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Fyrir RebekKu Rs.

“Time changes everything.”

“That’s what people say, it’s not true.
Doing things changes things. Not doing
things leaves things exactly as they were.”

House M.D.
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Abstract

Density functional theory (DFT) using semi-local functional approximations
can describe many chemical properties to high accuracy, but in some cases
large and even qualitative errors emerge. Some of these errors are ascribed
to an unphysical interaction of each electron with itself, which is present
as a result of the approximations made in the exchange-correlation functi-
onal. The Perdew-Zunger self-interaction correction (PZ-SIC) attempts to
remove this spurious interaction from approximate functionals and does so
for systems that include only a single electron. For many-electron systems,
PZ-SIC had previously been found to result in an overcorrection in many
cases. But, most previous applications of PZ-SIC restricted the orbitals to
be real functions and did not take into account that orbitals are in general
complex.

The implications of the restriction to real orbitals were explored in detail in
this thesis project and it was found that the effect on the total energy and
on the structure of molecules can be large. Generally available electronic
structure software could not be used for the calculations as this orbital-
density dependent functional form is significantly different from common
density functional approximations and a special optimization algorithm is
needed. The electronic structure software QUANTICE was developed as part
of this thesis project. It includes an efficient new algorithm for minimizing
the energy of orbital-density dependent functionals, in particular PZ-SIC,
as well as the option of using complex orbitals. The present reassessment of
PZ-SIC including complex orbitals has extended and in some cases revised
the results from previous studies. The total energy of atoms is found to be
improved by PZ-SIC when applied to a suitable density gradient depend-
ent functional. The overcorrection found in molecular properties is in many
cases less severe when complex orbitals are used. The molecular struct-
ure of the CHj radical, which had previously been found to become incor-
rect by the application of PZ-SIC, is shown here to be predicted correctly
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when complex orbitals are used. A scaled down version of PZ-SIC can gi-
ve improved results on average but large, unsystematic errors still remain.
While PZ-SIC does not turn out to give the desired overall accuracy, the
methodology and software developed in this thesis project for the efficient
implementation of orbital-density dependence in the functional form, can
help in the development of a significantly more accurate energy functional
for electronic systems.
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Utdrattur

béttnifellafreedi (DFT) byggd 4 neer stadbundnum nélgunum 4 fellinu geta
getfido géda nadkveemni { morgum tilfellum en i sumum tilfellum koma 1 ljos
stérar og jafnvel eigindlegar skekkjur. Talid er ad sumar pessar skekkjur
stafi af sjalf-vixlverkun rafeindanna sem er ranglega til stadar vegna nédlgana
i vixlunar-fylgni fellinu. Perdew-Zunger leidréttingin (PZ-SIC) leitast vid
ao fjarleegja pessa villu { vixlverkuninni og virkar vel fyrir kerfi med adeins
einni rafeind. Fyrir kerfi med moérgum rafeindum hefur verid synt fram
a a0 PZ-SIC gefi gjarnan of stéra leidréttingu. En, i flestum tilfellum hafa
reikningar med PZ-SIC gert rad fyrir pvi ad svigrimin séu raunfoll og ekki
tekio til greina ad almennt eru svigrim tvinnfoll.

Pessi takmorkun hefur verid konnud 1 doktorsverkefninu og synt fram 4 ad
ahrifin 4 heildar orku og 16gun sameinda geti verid veruleg. Hugbtinad sem
almennt er adgengilegur er ekki hagt ad nota { slika reikninga pvi fellid er
h&d svigrima pétini sem er 6likt venjulegum rafeindafellum og naudsyn-
legt er ad nota sérstakar bestunaradferdir. Hugbtnadurinn QUANTICE var
préadur sem hluti af pessu verkefni til ad innleida nyja bestunaradferd fyrir
svigrumapéttnihad felli, par med PZ-SIC, og eiga moguleika & ad nota tvinn-
falla svigram. Pad endurmat & PZ-SIC med tvinnfalla svigraimum sem hér
kemur fram beetir vid og { sumum tilfellum leidréttir nidurstodur fyrri reikn-
inga. T1j6s kom ad mat 4 heildarorku atéma verdur ndkveemara med PZ-SIC
pegar adferdinni er beitt & viss felli sem had eru stigli rafeindapéttninnar.
Leidréttingin 4 eiginleikum sameinda er sidur ofmetin pegar tvinnfalla svig-
rim eru notud. Logun CH; stakeindarinnar er rétt pegar tvinnfalla sigrim
eru notud en 4dur hafdi verid bent 4 ad PZ-SIC spdi rangri 16gun, en pa med
raunfalla svigrimum. Skolud PZ-SIC leidrétting getur beett reiknud gildi ad
jafnadi, en stérar og 6kerfisbundnar skekkjur verda samt eftir.

bétt PZ-SIC hafi ekki gefid pd ndkveemni sem sost er eftir, pa getur sd pré-
un & adferdafraedi og hugbtinadi sem fram hefur farid i doktorsverkefninu



og gert pad kleift ad nota svigramapéttnihao felli hjalpad til vid ad préa
verulega ndkveemari orkufelli fyrir rafeindakerfi { framtidinni.
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Theoretical Background

The accurate description of systems on a molecular or atomic level cannot
be achieved by means of classical mechanics, as quantum effects have to
be accounted for. In the beginning of the 20th century it became apparent
that light has both wave- and particle-like characteristics. In 1924, de Broglie
postulated in his dissertation [1]] that matter had these characteristics as well
and proposed a connection of a particle’s momentum, p, to its wavelength,
A, through Planck’s constant, i, as A = % In analogy to classical mechanics,
Schrodinger postulated in 1926 a description of the propagation of matter
waves from a Hamiltonian principle [2] as

ih%‘f’(t) =H(H)Y(t), (1.1)
where i = /2 is the reduced Planck constant and ¥ (t) = ¥(ry,..., 7N, t) is
the wavefunction of N particles. The Hamiltonian operator H(t) is defined
as

N

N ho4 N N N

H(t)=) —5 B+ V(e ) = T+ V(1) (1.2)
k=1 k

with the Laplace operator A, depending on the coordinates ry.

In the case of a time independent potential, V(t) = V, a stationary state
Y =¥(ry,...,rN) is defined by the stationary Schrédinger equation

HY = (T+V)¥Y=EY. (1.3)
Systems of chemical interest are built up from negatively charged electrons

and positively charged nuclei that interact with each other through electro-
static interaction. The wavefunction ¥ = ¥(rq,...,rN, Ry, ..., Ry) of such
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systems depends on the coordinates of N electrons, {r}, and of M nuclei,
{R}. For such a system the potential operator V is built up from different
contributions: Nucleus-nucleus repulsion (Vnn), nucleus-electron attraction
(Vie), electron-electron repulsion (Vee) and, possibly, the interaction of the
particles with an external electrostatic field (Vo).

Thus, the Hamiltonian of a system of electrons and nuclei in an external
potential reads
H=Ty+Te+ Vo+ Van + Vne + Vee. (1.4)

For convenience in the formulation of the Hamiltonian, “atomic units” [3]
are introduced. The elementary charge, e, electron mass, me, Bohr radius,
ag, reduced Planck constant, /1, and the Coulomb constant, k. = 1/4re,, are
set to unity. By this transformation energy takes the unit of the Hartree
energy, Ep, and the mass of a particle is defined in units of the electron
mass.

In these units, the components of the Hamiltonian are of particularly simple
form. The kinetic energy operators are expressed as

LX) N
Th = ) _TmiARf and T.= Z —EAri (1.5)
i=1 i=1
and the potential energy operators read
. M M 7.7
Vo = Y Y L (1.6)
i=1j=i+1 IR — RJ'|
X MY Z;
Ve = Y. ) —Ril (1.7)
i=1j=1 IR — il
. NYo
Vee = Z Z T (1.8)
= Iri = jl

with Z; being the charge on the nucleus at R;.

The external potential operator can be expressed as an operator acting on
the electrons and on the nuclei, respectively, as

M N
Vo =Y v0(R)+ ) vo(ri). (1.9)
i=1 i=1
o — -
VO,n VO,e
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By this the Hamiltonian can be separated into a purely nuclear component,

Hpue, and an electronic component, I:lilR}, that depends parametrically on
the coordinates of the nuclei,

H= Tn =+ Vrm + VO,n + Te + Vne + VO,e + Vee = Hnuc + Hé{lR} . (1.10)
Hnuc I:I{IR}

Most commonly, electronic systems are treated in the Born-Oppenheimer
approximation [4]. The nuclei have a much larger mass than the electrons,
so the latter are expected (assuming similar momenta) to instantly adjust to
changes in the nuclear positions. Based on this assumption, the wavefunc-
tion can be approximated as the product of a nuclear wavefunction, ¥Ynuc,

and an electronic wavefunction, ‘I’ilR }, for each configuration of the nuclei,
{R} [B],
¥ = P ¥ (1.11)

In this approximation, the electronic Schrédinger equation
AR} {R R
A = (R ¥ (1.12)

can be solved for all configurations of the nuclei and produces the electronic
energy as a function of nuclear coordinates, Eq({R}). As Vin and Vo, de-
pend only on the nuclear coordinates, these terms can be combined with
the electronic energy to give the potential energy surface (PES), Epgs({R}).
Using the potential energy surface, the nuclear Schrodinger equation can
be solved by employing the action of the complete Hamiltonian. Here, the
nuclear kinetic energy operator also has an action on the electronic wave-
function, as it depends on the nuclear coordinates in a parametric way. If
these non-adiabatic contributions to the energy can be neglected [5], the nu-
clear wavefunction and total energy of the system can be found by solving

(Tn + EPES({R})) Yrnue = E¥nuc - (1.13)

With the introduced approximations, the computation of the wavefunction
and energy of a system made up of nuclei and electrons can be separated
into an electronic and a nuclear problem. These two are connected via
the potential energy surface, whose computation is in most cases a chal-
lenging task. Determining the electronic wavefunction for a single nuclear
configuration requires solving the electronic Schrodinger equation—a 3N-
dimensional differential equation. This is infeasible, both analytically and
even numerically, for most electronic systems.
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1.1 Hohenberg-Kohn Density Functional Theory

In 1964, Hohenberg and Kohn proved two theorems [6], which laid the
foundation of modern density functional theory (DFT). They showed that
the electron density pg of a non-degenerate electronic ground state of N elec-
trons in an external potential v(r) defines the ground state wavefunction ¥
and by this all observables that can be derived from it. This is—in theory—a
great simplification, as the electron density is only a 3-dimensional function,
while the wavefunction of N electrons is a function in 3N dimensions.

First Hohenberg-Kohn theorem

The external potential v(r) is a unique functional of the ground state
density py,0(r), apart from a trivial additive constant. [6]

The Hamiltonian of N electrons in an external potential v(r) reads

Z Ar1+2 o(r; +ZZ

TN +0(r) + Veen , (1.14)
i=1j=1 |rl ]’

in which the number of electrons, N, and the external potential, v(r), are
the only non-universal, i.e., system specific, dependencies. Given these, the
Hamiltonian defines the ground-state wavefunction, ¥, 0, and by this the
ground-state electron density, p,0(r).

The ground state density defines N by integration, but more importantly
also the external potential, which can be proven by reductio ad absurdum [6]].
Hence, the Hamiltonian is completely defined from the density alone, which
makes it possible to formulate the energy as a functional of the ground state
density by

Evpl000] = /dr Po,0(r)o(r) + Flooo] , (1.15)
with the “universal functional”
Flooo] = <1PU,0 | TN + Vee,N |1Fv,0> . (1.16)

This functional can be expressed as the sum of the Hartree energy, Exj[04,0],
i.e., the classical Coulomb repulsion of the density with itself, and another
universal functional, G[p, ], containing the remaining contributions,

Floyo] = /dr dr’ W + Glpo0] = Entlpoo] + Glowo] - (1.17)



1.1. Hohenberg-Kohn Density Functional Theory

For a known external potential and number of electrons the ground-state
energy can be found by a variational procedure, as shown by the second
theorem.

Second Hohenberg-Kohn theorem

For a given external potential v(r) and number of electrons N, the vari-
ational relation E, [0, o] > Eu[00,0] = Eo N0 holds for any N-electron
ground-state density p, o(r) corresponding to a potential v'(r). [6]

Using this variational relation one can find the ground state density and
energy for a given external potential and number of electrons. However,
two problems arise in this procedure: i) The trial densities must correspond
to an N-electron wavefunction (N-representability) and ii) they must be the
ground state density of some external potential (v-representability).

The N-representability of the trial densities can be ensured. For any non-
negative and differentiable density which integrates to N electrons, a cor-
responding valid wavefunction can be constructed [7, [§]. The necessity of
v-representable trial densities can be eliminated by using the constrained
search formalism [9]. Here, the universal functional of v-representable den-
sities F[py ] is replaced by the functional

Flp] = %‘Qlj‘p (Yo | TN+ Veen | ¥p) (1.18)

a universal functional of N-representable densities which includes implicit
minimization over all valid wavefunctions ¥, that yield the density p.

Variational minimization of the total energy expression with respect to the
density yields the ground-state energy, which, in this formulation, also
holds for degenerate ground states:

Eyvo [PU,O} pﬁiN

min {/dr p(r)o(r) + f[p]} (1.19)

~ mip { e p(e)otr) + guin (0% T+ Vucny | ¥0)] } .

While this procedure gives the exact ground state energy of the system, any
application of it requires the variational minimization of F[p]. This in turn
requires the evaluation and minimization of expectation values of correlated
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N-electron wavefunctions. As a consequence, using the exact formulation
of DFT involves the same or even more effort than the direct solution of the
Schrodinger equation.

Applicability of DFT relies on sufficiently good approximations of the uni-
versal functional, which depend explicitly on the density (or properties
easily derived from it). Unfortunately, such approximations are often un-
suitable to describe inhomogeneous systems such as atoms or molecules.
Amongst other deficits, the kinetic energy, in particular, is described poorly.

1.2 Kohn-Sham Density Functional Theory

Based on the Hohenberg-Kohn theorems, Kohn and Sham proposed an al-
ternative, but still exact way to apply DFT to electronic systems [10]. They
introduced a reference system that produces the same density as the corre-
lated wavefunction, but consists of non-interacting electrons, i.e., a Slater-
determinant of Kohn-Sham (KS) orbitals, {¢} (or more general, a linear
combination of energetically degenerate determinants).

The kinetic energy of this reference system, T, can be evaluated exactly and
is separated from the universal functional,

G[P] = TS[P] + Exc[p] ’ (1‘20)

where Ex[p] is defined as the exchange-correlation energy of p(r). The total
energy expression then reads

Elo] = Tulp] + Veselo] + Enlo] + Exclo], (121)
with Vexe[p] = [dr p(r)o(r).

From functional variation under conservation of the number of electrons,
the stationary condition of the total energy is given in terms of the KS or-
bitals ¢; by the Kohn-Sham equations

{§A+v<r>+vH[p]<r>+vxc[p]<r>}qoi -

{_;A‘Fveff[ﬁ’](r)}q’i = &9¢i, (1.22)

with the exchange-correlation potential vx.[p](r) = 55;Er[§]

can be solved iteratively, in a similar way as is done in the Hartree-Fock

. These equations
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(HF) approximation. Having solved the KS equations, the energy of the
system can be obtained from equation (1.21).

The KS equations in this form are derived for the case of a closed shell
system, i.e., for each spin-up orbital, a spatially identical spin-down orbital
exists. For open-shell systems, this is not the case, but the Hohenberg-
Kohn and Kohn-Sham formalism could be extended to spin-polarized den-
sities [11]. With ¢ indicating the spin, i.e.,either 1 or |, the total density is
the sum of the spin-densities, p = p' + p*, which are defined by the spin
orbitals as p (1) = ZlN:”l |7 (r)|*. The unrestricted Kohn-Sham equations read

14
{38+ utle o) | o5 = ot (12
with the spin-dependent effective potential,

oGlo’, p*1(r) = v(r) + ool (r) + olclp”, 0*](r) (1.24)

in which the exchange-correlation potential is defined as

_ OEx 0", "]
op7(r)

KS-DFT is an exact treatment of the electronic systems, as Exc, per definition,
contains all contributions to the energy not covered by the remaining terms.
This, however, only holds if the ground state density is non-interacting v
representable, i.e., if there exists an effective potential for which the ground
state of the non-interacting reference system produces the correct density.
This is not the general case [12], but it is commonly assumed to hold in
practical applications of KS-DFT.

okelp’ p*](r) (1.25)

As in the case of Hohenberg-Kohn DFT, the exchange-correlation functional
has to be approximated to make applications practical. The non-interacting
kinetic energy usually contains a large part of the total kinetic energy, so
that errors due to approximation of Ey. turn out to be not as severe as for
approximation of G[p] as a whole.

1.3 Density Functional Approximations

Several methods of constructing a density functional approximation are
possible. It can be constructed empirically to best reproduce experimental
data, less empirically to best reproduce properties obtained theoretically,
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or non-empirically trying to fulfill as many known properties of the exact
functional as possible.

Exchange-correlation functionals can be categorized by their level of ap-
proximation. Perdew described the different levels as the rungs of “Jacob’s
ladder of density functional approximations” [13) [14].

This ladder has five rungs and stepping up from one to the next, the func-
tionals become more complex, but by this they also have the potential to be
more accurate.

The functionals on the first rung only depend on the value of the spin den-
sity and are described by the local spin-density (LSD) approximation. The
second rung consists of the generalized gradient approximation (GGA), where
dependencies on the gradient of the spin-density are included in the func-
tional as well. On the third rung, the orbital kinetic-energy density and
optional also Laplacians of the density are included, which defines the meta
generalized gradient approximation (meta-GGA). While the lowest three rungs
merely use semi-local information, the hyper generalized gradient approxima-
tion (hyper-GGA) on the fourth rung also takes the fully non-local exact
exchange energy density into account. The functionals on the fifth rung,
the generalized random phase approximation, also include the unoccupied or-
bitals.

Local Spin Density Approximation

The most essential model system of electronic structure theory is the ho-
mogeneous electron gas (HEG), an infinite number of electrons distributed
over all space with a constant, spin-unpolarized density p. For this system,
the exchange energy is known analytically as a functional of the density in
the local density approximation (LDA),

Exlp] = [dr ePA(o(r)) , (1.26)
with the exchange energy density, P4, defined as
LDA 3 s LDA 4/3
ex () == et = -G (1.27)

The energy density of a spin polarized HEG, Ex[p!, p*] can be evaluated by
the fundamental scaling relation of the exchange energy,

Edo" 0" = 5 (Ed20!] + Ex2o']) (1.28)
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The correlation energy of the HEG is known analytically only in the asymp-
totic limits of high [15] [16] and low density [17] for the polarized and un-
polarized case [18]. The correlation energy for several densities has been
evaluated by a quantum Monte Carlo study [19] and several interpolat-
ing parametrizations for intermediate densities and spin-polarizations exist,
e.g., VWN [20], PZ81 [21] or PW92 [22].

The local spin-density (LSD) approximation of the exchange-correlation en-
ergy has the general form,

ESlpl '] = [ar e (o1(r), p"(1) (129)

where elP is derived from equations and . When applied to a
homogenous electron gas, the LSD approximation gives the exact exchange-
correlation energy. For varying electron density, the underlying assump-
tions are less valid and the error increases with the inhomogeneity of the
systems. While the electronic structure of valence states in solid metals
is accurately described by LSD, the method usually fails to give a proper
description of atoms and molecules, where the valence density has large
spatial variations.

Generalized Gradient Approximation

Local spin density functionals only depend on the value of the spin densities
and are hence incapable of properly describing strongly varying densities.
As an extension to LSD functionals, the generalized gradient approximation
(GGA) [23H28] also depends on the gradient of the density. By this some
non-locality is introduced into the functional as the gradient of the density at
some point in space is directly connected to density variations in its vicinity.
As these functionals still exclusively depend on properties of the density
at each individual point in space, they are usually classified as semi-local
functionals rather than non-local.

A GGA exchange functional can be constructed by scaling the LSD exchange
energy density with an enhancement factor, F(s), that depends on the den-
sity and its gradient. This dependency is usually expressed by a dimension-
less reduced gradient in the form of

s(r) = )l (1.30)
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The general structure of the GGA exchange energy is

ECA[o, V] = [dr kP (p(r))F(s(r)) (1.31)

and several different forms of Fy(s) have been proposed. For s — 0 the
enhancement factor should approach unity, to ensure the correct description
of the HEG. The GGA correlation functionals can take significantly different
forms, but again a desirable feature is to produce the correct correlation
energy of the HEG if the gradient of the density is zero.

B88 Exchange Functional

The B88 exchange functional [29] is inspired by deficits of LSD exchange as
an approximation for HF exchange. In the HF approximation of a closed
shell atom, the exchange energy density, e!f(r), far from the nucleus is
given by [30]

1

. HF(\ o 1
rl;n;oex (r) =~ 2|r|p(r). (1.32)

In this region, the electron density is decaying exponentially [18] as

: ~ AT

}Lrgop(r) ~ e, (1.33)
with « being a factor related to the largest eigenvalue of the occupied or-
bitals. Application of the LDA exchange functional to this density gives an
exchange energy density of

lim elPA(r) = —CLPA2 30, (1.34)

which decays much faster with » than equation (1.32).

Becke proposed a GGA form for the exchange functional which reproduces
the HF exchange-energy density for atomic cases [29]. This functional has
one free parameter, which was fit to the exchange energy of the six noble
gas atoms from helium through radon. The B88 functional was found to im-
prove the exchange energy over the local approximation with a remarkable
accuracy.

LYP Correlation Functional

Colle and Salvetti developed a formula to approximate the correlation en-
ergy of a system based on the Hartree-Fock wavefunction [31]]. Four free
parameters in this formula were fit to best reproduce the correlation energy
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1.3. Density Functional Approximations

of the helium atom. Lee, Yang and Parr reformulated the Colle-Salvetti for-
mula as a functional of the the density and local kinetic-energy density. The
LYP GGA correlation functional was then obtained by a gradient expansion
of the kinetic-energy density [32].

BLYP Exchange-Correlation

In the BLYP exchange-correlation functional, LYP correlation accompanies
the B88 exchange functional. This functional greatly improves the descrip-
tion of atomic and molecular systems over the LSD approximation. This
remarkable, as the theoretical considerations for the construction of the
functional components stem from the Hartree-Fock approximation and ad-
justable parameters were fit to a very limited test set of rare gas atoms.

PW91 Exchange-Correlation Functional

Perdew and Wang constructed exchange and correlation functionals [33H35]
that obey a number of known properties of the exact functional.

The exchange-correlation energy can be expressed as the electrostatic in-
teraction of the density p(r) with the density of an “exchange-correlation
hole” [18,36] around an electron at r, pxc(r,7’),

Exclo] = % /drp(r) /dr' M : (1.35)

The exchange-correlation hole is the sum of the exchange hole and the cor-
relation hole, pxc = px + pc, which have the properties

Exlp] = %/dr o(r) /dr' p:(r,:’|), /dr' px(r, ) = =1, px(r,¥') <0
Eo] = %/dr o(r) /dr’ 7;(1':,6, /dr' pc(r,7)=0. (1.36)

Other known properties of the exact functional are limits for the exchange-
correlation energy under uniform and non-uniform density scaling [37], a
bound for the magnitude of exchange and exchange-correlation energy [38]
and the gradient expansion of the HEG energy [10, 39-41].

The functional was derived from a gradient expansion of the electron holes,
where cutoff radii were introduced to fulfill the exact properties of the holes.
The PW91 exchange functional was proposed as a “modified Becke form”
with a decay as s~ for large reduced gradients to fulfill exact bounds [33].
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Figure 1.1: The enhancement factor for exchange, F(s), as a function of the reduced
density gradient, s, for B88, PW91 and PBE. LSD corresponds to a constant factor
of one.

The correlation functional was first obtained numerically and then fitted
with an analytical expression.

By the introduced cutoffs, the long-range contributions of the exchange and
correlation holes are not accounted for. These, however, are expected to
cancel each other [42]. Due to this, an accurate description of the energy
can still be achieved with this approximate exchange-correlation functional,
while the exchange or correlation functional by themselves might give infe-
rior results.

PBE Exchange-Correlation Functional

In 1996, Perdew, Burke and Ernzerhof presented a “GGA made simple”
functional [43], which was derived non-empirically, i.e., all parameters in
the GGA are fundamental constants. The structure of the functional is much
simpler than that of PW91, but PBE does not satisfy all the exact require-
ments described above. This, however, seems to have a minor effect on its
performance for many practical applications, where it performs similar to
PW91. Also for PBE, the exchange and correlation functionals complement
each other and should not be used individually.

Figure shows the enhancement factors of exchange for the three func-
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1.3. Density Functional Approximations

tionals described above.

Hybrid Functionals

Based on the adiabatic connection formula [44], Becke proposed to com-
bine a fraction of exact exchange, i.e., HF-like exchange, with semi-local
functionals. He first proposed and tested a “half-and-half” form based on
LSD [45],

EMP = gy E9@t 4 g, ELSP (1.37)

with a1 = ap = 0.5, resembling a linear approximation of the adiabatic con-
nection. This hybrid could describe atomization energy of several molecules
more accurately than LSD, but could be improved further by a numerical fit
of the two parameters [45].

Perdew, Ernzerhof, and Burke proposed the form of a general hybrid func-
tional [46]],

1
EMWb = E.. + - (Eg*t —Ey) , (1.38)

and argued that the integer n should be the lowest order of perturbation
theory which reproduces the integrand of the adiabatic connection reason-
ably well. They suggested a value of n = 4 for a reasonable description of
most molecules.

B3LYP

The B3LYP hybrid functional is the most frequently used functional in
calculations on molecules [47]. Becke constructed the hybrid functional
B3PWOI1 [48] of the form

B3PWI1  __ LSD exact LSD
Exc - Exc +ao (Ex _Ex )

+ oy (P~ ELSD) o (EEW - EISP) , (1.39)

with three adjustable parameters, ag, ax, and a.. The optimal parameters
were determined by a linear least-squares fit to atomization energies, ion-
ization potentials, and proton affinities of a selection of molecules as well
as the total energy of atoms. The optimized parameters were obtained as
ag = 0.20, ax = 0.72, and a. = 0.81.

Based on this functional, Stephens et al. created the B3LYP [49] hybrid func-
tional, which differs from B3PW91 in the correlation functional. The LYP
functional replaced PW91 correlation and the VWN functional was used as
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1. Theoretical Background

the local component of correlation. Even though the parameters determined
by Becke had not been refit to the different functional form, the B3LYP
functional gives remarkably accurate results for calculations on molecular
systems.

PBEO

Adamo and Barone [50] used this functional form of equation (1.38) with
n = 4 to construct the non-empirical hybrid functional PBEO,

1
EPBEO _ pPBE 1 (E)e(xact _ E)I(’BE) _ (1.40)
The PBEO functional improved agreement with experiment over PBE for
equilibrium geometry, binding energy, dipole moment and harmonic fre-
quency of a selection of molecules [50].

The energy of hybrid functionals is commonly found by using the KS-
equations with a non-local exchange-correlation operator 93.. The
non-locality is introduced by variation of the non-local exact exchange with
respect to the orbitals. This way of treating hybrid functionals is referred
to as generalized Kohn-Sham, as a true KS method involves a local potential
derived from variation with respect to the spin density. A true KS treatment
of hybrid functionals can be achieved by means of the optimized effective
potential (OEP) method [51H53].

1.4 Shortcomings of Approximate Functionals

Approximations of the exact exchange-correlation functional introduce er-
rors into DFT. These errors can be minor, i.e., within an acceptable tol-
erance for the particular observable, or severe, which indicates that the
particular functional approximation is inappropriate to describe the prop-
erty of interest. Semi-local functionals often predict the atomization energy
of molecules, i.e., the energy needed to split the molecule into individual
atoms, to be too high, but are usually in significantly better agreement with
experiment for GGA functionals than for LSD. Chemical bonds are usually
predicted to be too long, but here GGA functionals give slightly worse re-
sults than LSD. Reaction barriers, i.e., the energy difference between the
saddle points on the potential energy surface and the minima correspond-
ing to reactants, are usually predicted to be too low by semi-local function-
als. In the last years, a large number of functionals has been developed to
improve the accuracy of DFT. These are often able to reproduce a certain

14
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chemical property very well, while they usually give suboptimal accuracy
for many others [54].

Some of the errors of semi-local functionals are expected to be due to a
delocalization error, i.e., the tendency to predict a too low energy of delo-
calized electron densities. The delocalization error becomes evident in the
dissociation of diatomic molecules. Homonuclear diatomic cations, X3, are

expected to dissociate into two Xz fragments. The total energy should be
identical to the sum of the energy of X and X*. For Hj, the simplest system

of this kind, the energy of the separated H2* systems is lower than that of
a hydrogen atom and a single proton [55]. Heteronuclear molecules, on the
other hand, should dissociate into fragments with integer charges. The dis-
sociation of NaCl predicted by the LSD approximation, however, results in
Na%#*t and C1°4~ [56]. The equilibrium structure of molecules can also be
affected by the delocalization error, as illustrated by alkynyl radicals. The
PBE equilibrium geometry of the ethynyl radical is not linear, but bent with
an angle of 165° [57]. Too strong delocalization of the electron density is
expected to cause this effect. Semi-local functionals can also fail to properly
describe localized electronic defects in solid state systems where the density
becomes too delocalized [58].

The delocalization error is closely related to the self-interaction error (SIE)
in approximate functionals. The Hartree energy is the classical Coulomb
interaction of the electron density with itself,

Enlo] = 5 /drd’p(r)p(,l) (1.41)

which includes a spurious interaction of each electron with itself. This,
however, is compensated by equally large terms of opposite sign in the
exact exchange functional, as is the case for the Hartree-Fock approxima-
tion. In the common formulation of the Hartree-Fock total energy, both
the Coulomb and the exchange energy expression contain terms of orbital
self-interaction, Egy iy and Egjx, with opposite signs,

Egiule Z//d dr’ p1| f (,|) —Egix (1.42)

where @V represents the set of N orbitals and p;(r) = |@;(r)|? is the single-
particle density of orbital ¢;.
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1. Theoretical Background

In contrast to HF, the cancellation of these terms is usually incomplete when
approximate exchange-correlation functionals are used in DFT. For systems
of a single electron, the conditions for a self-interaction free functional can
be expressed as

Ex[p'] = —Enlp!] and  Ep!]=0, (1.43)

which can be used to define a measure for the one-electron self-interaction
error of a functional by

Esielo'] = Exc[o'] + Enlo'] - (1.44)

It is possible to construct semi-local correlation functionals that return zero
energy for any one-electron density and non-zero energy for many-electron
densities, e.g., LYP or by a meta-GGA construction. The main problem
is to construct an exchange functional that will be self-interaction free for
one electron densities: The electrostatic interaction has a strong long-range
character which makes the Hartree energy fully non-local. This, however,
has to be compensated by a functional that has only local information of the
density. Given a particular one-electron density, a semi-local exchange func-
tional can be constructed so that equation will hold. It is, however,
most likely impossible to create a functional at this level of approximation
which is self-interaction free for all possible one-electron densities.

The effect of the self-interaction error can be illustrated with the example
of hydrogen-like systems, where the ground state wavefunction, density,
and total energy are known analytically. For these systems the exact Kohn-
Sham equations are equivalent to a one-electron Schrodinger equation and
the exact KS-eigenvalue of the orbital is equal to the total energy. Table
lists the energy and eigenvalue of the atomic one-electron systems of H
throughout Ne’*, calculated with the exact density using the LSD and PBE
functionals.

Comparison of the total energy shows that the deviations for LSD increase
with the nuclear charge, giving the largest error for neon, 0.39 Ha. For PBE,
the deviation is much smaller, only 0.06 Ha, so this functional is nearly one-
electron self-interaction free for these systems.

It was shown by Janak [59] that the highest eigenvalue of the KS-orbitals
obtained from the exact functional corresponds to the change in total en-
ergy with respect to variation of the occupation of this orbital. Perdew et
al. could show [60] [61]] that the total energy changes linearly with the oc-
cupation number of an orbital, the slope corresponding to its eigenvalue.
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1.4. Shortcomings of Approximate Functionals

Table 1.1: Exact energy and KS eigenvalue of atomic one-electron systems com-
pared to LSD and PBE. The estimates of the eigenvalue (&) are obtained by projec-
tion of equation using the exact orbital.

7  Eexactr€exact E(LSD) E(PBE) (¢) (LSD) (¢) (PBE)
1 050 048  -0.50 -0.26 027
2 200  -194  -1.99 -1.50 -1.54
3 450  -440 449 -3.74 -3.80
4 800 786  -7.98 -6.97 -7.07
5 21250 -1232  -1247 -11.21 -11.33
6 1800  -17.78  -17.97 -16.44 -16.60
7 2450 2423 2446 -22.68 22.86
8 3200 3169 -31.95 -29.91 -30.13
9 -4050  -40.15  -40.45 -38.14 -38.39
10 -50.00  -49.61  -49.94 -47.38 -47.66

For LSD and PBE, however, the eigenvalues are too small in magnitude,
with PBE eigenvalues being only slightly closer to the exact value. This
deviation results from violation of the energy linearity by semi-local func-
tionals. Instead of being linear, the energy is usually a convex function of
the occupation number for semi-local functionals [55, [62]. Due to this, the
highest KS-eigenvalue is usually too small in magnitude when compared to
the ionization energy. Likewise, the errors in the dissociation limit of XJ or
NaCl can be traced back to this undesirable property.

In many-electron systems, equation cannot be used to evaluate the
magnitude of the self-interaction error in the energy, as it is only defined
for one-electron densities. However, the presence of a many-electron self-
interaction error can be described qualitatively for these systems by the
violation of the energy linearity.

Several ways have been proposed to correct for the self-interaction error
in semi-local functionals [21} [63] [64]. Of these, the Perdew-Zunger self-
interaction correction [21] received the most attention in the past and is
explored in more detail in the following sections.
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Perdew-Zunger
Self-Interaction Correction

The exact exchange-correlation functional exactly compensates the Hartree
self-energy but approximate functionals usually fail to do so. It is possi-
ble to construct self-interaction free correlation functionals at the semi-local
level, e.g., LYP. However, none of the available semi-local exchange func-
tionals can compensate the fully non-local Hartree energy for all possible
one-electron densities. Perdew and Zunger [21}, [65H67] proposed a correc-
tion for approximate functionals that removes this particular form of self-
interaction error.

2.1 Definition
The Perdew-Zunger self-interaction correction (PZ-SIC) [21] subtracts the

self-interaction errors of the orbitals, as defined in equation (1.44), from the
approximate exchange-correlation functional,

N
EXZSC1pN] = Exelo] = ) Esiloi] - 1)
i=1

This correction can be applied to any functional and has four desirable
properties [68]:

1. EPZSIC[p1] exactly cancels the non-local Hartree energy of any one-
electron system, regardless of the functional approximation it is based
on.
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2. Perdew-Zunger Self-Interaction Correction

2. The correction has no effect when applied to the exact functional, as
it is already self-interaction free, i.e., E§2[p;] = 0.

3. EPZSIC s self-interaction free in the sense that applying the correction

a second time has no effect, i.e., it behaves like the exact functional in
this respect.

4. For an atomic ion of charge +Q a single electron far from the nucleus
experiences the correct —(Q+1)/r potential, as ELZSIC corrects for its
Hartree self-interaction.

The numerical results presented by Perdew and Zunger [21] on atomic sys-
tems were impressive: The total energy of atoms is in much better agree-
ment with experiment and SIC-LSD also predicts stable anions, where LSD
often fails. Furthermore, the negative of the orbital eigenvalues were shown
to agree better with ionization energy both from the valence and core shells.
For semi-local functional approximations, the orbital eigenvalues are gener-
ally higher, resulting in an underestimation of the ionization energy.

2.2 Self-Consistent Minimization

The first application of PZ-SIC was based on several approximations that
did not allow for a truly self-consistent minimization. Later a self-consistent
and efficient minimization became possible. In fact, the key ‘ingredients’” in
the self-consistent minimization technique had already been mentioned in
the 1981 publication, but it took a few decades until they had been imple-
mented and their importance and implications had been understood.

Initial Formulation

Perdew and Zunger determined the ground state orbitals and energy by
solving the set of Kohn-Sham-like equations,

14
{32 +0ttr) —onlpf)) — ol 0 f o —efgt . 22

These differ from the KS equations by the orbital specific potentials
—on[ef] and — bl [07,0] that arise from the SIC terms of orbital ¢¢ in the
variation of the PZ-SIC energy. The Hamiltonian can be written more com-
pactly as

H=H+V, (2.3)
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where the spin index has been dropped for brevity, Fy contains all orbital-
independent terms of the Hamiltonian, and V; contains the orbital depen-
dent potentials of orbital ¢;.

It is pointed out that finding the solution to this set of equations results in
slightly unorthogonal orbitals, but that an enforced orthogonalization has
little effect on the numerical results.

Off-diagonal Lagrange multipliers

“If desired, the optimum set of orthogonal orbitals could of course be
found by introducing off-diagonal Lagrange multipliers.” [21]

Perdew and Zunger did not employ the mentioned off-diagonal Lagrange
multipliers, but this was done by Harrison, Heaton and Lin [69]. They de-
rived a necessary (though not sufficient) minimum condition for the PZ-SIC
energy from the functional derivative with respect to the complex conjugate
of the orbitals, ¢;,

N
Hipi =) Ajig; . (2.4)
=1

The orbitals are coupled via the matrix A, whose elements, the Lagrange
multipliers, were defined as

H;

Aji = (9j | Hi| ¢i) - (2.5)
For functionals that only depend on the total density, the variation gives
a similar minimum condition, with the difference that all operators H; are
identical. In this case, the matrix of Lagrange multipliers is Hermitian. By
a unitary transformation of the orbitals, which does not change the total
energy, the minimum condition can be reformulated as a set of eigenvalue
equations. For PZ-SIC, this is not possible in a straightforward way and the
set of coupled equations has to be solved.

The algorithms that had been developed for DFT could not be used to min-
imize the PZ-SIC energy, as they usually relied on expressing the minimiza-
tion as an eigenvalue problem based on a Hermitian operator.
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2. Perdew-Zunger Self-Interaction Correction

Unified Hamiltonian

Harrison, Heaton and Lin defined a Hermitian “unified Hamiltonian” [69]],

=)

N
Hu = 2 piHi + OHipl' + pl'Hl'O , (2.6)
i=1
built up from the orbital specific SIC-Hamiltonians, H;, and the projection
operators

N
Pi=l|gi) (¢ and O=1-}) P. 2.7)
i=

Finding a diagonal representation of this unified Hamiltonian was shown
to be equivalent to fulfilling the necessary minimum condition (2.4). Thus,
the proposed minimization problem could be solved by using the Hermi-
tian unified Hamiltonian with the well established iterative diagonalization
algorithms.

Localization condition

“The self-interaction correction depends on the choice of orbital repre-
sentation. [...] Since the orbital densities [. .. ] change under the [uni-
tary] transformation, the SIC total energies are not invariant. [...]
The right unitary transformation might be the one which minimizes
the SIC energy expression.” [21]]

The dependence of the PZ-SIC energy on the choice of the unitary transfor-
mation among the occupied orbitals was not accounted for in the unified
Hamilton approach. As equation does not take the unitary transfor-
mations into account, it is only a necessary, but not a sufficient condition
for a minimum of the energy.

Pederson, Heaton and Lin analyzed the dependence of the PZ-SIC energy
on unitary transformations among the occupied orbitals and derived a min-
imum condition for the variation in this subspace [70]. The “localization
condition”,

(oi| Hi = By @i) = (@i | Vi = Vi | 9:) = 0, (28)
holds for all pairs of orbitals if the energy is in a stationary state with respect

to a unitary transformation amongst them. It can easily be shown that the
matrix of Lagrange multipliers, as defined by equation (2.5), is Hermitian if
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2.2. Self-Consistent Minimization

the localization condition is fulfilled. Equations (2.4) and (2.8) together are
the sufficient conditions for a stationary state of the PZ-SIC energy.

Pederson et al. used the unified Hamiltonian to find the ground-state en-
ergy, but included an additional step before each diagonalization, in which
the orbitals were transformed to fulfill the localization condition and mini-
mize the SIC terms. With this method, the molecules N, [70] and Li, [71] as
well as atomic systems [72] were studied. The energy minimizing orbitals
of the atomic systems appeared as hybrid orbitals of each shell’s s and p
type functions.

Analytical energy gradient

The diagonalization of the unified Hamiltonian after enforcing the local-
ization condition can result in convergence problems in cases of (nearly)
degenerate orbitals [[71]. Such problems can be avoided by a direct mini-
mization of the energy based on energy gradients. Goedecker and Umrigar
derived the energy gradient with respect to variation of the orbitals as the
residual [73]

Gi(r) = H, z(Pz ZAJI(P] (2.9)

in which the Lagrange multipliers are defined from the Hermitian part of
the matrix A,

. 1 1 N N
Aij =5 (A +A5) = 5 (i | Hi+ Hj | g) - (2.10)

With this energy gradient, the minimum of the PZ-SIC energy can be found
reliably in a direct minimization using well established gradient based min-
imization algorithms.

Double Basis Set

It was shown by Pederson et al. [71] that the matrix of Lagrange multipliers
becomes Hermitian and can be diagonalized to produce a set of canonical
orbitals and eigenvalues. Messud et al. used this property in an application
of PZ-SIC in time-dependent DFT [74-76]. The canonical set of orbitals, pN,
is connected to the energy optimizing orbitals, ¢V, by the unitary transfor-
mation, W, which diagonalizes the matrix A,

N
Z k(pk /\]l = Z W,fjskwki . (211)
k=1
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2. Perdew-Zunger Self-Interaction Correction

This makes it possible to reformulate the minimum condition (2.4) in terms
of the canonical orbitals as the set of eigenvalue equations,

N
Hopr + Y WEViWi; = {Ho + Vi } i = e, (2.12)
i=1

with the canonical orbital specific operator, V¢, defined as [77]

N

V=Y WiiVile (il - (213)
i=1

The formulation of the optimization problem in terms of an eigenvalue

problem, which is possible by enforcing the localization condition, not only

helps when PZ-SIC is used in time-dependent applications but also makes it

possible to implement stationary PZ-SIC in a more efficient way [74, 75, [77].

2.3 Previous Assessment

Several studies of PZ-SIC applied to atomic and molecular systems have
been published. The following list is far from complete, but gives an idea
about the range of systems and observables that have been studied and the
conclusions that have been drawn from those studies.

Johnson et al. studied the H, 4+ H exchange reaction and found that PZ-SIC
resulted in shorter bonds and higher energy barrier [78]. This was con-
firmed by a later study of Csonka and Johnson [79]. Goedecker and Umrigar
showed that LSD+SIC gives an improvement over LSD in the total energy of
atoms. On the other hand, LSD+SIC predicted too short equilibrium bond
lengths in molecules and increased the error in one calculated reaction en-
ergy [73]. Patchkovskii and Ziegler studied several reactions with respect
to the reaction energy and barrier height [80]. The results indicated that
SIC had a minor effect on reaction energy, while the energy of saddle point
structures was increased, resulting in a correction in the predicted barrier
heights. Gréfenstein et al. studied the dissociation of radical ions and found
that SIC predicted an incorrect, non-planar ground state geometry of the
CHj; radical [81], which was also found for the isoelectronic NHJ radical
cation [82]. A qualitative improvement in the description of the dissociation
of radical cations was obtained, but the results on equilibrium properties
were generally poor.

Vydrov et al. studied the effect of SIC on the formation enthalpy of several
molecules and found that for LSD, SIC reduced the errors, but the appli-
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cation to GGA functionals led to worse results [83]. In an extensive study
they later analyzed the total energy of atoms, atomization energy and equi-
librium bond length of molecules, reaction barrier heights as well as ion-
ization energy and electron affinity calculated from energy differences. The
results indicated that SIC improved energetics for LSD but often gave less
accurate values for the PBE functional [84) 85].

2.4 Scaled Self-Interaction Correction

It was found that PZ-SIC often results in an overcorrection of errors in cal-
culated observables. To improve the accuracy, scaled down versions of SIC
have been proposed and tested. These modified functionals take the form

N
ESIC[ol, o] = E[pT, p¥] = Y i ESE ], (2.14)
i=1

where «; can take any values between zero (no SIC) and one (PZ-SIC).

The simplest way to scale the SIC terms is by using a constant factor for all
orbitals [86]. This global scaling could be shown to improve calculated ob-
servables, but the optimal factor differs for different observables and func-
tionals [87, [88]. Furthermore, by using a factor other than unity, the func-
tional will not give the correct energy for one-electron systems and will not
produce the correct long range behavior of the potential.

Vydrov et al. proposed more flexible ways of scaling. The factor for each
orbital is determined from its kinetic-energy density [85] or, in a simpler
approach, based on its orbital density [89], while in both cases depending
on one additional, adjustable parameter. In both schemes, the functional re-
duces to PZ-SIC for any one-electron density. Numerical tests showed that
this way of scaling can improve the accuracy over both semi-local function-
als and PZ-SIC. The optimal parameter, however, differs for different func-
tionals and depends on which observable is studied. Also here, the correct
long range behavior of the potential is lost if the factors do not equal unity.
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Implementation of
Perdew-Zunger Self-Interaction
Correction

Self-consistent calculations using orbital-density dependent self-interaction
correction require a reliable minimization algorithm. Furthermore, common
and usually valid approximations used in applications of KS-DFT have to be
reviewed, as they might be inappropriate due to the fundamentally different
structure of the PZ-SIC functional. The restriction to real orbitals is one
of the approximations that can be shown not to be applicable for PZ-SIC
functionals.

3.1 Complex Orbitals

Orbitals in conventional, stationary DFT are commonly taken to be real
valued functions. Even though wavefunctions are in general complex, the
restriction to real orbitals usually does not affect the ground state properties
predicted by semi-local functionals.

For example, the p-orbitals of hydrogen-like atoms can be described by
various equivalent sets of three functions. In the familiar Cartesian repre-
sentation the set consists of the ‘dumbbell” shaped py, py, and p, orbitals.
However, the spherical harmonic representation of p_1, py, and p4 can also
be used. As shown in figure the complex pg equals the real p,, while
the density of the other two complex orbitals is different and corresponds to
a ring rather than a dumbbell. The total density of three occupied p orbitals
is, however, the same in both representations, so that either one of the two

27



3. Implementation of Perdew-Zunger Self-Interaction Correction

Figure 3.1: Orbital density isosurfaces of a set of real (top) and complex (bottom)
p-orbitals. For real valued orbitals, red and blue color of the isosurface indicates the
sign of the wavefunction. The real orbitals are spatially degenerate. Of the complex
orbitals (bottom row), the pq orbital is equivalent to p,, while py and p_ differ in
shape and both produce the same density.

sets of functions will give the same energy in semi-local DFT. In PZ-SIC, on
the other hand, the functional depends on the individual orbital densities,
so that the real and complex representation will in general not give the same
energy. Harrison found the SIC energy of the complex set of orbitals to be
lower than that of the real one [90]. Later, however, Pederson et al. could
show that the energy can be lowered even further, if the s and p orbitals
are allowed to hybridize to form the real sp> hybrid orbitals that fulfill the
localization condition [72]. It is clear that the SIC energy of real and com-
plex orbitals can differ, but the published results of previous studies did not
indicate that complex orbitals give a lower ground state energy, so that they
were often not even considered in the self-consistent minimization.

In a few studies, however, the SIC energy could be shown to be lowered
when the orbitals are allowed to be complex. Unfortunately, these results
remained unpublished [91], had been disregarded as being unphysical [92]
or did not attract wide attention [93]. Systematic studies using complex
orbitals with PZ-SIC functionals have been published just recently 95].
The study focusing on the total energy of atoms (see appended article [
confirms the early, unpublished results by Pederson [91], which showed
that a lower energy could be obtained for the neon atom if complex lin-
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Figure 3.2: Orbital density isosurfaces of a set of real (top) and complex (bottom)
sp>-orbitals. Both the real and complex orbitals are spatially degenerate.

ear combination coefficients were allowed in the construction of the hybrid
orbitals.

In figure 3.2 the set of (idealized) energy minimizing complex sp® orbitals
of neon is compared to the set of the corresponding real orbitals. Both sets
consist of four spatially degenerate hybrid orbitals, however their form and
orientation to each other is very different. While the real orbitals have nodal
surfaces, i.e. a two-dimensional surface of zero density, the complex orbitals
are more diffuse and have only a ‘nodal line’, i.e., a vanishing density along
a one-dimensional path.

3.2 Unitary Optimization Algorithm

The direct minimization of the SIC energy using the gradients of equa-
tion (2.9) makes it possible to find the ground state energy self-consistently.
However, the computational effort of this approach is usually much higher
than for conventional DFT and furthermore converges at a lower rate. The
convergence can be improved by using conjugate gradient methods instead
of a simple steepest descent minimization, but it still cannot reach the per-
formance obtained for conventional DFT.

The performance of the minimization algorithm can be greatly improved
by using a two step scheme, where first the energy minimizing unitary

29



3. Implementation of Perdew-Zunger Self-Interaction Correction

transformation of the occupied orbitals is found, and these optimal orbitals
then are altered according to the total energy gradient [75] [77]. The general
structure of this two step scheme is described in article [llf included in this
thesis.

The intermediate unitary optimization can give a similar convergence rate,
in terms of number of iterations, as for semi-local functionals. However,
for each iteration the computational effort is significantly higher than for
semi-local functionals, as the additional SIC terms in the energy functional
and gradients have to be evaluated, and the optimal unitary transformation
has to be found. The unitary optimization is often the bottleneck of a self-
consistent SIC calculation, so it is important to use an efficient algorithm to
find the optimal transformation.

Many commonly used algorithms for the direct minimization of the total
energy propagate the orbitals by a linear variation based on a “direction” de-
rived from the residual (2.9). The altered orbitals are then not orthonormal
and have to be orthonormalized after each step. The breaking of orthog-
onality can be avoided by a careful choice of the search direction [96], in
which case the use of conjugate gradients can greatly increase the conver-
gence rate. The linear correction scheme can also be applied for the unitary
optimization, but in this case orthogonality will always be broken.

Using the double basis set approach, the energy can be expressed as a func-
tion of the transformation matrix W that connects the canonical orbitals ¥~
to the optimized ones. The energy gradient with respect to variation of the
matrix elements can be expressed as

GYO = wk, (3.1)

where x = (A — A") /2 is the anti-Hermitian part of A. The steepest descent
direction is defined as D = —GUYC. In the linear correction scheme, a new
transformation W’ of lower energy is found as

W =0 (W+4D) . 3.2)

The orthonormalization operation O restores unitarity of W/, which is bro-
ken for a finite step length 6. The energy minimizing step length can be
determined by a line search or, in many cases more efficiently, by locating
the minimum of a quadratic extrapolation of the energy as a function of
6. This is, however, not trivial as the effective, orthonormality conserving
direction of propagation changes with the step length, due to the explicit
orthogonalization.
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3.2. Unitary Optimization Algorithm

Figure 3.3: Illustration of the linear (left) and geodesic propagation (right) of
orthonormal orbitals, represented by a sphere. The linear propagation breaks or-
thonormality, which has to be enforced after each step (dotted lines). The geodesic
propagation always maintains orthonormality.

The constrained minimization can be converted into an unconstrained min-
imization by changing the domain of the energy function. The Stiefel man-
ifold incorporates the imposed constraint of unitarity and minimization al-
gorithms of functions on this manifold are available [97, 98]. Here, the
matrix is propagated along a geodesic, i.e., a curved path on the orthonor-
mality hypersurface, parametrized by the matrix exponential of a search
direction given by D = W'D,

W = Wexp (6D) . (3.3)

In figure 3.3 the linear and geodesic schemes are illustrated on a sphere, rep-
resenting the (in general high-dimensional) orthonormality hypersurface.

In the geodesic parametrization, the search direction is independent of the
step length. The minimum of a quadratic extrapolation, using the initial
gradient, xo, and the gradient x;, evaluated after a trial step of ¢, is given
by
tr (D+K0)

tr (D'xp) — tr (D'xy,)
The minimization on the Stiefel manifold furthermore can make efficient
use of the nonlinear conjugate gradient method [99]. The difficulty in us-
ing this method with the orthogonality breaking scheme is the necessity

(Smin = 50 (34)
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3. Implementation of Perdew-Zunger Self-Interaction Correction

to ‘transport’ the gradient along the propagated path, to evaluate the new
search direction for the next step. On the Stiefel manifold, the search direc-
tion of iteration (i 4+ 1) is given by [97, 98]

D(i+1) = —K(it1) + 7(1’—&-1)D(i) . (3.5)

The factor 7(;,1) can be determined sufficiently well by the approximate
Polak-Ribiere formula [98] [100]],

o (F i) = tr (60 %)
e tr (il i) |

With the algorithm described here, an accurate and efficient unitary opti-
mization is possible. The formulation as a minimization problem on the
Stiefel manifold makes it possible to use the method of conjugate gradients,
which can reliably find the minimum in fewer iterations than the steepest
descent method. This, however, requires repeated minimization of the en-
ergy along a geodesic. Expensive full line searches can be replaced by a
gradient based quadratic extrapolation. This can locate the minima with
sufficient accuracy for the nonlinear conjugate gradient method to work
properly, as was also found for a conjugate gradient based approach to
finding first order saddle points [101} [102].

(3.6)

This algorithm has been implemented in different software applications and
was used for efficient unitary optimization in several studies on PZ-SIC [94,
95| [103] [104]. A modified version of this algorithm has been proposed by
Park et al., which uses a quadratic extrapolation based on the energy to
estimate the minimum in the line search [105]. A detailed presentation of
the developed algorithm and a study of the performance and comparison
to other methods is given in reference [106].

3.3 Quantice

The study of electronic systems with PZ-SIC requires implementation in
a quantum chemistry software application. A software application capa-
ble of PZ-SIC calculations of atoms and molecules had been developed
earlier [107], but was based on using real orbitals. A search for a freeﬂ
all-electron quantum chemistry software application which could use com-
plex orbitals in stationary, i.e., ground state calculations, did not reveal any

l“free” as in “free speech,” not as in “free beer” [108]
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candidate that could be easily extended to work with PZ-SIC functionals.
Thus, development of QuaNTICE [109] began, based on a code written by
P. Kliipfel, which was capable of describing molecular orbitals as complex
linear combinations of Gaussian type orbitals. The code was consequently
extended to full functionality for PZ-SIC calculations as a part of this thesis
project.

QUANTICE is capable of calculations using LSD, GGA, hybrid, and PZ-SIC
functionals, as well as Hartree-Fock. The energy is minimized in the gen-
eralized Kohn-Sham scheme. For the unitary optimization, the algorithm
described in section is used. The total energy is minimized using the
linear correction scheme with a conjugate gradient method. QUANTICE was
used to obtain all numerical results presented in the following sections.
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Numerical results

The effect of complex orbitals in self-interaction corrected functionals is
studied by comparing several calculated observables to experimental or the-
oretical reference values. The most fundamental observable available from
a calculation is the total energy. The potential energy surface (PES) can be
constructed from repeated calculations at different geometry. The location
of minima on this surface represent equilibrium structures of the system
within the Born-Oppenheimer approximation. From energy differences of
points on the PES, the atomization energy of molecules or the height of re-
action barriers can be calculated. Ionization energy and electron affinity can
be calculated from energy differences of neutral and charged systems.

In the following sections, several observables obtained with different func-
tionals are analyzed. In addition to PZ-SIC, the effect of scaling the SIC
terms, globally by a factor of one half, has also been studied for the molec-
ular systems.

4.1 Atomic Systems

In appended article[l} the difference between using real or complex orbitals
with PZ-SIC is studied for atoms, using LSD+SIC and PBE+SIC. The results
show, that the total energy is strongly affected by the restriction to real
orbitals, giving generally higher energy for the larger atoms. A smaller
effect is found for some other observables, such as ionization energy.
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Figure 4.1: Energy of atoms H to Ar using the uncorrected and PZ-SIC versions of
LSD, PBE, PW91 and BLYP functionals and their corresponding exchange compo-
nents. The total energy is compared with accurate, non-relativistic estimates [110]
(left panel), the exchange only energy is compared to Hartree-Fock values (right
panel). The figure shows the deviation per electron from the reference value.
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Figure 4.2: Errors in total energy for the atoms H to Ar. PBE and BLYP are
compared to the respective SIC and hybrid functionals.

Total Energy

The total energy of atoms is overestimated in LSD, i.e., atoms are predicted
to be too unstable. GGA functionals give a total energy much closer to ac-
curate reference values [110], but, depending on the functional, the energy
can be overestimated or underestimated. In the left column of figure the
error per electron in the total energy is shown for the atoms up to argon,
for four different functionals without (blue squares) and with PZ-SIC (red
points). PBE overestimates the total energy and the errors per electron in-
crease slightly with system size for the larger atoms. For PW91, the energy
is overestimated for the small systems, but the errors decrease in the second
row of the periodic table and the elements of the third row are predicted
very accurately. BLYP underestimates the energy for the intermediately
sized atoms, but the errors reduce approaching argon.

The effect of applying PZ-SIC has a different effect on the accuracy of the
various functionals. The application of PZ-SIC to LSD leads to strong over-
correction, but gives a slightly smaller absolute error than LSD. For PBE,
application of PZ-SIC lowers the energy and gives better but still too high
energy. Application of PZ-SIC to PW91 only improves the energy for the
atoms of intermediate size, while it gives too low energy for the larger
atoms. PZ-SIC applied to BLYP improves the energy for most atoms of
the first two rows, but the errors increase strongly in the third row of the
periodic table. For atoms larger than carbon or nitrogen, the total energy
obtained with PZ-SIC using real orbitals (grey points) is always higher than
when complex orbitals are used. For the GGA functionals, the energy dif-
ference is larger than for LSD+SIC and the errors eventually exceed those
of the uncorrected functionals.
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4. Numerical results

In the right column of figure the exchange-only energy obtained from
the various functionals is compared to Hartree-Fock energy. It should be
noted here that comparison of the Hartree-Fock energy and that obtained
using the exchange component of an approximate functional does not nec-
essarily give an indication of the accuracy of the functional. Exchange and
correlation functionals usually complement each other to give a good total
energy or to fulfill known constraints of the exact functional. Functional
components, thus, should not be randomly mixed, or applied by them-
selves. On the other hand, an orbital-density dependent functional that can
reproduce the Hartree-Fock energy accurately could probably replace the
exact exchange used in hybrid functionals.

PZ-SIC gives the exact HF energy for hydrogen and helium, as here all
exchange energy is self-exchange. For the larger atoms, exchange-only SIC
does not reproduce HF energy very well. For PBE-X+SIC and PW91-X+SIC,
the energy is always lower than in HF. The average deviation of PBE-X+SIC
is slightly smaller than for PBE, but for PW91-X, PZ-SIC increases the errors.
As in the case of BLYP, B88+SIC improves the results for the smaller atoms,
but the errors strongly increase for the larger atoms.

When real orbitals are used, the GGA+SIC energy eventually exceeds the
GGA energy, as a result of a positive net contribution from the SIC terms. It
has been pointed out that spherical averaging of the orbital densities before
evaluation of the SIC terms reduces the magnitude of SIC for GGA func-
tionals and by this the total energy [84), [111]]. By averaging the p-orbitals,
the nodal planes are removed and the region of space where the electron
density is small is thereby reduced. This region is expected to have a strong
effect on the SIC energy, in particular for gradient dependent SIC function-
als [85]. As the complex sp® hybrid orbitals to large extend avoid nodal
regions, they may show similar effects as density averaging, while being
physically more justified and furthermore not restricted to atomic calcula-
tions.

In figure PBE and BLYP are compared to their corresponding SIC and
hybrid functionals. For PBE, the three curves are qualitative similar. The
energy of the atoms from lithium is lowered by both PBEO and PBE+SIC
and for these functionals cusps at helium, beryllium and neon are more
pronounced than in PBE. PBE+SIC gives the lowest energy and best agree-
ment with the reference values, but the errors increase more rapidly towards
argon than for PBE or PBEQ. The curves of B3LYP and SIC+BLYP are sig-
nificantly different. As for PBEO and PBE, the curve of B3LYP is below that
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Figure 4.3: Comparison of the ionization energy (IE, top) and electron affinity (EA,
bottom) evaluated from the total energy difference of the charged and neutral ground
state (AE), from the negative of the highest eigenvalue, —&yqx, of the neutral atom
(IE) or anion (EA), and from the negative of the highest diagonal element of the
matrix of Lagrange multipliers, —Ayqy.

of BLYP, but here it slightly increases the errors. BLYP+SIC always predicts
a higher energy than the hybrid functional and a larger deviation for the
heavier atoms.

Ionization Energy and Electron Affinity

The ionization energy (IE) and electron affinity (EA) obtained with PBE and
PBE+SIC is shown in figure The direct way to calculate these values is
to evaluate the difference in total energy of the neutral and charged system,
depicted by red points in the figure. These results agree well for PBE, while
PBE+SIC underestimates the EA in particular for atoms with a partially
filled p shell.

The highest orbital eigenvalue of exact KS-DFT equals the negative of the
ionization energy [59]. For semi-local functionals, this is usually not the
case, as is evident for PBE. The highest eigenvalue (blue squares) is not
negative enough, resulting in a general underestimation of the IE. The EA
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Table 4.1: Mean absolute errors (in eV) of the ionization energy (IE) and electron
affinity (EA) evaluated from energy differences (AE) and the highest eigenvalues
(—¢) for the different functionals. The relative errors are larger for EA than IE, as
can be seen by the magnitude of the mean of the reference values in the last row.

IE (eV) EA (eV)
AE — AE —

LSD 027 494 0.08 0.92
PBE 0.15 493 011 092
PW91 0.18 4.88 0.09 092
BLYP 0.19 5.06 0.17 092

LSD+SIC 030 0.87 0.12 0.53
PBE+SIC 024 053 031 031
PW91+SIC 023 055 030 0.32
BLYP+SIC 025 056 033 0.31

mean ref. 12.02 0.92

can be evaluated in the same way from the highest eigenvalue of the anion,
which is positive for PBE, resulting in an EA of zero (by definition). One
reason for this large error is the incorrect long-range behavior of the Kohn-
Sham potential in semi-local functionals, which is improved by the Hartree
self-energy terms in PZ-SIC. Here, the highest eigenvalue of the matrix of
Lagrange multipliers corresponds much better to IE and EA. However, the
values are overestimated by the eigenvalues in particular for atoms with p*,
p>, and p® electron configuration. It was shown in a study of PZ-SIC ap-
plied to systems with fractional occupation numbers [112] that the highest
diagonal element of the matrix of Lagrange multipliers should be the cor-
rect orbital energy rather than the highest eigenvalue of the matrix. These
values were shown to agree better with the energy derivative for fractional
occupation, but as shown in figure (green diamonds) they do in most
cases not provide a good estimate for the energy required to remove a whole
electron.

The values obtained with the other functionals reveal the same qualitative
features and are summarized in table which lists the mean absolute
errors. The eigenvalues obtained by applying PZ-SIC with real and complex
orbitals differ less than the total energy does, as shown in figure 2 of article
M for PBE+SIC. Complex orbitals usually give less negative eigenvalues for
all PZ-SIC functionals.
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Figure 4.4: Comparison of ionization energy from photoelectron spectroscopy [113]
to lower eigenvalues of the closed shell atoms. The classical electron shells are
depicted separately with the outermost shell in the bottom. Grey lines indicate
experimental data. Values are plotted relative to the first excitation energy, which
is denoted for the respective shells and atoms. The black bar (10 eV) indicates the
different energy scales of the shells.

It was found already in the first calculations using PZ-SIC [21], that not only
the highest orbital eigenvalue agreed with the first ionization energy, but
that also the lower eigenvalues are in better agreement with ionization from
deeper levels. In figure 4.4| the energy levels obtained from photo-electron
spectroscopy of closed shell atoms [113]] are compared to the eigenvalues
obtained from semi-local and PZ-SIC functionals. As for the first ionization
energy, all eigenvalues of the uncorrected functionals underestimate the en-
ergy. A better agreement, but a general overestimation, is found for the
SIC eigenvalues. The largest deviation of the eigenvalues is found for the
innermost shell, which might be affected by limitations of the basis sets that
were used. The PZ-SIC eigenvalues differ only slightly between the four
functionals.
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4.2 Molecular Systems

In appended article |l1I, molecular systems are studied with focus on atom-
ization energy, equilibrium structure and the energy barrier of some reac-
tions. The effect of scaling the SIC terms by a factor of one half was also
explored and is denoted as SIC/2 in the following results.

Atomization Energy

From earlier studies it was shown that atomization energy of molecules is
in many cases overestimated by semi-local functionals, but that PZ-SIC only
gave an improvement when applied to LSD. Application to PBE resulted in
a large overcorrection [83}[85]. The overcorrection is reduced when complex
orbitals are used, but still persists for the GGA+SIC functionals that were
studied. Scaling the SIC by one half greatly reduces the mean deviation in
PBE+SIC/2, but significant unsystematic errors remain.

By comparing the errors in the total energy of the molecules to those of
their atoms, it can be seen why no systematic improvement is obtained
with SIC. The errors in some cases decrease but increase in other cases and
the magnitude of the changes is often different for the molecules and the
atoms. This results in many cases in an unbalanced cancellation of errors
when observables are evaluated as energy differences.

Equilibrium Geometry

Equilibrium bond lengths are often slightly too long for semi-local func-
tionals. PZ-SIC overcorrects this in most cases both when using real [73]
and complex orbitals. Also here, SIC/2 gives better agreement on average,
but affects bond lengths in an unsystematic way. The F, molecule is a spe-
cial case within the test set, as here GGA+SIC/2 shortens the bond, but for
full SIC it increases again. In BLYP+SIC, the molecule is predicted to be
unstable towards dissociation, corresponding to an infinite ‘bond length’.

For bond angles, the difference between real and complex orbitals is more
significant than for most bond lengths. Calculations using complex orbitals
predict angles much larger than when real orbitals are used and are in worse
agreement with experiment for NH; and H,O.

The geometry of organic radicals can be a problematic case for semi-local
functionals. The ethynyl radical, C,H, is predicted to have an incorrect bent
structure when PBE is used [57]. This can be corrected by admixture of
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Figure 4.5: Isosurfaces of the complex (a) and real (b) PBE+SIC optimized valence
orbitals of the planar CH; radical. The ‘unpaired” orbital is emphasized by color.

exact exchange using the PBEO functional, but also by using PBE+SIC or
PBE+SIC/2. On the other hand, the methyl radical, CHj, is correctly pre-
dicted to be planar by semi-local functionals, but was reported to have a
non-planar structure when calculated with SIC functionals [81]. This could
be shown to be an artifact of restricting the variational space to real or-
bital. The optimized valence orbitals of the planar structure of CHj; are
visualized in figure The real orbitals corresponding to C-H bonds are
forced into the shape of unfavored ‘banana bonds’ by the sp® hybridization
of the unpaired orbital. The ‘stress’ can be released by moving the hydrogen
atoms out of the plane into a geometry more in favor of this hybridization.
The complex orbitals show a qualitatively different hybridization of the un-
paired orbital by which the banana bonds are avoided and the equilibrium
structure is correctly predicted to be planar.

43



4. Numerical results

Table 4.2: Reactants, saddle point, products, and saddle point symmetry of the
four studied reactions.

reactants saddle point products symmetry
HF +H — HFH — H+HF Dy
HNH, — NH;, —  H,NH D3,

Energy Barriers

The energy barriers of the four reactions listed in table [4.2| have been stud-
ied. The ammonia inversion (fourth reaction) is different from the others in
that no bond breaking occurs. For this reaction, SIC decreases the energy
barrier, while it is increased for the other three.

The restriction to real orbitals has a different effect on the HFH and NHj,
barrier. In NHj;, the molecular geometry at the saddle point is qualitatively
similar to the planar CH; structure. The same “unfavorable” hybridization
is found for both the spin up and spin down electrons when real orbitals
are used. This increases the total energy and by this the barrier height. For
HFH, on the other hand, real orbitals slightly decrease the energy barrier.

The effects of SIC on the reaction barriers can be understood in more detail
by comparison of the errors in the total energy. The energy of the H, system
is in very good agreement with the reference energy for SIC+PBE, while
it is too low for PBE. PZ-SIC thereby increases the energy barrier but it
is still severely underestimated, as the errors in the reactants are hardly
affected by SIC. For H;, SIC increases the errors in the total energy, but a
very good barrier height is obtained, as the errors are very close to those
of the reactants. In HFH, on the other hand, the introduced errors exceed
those of the reactants, so the cancellation of errors is better for the scaled
SIC.
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Summary and Outlook

The scope of this thesis is the implementation and reassessment of the
Perdew-Zunger self-interaction correction, with emphasis on the implica-
tions of using complex orbitals rather than restricting the orbitals to be real
functions.

Implementation of a self-consistent treatment of SIC functionals in QuaN-
TICE made it possible to carry out a reliable minimization of the energy,
using the unitary optimization algorithm developed in our group. Several
atomic and molecular systems have been studied with different functionals.

The total energy is most affected by extending the variational space from
real to complex orbitals, as illustrated by the atomic calculations. In contrast
to previous results based on real orbitals, PZ-SIC can improve the total
energy when it is applied to GGA functionals. However, not all functionals
are suited for the application of SIC. Energy differences are not affected
in a systematic way, but are in some cases improved by a more balanced
cancellation of errors. Errors can increase when the energy of one of the
two systems that are compared becomes more accurate than the energy of
the other one.

Molecular geometry can be affected strongly by SIC. The incorrect predic-
tion of a bent ground state geometry for the C,H radical is corrected when
PZ-SIC is applied to the PBE functional. The correct planar structure of
the CH; radical, however, is only obtained when PZ-SIC is applied to a
GGA functional and complex orbitals are used. The geometry predicted
by LDA+SIC is still incorrect. Bond lengths are usually predicted to be too
short by PZ-SIC, while bond angles increase substantially and show large
deviations.
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This study extends earlier assessments of the PZ-SIC by lifting the restric-
tion of the variational space to real orbitals. While promising features of this
correction could be confirmed and some shortcomings cured, new problems
were revealed, such as the hardly bound F, molecule and the poor accuracy
of predicted equilibrium bond angles.

From this point, the development of improved functionals based on or re-
lated to PZ-SIC can take different directions. These paths might eventually
merge again, in the form of a functional that exceeds the accuracy of semi-
local approximations for all, or at least most quantities of interest. The
results presented here for atoms and molecules show that in any case the
orbitals should be complex functions and the functional should go beyond
the local spin density approximation.

The functional form has a strong effect on the performance of SIC. Appli-
cation to BLYP revealed unacceptable effects and while PBE+SIC can give
better performance than LSD+SIC, it still has severe problems. A more
detailed study with focus on different GGA functional forms will give a
deeper insight into the proper form for an exchange-correlation functional
that will work well for application of PZ-SIC.

The global scaling of the SIC terms can provide some, but not systematic im-
provement over PZ-SIC. The more sophisticated approaches to adaptively
scale the SIC terms may yield a more systematic improvement. Without a
further study of their performance using complex orbitals, this is not clear.
A possible alternative scaling approach, in which not only the SIC energy
of each orbital is scaled individually, but also the separate contributions of
Hartree, exchange and correlation self-energy, would provide more flexibil-
ity and may give a further improvement. Such a functional form is also able
to retain more of the desirable features of PZ-SIC, some of which are lost in
the currently used scaling schemes.

The quality of a functional can only be judged by comparison to reference
data. Most approaches compare calculated observables to a test set of ex-
perimental and/or theoretical values. This will reveal the accuracy of a
functional to predict these observables, but does not test the general accu-
racy of a functional. Taking into account the total energy as well, a more
detailed analysis is possible, by which the origin of errors might be identi-
fied. The analysis of the reaction barriers revealed that the errors in both the
H, atomization energy and the H, barrier height stem from an inaccurate
description of the H, molecule when applying PZ-SIC to PBE.
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A functional used in studies of chemical reactions does not have to repro-
duce the total energy accurately, but for many applications merely give
good energy differences. Not aiming at a perfect total energy, an ‘improved’
version of the PBE functional would actually have to describe the hydrogen
atom worse, to result in a better cancellation of errors. Such an approach
might produce good estimates of reaction energy, but does not bring the
functional as such closer to the exact functional.

All one-electron systems are described perfectly with PZ-SIC. The natural
next step would be to develop a functional that can accurately describe
two-electron systems, such as helium or H,. In these systems, the exchange
energy is described correctly with PZ-SIC, but errors are made in the corre-
lation energy. A functional form beyond the Perdew-Zunger self-interaction
correction might be able to describe correlation in these systems more accu-
rately, while still being exact for all one-electron systems. Such a functional
might give an improved accuracy for many-electron systems as well, but
most probably will not be perfect, or even give worse results. By adding
one electron at a time to the test set, one might be able to approach, step
by step, a functional that can accurately describe systems of both few and
many electrons.
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