Matlab 
• Working with other people to fulfill the objectives of the project (Dr. Tony Y.T. Chan) 

The overall conclusion of this project is that I found, it to be interesting and programming language 
Matlab and the algorithm interesting subjects to work with in the future.  
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APPENDIX A: CODE LISTING 

FACE_VIEWER.M 

function varargout = Face_Viewer(varargin) 

 

gui_Singleton = 1; 

gui_State = struct('gui_Name',       mfilename, ... 

 'gui_Singleton',  gui_Singleton, ... 

 'gui_OpeningFcn', @Face_Viewer_OpeningFcn, ... 

 'gui_OutputFcn',  @Face_Viewer_OutputFcn, ... 

 'gui_LayoutFcn',  [] , ... 

 'gui_Callback',   []); 

if nargin && ischar(varargin{1}) 

 gui_State.gui_Callback = str2func(varargin{1}); 

end 

 

if nargout 

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else 

 gui_mainfcn(gui_State, varargin{:}); 

end 

 

function Face_Viewer_OpeningFcn(hObject, eventdata, handles, varargin) 

handles.output = hObject; 

handles.id = 'at33'; 



36 

 

handles.pose = 'left'; 

handles.exp = 'happy'; 

handles.open = 'sunglasses'; 

handles.res = '1'; 

guidata(hObject, handles); 

 

function varargout = Face_Viewer_OutputFcn(hObject, eventdata, handles)  

 varargout{1} = handles.output; 

 

function popupmenu1_CreateFcn(hObject, eventdata, handles) 

 handles.id_menu = hObject; 

 guidata(hObject, handles); 

 set(hObject,'BackgroundColor','white'); 

 

function popupmenu2_CreateFcn(hObject, eventdata, handles) 

 handles.pose_menu = hObject; 

 guidata(hObject, handles); 

 set(hObject,'BackgroundColor','white'); 

 

function popupmenu3_CreateFcn(hObject, eventdata, handles) 

 handles.exp_menu = hObject; 

 guidata(hObject, handles); 

 set(hObject,'BackgroundColor','white'); 

 

function popupmenu4_CreateFcn(hObject, eventdata, handles) 
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handles.sun_menu = hObject; 

 guidata(hObject, handles); 

 set(hObject,'BackgroundColor','white'); 

 

function popupmenu5_CreateFcn(hObject, eventdata, handles) 

 handles.res_menu = hObject; 

 guidata(hObject, handles); 

 set(hObject,'BackgroundColor','white'); 

 

function pushbutton1_Callback(hObject, eventdata, handles) 

 if (strcmp(handles.res,'1') ==1) 

 file =strcat('C:\Documents and Settings\Administrator\My Documents\Final Year Project 
NIK\faces\', handles.id, '\',handles.id,'_',handles.pose,'_',handles.exp, '_', handles.open); 

 width = 64; 

 height = 20; 

 elseif  (strcmp(handles.res,'2') ==1) 

 width = 32; 

 height = 10; 

 file =strcat('C:\Documents and Settings\Administrator\My Documents\Final Year Project 
NIK\faces\', handles.id, '\',handles.id,'_', handles.pose,'_',handles.exp, '_', handles.open,'_', 
handles.res); 

 else     

 width = 16; 

 height = 5; 

 file =strcat('C:\Documents and Settings\Administrator\My Documents\Final Year Project 
NIK\faces\', handles.id, '\',handles.id,'_', handles.pose,'_',handles.exp, '_', handles.open,'_', 
handles.res); 

 end;     
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position_rectangle = [5, 10, width, height]; 

 set(gca,'Position',position_rectangle); 

 try          

 A = imread(file,'pgm'); 

 catch 

 % msgbox('This is one of the error pictures','bad picture','warn') 

 file =strcat('C:\Documents and Settings\Administrator\My Documents\Final Year Project 
NIK\faces\', handles.id, '\',handles.id,'_',handles.pose,'_',handles.exp, '_', handles.open); 

 A = imread(strcat(file,'.bad'), 'pgm'); 

 end 

 colormap(gray(256)); 

 image(A); 

function edit1_CreateFcn(hObject, eventdata, handles) 

 handles.edit1 = hObject; 

 guidata(hObject, handles); 

 set(hObject,'BackgroundColor','white'); 

 

function popupmenu5_Callback(hObject, eventdata, handles) 

 val = get(hObject,'Value'); 

 string_list = get(hObject,'String'); 

 handles.res = string_list{val}; 

 guidata(hObject, handles); 

 

function popupmenu4_Callback(hObject, eventdata, handles) 

 val = get(hObject,'Value'); 

 string_list = get(hObject,'String'); 
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handles.open = string_list{val}; 

 guidata(hObject, handles); 

 

function popupmenu3_Callback(hObject, eventdata, handles) 

 val = get(hObject,'Value'); 

 string_list = get(hObject,'String'); 

 handles.exp = string_list{val}; 

 guidata(hObject, handles); 

 

function popupmenu2_Callback(hObject, eventdata, handles) 

 val = get(hObject,'Value'); 

 string_list = get(hObject,'String'); 

 handles.pose = string_list{val}; 

 guidata(hObject, handles); 

 

function popupmenu1_Callback(hObject, eventdata, handles) 

 val = get(hObject,'Value'); 

 string_list = get(hObject,'String'); 

 handles.id = string_list{val}; 

 guidata(hObject, handles); 
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SUNGLASS_CREATOR.M   

classes = {'open', 'sunglasses'}  

 

% the date will be collected into the variables: 

X = []; Y = []; ell = 0; 

 

% start in the directory containing only directory names 

folders = dir; 

% now go into each folder and grab the file names 

for i = 3:length(folders), % ignore first two .. and . 

 % make sure its a directory 

 if folders(i).isdir, 

 cd(folders(i).name); % change directory 

 files = dir('*_4.pgm'); 

 for j = 1:length(files), 

 % increment out image counter 

 ell = ell + 1; 

 % read the image 

 A = imread(files(j).name); 

 files(j).name 

 X(:,ell) = A(:); 

 % what class is this (part of file name) 

 for k=1:length(classes), 

 Y(k,ell) = 0.1; 

 if ~isempty(findstr(cell2mat(classes(k)),files(j).name)), 
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Y(k,ell) = 0.9; 

 end 

 end 

 end 

 cd('..'); % go back one folder 

 end 

end 

 



42 

 

ID_CREATOR.M 

classes = {'at33', 'ch4f', 'danieln','kawamura' , 'mitchell','saavik','tammo', 'boland', 'cheyer', 'glickman', 
'kk49', 'night', 'steffi', 'an2i','bpm','choon','karyadi','megak','phoebe','sz24'}  

 

% the date will be collected into the variables: 

X = []; Y = []; ell = 0; 

 

% start in the directory containing only directory names 

folders = dir; 

% now go into each folder and grab the file names 

for i = 3:length(folders), % ignore first two .. and . 

 % make sure its a directory 

 if folders(i).isdir, 

 cd(folders(i).name); % change directory 

 files = dir('*_4.pgm'); 

 for j = 1:length(files), 

 % increment out image counter 

 ell = ell + 1; 

 % read the image 

 A = imread(files(j).name); 

 files(j).name 

 X(:,ell) = A(:); 

 % what class is this (part of file name) 

 for k=1:length(classes), 

 Y(k,ell) = 0.1; 

 if ~isempty(findstr(cell2mat(classes(k)),files(j).name)), 
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Y(k,ell) = 0.9; 

 end 

 end 

 end 

 cd('..'); % go back one folder 

 end 

end 
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POSE_0_1_CREATOR.M   

classes = {'right', 'left', 'straight', 'up'}; 

 

% the date will be collected into the variables: 

X = []; Y = []; ell = 0; 

folders = dir; 

% now go into each folder and grab the file names 

for i = 3:length(folders), % ignore first two .. and . 

 % make sure its a directory 

 if folders(i).isdir, 

 cd(folders(i).name); % change directory 

 files = dir('*_4.pgm'); 

 for j = 1:length(files), 

 % increment out image counter 

 ell = ell + 1; 

 % read the image 

 A = imread(files(j).name); 

 X(:,ell) = A(:); 

 % what class is this (part of file name) 

 for k=1:length(classes), 

 Y(k,ell) = 0; 

 if ~isempty(findstr(cell2mat(classes(k)),files(j).name)), 

 Y(k,ell) = 1; 

 end 

 end 
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end 

 cd('..'); % go back one folder 

 end 

end 

 

POSE_CREATOR.M    

classes = {'right', 'left', 'straight', 'up'}; 

 

% the date will be collected into the variables: 

X = []; Y = []; ell = 0; 

folders = dir; 

% now go into each folder and grab the file names 

for i = 3:length(folders), % ignore first two .. and . 

 % make sure its a directory 

 if folders(i).isdir, 

 cd(folders(i).name); % change directory 

 files = dir('*_4.pgm'); 

 for j = 1:length(files), 

 % increment out image counter 

 ell = ell + 1; 

 % read the image 

 A = imread(files(j).name); 

 X(:,ell) = A(:); 

 % what class is this (part of file name) 

 for k=1:length(classes), 
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Y(k,ell) = 0.1; 

 if ~isempty(findstr(cell2mat(classes(k)),files(j).name)), 

 Y(k,ell) = 0.9; 

 end 

 end 

 end 

 cd('..'); % go back one folder 

 end 

end 

 

FACE_RECOGNIZER.M 

load id 

 

retrain_number =15; 

neuron = 10; 

epoch = 100; 

 

X = X / 255; % scale to be within 0 and 1 

 

% partition the data 70/30 cross-validation: 

ell = length(Y); I = randperm(ell); 

N = ceil(0.7*ell); M = ell - N; 

Xv = X(:,I(1:M)); Yv = Y(:,I(1:M)); 

X = X(:,I(M+1:end)); Y = Y(:,I(M+1:end)); 
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% initial training just one epoch 

[net, error] = vbp(X,Y,[neuron],1,0.3,0.3); 

 

figure 

 

for iteration= 1:retrain_number, iteration 

% draw image of weights 

 for i = 1:neuron,  

 weights = net(2).W(i,2:end); 

 weights = weights-min(weights);weights = weights/max(weights)*256; 

 subplot(neuron,retrain_number,iteration+(i-1)*retrain_number); 

 image(reshape(weights,30,32)),colormap(gray(256)) 

 set(gca,'yticklabel',[],'xticklabel',[]); 

 end 

 

% keep all the error in one data matrix for plotting later 

 [net, error] = vbp(X,Y,[neuron],epoch,0.3,0.3,net); 

 [net2, error] = vbp(X,Y,[neuron],1,0.3,0.3,net); 

 ERROR(:,iteration) = error'; 

 [net2, error] = vbp(Xv,Yv,[neuron],1,0.3,0.3,net); 

 ERRORv(:,iteration) = error'; 

 

% check training error 

 Yhat = vbp(X, net); 

 [dummy, class] = max(Yhat,[],1); 
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[dummy, correctclass] = max(Y,[],1); 

 training_accuracy(iteration) = (sum(correctclass==class)/length(class)) *100; 

 

% check validation error 

 Yhat = vbp(Xv, net); 

 [dummy, class] = max(Yhat,[],1); 

 [dummy, correctclass] = max(Yv,[],1); 

 validation_accuracy(iteration) = sum(correctclass==class)/length(class)*100; 

end 
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POSE_FACES.M 

load pose 

 

retrain_number =20; 

neuron = 3; 

epoch = 100; 

 

X = X / 255; % scale to be within 0 and 1 

 

% partition the data 70/30 cross-validation: 

ell = length(Y); I = randperm(ell); 

N = ceil(0.7*ell); M = ell - N; 

Xv = X(:,I(1:M)); Yv = Y(:,I(1:M)); 

X = X(:,I(M+1:end)); Y = Y(:,I(M+1:end)); 

 

% initial training just one epoch 

[net, error] = vbp(X,Y,[neuron],1,0.3,0.3); 

 

figure 

 

for iteration= 1:retrain_number, iteration 

% draw image of weights 

 for i = 1:neuron,  

 weights = net(2).W(i,2:end); 

 weights = weights-min(weights);weights = weights/max(weights)*256; 
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subplot(neuron,retrain_number,iteration+(i-1)*retrain_number); 

 image(reshape(weights,30,32)),colormap(gray(256)) 

 set(gca,'yticklabel',[],'xticklabel',[]); 

 end 

 

% keep all the error in one data matrix for plotting later 

 [net, error] = vbp(X,Y,[neuron],epoch,0.3,0.3,net); 

 [net2, error] = vbp(X,Y,[neuron],1,0.3,0.3,net); 

 ERROR(:,iteration) = error'; 

 [net2, error] = vbp(Xv,Yv,[neuron],1,0.3,0.3,net); 

 ERRORv(:,iteration) = error'; 

 

% check training error 

 Yhat = vbp(X, net); 

 [dummy, class] = max(Yhat,[],1); 

 [dummy, correctclass] = max(Y,[],1); 

 training_accuracy(iteration) = sum(correctclass==class)/length(class)*100; 

 

% check validation error 

 Yhat = vbp(Xv, net); 

 [dummy, class] = max(Yhat,[],1); 

 [dummy, correctclass] = max(Yv,[],1); 

 validation_accuracy(iteration) = sum(correctclass==class)/length(class)*100; 

end 
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POSE01_FACES.M 

load pose01 

 

retrain_number =10; 

neuron = 3; 

epoch = 100; 

 

X = X / 255; % scale to be within 0 and 1 

 

% partition the data 70/30 cross-validation: 

ell = length(Y); I = randperm(ell); 

N = ceil(0.7*ell); M = ell - N; 

Xv = X(:,I(1:M)); Yv = Y(:,I(1:M)); 

X = X(:,I(M+1:end)); Y = Y(:,I(M+1:end)); 

 

% initial training just one epoch 

[net, error] = vbp(X,Y,[neuron],1,0.3,0.3); 

 

figure 

 

for iteration= 1:retrain_number, iteration 

% draw image of weights 

 for i = 1:neuron,  

 weights = net(2).W(i,2:end); 

 weights = weights-min(weights);weights = weights/max(weights)*256; 
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subplot(neuron,retrain_number,iteration+(i-1)*retrain_number); 

 image(reshape(weights,30,32)),colormap(gray(256)) 

 set(gca,'yticklabel',[],'xticklabel',[]); 

 end 

 

% keep all the error in one data matrix for plotting later 

 [net, error] = vbp(X,Y,[neuron],epoch,0.3,0.3,net); 

 [net2, error] = vbp(X,Y,[neuron],1,0.3,0.3,net); 

 ERROR(:,iteration) = error'; 

 [net2, error] = vbp(Xv,Yv,[neuron],1,0.3,0.3,net); 

 ERRORv(:,iteration) = error'; 

 

% check training error 

 Yhat = vbp(X, net); 

 [dummy, class] = max(Yhat,[],1); 

 [dummy, correctclass] = max(Y,[],1); 

 training_accuracy(iteration) = sum(correctclass==class)/length(class)*100; 

 

% check validation error 

 Yhat = vbp(Xv, net); 

 [dummy, class] = max(Yhat,[],1); 

 [dummy, correctclass] = max(Yv,[],1); 

 validation_accuracy(iteration) = sum(correctclass==class)/length(class)*100; 

end 
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SUNGLASSFACES.M  

load sunglasses 

 

retrain_number =10; 

neuron =2; 

epoch = 100; 

 

X = X / 255; % scale to be within 0 and 1 

 

% partition the data 70/30 cross-validation: 

ell = length(Y); I = randperm(ell); 

N = ceil(0.7*ell); M = ell - N; 

Xv = X(:,I(1:M)); Yv = Y(:,I(1:M)); 

X = X(:,I(M+1:end)); Y = Y(:,I(M+1:end)); 

 

% initial training just one epoch 

[net, error] = vbp(X,Y,[neuron],1,0.3,0.3); 

 

figure 

 

for iteration= 1:retrain_number, iteration 

% draw image of weights 

 for i = 1:neuron,  

 weights = net(2).W(i,2:end); 

 weights = weights-min(weights);weights = weights/max(weights)*256; 
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subplot(neuron,retrain_number,iteration+(i-1)*retrain_number); 

 image(reshape(weights,30,32)),colormap(gray(256)) 

 set(gca,'yticklabel',[],'xticklabel',[]); 

 end 

 

% keep all the error in one data matrix for plotting later 

for i = 1:epoch,  

 [net, error] = vbp(X,Y,[neuron],1,0.3,0.3,net); 

 ERROR(:,iteration) = error'; 

 [net2, error] = vbp(Xv,Yv,[neuron],1,0.3,0.3,net); 

 ERRORv(:,iteration) = error'; 

end  

 

% check training error 

 Yhat = vbp(X, net); 

 [dummy, class] = max(Yhat,[],1); 

 [dummy, correctclass] = max(Y,[],1); 

 training_accuracy(iteration) = sum(correctclass==class)/length(class)*100; 

 

% check validation error 

 Yhat = vbp(Xv, net); 

 [dummy, class] = max(Yhat,[],1); 

 [dummy, correctclass] = max(Yv,[],1); 

 validation_accuracy(iteration) = sum(correctclass==class)/length(class)*100; 

end 
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VBP.M 

% VBP vanilla backpropagation batched training a feed forward multilayer 

% neural network using the log sigmoid tranfer function. 

%

% usage: [net,error] = vbp(X, Y, nh, epochs, eta, mu, oldnet); 

% where:           X : input layer activation 

% Y : output layer activation 

% nh : number of neurons in hidden layers (vector) 

% epochs : number of iterations through all training patterns 

% eta : learning rate \in [0 2] 

% mu : momentum term \in [0 1] 

%

function [net,ep] = vbp(A, T, n, noepochs, eta, mu, oldnet), 

% forward sweep for previously trained neural network 

 if (nargin == 2),  

 for i=1:size(A,2), 

 T(1).a = A(:,i);     % the input, then do forward sweep: 

 for l=2:length(T(1).n), T(l).a = logsig(T(l).W*[1;T(l-1).a]); end 

 net(:,i) = T(end).a; % the neural network output 

 ep(i).net = T;  

 end 

 return;  

 end 

 

% number of input/output activations added 
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n = [size(A,1) n size(T,1)]; 

% number of layers: 

 L = length(n); 

% number of training samples 

 ell = size(A,2); 

 if (ell ~= size(T,2)), error('number of X patterns does not match Y'); end 

% initialize weight matrices 

 net(1).n = n; 

 for l=2:L,  

 if (nargin == 7), % use last network for initialization 

 net(l).W = oldnet(l).W; 

 net(l).dWlast = oldnet(l).dWlast; % last weight update for momentum 

 else,  

 if (l == 2), % special initialization for the first layer 

 net(l).W = zeros(n(l),n(l-1)+1); 

 else 

 net(l).W = 2.0*rand(n(l),n(l-1)+1)-1.0; 

 end 

 net(l).dWlast = zeros(n(l),n(l-1)+1); 

 end 

 end 

% start training 

 for epoch = 1:noepochs, 

 % zero the change in weight 

 for l = 2:L, net(l).dW = zeros(size(net(l).W)); end 

 % loop through each pattern 
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for p = 1:ell,  

 % do a complete forward sweep 

 net(1).a = A(:,p); t = T(:,p); 

 for l=2:L, 

 net(l).netsum = net(l).W*[1;net(l-1).a]; 

 net(l).a = logsig(net(l).netsum); 

 end 

 % compute root mean square error (for plot) 

 e(p) = sqrt((t-net(L).a)'*(t-net(L).a)); 

 % compute signal errors delta (backprop) 

 net(L).delta = dlogsig(net(L).netsum).*(t-net(L).a); 

 delta = net(L).delta; 

 for l = (L-1):-1:2, 

 delta = dlogsig([0;net(l).netsum]).*sum((delta*ones(1,n(l)+1)).*net(l+1).W,1)'; 

 delta = delta(2:end); 

 net(l).delta = delta; 

 end 

 % cumulate the weight changes (batched learning) 

 for l = 2:L, 

 net(l).dW = net(l).dW + net(l).delta * [1;net(l-1).a]'; 

 end 

 end 

 % update the network weights 

 for l = 2:L,  

 net(l).dW  = eta * net(l).dW / ell + mu * net(l).dWlast; 

 net(l).W = net(l).W +  net(l).dW; 
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net(l).dWlast = net(l).dW; 

 end 

 % store mean error per epoch 

 ep(epoch) = mean(e); 

 end 

 

function [a] = logsig(n), 

% log sigmoid transfer function 

 a = 1./(1+exp(-n)); 

 

function [d] = dlogsig(n), 

% log sigmoid transfer derivative function 

 a = logsig(n); d = a.*(1-a); 
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ACCURACY.M 

figure; 

plot(1:length(training_accuracy),training_accuracy,1:length(validation_accuracy),validation_accurac
y) 

set(get(gca,'XLabel'),'String','number of iterations in 100'); 

set(get(gca,'YLabel'),'String','Accuracy'); 

set(get(gca,'Title'),'String','\fontname{times} \it Training(blue) and Validation(green) Accuracy') ; 

ERROR_PLOT.M 

figure; 

plot(1:length(ERROR),ERROR,1:length(ERRORv),ERRORv) 

set(get(gca,'XLabel'),'String','number of iterations in 100'); 

set(get(gca,'YLabel'),'String','Error'); 

set(get(gca,'Title'),'String','\fontname{times} \it Training(blue) and Validation(green) Error') ; 
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APPENDIX C: USER MANUAL 

This tutorial has been developed to get people interest on computer vision and face recognition; in 
addition, to give you some guidance on how to approach.  

 

The user has to perform the following steps<. 
1. open Matlab 
2. choose folder containing the Face_Viewer.m file 
3. type Face_Viewer in command prompt 
4. a window appears 
5. choose ID from drop down list 
6. select pose from drop down list 
7. choose expression from drop down list 
8. decides whether per son should wear sunglasses 
9. choose resolution from drop down list 
10. click “Show image” 
11. The desired picture appears. 

 

FIGURE 21: FACE VIEWER 


