
Faculty of Industrial Eng., Mechanical Eng. and Computer Science
University of Iceland

2014

Faculty of Industrial Eng., Mechanical Eng. and Computer Science
University of Iceland

2014

Design and development of EYK
A data management system for geographically distributed data

sources

Bjarki Ásbjarnarson

Design and development of EYK, a data management
system for geographically distributed data sources

Bjarki Ásbjarnarson

60 ECTS thesis submitted in partial fulfillment of a
Magister Scientiarum degree in Software Engineering

Advisors
Helmut Neukirchen

Steinn Guðmundsson

Faculty Representative
Heiðar Einarsson

Faculty of Industrial Eng., Mechanical Eng. and Computer Science
School of Engineering and Natural Sciences

University of Iceland
Reykjavik, May 2014

Design and development of EYK, a data management system for geographically distributed
data sources
Design and development of EYK
60 ECTS thesis submitted in partial fulfillment of a M.Sc. degree in Software Engineering

Copyright c© 2014 Bjarki Ásbjarnarson
All rights reserved

Faculty of Industrial Eng., Mechanical Eng. and Computer Science
School of Engineering and Natural Sciences
University of Iceland
VRII, Hjardarhagi 2-6
107, Reykjavik, Reykjavik
Iceland

Telephone: 525 4000

Bibliographic information:
Bjarki Ásbjarnarson, 2014, Design and development of EYK, a data management system for
geographically distributed data sources, M.Sc. thesis, Faculty of Industrial Eng., Mechanical
Eng. and Computer Science, University of Iceland.

Printing: Háskólaprent, Fálkagata 2, 107 Reykjavík
Reykjavik, Iceland, May 2014

Dedication:

I dedicate this thesis to my fiancé and our boys. Without their support and
encouragement I would have given up on this dream for long since.

Abstract

A custom data management system is currently in use at Reykjavik Energy. While being
an excellent data management system, the system has some usability issues. These issues
are addressed and improved upon in the design of EYK.

EYK is a web application which is designed as a framework. EYK shows assets at their
geographical locations on an interactive map. Assets are grouped by their types where
each type has its own plugin in the framework. When an asset is selected on the map, its
data is shown by a custom collection of apps. Each app is a module which can be added
or removed from the system without interfering with the rest of it. Each module provides
a single, isolated functionality. Some manage a specific type of data while others visualize
or process data. When customizing their system, customers select which modules are
used with which types of assets.

To connect to other databases EYK employs a second type of plugin. This plugin is
used to interface with databases or data sources and scrape their data into EYK’s own
database. When specifying their plugins, customers can choose whether data is stored in
EYK or if an interface is made to an external database. Data from a database interface
is kept up to date by scraping data with a defined frequency.

The framework of EYK was successfully developed during this project along with a few
example plugins. These are demonstrated at http://eyk.hugfimi.is.

http://eyk.hugfimi.is

Preface

The idea of EYK was conceived when I was working a student job at an Icelandic energy
company, Reykjavik Energy. My job was to create small programs to accept raw data in
a specific format and import it into a database. These programs also gave access to the
imported data, plotted it or exported it in raw format. The collection of these programs,
called Gagnor, still serves as data management software for researches and projects.

The Gagnor collection has its limitations, which is why I decided to do my master’s thesis
on the design and development of EYK, the next geographical data management system.

vii

Contents

List of Figures xi

List of Tables xiii

Abbreviations xv

Acknowledgments xvii

1. Introduction 1

2. System background and requirements 3
2.1. Current system . 3

2.1.1. Limitations of Gagnor . 4
2.2. System requirements . 6

3. System outline 7
3.1. Asset identification . 7
3.2. Assigning functionality to assets . 9

3.2.1. Modules . 10
3.3. Database interfaces . 10
3.4. Accessibility . 11
3.5. Sales model . 11

4. Technology used 15
4.1. Web applications . 15

4.1.1. Static media . 15
4.1.2. Cascading style sheets . 16
4.1.3. JavaScript . 17
4.1.4. Frontend libraries . 18

4.2. Web application framework . 19
4.2.1. Django . 19
4.2.2. Database . 24
4.2.3. Task queue . 25

4.3. Diagram notation . 26

5. Architectural design 27
5.1. Map . 28
5.2. Oats . 29

5.2.1. OAT plugins . 30
5.2.2. The asset page, oat.html . 31
5.2.3. Module callbacks . 31

ix

Contents

5.3. Core . 33
5.4. Modules . 34

5.4.1. Structure . 35
5.5. Database Interfaces . 35

6. Implementation 37
6.1. Map . 37

6.1.1. Map page . 38
6.1.2. Markers and maker groups . 41

6.2. Oats . 44
6.2.1. Viewing an asset . 44
6.2.2. Displaying a module . 47
6.2.3. Providing modules with data callback 49

6.3. Core . 49
6.3.1. Abstract Models . 50
6.3.2. Data Types . 51

6.4. Modules . 53
6.4.1. Properties module . 53
6.4.2. Plot module . 55

7. Example system implementation 63
7.1. Database interface . 63
7.2. OAT plugin . 64

7.2.1. Properties module . 65
7.2.2. Plot module . 65

8. Results 69
8.1. Customer options . 70
8.2. Selectable functionality . 70
8.3. Improvements over Gagnor . 71
8.4. Further requirements . 72

9. Conclusions 73
9.1. Improvements . 73
9.2. Outlook . 73

9.2.1. Release 1.0 . 74
9.2.2. Release 2.0 . 74

Bibliography 75

Appendices 77

A. Diagrams 79

B. Contributions 81

x

List of Figures

2.1. Example plot, made by the steam purity program 4

3.1. An example of how an asset is located on a map 8

3.2. An example of how a sub-asset within an asset is located 8

3.3. Module selector layout . 9

4.1. An example model hierarchy . 21

4.2. The example HyperText Markup Language (HTML) from listing 4.8 shown
in a browser . 25

4.3. Diagram notation . 26

5.1. Component structure of EYK . 27

5.2. Internal components of the map . 28

5.3. The internal design of the OAT framework 29

5.4. Example rendering of the module selector of oat.html 31

5.5. Architecture of the core component of EYK 33

5.6. An example structure of two modules in the module collection 34

5.7. The architecture of the database interfaces 36

6.1. The initial view of the system . 37

6.2. The maps layer control, shown with two marker groups 42

6.3. The clustering of markers . 43

xi

LIST OF FIGURES

6.4. An example rendering of the property module, shown with data from a
borehole . 53

6.5. The plot module, implemented for borehole measurements 56

7.1. The Properties module of the air quality sensor 65

7.2. The plot module of the air quality sensor 67

9.1. Planned feature releases of EYK . 74

A.1. The complete architecture of EYK . 80

xii

List of Tables

2.1. Example location identifiers . 5

2.2. Requirements made to EYK . 6

3.1. Example types and modules for a customer in the geothermal energy sector 12

6.1. Example series collection . 52

6.2. The series collection from table 6.1 converted into a table 52

8.1. Fulfillment of requirements made in section 2.2 69

B.1. Contribution of each developer to specific packages, all tests excluded . . . 81

xiii

Abbreviations

AQ Air Quality

AJAX Asynchronous, JavaScript and XML

CSS Cascading Style Sheets

CSV Comma Separated Values

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

JSON JavaScript Object Notation

OAT Organization, Asset Type

PNG Portable Network Graphics

UML Unified Modeling Language

URL Unified Resource Locator

TSV Tab Separated Values

xv

Acknowledgments

I wish to thank Helgi Gylfason, my friend, colleague and co-author of EYK. This would
have been a tough, long and lonely journey without him.
I also wish to thank my advisors, Steinn Guðmundsson and Helmut Neukirchen, for their
guidance during this project.
I wish to thank my mother, which proofread this thesis in record time and aided me in
eliminating grammatic errors.
Last but not least I wish to thank the guys at Reykjavík Energy’s Research and Develop-
ment department for giving me the opportunity to experience what it is to develop and
maintain one’s own software.

xvii

1. Introduction

This thesis describes the design and development of EYK, a data management solution
designed for geographically distributed data sources. EYK is developed in collaboration
with Helgi Örn Gylfason who will cover the subject of testing EYK in his thesis. The
contributions of each developer is discussed in appendix, chapter B. Parallel to the devel-
opment, a business plan was made concerning the founding of Hugfimi ehf. and marketing
and financing of EYK. While making this business plan, the concept of EYK was presented
to three of the leading geothermal energy companies in Iceland. These presentations and
the following discussions lead to improvements in the design and a better sense of the
need for data management systems. The result of these presentations, the business plan
and a personal experience in servicing a geothermal energy company with programs to
manage data is used when designing and developing EYK.

During the development of EYK a simplified version of the Scrum project management
methodology, was employed. Traditionally, Scrum has three roles: product owner, de-
velopment team and scrum master [Schwaber and Sutherland, 2013]. This simplified
approach excludes the product owner and scrum master and lays focus on task manage-
ment. The development period is composed of multiple, one week, sprints. At the end of
each sprint a collection of tasks is to be completed. These deadlines help keep the pace
of the development up. At the start of each sprint developers list up the tasks at hand
and estimate its difficulty. The difficulty of each task is evaluated by assigning it task
points the points are then used to regulate the workload of each sprint. Each developer is
assumed to be able to work the equivalent of forty task points per week which limits the
amount of tasks assigned to each sprint Each sprint is assigned a board at the projects
trello workspace (trello.com). Each board consists of three lists, backlog, in progress
and done. Initially all tasks are in the backlog but as the sprint starts, developers assign
themselves tasks and move them to the “in progress” list. The objective of the sprint is
to get all cards to the “done” list.

The data management system currently in use at Reykjavík Energy along with the re-
quirements for EYK are described in chapter 2. Based on these requirements, the key
design aspects of EYK are described in chapter 3. The topics of the chapter include:
the identifications of geographical assets, how the system and external data is accessed
and how customers can customize EYK. This chapter also describes design approaches
that were tested during the development process of EYK but eventually discarded. The
technical foundations which support the remaining chapters of the thesis are described
in chapter 4. Also included in the chapter are discussions on the choice of the various
tools and packages used to implement EYK. Chapter 5 outlines the architectural design
of EYK and how the design decisions described in chapter 5 were implemented. The im-
plementation of the EYK-framework is described in chapter 6 while the development and

1

trello.com

1. Introduction

implementation of example plugins is described in chapter 7. The complete framework,
with the plugins described in chapter 7, is available at http://eyk.hugfimi.is. Finally
in chapters 8 and 9 the design and development of EYK is evaluated. The future of EYK
is discussed and the roadmap for future releases revealed.

2

http://eyk.hugfimi.is

2. System background and
requirements

EYK is developed as a successor to Gagnor, a data management system currently in use
at Reykjavík Energy. Gagnor is used to manage data from geographically distributed
data sources like boreholes and power plants. The concept of EYK was conceived from
working on Gagnor and the shortcomings that Gagnor has. To explain how the concept
of EYK was developed, the functionality of Gagnor will be described in the following
section. Thereafter a requirement specification for the development of EYK will be made.
At last EYK will be defined in detail and its sales model outlined.

2.1. Current system

Gagnor is a collection of independent small programs designed to manage and process
data. Each program manages a specific collection of data which is typically either a
collection of measurements, time series or samples. The programs are specific to the
collection of data they manage, some provide a custom presentation of the data, some
perform predefined calculations and others interface with external software to extend the
functionality of both parties.

The functionality of Gagnor is best described by its individual programs. Gagnor in-
cludes programs to: plot borehole measurements; manage, plot and analyze chemical
samples; manage steam purity data; manage and plot time series data from ongoing re-
search projects (e.g. the CarbFix and SulFix projects); manage and plot sample data
from a tracer project and manage and plot depth, temperature and water level data from
groundwater- and drain boreholes. The first three programs exhibit the core functionality
of the collection and are further described in the following paragraphs.

Borehole measurements [measurement series]: This program plots temperature and
pressure against depth in boreholes. As an example of custom data processing provided
by Gagnor, this program corrects the depth measurements taken to the curve of the
respective borehole. This is done by applying a polynomial which simulates the curve of
borehole and applying it to each depth value.

3

2. System background and requirements

Chemical analysis [samples]: This program manages chemical samples. It manages
samples of two types, high-temperature and low-temperature samples. These samples
can be exported as PDF documents, plotted over time or exported as Tab Separated
Values (TSV). This program additionally offers an interface to an external geothermal
sample analysis software, Watch [Arnarsson et al., 2010]. The samples are converted
to the form needed by the analysis software and analyzed with conditions specified by
the user. Multiple samples can be analyzed in a single batch and the results plotted or
exported as TSV.

Steam purity [time series]: This program stores and plots the concentration of sodium
in selected locations within the power cycle of thermal power plants. Figure 2.1 shows an
example of a specific, custom presentation provided in Gagnor. The figure shows sodium
concentration in Hellisheiði power plant plotted from 2008 to 2012. The red, dashed, line
indicates a reference value which the sodium concentration is not supposed to surpass for
longer periods.

Figure 2.1: Example plot, made by the steam purity program

Each program is custom made for a specific collection of data. This makes the programs
highly intuitive as the number of irrelevant features each user is presented with when using
the program is minimal. Gagnor has its limitations, both in respect to the end user and
the developer. From the developers perspective, the programs have a lot of duplicate code
and are hard to maintain while the user is presented with somewhat larger limitations.

2.1.1. Limitations of Gagnor

The limitations of Gagnor include site identification and the accessibility to its programs.

4

2.1. Current system

Site identification

The programs of Gagnor use string based asset identifiers to identify the source of data.
Each string represents a geographical location, or a location within an asset at a geo-
graphical location. Example identifiers are listed in table 2.1. When selecting the desired
asset, users are presented with 955 distinct identifiers. A search mechanism is provided to
locate the desired identifier from the bunch but even so, this approach is fairly unintuitive.

Table 2.1: Example location identifiers

Identifier Location

HHEVHHE003HOT The top of borehole number 3, which is located at
Hellisheiði

HHENHHN013ONI Down the shaft of borehole number 13, which is
located at Hellisheiði

HHEVIGS019TBS Steam separator number 19, located at Hellisheiði
power plant.

NEVKHNJ006HOT The top of borehole number 6, which is located at
Nesjavellir

Due to the complexity of asset identification, data is often misplaced. This error is hard
to correct and is currently corrected by comparing the misplaced data to measurements
from similar identifiers.

Program accessibility

The programs were developed on a remote server running Linux. To access the programs
a user has to remotely connect to the server machine and run the programs within that
remote connection. As the server runs Linux, users of the Windows operating system
cannot use their conventional method of connecting to a remote server. To solve this a
X window system, Xming, is used [Harrison, 2014]. Connecting to the remote machine is
tedious. Users have to know the local host name or IP address of the machine and know
which parameters to pass to the Xming session to properly connect. Furthermore users
must navigate around the Linux environment to access the programs. For security reasons
the remote host is only accessible at Reykjavík Energy’s local area network. As assets
which generate the data are outside the reach of this network, their data is collected,
stored on an external drive and transported to where connection can be made. At that
point data collectors must remember or figure out from which asset each dataset was
collected.

5

2. System background and requirements

2.2. System requirements

Gagnor is used as a guideline for the design of EYK. The requirements made to EYK are
listed in table 2.2. EYK aims to provide the same customizability for its users. To achieve
this, requirements 1, 2 and 3 in table 2.2 are made. Customers need to have access to the
same functionality as in Gagnor when working with data collections. For samples, time
series and measurements the system must be able to provide the functionality listed in
requirements 4 to 18 in table 2.2. Furthermore, EYK aims to eliminate the accessibility
and asset identification limitations present in Gagnor by fulfilling requirements 19, 20
and 21. Additional requirement is made to increase the usability of the system as well as
simplifying the setup of the system for new customers

Table 2.2: Requirements made to EYK

ID Requirement

Customer options
1 Have their data presented in a custom way
2 Have custom calculations performed
3 Select functionality for each data collection.

Selectable functionality
4 Store samples
5 Add samples
6 Display samples
7 Interface with the Watch software [Arnarsson et al., 2010]
8 Allow batch analysis of samples through Watch
9 Store time series
10 Import time series
11 Plot time series
12 Export time series as TSV
13 Perform calculations on time series
14 Store measurements
15 Import measurements
16 Plot measurements
17 Export measurements as TSV
18 Perform calculations on measurements

Improvements over Gagnor
19 Be accessible to users without the use of third party software
20 Be accessible to data collectors on site
21 Identify assets in an intuitive way

Further requirements
22 Interface to and use data from any accessible data source

6

3. System outline

EYK aims to provide the same flexibility and functionality as the current system while
meeting the requirements stated in section 2.2. The sections of this chapter will describe:
How assets will be identified, what options will be available when presenting data, how
data from other data sources will be accessed and how the system is accessed by users
and data collectors.

3.1. Asset identification

EYK uses a map to simplify the identification of assets. This allows users to zoom and pan
to the desired location instead of using tedious and unintuitive strings. To ease transition
between systems, the old form of identification will still be available through a search.

Asset is a broad term, a whole power plant is an asset but a single borehole is also an
asset. The fundamental difference of the two in regard to data management is the fact
that the power plant is not treated as a single data source. It consists of multiple smaller
assets which are considered the source of data. If they were all to be displayed at the
same location, users would have a hard time selecting the desired one from the map. To
solve this problem, the contained assets, or ”sub-”assets, will be displayed on a second
map. This second map will be accessible once the base-asset has been selected. This map
will provide a higher resolution of the desired area, or the floor plan of the base asset. To
demonstrate this method of identification an example of how a computer is located from
within an office is shown. Initially, the user locates the office on the map. He can either
pan and zoom, or search for its identification, to locate it. This has been done in figure
3.1.

7

3. System outline

Figure 3.1: An example of how an asset is located on a map

The user continues to select the office and is presented with the floor plan of the office,
figure 3.2.

Figure 3.2: An example of how a sub-asset within an asset is located

On the floor plan, all assets contained by the office are displayed at their locations. The
user can then finally select the computer and access data related to it. This hierarchy
could be repeated multiple times if needed.

8

3.2. Assigning functionality to assets

3.2. Assigning functionality to assets

Data presentation is one of the main functionalities of the system. Users must be able
to view their data in multiple ways and be able to request a custom data presentation.
To provide this flexibility the system is designed as a framework. The framework has a
single extension point and is configured by two types of plugins.

The EYK framework The framework is extended by adding modules to it. The modules
take care of displaying and receiving data. Each module has a defined function, like
plotting, showing samples and so forth. The modules will be described further in the
next section, section 3.2.1. One type of plugin, database interfaces, is responsible for
interfacing to external data sources and storing data. They will be described further in
section 3.3. The other plugin type, the Organization, Asset Type (OAT) plugins, define
how assets are displayed when they are selected on the map. All assets that share the
same type and organization belong to the same OAT plugin. Each OAT plugin contains a
definition of modules and database interfaces which are used to show the data belonging
to the assets. This way, boreholes can have their modules and power plants a completely
different set of modules. Furthermore boreholes from Reykjavík Energy are independent
from the boreholes of other companies.

Asset types This structure limits the definition of an asset to a single type. This is
inconvenient as some assets have multiple roles. A demonstration of this is a common
borehole which is used in a tracer test.

A tracer test is performed by releasing, easily traceable, chemicals into a bore-
hole and waiting for it to show up in nearby boreholes.

The borehole will need to have the modules of the borehole type but also additional
modules for the tracer data. This is solved by allowing assets to have subtypes. All assets
will have a generic type, which defines the geographical location, icon and the modules
that are shared between all assets of that type. Additionally assets can have multiple
subtypes where each subtype has its own specification of modules. In the example of
the borehole, the generic type is borehole while tracer sample site is its subtype. Upon
selecting an asset the user is presented with the combination of modules defined by its
generic- and subtypes (figure 3.3). From this selection the user can then choose the module
of interest.

Figure 3.3: Module selector layout

9

3. System outline

3.2.1. Modules

EYK is intended as a successor to Gagnor. This requires EYK to provide at least the same
functionality as Gagnor. To do so, a collection of modules is provided. The first release
of EYK, which this thesis covers, will focus on data visualization and manipulation. It
will contain the following modules:

A plot module allows users to visualize their data and comment on it. It also gives
them the ability to download raw data.

A sample module manages samples. Through it users can view, add and edit sam-
ples. Additionally the ability to lock samples from editing will be provided.

A property module shows asset properties and an image of it, if available. The
properties have a key-value format and are uneditable.

A component module allows users to view the components of the selected asset.
The function of the module was described in section 3.1 where it was used to locate
a computer within an office.

A data collection module allows users to import data through EYK. With EYK
being a web based system the users can import data straight from the source. This
module thus simplifies the flow of data and in return minimizes the probability of
human error.

These modules are designed to fulfill requirements 4-18 in table 2.2.

3.3. Database interfaces

EYK is designed to be able to display data that has already been collected and stored
elsewhere. It does not require its users to move their data from the storage media it’s
currently on to use it in EYK. This means that after installing the system, users can
continue to use the old systems they are familiar with and access their data in EYK. This
flexibility is required to allow customers to transition between systems in their own pace.

Initially, EYK used a direct connection to data sources to make their data available to
modules. This approach required the system to downloaded, processed and return data
to each user, each time he requested data. No data was stored on EYK so if users
requested the same data twice, it had to be downloaded and processed twice. This design
introduced an unacceptable delay and poor usage of resources and was therefore changed
to a different, two piece, design.

The new design introduced the database interfaces, a intermediate storage. The database
interfaces use scrapers download data from their data sources, process it and store in
EYK’s database. Each scraper looks for new data with a defined frequency and imports

10

3.4. Accessibility

it. This frequency is defined by customers when they specify their interfaces and gives
them the ability to determine the worst case delay between data availability in data
source and EYK. This redesign resulted in much quicker data responses and a more stable
network traffic. This design, additionally, allows the implementation of data validators
in the database interface plugins. Data validators could for example notify users when a
parameter exceeds some value or drops below another. The addition of data validators
is not discussed further in the thesis but is merely a possibility provided by a successful
redesign.

3.4. Accessibility

To make the system accessible to most users it will be web based. A web based system
is accessible to a wide variety of devices, including mobile phones, tablets and more. By
being web based data collectors can access the system while on-site and import data
directly. This simplifies the flow of data and minimized the risk of human error.

Web browsers are strictly considered third party software. Designing EYK as a web
application thus violates requirement 19 in 2.2. However, browsers are installed by default
on most operating systems and most users are very familiar with them. On these grounds
the violation of requirement 19 will be overlooked in the case of the browser.

3.5. Sales model

The sales model of EYK has three units, base system, module and maintenance plan. A
new customer purchases the base system, which has a fixed price. Upon buying the base
system customers also define their assets types. When defining an asset type customers
need to specify two things, the modules the asset type will have and the data each of
them is to display. Customers then pay for each implementation of a module they use.
This means that a plot module for a borehole asset type and a plot module for a power
plant asset type are two implementations of the plot module. The module price is fixed
and kept low to encourage customers to add modules.

When customers have defined their system they agree to a maintenance plan which enti-
tles them business hour support for their system. The price of the maintenance plan is
dependent on the number of individual modules in their system The levels are 5:

• 1-10 modules

• 11-25 modules

• 26-50 modules

• 51-100+ modules

11

3. System outline

The focus of this sales model is to keep initial expenses for the system in the low end and
the subscription in the high end.

Example: The geothermal research department of Reykjavík Energy wants to use EYK.
They buy the base system and define their asset types. They need a total of five generic
types, five subtypes and 25 modules, see table 3.1.

Table 3.1: Example types and modules for a customer in the geothermal energy sector

Generic Type Sub-types Modules

Borehole - Property
- - Report
- Hot borehole Plot
- - Data collection
- - Sample
- Cold borehole Data collection
- - Sample
- Tracer sample borehole Plot
- - Data collection
- - Sample
- CarbFix borehole Plot
- - Data collection
- SulFix borehole Plot
- - Data collection

Power plant - Property
- - Components

Steam separator - Property
- - Plot
- - Data collection

Machinery unit - Property
- - Plot
- - Data collection

Steam condenser - Property
- - Plot
- - Data collection

In table 3.1 the boreholes have 5 subtypes and each subtype has its own definition of
modules. The power plants have no subtypes and two modules, a property module and
a component module. The component module is needed to access the assets contained
by the power plant. These assets are also of a generic type. They are: Steam separator,
machinery unit and steam condenser. These components are listed because the geothermal
research department is responsible for analysis on sodium concentration in these parts of
the geothermal power plant. Others are left out as they do not need to be accessed by
the departments employees.

12

3.5. Sales model

This system includes the following sales units: a base system, 25 modules and a mainte-
nance plan for 10-25 modules.

13

4. Technology used

This chapter will cover the basics of web applications, the software chosen to power
EYK and how the software is used in the development of EYK. Additionally the diagram
notation used in the thesis is clarified.

4.1. Web applications

EYK will be developed as a web application. A web application consists of a backend
and frontend. Backend code is executed on a web server which hosts the application and
frontend code is executed in the users browser.

The backend software manages data and generates HTML web pages for the frontend to
display. When users access a Unified Resource Locator (URL), the backend takes care of
interpreting that URL and returning the HTML page corresponding to it. This happens
on a server where the web application is stored.

The server has its own URL which is often the root URL of the application. The devel-
opment server used in this project, for example, has the URL http://eyk.hugfimi.is/.
When this URL is entered in a browser the server sends back the HTML page corre-
sponding to the URL. This page is then rendered in the users browser for the user to
view.

If the URL is changed by adding some string behind the slash, another HTML page is
returned. If the added string is connected to a HTML page that page is returned, it’s not
connected to any page, a 404 (“page not found”) error is returned and shown to the user.

The HTML pages often contain links to URLs which direct the user user to another
HTML page when selected. This way users only have to know the “root URL” of the web
application they are using and move from that page to others by a click of a mouse.

4.1.1. Static media

As well as linking to other HTML pages, HTML pages often link to static media. This
static media can be an image, video, JavaScript files or Cascading Style Sheets (CSS) files.
The media is then, along with the markup of the HTML used to render the final look
of the web-page. These static media files have their own URLs so they can be properly

15

http://eyk.hugfimi.is/

4. Technology used

delivered to the browser. These files are also stored on a server, often separate from the
one that delivers the HTML pages.

4.1.2. Cascading style sheets

CSS files contain the definition of how HTML elements are displayed. CSS styles can
control color, size, order and transparency of elements. Styles can be applied to a single
element by referencing its id applied to a group of elements by referencing their class or
type. CSS styles can exclude elements from being rendered, effectively hiding them.

4.1.2.1. Bootstrap

There exist several frontend frameworks that aid developers in giving their pages added
functionality and a uniform style. This project uses one of these frameworks, called
Bootstrap. Bootstrap offers multiple components, responsive design and customizability
[Otto and Thornton, 2013a]. The main benefit of using Bootstrap is its responsive design.

Responsive grid system Bootstrap provides its users a grid system which consists of
twelve columns for each row. Each element placed in the grid system can then be assigned
a number of columns. The specification of column numbers is dependent on the size of the
screen currently viewing the page. For example, an element can be configured to cover 3
columns on a laptop (medium screen), 6 columns on a tablet (small screen) and the whole
12 columns on a smart phone (extra small screen) [Otto and Thornton, 2013b].

This is done by assigning classes to elements. The element described in the example would
be configured like shown in listing 4.1.

1 <div class="row">

<button type="button" onClick="alert(’I was clicked ’)"

3 class="col−md−3 col−sm−6 col−xs−12">
Click me

5 </button>

<!−− additional components

7 taking up the remaining 9 columns

on medium and large sized screens

9 −−>
</div>

Listing 4.1: Assiging columns to a button depending on screen size

The outermost division element shown in listing 4.1 denotes a new row. This row is
expected to contain elements which are assigned a sum of 12 columns. The button is then
configured to span 3 columns (25% of screen width) on medium to large sized screens,
6 columns for small screens (50%) and 12 columns on extra small screens (100%). The

16

4.1. Web applications

remaining elements inside the division will either fill up the space left along side the button
or be moved below it in case there aren’t enough columns available.

By using this grid system, users can always see the whole width of the page, independent
of screen size.

4.1.3. JavaScript

To provide interactive web-pages, js! (js!) is used. It can be used to perform calculations,
update a part of the web page or perform animations.

JavaScript introduces some problems programmers are not faced with in conventional
programming. One which was encountered in this project is the fact that code can be
overwritten. If a HTML page uses two JavaScript files that both define a function named
myFunc the first definition will be overwritten [Mozilla Developer Network, 2014]. All
code in the first JavaScript file will thus be executing the myFunc defined in the second
JavaScript file. The same applies to variables.

To avoid this, JavaScript code is given a namespace by inserting it into a object. By doing
so the myFunc functions would be separated by defining them in separate namespaces.
This method is shown in listing 4.2.

> var namespace1 = {};

2 > var namespace2 = {};

4 > namespace1.myFunc = function(){

console.log(’I am defined first’);

6 };

8 > namespace2.myFunc = function(){

console.log(’I am defined second’);

10 };

12 >namespace1.myFunc()

"I am defined first"

14 >namespace2.myFunc()

"I am defined second"

Listing 4.2: Namespacing in JavaScript

JavaScript classes

JavaScript classes are implemented as functions whose functions and variables are all
bound to the this object. These classes are then evaluated using the object.call(context,
arg1,arg2,...) method provided by JavaScript. This method executes the object with

17

4. Technology used

the given arguments and binds the results to the context, [Mozilla Developer Network,
2008]. This method is shown in listing 4.3.

1 > var MyClass = function(constructorArgument){

this.instanceVariable = constructorArgument;

3 this.otherVariable = ’I am a classy class!’;

this.description = function(){

5 console.log(this.instanceVariable +

’ because ’ + this.otherVariable);

7 };

};

9

> var oneInstance = {};

11 > var otherInstance = {};

13 > MyClass.call(oneInstance , ’I love my Class’);

> MyClass.call(otherInstance , ’I do not like my Class’);

15

> oneInstance.description();

17 "I love my Class because I am a classy class!"

19 > otherInstance.description();

"I do not like my Class because I am a classy class!"

Listing 4.3: The class instantation method used in this project

4.1.4. Frontend libraries

There exists a selection of libraries, commercial and open source, that aid in development
of web based applications. These libraries speed up the development process and increase
the quality of web based applications. A few of these are used in this project and will be
described in the following subsections.

4.1.4.1. Leaflet

Leaflet is an open source JavaScript library for interactive maps [Agafonkin, 2013]. Leaflet
has a large collection of open source extensions which help increase the functionality of
mapping applications. When deciding which interactive map library to use, OpenLayers
and Google Maps API were also considered. These mapping libraries have similar features
and could all be used in EYK. In the end, Leaflet was chosen because of its clean looks,
clean API and extendability.

Leaflet doesn’t come with maps servers built-in to the API but upholds various web
mapping standards. This means that customers of EYK can use their own maps. This
is preferable as most energy companies possess high resolution imagery of their operation

18

4.2. Web application framework

site. The default maps EYK will use however come from Google. They are added to
Leaflet by using the Google.js plugin provided by Peter Shramov [Shramov, 2014].

4.1.4.2. Highcharts

To visualize data, Highcharts was chosen [Highsoft, 2013]. This library is not open source
but free for non-commercial software under the Creative-Commons licence1. When EYK
becomes commercial a licence must be purchased at the price of $390. The benefit of
Highcharts over an open source library like d32 is how easy it is to create interactive
visualization of data. For later versions of EYK some module might require the use of an
extensive visualization library like d3.

4.2. Web application framework

After a short research, developers decided the viable web application frameworks for EYK
were Django and node.js. The main difference between the two is that Django is written
in Python while node.js is written in JavaScript.

Apart from being written in Python, the developers choice of a programming language,
Django offers a geographical extension, GeoDjango [Django Software Foundation, 2013g].
GeoDjango enables Django to manage spatial data in an intuitive way. This is valuable
considering EYK will use maps and geographical locations to identify assets.

4.2.1. Django

ADjango web application is composed of multiple independent Django “apps”. It is usually
structured as a collection of apps along with a manage.py module, a settings.py module
and a urls.py module.

project name..project root folder
app 1
app 2
project name

settings.py..project configuration
urls.py..URL routing

manage.py..project management module

1http://creativecommons.org/licenses/by-nc/3.0/
2http://d3js.org

19

http://creativecommons.org/licenses/by-nc/3.0/
http://d3js.org

4. Technology used

4.2.1.1. The settings module

The settings.py module is generated when a new Django project is started and can be
used to customize the project. This module contains, among other things, the database
settings, timezone settings, which Django apps are used in the project and more [Django
Software Foundation, 2013e].

4.2.1.2. The urls module

The urls.py py modules routes the incoming URLs to Django apps. When a HTML page
is requested by accessing a URL a Django HyperText Transfer Protocol (HTTP) request
object gets created. A request object contains various information about the HTTP
request including any GET or POST data, cookies, sessions and more [Django Software
Foundation, 2013c].

To route a URL the Django project tries to match it to patterns defined urls.py module.
If a URL matches a defined pattern its HTTP request gets forwarded to the app specified.
If it doesn’t match any defined pattern the request a page not found (404) error is returned.

The patterns defined in the urls.py module can include variables. Take for example the
URL http://eyk.hugfimi.is/asset/12, which is used in EYK. The last part of the
URL (12) is a variable but all urls that start with http://eyk.hugfimi.is/asset/ and
end with a non-negative number should all be routed to the same app. To match a URL
like this the patterns are defined with regular expressions [Django Software Foundation,
2013f]. The pattern matching the example URL is shown in listing 4.4

patterns(’app.views’,

2 url(’^asset/(?P<asset_id >\d+)$’, ’view_asset’)

)$

Listing 4.4: The URL pattern matching the example URL

Line one in listing 4.4 implies that all URL patterns defined within the parenthesis will
be routed to the views.py module in the Django app named app. Line two defines the
pattern itself.

The ^asset/ part matches all URLs that start with asset/ immediately after the root
URL (http://eyk.hugfimi.is/). A named regular expression is dubbed asset_id and
defined as one or more positive digits by adding (?P<asset_id>)\d+ and finally a $ is
added to inform that nothing should trail the digits.

A URL matching this pattern will cause a call to the view_asset function in the views.py
module in app. Two parameters are provided to the function call. The HTTP request
object and the named regular expression. The signature of the app.views.view_asset
function is thus: view_asset(request,asset_id), where asset_id is in this case equal
to 12

20

http://eyk.hugfimi.is/asset/12
http://eyk.hugfimi.is/asset/

4.2. Web application framework

4.2.1.3. The manage module

The manage.py module contains a collection of functions which are used to manage the
project. Among these functions are functions to: run a development server, create a new
Django app, synchronize with its database and more.

4.2.1.4. Django app

Django apps can contain their own models, templates and views. The views and templates
are optional but the models must exist in an app for it to be considered a Django app. A
typical structure of a Django app is as follows

app
models.py
static

app
images

borehole.png
re.png

templates
app

asset_page.html
views.py

Models The models store data. Each model defines its fields which can be assigned
data and saved in a database. The fields can be of various types e.g. character, floating
point and foreign key.

To demonstrate how these fields work an example model hierarchy for Django app is
shown in figure 4.1. Figure 4.1 uses the Unified Modeling Language (UML) class diagram
notation The Object Management Group [2010].

Figure 4.1: An example model hierarchy

21

4. Technology used

The Asset in figure 4.1 has six fields: a name, a longitude, a latitude, a type, an
organization and a legacy_id. The name and legacy_id are character fields, which
means they are composed of multiple characters. The longitude and latitude are
floating point fields, which means they are floating point numbers.

The type and organizations however are foreign key fields. Foreign key fields contain
a reference to other model. In this case they contain a reference to the Organization
and AssetType models. Each Asset can have one, and only one reference to a Type and
Organization while the Type and Organization can be referenced by many Assets.

To store an instance of Asset in the database it is created and saved like shown in listing
4.5

1 borehole = AssetType(

name = ’Borehole’

3 icon = ’app/images/borehole.png’

plural = ’Boreholes’

5)

borehole.save()

7

reykjavik_energy = Organization(

9 name = ’Reykjavik Energy’

logo = ’app/images/re.png’

11)

reykjavik_energy.save()

13

my_borehole = Asset(

15 name = ’HE−03’
longitude = −21.334

17 latitude = 64.040

type = borehole

19 organization = reykjavik_energy

legacy_id = ’HHEVHHE003HOT’

21)

my_borehole.save()

Listing 4.5: Creating and saving models

When these models are created, they get assigned a private_key from a sequence. For
example, if my_borehole is the twelfth borehole stored in the database it will get assigned
the private_key with the value of 12. This number is a definitive identifier for this
borehole and is accessible by the name pk,

> my_borehole.pk
12

The borehole can then be retrieved by referring to this number.

22

4.2. Web application framework

> my_borehole = Asset.objects.get(pk=12)
> my_borehole.name
’HE-03’

Views The views.py module is where HTML pages are generated. HTML pages are
generated from templates, like the one located at app/templates/app/asset_page.html.
To generate a HTML page from a template, a view function gathers the data the template
needs and generates it with the data as context. To provide a better idea of this process,
the example from the urls.py discussion, section 4.2.1.2 is continued.

The urls.py module has matched the URL http://eyk.hugfimi.is/asset/12 to the
app.views.view_asset view function. The view_asset function accepts two parameters,
the HTTP request and the asset_id (12 in this case).

The asset_id is used to access a Assetmodel, like the one described in the models section
above, along with its related models, see listing 4.6. The three models are added to a
context dictionary, which is passed to the rendering of the asset_page.html template,
see listing 4.6.

def view_asset(request, asset_id):

2 asset = Asset.objects.get(pk=asset_id)

asset_type = AssetType.objects.get(pk=asset.type)

4 organization = Organization.objects.get(pk=asset.organization)

6 context = {

’asset’: asset,

8 ’asset_type’: asset_type ,

’organization’: organization

10 }

return render(request, ’app/asset_page.html’, context)

Listing 4.6: An example implementation of a view function

The parameters defined in the request object can be used to influence how the HTML
page is generated before its passed to the render function, but for simplicity it is just
passed to the render function.

Listing 4.6 also shows how models can be retrieved. The models stored in listing 4.5 are
retrieved by using the private key of the asset. Once the models have been loaded from
database by issuing objects.get, all their fields become accessible. This is shown in
listing 4.6 in lines 3 and 4 where the assets type and organization are accessed.

Templates Each HTTP request is answered with a HTTP response. As stated in the
Django documents [Django Software Foundation, 2013a]:

In contrast to HttpRequest objects, which are created automatically by Django,

23

4. Technology used

HttpResponse objects are your responsibility. Each view you write is responsi-
ble for instantiating, populating and returning an HttpResponse.

HTTP responses can be created and written within the view function. This method
can be tedious when writing long HTML pages so Django provides a complete template
language, which is able to generate HTTP responses from HTML templates.

The render function shown in listing 4.6 takes a path to a template as an argument
along with a context dictionary. All the keys of the context dictionary are available as
variables in the template file. The values of the variables match the values of the keys in
the dictionary.

The variables can be accessed from within the template file by encasing them in double
curly-braces like shown in listing 4.7.

1 <h1> {{ asset.name }} </h1>

<h2> {{ asset_type.name }} </h2>

3

<h2> {{ organization.name }} </h2>

5 <h3>

Located at longitude: {{ asset.longitude }}, latitude: {{ asset.latitude }}

7 </h3>

Listing 4.7: An example implementation of the app/asset_page.html template

With the context provided in listing 4.6 the template in listing 4.7 will result in the HTML
page shown in listing 4.8.

1 <h1> HE−03 </h1>
<h2> Borehole </h2>

3

<h2> Reykjavik Energy </h2>

5 <h3> Located at longitude: −21.334, latitude: 64.040 </h3>

Listing 4.8: The example template from listing 4.7 rendered with the context provided in
listing 4.6

The HTML page shown in listing 4.8 will then be returned to the user’s browser, resulting
in the web page shown in figure 4.2.

4.2.2. Database

There are only a handful of databases which work with GeoDjango. The GeoDjango
documentation describes how to use MySQL, Oracle and PostgreSQL [Django Software
Foundation, 2013g]. PostgreSQL was chosen because developers had positive prior ex-
perience using it and it is open source [The PostgreSQL Global Development Group,
2014].

24

4.2. Web application framework

Figure 4.2: The example HTML from listing 4.8 shown in a browser

4.2.3. Task queue

Task queues are useful when executing resource heavy tasks where the output is not used
immediately. They enable routines to add their task to a queue and continue their own
execution. The task will then be executed once it has reached the front of the queue.
For EYK, the fact that tasks can be scheduled for execution periodically is especially
valuable. Defining reoccurring tasks allows EYK to scrape new data from data sources
with a defined frequency and keeping its data up to date. The choice of a task queue was
relatively easy. Celery, a task queue for Python, interfaces directly with Django [Solem,
2013]. Celery auto detects tasks in Django applications which are stored in a tasks.py
module. The tasks can be executed once or repeatedly with a defined delay. To add a
reoccurring task to an app like the one described in section 4.2.1.4, a tasks module is
added to it.

app
models.py
static
templates
tasks.py ...The added module
views.py

Celery then looks for functions defined as tasks from within the module. An example
reoccurring task is shown in listing 4.9.

1 @periodic_task(run_every=(crontab(day_of_week=’∗’, hour=’∗’, minute=’∗’, second=’00’)))
def update_clock()

3 clock.update

Listing 4.9: An example of a reoccurring task which reoccurrs every minute

25

4. Technology used

The task defined in listing 4.9 is added to a queue every day of the week, every hour at
the beginning of each minute.

4.3. Diagram notation

The diagrams in this thesis largely follow the UML 2.0 standard for class diagrams [The
Object Management Group, 2010, p. 107]. The used relationships and notations are
shown in figure 4.3. The addition to the common standard is the link notation shown at
the bottom of figure 4.3. It is used to denote a connection from a HTML page to view.
Additionally the URL of the link is shown on the dotted line of the connection.

Figure 4.3: A legend describing the notation used in diagrams in this thesis

All relationships in the figure move from left to right, which means:

• The SubClass inherits the SuperClass

• The python module, module.py, uses Class

• The ContainerClass has a ContainedClass

• The HTML page page.html as a link to a URL which is handled by module.py

All the items in figure 4.3 are a part of a package name package.

26

5. Architectural design

Each customer of EYK will have its own custom version of EYK. These versions will
contain the assets each and every customer wants, the assets will use the chosen modules
to display data from the database interfaces required. To be able to set up a system
specific to a customer needs, the system architecture must be flexible. Additionally the
work required when specifying assets, their modules and the database interfaces used by
these modules, must be minimized without compromising flexibility.

To achieve this, EYK is designed as a framework. As stated in section 3.2, the framework
will have two types of plugins, database interfaces and OAT plugins. Furthermore to
provide variety in data management, a collection of modules will be provided. These
components and their interaction is shown in figure 5.1.

Figure 5.1: A component diagram describing the basic component interaction

The architecture consists of three Django apps and two app collections. The map app
and oats app provide the main functionality of the framework along with its two pages,
the map page and the asset page. Additionally the system contains a core app, a module
collection and a database interface collection.

27

5. Architectural design

The map app displays a map with all the assets stored in the oats app. When an asset
is selected the user is presented with the “asset page” of that asset. The asset page is
shown by the oats app with the help of the remaining three components, the modules,
the core and the database interfaces. Customers can customize their own EYK system by
designing their own OAT and database interface plugins and even have custom modules
made. The architecture of apps, plugins and modules will be described in detail in the
following sections.

5.1. Map

The map is the landing page of the system. From there the user is presented with a
collection of markers, placed on a map. Each marker represents a specific asset and is
located at the geographical location of that asset. The internal structure of the map
component is relatively simple. It consists of a views module and a single template as
shown in figure 5.2.

Figure 5.2: Internal components of the map

The map page (map.html) makes two callbacks for data. One is a request for the markers
and the other is for the marker groups. This is done to minimize the loading time of
the map page. When the map page is requested, the user is promptly presented with an
empty map and moments later the markers are loaded into the map after the requests
have been made.

When the markers are requested, the views module collects all available assets, which
are stored in the oats component, and returns them to the map page. Each asset has a
defined longitude and latitude which the map page uses to position its marker. The assets
are constructed much like the Asset model in foundations, section 4.2.1.4.

28

5.2. Oats

The marker groups are used to layer the markers. Each marker group represents a group
of markers whose assets share organization and type. Users can then choose to hide a
specific group of marker from the map.

Each marker contains a link to the asset page for the asset it represents. To identify the
asset page of each asset the asset_id is provided in the URL to the page. Each asset is
given its own unique asset_id when it is stored in the oats component, this process is
introduced in foundations, section 4.2.1.4. When the oats component gets a request for
an asset page it can use that id to get a reference to the asset selected.

5.2. Oats

The oats app contains one of the plugins of the framework, the Organization, Asset
Type (OAT) plugin. Each OAT plugin contains the implementation detail for a asset
page. Its views.py module receives the request for the asset page and loads the Asset
model referenced by the request. Each Asset has its own OAT plugin. This OAT plugin
uses the Django apps from the modules and database interfaces to render oat.html, the
asset page, see figure 5.3. The figure displays a singe oat plugin (OATClass) for reference

Figure 5.3: The internal design of the OAT framework

29

5. Architectural design

while each system will contain one OAT plugin for each combination of organization and
asset type it has.

To be able to reference OAT plugins by the organizations and asset types they represent,
they are stored on a specific path defined by the name of its organization and asset type.
The class is named AssetTypeName, which is stored in a file (python module) named
asset_type_name within a folder (python package) named oats.organization_name.
The full path of the OAT plugin is thus oats.organization_name.asset_type_name.
AssetTypeName. Each Asset can compose this path from its type and organization to
access its OAT plugin.

The remainder of this section will describe the OAT plugins and how the components of
the oats app enable them to be plugged-in to the EYK framework and define the asset
page.

5.2.1. OAT plugins

Each OAT plugin inherits from an abstract base class, OATBase (fig 5.3). This base class
uses three variables its subclasses must define, BASE_MODULES, MODULES and MODULE_
LABELS

The BASE_MODULES variable is a list that contains the names of the module apps used by
the OAT plugin as strings.

The MODULES variable is a list that contains a string id for each instance of a module app
used. These ids are a reference to the methods used to access the modules.

The MODULE_LABELS variable is a dictionary which contains the labels for the modules in
the MODULES list. These labels are user visible and can contain special characters.

The structure of an example OAT plugin is provided in listing 5.1

1 class OATClass(OATBase):

BASE_MODULES = [’module0’, ’module1’]

3 MODULES = [’module0’, ’module1_d1’, ’module1_d2’]

MODULE_LABELS = {

5 ’module0’: "I’m module number 0",

’module1_d1’: "I’m module number 1, and I display data1",

7 ’module1_d2’: "I’m module number 1, and I display data2"

}

9

def _get_module0_html(...

11

def _get_module1_d1_html(...

13

def _get_module1_d2_html(...

15

30

5.2. Oats

def _get_module0_data(...

17

def _get_module1_d1_data(...

19

def _get_module1_d2_data(...

Listing 5.1: Example OAT plugin

Listing 5.1 shows an example of where a single module app, module1, is used twice in one
OAT plugin. To solve this conflict, the module ids are made distinct by appending the
module app name with a reference to the data each instance displays.

As shown in listing 5.1, each module id references either one or two methods in the
OAT plugin. The methods whose names end with _html are called the “module callback
methods” and provide the HTML markup for the respective module. The methods whose
names end with _data are called the “module data callback methods” and provide the
modules with data. Each of these methods is expected to return a HTTP response, which
is typically a rendered HTML template as described in foundations, section 4.2.1.4

5.2.2. The asset page, oat.html

The oat.html page consists of a module selector and a module body. The module selector
corresponding to the example in the previous section would look like the banner in figure
5.4.

Figure 5.4: Example rendering of the module selector of oat.html

Below the module selector the selected module is shown. When a module is first selected,
it is loaded into the body by making a “module callback” then each time the user requests
some data in the module, the module can make a “module data callback”.

To avoid reloading modules as the user switches between them, each module is placed
in its own container. When a module is selected its container is made visible and the
previously active module container is hidden.

5.2.3. Module callbacks

To display the modules in the asset page two callbacks are provided. The module callback,
which is provided through the /asset/<asset_id>/module/<module_index>/ URL and
the module data callback which is provided through the /asset/<asset_id>/module/
<module_index>/data? URL. The callbacks originate in the oat.html and are sent to
the oats.views module as shown in figure 5.3.

31

5. Architectural design

Module HTML callback

Upon receiving a module callback, the oats.views module retrieves the OAT plugin
corresponding to the <asset_id> in the callback. The views module then executes the
“module callback method” of the module referenced by the <module_id> The rendered
template returned by this method is then returned to the asset page which displays it in
the module container.

Example: “Module number 0” in figure 5.4 is requested. The module can be requested
by the module callback URL. For this example the URL eyk.hugfimi.is/asset/12/
module/0 is used. From this URL the framework reads:

• An asset with asset_id=12.

– This asset has an OAT plugin structured like the one shown in in listing 5.1.

• A module name at index 0 in the MODULES list in the OAT plugin referenced by the
asset_id.

– ’module0’

Once the module name has been deduced from the URL the framework uses that name
to determine the signature of the method that handles the callback. In this case the
OATClass._get_module0_html() method is executed and the template rendered by the
method is returned.

Module data callback

The same architecture is used in the module data callback except for the added option
of providing keyword arguments to the callback. Keyword arguments are added to the
request URL in its query string. Arguments provided in the query string are available in
the Django HTTP request object.

Example: “module number 0” in figure 5.4 requests data for itself. It needs to include
in the callback that the data is to be for the last 10 days. To do so it requests the
following URL, eyk.hugfimi.is/asset/12/module/0/data?num_days=10. The HTTP
request generated with this callback is passed all the way to the module where the keyword
arguments can be extracted. The OATClass._get_module0_data method is executed
which returns the data as a HTTP response.

32

5.3. Core

5.3. Core

The core app is a container for data types and abstract models. The abstract database
models, like the ones shown in figure 5.5, are used as bases for the models implemented
in the database interfaces. The abstract models are used to define common fields, used
by all models of the given type.

Figure 5.5: Architecture of the core component of EYK

As the database interfaces are plug-ins in the system their models are not known until
runtime. By defining abstract models for the most commonly used data structures the
system is able to use generic data types.

A data type can be thought of as a helper class that implements methods the models
cannot implement themselves. Not all models need helper classes but a model like the
measurement series does.

A data type, SeriesCollection, is implemented. This data type stores a collection of

33

5. Architectural design

measurement series and has some helpful methods to transform their data.

The abstract models shown in figure 5.5 are not a finite collection and are only displayed
for clarification of the purpose of the core app. Their number will presumably grow as
the number of database interfaces grows.

5.4. Modules

The modules of EYK are independent extensions of the framework. They provide the
functionality available to OAT plugins when displaying the asset page. The EYK frame-
work aims to offer a diverse selection of modules. To be able to accommodate a variety
of modules their structural constraints on the modules are kept to a minimum.

There are some restrictions that the modules must adhere to. A module must be a valid
Django app and list the path to the static files it depends on in their __init__.pymodule.
The OAT plugin imports each module it uses and renders it by calling its views functions.
The relationship between the modules and OAT plugins is shown in figure 5.6.

Figure 5.6: An example structure of two modules in the module collection

34

5.5. Database Interfaces

5.4.1. Structure

A typical Django app is described in foundations, section 4.2.1.4. The modules have a
very similar structure but with a minor tweak. In addition to the default structure the
modules use the __init__.py module to declare the static files they need. The module0
module has the following structure:

EYK
modules

module0
__init__.py
models.py
static

module0
css

module0.css
js

module0.js
templates

module0
initial_view.html
show_data.html

views.py

The module has two static files, module0/static/module0/js/module0.js and module0/
static/module0/css/module0.css. To ensure these files are loaded in the asset page
before the module is loaded they are listed in __init__.py by declaring:

USED_SCRIPTS = [’module0/js/module0.js’]
USED_STYLES = [’module0/css/module0.css’]

If the module depends on other static files, they are simply added to these lists.

Modules can have as many templates as they need and their naming is not restricted by
the architecture. A typical module has the two templates, like module0, one for its initial
view and one to add data to the view.

5.5. Database Interfaces

The database interfaces are the second plug-in in the EYK framework. They gather and
store data. Each interface consists of one or more database models and optionally a scraper
or tasks. Figure 5.7 shows the architecture of two modules. This is the last component
of the architecture to be revealed, a complete diagram of it is shown in appendix A.

As shown in 5.7, the database interfaces are primarily used by OAT plugins which is also

35

5. Architectural design

Figure 5.7: The architecture of the database interfaces

a plug-in in the EYK framework. What makes them a separate plug-in is their connection
to the frameworks task scheduler.

Scraper and tasks The scraper module contains a functions to scrape data from exter-
nal data sources and store it in EYK’s database. If the external data source is updated
frequently, the scraper can be set to execute periodically by specifying it as a reoccurring
task in the tasks module. To execute tasks, EYK uses Celery, a distributed task queue1.
Celery looks for tasks.py modules in available Django apps and executes the reoccurring
tasks defined therein.

Not all database interfaces need to have a scraper and a task module. If a database
interface only stores data which is collected through EYK, database models are sufficient.

1Celery is described in Technology used section 4.2.3

36

6. Implementation

This chapter will provide a description of the implementation of the EYK framework.
Included is the implementation of the map app, the oats app, the core app and select
modules. The usage of the framework will be demonstrated in the following chapter.

6.1. Map

The map is where the user selects assets to work with. It is implemented using LeafletJS
and along with maps from Google. Asset icons are shown on the map, grouped by their
types.

Figure 6.1: The initial view of the system

Multiple assets with high proximity get grouped together into a single icon. The yellow
icon in figure 6.1 for example denotes 18 boreholes which are located within a small area
of the map.

37

6. Implementation

Most of the configuration of the map is done in JavaScript on the client side. The backend
of the map app consists of a single views module which contains 3 view functions, map_
page, markers and marker_groups. These functions will be described in the following
sections

6.1.1. Map page

The URL request for the map includes 5 optional parameters, latitude, longitude,
zoom, baselayer and layers. These parameters are added to the query string of the
URL in key value format. Together, these parameters define the position, zoom level,
active base layer and visible overlays of the map. The values of these parameters are then
extracted from the HTTP request passed to the map_page function, (listing 6.1).

1 def map_page(request):

try:

3 latitude = float(request.GET[’latitude’])

longitude = float(request.GET[’longitude’])

5 zoom = int(request.GET[’zoom’])

base_layer = request.GET[’baselayer’]

7 active_layers = request.GET[’layers’]

except (TypeError , MultiValueDictKeyError):

9 latitude = INITIAL_LATITUDE

longitude = INITIAL_LONGITUDE

11 zoom = INITIAL_ZOOM

base_layer = INITIAL_BASELAYER

13 active_layers = INITIAL_OVERLAYERS

Listing 6.1: Initialization of the variables of the map

If the query string is not provided, or malformed, the initial parameters of the map are
used. These parameters are then sent as context to the rendering of the map template
which proceeds to initialize the map in the users browser, listing 6.2.

context = {

2 ’latitude’: latitude ,

’longitude’: longitude ,

4 ’zoom’: zoom,

’baselayer’: base_layer ,

6 ’layers’: active_layers

}

8 return render(request, "map/map.html", context)

Listing 6.2: Rendering map.html with contextual variables

38

6.1. Map

6.1.1.1. The map.html template

The map.html template uses the header template from the shared libraries, eyk/header.
html, see listing 6.3. This header is used both as the banner in the map page and as the
module selector in the asset page.

1 {% include "eyk/header.html"%}

<div id="map"></div>

3 <script src="{% static "map/js/map.js" %}"></script>

Listing 6.3: Inserting the map header and creating a container for the map

A container is made for the map and the map.js script is imported.

The template then initializes the map by calling the initMap JavaScript function provided
with map/js/map.js, listing 6.4.

<script type=’text/javascript ’>

2 initMap({{ latitude }}, {{ longitude }}, {{ zoom }}, ’{{ baselayer }}’);

$(document).ready(function(){

4 addMarkers(’{{ layers }}’);

});

6 </script>

Listing 6.4: Initializing the map via JavaScript

When the map has been initialized and displayed to the user, the markers are added
to it by calling the addMarkers function, also provided by the map/js/map.js. These
functions will be described in the next section

6.1.1.2. Initializing the map, initMap

The base layers are defined before the map is initialized. They are created using the
Leaflet Plugins provided by Shramov [Shramov, 2014], listing 6.5.

function initMap(latitude , longitude , zoom, baseLayer) {

2 MAP.bases = {

’Roads’: new L.Google(’ROADMAP’, {detectRetina: true}),

4 ’Terrain’: new L.Google(’TERRAIN’, {detectRetina: true}),

’Satellite’: new L.Google(’SATELLITE’, {detectRetina: true}),

6 ’Hybrid’: new L.Google(’HYBRID’, {detectRetina: true}),

};

Listing 6.5: Creating base layers

From the created base layers, the active base layer is selected based on the baseLayer
argument, listing 6.6.

39

6. Implementation

// select active base layer

2 $.each(MAP.bases, function(obj, layer){

var layerType = String(layer._type).toLowerCase();

4 if(layerType == baseLayer){

MAP.activeBaseLayer = layer;

6 MAP.activeBaseLayerTitle = layerType;

}

8 });

Listing 6.6: Setting active base layer

The map is initialized in the map container provided in listing 6.3 and given. It is given
an array of settings where, amongst other, the map center and zoom level are set. As the
overlays (markers and markergroups) have not yet been requested from the server, the
only layer added is the active base layer.

1 MAP.map = L.map(’map’, {

center: [latitude, longitude],

3 zoom: zoom,

layers: [MAP.activeBaseLayer]

5 });

Listing 6.7: Initialization of the map

The map is positioned as requested by latitude, longitude and zoom and the active base
layer added to the map. To keep the current URL up-to-date as the user interacts with
the map a selection of on-event-functions are created. When events, such as pan, zoom or
base layer change are triggered the browser URL is updated to include the current state
of the map. To update the URL a function, updateBrowserHistory, is provided, listing
6.8.

function updateBrowserHistory(){

2 window.history.replaceState(

"state",

4 "title",

’/?latitude=’

6 + MAP.map.getCenter().lat

+ ’&longitude=’

8 + MAP.map.getCenter().lng

+ ’&zoom=’

10 + MAP.map.getZoom()

+ ’&baselayer=’

12 + MAP.activeBaseLayerTitle

+ ’&layers=’

14 + MAP.activeLayers.join(",")

);

16 }

Listing 6.8: The URL update function

40

6.1. Map

This function replaces the query string of the URL for one that reflects the current state
of the map. This design lets the user return to the last map state when he is finished
working with an asset.

Once the map has been initialized and displayed the markers and markergroups are re-
quested.

6.1.2. Markers and maker groups

Before markers can be added to the map, the groups they belong to need to be added
as layers on the map. The marker groups are retrieved by issuing an Asynchronous,
JavaScript and XML (AJAX) request via the /markergroups/ URL, listing 6.9.

1 function addMarkers(activeLayersString){

// get all markergroups in JSON format

3 $.getJSON("/markergroups/", function(markerGroups){

// create markerGroups for map

Listing 6.9: The markergroup callback

This request is delivered to the marker_groups view function. A query for assets that
have a distinct combination of asset type and organization is made to the database. This
is done by chaining query functions. The first query is made for all available assets, a
query for the ones that have distinct values for type and organization is chained to it
and at last their related models are added to the query, listing 6.10.

def marker_groups(request):

2 org_type_distinct = Asset.objects.all().distinct(’type’, ’organization’)

org_type_distinct.select_related()

4

org_type = []

6 for asset in org_type_distinct:

org_type.append([asset.type.name, asset.type.plural,

8 asset.type.icon_path , asset.organization.name])

10 return HttpResponse(simplejson.dumps(org_type), mimetype=’application/json’)

Listing 6.10: The marker_groups view function

By requesting related models (select_related()), the models referenced by foreign key,
like AssetType and Organization are included in the data returned to the query.

Django database queries are lazy by default so the query is not made until the data
is accessed. This means that fields in these foreign key objects can be accessed without
requiring another database transaction. Without requesting related models the for loop in
listing 6.10 would make three transactions to the database. A transaction would be made
for the Asset model when the org_type_distinct list is iterated. Another transaction,

41

6. Implementation

this time for AssetType model, would be made when asset.type.name is accessed and
the third, for the Organization model, when asset.organization.name is requested.

The query result is then filtered to minimize data transmission and returned as a
JavaScript Object Notation (JSON) string.

When the marker groups are returned to the AJAX request each of them is processed
and added to the map. The marker groups are grouped by their organization name, like
shown in figure 6.2.

Figure 6.2: The maps layer control, shown with two marker groups

All marker groups are layers of the type MarkerClusterGroup, listing 6.11.

1 function createMarkerGroup(typeName , groupId, orgName){

var markers = new L.MarkerClusterGroup({ spiderfyDistanceMultiplier: true });

3 MAP.map.addLayer(markers);

Listing 6.11: Adding a marker group to the map

This type groups single markers together when their proximity on the visible map is high.
When the user zooms enough into the map, the cluster is expanded and its markers are
shown at their locations. This is demonstrated in figure 6.3.

42

6.1. Map

Figure 6.3: The clustering of markers

When all the marker groups have been created the markers are requested. They are also
collected through a AJAX request which is handled by a function in the views module of
the map app. The function collects all available assets and returns them to the request.
As the markers get created and added to the map, each of them is given an “on click”
function, see listing 6.12.

1 function addMarker(latitude , longitude , title, iconPath, groupId, assetId){

var marker = new L.marker([latitude, longitude],

3 {title: title, icon: getIcon(iconPath)}

);

5

marker.on(’click’, function() {

7 var link = ’/asset/’.concat(assetId.toString());

window.location.assign(link);

9 }

);

11 MAP.markerGroups[groupId].addLayer(marker);

}

Listing 6.12: Adding a single marker to the map

The function is called when a marker is clicked and redirects the user to the asset page of
the selected marker. Finally the marker is added to its group and thereby displayed on
the map.

43

6. Implementation

6.2. Oats

The oats app contains a collection of OAT plugins. The OAT plugins define which modules
are shown at which asset page, render the modules and provide them with data. This
section will describe the implementation of the oats app and how it connects with the
OAT plugins.

6.2.1. Viewing an asset

The asset page is handled by the views module of the oats app. Its URL (/asset/<asset_
id>) contains a single variable, “asset_id”, which is passed as a argument to the views
function, oats.views.asset_page, shown in listing 6.13.

def asset_page(request, asset_pk):

2 asset = get_object_or_404(oats.models.Asset, pk=asset_pk)

oat = asset.oat_instance

4 return oat.get_asset_page(request, asset)

Listing 6.13: Implementation of oats.views.asset_default_view

The process of extracting variables from URLs is described in chapter 4, section 4.2.1.2.
The asset corresponding to the asset_id is retrieved using a built-in Django function.
As the name implies, the get_object_or_404 function, retrieves the model requested or
returns a 404 error (page not found) to the request. The OAT plugin corresponding to
the asset is imported and instantiated by using the oat_instance property of the Asset
model and used to get the asset page and return it.

As the requested OAT plugin is unknown until at runtime it has to be imported and
instantiated dynamically. This process and the one of rendering the asset page will be
described in the following sections

6.2.1.1. Dynamically importing and instantiating an OAT plugin

The Asset model has a property, oat_instance, which imports and instantiates the OAT
plugin of the respective asset. As stated in section 6.2, each OAT plugin is located at a
unique path, composed from the names of its organization and asset type. This path is
used to import the module of the OAT plugin, listing 6.14. The OAT plugin itself is then
instantiated with the help the inspect module.

@property

2 def oat_instance(self):

oat_module = self._import_oat_module()

4 oat_class_name = self._get_oat_class_name()

6 oat_classes = inspect.getmembers(oat_module , predicate=inspect.isclass)

44

6.2. Oats

for name, handle in oat_classes:

8 if oat_class_name in name:

return handle()

Listing 6.14: Determining oat path and class name

The inspectmodule is a Python module which can be used to list the members of modules
at runtime [Python Software Foundation, 2013]. When inspecting the oat_module the
inspect.get_members function is provided a predicate, informing it to only list classes.
The list retuned contains both the name and the handle of the classes found. The findings
are then searched for a name matching oat_class_name and if found, an instance of the
class is returned.

6.2.1.2. Requesting oat.html

Once an OAT plugin has been imported and instantiated the asset page for that class is
rendered. All OAT plugin classes inherit from OATBase, which provides the get_asset_
page method. This method renders the oat.html template with context provided by the
OAT plugin, see listing 6.15.

def get_asset_page(self, request, asset):

2 [scripts, styles] = self._get_imports()

return render_to_response("oats/oat.html",

4 {’modules’: self.MODULES,

’module_labels’: self._get_module_labels(asset),

6 ’module_js_imports’: scripts,

’module_css_imports’: styles

8 })

Listing 6.15: The implementation of OATBase.get_asset_page.

As described in the Architectural design chapter, the module apps list their static file
dependencies in their __init__.py modules. These are gathered and provided as a part
of the template context. Additionally the MODULES list, defined by the OAT plugin, and
the corresponding labels are provided as context.

6.2.1.3. The oat.html template

The asset page has two visual components, the module selector and the module container.
The module selector displays the labels of all the modules and the module container
displays the selected module.

To initialize the asset page, the oat.html template does three things: it links to static
files for the module apps, initializes the module selector and connects the module selector
to the module callbacks.

45

6. Implementation

Linking to the static files The template is provided with two context variables, module_
css_imports and module_js_imports. Both of which are lists containing links to static
files. To add theses links, the template runs through them in a for-loop, listing 6.16.

<!−− importing stylesheets required by oat modules−−>
2 {% for css in module_css_imports %}

<link rel="stylesheet" type="text/css" href="{% static css %}">

4 {% endfor %}

<!−− importing scripts required by oat modules−−>
6 {% for js in module_js_imports %}

<script src="{% static js %}"></script>

8 {% endfor %}

Listing 6.16: Static files imported in oat.html

The Django template language allows iterating through lists as shown in section 4.2.1.4.
The elements of each list are thereby added to the header of the page using their respective
syntax

The module selector The module selector is designed as a navigation bar with a list of
buttons, Each button is labeled with by an entry of the module_labels variable provided
by the OAT plugin, see listing 6.17.

1 <ul class="nav navbar−nav">
{% for label in module_labels %}

3

<a id="module−{{ forloop.counter0 }}"
5 href="#module−{{ forloop.counter0 }}−pane" data−toggle="tab">

{{ label }}

7

9 {% endfor %}

Listing 6.17: Laying out buttons for modules in oat.html

Each of the buttons is composed of an anchor within a list item. The anchors are identified
by an id based on their index in the module_labels list and are linked to a pane with
a similar id. When the anchor is selected the connected pane is shown in the module
container. To hide the inactive module panes the tab.js library from Bootstrap is used.
All the module panes are initialized hidden. When an anchor is selected, tab.js shows the
pane it references by adding the .active CSS class to its properties. If another pane has
the .active property its removed. This method of displaying module panes allows users
to switch between modules without losing configuration made in the previous modules.

Connecting to module callbacks The oat.html template links to a JavaScript file,
oat.js, which provides inputModule, a function to load a module into a module pane.

46

6.2. Oats

To connect the anchors in the module selector to this function a small JavaScript code is
executed in the oat.html template, listing 6.18.

$.each({{ modules|safe }}, function(index, name){

2 $(’#module−’ + index).click(function(){
OAT.inputModule(index, name);

4 })

});

Listing 6.18: The input module trigger used in oat.html

For each module in the modules list there is a anchor in the module selector. The id of
the anchor is composed from the index of the module in the module list. By using the id
of the anchor a click function is added to its properties that sends the index and name of
the module as arguments to the inputModule function.

6.2.2. Displaying a module

To display a module selected in the module selector an AJAX request is sent for the
module. The request is handled by the respective OAT plugin and the HTML of the
module returned. The HTML is then inserted into the modules pane.

6.2.2.1. Requesting a module

Each time a module is selected in the module selector the OAT.inputModule functions is
called. The function is provided with the index and name of the module to load as shown
in listing 6.19.

OAT.inputModule = function(moduleIndex , moduleName) {

2 var moduleNS = OAT.createNamespace(’OAT.’+moduleName);

var $modulePane = $(’#module−’ + moduleIndex + ’−pane’);
4 if (!moduleNS.hasLoaded){

var url = window.location.pathname + ’/module/’ + moduleIndex;

6 $modulePane.load(url, function(){

moduleNS.hasLoaded = true;

8 });

}

10 window.history.replaceState("state", "title",

window.location.pathname + "#module−" + moduleIndex);
12 };

Listing 6.19: Implementation of inputModule in oat.js

This function takes care of creating a namespace for the module, requesting it via the
module callback and adding it into the respective module pane. This process is described
in the following paragraphs

47

6. Implementation

Namespacing modules As the asset page can contain many modules, and some of
the same type, some effort must be made in separating their JavaScript code. If all the
modules define their functions and variables in the global context of the page chances
are some of their names will collide. In the case of collision the first definition of the
variable or function is overwritten. To avoid this the modules are assigned namespaces.
Before a module is inserted, a namespace is created for it. The namespace is basically an
empty JavaScript object which the module can use to define its code in. An example is
provided in foundations, section 4.1.3. The createNamespace function essentially checks
if the requested name space exists. If it does, it’s returned, if it doesn’t it’s created and
returned.

Requesting the module By using the name of the module, a unique namespace is
created for it. To determine if the module has already been loaded, the hasLoaded
boolean is used. The first time the module is loaded the variable is undefined but when
it has loaded it is set as true to avoid loading the module again. The module callback
URL is composed and requested. The response to the request is then implicitly loaded
into the module pane. At last the current URL of the users browser is updated to denote
which module is active.

6.2.2.2. Rendering the module HTML

The module load URL (/asset/<asset_id>/module/<module_id>) is handled by the
oats.views.view_module function. This function obtains the OAT plugin like described
in section 6.2.1.1 and returns the output of its get_module method, see listing 6.20.

1 def view_module(request, asset_pk , module_index):

asset = get_object_or_404(oats.models.Asset, pk=asset_pk)

3 oat = asset.oat_instance

return oat.get_module(request, asset, module_index)

Listing 6.20: The implementation of view_module in oats.views

The get_module method is provided by the OATBase class. It uses the module_index
provided to get the id of the module from the MODULES list defined by the oat subclass.
With the name of the module requested the name of the method that renders the module
can be determined. Method names that render module HTML follow the pattern: “_get_
<modulename>_html”. The OAT plugin is then inspected for a method matching this
name as shown in listing 6.21.

def get_module(self, request, asset, module_index):

2 module_name = self.MODULES[int(module_index)]

method_name = "_get_%s_html" % module_name

4 handle = self._get_method_handle(method_name)

return handle(request, asset, module_name)

Listing 6.21: The implementation of get_module in OATBase

48

6.3. Core

The module callback method is then executed and its HTTP response returned.

6.2.3. Providing modules with data callback

To allow modules to make a callback for data, a similar approach as the module callback is
implemented. A data callback URL (/asset/<asset_id>/module/<module_id>/data?)
is provided which the modules can use to request data from the server. To supply param-
eters to the data request, modules can use the query string.

The data callback URL is handled by the oats.views.get_data_for_module function
which is shown in listing 6.22. It propagates the call to the respective OAT plugin by
calling oat.get_module_data.

def get_data_for_module(request, asset_pk, module_index):

2 asset = get_object_or_404(oats.models.Asset, pk=asset_pk)

oat = asset.oat_instance

4 return oat.get_module_data(request, asset, module_index)

Listing 6.22: The implementation of oats.views.get_data_for_module

Much like with the oat.get_module method shown in listing 6.21 the oat.get_module_
data method uses the module index to get the name of the method that compiles the
data for the module in question. Its implementation is shown in listing 6.23.

def get_module_data(self, request, asset, module_index):

2 module_name = self.MODULES[int(module_index)]

method_name = "_get_%s_data" % module_name

4 handle = self._get_method_handle(method_name)

return handle(request, asset, module_name)

Listing 6.23: The implementation of get_module_data in OATBase

The oat._get_<modulename>_data method of the OAT plugin is provided the HTTP
request of the callback, from where it can retrieve the parameters provided in the query
string.

6.3. Core

The core contains abstract models and data types used by the rest of the system to
simplify their implementation. The implementation of the components of the core will be
described in the following subsections.

49

6. Implementation

6.3.1. Abstract Models

Abstract models are implemented to minimize duplicate code amongst database interfaces.
Abstract models in Django do not get created as tables in the database but are merged
with the model that subclasses them into a single table [Django Software Foundation,
2013b]. This imposes some restrictions on what abstract classes can do. One which this
system is affected by is the restriction of not allowing foreign key references to abstract
models.

6.3.1.1. Measurement series

The AbstractMeasurementSeries are designed as a container for measurements. It has
six fields, a foreign key reference to the asset the series pertain to, the date when the
measurement series were performed and labels and units of the measurements it contains.

To access the measurements the measurement series contain a method, data_as_list is
provided, see listing 6.24.

def data_as_list(self):

2 #TODO (remove implicit dependency on "measurement_set".)

data_list = []

4 for entry in self.measurement_set.all():

data_list.append([entry.x_value, entry.y_value])

6

return data_list

Listing 6.24: The methods and properties of the abstract measurement series

This method retrieves all measurements which reference to the measurement series and
returns their x and y values in as a list. When accessing all measurements referenc-
ing this model the measurement_set property is used. This property is dependent on
the name of the model class being referenced [Django Software Foundation, 2013d].
In this case the data_as_list method depends on the model which implements the
AbstractMeasurement being named Measurement. If the model would be named DataMeasurement
this relation would become datameasurment_set. This design is less than ideal and needs
to be investigated further.

6.3.1.2. Measurement

The AbstractMeasurement model contains a single measurement. It has two fields, x_
value and y_value

As the measurement series model described in section 6.3.1.1 is an abstract model it cannot
be referenced to by foreign key references. Because of this, the foreign key relationship
must be added in the model that inherits from AbstractMeasurment.

50

6.3. Core

6.3.1.3. Time series

The AbstractTimeSeries model is a container for timed measurements. It has many
of the same fields as AbstractMeasurementSeries series although their data_as_list
methods differ. The signature for time series is shown in listing 6.25.

1 def data_as_list(self, date_from , date_to):

Listing 6.25: The signature of the data_as_list method

The method accepts a range of dates which the returned list will contain. This is done as
time series are a continuous collection which can get very large while measurement series
are a singular event with a single time stamp.

6.3.1.4. Timed measurement

The TimedMeasurement model contains a single timed measurement. It has two fields,
date_time and y_value. a In an ideal setting this model would inherit the AbstractMeasurment
model and override its x_value field. This however is not allowed, fields of abstract models
cannot be overridden.

6.3.1.5. Properties

The AbstractProperties model stores key-value properties. It has three fields, a foreign
key to the asset it pertains to, a dictionary of properties and a list of the keys of the
dictionary, in the order they are to be shown.

6.3.2. Data Types

The data types are a collection of normal Python classes that manipulate the abstract
models discussed in section 6.3.1. The currently available data types are: series collection,
time series collection, table and time series table. These will be described in the following
subsections.

6.3.2.1. Series collection

The SeriesCollection data type groups AbstractMeasurementSeries together.

The data type has many properties: name, x_type, y_type, series_data, series_names
and series_names_and_data. Most are somewhat self explanatory and only implemented
as syntactic sugar. The last three implement the access point to the measurement data.
The series_data properties return the list of each measurement series in a list

51

6. Implementation

The series_names returns the name of all the measurement in a list and names_and_data
adds them both to a list, like shown in listing 6.26.

1 >> my_collection.names_and_data

[[’series1’, [[x1, y1], [x2, y2], ..., [xn, yn]], [’series2’, ...], ...]

Listing 6.26: The form of the output of the SeriesCollection.names_and_data property

6.3.2.2. Table

The table data type accepts a series collection and converts it into a table where all
measurements have been synchronized on either x or y axis. For example, the three series
from table 6.1 are to be made into a table, ordered by the x column and ascending.

Series 1 Series 2 Series 3

1 3 1 8 1 19
2 5 3 1 2 21
3 7 5 3 4 15

Table 6.1: Example series collection

Once processed by the table class he result would be as shown in table 6.2. The table
uses a custom implementation of a stack to move through each measurement series and
add their measurements to the right row.

x-column Series 1 Series 2 Series 3

1 3 8 19
2 5 21
3 7 1
4 15
5 3

Table 6.2: The series collection from table 6.1 converted into a table

6.3.2.3. Time series collection

The time series collection has the same purpose as the series collection although it made to
store time series. It inherits from series collection but overrides the series_data property
to accomodate for the difference in signature of the data_as_list method between time_
series and measurement_series (listings 6.24 and 6.25)

52

6.4. Modules

6.3.2.4. Time series table

The time series table has the same function as the table but accepts time series collections.

6.4. Modules

During the course of this project, two modules were implemented. A properties mod-
ule, which displays key-value properties of assets and a plot module, which visualizes
measurement series and allows users to download raw measurements. These modules
implementation will be described in the following subsections.

6.4.1. Properties module

The properties module app displays asset properties and image, if available. The proper-
ties, implemented for a borehole is displayed in figure 6.4.

Figure 6.4: An example rendering of the property module, shown with data from a borehole

The implementation of the properties module is quite simple. It consists of only one
template, has no JavaScript or CSS style dependencies and uses no data types from the
core. The structure of the module app is:

53

6. Implementation

properties
__init__.py
models.py
templates

properties
initial_view.html

views.py

As it has no static file dependencies the USED_SCRIPTS and USED_STYLES lists in properties.
__init__.py are empty. The module has no need for its own database models and thus
properties.models.py is empty. Both of these files do need to exist for the module to
be considered a Django app.

6.4.1.1. Views

The properties module contains a single view which renders the initial_view.html
template, listing 6.27

def initial_view(request, asset, namespace , asset_properties=None):

2 properties = [(’Owner’, asset.organization.name), (’Type’, asset.type),

(’Identification’, asset.legacy_id)]

4 if not asset_properties is None:

for key in asset_properties.properties_order:

6 properties.append((key, asset_properties.properties[key]))

8 context = {"asset": asset,

"module_namespace": namespace ,

10 "asset_properties": asset_properties ,

’property_list’: properties}

12 return render(request, "properties/initial_view.html", context)

Listing 6.27: properties.views

The view function accepts the three default arguments: request, asset and namespace. An
optional asset_properties can be provided. If provided, the asset_properties argu-
ment must be an instance of a model which inherits the core.models.AbstractProperties
model described in section 6.3.1. To use the asset properties object in a template some
preprocessing is needed. The properties are converted to a list of tuples, where the first
element of each tuple is the property and the second is the value. The common proper-
ties from the asset, organization name, asset type and asset legacy id are added to the
properties list along with the properties from asset_properties. The asset, module
namespace, asset property object and property list are provided as contextual variables
when rendering the initial_view.html template.

54

6.4. Modules

6.4.1.2. The initial_view.html template

The properties are iterated and added to the HTML page, listing 6.28. Each property
item is inserted as a description list (<dl>) and each given a 4 element wide column. As
the whole with of the page is 12 elements this aligns the properties up in three columns
when the browser with is over the medium with. When the browser window width is under
medium width the properties are stacked in a single column. The nature of bootstraps
column structure is described in subsection 4.1.2.1 in Technology used.

1 {% for key, value in property_list %}

<div class="col−md−4">
3 <dl class="dl−horizontal">

<dt>{{ key }}:</dt>

5 <dd>{{ value }}</dd>

</dl>

7 </div>

{% endfor %}

Listing 6.28: Inputting properties

Some database interfaces provide an image for their assets. If available these images will
be shown below the property list. The Django template language provides an easy way
to write conditional markup. The image condition is shown in listing 6.29.

{% if asset_properties.image %}

2 <hr>

<div class="row">

4 <div class="col−md−8 col−md−offset−2">
<img style="margin: 0 auto" src="{% static asset_properties.image %}"

6 class="img−responsive img−rounded"/>
</div>

8 </div>

{% endif %}

Listing 6.29: Add image if availabe

6.4.2. Plot module

The plot module app displays graphs and tables of asset data. The plot module, imple-
mented for the boreholes borehole measurements is shown in figure 6.5.

The plot module is somewhat more complex than the properties module. It accepts
instances of the MeasurementSeriesCollection or TimeSeriesCollection data types
and plots their data using the Highcharts plotting library. The structure of the plot
module app is:

55

6. Implementation

Figure 6.5: The plot module, implemented for borehole measurements

56

6.4. Modules

plot
__init__.py
models.py
static

plot
css

plot.css
js

export_table.js
meas_series_plot_options.js
plot.js
time_series_plot_options.js

templates
plot

initial_view.html
show_data.html

views.py

6.4.2.1. Static file dependencies

Before the module can be initialized the JavaScripts and CSS styles it depends on must
have been imported. The OAT plugin relies on all modules to list their dependencies in
the __init__.py module. The plot module dependencies are shown in listing 6.30.

1 USED_SCRIPTS = [

’plot/highcharts/js/highcharts.js’,

3 ’plot/js/export_table.js’,

’plot/js/plot.js’,

5 ’utils/js/date_bar.js’

]

7 USED_STYLES = [

"plot/css/plot.css"

9]

Listing 6.30: Static file dependancy declaration for modules

6.4.2.2. Views

The plot module provides two views, initial_view and show_data. When using the plot
module app, OAT plugins can specify the settings of the chart displayed by the module.
This is done by supplying a Higcharts settings file. Some basic setting files are provided
by the plot module which the OAT plugins can use but they can also provide their own
custom settings file. The path to this settings file along with the number of days the plot
will display initially are provided to the initial_view function, listing 6.31.

def initial_view(request, namespace , initial_date_range , settings_file):

57

6. Implementation

2 context = {

’module_namespace’: namespace ,

4 ’initial_date_range’: initial_date_range ,

’options’: settings_file

6 }

return render(request, "plot/initial_view.html", context)

Listing 6.31: The view function for the plot module initial view

In addition to the HTTP request and namespace, the show_data view accepts series_
collection and table, listing 6.32.

1 def show_data(request, namespace , series_collection , table):

return render(request, "plot/show_data.html", {

3 ’module_namespace’: namespace ,

’series_collection’:series_collection ,

5 ’table’: table,

})

Listing 6.32: modules.plot.views

The series_collection is an instance of either SeriesCollection or TimeSeries Collection
and is the data plotted on the graph. The table is an instance of either Table or
TimeSeriesTable and will be used to populate the table.

6.4.2.3. Templates

The initial_view template starts by loading the module_utils library. This library
contains the date bar and other HTML snippets that the module templates can employ.
Once the library is loaded, the date_bar is inserted into the template and given two
arguments. The first argument is the namespace of the module and the second a label to
be put on its action button.

1 {% load module_utils %}

{% date_bar module_namespace=module_namespace label=’Plot’ %}

Listing 6.33: Adding the date bar

With the date bar in place a container for the chart is created. The module namespace
is used to give it a unique id. The same thing is done when making a container for the
table.

1 <div id=’{{ module_namespace }}ChartContainer ’ class="row plot col−md−12">
</div>

3 <div id="{{ module_namespace }}Table" class="row table col−md−12">
</div>

Listing 6.34: Creating containers

58

6.4. Modules

The plot module is quite heavy on JavaScript, it uses three custom scripts and an external
library. These scripts are all initialized at the end of the initial_view template. The
module namespace is retrieved and used as a container for the remaining definitions, see
listing 6.35.

1 <script src="{% static options %}"></script>

<script type="text/javascript">

3 var ns = OAT.createNamespace("OAT.{{ module_namespace }}");

// Create a plot object and give it the properties of Plot

5 ns.plot = {};

Plot.call(ns.plot, "{{ module_namespace }}");

7 // Create a dateBar object and give it the properties of DateBar

ns.dateBar = {};

9 DateBar.call(ns.dateBar,

"{{ module_namespace }}",

11 ns.plot.load,

{{ initial_date_range }});

13

ns.plot.setOptions(PlotOptions());

15 ns.plot.drawChart();

17 ns.dateBar.onClick();

</script>

Listing 6.35: Initializing JavaScript namespace and plot and date bar instances

Namespaces are created for the definitions of both the plot and date bar JavaScripts.
These are then “called” into their namespaces using the object.call function. This
method of instantiating objects is described in Technology used section 4.1.3. Once the
plot and date bar are instantiated the date bar is initialized. The date bar needs to
know which namespace to use, which function to call when its action button is clicked
and how many days it is to display initially. The provided PlotOptions, imported in
the first line of listing 6.35, are applied to the plot and the chart is drawn by calling
plot.drawChart(). Finally the onClick function of the date bar is invoked to execute
the plot.load function and trigger a module data callback.

Show data The show data template is rendered in response to the module data callback.
It is provided with three context variables, module_namespace, series_collection and
table. The template starts with creating a button to export the table. The buttons
onClick event is handled by the exportTable function, provided by export_table.js,
see listing 6.36.

1 <button type=’button’ class="btn btn−primary col−md−2 col−md−offset−10"
onClick="exportTable({{table.header}}, {{table.body}})">

3 Download CSV

</button>

Listing 6.36: Adding a button to download raw data

59

6. Implementation

The header and the body of the table is laid out using the table.header and table.body
properties as shown in listing 6.37.

1 <thead>

{% for entry in table.header %}

3 <th>{{ entry | safe }}</th>

{% endfor %}

5 </thead>

<tbody>

7 {% for row in table.body %}

<tr>

9 {% for cell in row %}

<td>{{ cell | safe }}</td>

11 {% endfor %}

</tr>

13 {% endfor %}

</tbody>

Listing 6.37: Composing the table

The safe tag is used when accessing template variables to keep the template renderer from
escaping the content of the variable. This is safe to do here as the contents of the variables
is only being displayed. When the table has been made the series_collection is added
to the plot. First the module JavaScript namespace is retrieved and used to get the plot
options, listing 6.38.

1 <script type="text/javascript">

var ns = OAT.createNamespace("OAT.{{ module_namespace }}");

3 var plotOptions = ns.plot.getOptions();

{% for series_name , series_data in series_collection.names_and_data %}

5 plotOptions.addSeries("{{ series_name|safe }}", {{ series_data|safe }});

{% endfor %}

7 plotOptions.xAxis.title.text = "{{ series_collection.x_type }}";

plotOptions.yAxis.title.text = "{{ series_collection.y_type }}";

9 plotOptions.title.text = "{{ series_collection.name }}";

ns.plot.setOptions(plotOptions);

11 ns.plot.drawChart();

</script>

Listing 6.38: Applying data to plot

The names_and_data property of the series_collection variable is used to obtain the
name and data for each series. The series are then added using a addSeries function
which is provided by the plotOptions. The x- and y-axis labels are set as the x and y
type properties of series collection and the collection name gets set as plot title. Finally,
the plotOptions are applied to the chart and the chart redrawn.

60

6.4. Modules

6.4.2.4. JavaScript

The plot.js and date_bar.js scripts are essential to the function of the plot module
and will be described in the following paragraphs.

date_bar.js The date bar is where the user selects the range of dates, data is to plotted
for. The date bar is initialized with 3 variables, its module namespace, a function handle
to a function that’s run after the action button is clicked and the number of days from
the current date, the date_from element will be set to. When the user clicks the action
button of the date bar, its onClick function, shown in listing 6.39, is evaluated.

this.onClick = function () {

2 // The caller of this function is not datebar itself

// therefore "this" doesn’t point to datebar.

4 // Use db instead.

db.disableAction();

6 db.externalOnClickFunction(

db.getDateFrom(),

8 db.getDateTo(),

db.enableAction

10);

};

Listing 6.39: Handling on click events

The function ensures the user cannot click the action button again until the first request
has been processed by disabling the action button. Then the function handle provided in
the initialization of the date bar will be executed and provided with the currently selected
dates. The function also receives the handle of the function to enable the action button
again. In the case of the plot module, the date bar is given a handle to the plot.load
function which will be described in the next paragraph.

plot.js The plot is structured like the classes described in Technology used, section 4.1.3.
It stores three variables, the ids of the table and chart containers and its options. The
container ids are used to populate these containers in the plot.load function, listing
6.40.

1 var Plot = function(module_namespace){

var plot = this; // stored for correct reference to plot object

3 this.tableId = ’#’ + module_namespace + "Table";

this.containerId = module_namespace + "ChartContainer";

5 this.options = Object();

Listing 6.40: Assembling container ids

When loading, the chart is set to provide feedback to the user by displaying the loading
animation. The module data request URL is composed from the current URL and the

61

6. Implementation

query string parameters date-from and date-to are added. The plot is prepared for
receiving new data by clearing out the old and a AJAX call is made for the plot data, see
listing 6.41.

1 this.load = function(from, to, enableDateBar){

// This function is not called within the context of the plot

3 // therefore does the "this" variable not reference to it

// The plot variable is used as a reference instead.

5 plot.chart.showLoading(’Loading...’);

var hash = window.location.hash.replace(’−’, ’/’).replace(’#’, ’/’);
7 var url = window.location.pathname + hash +

"/data/?date−from=" + from + "&date−to=" + to;
9 plot.clearData();

$.ajax({

11 type: ’GET’,

url: url,

13 success: function(template) {

$(plot.tableId).html(template);

15 enableDateBar();

}

17 });

};

Listing 6.41: Loading data to plot

When the AJAX call has successfully returned the data, the template variable contains
a rendered version of the show_data.html template. The whole markup is inserted into
the table container where the JavaScript of the markup will automatically be evaluated.
At last the date bar is enabled for user interaction.

62

7. Example system implementation

During this project an example system was implemented and is available at http://
eyk.hugfimi.is (Firefox or Chrome recommended). This system contains three OAT
plugins, a borehole, a power plant and an air quality sensor. These OAT plugins use the
framework described in the previous chapter along with two custom database interface
plugins. The following sections will describe how the OAT and database interface plugins
for the air quality sensor were implemented as their implementation utilizes the most of
the framework.

7.1. Database interface

The Icelandic environment agency publishes data from multiple air quality sensors from
locations around the country. Data for 7 active sensors can be accessed via the agency’s
web page. The air quality measurements come from automatic sensors that upload their
data with predetermined frequencies, ranging from a minute to an hour. This data is
uploaded to a file server hosted by the agency where the data is stored in Comma Sepa-
rated Values (CSV) files, named by year. Once new measurements are available they are
appended to the file of the current year. This is a good example of where the periodic
scraping architecture used in EYK comes handy.

Models First the models to store the data are developed. The AbstractTimeSeries
and AbstractTimedMeasurement models from section 6.3.1 are used as bases for the
TimeSeries and TimedMeasurement models. The TimeSeries model defines an extra
field, chemical, in addition to those inherited from AbstractTimeSeries and imposes a
uniqueness restriction on combinations of chemical and asset. This means that an asset
can only have one time series for each chemical, see listing 7.1.

class Meta:

2 unique_together = (’chemical’, ’asset’)

Listing 7.1: Imposing restriction of uniqueness on chemical and asset

The TimedMeasurement model adds a foreign key reference to the TimeSeries and adds
a unique restriction on series and date_time, listing 7.2.

63

http://eyk.hugfimi.is
http://eyk.hugfimi.is

7. Example system implementation

1 class TimedMeasurement(AbstractTimedMeasurement):

series = models.ForeignKey(TimeSeries , db_index=True)

3

class Meta:

5 unique_together = (’series’, ’date_time’)

Listing 7.2: The implementation of TimedMeasurement

Scraper The scraper gathers data for each available chemical, for each sensor, starting
at the newest measurements. When the scraper has found a measurement that violates
the unique restraint on series and chemical imposed by the TimedMeasurement it assumes
all subsequent data for the current chemical for the current sensor has been imported and
moves on to the next chemical.

Tasks To execute the scraper periodically, a tasks module is made. The task module
defines a reoccurring task as described in section 5.5. This task is auto-detected by the
Celery task queue and is executed according to its specification. The scrape task for the
air quality data defined is executed every day of the week, 10 or 40 minutes past every
hour. The task is shown in listing 7.3.

1 @periodic_task(run_every=(crontab(hour="∗", minute="10, 40", day_of_week="∗")))
def scrape():

3 scraper.scrape_new()

Listing 7.3: The definition of the scraper task

These intervals are chosen as most sensors measure in half hour intervals. Their data is
measured at the start of and half past every hour and is typically available online about 5
minutes later. This translates into a worst case delay of 35 minutes from the measurement
being measured until it’s available through EYK.

7.2. OAT plugin

The data collected by the database interfaces is displayed by the OAT plugin. The
Air Quality (AQ) sensor OAT plugin uses two modules, a properties module and a plot
module. The modules and their labels are declared in listing 7.4.

class AirQualitySensor(OATBase):

2 TYPE_NAME = ’Air quality sensor’

BASE_MODULES = [’properties’, ’plot’]

4 MODULES = [’properties’, ’plot’]

MODULE_LABELS = {’properties’:TYPE_NAME , ’plot’:’Air quality measurements’}

Listing 7.4: The modules of the AQ sensor

64

7.2. OAT plugin

7.2.1. Properties module

Implementing the properties module is straight forward. The AQ sensor has no properties
other than the ones available from Asset, AssetType and Organization models. The
properties module initial view is thus passed: the incoming request, the asset being viewed,
the module namespace, and the None object is passed where a properties model would
otherwise be passed, listing 7.5.

1 @staticmethod

def _get_properties_html(request, asset, namespace):

3 return properties.views.initial_view(request, asset, namespace ,

None)

Listing 7.5: The response to the module callback request for the properties module

The rendered properties module is shown in figure 7.1.

Figure 7.1: The Properties module of the air quality sensor

7.2.2. Plot module

The plot module is labeled “Air quality measurements” and displays data scraped by the
database interface described in section 7.1.

Initial view As the frequency of AQ measurements is high, the module initially shows
measurements for only the last 7 days. The timeSeriesPlotOptions.js settings file is
used to configure the graph for displaying timed measurements and the initial view of the
plot compiled and returned, listing 7.6.

65

7. Example system implementation

def _get_plot_html(request, asset, namespace):

2 initial_date_range = 7

options = ’plot/js/timeSeriesPlotOptions.js’

4 return plot.views.initial_view(request, namespace , initial_date_range ,

options)

Listing 7.6: The response to the module callback request for the plot module

Show data When data is requested by the plot module via the module data callback,
the _get_plot_data method responds. The dates requested are retrieved from the query
string and converted to date time objects as shown in listing 7.7.

1 def _get_plot_data(request, asset, namespace):

date_from = datetime.fromtimestamp(

3 int(request.GET[’date−from’])
)

5 date_to = datetime.fromtimestamp(

int(request.GET[’date−to’])
7)

Listing 7.7: Date range of request retrieved from query string

The TimeSeries objects pertaining to the asset being viewed are requested from the
database and added to a TimeSeriesCollection. The collection is provided with a
name, and the range of dates requested, see listing 7.8.

series = models.TimeSeries.objects.filter(asset=asset)

2

collection = time_series_collection.TimeSeriesCollection(

4 ’Air quality at %s’ %asset.name.encode(’utf−8’),
series,

6 date_from ,

date_to + timedelta(days=1)

8)

Listing 7.8: Collecting the TimeSeries for the asset being viewed

To include the end-date of the request the date_to parameter is incremented one day. At
last the TimeSeriesCollection is used to generate a TimeSeriesTable and the two used
to render the show_data.html template from the plot module app as shown in listing 7.9.

66

7.2. OAT plugin

1 collection.x_type,

collection.series_names ,

3 order=table.DESCENDING

)

5 collection_table.compile()

7 return plot.views.show_data(request, namespace , collection ,

collection_table)

Listing 7.9: Creating a TimeSeriesTable from the TimeSeriesCollection

The rendered plot module is shown in figure 7.2.

Figure 7.2: The plot module of the air quality sensor

67

8. Results

In section 2.2 a series of requirements were stated which the system is to fulfill. The
status of requirements is shown in table 8.1.

Table 8.1: Fulfillment of requirements made in section 2.2

ID Requirement description Requirement met

Customer options
1 Have data presented in a custom way True
2 Have custom calculations performed True
3 Select functionality for each data collection True

Selectable functionality
4 Store samples False
5 Add samples False
6 Display samples False
7 Interface with the Watch software False
8 Allow batch analysis of samples through Watch False
9 Store time series True
10 Import time series False
11 Plot time series True
12 Export time series as TSV True
13 Perform calculations on time series True
14 Store measurements True
15 Import measurements False
16 Plot measurements True
17 Export measurements as TSV True
18 Perform calculations on measurements True

Improvements over Gagnor
19 Be accessible without third party software True (Browser only)
20 Be accessible to data collectors on site True
21 Identify assets in an intuitive way True

Further requirements
22 Be able to interface to any accessible data source True

69

8. Results

8.1. Customer options

1. Have data presented in a custom way: The customers can have their data pre-
sented in custom way by either: requesting a custom setting file for the plot module app
or, if the desired data presentation does not fit the plot module app, request a custom
module app.

2. Have custom calculations performed: Custom calculations can be performed as
data is scraped by the scrapers of the database interfaces. The scrapers are custom
made for each data source which allows for custom treatment of data therein. This
is demonstrated in the example system where depth values are corrected for borehole
measurements.

3. Select functionality for each data collection: The architecture of the EYK frame-
work is focused on assets rather than data collections. Customers can indirectly select
functionality for data collections by selecting the functionality each asset offers through
its modules.

8.2. Selectable functionality

4-8 Samples: The EYK framework does as of this writing support managing samples.
This however will be implemented by adding an abstract model for samples and a sample
module app. The timeline of these additions is discussed in the outline section of the next
chapter.

9. Store time series: The framework can store time series. Abstract database models
were developed to accommodate time series data. These were also used in the example
system where air quality measurements are stored as time series.

10. Import time series: This requirement is currently not fulfilled by the framework.
This however will be implemented by the development of a data collection module app
before the first release of the software.

11. Plot time series: The framework can plot time series. A plot module app was
developed which can be configured to plot time series. This is demonstrated in the
example system where the air quality measurements are plotted.

70

8.3. Improvements over Gagnor

12. Export time series as TSV: The framework can export time series as TSV. This
is implemented in the plot module app and demonstrated in the example system where
the air quality measurements are displayed as a table which is downloadable.

13. Perform calculations on time series: This is supported by the framework in the
same way as requirement 2 is supported, through the database interfaces.

14. Store measurements: The framework can store measurements. Abstract database
models were developed to accommodate measurement data. These were also used in the
example system where borehole measurements are stored as measurements.

15. Import measurements: Much like requirement 10, this has not yet been fulfilled.
It will be fulfilled by the same data collection module app which will be developed before
the first release of the software.

16. Plot measurements: The framework can plot measurements. A plot module app
was developed which can be configured to measurements. This is demonstrated in the
example system where the borehole measurements are plotted.

17. Export measurements as TSV: The framework can export measurements as
TSV. This is implemented in the plot module app and demonstrated in the example
system where the borehole measurements are displayed as a table which is downloadable.

18. Perform calculations on measurements: This is supported by the framework in
the same way as requirement 2 is supported, through the database interfaces. This is
also demonstrated in the example system where depth values are corrected for borehole
measurements.

8.3. Improvements over Gagnor

19. Be accessible without third party software: The framework is not accessible
without a third party software. The framework is web based and thus requires the user to
use a browser to connect to it. Even so, most operating systems do include a browser and
many users are more native to their browsers than any other software. This requirement
is therefore considered fulfilled.

20. Be accessible to data collectors on site: The system can be accessed by data
collectors on site. This is a question of how the system is installed at the customer and

71

8. Results

whether there is a internet connection at the data collection site. No user identification
is included in the system which for some customers might be unacceptable as their data
would be publicly accessible. To remedy this, user identification will be added to the
framework before release.

21. Identify assets in an intuitive way: Assets are identified visually by their geo-
graphical locations which is considered highly intuitive by the developers of the framework.
For those users who are accustomed to using the string based identification, the assets
can be searched for by these ids.

8.4. Further requirements

22. Be able to interface to any accessible data source: This is supported by the
framework through the database interfaces as a custom interface is created to each data
source. The example system demonstrates this as it interfaces with two distinct data
sources.

72

9. Conclusions

This thesis has described the design and development of the EYK framework. A large
part of the requirements set for the system were met while others are pending imple-
mentation. Several plug-ins were implemented as a demonstration of the functionality
of the framework and that example is available online at http://eyk.hugfimi.is. The
development of these plugins demonstrates how flexible the framework is and how much
functionality can be achieved with little code. Some improvements must be made to the
system before it is first released, which are discussed in the next section. The outlook
of the project is discussed thereafter where the project road map is discussed and future
releases outlined.

9.1. Improvements

The framework did not meet all the requirements made in section 2.2. To do so, the
functionality of the framework must be extended. Requirements 4-8 can be met by adding
a sample module to the module collection and requirement 20 can be further met by adding
user authentication.

Furthermore, not all modules described in section 3.2.1 were implemented. The sample
module, component module and data collection module were not implemented during this
project but need to be implemented for the system to be considered a viable replacement
for Gagnor. The method of implementing the subtypes described in section 3.2 has, as of
this writing, not been developed but must be added to provide flexibility in the definitions
of OAT plugins.

Further enhancements that can be made to the system is adding the user location to the
map. This would further improve the use of the map and help data collectors locate the
asset they are collecting data from.

9.2. Outlook

The development of the EYK framework continues and it will be offered as a data man-
agement solution by Hugfimi ehf. Hugfimi will offer services in creating plugins for the
framework and custom modules. A roadmap for the planned feature releases for the EYK
framework is displayed in figure 9.1.

73

http://eyk.hugfimi.is

9. Conclusions

Figure 9.1: Planned feature releases of EYK

9.2.1. Release 1.0

Release 1.0 of EYK is scheduled in September 2014. In addition to the modules described
in this thesis the release will include a report module and user authentication. The report
module is designed to generate technical report templates. The templates will have their
sections, figures, tables and data made and placed so users can focus on analyzing and
writing.

9.2.2. Release 2.0

Release 2.0 of EYK is scheduled in April 2015. This release includes user access manage-
ment, an offline mode and optimizations of user interface in regard to small screens.

User access management: This addition is intended to allow customers to specify
which parts of the system are accessible to which users.

Offline mode: The offline mode is designed to allow data collection from areas where
no internet connection is available. Data is to be stored on the users device and then
synced with EYK’s server once connection is made.

74

Bibliography

Vladimir Agafonkin. Leaflet, an open-source javascript library for mobile-friendly inter-
active maps, April 2013. URL http://www.leafletjs.com.

Stefán Arnarsson, Sven Sigurðsson, and Hörður Svavarsson. Watch, a chemical speciation
program, April 2010. URL http://www.geothermal.is/software.

Django Software Foundation. Django httpresponse objects, November 2013a.
URL https://docs.djangoproject.com/en/1.6/ref/request-response/
#httpresponse-objects.

Django Software Foundation. Django abstract model documentation, Novem-
ber 2013b. URL https://docs.djangoproject.com/en/1.6/topics/db/models/
#abstract-base-classes.

Django Software Foundation. Django http request documents, November 2013c.
URL https://docs.djangoproject.com/en/1.6/ref/request-response/
#httprequest-objects.

Django Software Foundation. Django, queries documentation, November
2013d. URL https://docs.djangoproject.com/en/1.6/topics/db/queries/
#following-relationships-backward.

Django Software Foundation. Django settings, November 2013e. URL https://docs.
djangoproject.com/en/1.6/topics/settings/.

Django Software Foundation. Django url displatcher, November 2013f. URL https:
//docs.djangoproject.com/en/1.6/topics/http/urls/.

Django Software Foundation. Geodjango, November 2013g. URL https://docs.
djangoproject.com/en/1.6/ref/contrib/gis/.

Colin Harrison. Xming x server, April 2014. URL http://www.straightrunning.com/
XmingNotes/.

Highsoft. Highcharts js, November 2013. URL http://www.highcharts.com/products/
highcharts/.

Mozilla Developer Network. Function.prototype.call(), February 2008. URL
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/Function/call.

Mozilla Developer Network. var hoisting, April 2014. URL https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/var#var_
hoisting.

75

http://www.leafletjs.com
http://www.geothermal.is/software
https://docs.djangoproject.com/en/1.6/ref/request-response/#httpresponse-objects
https://docs.djangoproject.com/en/1.6/ref/request-response/#httpresponse-objects
https://docs.djangoproject.com/en/1.6/topics/db/models/#abstract-base-classes
https://docs.djangoproject.com/en/1.6/topics/db/models/#abstract-base-classes
https://docs.djangoproject.com/en/1.6/ref/request-response/#httprequest-objects
https://docs.djangoproject.com/en/1.6/ref/request-response/#httprequest-objects
https://docs.djangoproject.com/en/1.6/topics/db/queries/#following-relationships-backward
https://docs.djangoproject.com/en/1.6/topics/db/queries/#following-relationships-backward
https://docs.djangoproject.com/en/1.6/topics/settings/
https://docs.djangoproject.com/en/1.6/topics/settings/
https://docs.djangoproject.com/en/1.6/topics/http/urls/
https://docs.djangoproject.com/en/1.6/topics/http/urls/
https://docs.djangoproject.com/en/1.6/ref/contrib/gis/
https://docs.djangoproject.com/en/1.6/ref/contrib/gis/
http://www.straightrunning.com/XmingNotes/
http://www.straightrunning.com/XmingNotes/
http://www.highcharts.com/products/highcharts/
http://www.highcharts.com/products/highcharts/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/var#var_hoisting
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/var#var_hoisting
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/var#var_hoisting

BIBLIOGRAPHY

Mark Otto and Jacob Thornton. Bootstrap v3.0.0, August 2013a. URL http://
getbootstrap.com.

Mark Otto and Jacob Thornton. Bootstrap v3.0.0, August 2013b. URL http://
getbootstrap.com/css/#grid.

Python Software Foundation. inspect - inspect live objects, October 2013. URL https:
//docs.python.org/2.6/library/inspect.html.

Ken Schwaber and Jeff Sutherland. Scrum guide, July 2013. URL https://www.scrum.
org/Portals/0/Documents/Scrum%20Guides/2013/Scrum-Guide.pdf#zoom=100.

Pavel Shramov. Leaflet plugins, January 2014. URL https://github.com/shramov/
leaflet-plugins.

Ask Solem. Celery: Distributed task queue v3.1, November 2013. URL http://www.
celeryproject.org/.

The Object Management Group. Uml 2.0 infrastructure, August 2010. URL http:
//www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/.

The PostgreSQL Global Development Group. The postgresql licence, May 2014. URL
http://www.postgresql.org/about/licence/.

76

http://getbootstrap.com
http://getbootstrap.com
http://getbootstrap.com/css/#grid
http://getbootstrap.com/css/#grid
https://docs.python.org/2.6/library/inspect.html
https://docs.python.org/2.6/library/inspect.html
https://www.scrum.org/Portals/0/Documents/Scrum%20Guides/2013/Scrum-Guide.pdf#zoom=100
https://www.scrum.org/Portals/0/Documents/Scrum%20Guides/2013/Scrum-Guide.pdf#zoom=100
https://github.com/shramov/leaflet-plugins
https://github.com/shramov/leaflet-plugins
http://www.celeryproject.org/
http://www.celeryproject.org/
http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/
http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/
http://www.postgresql.org/about/licence/

Appendices

77

79

A. Diagrams

A. Diagrams

Figure A.1: The complete architecture of EYK

80

B. Contributions

At the start of development decisions had to be made on tools, methodology and project
management. Both developers researched these topics and decided jointly on each. The
outline of the architecture of the software was also commonly developed. Some architec-
tural aspects were changed during implementation at which point both developers were
involved.

The contribution of each developer to the implementation of the packages discussed in
this thesis is as shown in table B.1. The testing of the system is not included in these
percentages.

Table B.1: Contribution of each developer to specific packages, all tests excluded

Package Bjarki Helgi

core 75% 25%
database_interfaces 100% 0%
eyk 25% 75%
map 25% 75%
modules 75% 25%
oats 100% 0%

81

	List of Figures
	List of Tables
	Abbreviations
	Acknowledgments
	Introduction
	System background and requirements
	Current system
	Limitations of Gagnor

	System requirements

	System outline
	Asset identification
	Assigning functionality to assets
	Modules

	Database interfaces
	Accessibility
	Sales model

	Technology used
	Web applications
	Static media
	Cascading style sheets
	JavaScript
	Frontend libraries

	Web application framework
	Django
	Database
	Task queue

	Diagram notation

	Architectural design
	Map
	Oats
	OAT plugins
	The asset page, oat.html
	Module callbacks

	Core
	Modules
	Structure

	Database Interfaces

	Implementation
	Map
	Map page
	Markers and maker groups

	Oats
	Viewing an asset
	Displaying a module
	Providing modules with data callback

	Core
	Abstract Models
	Data Types

	Modules
	Properties module
	Plot module

	Example system implementation
	Database interface
	OAT plugin
	Properties module
	Plot module

	Results
	Customer options
	Selectable functionality
	Improvements over Gagnor
	Further requirements

	Conclusions
	Improvements
	Outlook
	Release 1.0
	Release 2.0

	Bibliography
	Appendices
	Diagrams
	Contributions

