
TOWARDS MODEL CHECKING
BSV IN UPPAAL

August 2013
Hörður Hauksson

Master of Science in Computer Science

TOWARDS MODEL CHECKING
BSV IN UPPAAL

Hörður Hauksson
Master of Science
Computer Science
August 2013
School of Computer Science
Reykjavík University

M.Sc. RESEARCH THESIS
ISSN 1670-8539

Towards model checking BSV in Uppaal

by

Hörður Hauksson

Research thesis submitted to the School of Computer Science
at Reykjavík University in partial fulfillment of

the requirements for the degree of
Master of Science in Computer Science

August 2013

Research Thesis Committee:

Anna Ingólfsdóttir, Supervisor
Professor, Reykjavik University

Marjan Sirjani
Professor, Reykjavik University

Luca Aceto
Professor, Reykjavik University

Copyright
Hörður Hauksson

August 2013

Date

Anna Ingólfsdóttir, Supervisor
Professor, Reykjavik University

Marjan Sirjani
Professor, Reykjavik University

Luca Aceto
Professor, Reykjavik University

The undersigned hereby certify that they recommend to the School of Com-
puter Science at Reykjavík University for acceptance this research thesis
entitled Towards model checking BSV in Uppaal submitted by Hörður
Hauksson in partial fulfillment of the requirements for the degree of Master
of Science in Computer Science.

Date

Hörður Hauksson
Master of Science

The undersigned hereby grants permission to the Reykjavík University Li-
brary to reproduce single copies of this research thesis entitled Towards
model checking BSV in Uppaal and to lend or sell such copies for private,
scholarly or scientific research purposes only.

The author reserves all other publication and other rights in association with
the copyright in the research thesis, and except as herein before provided, nei-
ther the research thesis nor any substantial portion thereof may be printed or
otherwise reproduced in any material form whatsoever without the author’s
prior written permission.

Towards model checking BSV in Uppaal

Hörður Hauksson

August 2013

Abstract

In recent years the complexity of hardware design for parallel processes has
increased considerably. Despite advances in structural abstractions of de-
scription languages none has the ability to simulate reactive systems and
model check in a graphical manner. In this thesis we argue for the viabil-
ity of translating between two seemingly different languages, the high level
hardware description language Bluespec SystemVerilog and the modelling
language of Uppaal, an integrated environment for validating and verifying
real time systems. We propose a scheme for mapping constructs between the
two languages and provide a prototype of a translator from a shallow version
of BSV to Uppaal.

Skilgreiningamál sem net tímaháðra stöðuvéla

Hörður Hauksson

Ágúst 2013

Útdráttur

Hönnun smárása hefur á síðari árum orðið sífellt flóknari. Líkön fyrir sam-
síða keyrslur hafa reynst sérlega erfið viðureignar og hönnunargalla hefur
oftar en ekki fyrst orðið vart á framleiðslustigi rása eða við notkun þeirra.
Þrátt fyrir framfarir í gerð skilgreiningamála gefur ekkert þeirra færi á myn-
drænni framsetningu við að greina líkön. Í þessari ritgerð leiðum við rök
að því að þýða megi á milli skilgreiningamálsins Bluespec SystemVerilog
(BSV) og Uppaal, sem er tæki til að sannreyna magþráða kerfi á myndrænan
hátt og finna veikleika í hönnun þeirra. Sýnt er fram á að þýða megi milli
þessara mála og sett er fram frumgerð að þýðanda sem þýðir úr einfaldaðri
útgáfu af BSV yfir í líkanamál Uppaal.

To

María Dóra Hrafnsdóttir

and

Kári Hrafnsson

who also contributed

a little bit

vii

Acknowledgements

I want to thank the international group of academics and fellow students at Reykjavik
University for concurrently sharing a small but significant part of their lives throughout
my study. Special thanks to my supervisor Anna for all the encouragement and Luca for
making me believe that theoretical computer science is easy to understand.

viii

ix

Contents

List of Figures xi

1 Introduction 1
1.1 General problem statement . 5
1.2 Contributions . 6
1.3 Structure of the thesis . 7

2 Background 9
2.1 Bluespec SystemVerilog . 9

2.1.1 Modules . 10
2.1.2 Interfaces . 11
2.1.3 Methods . 12
2.1.4 Rules . 13

2.2 Uppaal . 15
2.2.1 Description language . 16
2.2.2 Simulator . 19
2.2.3 Modelchecker . 20

3 Translating BSV into Uppaal 21
3.1 Shallow BSV . 21
3.2 The grammar for SBSV . 23

3.2.1 Code example . 23
3.3 Informal semantics of SBSV . 24
3.4 Translation of SBSV into Uppaal . 25
3.5 From Uppaal to BSV . 28

4 Translator 33
4.1 Front end of the compiler . 33
4.2 Program fragments attached to productions 34

x

4.3 Intermediate code generation . 35
4.3.1 Outputting a rule . 36
4.3.2 Code generation for module communication 38

4.4 Translation examples . 38

5 Related works 45

6 Conclusions and future work 47
6.1 Conclusion . 47
6.2 Future work . 48

Part I Appendix 49

A Example code listings 51
A.1 Code for the example in Section 3.5 . 51
A.2 Parallel execution code from Section 4.4 54

B Miscellaneous 59
B.1 Code for the example in Section 2.2.1 59
B.2 Scheduling rules within a module . 63

xi

List of Figures

1.1 Compilation to a graphical representation 3
1.2 A timed automaton with a guard and an invariant 4
1.3 Preferable translations between two formalisms. 5
1.4 Simplified version of BSV translated into Uppaal 7

2.1 Components of the Uppaal environment 15
2.2 Communicating automata in Uppaal . 17
2.3 Simulation of a model in the Uppaal IDE 19

3.1 Shallow version of BSV translated to Uppaal for model checking 22
3.2 Implementation of a clock cycle in Uppaal 26
3.3 Translation of a module into Uppaal . 27
3.4 A simple Jobshop in the Uppaal environment 29
3.5 A BSV simulation of the simplified Jobshop 31

4.1 The phases of a compiler . 34
4.2 Inheritance relations . 35
4.3 Register swap in the Uppaal IDE . 39
4.4 Greatest common divisor in Uppaal (clock not shown) 41
4.5 The user interface of the Malala application 42
4.6 A simulation of a rigid pipeline (clock not shown) 43

B.1 Rescheduled rules running in parallel . 63

xii

xiii

Listings

2.1 A BSV program . 10
3.1 A valid SBSV program . 24
3.2 A module that provides an interface . 30
4.1 Excerpts of the Rule class . 36
4.2 The method emitRule in the Node class 37
A.1 BSV version of the Jobshop . 51
A.2 A rigid synchronous pipeline of registers 54
B.1 Coffee machine . 59

xiv

1

Chapter 1

Introduction

In the scientific literature several formalisms have been proposed for studying the be-
haviour of concurrent systems. Some are specialized with emphasis on hardware compo-
nents, but others have a graphical interface and are better suited for simulation and model
checking.

Of the former type is Bluespec SystemVerilog (BSV) [1] a programming language that
can be compiled into hardware code (synthesizable) and is used in the design of electronic
systems. BSV is also equipped with a standard compiler that compiles into executable
code.

A commonly used level of abstraction in hardware design is register transfer level (RTL),
where hardware is viewed as a combination of registers and combinational logical devices.
Registers are the elements in the circuit that have memory properties and combinational
logical devices describe how the values change over time. The values of these stateful
elements at any given point in time determine the state of the system.

The updates of the registers are designed to be performed simultaneously, resulting in
faster hardware. In concurrent systems multiple processes are running in parallel and
designers have to address problems such as deadlocking and resource starvation. These
problems have proved to be hard to solve and become increasingly harder as the systems
grow in size.

Hardware description languages are a means by which to design the hardware so that these
updates are made in the most dependable and efficient way. The designs are converted
directly into hardware descriptions that can then be converted into hardware. Before the
actual hardware is created it is desirable to be able to reason formally about how the
hardware described in a hardware description language will behave.

2 Towards model checking BSV in Uppaal

Hardware execution of a program is done on the bit level and we are interested in how the
bits flow between the stateful elements of the circuit. The logical devices are comprised
of transistors which perform the desired logic. A clock is responsible for advancing the
time in the system and it is beneficial to perform as many bit operations in each clock
cycle as possible. In each cycle the state is changed based on how the previous state, the
input, and how the combinational elements are connected.

The execution model for hardware is considerably different from the traditional model for
CPU. The aim of the design process is to create circuits which perform specialized tasks
using highly parallel calculations, and to describe how the execution of those integrated
circuit (IC) will be performed.

As with other programming languages, the evolution of hardware languages has been to
abstract away from underlying low level instructions and form high level constructs such
as modules or classes. This has led to a shift in paradigm and the hardware design pro-
cedure obeys the same rules as software development in many ways. Basic low level
elements are hidden from the designer and instead of working with elements of a circuit
(s)he can focus on the overall behaviour of the system. Another advantage of this ap-
proach is that behavioural problems in the design can be discovered at an earlier stage
with external tools that can verify and check system models.

BSV

BSV is a hardware description language with high level constructs. It was developed at
Massachusetts Institute of Technology1 in association with Bluespec Inc2. Originally it
was a technology for synthesizing from Term Rewriting Systems [5] but has developed
into the high level description language it is today.

BSV is an object oriented language where modules are the main building blocks. Higher
level abstraction facilitates modular designs where modules can be aggregated to form
complex systems with submodule hierarchy.

The communication between modules is expressed using rule based interface methods
which allow rules to be composed from fragments that span module boundaries.

Concurrency in BSV is based on atomic guarded rules that run in parallel. Because rules
are atomic, they eliminate a majority of problems with concurrent design such as race con-

1 http://www.mit.edu/
2 http://www.bluespec.com/synthesizable-models.html

Hörður Hauksson 3

ditions. Other widely used hardware languages at the register transfer level are Verilog3,
VHDL4 and SystemC5.

Hardware constructions are static so BSV is statically typed, meaning that the type of a
variable is determined at compile time. Each and every variable and every expression is of
a given type. Variables can only be assigned values which have compatible types. Special
hardware types (values carried on wires, stored in registers, fifos or memories, etc.) [1, p.
36] determine the state of a BSV model.

Along with the compiler that creates hardware code, a standard compiler exists that
compiles programs into executable code. Bluespec SystemVerilog can therefore also be
viewed as a full blown programming language.

Uppaal

A formalism better suited for simulation and model checking is Uppaal [2]. It is rooted
in timed automata theory [6]. More precisely systems are modeled in Uppaal as networks
of timed automata, extended with data types.

Uppaal is an integrated environment for modeling, validating and verifying models. A
description language is compiled into a graphical representation (Figure 1.1) so that the
behaviour of models can be analyzed in a graphical user interface.

?

DescriptionModeling
language

Graphical
validation and
verification

p p pg gg

Figure 1.1: Compilation to a graphical representation

3 http://www.verilog.com/
4 http://www.vhdl.org/
5 http://www.systemc.org/

4 Towards model checking BSV in Uppaal

Uppaal is widely used in industry for checking correctness of various hardware and soft-
ware designs.

Uppaal is developed in collaboration between the Department of Information Technology
at Uppsala University6, Sweden and the Department of Computer Science at Aalborg Uni-
versity7 in Denmark. Two versions of the environment are available, one for commercial
applications and one for work performed by researchers or students at academic institu-
tions. Several extensions of the Uppaal tool exist such as Uppal TIGA8 , Uppal TRON9

and ECDAR10.

��
��
����

��
��

��
��

9

~

O

Initial
Location Control

Location
Edge

x > 0

Guard

x > 2
Invariant

Figure 1.2: A timed automaton with a guard and an invariant

Timed automata are versions of finite state machines equipped with real-values clocks
used for modeling real time systems. Invariants are placed on locations and boolean
guards on edges (Figure 1.2). A state of computation of a timed automaton consists of a
pair (l, v) where l is the control location the automaton is in (l ∈ L where L is the set of
possible locations) and v is the valuation determined by the current clock values. The pair
(l, v) is a legal state of the timed automaton only if the valuation v satisfies the invariant
of location l. If there is an edge whose source location equals the current location l and
whose guard is satisfied by the current valuation v, then we can follow that edge, thereby
changing the current location to the target location of the edge [3]. The action transition

6 http://www.it.uu.se/
7 http://www.cs.aau.dk/en
8 http://people.cs.aau.dk/ adavid/tiga/
9 http://people.cs.aau.dk/ marius/tron/

10 http://people.cs.aau.dk/adavid/ecdar/

Hörður Hauksson 5

thus taken changes the system state instantaneously and the clocks can be reset when such
transitions are performed.

The Uppaal toolkit is capable of describing reactive systems using timed automata ex-
tended with features for concurrency, communication and process priority. For that pur-
pose it has a modeling language and a verification engine and has been extended with
bounded discrete variables that are part of the state. Updates on transitions may be pre-
sented as functions in a C like syntax. A state of the system is defined by the locations of
all automata, the clock values, and the values of the discrete variables.

The structure of a model description is divided into global and local declarations, au-
tomata templates and system definitions. The modeling language is compiled into a
format that gives rise to visual representation and simulation of system models (Fig-
ure 1.1).

Uppaal also has a query language for expressing requirement specifications in TCTL
(timed computation tree logic) [6] used by the model checker in the verification phase.

1.1 General problem statement

While Uppaal is capable of presenting the behaviour of reactive systems in a graphical
way, BSV lacks a graphical interface to visualize the state changes of the system under
investigation.

ZZ~ ��=

}

~

?

Hardware

BSV Uppaal

Figure 1.3: Preferable translations between two formalisms.

6 Towards model checking BSV in Uppaal

Our idea is to unify the advantages of both worlds so that a hardware specification written
in BSV can be simulated and analyzed in Uppaal and conversely make a system descrip-
tion written and suitably investigated in Uppaal directly accessible for BSV to compile
into hardware code. (See Figure 1.3. The in-going arrows indicate the two starting points
in this approach.) This way the advantages of both types of formalisms can be utilized in
order to obtain quality hardware.

Specifying hardware designs directly in Uppaal might require a new extension to the
Uppaal tool in addition to those mentioned above.

1.2 Contributions

In this study we will provide means to translate from BSV to Uppaal. Doing so makes it
possible to examine in detail the behaviour of a model specified in BSV within the Uppaal
environment.

When BSV description language is compiled to hardware, all hierarchy is flattened into
one top level module [17, p. 30] by default. This makes it possible for us to consider a
BSV model as a collection of communicating automata in Uppaal.

Our approach will be to define a simplified version of BSV – which we refer to as Shallow
BSV – and show that it can be translated into the Uppaal modeling language. As indicated
in Figure 1.1 this will permit a full graphical examination of a system model in the Uppaal
tool.

We will in this thesis construct a prototype of a front end compiler to translate from
the shallow version of BSV (SBSV) into Uppaal (Figure 1.4). It accepts a hardware
description written in SBSV and outputs a model description in XML format that can be
analyzed in the Uppaal tool.

Our simplified language must also be compilable to BSV so that it can ultimately be com-
piled into executable hardware. Similarity in notation should make translation between
BSV and SBSV fairly easy (dashed arrows).

Only a subset of programs written in BSV are synthesizable [17, p. 28] and we will limit
our research to programs that can be directly compiled into hardware code. Our focus
will be on the executable specifications which we will relate to similar constructs in the
Uppaal language.

Hörður Hauksson 7

-

-
�

~

Hardware

SBSV UppaalBSV

Model checking
Graphical verification
Reactive systems

Figure 1.4: Simplified version of BSV translated into Uppaal

1.3 Structure of the thesis

The structure of the thesis is as follows: In the first two sections we introduce the two
languages BSV and Uppaal in some detail. In Chapter 3 we build on the discussion in
the previous section and provide an abstract grammar for the simplified version of BSV.
Based on the grammar, Chapter 4 contains a description of a translator for SBSV and
some examples of translations into Uppaal are shown. In Section 5 and 6 we finish off
with conclusions, related and future work.

8

9

Chapter 2

Background

In the following we will give a brief introduction to the two languages considered in
this thesis. The discussion will be informal with emphasis on the constructs that are of
importance in our work.

2.1 Bluespec SystemVerilog

Bluespec SystemVerilog, or BSV, is a high level hardware description language where
the atomicity of parallel rules together with precise handling of side effects allow for
reasoning about a state of a model. BSV uses a discrete time model and state changes
occur once every clock cycle.

BSV is object oriented where the objects, called modules, are the central constructs of
the language and will be compiled into hardware components. Modules are defined using
module definitions that correspond to class declarations in object oriented languages. The
concrete modules are then obtained as instances of this general description. Modules form
hierarchy by aggregation when a module description involves instances of other module
descriptions.

The concept of modularity, where an isolated functionality has been defined in a module
that has a well defined interface makes programming a much easier task. Modules are
referenced and interacted through interface methods. This idea of higher level program-
ming and modularity creates a framework for the programmer where (s)he does not need
to know the details on how the underlying hardware works.

10 Towards model checking BSV in Uppaal

The aim of BSV is to enable design by refinement from executable specifications to final
implementation. The language is described to be a high-level synthesizible specification
language, which means that specifications can be directly converted into hardware.

2.1.1 Modules

BSV modules consist of declaration of variables, interfaces, subclasses and methods and
of rules. A module definition corresponds to a class description in object oriented lan-
guages such as Smalltalk [12] or Java [13] and its instances, the modules correspond to
the objects in these languages.

In the simple BSV program listed below the module mkAdder (line 17) is a submodule of
the top module mkTb, that represents the starting point of the program execution.

Listing 2.1: A BSV program

1 package Tb;

2 (* synthesize *)

3 module mkTb (Empty);

4 Adder_ifc ifc <- mkAdder;

5

6 rule add;

7 $display (ifc.sum (10, 15, 17));

8 $finish (0);

9 endrule

10 endmodule

11

12 interface Adder_ifc;

13 method int sum (int x, int y, int z);

14 endinterface

15

16 (* synthesize *)

17 module mkAdder (Adder_ifc);

18 method int sum (int x, int y, int z);

19 return x + y + z;

20 endmethod

21 endmodule

22 endpackage

Hörður Hauksson 11

The purpose of the encapsulating package is only to define a name space and tell the
compiler where to find the code, but does not correlate with the hardware structure.

Modules are instantiated and bound to a variable whereafter the methods implemented
are accessible within the scope of the variable (line 4). A module hierarchy is created
when a module is instantiated inside another, and the new object becomes a submodule.
A statement of the form:

Interface type identifier <– module name;

invokes a module instantiation that returns a value of the interface type. It is then bound
to the identifier. In the above example the variable ifc becomes a handle to the module
mkAdder:

1 Adder_ifc ifc <- mkAdder;

Because a new instance different from earlier instantiations is created, this kind of a state-
ment has side effects and is called side-effect initialization. After the initialization the
method sum (line 18) implemented by the module can be referenced by qualifying the
variable name as ifc.sum() (line 7) and communication between the two modules is estab-
lished.

When the program is executed its only rule add is fired (once only due to the system
function $finish(0) which halts the program) invoking the interface method that returns
the integer 42 as a result.

Module definitions do not support inheritance although instances can be initialized with
parameters when they are created.

2.1.2 Interfaces

An interface defines the communication of a module to its surroundings and other mod-
ules. A declaration of an interface contains a number of methods that describe the input
and output of a module containing an instance of the interface. Methods can also be said
to be grouped together to form an interface for a module. An example of an interface with
two methods receive and send is:

12 Towards model checking BSV in Uppaal

1 interface Pipe_ifc;

2 method int receive ();

3 method Action send (int a);

4 endinterface

A module that accepts an interface as a parameter and implements its methods is said to
provide the interface. The module mkPipe below provides the interface Pipe_ifc and must
therefore implement the two methods:

1 module mkPipe (Pipe_ifc);

2 method Action send (int a);

3 x1 <= a;

4 endmethod

5

6 method int receive ();

7 return x4;

8 endmethod

9 enmodule

Several modules can provide the same interface without declaring the interface all over
again – a well known paradigm used in high level object oriented languages. The non-
blocking assignment notation (line 3) is a register write action[1, p. 52].

2.1.3 Methods

In the program listing 2.1 we saw how a top module communicated with a submodule
through an interface method. In BSV there are three types of methods;

Value methods Return values from registers in a module.

Action methods Change the values of registers in a module (update of state elements).

ActionValue methods A combination of action- and value methods.

Methods may have an implicit condition as in the example below where f2 can only be
invoked when x is even:

Hörður Hauksson 13

1 method int f2 () if (is_even(x));

2 return x;

3 endmethod

The implicit condition may be a boolean expression or it may be a pattern-match, but
cannot include updating of state elements. The method is executed only when the implicit
condition is true or matches the pattern.

A method m1 can be invoked from another method m2, but every method is ultimately
invoked from a rule.

2.1.4 Rules

Rules are used to describe all behavior of a system (how state evolves over time) and are
made up of two components;

Rule condition A boolean expression which determines if the rule body is allowed to
fire1.

Rule body A set of actions which describe the state updates that occur when the rules
fire.

Rules in BSV are guarded commands and each rule consists of a boolean guard and a
statement. They are the parts of the modules that are activated when a module is executed
as will be explained below.

As an example we consider a rule where the values of two registers x and y are counted
up and swapped. It has the following syntax:

1 rule r1 (x < y);

2 x <= y + 1;

3 y <= x + 1;

4 endrule

1 The terms fire and execute are used interchangeably.

14 Towards model checking BSV in Uppaal

The actions in the rule body occur simultaneously and instantaneously and result in a
changed state as register values are updated. The rule can fire at each clock cycle as long
as x is less than y in which case the boolean guard evaluates to true.

The rule is an atomic unit in the sense that no intermediate values are recorded, but only
the final values that are obtained at the end of their execution. All reading of variable
values during the clock cycle refer to values before the execution of the rule. No update
of variables takes place until at the end of the execution. One consequence of this is that
the order of statements inside a rule is of no importance – as opposed to the common
practice in imperative languages [4].

A program execution is event driven in the sense that at each clock cycle every rule in each
module is a candidate to be fired. The boolean guards together with the execution order
decided by a Scheduler determine whether a clock event causes a rule to fire or not.

The atomicity of rules allows for concurrency in BSV. Rules are allowed to be executed
simultaneously as long as they do not update the same stateful variables and their guards
are satisfied at the beginning of the clock cycle.

At the beginning of a clock cycle, several (maximal) sets of rules might be fired at the
same time. When the hardware description is compiled, the schedule decides which set of
rules fires in that clock cycle. Two different schedulers can result in different performance
of the hardware even though they are compiling the same source code.

Although we have limited control over how the scheduler works, special attributes can be
inserted into programs to overrule decisions made by the compiler. An example where
we give rule r1 precedence over rule r2 is:

1 (* descending_urgency = ... ,r1, r2 ... *)

In this case we tell the compiler that r1 is more urgent than r2.

As the execution model of BSV is clock cycle driven rather than sequential one has to
indicate explicitly if a program is to halt. This is seldom of concern in reactive programs
[3] as they usually have no final state in sight. For a single execution of a rule we have
an example of such a statement in code listing 2.1 (line 8). Otherwise a dedicated rule is
required to serve that purpose. An example of a rule that halts a program execution is the
following:

Hörður Hauksson 15

1 rule done (x >= 30);

2 $finish (0);

3 endrule

The guard enables the rule when x reaches a certain limit in which case execution is
stopped by the system function. No global variables are changed and the state remains
the same.

The idea of using rules in BSV dramatically simplifies concurrent hardware design.

2.2 Uppaal

Uppaal is an environment toolkit for modeling, validating and verifying real time systems.
A model is described in the Uppaal modeling language and compiled and run by a ver-
ification engine or server (Figure 2.1). A client with a graphical interface, implemented
in Java, is used for observing simulations of a system and for verification by a model
checker. The client is divided into editor, simulator and a verifier.

-�

?

6

?

Modeling
language

Verification
engine (C++)

Java
graphical
client

p p pg gg

Figure 2.1: Components of the Uppaal environment

A model description in Uppaal is a collection of one or more timed finite state machines
– or automata – that communicate through channels by using synchronization similar to
the kind used in CCS [9]. The communication can be either rendezvous or broadcast
synchronization.

16 Towards model checking BSV in Uppaal

When a model is designed in the client, two files are created, one containing the model de-
scription and the other holds the correctness specifications expressed in temporal logic.

Models can also be constructed by editing the file containing the model description with-
out the aid of the client which is the proposed approach in this study (Section 4.1).

Uppaal uses a dense time model where clock values are represented by non-negative ra-
tional numbers. As the semantics of BSV is driven by clock cycles, and is therefore based
on discrete time, we only use the untimed version of Uppaal in our modeling. A clock
cycle in BSV, or even a firing of a single rule, may correspond to several transitions in
Uppaal.

Uppaal consists of three main parts: a description language, a simulator and a mod-
elchecker.

2.2.1 Description language

In the Uppaal language we have four predefined types int, bool, clock, and chan. Array
and record types can then be defined over these and other types. Values of global variables
determine the state of a system at any given time.

The structure of a model description is divided into global and local declarations, au-
tomata templates and system definitions as shown in the code listing excerpt below:

1 <declaration>

2 int r = 0;

3 </declaration>

4 <template>

5 <name x=5 y=5>Initializer</name>

6 <declaration />

7 <location id=id8 x=-496 y=-640>

8 <name x=-504 y=-616>end</name>

9 </location>

10 <location id=id9 x=-608 y=-640>

11 <name x=-616 y=-616>start</name>

12 <committed/>

13 </location>

14 <init ref=id9/>

15 <transition>

Hörður Hauksson 17

16 <source ref=id9/>

17 <target ref=id8/>

18 <label kind=assignment x=-576 y=-664>r = 23</g>

19 </transition>

20 </template>

21 <system>

22 initializer = Initializer();

23 system initializer;

24 </system>

The system contains a single automaton with two locations and an edge (transition). When
the edge is taken, a constant is assigned to the global variable r (line 18) thus changing
the state of the system. Instead of a simple assignment a function can also be associated
with the transition, in which case the function is defined locally to the encapsulating
template.

Another example2 showing two processes communicating on channels coin and coffee is
shown in Figure 2.2.

(a) Student process (b) Cofee machine process

Figure 2.2: Communicating automata in Uppaal

Apart from global variables that hold the state (not shown), channels for binary synchro-
nization are declared in the Uppaal language:

2 Based on [3] and http://www.comp.nus.edu.sg/ cs5270/Notes/chapt6a.pdf

18 Towards model checking BSV in Uppaal

1 <declaration>

2 chan coin, coffee, pub;

3 ...

4 </declaration>

When a synchronization is made between the two processes student and machine on the
channel coffee, the value of the variable cups is counted up and the state of the system is
advanced. If we were to pass a parameter between the two processes a special variable
declared as meta would be used. A meta variable is reset at the end of each transition and
is not part of the systems state.

The communication is expressed in the modeling language as follows (details omitted):

1 <template>

2 <name>Student</name>

3 <transition>

4 <label kind=synchronisation x=-284 y=-151>

5 coin!

6 </label>

7 </transition>

8 <template>

9 <name>Machine</name>

10 <transition>

11 <label kind=synchronisation x=-236 y=-135>

12 coin?

13 </label>

14 <label kind=assignment x=-236 y=-120>

15 coins++

16 </label>

17 </transition>

18 </template>

The handshaking synchronization is expressed in lines 5 and 12 modeling the messaging
between the two modules where the process machine accepts a coin from the process
student. The full code listing can be found in Appendix B.1.

Hörður Hauksson 19

In the above example edges are taken in a non-deterministic manner. Another impor-
tant type of location is a committed location. If a committed location is part of a system
state the next transition must involve an outgoing edge from at least one committed loca-
tion.

Figure 2.3: Simulation of a model in the Uppaal IDE

2.2.2 Simulator

Possible dynamic executions of a system in Uppaal can be examined by a validation
tool during early modeling stages. The simulator provides means of fault detection prior
to verification by the model checker which covers the exhaustive behavior of the sys-
tem.

20 Towards model checking BSV in Uppaal

The integrated development environment (IDE)3 shows the evolution of the system during
execution from one state to the next (Figure 2.3). Various executions can be run in the
simulator and some useful tests can be performed. Although this is a powerful way to
assess a systems behaviour it is not adequate for larger systems where a modelchecker is
needed.

2.2.3 Modelchecker

Uppaal also allows for model checking where the user can provide a correctness specifica-
tion in temporal logic in the verifier and get true or false as a response. The modelchecker
explores the state space of the system and checks invariant and reachability properties
given in TCTL formulas.

By virtue of the modelchecker one is able to reason about dependability and reveal un-
wanted behaviour of a system such as potential deadlocks at design time rather than in the
finished hardware.

3 Current version is 4.1.13 as of this writing

21

Chapter 3

Translating BSV into Uppaal

As described earlier, the main aim of this study is to provide a translation of a BSV
program to Uppaal so it can be thoroughly investigated before it is permanently turned
into hardware. As we already pointed out in Section 1.2, an intermediate state of the BSV
compiler involves flattening out the module hierarchy into a collection of modules that
all are on the same level. This intermediate language is much closer to the spirits of a
Uppaal system that consists of a collection of automata. Therefore, instead of translating
a general BSV term directly into a Uppaal, we take advantage of this form and base
our translation on it. Unfortunately we do not have access to the intermediate language
the BSV compiler produces, so instead we define our own version which we refer to as
Shallow BSV (SBSV). For the sake of convenience we do not follow exactly the standard
BSV notation but our notation can be very easily translated into BSV (dashed lines in
Figure 3.1).

3.1 Shallow BSV

A SBSV program can be considered to be a collection of modules and a set of global vari-
ables accessible from inside every module. Following the BSV trend, a SBSV program is
represented as a package containing these components. Each module consists of its local
temporary variables and rules. Unlike in general BSV, no methods are defined inside a
module in SBSV and no submodules inside a module are allowed either. Furthermore no
class definitions are allowed in SBSV and instead modules are defined directly one by
one.

22 Towards model checking BSV in Uppaal

In standard BSV, registers contain values that decide the state of the system. The result of
running the program is therefore to change the content of the registers. BSV also allows
temporary variables that are used to store temporary values during computations within
clock cycles but are reset after each cycle.

-

? ?

�

-

Hardware

Uppaal

SBSV BSV

p p pg gg

Figure 3.1: Shallow version of BSV translated to Uppaal for model checking

Based on these considerations, the variables that are declared in SBSV are of two types.
On the one hand, we have temporary variables that only hold values over time in compu-
tations within the clock cycle. They are reset at the end of the clock cycle according to
the syntax where they are declared, and do not count as part of the state of the system and
can either be global or local to each of the modules of the system.

On the other hand, we have the stateful variables of type register that are updated during
the clock cycle and the value they contain at the end of the cycle will be carried over to
the following cycle. The states of the system are decided by the value these variables have
at the beginning of each cycle. Which values they might have between the clock signals
is irrelevant in this sense. These variables are always global and are declared at the top of
the program. They can therefore be accessed by any of the modules of the system.

Like in standard BSV a rule consists of a boolean and a statement. As we mainly fo-
cus on the structure of the modules, for the sake of simplicity we assume that both the
expressions and the statements that are allowed in SBSV are basically the same as in Up-
paal that inherits these notions from C like languages. We also assume that all values

Hörður Hauksson 23

are either natural numbers or Booleans. Boolean expressions in SBSV do not have side
effects.

As the maximal set of rules is chosen to fire in each clock cycle, independent of which
module they belong to, the number of rules in a module is not relevant. Therefore SBSV
allows only one rule in each module which considerably simplifies the translation process
(Chapter 4).

3.2 The grammar for SBSV

To describe formally the grammar for SBSV, we use the standard BN notation like we did
for the full language in [16, ch. 3 - 9]: Alternatives are separated by a vertical bar (|), items
enclosed in square brackets ([]) are optional, and key words are given by bold face text.
The variables are given by italic text. The following abstract grammar describes SBSV.
As the syntax for statements and expressions are straight forward they are omitted:

package ::= { decls moduleDef }

moduleDef ::= module varDecls rule endmodule moduleDef

rule ::= rule identifier [condition] ; statement endrule

decls ::= varDecl regVarDecl

varDecl ::= intVarlDecl boolVarDecl

intVarDecl ::= int identifier = numeral ; intVarDecl

boolVarDecl ::= bool identifier = boolean ; boolVarDecl

regVarDecl ::= reg identifier ; regVarDecl

3.2.1 Code example

Program listing 3.1 shows an example of a syntactically valid SBSV program. The ex-
ample contains a hardware description known as rigid synchronous pipeline of registers1.
Two modules, M1 and M2 simultaneously update a set of state variables. Five registers

1 Based on a similar example for BSV [1, p. 58].

24 Towards model checking BSV in Uppaal

are initialized and on each rule firing each register is incremented and shifted into the next
register. As in standard BSV these shifts all happen simultaneously i.e. all the shifts are
performed in one clock cycle.

Listing 3.1: A valid SBSV program

1 {

2 register x1 = 10;

3 register x2 = 20;

4 register x3 = 30;

5 register x4 = 40;

6 register x5 = 50;

7

8 module M1();

9 rule r (true);

10 x2 = x1 + 1;

11 x3 = x2 + 1;

12 endrule

13 endmodule

14

15 module M2();

16 rule r (true);

17 x4 = x3 + 1;

18 x5 = x4 + 1;

19 endrule

20 endmodule

21 }

Even though both modules are accessing the same register (x3 in line 11 and 17) the SBSV
semantics allows parallel execution of the two rules.

3.3 Informal semantics of SBSV

As SBSV is a sublanguage of BSV (modulo minor syntactic differences) it inherits of
course its semantics too. However, to better understand the translation of the language
into Uppaal, we will give an intuitive explanation of its meaning.

Like in BSV the semantics of SBSV is based on clock cycles. At the beginning of each
cycle the registers and the temporary variables contain values that can be read by all the

Hörður Hauksson 25

modules according to their scope. The modules read the values from the registers before
the clock cycle but cannot read from it during that cycle. The module can however write
in the register at any time but that value may be overwritten by another module. The
temporary variables are always reset at the beginning of each clock cycle but can, on the
other hand, be written into and read from during a cycle. A clock cycle can be completed
at any time indicating that either there are no more rules to perform or that the energy is
used up in that cycle.

Parallelism in standard BSV takes place when more than one rule, within the same or
different modules, is fired at the same time given that their guards are satisfied in the
current state [16, ch. 6.2.2]. The BSV semantics requires that rules that fire in parallel
do not write into the same registers. This approach carries mostly over to SBSV with
the exception that SBSV, as explained above, allows more than one rule to write into the
same register in the same cycle but only the last writing will be recorded at the end of the
cycle. As no reading is allowed of the registers inside cycles, these two approaches are
semantically equivalent although clearly one is more time and energy effective than the
other. In this study we only focus on properties that have to do with possible states, we
adopt the more simplistic approach and look at the other as a scheduling problem.

3.4 Translation of SBSV into Uppaal

In the above we have described a SBSV program as a collection of globally defined vari-
ables and modules each with its set of local temporary variables and rules. This leads to
the following guidelines for the basic structure of translation of SBSV into a collection of
interacting automata in Uppaal.

Registers are the only stateful elements of the SBSV system. As they are basic con-
structions of the language, each maps to a pair of global variables, one holding the
current value of the register and the other is used for backing up the register value
at the start of a clock cycle:

1 SBSV Uppaal

2

3 register x int x

4 int xStart

26 Towards model checking BSV in Uppaal

The global variable x represents the state of the register and carries its value from
the end of one clock cycle to the beginning of the next one. At the beginning of
each cycle, xStart is assigned the value of x and after that, all readings of the value
of the register during the clock cycle are done from xStart.

The role of the global variable xStart is to store the initial value of the register x

unchanged throughout the clock cycle. This secures that all the modules use the
register values as they are at the beginning of the clock cycle, even if some of them
write into some registers during that cycle. Therefore executing several rules or
statements one after the other in the Uppaal clock cycle loop has the same effect as
if they were executed is parallel.

The compiler begins by creating a clock automaton that coordinates the start of every
new clock cycle. It has a single transition loop labelled with the backup statement
statefulBackup and a send action tick! on a broadcast channel (Figure 3.2)(a). The
interval between ticks corresponds to a clock cycle in BSV.

(a) A clock automaton (b) Backup of state variables

Figure 3.2: Implementation of a clock cycle in Uppaal

The role of the clock in the system is to coordinate the firing of rules and backing
up the stateful values at the start of each clock cycle. The procedure statefulBackup

accepts the state variables as parameters and assigns their values to the temporary
xStart variables (Figure 3.2(b)).

A module translates into an automaton with one location and one looping transition.
The loop is labelled with the translation of the rule of that module (the guard and
the statement) and a tick? co-action for synchronizing with the clock. The loop
might have some committed locations2 to secure atomicity.

2 A committed location cannot delay and the next transition must involve an outgoing edge of at least
one of the committed locations in the model (Section 2.2.1).

Hörður Hauksson 27

When rules are translated into a loop each occurance of x on the right hand side of an
assignment is raplaced with xStart i.e. all readings from x become readings from
xStart.

Following these guidelines and the semantics of SBSV, the module M1 from program
listing 3.1 translates as shown in Figure 3.3

(a) SBSV module (b) Uppaal automaton

Figure 3.3: Translation of a module into Uppaal

Summary

We can devide the translation from SBSV to Uppaal into the following steps:

1. An automaton representing a system clock is created. The clock contains a transi-
tion with one broadcasting channel used to synchronize with other modules.

2. For each state variable of type register two global variables are declared. One for
holding the state value and the other, a temporary variable, that gets assigned the
value of the former every time a synchronization is made with the clock – at the
start of a clock cycle.

3. At last an automaton is outputted for every module in the system. The automaton
contains transitions decorated both with the guards and the translated statements,
where each occurance of x on the right hand side of an assignment is replaced by
xStart, as well as a binary synchronization on the clock channel.

In Section 4.4 we run the example code (Listing 3.1) through the translator we provide
for SBSV and show how the model can be simulated and model checked in the Uppaal
IDE.

28 Towards model checking BSV in Uppaal

3.5 From Uppaal to BSV

Although it is not the aim of this thesis to show how Uppaal translates into BSV we will
give an example of how that translation might work. A simplified version of the Job-
shop example from [22] is shown in Figure 3.4. The model consists of two processes,
a Jobber and a Hammer. The jobber makes a non deterministic choice between doing
easy and hard work. For the hard work a hammer is needed, so by issuing a send action
get_hammer! the jobber can continue only if the hammer performs the corresponding
co-action get_hammer?. This has the effect that the hammer is taken and temporarily
unavailable to other processes, that is the hammer is a shared resource. A similar syn-
chronization is made when a task is finished. An upper limit is on the number of tasks
performed and finally a dead state is reached.

As in the previous example we relate guarded transitions equipped with handshake syn-
chronization in Uppaal to atomic guarded rules that implement an interface. The two
automata jobber and hammer turn into two modules that communicate through interface
methods.

A module in BSV provides an interface by implementing its methods. By doing so mod-
ules can exchange information and interact with each other. One way of modeling the
jobshop scenario in BSV is by letting a hammer module implement an interface Ham-

mer_ifc of the following form:

1 interface Hammer_ifc;

2 method Action getHammer();

3 method Action putHammer();

4 method Bool isFree();

5 endinterface

The module mkHammer (Listing 3.2) accepts the interface as a parameter (line 1) and
has a private boolean variable hammerIsTaken that the two action methods3 use to keep
track of the hammers status. The value is local to the hammer and only accessible from the
external environment through the interface methods getHammer (line 16) and putHammer

(line 20) implemented by the hammers module.

3 Action methods affect the state of the system whereas value methods like isFree do not.

Hörður Hauksson 29

Figure 3.4: A simple Jobshop in the Uppaal environment

We give the testbench topmodule mkJobshopTb a handle to the hammers interface by
instantiating:

1 Hammer_ifc hammer <- mkHammer (1);

By qualifying the variable names like in the rule condition and rule body below we have
access to the methods:

30 Towards model checking BSV in Uppaal

1 rule work_hard if (hammer.isFree());

2 hammer.getHammer();

3 endrule

Listing 3.2: A module that provides an interface

1 module mkHammer #(parameter int init_val) (Hammer_ifc);

2 Reg#(Bool) hammerIsTaken <- mkReg (False);

3

4 function Action takeHammer();

5 return action

6 hammerIsTaken <= True;

7 endaction;

8 endfunction

9

10 function Action placeHammer();

11 return action

12 hammerIsTaken <= False;

13 endaction;

14 endfunction

15

16 method Action getHammer() if (hammerIsTaken == False);

17 takeHammer();

18 endmethod

19

20 method Action putHammer() if (hammerIsTaken == True);

21 placeHammer();

22 endmethod

23

24 method Bool isFree();

25 return hammerIsTaken == False;

26 endmethod

27 endmodule

The interesting thing here is that the communication is not through a global variable
and does not affect the system state. This resembles the actions of the binary channel
synchronization in Uppaal.

Hörður Hauksson 31

Figure 3.5: A BSV simulation of the simplified Jobshop

A run of the Jobshop example modeled in BSV is shown in Figure 3.5. The behaviour of
the two models is so similar that the trace in one is reproducible in the other. Compare
with the Uppaal simulation in Figure 3.4.

32

33

Chapter 4

Translator

We will now proceed to building a translator for SBSV that outputs a file containing
Uppaal modeling language code. The file can then be opened in the Uppaal IDE for
further examination and verification of the system model.

4.1 Front end of the compiler

In the previous chapter we developed a syntax for SBSV described by the grammar in
Section 3.2. In the following we will build a translator that accepts a valid SBSV program
and outputs a well formed Uppaal modeling language description.

The translator is written in Java and is based on the front end compiler described in Com-

pilers: Principles, Techniques, and Tools [14, ch. 2.5 -2.8, 6.6] where syntax for a simple
language is described and constructs in the language are modeled as Java classes. The
classes output the appropriate intermediate language code for each construct. We find
this approach attractive in this context because of the object oriented architecture of the
compiler and will extend the code to suit our purposes.

A compiler that maps a source code to a semantically equivalent target program — usually
for machine level — does so in two steps. The analysis part collects information about
the source program by lexical analysis and outputs an intermediate representation to the
synthesis part. In the synthesis part it is further compiled or interpreted and optimized for
different machine platforms.

Figure 4.1 is taken from [14] and shows the phases of a compiler. We have marked what
is often refereed to as the back end of a compiler with dashed lines to indicate that it is

34 Towards model checking BSV in Uppaal

Lexical Analyzer

?

Syntax Analyzer

?

Semantic Analyzer

?

Intermediate Code Generator

?

Machine Independent Code Optimizer

?

Code Generator

?

Machine-Dependent Code Optimizer

Figure 4.1: The phases of a compiler

outside the scope of this discussion. Our translation only passes through the front end for
the reason that we treat the intermediate language as our desired target language.

4.2 Program fragments attached to productions

In syntax directed translation, program fragments are attached to productions in a gram-
mar. Appropriate productions for the various language constructs, such as expressions,
statements and in our case modules and rules are the result of the parsing process.

An example of a production derived from the grammar in Section 3.2 is:

rule -> rule r (expression) ; statement endrule

Hörður Hauksson 35

After the lexical analysis, the source program consist of a syntax tree with constructs or
nodes implemented as objects. For instance, the lexical element rule is represented in the
compiler by the class Rule shown in Figure 4.2(a).

(a) Inheritance hierarchy for class Rule (b) Method is a subclass of expression

Figure 4.2: Inheritance relations

To briefly outline how the translator generates Uppaal description language, we will in
the next few sections describe how the code for the SBSV rule is generated.

4.3 Intermediate code generation

The format of the Uppaal description language is XML1. Locations and transitions are
represented as nodes in the XML Document Object Model (DOM) class, that is an in-

1 See e.g. Listing B.1 in Appendix B.1

36 Towards model checking BSV in Uppaal

memory tree-like representation of the model description. The DOM allows us program-
matically to modify the tree and gradually build up the modeling language code in a
non-sequential way.

Our translator is written in Java, so the Java Document Object Model (JDom) package
[18] seems to be a natural choice for manipulating with the DOM tree in order to match
the Uppaal syntax.

4.3.1 Outputting a rule

An automaton for a module is generated by a method emitModule in the Module class,
that subsequently contains a call to a method emitRule from the Rule class to output the
transitions for the rules in the module.

Listing 4.1: Excerpts of the Rule class

1

2 public class Rule extends Stmt

3 {

4 Expr expr;

5 Stmt stmt1, ...;

6 Stmt surroundingStmt;

7

8 public void setSurroundingStmt(Stmt surroundingStmt) {

9 this.surroundingStmt = surroundingStmt;

10 }

11 ...

12 @Override

13 public void gen() {

14 ...

15 emitRule(expr, stmt, surroundingStmt);

16 ...

17 }

18 }

The class Rule (Listing 4.1) has a variable surroundingStmt that is a handle to the module
to which the rule belongs. The call to the method emitRule (line 15) accepts the surround-
ing module together with an expression and a statement as input parameters. The method
outputs the Uppaal code for the SBSV rule.

Hörður Hauksson 37

Listing 4.2: The method emitRule in the Node class

1 public class Node

2 { ...

3

4 public void emitRule(Expr expr, Stmt stmt, Stmt surroundingStmt)

5 {

6 Module module = (Module) surroundingStmt;

7 Element orphan = new Element(_template_);

8

9 for (Element e : UppaalJDom.getInstance()

10 .root

11 .getChildren(_template_)){

12 if (e.hasAttributes() && e.getAttributeValue(_name_)

13 .equals(module.getId()

14 .toString())){

15 orphan = e; // find the location in the dom

16 }

17 }

18

19 if (expr instanceof Method){

20 Method method = (Method) expr;

21 orphan.addContent(new Element(_transition_)

22 ...

23 .addContent(new Element(_label_)

24 .setText(expr.toString())

25 .setAttribute(_kind_, _guard_)...)

26 .addContent(new Element(_label_)

27 .setText(method.id.toString()

28 .toLowerCase()

29 + expr.toString() + _!_)

30 .setAttribute(_kind_, _synchronisation_))

31 .addContent(new Element(_transition_)

32 ...

33 }

34 }

The placement of the transition in the DOM tree is determined (lines 9 to 17) and the
appropriate tag for the transition is created and attatched (line 21).

38 Towards model checking BSV in Uppaal

4.3.2 Code generation for module communication

When a SBSV program contains a module that communicates with other modules, it is
translated to an automaton that contains binary synchronization in Uppaal. The class
Method (Figure 4.2) has a method emitSynchronisationTransition that outputs a transition
with a channel action for that purpose [23].

4.4 Translation examples

Parallel composition

In BSV, values of two registers can be swapped in a single clock cycle:

1 module mkTb (Empty);

2

3 Reg#(int) x1 <- mkReg (7);

4 Reg#(int) x2 <- mkReg (14);

5

6 rule r1;

7 x1 <= x2 + 1;

8 x2 <= x1 + 1;

9 endrule

10

11 endmodule

The code initializes two registers x1 and x2. The values are read before the rule-firing
instant, and write of the new (+1) values takes place after the rule-firing instant. After the
rule executes, x1 has 1+ the old value of x2, and x2 has 1+ the old value of x1, effectively
a swap of x1 and x2 along with some incrementing.

Similarly parallel composition, where two or more actions are composed in parallel to
form a more complex action, can be achieved in SBSV:

Hörður Hauksson 39

1 {

2 register x1 = 7;

3 register x2 = 14;

4

5 module M1();

6 rule r (true);

7 x1 = x2 + 1;

8 x2 = x1 + 1;

9 endrule

10 endmodule

11 }

When translated, a clock and an automaton for the module M1 are created. Simulation in
Uppaal of a single clock cycle is shown in Figure 4.32.

Figure 4.3: Register swap in the Uppaal IDE

2 The coordinates of edges and locations are randomly generated explaining the fuzzy edges.

40 Towards model checking BSV in Uppaal

The variable i is local to the clock and keeps track of the number of clock cycles. From
the figure we see that the initial values of the two registers (7, 14) have been incremented
and swapped (15, 8) with the counter value still being equal to 1.

Greatest common divisor

The parallel version of Euclid’s algorithm3 can in BSV syntax be written as two processes
with guards g1 and g2 as follows:

Action swap: g1 = ((x > y) && (y != 0))

x <= y; y <= x;

Action diff: g2 = ((x <= y) && (y!= 0))

y <= y - x;

If we relax the condition in the guard g2 to secure that the values of x and y end up being
equal, the algorithm takes the following form in SBSV:

1 {

2 register x1 = 18;

3 register x2 = 81;

4 register x0 = 0;

5

6 module M1();

7 rule swap (x1 > x2 && x2 != x0);

8 x1 = x2 + 0;

9 x2 = x1 + 0;

10 endrule

11 endmodule

12

3 "The research, the outcome of which is reported in this article, was triggered by the observation that
Euclid’s Algorithm could also be regarded as synchronizing the two cyclic processes "do x:= x - y od" and
"do y := y - x od" in such a way that the relation x > 0 and y > 0 would be kept invariantly true. It was only
after this observation that we saw that the formal techniques we had already developed for the derivation of
the synchronizing conditions that ensure the harmonious cooperation of (cyclic) sequencial processes, such
as can be identified in the total activity of operating systems, could be transferred lock, stop and barrel to
the development of sequential programs as shown in this article." – Dijkstra [7]

Hörður Hauksson 41

13 module M2();

14 rule diff (x1 < x2 && x2 != x0);

15 x2 = x2 - x1;

16 endrule

17 endmodule

18 }

A translation gives the system shown in Figure 4.44. After a few clock cycles the values of
x1 and x2 is the greatest common divisor (9) for the two initial values (18 and 81).

Figure 4.4: Greatest common divisor in Uppaal (clock not shown)

4 Adding a zero in rule swap is a minor compiler workaround.

42 Towards model checking BSV in Uppaal

Rigid pipeline

The example introduced in Section 3.2.1 is a rigid synchronous pipeline of registers. The
code in the editor pane of the translator5 (Figure 4.5) is from code listing 3.1.

Figure 4.5: The user interface of the Malala application

The values of the registers x1, x2, x3 and x4 are simultaneously shifted in one clock
cycle. We could have used one rule that translates into a single transition, but that would

5 Named after the education activist Malala Yousafzai

Hörður Hauksson 43

require a scheduler of the kind discussed in Section B.2. Instead we implement a rigid
synchronous pipeline by having one rule per module.

By pressing the button Translate to Uppaal a file in XML format is written. Figure 4.6
shows the system in the Uppaal IDE.

Figure 4.6: A simulation of a rigid pipeline (clock not shown)

The initial values of the registers is (10, 20, 30, 40, 50). In the simulation the state
variables have been incremented and shifted, giving the state (10, 11, 21, 31, 41). Notice
that the value of the counter i, that counts the number of clock synchronizations, is 1 at
this stage. The initial synchronization with the clock is also shown in the lower half of
the figure.

44 Towards model checking BSV in Uppaal

Model checking

The main benefit of translating from a hardware description language like SBSV, to a
framework with a verifier such as Uppaal, is that we can check various temporal properties
of a system.

Refering to the GCD example (Figure 4.4) the first property below states that invariantly
the two variables x1 and x2 are greater than zero.

1 A[] x1 > 0 && x2 > 0

2 E<> x1 == x2

When the property is checked by the verification engine of Uppaal, it gives The property

is satisfied as a result or true. According to the program listing, the greatest common
divisor is found when the variables x1 and x2 are equal. The second property checks if
there exists a computation path where that is the case and it also evaluates to true.

By manually naming locations, after the translation, one can check if a process reaches
certain states. For the rigid pipeline example (Figure 4.6) we have named two locations
ready. A property stating that the there exists a computation path where both modules are
in location ready, and a relationship between variables holds, is shown below:

1 E<> m1.ready && m2.ready && (x4 < x4Start || x4 > x4Start)

The verifier returns false in this case and we can conclude that just after the synchroniza-
tion with the clock, it is impossible that the value of the state variable x4 differs from
the temporary variable x4Start. The same goes for the other variables, indicating that the
clock automaton works as intended.

The need for being able to model check hardware designs grows proportionally with the
complexity of the system models.

45

Chapter 5

Related works

Faults in hardware design can have serious consequences. Well known examples are faults
in medical devices1 that have caused loss of human lives. Model checking and verifica-
tion, where every possible state of a model is observed before converting a design into
an integrated circuit is of fundamental importance in preventing such incidents. Another
example is the infamous floating-point division bug in early Intel2 processors. The bug
was rarely encountered and was discovered by a mathematician doing research in num-
ber theory3. Since then the use of formal methods has led to uncovering of subtle and
sometimes very serious bugs.

Some recent research has been directed towards building formal semantics for BSV. Kjar-
tansson et al. [4] have provided the formal semantics for a subset of BSV using natural
semantics [8] with the aim of proving various properties of the language and reason-
ing about behavioural equivalence of programs. This work is closely related to what we
present in this thesis.

Methodology for verification of BSV models using Spin, which is a model checking tool,
has been proposed in work by Singh et al. [21]. With PROMELA [15] as the undelying
model of computation, it has certain similarities with the Uppaal verification engine. Both
are based on interacting processes with asynchronous communication, but the focus in this
work is on how different behaviors of BSV models can be efficiently verified, aiding in
faster verification. A translation schema from a subset of BSV into Promela is proposed
but no automated translation between the two formalisms is undertaken as is the case in
our work. The use of graphical tools is not considered either.

1 Therac-25 investigation http://www.cs.umd.edu/class/spring2003/cmsc838p/Misc/therac.pdf
2 http://www.intel.com/
3 http://www.cl.cam.ac.uk/ jrh13/slides/nasa-14apr10/slides.pdf

46 Towards model checking BSV in Uppaal

Embedding of BSV in the PVS theorem prover4 has been carried out by Richards et
al. [19]. This allows for verification of a broader class of properties than can be achieved
with model checking. An embedding strategy is introduced for several advanced language
features of BSV serving as a step towards building a compiler from BSV into PVS.

Similar work to ours has been carried out in connection with other languages. Herber
et al. has given a translation from SystemC into Uppaal5 to formally verify temporal
properties of SystemC designs. For this purpose the scheduler was stated as a timed
automaton.

A BSV parser has been proposed6 in connection with the development of a plug-in for an
integrated development environment. A different approach from what we present here is
taken in that tools are used to generate the parser from an abstract syntax tree.

In recent work by Reynisson et al. [10] an automated translation is provided from Timed
Rebeca7, an actor based modeling language, to Erlang8.

4 http://pvs.csl.sri.com/
5 http://dent.cecs.uci.edu/ papers/esweek08/codes/p131.pdf
6 Zipfel et al. http://fileadmin.cs.lth.se/esd/sw/BlueSVEP/BlueSVEP.pdf
7 http://www.rebeca-lang.org/
8 http://www.erlang.org/

47

Chapter 6

Conclusions and future work

6.1 Conclusion

In this thesis we have shown that it is possible to translate from a hardware language to
the modeling language of Uppaal. This allows graphical examination of system models
with the benefit of early detection of unwanted behaviour, at design time rather than in
the finished hardware.

We have compared the high level hardware description language BSV and the modeling
language of Uppaal. We show that similarities of their basic constructs, in particular the
guarded atomic action execution model, facilitate translation between the two.

Even though BSV is not well suited for formal verification, its properties give rise to the
use of external verification systems for formal reasoning about behavioural aspects such
as reachability, safety, liveness and deadlock properties. Some valuable checking can be
performed in BSV by placing invariants at strategically chosen places in the code, but
to our knowledge no tools for BSV exist that facilitate graphical verification and model
checking.

We define a simplified version of BSV, suitable for translation into Uppaal, and propose
a scheme for translating from BSV into Uppaal. We furthermore provide a prototype
of a tool for translating from a simplified version of BSV into the Uppaal description
language.

The main contribution of this thesis is to provide means to express a hardware description
as a network of timed automata.

48 Towards model checking BSV in Uppaal

6.2 Future work

Some enhancements to the compiler will enable examination of more complex SBSV
models and reducing the size of the generated Uppaal code.

It would be quite interesting to direct the translation in reverse to what is proposed in this
work (Figure 1.3), in which case a hardware description would be written in the Uppaal
environment and compiled into SBSV.

A plug-in might be written and added to the Uppaal toolkit. Such a plug-in will enable
a user to design hardware from a set of predefined hardware constructs in the form of
automata. The system could be designed in a modular fashion, with the native tools for
simulating and model checking at hand. After analyzing the model it can be compiled
into SBSV. Further compilation to standard BSV will then be the last stage in converting
the design to finished quality hardware.

49

Part I

Appendix

50

51

Appendix A

Example code listings

Below is the full code listing1 for some of the examples discussed in the thesis.

A.1 Code for the example in Section 3.5

Listing A.1: BSV version of the Jobshop

1

2 package JobshopTb;

3 (* synthesize *)

4 module mkJobshopTb (Empty);

5

6 Hammer_ifc hammer <- mkHammer (5);

7 Jobber_ifc jobber <- mkJobber (5);

8

9 Reg#(int) jobs <- mkReg (0); // currently not used

10

11 rule work_hard if (hammer.isFree());

12 hammer.getHammer();

13 $display(_:: work_hard_, jobber.workHard());

14 endrule

15

16 rule rest if (!hammer.isFree());

17 $display(_:: rest_);

1 Note that in the program listings the quotation mark glyphs " and ’ have been replaced with __ due to
a Latex problem workaround. This must be reverted if the language description is to be opened in Uppaal.

52 Towards model checking BSV in Uppaal

18 hammer.putHammer();

19 endrule

20

21 rule work_easy;

22 $display(_:: work_easy_, jobber.workEasy());

23 endrule

24

25 rule finale (jobber.enough());

26 $display (_fired finale :: Work finished_);

27 $finish (0);

28 endrule

29

30 endmodule

31

32 // interfaces

33

34 interface Jobber_ifc;

35 method ActionValue#(int) workEasy();

36 method ActionValue#(int) workHard();

37 method Bool enough();

38 endinterface

39

40 interface Hammer_ifc;

41 method Action getHammer();

42 method Action putHammer();

43 method Bool isFree();

44 endinterface

45

46 // submodules

47

48 (* synthesize *)

49 module mkJobber #(parameter int number) (Jobber_ifc);

50

51 Reg#(int) hardjobs <- mkReg (0);

52 Reg#(int) easyjobs <- mkReg (0);

53

54 method ActionValue#(int) workEasy();

55 easyjobs <= easyjobs + 1;

56 $display(_jobber %x is working easy_, number);

57 return easyjobs;

Hörður Hauksson 53

58 endmethod

59

60 method ActionValue#(int) workHard();

61 hardjobs <= hardjobs + 1;

62 $display(_jobber %x is working hard_, number);

63 return hardjobs;

64 endmethod

65

66 method Bool enough();

67 return (easyjobs + hardjobs >= 7);

68 endmethod

69

70 endmodule

71

72 (* synthesize *)

73 module mkHammer #(parameter int init_val) (Hammer_ifc);

74

75 Reg#(Bool) hammerIsTaken <- mkReg (False);

76

77 function Action takeHammer();

78 return action

79 hammerIsTaken <= True;

80 $display(_function takeHammer : hammerIsTaken = %b_,

81 hammerIsTaken);

82 endaction;

83 endfunction

84

85 function Action placeHammer();

86 return action

87 hammerIsTaken <= False;

88 $display(_function placeHammer : hammerIsTaken = %b_,

89 hammerIsTaken);

90 endaction;

91 endfunction

92

93 method Action getHammer() if (hammerIsTaken == False);

94 $display(_method getHammer_);

95 takeHammer();

96 endmethod

97

54 Towards model checking BSV in Uppaal

98 method Action putHammer() if (hammerIsTaken == True);

99 $display(_method putHammer_);

100 placeHammer();

101 endmethod

102

103 method Bool isFree();

104 return hammerIsTaken == False;

105 endmethod

106

107 endmodule

108

109 endpackage

A.2 Parallel execution code from Section 4.4

Listing A.2: A rigid synchronous pipeline of registers

1 <?xml version=_1.0_ encoding=_utf-8_?>

2 <!DOCTYPE nta PUBLIC _-//Uppaal Team//DTD Flat System 1.1//EN_

3 _http://www.it.uu.se/research/group/darts/uppaal/flat-1_1.dtd_>

4 <nta>

5 <declaration>

6 broadcast chan tick;

7 int i;

8 int x1 = 10;int x1Start;

9 int x2 = 20;int x2Start;

10 int x3 = 30;int x3Start;

11 int x4 = 40;int x4Start;

12 int x5 = 50;int x5Start;</declaration>

13 <template>

14 <name>Chronometer</name>

15 <declaration>

16 void statefulBackup(int v1, int v2, int v3, int v4, int v5)

17 {

18 x1Start = v1;

19 x2Start = v2;

20 x3Start = v3;

21 x4Start = v4;

Hörður Hauksson 55

22 x5Start = v5;

23 i++;

24 }

25 </declaration>

26 <location id=_id0_ x=_-300_ y=_-300_>

27 </location>

28 <init ref=_id0_/>

29 <transition>

30 <source ref=_id0_/>

31 <target ref=_id0_/>

32 <label kind=_synchronisation_ x=_-310_ y=_-490_>

33 tick!

34 </label>

35 <label kind=_assignment_ x=_-570_ y=_-340_>

36 statefulBackup(x1, x2, x3, x4, x5)

37 </label>

38 <nail x=_-350_ y=_-350_/>

39 <nail x=_-350_ y=_-460_/>

40 <nail x=_-250_ y=_-460_/>

41 <nail x=_-250_ y=_-350_/>

42 </transition>

43 </template>

44 <template>

45 <name>M1</name>

46 <location id=_id1_ x=_-440_ y=_-448_>

47 </location>

48 <location id=_id2_ x=_-408_ y=_-560_>

49 <committed/>

50 </location>

51 <location id=_id3_ x=_-256_ y=_-592_>

52 <committed/>

53 </location>

54 <init ref=_id1_/>

55 <transition>

56 <source ref=_id1_/>

57 <target ref=_id2_/>

58 <label kind=_guard_ x=_-424_ y=_-480_>

59 true

60 </label>

61 <label kind=_synchronisation_ x=_-384_ y=_-528_>

56 Towards model checking BSV in Uppaal

62 tick?

63 </label>

64 <nail x=_-440_ y=_-496_/>

65 <nail x=_-408_ y=_-496_/>

66 </transition>

67 <transition>

68 <source ref=_id2_/>

69 <target ref=_id3_/>

70 <label kind=_assignment_ x=_-384_ y=_-624_>

71 x2 = x1Start + 1

72 </label>

73 <nail x=_-408_ y=_-592_/>

74 </transition>

75 <transition>

76 <source ref=_id3_/>

77 <target ref=_id1_/>

78 <label kind=_assignment_ x=_-232_ y=_-544_>

79 x3 = x2Start + 1

80 </label>

81 <nail x=_-256_ y=_-448_/>

82 </transition>

83 </template>

84 <template>

85 <name>M2</name>

86 <location id=_id4_ x=_-256_ y=_-464_>

87 </location>

88 <location id=_id5_ x=_-232_ y=_-368_>

89 <committed/>

90 </location>

91 <location id=_id6_ x=_-432_ y=_-512_>

92 <committed/>

93 </location>

94 <init ref=_id4_/>

95 <transition>

96 <source ref=_id4_/>

97 <target ref=_id5_/>

98 <label kind=_guard_ x=_-248_ y=_-448_>

99 true

100 </label>

101 <label kind=_synchronisation_ x=_-210_ y=_-450_>

Hörður Hauksson 57

102 tick?

103 </label>

104 <nail x=_-256_ y=_-408_/>

105 <nail x=_-232_ y=_-408_/>

106 </transition>

107 <transition>

108 <source ref=_id5_/>

109 <target ref=_id6_/>

110 <label kind=_assignment_ x=_-368_ y=_-296_>

111 x4 = x3Start + 1

112 </label>

113 <nail x=_-232_ y=_-304_/>

114 <nail x=_-432_ y=_-304_/>

115 </transition>

116 <transition>

117 <source ref=_id6_/>

118 <target ref=_id4_/>

119 <label kind=_assignment_ x=_-384_ y=_-544_>

120 x5 = x4Start + 1

121 </label>

122 <nail x=_-256_ y=_-512_/>

123 </transition>

124 </template>

125 <system>

126 m2 = M2();

127 m1 = M1();

128 t = Chronometer();

129 system t, m1, m2;

130 </system>

131 </nta>

58

59

Appendix B

Miscellaneous

B.1 Code for the example in Section 2.2.1

Listing B.1: Coffee machine

1 <?xml version=_1.0_ encoding=_utf-8_?>

2 <!DOCTYPE nta PUBLIC _-//Uppaal Team//DTD Flat System 1.1//EN_

3 _http://www.it.uu.se/research/group/darts/uppaal/flat-1_1.dtd_>

4 <nta>

5 <declaration>// Place global declarations here. //

6 chan coin, coffee, pub;

7 int cups = 0;

8 int pubs = 0;

9 int coins = 0;

10 </declaration>

11 <template>

12 <name x=_5_ y=_5_>Student</name>

13 <declaration>// Place local declarations here.

14 </declaration>

15 <location id=_id0_ x=_-56_ y=_-32_>

16 </location>

17 <location id=_id1_ x=_-224_ y=_168_>

18 </location>

19 <location id=_id2_ x=_-224_ y=_40_>

20 </location>

21 <location id=_id3_ x=_-224_ y=_-80_>

22 </location>

60 Towards model checking BSV in Uppaal

23 <location id=_id4_ x=_-224_ y=_-192_>

24 </location>

25 <init ref=_id4_/>

26 <transition>

27 <source ref=_id0_/>

28 <target ref=_id4_/>

29 </transition>

30 <transition>

31 <source ref=_id0_/>

32 <target ref=_id4_/>

33 <label kind=_synchronisation_ x=_-40_ y=_-136_>

34 pub!

35 </label>

36 <nail x=_-56_ y=_-192_/>

37 </transition>

38 <transition>

39 <source ref=_id1_/>

40 <target ref=_id0_/>

41 <nail x=_-56_ y=_168_/>

42 </transition>

43 <transition>

44 <source ref=_id2_/>

45 <target ref=_id1_/>

46 <label kind=_synchronisation_ x=_-284_ y=_89_>

47 coffee?

48 </label>

49 </transition>

50 <transition>

51 <source ref=_id3_/>

52 <target ref=_id2_/>

53 </transition>

54 <transition>

55 <source ref=_id4_/>

56 <target ref=_id3_/>

57 <label kind=_synchronisation_ x=_-284_ y=_-151_>

58 coin!

59 </label>

60 </transition>

61 </template>

62 <template>

Hörður Hauksson 61

63 <name>Observer</name>

64 <location id=_id5_ x=_-168_ y=_200_>

65 <name x=_-192_ y=_224_>complain</name>

66 </location>

67 <location id=_id6_ x=_-168_ y=_32_>

68 </location>

69 <location id=_id7_ x=_-168_ y=_-144_>

70 </location>

71 <init ref=_id7_/>

72 <transition>

73 <source ref=_id6_/>

74 <target ref=_id5_/>

75 </transition>

76 <transition>

77 <source ref=_id6_/>

78 <target ref=_id7_/>

79 <label kind=_guard_ x=_-128_ y=_2_>

80 cups < pubs - 2

81 </label>

82 <nail x=_32_ y=_32_/>

83 <nail x=_32_ y=_-144_/>

84 </transition>

85 <transition>

86 <source ref=_id7_/>

87 <target ref=_id6_/>

88 <label kind=_synchronisation_ x=_-228_ y=_-71_>

89 pub?

90 </label>

91 </transition>

92 </template>

93 <template>

94 <name>Machine</name>

95 <location id=_id8_ x=_-368_ y=_24_>

96 </location>

97 <location id=_id9_ x=_-176_ y=_144_>

98 </location>

99 <location id=_id10_ x=_-176_ y=_-40_>

100 </location>

101 <location id=_id11_ x=_-176_ y=_-200_>

102 </location>

62 Towards model checking BSV in Uppaal

103 <init ref=_id11_/>

104 <transition>

105 <source ref=_id8_/>

106 <target ref=_id11_/>

107 <label kind=_synchronisation_ x=_-424_ y=_-120_>

108 coffee!

109 </label>

110 <label kind=_assignment_ x=_-424_ y=_-96_>

111 cups++

112 </label>

113 <nail x=_-368_ y=_-200_/>

114 </transition>

115 <transition>

116 <source ref=_id9_/>

117 <target ref=_id8_/>

118 <nail x=_-368_ y=_144_/>

119 <nail x=_-368_ y=_112_/>

120 </transition>

121 <transition>

122 <source ref=_id9_/>

123 <target ref=_id11_/>

124 <label kind=_synchronisation_ x=_16_ y=_-64_>

125 coffee!

126 </label>

127 <label kind=_assignment_ x=_16_ y=_-40_>

128 cups++

129 </label>

130 <nail x=_-8_ y=_144_/>

131 <nail x=_-8_ y=_-200_/>

132 </transition>

133 <transition>

134 <source ref=_id10_/>

135 <target ref=_id9_/>

136 </transition>

137 <transition>

138 <source ref=_id11_/>

139 <target ref=_id10_/>

140 <label kind=_synchronisation_ x=_-236_ y=_-135_>

141 coin?

142 </label>

Hörður Hauksson 63

143 <label kind=_assignment_ x=_-236_ y=_-120_>

144 coins++

145 </label>

146 </transition>

147 </template>

148 <system>

149 machine = Machine();

150 student = Student();

151 observer = Observer();

152 system student, machine, observer;

153 </system>

154 </nta>

B.2 Scheduling rules within a module

Figure B.1: Rescheduled rules running in parallel

64 Towards model checking BSV in Uppaal

In a given state, a module chooses one rule for which the guard evaluates to true and
applies the associated action. If more than one guard is true, a non-deterministic choice
is made. The translation (Section 3.4) carries this non-deterministic transition relation
for module instances [19] over to Uppaal and the choice of transition to be performed is
left to a scheduler, as is the case in BSV where the compiler decides the order of rules
within a clock cycle [16, ch. 6.2.3] [19, section. 2.1]. We present here a proposal for how
a scheduler might work in principle in Uppaal.

In Section 4.4 a rigid synchronous pipeline of registers written in SBSV was translated
into Uppaal description language. Because the modules in the example are two, the trans-
lation results in two automata that synchronize with a clock.

If a module were to contain two or more rules it would translate to one automaton with as
many transitions as there are rules. For those transitions to be performed in parallel, the
atomaton has to be modified slightly by a scheduler. This is analogus to the situation in
BSV when several rules inside a module are to be fired in parallel as discussed in Section
3.4.

A hypothetical scheduler that modifies the example in Section 4.4 simply combines the
rules into one aggregated transition (Figure B.1).

Because of the implementation introduced in Section 3.4, where we copy the values of
the registers at the start of a clock cycle, and allow a read from the registers at all times,
all the registers are updated in one clock cycle.

65

Bibliography

[1] Rishiyur S. Nikhil and Kathy R. Czeck BSV by Example

[2] Uppaal uppaal.org

[3] Luca Aceto, Anna Ingólfsdóttir, Kim G. Larsen and Jiři Srba Reactive Systems Mod-

elling, Specification and Verification

[4] Oddur Óskar Kjartansson On the Formal Semantics of Bluespec System Verilog

[5] James C. Hoe and Arvind Hardware Synthesis from Term Rewriting Systems

[6] Alur R. and Dill D. L. A theory of timed automata

[7] Edsger W. Dijkstra Guarded Commands, nondeterminacy and Formal Derivation of

Programs

[8] Hanne Riis Nielson and Flemming Nielson Semantics with Applications: A formal

Introducion

[9] Robin Milner Communication and Concurrency

[10] Árni Hermann Reynisson Timed Rebeca: Refinement and Simulation

[11] Michael Huth and Mark Ryan Logic in computer science

[12] Adele Goldberg and David Robson Smalltalk-80: The Language

[13] Ken Arnold, James Gosling and David Holmes The Java Programming Language

[14] Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullman Compilers: Prin-

ciples, Techniques, and Tools

[15] Gerard J. Holzmann Spin Model Checker: Primer and Reference Manual

[16] Bluespec SystemVerilog Reference Guide Revision: 17 January 2012

[17] Bluespec SystemVerilog User Guide Revision: 17 January 2012

[18] JDOM jdom.org

66 Towards model checking BSV in Uppaal

[19] Dominic Richards and David Lester A monadic approach to automated reasoning

for Bluespec SystemVerilog

[20] Gérard Berry A hardware implementation of pure Esterel

[21] Gaurav Singh and Sandeep K. Shukla Verifying Compiler Based Refinement of Blue-

spec

[22] Frits Vaandrager A First Introduction to Uppaal

[23] Shallow SBSV translator xp-dev.com/svn/shallow

School of Computer Science
Reykjavík University
Menntavegi 1
101 Reykjavík, Iceland
Tel. +354 599 6200
Fax +354 599 6201
www.reykjavikuniversity.is
ISSN 1670-8539

