The influence of cavity photons on
the transient transport of
correlated electrons through a
quantum ring with magnetic field
and spin-orbit interaction

Thorsten Ludwig Arnold

Faculty of Physical Sciences

University of Iceland
2014







THE INFLUENCE OF CAVITY PHOTONS ON
THE TRANSIENT TRANSPORT OF
CORRELATED ELECTRONS THROUGH A
QUANTUM RING WITH MAGNETIC FIELD
AND SPIN-ORBIT INTERACTION

Thorsten Ludwig Arnold

180 ECTS thesis submitted in partial fulfillment of a
Doctor Philosophiae degree in Physics

Advisor
Vidar Gudmundsson

Ph.D. committee
Andrei Manolescu
Hannes Jénsson

Opponents
Catalin Pascu Moca
Department of Theoretical Physics, Budapest University of Technology
and Economics, Budapest, Hungary
Kristjan Ledsson
University of Iceland

Faculty of Physical Sciences
School of Engineering and Natural Sciences
University of Iceland
Reykjavik, August 2014



The influence of cavity photons on the transient transport of correlated electrons through
a quantum ring with magnetic field and spin-orbit interaction
Dissertation submitted in partial fulfillment of a Ph.D. degree in Physics

Copyright (© 2014 Thorsten Ludwig Arnold
All rights reserved

Faculty of Physical Sciences

School of Engineering and Natural Sciences
University of Iceland

Hjardarhaga 2-6

107, Reykjavik

Iceland

Telephone: 525-4800

Bibliographic information:

Thorsten Ludwig Arnold, 2014, The influence of cavity photons on the transient trans-
port of correlated electrons through a quantum ring with magnetic field and spin-orbit
interaction, Ph.D. thesis, Faculty of Physical Sciences, University of Iceland.

ISBN 978-9935-9140-7-1

Printing: Haskélaprent, Falkagata 2, 107 Reykjavik
Reykjavik, Iceland, August 2014



Abstract

We investigate time-dependent transport of Coulomb and spin-orbit interacting
electrons through a finite-width quantum ring of realistic geometry under non-
equilibrium conditions using a time-convolutionless non-Markovian master equation
formalism. The ring is embedded in an electromagnetic cavity with a single mode
of linearly or circularly polarized photon field. The electron-photon and Coulomb
interactions are taken into full account using “exact” numerical diagonalization. A
bias voltage is applied to external, semi-infinite leads along the z-axis, which are
coupled to the quantum ring. The ring and leads are in a perpendicular magnetic
field. The strength of the spin-orbit interaction and of the magnetic field penetrating
the ring and leads are tunable.

We find that the lead-system-lead current is strongly suppressed by the y-polarized
photon field at magnetic field with two flux quanta due to a degeneracy of the many-
body energy spectrum of the mostly occupied states. Furthermore, the current can
be significantly enhanced by the y-polarized field at magnetic field with half integer
flux quanta. The y-polarized photon field perturbs the periodicity of the persistent
current with the magnetic field and suppresses also its magnitude. Charge current
vortices at the contact areas to the leads influence the charge circulation in the ring.

Moreover, a pronounced charge current dip associated with many-electron level
crossings at the Aharonov-Casher (AC) phase A® = 7 is found, which can be
disguised by linearly polarized light. Comparing our numerical two-dimensional
(2D) model to the analytical results of a toy model of a one-dimensional (1D) ring
of non-interacting electrons with spin-orbit coupling, qualitative agreement can be
found for the spin polarization currents. Quantitatively, however, the spin polariza-
tion currents are weaker in the more realistic 2D ring, especially for weak spin-orbit
interaction, but can be considerably enhanced with the aid of a linearly polarized
electromagnetic field. Specific spin polarization current symmetries relating the
Dresselhaus spin-orbit interaction case to the Rashba one are found to hold for the
2D ring, which is embedded in the photon cavity.

The spin polarization and spin photocurrents of the quantum ring are largest for
circularly polarized photon field and destructive AC phase interference. The charge
current suppression dip due to the destructive AC phase becomes threefold under
the circularly polarized photon field as the interaction of the electrons’ angular
momentum and spin angular momentum of light causes many-body level splitting
leading to three level crossing locations instead of one. The circular charge current
inside the ring, which is induced by the circularly polarized photon field, is found
to be suppressed in a much wider range around the destructive AC phase than the
lead-device-lead charge current. The charge current can be directed through one



of the two ring arms with the help of the circularly polarized photon field, but is
superimposed by vortices of a smaller scale. Unlike the charge photocurrent, the flow
direction of the spin photocurrent is found to be independent of the handedness of
the circularly polarized photon field.
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Utdrattur

Vi konnum timahédan flutning rafeinda sem vixlverka innbyrdis med Coulomb-
krafti og med vixlverkun spuna og brautar i gegnum skammtahring med raunsaeju
meetti og endanlegri breidd i 6jafnveegisastandi med pvi ad nota adferdafraedi sem
byggist & 6markovsku styrijofnunni dn timaféldunar. Hringurinn er stadsettur i raf-
segulsholi med stokum ljoseindahaetti med hring- eda linulegri skautun. Fullt tillit
er tekio til vixlverkana ljoseinda og rafeinda og Coulomb-vixlverkana rafeindanna
med pvi ad nota “nakvema” tolulega reikninga i afstifou fjoleindartimi. Skammta-
hringurinn er tengdur tveimur ytri forspenntum, hélféendalegum leioslum samsida
x-asnum. Hringurinn og leidslurnar eru stadsett i hornréttu segulsvidi. Styrkur
spuna og brautar vixlverkunarinnar og segulsvidsins sem smygur gegnum hringinn
og leidslurnar er breytanlegur.

Vio finnum toéluverda veikingu straums um kerfio vegna y-skautads ljoseindasvios
ef segulfleedido um hringinn jafngildir tveimur flaediskommtum vegna pess ad pau
tvo fjoleindadstond sem eru langmest setin skerast 1 orkuréfinu. Ennfremur getur
straumurinn verid toluvert meiri vegna y-skautads ljoseindasvids pegar segulsvio-
i0 jafngildir halftolu fleediskommtum. y-skautad ljoseindasvid raskar einnig lotu-
eiginleikum stoduga hringstraumsins sem fall af segulsvidinu og dregur tr honum.
Hledslustraumidur & snertisveedum vid leidslurnar hafa ahrif 4 hledsluhringréasina {
hringnum.

Vid finnum &berandi hledslustraumlaegd sem tengist skorun fjoleindastiga 1 orkurof-
inu pegar Aharonov-Casher (AC) fasinn A® = 7. Pessi leegd hverfur ad mestu leyti
med vixlverkun vid linulega skautad ljéseindasvid. Vid barum nidurstodur ur tolu-
lega tvivida likani okkar saman vid nidurstodur einfaldara likans einvids hrings med
ovixlverkjandi rafeindum, en med spuna og brautar vixlverkun. Eigindleg samsvorun
fannst fyrir spunaskautudu straumana. Hins vegar skilar magnbundinn samanburd-
ur peirri nidurstodu ad spunaskautudu straumarnir séu minni { raunseerri tvivida
hringnum, sérstaklega pegar vixlverkun spuna og brautar er litil. Spunaskautudu
straumana er aftur & moti haegt ad auka med linulega skautudu rafsegulsvidi. Sér-
stakar samhverfur fundust fyrir spunaskautudu straumana sem tengja saman tilfellin
med Dresselhaus- og Rashba-vixlverkanir spuna og brautar. Pessar samhverfur rofna
ekki 1 tvivida hringnum { ljéseindaholinu.

Spunaskautunin og spunaljosstraumar skammtahringsins eru mestir fyrir hringskaut-
a0 ljoseindasvid og eydandi AC fasavixl. Hledslustraumlaegdin sem orsakast af eyd-
andi AC fasa verdur prefold undir ahrifum hringskautads ljéseindasvids vegna pess
a0 vixlverkunin milli hverfibunga rafeindanna og spunahverfipunga ljéssins veldur
klofnun fjoleindaastanda 1 orkuréfinu og birtist & premur st6dum i stad eins par
sem skorun er 1 orkuréfinu. Hringhledslustraumurinn {1 hringnum sem orsakast af
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hringskautada ljoseindasvidinu er minni & miklu breidara svaedi kringum eydandi
AC fasann en hledslustraumurinn i gegnum kerfid. Haegt er a0 styra hledslustraumn-
um pannig med hringskautada ljoseindasvidinu ad hann fari adeins i gegnum annan
hvorn arm hringsins. Samt parf ad geta pess ad i hledslustraumnum myndast idur
4 minni skala. Stefnan spunaljésstraumsins er 6likt hledsluljésstraumnum 6had pvi
hvort hringskautada ljoseindasvidid snuist rétt- eda andseelis.
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1. Introduction

Quantum interference phenomena are essential when developing quantum devices.
Quantum confined geometries conceived for such studies may consist of which-path
interferometers |2, 3|, coupled quantum wires [4, 5| or side-coupled quantum dots
[6, 7]. These coupled quantum systems have captured interest due to their potential
applications in electronic spectroscopy tools [8] and quantum information processing
[9]. In this work, we focus on the charge and spin transport through a particular
quantum device, the quantum ring [10, 11]. Quantum rings are interferometers
with unique properties owing to their geometry. The magnetic flux through the
ring system can drive persistent currents [12] and leads to the topological quantum
interference phenomenon known as the Aharonov-Bohm (AB) effect [13-17]. Both,
the persistent current and the ring conductance show characteristic oscillations with
the period of one flux quantum, ®, = hc/e. The latter were first measured in 1985
[15]. The free spectrum of the one-dimensional (1D) quantum ring exhibits level
crossings at half integer and integer multiples of @, [18, 19]|. The persistent current
dependence on the magnetic field [20] and electron-electron interaction strength
[21] has been investigated adopting a two-dimensional quantum ring model with
analytically known non-interacting properties [22]. Varying either the magnetic
field or the electrostatic confining potentials allows the quantum interference to be
tuned [23].

The non-trivially connected topology of quantum rings leads to further geometrical
phases than the AB phase, which are important in the field of quantum transport.
This is caused by the interaction of the electrons’ spin with a magnetic field via
the Zeeman interaction and an electric field via a so-called effective magnetic field
stemming from special relativity [24]. The interaction between the spin and the
electronic motion in, for example, the electric field, is called the Rashba SOI [25],
which leads to the Aharonov-Casher (AC) effect. While the AB phase is acquired by
a charged particle moving around a magnetic flux, an AC phase [26] is acquired by
a particle with magnetic moment encircling, for example, a charged line. Hence, the
AB phase can be tuned via the magnetic flux through the ring, while the AC phase
can be tuned by the strength of the spin-orbit interaction (SOI). The Aharonov-
Anandan (AA) phase |27] is the remaining phase of the AC phase when subtracting
the so-called dynamical phase. When the system is propagated adiabatically, the dy-
namical phase describes the whole time-dependence while the remaining AA phase is
static. This can be seen by introducing time-dependent parameters in the Hamilto-
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nian under consideration [28]. In the non-adiabatic case, if the AA phase is defined
similarly to the AA phase of the adiabatic system (for an alternative definition see
Ref. [29]), a dependence of the AA phase on time-dependent fields can in general
not totally be avoided. The dynamical phase captures then only a part of the dy-
namics of the global phase. Filipp [30] showed that the splitting of the global phase
into the AA phase and the remaining dynamical phase can be achieved also in the
non-adiabatic case. The Berry phase [31] is the adiabatic approximation of the AA
phase.

The AC effect can be observed in the case of a more general electric field than the
one produced by a charged line, i.e. including the radial component and a component
in the z-direction [32]. Experimentally, it is relatively simple to realize an electric
field in the z-direction, i.e. which is directed perpendicular to the two-dimensional
(2D) plane containing the quantum ring structure. By changing the strength of the
electric field, the SOI strength of the Rashba effect can be tuned. The AC effect
appears also for a Dresselhaus SOI [33|, which is typically stronger in GaAs than
the Rashba SOI. Persistent equilibrium spin currents due to geometrical phases were
addressed for the Zeeman interaction with an inhomogeneous, static magnetic field
[34]. Later, Balatsky and Altshuler studied persistent spin currents related to the
AC phase [35]. Several authors addressed the persistent spin current oscillations
as the strength of the SOI [32, 36, 37] (or magnetic flux through the ring [38]) is
increased. Opposite to the AB oscillations with the magnetic flux, the AC oscilla-
tions are not periodic with the SOI strength. The persistent spin current violates
in general conservation laws [39]. Suggestions to measure persistent spin currents
by the induced mechanical torque [40] or the induced electric field [39] have been
proposed. An analytical state-dependent expression for a specific spin polarization
of the spin current has been stated in Ref. [41].

The electronic transport through a quantum ring connected to leads, which is em-
bedded in a magnetic field, has been addressed in several studies for only Rashba
SOI [42-44], only Dresselhaus SOI [45] or both [46]. There has been considerable
interest in the study of electronic transport through a quantum system in a strong
system-lead coupling regime driven by periodic time-dependent potentials [47-50],
longitudinally polarized fields [51-53], or transversely polarized fields [54, 55]. On
the other hand, quantum transport driven by a transient time-dependent potential
enables the development of switchable quantum devices, in which the interplay of
the electronic system with external perturbation plays an important role [56-59].
These systems are usually operated in the weak system-lead coupling regime and
described within the wide-band or the Markovian approximation [60-62]. Within
this approximation, the energy dependence of the electron tunneling rate or the
memory effect in the system are neglected by assuming that the correlation time of
the electrons in the leads is much shorter than the typical response time of the cen-
tral system. However, the transient transport is intrinsically linked to the coherence
and relaxation dynamics and cannot generally be described in the Markovian ap-



proximation. The energy-dependent spectral density in the leads has to be included
for accurate numerical calculation.

Quantum systems embedded in an electromagnetic cavity have become one of the
most promising devices for quantum information processing applications [63-65].
Charge persistent currents in quantum rings can be produced by two time-delayed
light pulses with perpendicularly oriented, linear polarization [66] and phase-locked
laser pulses based on the circular photon polarization influencing the many-electron
(ME) angular momentum [67]. Moreover, energy splitting of degenerate states in
interaction with a monochromatic circularly polarized electromagnetic mode and its
vacuum fluctuations can lead to charge persistent currents |68, 69]. Optical control
of the spin current can be achieved by a nonadiabatic, two-component laser pulse
[70]. Dynamical spin currents can be obtained by two asymmetric electromagnetic
pulses |71]. Furthermore, the nonequilibrium dynamical response of the dipole mo-
ment and spin polarization of a quantum ring with SOI and magnetic field under
two linearly polarized electromagnetic pulses has been studied [72]. The rotational
symmetry of the ring resembles the characteristics of a circularly polarized pho-
ton field suggesting a strong light-matter interaction between single photons and
the ring electrons. Circularly polarized light emission [73| and absorption [74] have
been studied for quantum rings. Moreover, circularly polarized light has been used
to generate persistent charge currents in quantum wells [75] and quantum rings [67—
69, 76]. The basic principle behind this is a change of the orbital angular momentum
of the electrons in the quantum ring by the absorption or emission of a photon lead-
ing to the circular charge transport. Improvements over circularly polarized light
to optimize optical control for a finite-width quantum ring have been achieved [77].
We are considering here the influence of the cavity photons on the transient charge
and spin transport inside and into and out of the ring. We treat the electron-photon
interaction by using exact numerical diagonalization including many levels [78], i.e.
beyond a two-level Jaynes-Cummings model or the rotating wave approximation
and higher order corrections of it [79-81].

When the light-matter interaction is combined with the strong coupling of the quan-
tum ring to the leads, further interesting phenomena arise (especially when the leads
have a bias, which breaks additional transport symmetries). The electronic trans-
port through a quantum system in a strong system-lead coupling regime was studied
for longitudinally polarized fields [51-53|, or transversely polarized fields [54, 55].
For a weak coupling between the system and the leads, the Markovian approxima-
tion, which neglects memory effects in the system, can be used [60-62, 82]. How to
appropriately describe the carrier dynamics under non-equilibrium conditions with
realistic device geometries is a challenging problem [83, 84]. Utilizing the giant dipole
moments of inter-subband transitions in quantum wells [85, 86| enables researchers
to reach the ultrastrong electron-photon coupling regime [87-89]. In this regime,
the dynamical electron-photon coupling mechanism has to be explored beyond the
wide-band and rotating-wave approximations [81, 90, 91|. To describe a stronger
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transient system-lead coupling, we use a non-Markovian generalized master equa-
tion [92-94] involving energy-dependent coupling elements. The dynamics of our
open system under non-equilibrium conditions and with a realistic device geometry
is described with the time-convolutionless generalized master equation (TCL-GME)
[95, 96], which is suitable for higher system-lead coupling and allows for a controlled
perturbative expansion in the system-lead coupling strength.

In this work, we explore the transient effects of the spin and charge transport of
electrons through a broad quantum ring in a linearly or circularly polarized electro-
magnetic cavity coupled to electrically biased leads. The electrons are interacting
via the Coulomb interaction, Rashba SOI and Dresselhaus SOI and are influenced by
a magnetic field. The electron-photon coupled system under investigation is mainly
tuned by the applied magnetic field, the strength of the Rashba an Dresselhaus
SOI and the polarization of the photon field. This thesis is organized as follows. In
Chapter 2 we present the non-Markovian generalized master equation approach that
we use. The Hamiltonian of the central system and the Hamiltonian of the leads
is described in Chapter 3. Chapter 4 discusses the derivation and implementation
of several time-dependent densities. Chapter 5 gives some numerical results and
summarizes the main results of the attached papers.



2. Time-convolutionless
non-Markovian generalized
quantum master equation

2.1. Open quantum system

The dynamics of a general quantum system is given by the Liouville-von Neumann
equation

L op(t ~ . .
im0 _ (i1(s) (o) = £3(0) (2.1)
with p(t) being the density operator, which satisfies the properties
prt) = p(t), p(t) >0, Tr[p(t)] = 1. (2.2)

If Tr[p?(t)] = 1, then the density operator describes a pure state, if Tr[p?(¢)] < 1,
then it describes a mixed state. The solution of Eq. (2.1) is

A~

pt) = U(1)p0)UT(t) (2.3)
with .
U(t) = exp (-%1—1&) . (2.4)

When the quantum system is open, Eq. (2.1) is in principle a problem of infinite
size in the matrices when the space is discretized meaning that the spectrum of
H (t) is dense. Therefore, Eq. (2.1) can not be treated numerically and is commonly
separated in a system of finite size and the remaining part of the quantum size called

environment, which is of infinite size. The Hamiltonian is then split into three parts
H(t) = Hs + Hp + Hr(t), (2.5)

where Hg describes the Hamiltonian of the finite system, Hp the Hamiltonian of
the environment and Hr(t) the coupling between the system and the environment.
Accordingly, the Liouville super-operator

L=_Ls+Lp+ Lr(t) (2.6)
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is decomposed into a system, environment and coupling part. As a consequence, the
Liouville-von Neumann equation, Eq. (2.1) is

L op(t .
zh% =[Ls+ L+ Lp(t)] p(t). (2.7)
The density operator can be reduced to the finite system called the reduced density

operator (RDO)

ps(t) = Trg[p()]. (2.5)
The equation of motion for the finite system is then of a similar form as the Liouville-
von Neumann equation, Eq. (2.1), with the density operator, p(t), replaced by the
RDO, ps(t), but with an additional complicated term containing an integral kernel.
The latter describes the coupling to the environment and would vanish if the system
would be closed.

In principal, quantum master equations can be grouped into two groups, Marko-
vian master equations, where the time evolution of the RDO does not depend on
the evolution of the RDO in the past and non-Markovian master equations (where
the Markovian approximation is not applied), where memory effects are important
(especially when the correlation time of the environment is long). In this work, only
non-Markovian quantum master equations are used.

2.2. Nakajima-Zwanzig projection operator
technique [1]

We define the super-operators, P and Q, which project the density operator on the
central system and environment, respectively,

Pi(t) = Tralp(t)] © p, (2.9)

and

Qp(t) = p(t) — Pp(t), (2.10)
with pg being some fixed, normalized state of the environment to derive an exact
equation of motion for the RDO. We apply the super-operators, P and Q, on the
Von Neumann equation, Eq. (2.1), which gives the following equations, if we use

P+Q:17

S Pa(t) = PLIYPAL) + PLI) Q) (2.11)
and
O -Qp(t) = QLYPA1) + QL() (). (2.12)
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We can simplify the terms [97]

PL(t)P = PLsP + PLEP + PLy(t)P = LsP,

PL(t)Q=PLsQ+PLEQ+PLr(t)Q =PLr(1)Q,

QLH)P = QLsP + QLEP + QL (H)P = Lr(t)P,

and
QL()Q = QLA+ QLA + QL (1)Q = L5Q + LQ + QL (1)Q
in Egs. (2.11) and (2.12) using

PLs = LsP,

PLEP =0,

PLQ =0,

LgP =0

and

PLr(t)P = 0.
Equation (2.17) is proven by

pe @ Trp|Lsp(t)] = pp ® LsTrp[p(t)] = Lspe @ Trg|p(t)].

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)
(2.19)
(2.20)
(2.21)

(2.22)

(2.23)

Equation (2.18) is satisfied when we assume that the environment is in equilibrium

[ﬁE, pe] =0
since
Trp[LePp(t)] = Tep[Hppp @ Trg[p(t)] — pp © Trplp(t) He) = 0.
Equation (2.19) can be proven with Eq. (2.10), Eq. (2.18) and

Trp[Lpp(t)] = Trp[Hpp(t) — p(t)Hp) = 0,

(2.24)

(2.25)

(2.26)
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which is correct as the trace over the environment can be proven to be cyclic invariant
as only p(t) extends also over the space of the central system. Equation (2.21) is
satisfied with Eq. (2.24)

LiPp(t) = Lups @ Tru[p(t)] = 0. (2.27)

Equation (2.22) is satisfied since
Trp[Hr(t), ps(t) @ pp] =Y _ (i[Hr(t)]5) ps(t) ® (jlpeli)

= 2 ps() @ (ilpsls) GlHT()i) = 0, (2.28)

where we have used the assumption, Eq. (2.24), to choose {]i)} and {|j)} to be
the basis of the environment in which Hp and pe are simultaneously diagonal.
Furthermore, we assume that Hy () is linear in the creation or annihilation operators
of the environment and system (which is an assumption, which is in practice often
made, when the lead-environment coupling is described by sequential tunneling).
Then, for i # j, (j|peli) = 0, but for i = j, (i|Hr(t)]j) = 0 due to the linearity in
the operators.

2.3. Time-convolutionless projection operator
method

In order to have scaling parameter of the coupling strength between the environment
and the system, we redefine

A~

Hp(t) — oHp(t) , Lr(t) = aly(t) (2.29)
and let a = 1 at the end. Equation (2.12) can be rewritten to be

l l

9 Q0lt) = ~aLr((YPH(L) ~ H[Es + Lo +aQLr(]QAD).  (230)
The solution of Eq. (2.30) is
Op(t) = —%a /O Lt (1,0 L (YPA(L) + 6(1.0)Qp(0) (2.31)
with the propagator
Bt ) = T exp (-% /t s [Ls+ L+ aQET(s)]) | (2.32)
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where T, describes the chronological time ordering such that the time arguments
of the super-operators increase from right to left. To confirm that Eq. (2.31) is the
solution, we note that

0 i

58(t,1) = =2 [Ls + Lo+ aQLr(1))®(t,1) (2.33)

and

%Q,ﬁ(t) - _ %a@(t,t)ET(t)Pﬁ(t)

t
— L5+ L+ aQLr(t)] / dt' & (¢, ¢") Lr(t)PA(t)
0

i .
— ﬁ[ﬁs + L+ aQLy(t)]&(t,0)95(0). (2.34)
We assume that the initial state of the system p(0) is an uncoupled tensor-product
state of an environment and system state, which means that Qp(0) = 0, thus yielding
for the solution of Eq. (2.30)

Qp(t) = —%a /0 dt' S(t, 1) Lot )PH(H). (2.35)

For ¢ > 0, the lead-system coupling is switched on smoothly in our system meaning
that Qp(t) # 0. The condition Qp(0) = 0 can be satisfied in realistic electronic
systems when the tunneling barrier is high and when the system and environment
have reached equilibrium states [98].

Now, the basic step in deriving the time-convolutionless (TCL) generalized master
equation is the introduction of the backward time propagator of the total system

0

h /t/t ds (Ls+Lp+ aﬁT(s))) (2.36)

G(t,t') =T, exp (
with the time ordering operator 7. ordering the time arguments of the super-
operators such that they increase from the left to the right. Therefore, Eq. (2.35)
can be written to be

0p(t) = —%oz /0 0t () Lot PG ) (P + Q)p(1) (2.37)
Next, we define the super-operator
() = —% /0 L0 S e (U)PG(L ) (2.38)
to simplify Eq. (2.37)
Q1) = {555 =P (2.30)



2. Time-convolutionless non-Markovian generalized master equation

Then, we can turn to the equation of motion for the system, Eq. (2.11),

0 7 . 7 .
5L P(t) = =3 LsPp(t) — 2aPLr(t)Qp(1) (2.40)
and insert Eq. (2.39) into it
Pty = |~ s — LaPLolt)—= ()| Pt)
ot P T TR T R TR P
= %Espﬁ(t) +K(PH(L) (2.41)
with the kernel of the TCL generalized master equation using Eq. (2.20)
i 1

For small coupling strength or not to large time argument ¢, one can assume that
the inverse of 1 — ¥() exists

1 . N
ok nzzo[z(t)] . (2.43)
Then, the kernel, Eq. (2.42), becomes
K(t) = ——amT (1)) [ (2.44)
n=1

We will now show a systematic approximation of the kernel, Eq. (2.44), by expanding
it perturbatively in terms of the coupling strength «. This can be achieved by
expanding

S(t) = a"S,(t). (2.45)

Note that the zeroth order term vanishes as can be seen from the definition of ¥(¢),
Eq. (2.38). Inserting this into Eq. (2.44), we find

ZQ”IC = ——ozP[,T Z [Z a™y,, (2.46)
with the lowest order contribution to the kernel being
Ka(t) = —%PL’T(t)Zl(t)P. (2.47)
The lowest order in « of &(t,t') is
Bt 1) = exp (—%(t - t’)ﬁo) (2.48)

10



2.3. Time-convolutionless projection operator method

with Ly = Lg + Lg, which can be seen from a series expansion of the exponential.
The lowest order of G(t,t) is

Gt 1) = exp <%(t _ t’)ﬁo) | (2.49)

As a consequence, the lowest order of the super-operator () is

?

S (t) = —% /O "dt exp <—%(t _ t’)ﬁo) Lr(F)P exp ( (- t’)Eo) O (250)

The lowest (second) order contribution to the kernel, Eq. (2.47), then turns out to
be

0

h(t — t')£0> Lr(t')Pexp (%(t - t’)ﬁo) P.

(2.51)
Now, that we have found the lowest order in «, we let @« = 1 and find for Eq. (2.41)

1 t
ﬁz(t) = —ﬁ’PLT(t)/O dtl exp <

o . 7 1

l

X /Ot dt’ exp (—%(t — t’)£0> Lr(t')P exp (h(t - t’)ﬁo)} Pp(t).

(2.52)
Tracing over the environment yields a dynamical equation
0 .~
—pg(t) = — —|Hg, ps(t
5;Ps(t) 7 LHs, ps(t)]
=Y /tdt’ Y, [H (t')
p2 e o | xp |~y 0 r(t),
i /
Pesp (30000 ) (pe 95|} (2.53)

for the RDO, Eq. (2.8).

Before we continue with a reformulation of Eq. (2.53), we proof a theorem about
the action of the Liouville operator in the exponential, which we want to apply

exp (~320) X = e (~ it ) X exp (ot ). (254)

11



2. Time-convolutionless non-Markovian generalized master equation

The proof can be seen from the series expansion

i s = (—2Lot)
——Lot | X = B
exp < hﬁo > ; o
o G (_Zt)n - n—m [ T T \m n—m
= TS oy (1) Gy X )
n=0 m=0
D D) =L 37
— & m! p 0 0
m=0 p=0
n=p (—%ﬁot)m o (G Hot)"
=2 X2
m=0
0 T o~
= exp ( Hot) <ﬁH0t> : (2.55)
Applying Eq. (2.54) to Eq. (2.53) yields

2 ps(t) = — 115, ps(0)

. %TrEQFIT(t),/Ot dt' exp (—%(t - t’)Ho) [ﬁT(t’),Pexp (%(t - t’)ﬁo)
(i ® ps(t)) exp (—%(t - t')ﬁ(J) J exp (%(t _ t’)ﬁ()) ). (2.56)

Using [I:I o H £] = 0, the cyclic invariance of the trace in the environmental subspace

and the fact that exp (%(t —t)H E) is unitary we can reformulate an inner structure
in Eq. (2.56)

P (30— () ) (s © ps(0) exp (~ 50— )11 )
_ 5 ®Trs [exp( (t— ) HE) Eexp(——t—t)HE)
o (40— 00) o L~
zﬁE®exp(h(t—t) ) (t)exp<——(t—tHs)

)
= pp ® exp (%(t - t’)ﬁ0> ps(t) exp %(t — t’)ﬁg) : (2.57)

b?‘|®

12



2.3. Time-convolutionless projection operator method

Applying Eq. (2.57) to Eq. (2.56) yields

%ﬁs(t) == %[ﬁs,ﬁs(t)]

1 N L i o
_ﬁTrE([HT(t)a ; dt eXp —ﬁ(t—t)Ho

|ttt e o (510 - 000 ) sty exp (50~ 0110 |

i
X exp <ﬁ(t —t )HO) D (2.58)
which can be rewritten by restructuring the commutators as
0 i~
— ps(t) = — —[Hg, ps(t
5;Ps(t) - [Hs, ps(t)]
1 ] ! / i N T & / i N 17
- ﬁTrE <{HT(t),/O dt {exp <_ﬁ(t —t )H()) Hr(t) exp (ﬁ(t —t )Ho) :
i\ L i )
exp (—4 (¢ = 001 pesp (0~ 0)110) @ psto) | (2.50)
or by using the fact that exp <% (t—tH 5) is unitary
d . (AP
aps(t) = ﬁ[Hsms(t)]
1 o t / Z N 1 ' / Z N T
— ETIE (|:HT(t),/O dt [exp <_ﬁ(t —t )HQ) HT(t ) exp (ﬁ(t —1 )Ho) s
1 S R 1 N R
exp (4t = OV ) g (310 - )61 ) w050 |). (2.60)

Using Eq. (2.24) meaning that pg is an equilibrium environmental state, we find

%ﬁs(t) =— %[ﬁsaﬁs(t)] - %TYE <[I:IT(t)’

Vot dt’ {exp (—ﬁ(t - t’)ﬁ[o) Hp(t') exp (%(t - t’)[flo> } ,
X pr® ps(t)]]) - (2.61)

This is the second order TCL generalized master equation in the Schrodinger picture
in a general form, where we have not yet assumed a specific form of the coupling
Hamiltonian, HT, and the Hamiltonian describing the environment, H 5. The term
“TCL” becomes clear from the time variable of the RDO, pg(t), in the second term
with the kernel on the right-hand side of Eq. (2.61). Equation (2.61) is local in time
meaning that is does not possess a time-convolution under the kernel structure with

13



2. Time-convolutionless non-Markovian generalized master equation

respect to the RDO. When we would replace pg(t) in the kernel (the second term
on the right-hand side) of Eq. (2.61) by

? !

pstt) = exp (=0~ )11 ) e (e~ O0Fs) . (262

we would get the Nakajima-Zwanzig equation [1, 99, 100|. The unitary time-
evolution operators appear due to our derivation of the TCL master equation in
the Schrédinger picture. In the interaction picture, they would not have appeared
[1]. There, the only difference would be the time argument. Equation (2.62) can be
interpreted as follows: in the Schrodinger picture, the NZ kernel takes the central
system time propagated RDO (which lets it become convoluted), while the TCL ker-
nel takes just the unpropagated RDO. The deviation between the two approaches
is therefore only of relevance when the central system is far from a steady state and
when the coupling to the leads is strong.

2.4. Time-convolutionless generalized master
equation for a concrete system

We will now derive a specific generalized master equation for a concrete Hamiltonian
describing the coupling between the system and its environment as well as a concrete
Hamiltonian for the environment. For the environment, we assume two semi-infinite
leads [ = L, R (left or right lead), which are connected to the finite central system.

For the coupling Hamiltonian,

Hr(t)=> > / dg x'(t) [quaéléqz +TiChCal (2.63)

a [=L,R

we allow tunneling of single electrons between the system and the leads. In Eq.
(2.63), CI s the creation operator of an electron in the state a in the central sys-
tem and C;l is the creation operator of an electron in the state ¢ in the lead [.

Furthermore, x!(¢) is the switching function of the system-lead coupling for ¢ > 0,

2
l
t)=1— —— 2.64
() = 1= - (261

with the switching parameter o!. For ¢t < 0, the system-lead coupling is assumed

to be zero. The coupling in Eq. (2.63) is modeled geometry dependent through the
coupling tensor [101]

. 2 2.1 % l / NS (W] !
Tqa o ;Z,/ﬂid N /Qfs.d r 77Z)ql<r7o-)gaq(r7r7070)¢a(r70—)7 (265)
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2.4. Time-convolutionless master equation for a concrete system

which couples the lead single electron states (SES) {ty(r, o)} with energy spectrum
{e'(q)} to the system SES {¢J(r,o)} with energy spectrum {E,} that reach into
the contact regions [102], Q% and €2, of the system and the lead [, respectively. The
coupling kernel in Eq. (2.65) is

géq(r, v’ 0,0") =g405.00 €Xp [—5;(37 — x’)z}

x exp [—0,(y — y')*] exp (_W%lj(qﬂ) (2.66)

Note that the meaning of x in Eq. (2.66) is r = (x,y) and not z = (r,o). In
Eq. (2.66), g} is the lead coupling strength and ¢! and 5; are the contact region
parameters for lead [ in the z- and y-direction, respectively. Moreover, AL, denotes
the affinity constant between the central system SES energy levels {E,} and the
lead energy levels {¢!(¢)}. The d, . expresses the assumption of same-spin coupling.
Without spin, this factor and the sum over the spins in Eq. (2.65) drops out.

In our system, we include Coulomb interaction and couple the interacting electronic
system with a single photon mode. The resulting many-body (MB) system Hamil-

tonian can then be identified with Hg. Accordingly, the coupling Hamiltonian, Eq.
(2.63), has to be expressed in terms of the MB eigenbasis {|a)}. For this reason, we

define
Z ) (8] Z J(alCl1B) (2.67)

to rewrite Eq. (2.63)

= > [ o) [T+ EF ). (2.69)

I=L,R

It is assumed that the lead Hamiltonian can be expressed as

Hp= > /dqe )ChiCa. (2.69)

I=L,R

The detailed assumptions about the lead Hamiltonian will be given later.

According to Eq. (2.54), we have
x 7 A ~ 7
Cu(t) :=exp (ﬁtHE) Cqr exp (—ﬁtHE)

=exp (%EEt) Cy = exp (—%el(q)t) Cy, (2.70)
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2. Time-convolutionless non-Markovian generalized master equation

where the reason for the last equality can be explained by a series expansion of the
exponential function when the action of Lr on Cy is known

LeCy =[Hp, Cq) = Z / dq' €' (¢)[Cly Cyr, Cyll

N

=) /dq/ ' (¢)[~6(g — 400 Cor] = —€'(9)Cr. (2.71)
Using Eq. (2.70), we find

T [CuClo(¢ = 6] = exp (3¢ = 0€(0)) o~ )ol1 - S, 272

Tey, |Gl Cor (V' — )| = exp (j—;t - t’)e%q)) 0(g—q)owf(é(a),  (273)

T [Cortt' = 0Ce] = xp (¢~ O))) oo = (dowl1 S, (270

and
Trg [C (- t)éql,sE} — exp (%(t’ . t)el(q)) 5(q—)wf(e(q).  (2.75)

with f(E) being the Fermi function by noticing that pz is a mixed environmental
state composed of the SES of the leads. We note that cyclic permutations of the
operators under the trace over the environment on the left hand side in Egs. (2.72)
to (2.75) keep the results unchanged.

Turning back to the TCL generalized master equation, Eq. (2.61), we are now pre-
pared to reformulate it for our concrete coupling and lead Hamiltonian. The main
steps are to insert Eq. (2.68), employ the relations, Eq. (2.72) to Eq. (2.75), identify
the Hermitian conjugate and reorganize the commutator structure. This gives

0 . i n
a/)s(t) = h[HSa/)S Z /dqx "(a),

l=L,R
exp (—%te%q)) [ / it exp (%t/a@) VT — Y ()Tt — #)ps (1)
1) (st [t exp (£26(0)) X905~ 015 @0t — )
YHel, (2.76)

where H.c. denotes the Hermitian conjugate, {-,-} the anticommutator and Ug(t) is
the inverse time evolution operator of the system

Us(t) == exp (%ﬁg) . (2.77)
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2.4. Time-convolutionless master equation for a concrete system

Equation (2.76) can be simplified by defining

(a0) = gy exp ) (0T (0. 004 (2.78)
and . '
ﬂ%%ty:14<ﬁ’%mp(%ﬂd@ﬁ)X%Hfg@ﬁ@”@ﬂiﬁﬂ). (2.79)
to become
pstt) = — 3 [F1s, ps(t)

—f@@»{%@%@@¢§]+ﬁﬂ>. (2.80)

Equations (2.78) to (2.80) are the equations of motion, which were implemented in
the program to describe the time evolution of the RDO.

We conclude with some numerical notes and a comparison of the TCL with the
Nakajima-Zwanzig equations. First, the structure of Egs. (2.78) to (2.80) is nu-
merically very convenient, because we can save ﬂl(q, t,) at each time step ¢, of a
numerical discretization scheme meaning that we can calculate f[l(q,tn+1) at the
next time step t,11 by a single addition without having to integrate over the whole
range in t’. This is because in the TCL-approach, f[l(q, t) depends not on the RDO
ps(t). However, the most costly operations in computational time remain the ma-
trix multiplications in Eq. (2.80) and therefore, the numerical effort of the TCL and
Nakajima-Zwanzig (where similar equations to Eqgs. (2.78) to (2.80) have to be solved
iteratively instead of only solving Eq. (2.80) iteratively) is similar. Equation (2.80)
is a transcendental differential equation for the RDO, while the Nakajima-Zwanzig
equation would be a transcendental integro-differential equation. This means that
(¢, tay1) and Q(q,t,41) can be directly calculated for each time step. To solve
Eq. (2.80), we use a Crank-Nicolson algorithm until sufficient convergence for the
RDO is achieved, which is assumed when

D 1E]L (t) = [98);; (ta)| < 1.0 x 1075, (2.81)

i?j

where the upper index denotes the Crank-Nicolson step and ¢ and j specify the
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2. Time-convolutionless non-Markovian generalized master equation

matrix elements. The initial step of the Crank-Nicolson algorithm is

ps(tn+1) =ps(tn) — %[ﬁs,ﬁs(tn)]
1Y [ da [$@. 60 t)ps(ta) £ @) {pst). M1 (0.t)}
—I—H.c.}’ (2.82)

with the time increment At. The Crank-Nicolson iteration step is

R . At At~
ps(tnen) =ps(tn) = - [Hs, ps(ta)] = 5 [Hs. ps(tusa)]
A At - .
- (Z /dq [Tl(q),jﬂl(q,tn)ps(tn)
I=L,R

- <:Z /dq [@((J),%Ql(%tnﬂ)%@nﬂ)
- 1) (st St b +HC) s

The time increment is attached to Ql(q, t) for numerical convenience. Compared to
the Nakajima-Zwanzig approach, it is our experience that the positivity conditions
for the state occupation probabilities in the RDO are satisfied to a higher system-
lead coupling strength for the TCL equations.
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3. Hamiltonian of the central
system and the leads

In this Chapter we present the Hamiltonian describing the central system and the
Hamiltonian describing the leads. We also note how we implement them in our nu-
merical calculations. We start with the single-particle Hamiltonian and describe how
we add stepwise the Coulomb interaction between the electrons and the interaction
between the electrons and the photons in an electromagnetic cavity.

3.1. Single particle central systemm Hamiltonian

The Hamiltonian of the central system that we use includes the Coulomb interac-
tion between the electrons and the photon-electron interaction. However, here we
concentrate first on the description and numerical treatment of the single-electron
(SE) Hamiltonian that we use

g s p*(r) 7o S

Hsp (b(r),r) = === + Vs(r) + Hz + Hr(b(r)) + Hp(p(r)). (3.1)
The Hamiltonian is describing a two-dimensional system of electrons at an inter-
face of semiconductors. It contains the kinetic energy and a confinement potential
Vs(r) = tm*Q2y? + V,(r), where the latter part V,(r) is assumed to be of the form

2
of a superposition of Gaussian functions for numerical convenience

Vy(r) = Z Viexp [— (Bui(z — z0i))* — (Byi(y — yoi))?] - (3.2)

Furthermore, Eq. (3.1) contains the interaction between the spin and a magnetic
field B = Be, (Zeeman interaction)

_ uBgsB
=0

HZ:_IJ’B 2 Z

(3.3)

where p is the spin magnetic moment, gg is the electron spin g-factor and ug =
eh/(2mec) is the Bohr magneton with the electron rest mass m.. Moreover, Eq. (3.1)
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3. Hamiltonian of the central system and the leads

contains the interaction between the spin and the orbital motion [103] described by

the Rashba part
. o)

Hp(p(r)) = + (02D, (r) — 0pa(r)) (3.4)
with the Rashba coefficient a and the Dresselhaus part
PRI A
p(b(r)) = (0uPa(r) — 0yDy(r)) (3.5)

with the Dresselhaus coefficient 8. In Egs. (3.3) to (3.5), 0, 0, and o, represent the
spin Pauli matrices. The momentum operator for the system, which is not coupled
to photons, is

) = (P20 ) g A
o) = (20 ) =19+ L), (36)

which includes the static external magnetic field B = Be,, in Landau gauge being
represented by the vector potential A(r) = —Bye,.

The first part of Eq. (3.1) can be written

) 2 . 2
- b 1*22__71 2_%3_?/_ 1*22
HSE,I— o +2m Qoy = o \Y% " 1 —i—2m Qoy (37)

I = \/%. (3.8)

Equation (3.7) has some similarity to a harmonic oscillator in the y-direction and
free particles in the z-direction

with the magnetic length

B2 1, i 9

Hepq = — 24 Im R ——y—. :
SE,L 2m*v + oM Rwy +m*12y3x (39)
with
and B
e = —-. (3.11)
m*c

The eigenfunctions of the two first terms in Eq. (3.9) are pure harmonic oscillator
eigenfunctions in the y-direction and free eigenfunctions in the z-direction, however
the last term in Eq. (3.9) couples the harmonic oscillator eigenfunctions in the y-
direction and the free eigenfunctions in the z-direction. The boundary conditions

are I I

W(z,y — +oo) — 0, (3.13)

and
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3.1. Single particle central system Hamiltonian

where the latter boundary condition is a consequence of the confinement Vs(r) and
L, is the length of the central system in the z-direction. The eigenfunctions of the
two first terms on the right hand side of Eq. (3.9) are

eXp(—QZE ) y ,/%cos(%) if n=1,3,5,...
¢m,n(‘ray) = - Hy, (_) 2 o .
V2m/Tmlay aw \/ 7 sin (%) if n=24,6,...
(3.14)
with the Hermite polynomials H,,(z) and the magnetic length (modified due to the

confinement in the y-direction)
|k
“w m*Qu’ ( )

which is related to the magnetic length by ay = ,/2<[. For the third term on the

Qw
right hand side of Eq. (3.9), we consider the matrix elements

9
e = [ 5 5 0) 5 (@) (3.16)

with u =nif p=135...,u =n"ify/ =1,35...,u=nif p=246,...,

w=n"if p'=246,...,
5 _
p&(fl’) = 4 /L—wCOS (ngmx> (317)
2
pn(T) = 4 /L—xsin <n17;x> . (3.18)

The result of Eq. (3.16) is found in the Appendix A,

and

0 4”'”(—1)n+gl71 : r_
/dx PZ(ﬂU)a—,On'(f) = Lo(n®>—n'?) ?f ntn =357... (3.19)
x 0 if n+n'=24,6,...

We also consider the following matrix elements for the third term on the right hand
side of Eq. (3.9)

1 / ]
(m] L ') = (m| —=(a + a') ') = ) Dbt + 1] e
W 9 m 2

st (3.20)

with a' being the ladder operator for the harmonic oscillator of frequency Qs in
the y-direction and where it can be understood that the integral indicated by the
bra-ket notation is over u := y/ay when

(ulm) = %Hm (u). (3.21)
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3. Hamiltonian of the central system and the leads

Now, we can write the Hamiltonian, Eq. (3.9), in the basis of the eigenfunctions of
the two first terms of Eq. (3.9) given in Eq. (3.14). In the case that n + n’ is odd,
we get

m/ +1 dn'n(—1 mig =t
(m,n| Hsp, |m/,n') =ilw.ayw [\/ Ommi—1 + A —5— mm+1] n2_)n,2)

1 1 /(nmaw
h$2 -+ = Ot O 3.22
5 (T ) b (3:22)
and in the case that n + n’ is even, we get
- P 1 1 [nmraw ?
(m,n|Hsg 1 |m',n'y = hQw |m + B + S\ Ormm On - (3.23)

We can now proceed one step further and include the terms describing the interac-
tions of the spin, Eq. (3.3), Eq. (3.4) and Eq. (3.5). In order to do this, we expand
the basis functions Eq. (3.14) by the spin function

<ZL’, Y, 0’m7 n, U,> - szm,n,c’ (:Ea Y, 0)

exp <_Z_§> \/ = cos ("“‘”) if n=1,3,5,...
- W/ o, (i) L Lo (3.24)
V2 famlay aw ) | \/Zsin (ng) if n=1246, ...

We are then writing the Hamiltonian of Eq. (3.1) without the Gaussian potential
functions,

]:ISE,2 :— Hgp — V,(r), (3.25)
as a matrix expanded in the spin functions
(o] ® (m, n| Hspo |m', ') @ |o)

_ ( (1 @ (m, 0] Hega ') © 1) (] ® (m, 0] g [, ') @ 1) ) 3.26)
(U @ (m, | Hsga ' n') @ 1) (L] ® (m,n| Hspo lm',n) @ |1y )

to get the following structure

(m,n,o| Hsgo |m/, 0/, 0"

SE,1 m* gs
Hmnm ' + e 6m m/dn,n’ Amnm n' (3 27)
- A* HSE,I hwem* 955 5 .
m’n' ;mmn mmm/;n’ T dme. m,m’Yn,n’

with
Am,n,m’,n/ = (5 - Za) <m, TL’ ay ]m’, n’)
B
+ (o= iB) (myn| 0, [, ') = (icv+ B) = (m, | y[m/, ) (3.28)
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3.1. Single particle central system Hamiltonian

and )
HEE! = (m,n| Hsg1|m',n'). (3.29)

mnm n

The matrix element

*Q
(m.n|0, \m', W) = =bu | T (mla! —a|m')

S —— aw\/_ <\/75mm it — TS 1) (3.30)

Equation (3.28) then becomes if n 4+ n' is odd

At = = (B = 1) b ——= (VI i = VG2 )

awf

, an'n(—1)"5
+ (O*/ - ZB) 5m,m’ LI(TLQ _ n/2)
hw
— (1 + —C(Snn/ Vi Opmi—1 + VY + 10, v ; 3.31
(icv B)hQWaW\/ﬁ : ( M Omm/ —1 , +1) ( )

else, if n +n’ is even, it becomes

gt e = = (B = i) & (VI T s = Vi G 1 )

- (\/_5mm 1+\/76mm+1) (3.32)

e &W\/_

— (ia + B)—hQWaW\/_

Finally, in order to represent the complete SE Hamiltonian, Eq. (3.1), in the basis,
Eq. (3.24), and diagonalize it, we have to calculate the matrix elements (m, n| V; [m/, n’)
with

(x| Vgi [r') = 6(r = x') exp [= (Bui(w — z0i))* = (Bi(y — voi))?] - (3.33)

These matrix elements have to be added to the diagonal elements in the spin space
of the Hamiltonian Eq. (3.27). In other words, in Eq. (3.27), we have to replace
(m,n| Hsg 1 |m',n') by (m,n| Hgg1 |m',n') 4+ (m,n| Vg |m/,n’). The matrix elements
are

(| Vol = [ o g o) exp [ (Bl — 20))*] (o)

x / Ty () exp [ By — vo))] durly)  (334)

o0

with

b ) = exp (_2Zzév> H. (i) . (3.35)

2my/mmlay aw
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3. Hamiltonian of the central system and the leads

We calculate the first integral in Eq. (3.34) numerically in our approach, but treat
the latter integral analytically

/_ . dy ¢, (y) exp [~ (Byi(y — y0:))?] b (v)

2.
= / dy ¢, (y) exp [—7yi(u — ugi)*] d (y) = o : i
= @ mim (14 7,0’

min(m,m’) m o o mgmlik Pyéuo
S ST TG AT manP RN (5 I
k=0 + Vyi (1+ W/yi) 2

with v, = (Byiaw)?, u = y/aw and ug; = yoi/aw. The derivation for Eq. (3.36) can
be found in the Appendix B. After the diagonalization of the SE Hamiltonian, Eq.
(3.1), the SES {#?(x)} in the central system are truncated to about Nggs =~ 40.

3.2. Coulomb interaction

The single particle Hamiltonian of the central system Eq. (3.1) does not include
interactions between the electrons themselves. This is corrected here by adding the
Coulomb interaction. For a small system, the electron—electron interaction can be
treated asymptotically numerically exactly. For larger electronic systems, mean field
theories are commonly applied. Here, we are treating systems with about 40 SES,
which is at the boundary of the capability of state of the art machines. Nevertheless,
cutting down to the relevant many-electron states (MES) in the Fock states before
and after diagonalization of the many-electron (ME) Hamiltonian allows us to handle
the Coulomb interaction exactly.

The additional Hamiltonian to be added to Eq. (3.1) is

A

. 2 Ut (2) Ul (2) ()T

25 Ve =12

with e > 0 being the magnitude of the electron charge and x = 12.4 the background
relative dielectric constant and the field operator

V()= > v5@)C, (3.38)

with © = (r,0), 0 € {1,]} and the annihilation operator, C,, for the SES ()
in the central system, which is an eigenstate of the SE Hamiltonian, Eq. (3.1) with
eigenenergy F,. The total ME Hamiltonian (from Eq. (3.1) and Eq. (3.37))

Hyie = Hgg (B(r),r) + Hee (3.39)
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3.2. Coulomb interaction

can be represented in the Fock basis {|u)}. Each Fock state |u) corresponds to a
specific array of occupation number of the SESs. The occupation number for the
SES a in the Fock state |u) is given by N* = 0, 1. We restrict ourselves to represent
the ME Hamiltonian in the Fock states for which > N/ < 4. Furthermore, we
restrict ourselves to the three-electron states (), N/ = 3), which are composed
of the 16 lowest SESs (for calculations without spin, we restrict ourselves to the 8
lowest SESs). The total size of the Fock space is denoted by Ngq.. The matrix
element representation of the ME Hamiltonian Eq. (3.39) is

Nsgs

<:u‘ [:[ME |:u/> = Z NgEaé,u,,u/ + <N| f{ee ’/jll> (34())

in the Fock basis in which it can be diagonalized. We truncate the ME eigenfunctions
from Npoae to Nyigs &~ 200 eigenfunctions after the diagonalization.

Only for numerical reasons, we include a small regularization parameter n = 0.2387 nm
in Eq. (3.37). Without SOI, this parameter can be further reduced to, for example,
a value of n = 1.0 x 107 nm. The method has been developed by Jonasson [104],
but shall be repeated here for matters of clearness of the presentation. We write
Eq. (3.37) differently,

:_ Z [/dx /dx ws* ( )ws( )wd( ) (526‘2@@, (3'41)

abcd /|2+77

and define

S ()0 ,S (!
La(r) == [ d* ’b (x )TT; (x )2, (3.42)
r—r|°+n

in the case of a spinless system with two dimensions in the space such that

) = 0 [0 ) =05 00] s ) — 0 )
+ I, (r) + I, (r) (3.43)
" e = [ o B U ) -
and

1
) = =0 @00 [ e (3.45)

In the following, we will show that the contributions of I{,(r) and I}/,(r) are vanishing
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3. Hamiltonian of the central system and the leads

when substituted in the Coulomb interaction

~ 62 * sileiloNe
Hee =5 - [/dQT 0 (1) (el (v) | CLCICAC,
/{a,b,c,d
2
. ) A
_e i + At C. 3.46
2/{Gde(a| v |c) CaCy CaCe, (3.46)

instead of Iyy(r). Provided this can be assumed, we could replace the expression for
Ly(r), Eq. (3.42), by

1
e =0/ + 12

before we insert Ipy(r) in Eq. (3.46). The Iyy(r) in Eq. (3.46) has the property
that the singularity in the denominator for r — r’ and n = 0 is canceled out for
sufficiently smooth wavefunctions ¢ (r) and 75 (r). Therefore, the regularization
parameter 7 can be reduced. The proof that the contribution of I},(r) in Eq. (3.44)
is vanishing is (using the commutation relations for the operators C’J and CA‘Z)

Toalx) = / Pt [0 () — 5 (r)] WS) —S()]  (3.47)

=5 3 [ o) (6 0 + 60 R ©)

— ()5 (r) (45 (r) Felr) + 92 (v) Fy (r))
— ()2 (r) (957 (r) Fu(r) + 43 (r) F (r))
+ () (v) (057 (x) Folr) + 05 (r) i (x)) ] CICICaCe = 0 (3.48)
with
V7 (')

The proof that the contribution of Ij(r) in Eq. (3.45) is vanishing is (renaming the
dummy indexes, using the anticommutation relations for the operators C; and using
(a| I} |d) = {(a| I}!;|c)) due to the same space argument in 2 (r) and 5 (r))

Fi(r) = [ d*'

(3.49)

2
Al =5 > fal Iy le) CLELCAC
Iia,b,c,d
62 - . A R N
=50 2 (el Bale) CICICC. + (al I 1) CICIC.Ca
a,b,c,d
62 - . A . N
=1e (al Iy o) CICICC. — (a| I, |d) CICCaC|
a,b,c,d
62 - . A R A
=1 > [{al B le) CICICaCe — (al Iy |e) CICCuCe| = 0. (3.50)
ab,.cd ]
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3.3. Electron-photon coupling

The smaller 1 together with Eq. (3.47) instead of Eq. (3.42) could also be used when
only the Zeeman interaction, Eq. (3.3), is present. This is because the SESs in the
system {17 (x)} are with the same space dependence for different spin indexes with
the spin coordinate chosen to be the same as the spin index (the eigenvalues {E,}
depend though on the spin due to the Zeeman shift). When SOI is present (either
Rashba, Eq. (3.4), or Dresselhaus, Eq. (3.5)) then the SES in the system become
dependent on the spin coordinate meaning that ¢ (r, o) # ¥2(r,0’). In this case,
Eq. (3.42) would have to be replaced by

h(r,0) =Y / Pr' [, 0") — 4 (x, 0)] ! WS, o) — 4S(x, 0)]

(3.51)

but since 12 (r',0") # 2 (r,0) for r' = r a very small 7 cannot be used in this case.
On the other hand, if we would define

Iy(r) = &' [ (o’ — vt (r, 0! ! (', 0') =3 (r, 0’
W= [ ) - o )] e i >w<( >})
3.52

such that 2 (r', ') — 92 (r,0’) for r’ — r, then the contributions of the correspond-
ing 1;,(r), Eq. (3.44), and I},(r), Eq. (3.45), would not vanish. This is why we have
to use a larger n = 0.2387 nm when SOI is included.

3.3. Electron-photon coupling

We are interested in studying the effect of a single quantized cavity photon mode
on the electrons. We include a photon bath

Hy, = hwala (3.53)

to the ME Hamiltonian Eq. (3.39), where a' is the photon creation operator and fuw
is the photon excitation energy. Furthermore, we include the interaction between
the electrons and photons by replacing Eq. (3.6) by

o= (5) =i tporate] s

in Eq. (3.1). This changes the kinetic (p?/2m*), Rashba (Eq. (3.4)) and Dresselhaus
(Eq. (3.5)) Hamiltonian and thus the photon field couples directly to the spin. In
Eq. (3.54), the vector potential due to the photon field is given by

APP = A(ed + e*af) (3.55)

27



3. Hamiltonian of the central system and the leads

with
€z, TEo1
€y, TE101
le; +ie,], RH circular (3.56)

le, —ie,|, LH circular

S-S

for a longitudinally-polarized (z-polarized) photon field (TEq;; ), transversely-polarized
(y-polarized) photon field (TEjg;), right-hand (RH) or left-hand (LH) circularly po-
larized photon field. The electron-photon coupling constant ¥ = eAa,,Q,,/c scales
with the amplitude A of the electromagnetic field. The space dependence (standing
waves) of the vector potential due to the photon field was neglected in Eq. (3.55)
as we assume that the photon cavity is much larger than the central system. The
total MB electron-photon Hamiltonian of the central system is given by

Hup = Hsi (P*(r), ) + Hee + Hyp. (3.57)

For reasons of comparison and to determine the photocurrents (additional currents
invoked by the photo cavity), we also consider results without photons in the system.
In this case, we replace the MB Hamiltonian Eq. (3.57) by the ME Hamiltonian Eq.
(3.39). We diagonalize Hamiltonian Eq. (3.57) in the product space (MB space)
of the MESs and photon states. This basis is constructed by combining the Nygs
MESs with Ny, ~ 30 photon states and is therefore of size Nyroa = Nurs X Npn. To
calculate the matrix elements of the Hamiltonian in Eq. (3.57) in the product MB
basis, several operators have first to be transformed (for example the action of the
Pauli matrices is only defined in the spin coordinate space, but how they operate
in the ME space is not defined directly). Therefore, they have to be transformed
in several steps to the basis functions Eq. (3.24), SE eigenfunction basis {1 (z)},
Fock basis and ME eigenfunction basis. The transformation to the SE basis and
ME basis are unitary transformations defined by the corresponding eigenfunctions
and a truncation to the matrix sizes Nsgs or Nygg. The transformation to the Fock
basis for a one-particle operator matrix element is given by

Orasc = 3, [z 0:5(@)Oses()5 ()CLCo, (359)
a,b

and the representation of the operator in the Fock basis by calculating the action of
the electron creation or annihilation operators Cf or C, on the Fock states. In Eq.
(3.58), the action of Oggg(x) on 1)5(x) has to be evaluated indirectly as the wave
functions are defined in terms of the basis functions given in Eq. (3.24). When it is
known how the operators operate in the ME space, they can be straightforwardly
expanded to the MB space by considering their action in the photon space. If
they contain no photon creation or annihilation operators they can assumed to be
diagonal in the photon space. After the diagonalization of the MB Hamiltonian Eq.
(3.57), we truncate the MB eigenfunctions to Nyps ~ 200.
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3.3. Electron-photon coupling

The additional Hamiltonian due to the electron-photon interaction in the Fock-
photon space is

H, p, =Hsp (P (r),r) — Hsg (p(r), 1)
A% it | Ter2 o Al t At
Zgaba—i-gaba Cz(eea +e ea —i—aa—i—aa)z 'C,

eAaZZZ/d2 (05 (r,0)|ao,(0,0")e, — aoy(o,0")e,
+ Bo,(0,0")e, — Boy(a,0")e, vy (r,0”)] cic,

46 af
4 ZZZ/d2 (3% (v, o) [ao,(o, o')e; —aoy(o,0')e;,

~

+ Bo(0,0')es — Boy(o,0")es vy (r,0')] cic, (3.59)
with g3 = (a| g |b) and g% = (a g |b) being the representation of the operators
. eA o
gi=-—e p(r) (3.60)
and 4
z_ € o
g m*ce p(r) (3.61)
in the SESs ¥ () and ¢y (z) and with
0oy 1) Oay(h,d) )
o= 7 ! . 3.62
ou= (T il 50

In Eq. (3.59), the action of the Pauli matrices and ep in Egs. (3.60) and (3.61) on
¥ (z) must be evaluated indirectly over the basis functions given in Eq. (3.24) and

in case of the Pauli matrices also over the coordinates. In the basis functions, Eq.
(3.60) is given by

eAh w Im/ + 1 Im/
q ''n' o’ :50 o’ —€g = 5m m’ _5m m/— 677, n’
(m,n,a|g|m,n,a) , m*caW < € QW [ 9 , +1+ 9 , 1 )
fm’+ 1 fm/
- T(sm,m’—l-l + 75m,m’—1] 5n,n’

an'n(—1)"5 )

— 1€y

— 1ezaw

T (7 ) o (3.63)

if n 4+ n’ is odd and by

eAh w Im/ + 1 Im/
q ''n' o :50 o/ —€x z 5m m’ _5m m/— (Sn n!
<m7n70|g|m7n70> , m*caW < € QW [ 9 , +1+ 9 , 1 ,
fm'+ 1 fm/
- T(sm,m’—l-l + 76m,m’—1] 5n,n’> (364)
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3. Hamiltonian of the central system and the leads

if n +n’ is even, where we have used Eq. (3.20), Eq. (3.15), Eq. (3.11), Eq. (3.30)
and Eq. (3.19). Similarly, Eq. (3.61) is given by
2 eAh . We m + 1 m/
(1m0, 01§ | n', ') b0 (‘emw Vo o 7‘5’””"'1] o
/
5m,m’+1 + w %5m,m/1] 6n,n/

4 / _1 7L+7L/71
~ictay L) 7 6m,mf> (3.65)

m' +1

L.(n?>—n

if n+n' is odd and by

(m,n,o| g im',n’ o’y =

mm + mm’ n,n’
" m* cayy ( QW V T \/ 1]
m’ + 1 Im
mm 5m m/—
5 141+ m—1

if n+n' is even. Equation (3.59) must be transformed from the Fock space to the
ME space and then the matrix elements in the product space of the photon and ME
space can be calculated.

S ) (3.66)

3.4. Hamiltonian of the leads

We connect two leads [ € {L, R} (left (z < 0) and right (z > 0) lead) opposite to
each other to the central system, which are parabolically confined in the y-direction
and infinitely extended in the z-direction (except at the ends, which are connected to
the central system). The leads are electrically biased and therefore can drive a charge
current through the central system. The leads can be considered as electron baths
or the environment in the dynamical description of an open system. For reasons
of simplicity, we neglect the Coulomb interaction of the electrons. Furthermore, we
assume that the electromagnetic field of the photon cavity is not interacting with
the electrons of the leads. The lead Hamiltonian is

1 oue).1) = P10 i) 4y Balpi(e) - Hp(pi). (367

with the momentum operator containing the kinetic momentum and the vector
potential describing the magnetic field (but not the photon field)

pu(r) = ?v + SA(r). (3.68)
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3.4. Hamiltonian of the leads

Equation (3.67) contains the lead potential

1
Vi(r) = §m*Ql2y2 (3.69)
that confines the electrons parabolically in y-direction in the leads with the char-
acteristic energy h€);. Furthermore, it contains the Zeeman term (Eq. (3.3)) and
Rashba (Eq. (3.4)) and Dresselhaus (Eq. (3.5)) SOI provided that these terms are
also present in the central system. The Hamiltonian in Eq. (3.67) can be written
H; (pi(r),r) " ez 0 g (Pi(r)+Hp(pi(r)) (3.70)
= — —m - .
1\Pi\T), om* 9 1Y m*l2y8x zT11IR(PI D\P1
with the magnetic length [ and € = /¥ + w?. The first two terms of the right
hand side of Eq. (3.70) have the eigenspectrum

- 1 2~2
El(m, q) = FLQ[ (m + § + %) s (371)

where the discrete quantum number m describes the harmonic modes in the y-
direction and the continuous wave number ¢ describes the motion in the z-direction
in the semi-infinite lead I. In Eq. (3.71), the modified magnetic length is @, =
\/1/(m*€). The eigenfunctions of the first two terms of the right hand side of Eq.
(3.70) are

Vimg(T,Y) = Vg(2) D (y) (3.72)

with ¢,,(y) given in Eq. (3.35), but with another modified magnetic length @, instead

of ay and
bl) = @ sin (q (x : %)) , (3.73)

where the “plus’-sign refers to the left lead [ = L and the “minus”™sign refers to the
right lead | = R. In fact, the spectrum in Eq. (3.71) and eigenfunctions in Eq. (3.72)
are unchanged if the third term on the right hand side of Eq. (3.70) is added. This
is shown in detail in the Appendix C.

Using the representation Eq. (3.26) for the Hamiltonian Eq. (3.67), we get the
following structure

<m7 q, O-’ I—:rl |mI7 qu 0J>

- (El(m7 Q) + %) 6m,m’6<q - q/) Am,n,m’,n’
A:‘nﬂn’,m,n <El (mv q) - %) 6m,m’5(q - q,)

with

. / . eB / !
A = (B — i) (m,n| 9y |m’, n') — (i + B)E (m,n|y|m’,ny, (3.75)
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3. Hamiltonian of the central system and the leads

where the matrix elements given in Eq. (3.30) and Eq. (3.20). The reason that the
matrix elements (« — i) (m,n|d, |m’,n') can be skipped in Eq. (3.75) follows the
path of the arguments in the Appendix C. To see this, the eigenfunction expansion,
Eq. (C.6), has to be replaced by

mog.0) =35 [ dd Coarla ), (3.76)
o—/ m/ 0

where |m,q,0) are the eigenfunctions of the Hamiltonian Eq. (3.67) and |m, ¢, o),
are the eigenfunctions of the Hamiltonian Eq. (3.74). Similarly, Eq. (C.7) has to be
replaced by the equation

00
Z Z / dq, 2 <m”7 q”a 0-”| Hl |m,7 q,7 0-,>2 Om,m’,a,a’(Q7 q/>
o m/ 0
= EZ,Q(mv q, U)Cm,m”,o,a”(Q7 q//)u (377)

where Ej5(m,q,0) are the eigenvalues of the Hamiltonian Eq. (3.74). For H, =
(icoy —ifoy) 0y, the following equations of the Appendix C apply accordingly.
Therefore, we find

Cm,m”,a,a”(Qy q”) = 5m7m//(5(q — q//)da,a" (378)

and
El(ma q, U) = El,2<m7 q, U) (379)

meaning that the term (iao, —ifo,) 0, can be neglected in Eq. (3.67) because it
does not change the eigenvalues and eigenvectors of the Hamiltonian. Thus, the
expression Eq. (3.75) is correct with

1 —
— = (\/ m' + 15777,,777/-‘,—1 - m/(sm,m’—1>
aw\/§

: . —
_(ZCY + ﬂ)m&mn/ < m’ém,m/_l +vm' + 15m,m’+1> . (380)
wew

Am,n,m’,n’ - - (6 - ZOé) 571777«/
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4. Time-dependent densities

In this Chapter, we describe the time-dependent density and current density for the
charge and spin. In addition, we describe the spin source densities, which appear
since the spin density does not satisfy a conservation law [39, 105|. First, we will
derive the operators for the time-dependent densities using the Heisenberg picture
and second quantization. Second, we will show how we implement the densities
in our program by calculating the mean values of the MB matrix elements of the
operators. We have used and simplified the expressions for the density operators
also to calculate analytical results for a 1D Rashba or Dresselhaus ring (see Ref.
[106]).

4.1. Derivation

In second quantization the MB system Hamiltonian, Eq. (3.57), is

Hg = / d*r Wi(r) [(% + Vg(r)) + Hy + Hg(r) + Hp(r)| ¥(r)
+ H.. + hwi'a, (4.1)

with the spinor

U(r) = < v(t.r) ) (4.2)

Tir) = (Wi(t,r), ¥i(l,r)), (4.3)

where W(z) is the field operator defined in Eq. (3.38), = (r,0) and the spin
o € {1,1}. The charge density operator

and

ac(r) = e®f (r)W(r) (4.4)
and the spin polarization density operator for spin polarization S; (i = z,y, z)

nl(r) = g\iﬁ(r)oi\i!(r). (4.5)
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4. Time-dependent densities

We transform the field operators from the Schrédinger picture to the Heisenberg
picture to make them time-dependent in order to be able to calculate the time
derivative of Eq. (4.4) and Eq. (4.5). The Heisenberg field operator is

Uy (2, t) = UN)U(2)U (L), (4.6)
where U(t) is given by 5
maz}(w = HsU(t), (4.7)

A~

ie. Ut) = exp(—%). In the Heisenberg picture, the charge density operator
A (r,t) = el (v, )y (r, 1) (4.8)
and the spin polarization density operator for spin polarization S; (i = x,y, z)

) A .
b (r,t) = qug(r, )0, W g (r, ). (4.9)

Using the equation of motion for the Heisenberg field operator

A

L0 = -
ZHEII/H(x,t) = [Vy(x,t), Hg] (4.10)

we can apply the continuity equation

o . e[ ) o ) .
() = — [\I’L(r,t)\IfH(r,t)Hs - quz;(r,t>\pH(r,t)] = _VjS(r,t) (4.11)

or

o, 1. . . )
i (r,8) = [xp},(r, )0, U (r, t) H — HS\IIL(r,t)aZ-\IJH(r,t)]

= — Vji(r,t) + & (r, 1) (4.12)

to find the charge current density operator ij(r, t), spin polarization current density
operators ji(r,t) and spin polarization source operators 8% (r,t). In Eq. (4.8), Eq.
(4.9), Eq. (4.11) and Eq. (4.12), the spinors

A . @H(T,I',t)
@ y(r,t) = ( P ) (4.13)

and )
l(r,t) = (Wh(t,r,0), Uh(r,0)) (4.14)

and Hy = U'(t)HsU(t) could be transformed to the Heisenberg picture without
any change. However, parts of the Hamiltonian Hg might be different in the dif-
ferent pictures. We will therefore consistently consider the parts of Hg after their
transformation to the Heisenberg picture.
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4.1. Derivation

It is sufficient to consider the Hamiltonian

Hg(t /dx”/dx\lﬁxt o(r' —r”)

h 2 B
X { [2m* ( VI/ + AH(r/’ t)) + VS(I‘“) + %(1 — 250//’ )] 50130.//

1

h 0

+ % <(5UI,T50.//’\L + 50‘/7\L50// T |: r/I7 t):|
-+ —Af(r”, t)] )

-+ AH (r”, t)]

~.

dy"

_ (—7,(50./ T6 //\L —|— ?/(50./ ~L5‘7” T [

+ é <<50’,T50”,¢ —|— 5017\%50.// 0

h

Q>&

~|m@|m@|m

— (—150 T(S nl+ 1047 iéa” |: + EA?(I'H, t):|) } @H(ZE”, t), (415)

Q
@\

instead of the Hamiltonian in Eq. (4.1), where the photon bath and the Coulomb
interaction are omitted, because the commutators

[mUT(t)aTaU(t), U (2, )0 g (x, 0, t)} —0 (4.16)
and o )
[Hee,\y},(x,t)qf,{(r,a"',t)} —0, (4.17)

which appear in Eq. (4.11) and Eq. (4.12) due to specific parts of the Hamiltonian
Hg are vanishing. In our convention to transform the parts of the Hamiltonian Eq.
(4.1) to the Heisenberg picture, we replace the Schrodinger field operators in Eq.
(4.1) by the Heisenberg field operators and the Schrodinger vector potential A(r),
which may include photon operators, by the Heisenberg vector potential

A~

Af(r.t) = U )AX)U(®). (4.18)

Similarly, H.. in Eq. (4.17) has to be understood such that the Schrodinger field
operators in Eq. (3.37) are to be replaced by the Heisenberg ones. Equation (4.16)
is valid as

[ma*a,\iﬁ(x)\iz( "] =0 (4.19)

since the field operator operates in a different space (electron space) than the photon
creation and annihilation operators, a' and a. Equation (4.16) is obtained when Eq.
(4.19) is transformed to the Heisenberg picture. The proof for Eq. (4.17) can be
found in the Appendix D.

In this thesis, we show only the derivation of the spin polarization current density

operator for S, and S, spin polarization and the spin polarization source operator for
Sz and Sy, spin polarization in the Appendix E. We derived the charge current density
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4. Time-dependent densities

operator, the spin polarization current density operator for S, spin polarization and
the spin polarization source operator for S, spin polarization in complete analogy.
The component labeled with j € {z,y} of the charge current density operator is
given by

QSI:LZ [A T(r)vj‘il(r) - (V-\iﬁ(r)> ‘i’(r)] + me—jcfij(r)‘iﬁ(r)‘i’(r)

+ ﬁ‘I’T( r)(fo, — ao, ) (r)d,; + h‘I’T( r)(ao, — Bo,)¥(r)d,;.  (4.20)

The current density operator for the j-component and S, spin polarization

jé(r)

2

) =1 [ ¥ @0, V() - (V4 (0) 0, ()|
eh A A .I. S 651-73 + O[(;y"] A .|. A
5o (D)W (r)o, W (r) + —= =W () W (x). (4.21)

the current density operator for Sy spin polarization

2

) = [ 00, V8 () - (V81 )) 0,9 ()]
eh oo oAb B
+ 2m*cAj(r)\I' (r)o,¥(r) — 5 Pi(r)¥(r). (4.22)

and S, spin polarization

0 = [# 0.9, 8 (0) — (V,91(0)) 0. ()
2;icﬁj(r)\iﬁ(r)az\i1(r). (4.23)

The spin polarization source operator for S, spin polarization

§(r) = — #@T(r)oyﬁz(r) - % {a% (\iﬁ(r)) 0. U(r) — \iﬁ(r)az%\il(r)}
-5 | (#10) 0.0 - (00, i)
- %flm(r)\iﬁ(r)@\i’(r) - %Ay(r)\iﬁ(r)@\i’(r), (4.24)

Sy spin polarization

(r) 12958 Gt ) () — 10 {ﬁ (\iﬁ(r)> o U(r) — \iﬁ(r)azgxif(r)
— A (r) ¥t (r)o, ¥ (r) — — A, (r) T (r)o, (1) (4.25)
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4.2. Implementation
and S, spin polarization

§(r) :% [2 (\iﬁ(r)) (iao, + ifo,) ¥ (r) — Oi(r) (iao, + ifo,) %\il(r)}

ox
3 [a% (1)) (160, +iao,) ¥(x) = ¥'(x) (iBo, + iac,) a%‘i”(”]
+ — A, (1) ¥ (r) (a0, +iBo,) ¥ (r)
+ - A0 (1) (160 + iao,) B(r). (4.26)

4.2. Implementation

We calculate the time-dependent densities (charge and spin polarization density,
charge and spin polarization current density, spin polarization source density) in two
main steps. First, we calculate the matrix elements of the corresponding operators
in the truncated MB space in order to represent them in the same basis as the
RDO. Second, we calculate the time-dependent expectation values of the operators
using the time-dependent RDO of the system Eq. (2.8). Here, we shall demonstrate
this for the example of a particular component of a particular density, namely the
x-component of the current density for S, spin polarization (Eq. (4.21) for j = x).
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4. Time-dependent densities

The matrix element of the corresponding operator in the truncated MB space is

iz = 3 { [ (o [ e 0 0,4) = 005 e, 4]

a,b

eBh

2m*c

w5*<r,¢>w5<r,¢>y)

. (4m [0 (0, D@5 (x,1)) = (a0 (r, 1)) (3, 1)]

Bh
- ;m*cwf*<r,¢>w§<r,¢>y)
b O D) + S )|
Nprod NFock
X Z Z Fr)m (m| CLCy [n) Vi (o) W
Nsgis
+ Z{ [0S (r, D)0 (1, 4) + 5 (r, L)wi (r, 1)

X id{ w2mc ( \/75 +1+6$\/_69(T)g >

NFouk
X Z Vi m (ml CICy ) Vi, )Ww] } . (4.27)

In Eq. (4.27), the MB states are indicated by the ket |u) and the states indicated by
the common ket |m) are Fock states. The matrix V},,, describes the transformation
between the Fock and the ME basis

NFock

Im} = Z Vi), (4.28)

where the ket |m} indicates a ME state. Similarly, the matrix W,,, describes the
transformation between the product space of the ME and photon basis and the MB
basis. Due to the truncation of the ME and MB eigenfunctions, the matrices V,,, ,,
and W, ,, are not square matrices. The maps f and g appearing in indexes of Eq.
(4.27) map from the product space of the ME and photon basis to either the ME (in
case of f) or photon space (in case of g). The expectation value of the x-component
of the current density operator for S, spin polarization is

Nyigs
SN =T [psiE@] = Y (s @E@. (129
8%
which is a function of space and time. The other time-dependent densities can be
implemented similarly.
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5. Summary of the results

The main results of this work can be found in the attached papers. In this Chapter,
we will provide some additional results and summarize the main results of the papers.

5.1. Photon-electron interaction and occupation of
MB states

Here, we will present a few supplemental plots to the attached papers to elucidate
the effect of the photon-electron interaction on the photon content of the MB states
and the photon number relaxation in the central system. It becomes clear that we
are describing the non-equilibrium physics of the transport through the quantum
ring. Furthermore, we discuss the distribution of the occupation of the MB states.

Figure 5.1 shows the deviation of the photon content of the MB states from an
integer value averaged over the truncated MB states Nygs,

NwuBs

Z Xn — [Xn] (5.1)

n=1

NMBS

with [x,] being the nearest integer function, which return the nearest integer to y,
and x,, being the photon content of the MB state |n). The deviation x (Eq. (5.1))
is shown for z- or y-polarization as a function of the magnetic field in Fig. 5.1. A
value of 0 for y would indicate integer photon content and a value of 0.25 would
indicate that the photon contents are arbitrarily distributed over the MB states.
The parameters for the calculations are identical with the parameters from Ref.
[96]. The deviation from integer numbers of the photon content of the MB states is
correlated to the strength of the coupling between the electrons and the photons. If
the photons would not couple to the electrons, the photon content of the MB states
would be integer numbers. For a large magnetic field, the electron-photon coupling
becomes less relevant relative to the kinetic term. Therefore, the photon numbers
are closer to integers for large magnetic field as can be seen in Fig. 5.1.

Figure 5.2 shows the time evolution of the photon number N,,(¢) in the central
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Figure 5.1: (Color online) Average deviation from integer MB state photon content
for x- or y-polarization as a function of the magnetic field. A value of 0.25 would
indicate a complete deviation from integer numbers.

system (quantum ring) in the case that the photon field is z-polarized. The initial
photon number (at ¢ = 0) is varied. The initial photon number Ny it are integers
as the initial MB state is selected to be a pure photon state with N ju¢ = 0. The
graphs are shown for (a) a small magnetic field B = 0.05 T and (b) a large magnetic
field B =1 T It becomes clear from the graphs that the photon number has not yet
reached its equilibrium value. However, it approaches much faster its equilibrium
value for the smaller magnetic field. This is in agreement with the conclusion drawn
from Fig. 5.1 that the smaller magnetic field would be associated with a higher
electron-photon coupling drawing the photon number stronger to its equilibrium
position. From the time range, for which we got converged results, we can only
assume that the equilibrium photon number is below 1 independent of the initial
photon number.

Figure 5.3 shows the occupation of the MB states as a function of the magnetic field
and the energy of the MB states for z-polarized photon field. The occupation is
shown at the time when the charge of the central system () = 0.8e meaning that the
sum over the occupations for a specific magnetic field is 0.8. The leads are electrically
biased with the chemical potential u; = 2.0 meV of the left lead and pur = 0.9 meV
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5.1. Photon-electron interaction and occupation of MB states
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Figure 5.2: (Color online) Photon number Ny, as a function of time when the initial
MB state is selected to be with Neinit = 0 and Nppinie = 0,1,2. The photon field
is x-polarized. The magnetic field is (a) B=10.05 T or (b) B=1 T.

of the right lead. It is clear from Fig. 5.3 that only two MB states contain usually
more than 50 % of the electron content. The energetic distance of these states
oscillates in accordance with the AB phase as a function of the magnetic field. For
large magnetic field B ~ 1 T, these states lie higher in energy and the contribution
of other MB states to the occupation distribution increases. It is important to note
that the fact that the occupation is mainly restricted to two MB states helps us to
understand the underlying physics. However, it is also clear that the more realistic
situation that we describe in our model is more complicated and that the restriction
to a two-level system would not in all cases be appropriate.

41



5. Summary of the results
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Figure 5.3: (Color online) Occupation of the MB states at time t., for which the
charge of the central system Q(t.) = 0.8e, as a function of the magnetic field and
the energy of the MB states. The bias window [ur, pr] is indicated by solid black
lines in the base. The photon field is x-polarized.

5.2. Conclusions

Here, we summarize the results of the papers that are attached to this thesis, where
we have used a time-convolutionless, non-Markovian generalized master equation
formalism to calculate the non-equilibrium transport of Coulomb and spin-orbit
interacting electrons through a broad quantum ring in a photon cavity under the
influence of a uniform perpendicular magnetic field. The central quantum ring 1ESs
are charged quickly. Electron-electron correlation and sequential tunneling slow
down the 2ES charging in the long-time response regime.

Aharonov-Bohm charge current oscillations can be recognized in the long-time re-
sponse regime with magnetic field period By = ®y/A, which is related to the flux
quantum @, and ring area A. In the case of z-polarized photon field, we have
found charge oscillations between the left and right part of the quantum ring when
the magnetic field is associated with integer flux quanta. The oscillation frequency
agrees well with the energy difference of the two mostly occupied states. The rela-
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tively high energy difference for x-polarized photons is related to a relatively high
transient current through the ring. The amplitude of the charge oscillations through
the quantum ring is decreasing in time due to dissipation effects caused by the cou-
pling to the leads. Usually, the “persistent” circular local current is larger than the
total local charge current through both ring arms from the left to the right. The
persistent current shows a periodic behavior with magnetic field, but with a ten-
dency to clockwise rotation due to the contact region vortex structure. In the case of
y-polarized photon field, the magnetic field dependence of the left and right charge
current exhibits a pronounced dip at magnetic field B = 0.425 T corresponding to
two flux quanta that is therefore clearly not related to the Aharonov-Bohm effect.
The dip is associated with a degeneracy of the two mostly occupied MB states at
magnetic field associated with two flux quanta. The additional level crossing ap-
pears only for y-polarized photons, but influences the spatial distribution of the
charge density and flow similarly to any other MB degeneracy. The generally lower
energy difference of the two mostly occupied MB states in the case of y-polarization
perturbs the constructive phase interference condition for the bias driven charge
flow through the quantum device and decreases the persistent current magnitude.
We have demonstrated for our ring geometry that y-polarized photons perturb our
system stronger than z-polarized photons, suppressing or enhancing magnetic field
induced and bias-driven currents and perturbing flux periodicity beyond finite width
effects. The relatively strong influence of the y-polarized photon field on the elec-
tronic transport is due to the closeness of the photon mode energy Aiw = 0.4 meV to
the characteristic electronic excitation energy in y-direction (the confinement energy
hy = 1.0 meV is reduced due to the ring geometry).

A pronounced AC charge current dip at the critical value of the Rashba coefficient a“
can be recognized in the TL current flowing from the higher-biased lead through the
ring to the lower-biased lead at the position of the Rashba coefficient that a simpler
1D model predicts. The critical Rashba coefficient is related to two experimentally
adjustable parameters, the ring radius and the gate voltage leading to the average
electric field causing the Rashba effect. The dip structure is linked to crossings in
the ME spectrum and can be removed partly by embedding the ring system in a
photon cavity of preferably y-polarized photons. The currents in a 1D ring with
Rashba or Dresselhaus SOI can be calculated analytically. For zero temperature
and divisibility of the electron number by 4, we predict a finite spin current of
non-interacting electrons in the limit of the electric field causing the Rashba effect
approaching zero. The current for the S, spin polarization is flowing homogeneously
around the ring, but the currents for the other spin polarizations flow from a local
source to a local sink. The spin polarization currents of the more complicated 2D
ring agree qualitatively in the kind (total local or circular local) and spin polarization
(Sz, Sy or S,), the position of sign changes with respect to the Rashba parameter
and the geometric shape of the current flow distribution to the spin polarization
currents of the simpler 1D ring. Quantitatively, it is preferable to choose a narrow
ring of weakly correlated electrons to obtain a strong spin polarization current. The
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linearly polarized photon field interacting with the electrons suppresses in general
the charge current but enhances the spin polarization current in the small Rashba
coefficient regime. Therefore, the linearly polarized photon field might be used to
restore to some extent the strong spin polarization current for S, spin polarization
in the small Rashba coefficient regime, which is suppressed for the broad ring with
electron correlations and coupling to the leads. This information could be very
useful for experiments with spin polarization currents (for suggestions to measure
it, see Refs. [39, 40]) since the number of materials with a strong spin current could
be considerably enhanced (without the requirement of a gate). Specific symmetry
relations of the spin polarization currents between the Rashba and Dresselhaus ring
remain valid for a finite-width ring of correlated electrons connected to electrically
biased leads via a spin-conserving coupling tensor. Furthermore, switching on the
cavity photon field does not destroy the symmetry relations.

The spin polarization in a ring, which is connected to leads and mirror symmetric
with respect to the transport axis, is perpendicular to the transport direction. A
linearly polarized photon field with polarization in or perpendicular to the trans-
port direction, increases only the magnitude of the spin polarization while keeping
the direction of the spin polarization vector uninfluenced. The spin polarization
accumulates to larger magnitudes when the transport of electrons is suppressed by
a destructive AC phase. The circularly polarized photon field enhances the spin
polarization much more than the linearly polarized photon field. Furthermore, the
spin polarization vector is no longer bound to a specific direction as the circularly
polarized photon field excites the orbital angular motion of the electrons around the
ring and pronounced vortices of the charge current density of smaller spatial scale.
The circulation direction of the vortices is found to depend on the handedness of
the photon field and the value of the Rashba coefficient a relative to a°.

The charge current from the left lead into the quantum ring device and out to
the right lead shows three AC dips around o€ instead of one for the circularly
polarized photon field. The reason for it is a small splitting of degenerate states
by the interaction of the angular momentum of the electrons and the spin angular
momentum of light, which leads to MB crossings at three different values of the
Rashba coefficient. The distance in a between the dips increases with the number of
photons in the system due to the larger spin angular momentum of light. The charge
photocurrent from the left to the right side of the quantum ring is usually negative
meaning that the photon cavity suppresses the charge transport thus increasing the
device resistance (except close to o, where the AC phase interference is destructive).
The circulating part of the charge photocurrent can only be excited by the circularly
polarized photon field. The handedness of the circulation depends on the handedness
of the light. This way, it is possible to confine the charge transport through the ring
to one ring arm (upper or lower). The circular charge photocurrent is suppressed
in a wide range of the Rashba coefficient around a = a¢ and might therefore serve
as a reliable quantity to detect destructive AC phases. The spin photocurrents are
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especially strong around a = o (due to the longer electron dwell time) and for
circular polarization (for geometrical reasons). The handedness of the light does not
influence the spin polarization current including the current for S, spin polarization,
which circulates around the ring.

Our results are crucial to know for the development of spin-optoelectronic quantum
devices in the field of quantum information processing. For instance, interest might
arise to build a spintronic device, which breaks (blocks) an electrical circuit if the
gate voltage is very close to a specific, critical value, which corresponds to the
magnitude of the electric field leading to a destructive AC phase interference in a
ring interferometer. Thus, our device could be used as a quantum switch, which is
extremely sensitive to the gate voltage. The critical gate potential of the quantum
switch could be tuned with the ring radius. A possible experimental approach to
determine the ring radius would be to measure the circular charge current around
the ring (for example indirectly by its induced magnetic field) that is caused by a
circularly polarized cavity photon field. We predict that this approach is better than
direct resistance measurements of the quantum switch without the photon cavity.
This is because the data that a certain number of measurements with the circularly
polarized cavity photon field yields are more relevant for suggesting the proper ring
radius due to the broadness of the corresponding Aharonov-Casher feature in the
Rashba coefficient.

45






A. Calculation of the integrals in
Eq. (3.16)

We have to distinguish four cases according to whether p,(z) (and p,(z)) is odd
(denoted by = n) or even (denoted by p = n). In the odd-odd case

L 0 W [F nrr\ . [(n'mx
/dx pﬁ(x)a—zﬂﬁ/(x) = /_LI dx COS( I )sm( I >

x — 5 L
_ Ly
A | cos (le( + ﬁ’)x) cos <ng0(~ —iz) | ”
T gGrw) gae) |
- 5
n'm 0 0
2| EGm+ ) le(ﬁ—ﬁ’)] (A1)
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A. Calculation of the integrals in Eq. (3.16)

In the odd-even case

Ly
L, L0 2n'n [ nwx n'rx
/d:zc pﬁ(x)%pn/(x) =73 /Lw dz cos ( 7 )COS( 7 )
T -3 €T x
Ly

Lo
o/ | sin (le(fz + n’)x) sin (le(ﬁ - n’)x) ’
L2 = (n+n) (n—n) Ny
- -5
i [2(-1)E . o(—1)" %
12| EZGh+w) " Ei—-w)
n' (207 — n)(=1)™ 5 4 2(f 4+ n)(—1) 5
L. 72 _ e
n [ di(—1)=5
=1 - (A.2)
In the even-odd case
%W [F nwx n'rx
/dx pfl(x)%pﬁ/( ) =— Iz /Lx dx Sm( - )Sln I )

Ly
A/ | sin (L” (n+ ﬁ’):v) sin (le n— ﬁ’)x) ’
L2 =(n+n') =(n—) .
- T2
i (2= (-1
L Eta) e —)
it [2(-1)M5 . o(—1)"%
L2 ] £=(n+n) =(n—n) |
i [2(n—a@)(=1)™5 " +2(n + #')(—1) "5
:L_x n2 _ ﬁ/Z
i [4n(—1)=5
- |55 (A.3)
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And in the even-even case
2 /
/d:): Pr( )83 pr(T) = ' L dm sin ( 7m) Ccos <nL7:L’)
_n'm T (T
= /Lw dx {sm (Lx (n' + n)x) sin (L (n n)x)]

xT

L
o' | cos (le(n’ + n)x) cos (le(n’ n):c) ’
T2 Zm+n) =0 -n) )
- — 251;
n'm 0 0
Ly | (' +n) le(n’—n)] (A4)
Summarizing the results of Eqgs. (A.1) — (A.4), we find
) wp ) _
/ dz g (0)pu(@) = " Lgemm - L ptH =357 (a5
dr 0 if 4 =2,4,6,. ..
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B. Calculation of the integral in
Eq. (3.36)

The integral in Eq. (3.36) can be calculated analytically using the definitions u :=
y/aw, ¢:= 147, w:= /cu and the integral 7.374.9 from Ref. [107].

/ " dy 6. (y) exp [~ st — w0r)?] b ()

oo

0 exXp <_U2_2> 2
_ du ————==H,,,(u) exp | —7yi(u — up;)” | ————==Hp
—o0 2my/mm! () exp [l )] 2/
- 2 — v — )2
/ du ST il ) g
oo 2mtm' e lm/!!
'U,()Z'sz)2:|

uZA2, ) 0o exp [—c (u - =
= exp (Ty — Ugﬂyz’) / du No T
00 exp {— (w — uOZ“L@ﬂ) }
— exp (_ ’VyiUgi ) / d_w ve H,, (ﬂ) H,, (ﬂ)
L4+ /) J_o Ve V 2mAm mm lm /| Ve Ve

2.
exXp <_Hw;> o UoiYyi \ w w
= ) dwexp |— (w——2L) | Hp | —= )| Hw | —
(02m+m'7rm!m’!)% /—oo P ( Ve ) (\/E) (\/E>
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B. Calculation of the integral in Eq. (3.36)
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C. Influence of the third term of
the right hand side of Eq.
(3.70) on the eigenvalues Eq.

(3.71) and eigenvectors Eq.
(3.72)

We want to find the eigenvalues of eigenfunctions of the first three parts of the
Hamiltonian Eq. (3.70)
2 )
i (1), 1) = 04 Sy g T O
The eigenvalues and eigenfunctions of the two first terms on the right hand side
of Eq. (C.1) are assumed to be known and are given in Eq. (3.71) and Eq. (3.72).
We start with calculating the matrix elements of the term ih?/(m*I?) x yd, in the
eigenfunctions Eq. (3.72) and begin here with the continuous modes in z-direction
Eq. (3.73). We show the calculation here for the case of the left lead | = L and use
the formula

(C.1)

((x) := —i/ dt exp(izt) = L imd(x) (C.2)
0 $
in Ref. [108] on page 164 and v := x + L, /2 to find

_Lg _Lg

/O: dx %(m)i%%/(m) = %/O: dr sin (q <x + %)) cos (q’ (x + %)) iq

_ 2 / du sin(qu) cos(q'u) = Z_q// du sin(u(q +q')) + sin(u(q — ¢'))

™ —00 —00
/ 0o

-4
2 Jo

+exp(—iu(qg — ¢')) — exp(iu(q — ¢'))]

du [exp(—iu(q +q')) — exp(iu(q + ¢'))

_i_q/ YA ’ I o o _i_q/ o SB 51;
=5 [C(=a=d) = Cla+q) +¢(d —q) = Clg—d)] = ﬂ{ q+q,+q,_q}

2' /
_ Z§CJ$:; Ly (C.3)
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C. Influence of the third term of the right hand side of Eq. (3.70)

The complete matrix elements are then using Eq. (3.8), Eq. (3.11) and Eq. (3.20)
with @; instead of ay,

<ma Q| IA{Z,I |m,7 q,>

- 5m,m’5(q - q/)El(mu Q) +

/ / 1
,/m?(sm,m/_l +4/ m; 5m,m,+1] hweidyy.  (C.A)

We denote the eigenfunctions and eigenvalues of Hamiltonian Eq. (C.1) that we are
searching for by |¢,m), and Ej; such that we can state our eigenvalue problem as

1 \m,q), = Eyi(m,q) |m.,q), (C.5)

and expand |¢,m), in the eigenfunctions of the two first terms on the right hand
side of Eq. (C.1)

Im,q), = Z/ dq" Crnw (¢, 4) M, ') (C.6)
m/ 0

leading to
Z/ dq' (m", " | Hi1|m’, ') Crw (0, ¢) = B2 (m, ) Crnmr (0, ¢"). (C.7)
0

From the left side of Eq. (C.7), an integral of the form

oo 2Z‘q//q/ (B 2,L'q// oo fqu,
/ no__ / /
- A dq T q//2 . q/2 Cm,’fn/ (Q7 q ) - T /(; dq q/2 o q,/Q Cm,m’(g, q ) (Cg)

appears. The integral
o0 /Cm m , / 1 o0 / Cm m , /
/ dg P4Cm, (¢,4") / dq,‘BIQ\ o (a,1q'])
0 —

q/Q _ q//2 = 5 ~ q/2 _ q//2

1 , 1 1 1
= 5\/;00 dq m‘q |Om,m/<Q7 |q D |:q/ B q// - q/_’_q//:| W
_ i | NG (@, 1d"]) 1 1d" O (@, 1d"D ] _
2 2q" 2 2q"

(C.9)

due to the residue theorem noticing that the integral along a curved contour € in
the complex space with ¢’ = |¢'| exp(ip) and 0 < ¢ < 7 of the integral

g M0l 1 [y ol
2 Je 0 q'|? exp(2ip) — ¢

q/2 _ q//2 - D)

:/ dp — Cmam (4 "”)”2 (C.10)
0 2(

_4a

exp(2iep) W)
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vanishes for |¢'| — 0o. As a consequence, we get for Eq. (C.7)
> / dq' Gt i 0(q" — ¢V E(M, ¢ )Copmr (4, ¢') = Er1(m, ¢)Copmrr (q,¢")  (C.11)
m V0

or

El<m”7 q//)Cm,m”(q7 q//) = El,l (m7 Q)Cm,m”<Q7 q//)' <C12>

This can only be satisfied when

Cm,m” ((L q”) = 5m,m”5(q - q”) <C13)
and
Eii(m,q) = Ei(m, q) (C.14)

since Ej(m”,q") depends on both m” and ¢”. As the coefficient matrix Eq. (C.13)
for the transformation between the eigenfunctions is found to be the identity matrix,
we conclude together with Eq. (C.14) that the third term of the right hand side of
Eq. (3.70) leaves the eigenvalues Eq. (3.71) and eigenvectors Eq. (3.72) invariant.
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D. Proof of Eq. (4.17)

First, we note that it is enough to show

A

[Hee,‘lﬁ(x)\if(r,a’”)] — 0, (D.1)

with H,. being written with Schrodinger field operators, i. e. exactly as proposed
in Eq. (3.37). Equation (4.17) follows then from the transformation of Eq. (D.1) to
the Heisenberg picture. Using Eq. (3.37), the term

2
N 1
H Ut (@) (x, ") = ;—/dx’ /dx” T

K I e

1 / " " A2 / 1 n A3 / " n
[A (', 2" v 0,0") + A%(2' 2" ) r,0,0") + A°(2' 2" r, 0,07+

Al 2" r,0,0") + A% 2" x, 0, a”’)} (D.2)
with ) ) ) ) )
AV 2" x 0,0 = U (2T ()W (2")d (2 — ") (r, o), (D.3)
A2 2" x,0,0") = =W (@)U (2o (x — )T (") T (x, 0"), (D.4)
A2 2" x 0, 0") = Uh (@) BT (2o (r — v')Spm o U ()T ("), (D.5)
AN 2" r 0,0") = =T ()0 (x" — 1)0gn g BT (/)0 (2" W () (D.6)
and

A2 2" x,0,0") = U (@)U (r, U (") UF (2 )T ()0 (2"). (D.7)

We can calculate the term connected to Al(z’, 2" 1,0, 0"
b ) ) b b

1 ~
dx’ dz" Al (:L‘/, x//, r, o, UW>
‘I'// _ I'/’2 + 772

A

= [ da' ! Ul () UH (20 ()T (x, 0™, (D.8)
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D. Proof of Eq. (4.17)

to A%(a', 2" x,0,0"),
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N UT (2T (2)U (") U (r, ™), D.9
/ T V) i) (D.9)

U ()0 () (x, o) (2'), (D.10)

x’ ! U
VI =492

and to AY(2', 2", r,0,0"),

/dx /dx" (' 2" v 0,0")
I.// I‘/|2+77

= 2) Ui (2') () U (x, 0" D.11

R (D

Equation (D.8) and Eq. (D.10) cancel. Furthermore, Eq. (D.9) and Eq. (D.11)
cancel. Therefore,

H, 01 (2)(r,0") = Ol (2)P(r, 0" H.., (D.12)

which is equivalent to Eq. (D.1).
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E. Derivation of the current
density operator for S; and 5
(Eq. (4.21) and Eq. (4.22))
and the source operator for S,
and S, spin polarization (Eq.
(4.24) and Eq. (4.25))

To simplify our derivation, we split the Hamiltonian Eq. (4.15) in two parts

Hgo(t /dx"/d:z:llﬂxt (r' — 1)

X [% (?V’HL —AT (", )) + Vs(r")
+ “BgsB HBISD (1 95, ¢)]5 oy (a” 1)
/da:” /dx (2 )0 — ") Hgo (2" )00 on U g (2 1)
:/dx” Ut (2" ) Hao(z" )Wy (2" 1) (E.1)
with

. 1 [k . 2 B
Hsala' 1) = 5 <ZV” i EAH(r”, t)) +Vs(r") + %(1 —26,0,)  (B.2)
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E. Derivation of Eq. (4.21), Eq. (4.22), Eq. (4.24) and Eq. (4.25)

and
Asa(t) = [ d" [ ao’ (ot 50 - r”)
«Q A "
X 97 | orpdomy + 004 00m, ) 3y,, E , (1)
( 250 T(S Ni + 7,50. l,éo.// |: + AH I/ :|)
—( 1(5 5// —|—’L(5 (51/ 72 + AH //
o’ Ve’ | o/ Vo i 8y” c y
:/dx” /dx' Ul (2, )0(x" — v Hgs(x" o' o )Wy (2" 1) (E.3)
with
A Ca hoo
HS,?,(I'//7 0'/7 o 7t> :ﬁ ((501 T(sg//i -+ (50/ i(;ff” T) [Z ay// + CAf( " t):|

h 0
_( ’L(SU ¢6//\L—|—Z(50 iéuT)|: + = AH( " ):|>

oxr"
B h € YH/n
— / " / " —_ —A t
+ h (60 7T50- 7\L + 50 7\1/50- ) ) 7, x// + c T (r ? )
, _ h 0 e "
_ (—Z(Sglﬁé‘gnji + 2(50/7¢60n7 ) |:; ay// + CA;;I(I' ,t):|> . (E4)

We furthermore assume that [A(r),‘iﬂ(x’)] = 0 and [A(r),\i/(x’)] = 0. As a
consequence, AH(r,t),\ifL(x’,t)] =0 and [AH(r,t),‘ilH(x’,t)} =0.

To treat both the case of S, and the case of S, spin polarization, we generalize and
define

] 1, S, spin polarization
a '_{ —i, S, spin polarization (E.5)
and
L 1.7 Sy sp.in polar.izat'ion . (E.6)
i, Sy spin polarization
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E.1. Contribution of the first part (Hamiltonian Eq. (E.1))

E.1. Contribution of the first part (Hamiltonian
Eq. (E.1))

Using the commutation relations for the Heisenberg field operators

{@H(r, o.t), Ul (', a’,t)} — Ut {\if(r, o), U (', a')} U(t) = 6, 00(r — ), (E.7)

{@H(r, o, 1), V(' o, t)} — U'(t) {xif(r, o), W(r, 0/)} U(t) =0 (E.8)

and
{@}I(r, o, 1), Ul (', o, t)} — U'(t) {iﬁ(r, o), (', a')} U(t) =0 (E.9)

and defining

2 1 h ~ 2 B
Hoale) = 5 (;V”—EAH@",w) +Vs(x") + FE= (1= 26,0)  (E.10)

and assuming that the field operators are vanishing when the space coordinates go
to infinity (confinement of the system), we consider the contribution of Hamiltonian
Eq. (E.1) in Eq. (4.12) and get

J 4
N Hy2 ZZ 11051051 | + V05,1007 1)

1 X X .
X o [\If}I(r,a, Wy (r, 0’ ) Hgo(t) — Heo(t) W (r, 0, t)\IJH(r,J’,t)]
i

= Z(u(sg,T(sg/, L+ V05,4001 1)

1
22

— U (2" O Hgo (2" )Ty (2" )L (r, 0,) U (r, 0, 1)
=D > (104001 + VG5 y00r)

bl (e, 0, ) U (r, 0 )WL (2 t)Hgo (2", )0 (2" 1)

dx" [\I/T (v, 0, )Wy (r, o’ )W (2" ) Hgo(z” 1)Uy (2" 1)

2" ) 52(;(;",t)@g(r,a,t)@H(x",t)x@H(r,U',t) , (E.11)
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E. Derivation of Eq. (4.21), Eq. (4.22), Eq. (4.24) and Eq. (4.25)

e
anH’% (I', t) = Z Z(M607T50’/7~L + V50—7J’(5U/7T)

1 T - S A ~
X o dz” [‘I’J}[(T,U, t)\I’H<I',U,,t)‘l’;rq(l'”,t)Hgyg(l’//,t)\IfHCL‘”’t)
_ @L(x//7 t)s':ls,g(l‘“, t)(S((E - l‘”)\i/H(I‘, o t)

O (r, 0, )0 (2 O Hso (2, )T (r, o 1) T (2 t)]

= Z Z(,uégﬁ(sggi + V(Sa,iéa’ﬁ)

1 ~ ~ ~ ~ ~

x o [ da” [\IITH(I', o, ) (v, 0" ) (2 ) Hs o (2", )T g (2", 1)
— U (2" ) s (2" )0 (x — ")V y(r, o', 1)

+ @L(I‘, g, t)d(r — I‘”)éal,gu,}:[‘g,g(l'”, t)\ifH(:L‘”, t)

= U0 )0 (r, 0" )0} (" ) Hsa(a” 1) U n (2" 1)

= (bo400ry + V0510014)

1 . . )
X Z/dm” [—\I/L(x",t)’i-[g,g(x”,t)5(x — 2" Wy(r,o' t)
UL (e 0, )0 (e — t)0, g Hg o (2" 1) U (2, t)]

=D (1604001 + V66,1601 4)

1 2 . .
x oo [ da | =0(x — ) Hsa(a" ), (" )W (x, 1)
2

+ Ul (r, 0, )0(0 — )80 on Hga (2", 1) T g (2, t)]
=D > (bo1bory + v051001)

1 2 N N
x o [ da” [—5(93 — Y Hgo ("B (" )T (r, o7, 8)
(3

+ \ﬂq(r, o,t)6(r — r”)(S,,/,g//}:[S’Q(x”, t)‘i’H<x//’ t)]

— Z Z(,uéoﬁégw + V(;g,uso’ﬁ)

x 212 [— (;fzs,z(x)xif},(r,a, t)) Uy(r, o, t)

+ Wy (x,0, ) sa(r, o', )Wy (r, o', 1) (E.12)
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E.1. Contribution of the first part (Hamiltonian Eq. (E.1))

»
SR = D0 D (e bory + 0 10r)

X % {— ([ L (—h2V2 — iL [VAH(r,t) + AH(r,t)VD

2m* e

- :uBgSBaa,l,] @}I(r7 g, t))
X Wy(r, o' t) + Wl (r 0,1

1 3202 ﬂi AH AH
x {m*( RV 4 [VA (r,t) + A (r,t)v]

- ,uBgSB(SJ’,i] i’H(r; 0/7 t)}
- Z Z(M50,T50/,¢ + V0g,100' 1)

R ) ) A
X {v [47”*@' (\If}{(r,o, HV Uy (r, o, t) — [vmg(r,a, t)] @H(r’aljt))
eh
2m*c
puBgsB
2

A (e, )0l (r,0,6)Tp(r, 0, t)}

+

(Oory — 00 )L (r, 0, )W g (r, 0, t)} . (E.13)

After performing the inverse transformation back to the Schrodinger picture, we
find the contribution of Hamiltonian Eq. (E.1) of the current density operator for
S, spin polarization

i) = [ )V (e, ) — [V )] e )] 5 A 1), )
I e )V 1) = [V e )] e
b oo AU (r, 1), 1) (E.14)

and the y-component of the current density operator for S, spin polarization

A ()i (e, 1), 1)

2m*c

A(r)Uf(r, |)U(r,1). (E.15)

In the Schrodinger picture, the contribution of Hamiltonian Eq. (E.1) to the spin
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E. Derivation of Eq. (4.21), Eq. (4.22), Eq. (4.24) and Eq. (4.25)

polarization source operators is

5T pegsB - . ,
S5U() =3 D (0001, + V04001 1) 2 (G0 — 600 )W (x,0) U (r, 0)

— = 21
B . .
= 3D (b + V08 ) S (v, 0) D (r, o) (E.16)
1

leading to the source operator for S, spin polarization

s50) = PEISE [ )i, 1) + 0 (e, e )] (E.17)

and S, spin polarization

) = PEIST [t (e, 1)+ 4 )] (E.18)

E.2. Contribution of the second part (Hamiltonian
Eq. (E.3))

Using the commutation relations for the Heisenberg field operators Eq. (E.7), Eq.
(E.8) and Eq. (E.9) and defining

2 1 / 17 v h a e - .
Hssle? 7001 =y <<5"“T‘5"“w+5a',¢5a~, ) [_Zayu ey ,t)l
. . h 8 e )

h 0
+ % <<5U’1T50”7$ + 50’,¢50”, ) |:__

i Ox"
h 0

. . € 2 "
— (—250/7T§0_n7¢ + 7’50'/7~L60”7T) |:—;ay” + EAlyLI(r ,t):|> . (E]_g)

+ E/lf(r”, t)]
c

and assuming that the field operators are vanishing when the space coordinates go

to infinity, we consider the contribution of Hamiltonian Eq. (E.3) in Eq. (4.12) and
get

0 ., 1 - . R
S =D (180100 + V0ridr) 5 [w;(r, o, )W (r, o' 1) Hes

— HgaWly(x,0,0)¥p(x,0',1)] (E.20)
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E.2. Contribution of the second part (Hamiltonian Eq. (E.3))

Ary ZZ M(;UT(S ¢+V50¢5a T) /dIW /dl‘” 5( ///)

X [\P}AT,U, t)\I/H(I‘,O' ,t)\IJL(J: 715)7:[5,3(1‘/” o' JW t)\ifH(Im,t)

— U@ O Hss(x, o o )T (2 )W (0, t)\ifH(r,a',t)]
1
_ZZ /’L(;O'T(SOJi =+ V(SO'J,(;G" )2_ /d " dI” 5(1_// o r///)

[qﬂ (r,0, ) (r, o', )WL (2", ) Hsa(r", 0", 0" 1)Uy (2", 1)
— \I/L(:v”,t)’}-ts,g( "o o ) (x — ) u(r o' t)

A

+ U (0, )0 (2" t)Hgs(x"” " O (r, o )W (2" 1)

_ZZ /Lé Tég/i/ + V(SO',Léa )= /dSC”/ /d:l}// (5 ///)

X [_xp;(x D Hsa(x", 0" 0" )5z — ")y (r, 0" 1)
(0,0, )0(x — 1) Fls s (1, 0" 0 ) W (27, 1)
=D > (bordory + V5o,¢5aa¢)% > / da”
X [_\if}[(m", HHss(x", 0", " ) (r — 1)Uy (r, o', 1)
+ U (0, )5 — )6y o st 0 0" )T (x, 6" 1)
= Z Z(N50,T5o’,¢ + V(So,usaw)% Z /dx”
x [—a(r - YA (", 0", 0" )T (2 4)0, o U (x, o', 1)

+¢/L(r,0,t)5(r—r//)5a a”Hsg(I‘ o o" t)\i/ (" o™ t)}

=2 D (103801, + V06,1 001)
x> = {Hssle.0", 0" )0} (1,0, 1) b 0y W (1,0, 1)
+ \iqu(r, o, t)§gf7g,,7:[573(r, o, o", t)\ilH(r, o, t)]
=)D (1604001 + 86,1601 1)
1 2 N A
%0 3 [ Asalr. o 0 )W (r, 0" ) (e, 011

0.//

+ \i/}](r,a, t)7:[s73(1',0'/,0'”,t)\i’[{(r,O'”,t):|
ATV ) 4 AT (r, 1) + AS(r, 1) + ATV, ). (E.21)



E. Derivation of Eq. (4.21), Eq. (4.22), Eq. (4.24) and Eq. (4.25)

Before we continue, we split the intermediate result in four terms:

A ho .
AT’y(r, t) 1:% Z Z(M(507T5017¢ + V(SU,USU’,T) Z {;% [\I’L(I', 0_//’ t)}

X |:_% (_ .50'”,T507¢ + i5o’”,¢5a,T) + g (50”,T50,¢ + 60'”,,L50',T>:| @H(ra 0/7 t)

+ Ul (r,0,1) [—% (=010 + 851 O )
g

h o -
+ — (50,7T6‘7"7~L + 501,¢5gu7 ):| Za@]{(r, O'H, t)} s (EQQ)

A h o 1.
A@?f(r, t) 3:212. Z Z(M5”7T6‘7/7¢ + V(Sa,iéa/,T) Z {;a_y [\D}I(I‘, U”, Zf)}

0—//

X |:—§ (—Z‘(SJ//,T(Smi + i50//,¢(5g7¢) + % (50”»T507¢ -+ 50"7¢507T>:| \TJH(I', CT/, t)

_'_ i’}[(r7 O_a t> |:_§ (_ida/,T(SU”yi + 2‘50/7¢(50-//7 )

a h o - "
+ % (50'/7T60"7¢ -+ (S(jl’iétj.//7 ):| ;a—y\PH(r, o ,t)} y (E23)

- 1 e ~ ~
Ag?(r.t) =o D> (18o4bory + V001001) D {ZAf(r, )W (r, 0", 1)

0—//

X |:g (_ifsa”ﬁ(sa,i + ifsa”,i(sa,T) - g (50”71‘50# + 60"7¢507T>:| \i;H(n o', t)+

h
+ « . .
+ \I’H(I‘, o, t) [—% <_Z50',T50”7i + 2(50/7¢50//7 )
+ % (87 40g1r.| 4 Ogr O, )} SAf (r,t)Tp(r, 0", t)} (E.24)

and

. 1 e ; . ,
A4’y (I‘, t) :Z Z Z(Méaﬁéo’,i + Véo,idf’ﬁ) Z {EAf(L t)@L(I‘, o’ ) t)

O./ O'l/

X {% (=100 10,1 + 1001 1051) — % (G 105, + 50",¢5o,¢)1 Uy (r, 0’ t)+
x Ul (r,0,1) [—% (=051 40gn | + 1001 |G 1)
+ % (50,1T50'"7~L + 50/,J,5U//, )i| ZA;I(I', t)@H(I', O'”7 t)} . (E25)

To simplify our calculations, we note that the term A%¥(r, ) (Eq. (B.22)) differs from
A3Y(r,t) (Eq. (E.23)) by swapping (a)  and 3 and (b) 2 and a%. We note also
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E.2. Contribution of the second part (Hamiltonian Eq. (E.3))

that the term AZY(r,t t) (Eq. (E.24)) differs from A%Y(r,t) (Eq. (E.25)) by swapping
(a) a and f and (b ) A.(r,t) by A,(r,t). Therefore, it is sufficient to look only at

the terms A7Y(r) (Eq. (E.22)) and A2Y(r) (Eq. (E.24)). BEquation (E.22) can be
simplified

A

ir(e) = - 5 {a+ v f [w (.10 W, 1.0
+ (—ia+ ) [ } )| Ur(r,),t)
+ (i + B) V\I/L(r, 1 t)a—x\I!H(r, 1,0
+ (—ia+ ) ph,(r, 1, t)(%\ifg(m, t)} . (E.26)

For S, spin polarization, the term A?(r,t) is

\l/ t) H(ra l/? t) + (_ZOZ + 6) \i/L(I‘) T? t)%®H<r7 T7 t)}
S % {g [@},(r,T, t)\i/H(r,T, 1)+ Wi (r, 4, t)@H(r,¢,t)} }

9 - . 9 . )

= {m% Wy (e 1.0 U r1,8) — i [ (04, 8)] Wu(r, 4, )

il (r L) Bl ) — i (8 O O h | (B0
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E. Derivation of Eq. (4.21), Eq. (4.22), Eq. (4.24) and Eq. (4.25)
and for S, spin polarization, the term AY(r,t) is

- 1 0 7= N
it == 3 {-av i) 5 [# 0 1.0] Wt 10

O Ta ~
+ (—O./ - 26) % [\PL(Y, ¢7 t)] \IJH(r7 \La t)
F (ot i) Wy (r, L 1) (. 1)

~ O -
+ (—O./ - Zﬁ) \IIL(I‘, Ta t)%\PH(rv T> t)}

«v

=— {5 [T 00aE 1) + Ve L a4, 0] |

1( 0 - i 9T i
— {w% [0l 0] Fa e 1,0) = i [0 1, 0)] Far4,0)

. 0 - . 0 -
AU (1, 1) W, 1, 0) = i8W] (1) - T (0,1, t)} (B
Equation (E.24) can be simplified

Apvet) =5 ARG, t) { = G+ ) vil (e 1, ) 0a(r 1,0

- ( io+ B) ply (r, L, ) Wp(r, |, 1)
+ (i + B)vWl,(r, |, 1)Uy (r, |, 1)
+ (—io+ B) pU (r, 1, 1) Wy (r, 1, t)} . (E.29)

For S, spin polarization, the term AZ%(r,t) is

A§<r7 t) :_hAi{( ) ) [_ (ZOZ + ﬁ) \iﬂ]-'—l(rv Ta t)\in<r7 T’ t)
— (=i + B) W (r, |, t)Uy(r, |, 1)
+ (ZOZ + 6) @L(I‘, ¢7 t)\in<r7 \LJ t) + <_ZOC + B) @L(I‘, TJ t)\ilH(ra T7 t)i|

= A (r 1) [0 (1 )0 )+ V(e L)L (8] (E:30)

and for S, spin polarization, the term AY(r,t) is

AY(r,t) =5 AT (x.1) [(0 = i) Uy (v, 1,0 u (x. 1)
+( ) T( \L,t)‘ifH(I‘,\l,,t)
+ (—a+iB) Ul (r, L, )Ty, |, 1) + (—a —if) @L(r,m)@H(r,T,w}

ig A (e t) [~ e 1, 00,1, 0) + By (e, L OB, L)) (B31)
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E.2. Contribution of the second part (Hamiltonian Eq. (E.3))

After performing the inverse transformation back to the Schrodinger picture, we
find the contribution of Hamiltonian Eq. (E.3) of the current density operator for
S, spin polarization

“x ﬂex + ae T T T T
i) = R [ ¥, 1) + B DB )] (E.32)
and the y-component of the current density operator for S, spin polarization
s ae, + fe, [+ . . .
) = =S [0 e (1) + 8 ) 1) (E.33)

where we have to consider all the terms ATY(r), A2Y(r), A2Y(r) and A7¥(r). In
the Schrodinger picture, the contribution of Hamiltonian Eq. (E.3) to the source
operator for S, spin polarization

5500 = 5 iy [0 0] 900 1) — 0 [0 )] W)

A

T iabi(r, )b, §) — e, 1) 2 ‘f“r’“}
)]

2 ox ]
U ) (e, 1) — 00 r, 1) 0 1)
— s {iag [0 ¥ ia 2 [0 )] 900
+ za\iﬁ(r,i)(‘%@(r,i) — iaWi(r, T)%@(rﬁ)}
+ - (BA) + ad, () [V e ) ) + VDT )] (235)

Finally, we note that the addition of the contributions of the Hamiltonian Eq. (E.1)
and the Hamiltonian Eq. (E.3) yields the expression for the current density operator
for S, spin polarization Eq. (4.21) by addition of Eq. (E.14) and Eq. (E.32), the
current density operator for S, spin polarization Eq. (4.22) by addition of Eq. (E.15)
and Eq. (E.33), the source operator for S, spin polarization Eq. (4.24) by addition
of Eq. (E.17) and Eq. (E.34) and the source operator for S, spin polarization Eq.
(4.25) by addition of Eq. (E.18) and Eq. (E.35).
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Magnetic-field-influenced nonequilibrium transport through a quantum ring with correlated
electrons in a photon cavity
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We investigate magnetic-field-influenced time-dependent transport of Coulomb interacting electrons through
a two-dimensional quantum ring in an electromagnetic cavity under nonequilibrium conditions described by a
time-convolutionless non-Markovian master equation formalism. We take into account the full electromagnetic
interaction of electrons and cavity photons. A bias voltage is applied to semi-infinite leads along the x axis,
which are connected to the quantum ring. The magnetic field is tunable to manipulate the time-dependent electron
transport coupled to a photon field with either x or y polarization. We find that the lead-system-lead current is
strongly suppressed by the y-polarized photon field at magnetic field with two flux quanta due to a degeneracy
of the many-body energy spectrum of the mostly occupied states. On the other hand, the lead-system-lead
current can be significantly enhanced by the y-polarized field at magnetic field with half-integer flux quanta.
Furthermore, the y-polarized photon field perturbs the periodicity of the persistent current with the magnetic field
and suppresses the magnitude of the persistent current. The spatial and temporal density distributions reflect the
characteristics of the many-body spectrum. The vortex formation in the contact areas to the leads influences the

charge circulation in the ring.

DOI: 10.1103/PhysRevB.87.035314

I. INTRODUCTION

Quantum interference phenomena are essential when de-
veloping quantum devices. Quantum confined geometries
conceived for such studies may consist of which-path
interferometers,’> coupled quantum wires,>* side-coupled
quantum dots,>® or quantum rings.”® These coupled quan-
tum systems have captured interest due to their potential
applications in electronic spectroscopy tools’ and quantum
information processing.!” Furthermore, the magnetic flux
through the ring system can drive persistent currents'' and
lead to the topological quantum interference phenomenon
known as the Aharonov-Bohm (AB) effect.!>'® Both, the
persistent current and ring conductance show characteristic
oscillations with period of one flux quantum, ®y = hc/e. The
free spectrum of the one-dimensional quantum ring exhibits
level crossings at half-integer and integer multiples of ®.!7!8
The persistent current dependence on the magnetic field'® and
electron-electron interaction strength?” has been investigated
adopting a two-dimensional quantum ring model with analyt-
ically known noninteracting properties.?! Varying either the
magnetic field or the electrostatic confining potentials allows
the quantum interference to be tuned.??

There has been considerable interest in the study of elec-
tronic transport through a quantum system in a strong system-
lead coupling regime driven by periodic time-dependent
potentials,>*~2¢ longitudinally polarized fields,>’~>° or trans-
versely polarized fields.>*3! On the other hand, quantum trans-
port driven by a transient time-dependent potential enables
development of switchable quantum devices, in which the
interplay of the electronic system with external perturbation
plays an important role.*=3 These systems are usually oper-
ated in the weak system-lead coupling regime and described
within the wide-band or the Markovian approximation.’®-33
Within this approximation, the energy dependence of the

1098-0121/2013/87(3)/035314(13)
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electron tunneling rate or the memory effect in the system are
neglected by assuming that the correlation time of the electrons
in the leads is much shorter than the typical response time of the
central system. However, the transient transport is intrinsically
linked to the coherence and relaxation dynamics and cannot
generally be described in the Markovian approximation. The
energy-dependent spectral density in the leads has to be
included for accurate numerical calculation.

In order to explicitly explore the transport dynamics with
the electron-photon coupling and the transient system-lead
coupling, a non-Markovian density-matrix formalism involv-
ing the energy-dependent coupled elements should be consid-
ered based on the generalized master equation (GME).*#
How to appropriately describe the carrier dynamics under
nonequilibrium conditions with realistic device geometries
is a challenging problem.**** More recently, manipulation
of electron-photon coupled quantum systems embedded in
an electromagnetic cavity has become one of the most
promising applications in quantum information processing
devices. Utilizing the giant dipole moments of intersubband
transitions in quantum wells***® enables researchers to reach
the ultrastrong electron-photon coupling regime.*’™° In this
regime, the dynamical electron-photon coupling mechanism
has to be explored beyond the wide-band and rotating-wave
approximations.’®? Nevertheless, time-dependent transport
of Coulomb interacting electrons through a topologically
nontrivial broad ring geometry in an electromagnetic cavity
with quantized photon modes remains unexplored beyond the
Markovian approximation.

In the present work, we explore the transient effects of
electronic transport through a broad quantum ring in a linearly
polarized electromagnetic cavity coupled to electrically biased
leads. This electron-photon coupled system under investiga-
tion can be manipulated by tuning the applied magnetic field
and the polarization of the photon field. A time-convolutionless

©2013 American Physical Society
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(TCL) version of the GME is utilized to project the time
evolution onto the central system by taking trace with respect
to the operators in the leads.>>> We demonstrate the transient
transport properties by showing the many-body (MB) energy
spectra, the time-dependence of the electric charge, the
magnetic-field dependence of the total charge current with (w)
or without (w/o0) photon cavity, the charge density distribution,
the normalized current density distribution and the local
current coming from an occupation redistribution of the MB
states in the central quantum ring system.

The paper is organized as follows. In Sec. II, the theoretical
model is described. The electron system is embedded in an
electromagnetic cavity by coupling a many-level electron
system with photons using the full photon energy spectrum of a
single cavity mode. In Sec. III, we show the numerical results
for the dynamical transient transport properties for different
magnetic field and photon field polarization. The influence of
the photon field polarization on the magnetic field dependence
of the lead-system-lead and persistent current is illustrated in
detail and connected with the properties of the many-body
spectrum. It is further shown how the photon field influenced
many-body spectrum affects the spatial charge arrangement
and flow inside the ring. Concluding remarks will be presented
in Sec. IV.

II. MODEL AND THEORY

In this section, we describe the central system potential Vg
for the broad quantum ring and its connection to the leads.
The electronic ring system is embedded in an electromagnetic
cavity by coupling a many-level electron system with photons
using the full photon energy spectrum of a single cavity
mode. The central ring system is described by an MB system
Hamiltonian A with a uniform perpendicular magnetic field
in which the electron-electron interaction and the electron-
photon coupling to the x- or y-polarized photon field is explic-
itly taken into account. We employ the TCL-GME approach
to explore the nonequilibrium electronic transport when the
system is coupled to leads by a transient switching potential.

A. Quantum ring connected to leads

The system under investigation is a broad quantum ring
connected to left and right leads [ € {L,R} with identical
parabolic confining potentials

Vi(r) = im*Qgy? (1

in which the characteristic energy of the confinement is 22y =
1.0meV and m* = 0.067m, is the effective mass of an electron
in GaAs-based material.

The quantum ring is embedded in the central system of
length L, = 300 nm situated between two contact areas that
will be coupled to the external leads, as is depicted in Fig. 1.
The system potential is described by

6
1
Vsr) = ) Viexp{—lBu(x — xo)” = (Byiy)’} + Sm"2y”,

i=1
©))

with parameters from Table I.
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FIG. 1. (Color online) Equipotential lines in the central ring
system connected to the left and right leads. Note that the isolines are
refined close to the bottom of the ring structure.

B. Central system Hamiltonian

The time evolution of the closed system with respect to
t=0,

Us(t) = exp ( - %ﬁsr) 3)

is governed by the MB system Hamiltonian>®

2
As = / dr W(r)[i{f—.’v + Z1A@) + Aph(r)]}
2m* | i c
+ vs<r>]x/?<r> + H.. +hod'a. )

The first term includes a constant magnetic field B = Bz,
in Landau gauge being represented by A(r) = —Byx. The
second term is the exactly treated electron-electron interaction

e = f Pr / Lri O O WVeer W EW @, ()

where

62

Vee(r:r/) = (6)
S

with e > 0 being the magnitude of the electron charge and n =
1.0 x 107! nm being a numerical regularization parameter. In
addition, the last term in Eq. (4) indicates the quantized photon
field, where a and a' are the photon annihilation and creation
operators, respectively, and Ziw is the photon excitation energy.
The photon field interacts with the electron system via the
vector potential

e., TEo,

APhiy — Aca oAt
A (r)_A(a+a){ey’ TE o1, 7

TABLE 1. Parameters of the central region ring potential.

i Vi (meV) B.i (nm™) xo (nm) Byi (nm™")
1 9.6 0.014 150 0

2 9.6 0.014 —150 0

3 11.1 0.0165 0 0.0165

4 —4.7 0.02 149 0.02

5 —4.7 0.02 —149 0.02

6 —4.924 0 0 0

035314-2
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for a longitudinally polarized (x-polarized) photon field
(TEp;;) or a transversely polarized (y-polarized) photon
field (TE;o;). The electron-photon coupling constant gtM =
eAa, 2, /c scales with the amplitude A of the electromagnetic
field. For reasons of comparison, we also consider results
without photons in the system. In this case, AP(r) and hwa'a
drop out from the MB system Hamiltonian in Eq. (4).

C. Time-convolutionless generalized master equation approach

The TCL-GME> is an alternative non-Markovian master
equation to the Nakajima-Zwanzig (NZ) equation,’’~%" which
is local in time. We assume that the initial total statistical
density matrix can be written as a product of the system and
leads density matrices, before switching on the coupling to the
leads,

W(0) = pr ® pr ® ps(0), ®)

with p;, [ € {L,R}, being the normalized density matrices
of the leads. The coupling Hamiltonian between the central
system and the leads reads

Ar= Y [da O @C+EE@n. ©

I=L,R

Here, CA‘; , is the electron creation operator for state g and lead
[ and

gy =Y 1Bl Y T),@IClIB) (10)
73} a

with the creation operator C’Z for the single-electron state (SES)
a in the central system, i.e., the eigenstate a of the first term of
Eq. (4) with Aph(r) = 0. The coupling is switched on att = 0
via the switching function

2

l
H=1-———
x'(®) 1

1D
with switching parameter o. Equation (10) is written in
the system Hamiltonian MB eigenbasis {|a)}. The coupling

tensor>°

Ty, = /Q g d*r /Q l d*r' Y ()gl, ey (12)

couples the extended lead SES {,,(r)} with energy spectrum
{el(q)} to the system SES {was(r)} with energy spectrum {E,}
that reach into the contact regions,59 Q’S and €2;, of system and
lead [, respectively, and

8hy(r.1) = ghexp[—8.(x — x')* = 8L(y — ¥')’]

_|Ea— 6’(q)|]

(13)
A

X exp[

Here, gf) is the lead coupling strength. In addition, 8! and
8’y are the contact region parameters for lead / in x and y
directions, respectively. Moreover, AIE denotes the affinity
constant between the central system SES energy levels {E,}
and the lead energy levels {€! (q)}-

In this work, we derive the TCL-GME? in the Schrodinger
picture. In this picture, the reduced density operator (RDO) of
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the system,
ps(t) = TrL Trg[W(), (14)
evolves to second order in the lead coupling strength in time

via

ps(1) = —,’fl[ﬁls,ﬁs(rn - [ > f dg (£(9),Q'(q.0)ps(1)

I=L.,R
— FIE@UAs (), R (q.0)) + H.C.] (15)
with

N 1 ] R R s
Qlg.n = h—zx’a) exp [ - ,f;re’(q)} Us(HIT'(q,0)U(1),
(16)

M'(g.1) = /0 dr’ {exp [%t’e%q)}x’(t/)l?;*(t’)i’*(q)ﬁs(ﬂ)},
(17)

and f(E) being the Fermi distribution function.
Comparing this equation to the corresponding NZ
equation,>’~°

. [N
p5 (0 = —=[Hs.p5"(1)]

- { > f dq [¥(q).Q' (q.0)] +H.C.} (18)
I=L,R
with

Qg1 = lzXl(t)Us(f) / dr’ { exp [50’ - r)e’(q)}
h 0 h

x x%r/)ﬁI(q,t’)}ﬁ;(r) (19)
and
(g1 = 05 (8 (@)Y
— fIE@QUp AN () Ust),  (20)

we note that we reobtain the TCL equation, if we set

pYAE) = Ukt — thps)Us(e — 1), 1)

in Eq. (20) [which enters the kernel of Eq. (18)], but let
ﬁSNZ(t) = ps(t) in the first term of Eq. (18). In other words, in
the Schrodinger picture, the NZ kernel takes the central system
time propagated RDO (which lets it become convoluted),
while the TCL kernel takes just the unpropagated RDO. The
deviation between the two approaches is therefore only of
relevance when the central system is far from a steady state and
when the coupling to the leads is strong. It is our experience
that the positivity conditions®' for the MB state occupation
probabilities in the RDO are satisfied to a higher system-lead
coupling strength in the TCL case. The more involved quantum
structure demands a stronger system-lead coupling than in our
earlier work.>® The numerical effort of the two approaches is of
similar magnitude. Both cases allow for a #-independent inner
time integral over #’, which can be integrated successively

035314-3



ARNOLD, TANG, MANOLESCU, AND GUDMUNDSSON

with increasing ¢ (increasing integration domain).%> The RDO
is inside (NZ) or outside (TCL) of the inner time integral, but
the required number of matrix multiplications is equal.

III. NONEQUILIBRIUM TRANSPORT PROPERTIES

In this section, we investigate the nonequilibrium electron
transport properties through a quantum ring system, which
is situated in a photon cavity and weakly coupled to leads.
We assume GaAs-based material with electron effective mass
m* = 0.067m, and background relative dielectric constant
k = 12.4. We consider a single cavity mode with fixed
photon excitation energy iw = 0.4 meV. The electron-photon
coupling constant in the central system is g™ = 0.1 meV.
Before switching on the coupling, we assume the central
system to be in the pure initial state with electron occupation
number N, iyix = 0 and photon occupation number Np it = 1
of the electromagnetic field.

An external perpendicular uniform magnetic field is applied
through the central ring system and the lead reservoirs. The
area of the central ring system is A &~ 2 x 10* nm? so that the
magnetic field corresponding to the flux quantum @ is By =
®y/A =~ 0.2 T. The temperature of the reservoirs is assumed
to be T = 0.5 K. The chemical potentials in the leads are
pur =2 meV and pug = 0.9 meV leading to a source-drain
bias window A = 1.1 meV. We let the affinity constant A}, =
0.25 meV to be close to the characteristic electronic excitation
energy in x direction. In addition, we let the contact region
parameters for lead [ € {L,R} in x and y directions be (Si =
8! =4.39 x 10~* nm2. The system-lead coupling strength
g = 0.2058 meV nm /2.

There are several relevant length and time scales that
should be mentioned. The two-dimensional magnetic length
is [ = [ch/(eB)]"/? = 25.67[B(T)]""/?> nm. The ring system
is parabolically confined in the y direction with characteristic
energy 12y = 1.0 meV leading to a modified magnetic length
scale

o2 1
ay =
<m*90) J1 4+ [eB/(m*cQ0)]1?

74
= 33.7 nm. (22)

J1+2.982[B(T)]?

Correspondingly, the system-lead coupling strength is then
géai)/z = 39.85 meV for magnetic field B=0.1 T and

glay/> =38.22 meV for magnetic field B = 0.225 T. The
time scale for the switching on of the system-lead coupling
is (a/)~! = 3.291 ps, the single-electron state (1ES) charging
time scale tigs ~ 30 ps, and the two-electron state (2ES)
charging time scale s >> 200 ps described in the sequential
tunneling regime. We study the transport properties for 0 <
t < Typs, when the system has not yet reached a steady state.

In order to understand the nonequilibrium dynamical
behavior of the charge distribution in the system, we define the
time-dependent magnitude of charge on the left part (x < 0)
of the ring,

0 o0
o= [, ax [ avowa. @3)
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and the time-dependent magnitude of charge on the right part
(x > 0) of the ring

Ly
-5 o0
ofw= [ "ar [ ayown. 4
0 —00
The space- and time-dependent charge density,
p(r,1) = Tr[ps()p(r)], (25)
is the expectation value of the charge density operator
p(r) = ey ()i (). (26)

In order to explore the magnetic field influence on the
charge currents from and into the leads, we define the charge
current from the left lead into the system by

IL(1) = Te[ p5 () 0] . 27

Here, Q = eN is the charge operator with number operator N
and the time derivative of the RDO in the MB basis due to the
coupling to the lead [ € {L,R}:

P(t) = / dq [T(9),(Q(q,1)ps(1)

— I @Hps),Q'(¢.0ON] + Hee..  (28)

Similarly, the charge current from the system into the right
lead can be expressed as

Ir@) = —Tr[pEON]. (29)

To get more insight into the local current flow in the ring
system, we define the top local charge current through the
upper arm (y > 0) of the ring

Liop(1) = / dy ju(x =0,y,1) (30)
0

and the bottom local charge current through the lower arm
(y < 0) of the ring

0
Iroom(t) = f dy ju(x = 0.y,1). 31)
—0Q
Here, the charge current density,
, JR) .
jen =" = Tr[ps()j(0)], (32)
.]y(r’t)

is given by the expectation value of the charge current density
operator,

J@) =3, (@) + Ja(r), (33)

decomposed into the paramagnetic charge current density
operator,

o h . ~ ~ ~
i@ = ;—{vﬁ @IVE®] = (VI @@}, (34

mi

and the diamagnetic charge current density operator,

ja®) =0 + 7). (35)

The latter consists of a magnetic component,

2
jree(ry = %Amw @) (x), (36)
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and photonic component,

2
N e . N .
§'0 = — AP g ). (37)
Furthermore, to understand better the driving schemes of the
dynamical transport features, we define the total local charge
current

Iy(t) = Itop(t) + Tyorom(?) (38)
and circular local charge current
La(1) = 5 iop(") = Thoom(D)]- (39)

Below, we shall explore the influence of the applied magnetic
field and the photon field polarization on the nonequilibrium
quantum transport in terms of the above time-dependent
charges and currents in the broad quantum ring system
connected to leads.

A. Photons with x polarization

In this section, we focus on our results for x-polarized
photon field. Figure 2 shows the MB energy spectrum of
the system Hamiltonian Hy including the electron-electron
and electron-photon interactions. The MB-energy levels are
assigned different colors according to their electron content
N,. The bias window (solid black lines) contains (u; —
URr)/(hw) zero-electron states (green dots) and several SESs
(red dots). However, even in the sequential tunneling regime,
SESs outside the bias window can contribute to the transport
due to the photon perturbation and the time dependency of
the coupling to the leads. In order to estimate the energetic

3.5

25

1.5

MB-energy (meV)

0.5 i

0 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1

B(T)

FIG. 2. (Color online) MB energy spectrum of system Hamil-
tonian Hs vs magnetic field B in units of tesla (T). The states are
differentiated according to their electron content N,: zero-electron
states (N, = 0, OES, green dots), single-electron states (N, = 1, 1ES,
red dots) and two-electron states (N, = 2, 2ES, blue crosses). The
photon field is x polarized.
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FIG. 3. (Color online) Switching function x'(#) (solid red),
charge of all 1ES for B = 10~ T (long-dashed green) and B = 1.0
T (short-dashed blue), and charge of all 2ES for B = 107> T (dotted
purple) and B = 1.0 T (dash-dotted cyan) as a function of time. The
photon field is x-polarized.

capability of the two electron states (2ES, blue crosses) to
contribute to the transport, their energy difference to the SES
has to be considered. This energy difference can fall into the
bias window.

Our specific ring geometry has two main effects on the
spectrum. First, the rotation symmetry violation due to the
contact regions leads to avoided crossings at integer flux quanta
leaving only the half-integer flux quanta crossings. For the
latter, wave functions of odd and even quantum numbers of
magnetic moment'® cross, which therefore have opposite and
equal phases at the contact regions, respectively, thus leaving
them uninfluenced by the rotation symmetry violation. It can
be seen from an analysis of the wave functions with magnetic
flux that the magnetic moment remains unchanged and clearly
defined for the crossings at half-integer flux quantum, while
a gradual change in the magnetic moment quantum number
by an even number is observable at the avoided crossings.
Second, the finite ring width allows for small state-dependent
variations of the crossing period By.

Figure 3 illustrates the central region charging of 1ES
and 2ES as a function of time. It demonstrates the earlier
mentioned time scales (¢/)~! = 3.291 ps, Ties ~ 30 ps and
Tps > 200 ps. The 2ES are occupied slower than the 1ES
indicating the sequential tunneling processes and the 2ES
energetic shift by the Coulomb interaction. The effect is more
pronounced for higher magnetic field due to the larger energy
difference of the 2ES with respect to the 1ES (see Fig. 2). The
total charging has slowed down by more than one order of
magnitude around ¢t = 200 ps.

In Fig. 4, we show the current from the left lead into the ring
system [, (solid red curve) and the current from the ring system
to the right lead /¢ (long-dashed green curve) as a function of
magnetic field at time ¢t = 200 ps. The similar values of I, (B)
and Iz(B) indicate the slow down in the total charging. We
see clear oscillations of the current with period By =~ 0.2 T:
the first minimum current at B = 0.1 T corresponds to the
situation of a half-flux quantum, while the maximum current
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FIG. 4. (Color online) The left charge current I, (solid red) and
the right charge current /; (long-dashed green) vs the magnetic field
with (w) x-polarized photon field at + = 200 ps. For comparison:
left charge current I, (short-dashed blue) and right charge current
I (dotted purple) in a purely electronic central system, i.e., without
(w/0) photon cavity.

at B =0.225 T is corresponding to the case of one flux
quantum. Although the oscillations could be classified as
being of Aharonov-Bohm (AB) type,'>~'# modifications by the
electron-electron correlation effects and the nonequilibrium
situation may not be neglected. In addition, the electron-photon
coupling suppresses the constructive interference of AB phases
in the integer flux quantum situation as can be seen from a
comparison with the purely electronic system results in Fig. 4
(short-dashed blue and dotted purple curve).

In Fig. 5, we illustrate the normalized charge current
density vector field j(r,) in the central quantum ring system
in the long-time response regime ¢ = 200 ps, i.e., when the
2ES get charged. For magnetic field B =0.1 T, a clear
counterclockwise vortex located close to the left lead can
be found dominating the current flow pattern in the central
ring system as shown in Fig. 5(a).'® The vortex circulation
direction is determined by the Lorentz force, while the vortex
area is too small to see effects of the threaded magnetic flux.
It is important to realize that the vortex circulation direction
in combination with the geometrical position of the vortex
and the current continuity condition, favors clockwise current
direction for the ring system. For magnetic field B = 0.225 T,
the counterclockwise vortex appears relatively weak being
present at both left and right lead connection areas as shown in
Fig. 5(b), while the total local current through the whole central
system from the left to the right lead is large. Additionally, for
a later comparison with the y-polarized photon field, Fig. 5(c)
shows the current density for B = 0.425 T (two flux quanta),
which is similar to Fig. 5(b) (one flux quanta).

Figure 6 illustrates the time-dependent charge on the left
part of the ring Q%(¢) and the time-dependent charge on the
right part of the ring Q’; (#). In the half-integer flux quantum
case B =0.1 T shown in Fig. 6(a), both Q% and QF are
increasing almost monotonically in time. In the long-time
response regime ¢ = 200 ps, Q%(t) = 0.742¢ is much higher
than Q% (1) = 0.234e.

PHYSICAL REVIEW B 87, 035314 (2013)

AAAAAAA

Y
e
Lo

N L

y(ay,)
o

4+ _

ar (b) 7

3 R
e
,ﬁ//’/;,‘\\\\_
AA AL .
i VAN -

/ LI

R A
+ A

oLy Lo

ot =

y(ay,)
o
T

L

ARR T
‘*#\',
Vg
A T
[ U N .
RV A S

-1k O U S S

A S N

y(ay)
o

T T
P

FIG. 5. (Color online) Normalized charge current density vector
field in the central system for (a) B = 0.1 T, (b) B = 0.225 T, and (¢)
B =0.425 T att = 200 ps in the case of x-polarized photon field.

In the integer flux quantum case B = 0.225 T shown in
Fig. 6(b), we find oscillating behavior of the charge between
the left and right parts of the quantum ring. The oscillation
amplitude is decreasing in time due to the dissipation effects
caused by the coupling to the leads. In the long-time response
regime ¢ = 200 ps, Q%(1) = 0.423e¢ is of similar magnitude as
Q§ (t) = 0.446¢ differently from the half-integer flux quantum
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FIG. 6. (Color online) Charge in the left [Q%(#)] or right [Q & ()]
half of the central quantum ring system as a function of time for
(a) B =0.1 and (b) 0.225 T. The photon field is x-polarized.

case. The characteristic energy § £ A~ 0.04 meV of the charge
oscillating period T &~ 100 ps agrees well with the MB energy
difference of the mostly occupied MB states. As we find
these MB states not only to correspond to the elements of
the RDO causing this oscillation, but also to influence the
current magnitude both due to AB and photon effects, we
consider these states to be of particular interest. The MB energy
levels are Ej, =1.4038 meV and Ej = 1.3664 meV such
that AEg |, = 0.0374 meV. The corresponding two-level (TL)

oscillation period of the closed system would be 73, = 111 ps.
In the nonequilibrium open system, the TL oscillation period is
T4 =94 psor T = 100 ps when we take the time intervals
between the first and second maxima of Qé(t) and Q§ (1),
respectively. The full numerical calculation including all MB
levels shown in Fig. 6(b) yields the left and right charge
oscillation periods, T/ = 96 ps and ® = 110 ps, respectively.
The system is far from equilibrium at the earlier maximum,
thus reducing, in particular, the left period ©f; with respect to
¥, . Furthermore, we find that also the other MB states change
the periods when comparing t* with ¢}, and t* with =} .
Figure 7 shows the charge density distribution in the central
quantum ring system with the magnetic field (a) B = 0.1,

PHYSICAL REVIEW B 87, 035314 (2013)
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FIG. 7. (Color online) Charge density distribution p(r,?) (e/ai)
in the central system for (a) B = 0.1, (b) 0.225, and (c) 0.425 T in
the x-polarized photon field case at t = 200 ps.

(b) 0.225, and (c) 0.425 T at + = 200 ps. In the case of B =
0.1 T (half-flux quantum) shown in Fig. 6(a), the electrons
are highly accumulated on the left-hand side of the quantum
ring with very weak coupling to the right lead, and hence
strongly blocking the left charge current and suppressing the
right charge current, as it was shown previously in Fig. 4
(marked by the up arrow). The electron dwell time on the
left-hand side of the ring is enhanced relative to the electron
dwell time on the right-hand side of the ring due to destructive
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FIG. 8. (Color online) Local current through the top arm of the
ring I,p (solid red), local current through the bottom arm of the
ring lyoom (long-dashed green), total local current Iy (short-dashed
blue), and the circular local current [ (dotted purple) versus the
magnetic field averaged over the time interval [180,220] ps in the
case of x-polarized photon field.

phase interference on the right-hand side suppressing also the
evoked vortex there [see Fig. 5(a)].

In the B =0.225 T case (one flux quantum) shown in
Fig. 7(b), the electrons are nearly equally well accumulated on
both sides of the quantum ring. This phenomenon is related to
the manifestation of current peaks observed in Fig. 4 (marked
by the down arrow) as the constructive phase interference
enhances the likelihood for electrons to flow through the
quantum ring to the right-hand side of the central system and
further to the right lead. Additionally, for a later comparison,
Fig. 7(c) shows the charge density for B = 0.425 T (two flux
quanta), which is similar to Fig. 7(b) (one flux quantum).

In Fig. 8, we show the magnetic field dependence of the
partial local currents /o, and Iyoom through the top and bottom
arms, the total local current I;; across x = 0, and the circular
local current I, which are convenient tools to study the relative
importance of local “persistent” current flows induced by
the magnetic field in the long-time response transient time
regime. We would like to bring attention to the fact that charge
balances like Q; = I;, — Iy and Qg = Iy — Ix would not be
satisfied for the local current I;. This is because the SES
that are filled from the left lead or emptied to the right lead
are in general not restricted to a single half of the central
system, but extended over the whole system. The total local
current (short-dashed blue) through the two current arms, Iy,
is strongly suppressed in the case of half-integer flux quanta
showing a very similar behavior to the nonlocal currents /; and
Iy (see Fig. 4). This is because the destructive interference in
the quantum ring enhances the back scattering for magnetic
flux with half-integer quanta.

The “persistent” circular local current (dotted purple) is
usually larger in magnitude than the total local current leading
to a different top and bottom local flow direction. In the
absence of magnetic field B = 0, the circular current, however,
is identical to zero due to the symmetric situation for both
ring arms. It is interesting to note that the circular local
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current /. reaches 1.347 nA for less than half a flux quantum
(at B =0.05 T), increases further until B = 0.45 T with a
maximum value max |Iy| = 2.844 nA and decreases again
for B > 0.45 T. The magnetic component of the diamagnetic
part of the circular local current increases linearly with the
magnetic field B, but the paramagnetic part guarantees a
behavior, which is closer to being periodic with the flux
quantum. The periodic structure appears also for a ring of
infinitesimal width,'” but is shifted here toward clockwise
circulation due to the vortices in Fig. 5. In the case of high
magnetic field regime (B > 0.45 T), a comparison with Fig. 2
shows that the different flux periods of different MB-states
in the finite-width ring lead to destructive interference effects
reducing the periodic oscillations considerably.

B. Photons with y polarization

In this section, we focus on the y-polarized photon field
situation and compare with the results for the x-polarized
photon field. Figure 9 shows the MB energy spectra of the
system Hamiltonian Hs in the case of (a) x-polarized and
(b) y-polarized photon field. We note in passing that Fig. 9(a)
magnifies a part of the MB spectrum of Fig. 2. The mostly oc-
cupied levels are the two levels around 1.4 meV. In the cases of
both x- and y-polarized photon field, we see the MB energy de-
generacy around B = 0.1 and 0.325 T related to the destructive
AB phase interference. However, in the case of y polarization,
an extra MB energy degeneracy is found at B = 0.425 T. This
degeneracy is related to a current dip coming from photonic
suppression, i.e., it is not related to AB oscillations.
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FIG. 9. (Color online) MB energy spectrum of the system Hamil-
tonian Hg vs magnetic field B within the bias window energy range for
(a) x-polarized and (b) y-polarized photon field. The states are differ-
entiated according to their electron content N, : zero-electron (N, = 0,
OES, green dots) and single-electron (N, = 1, 1ES, red dots) states.
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FIG. 10. (Color online) Left charge current I, (solid red) and
right charge current I (long-dashed green) vs the magnetic field
with (w) y-polarized photon field at + = 200 ps. For comparison:
left charge current /; (short-dashed blue) and right charge current
I (dotted purple) in a purely electronic central system, i.e., without
(w/0) photon cavity.

Figure 10 shows the left charge current I (solid red) and
the right charge current I (long-dashed green) as a function of
magnetic field at + = 200 ps. It is eye catching that the oscilla-
tion amplitude and extrema positions show more unexpected
features than in the case of x-polarized photon field. In
particular, we would like to point out that the magnetic field
dependence of the charge current exhibits a pronounced dip
at B = 0.425 T (two flux quanta) in the case of a y-polarized
photon field that is not present in the case of an x-polarized
photon field. The dip structure is due to the above mentioned
extra degeneracy of the MB energy spectrum, which strongly
suppresses the photon-assisted tunneling properties. Further-
more, the charge current can be enhanced by the y-polarized
photon field at magnetic field with half-integer flux quantum.

Figure 11 shows the normalized charge current density
vector field j(r,?) in the central ring system for the magnetic
field, (a) B = 0.1, (b) 0.225, and (c) 0.425 T, in the long-time
response regime ¢t = 200 ps. For magnetic field B =0.1T, a
clear counterclockwise vortex can be found being associated
with a long-living localized state, which is strongly dominating
the current flow pattern in the central ring system, as is shown
in Fig. 11(a). However, for magnetic field B = 0.225 T, this
counterclockwise vortex appears weaker relative to the total
local current, but is present at both contact regions as shown in
Fig. 11(b). Figures 11(a) and 11(b) are similar to Figs. 5(a) and
5(b) meaning that the local current flow is mainly governed
by AB interference with the photon polarization having only
a minor effect.

Figure 11(c) shows the current density field for B =
0.425 T (two flux quanta), which is similar to the half-integer
flux quanta case Fig. 11(a) and not to the integer flux quanta
case Fig. 11(b). This similarity is only found for y polarization.
[Instead for x polarization, the integer flux quanta cases
Figs. 5(a) and 5(b) are found to be similar.] The charge flow at
B = 0.425 T for y polarization is therefore not predicted by
the AB effect, but is caused by the influence of the y-polarized
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FIG. 11. (Color online) Normalized charge current density vector
field in the central system for (a) B = 0.1, (b) 0.225, and (c) 0.425 T
att = 200 ps in the case of y-polarized photon field.

photons. However, any MB spectrum degeneracy of the mostly
occupied MB states [see Fig. 9(b)], whether it originates from
the AB effect [see Fig. 11(a)] or the photons [see Fig. 11(c)],
influences the local current flow structure in a similar way.
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FIG. 12. (Color online) Charge in the left [Q%(7)] orright [Q R ()]
half of the central system as a function of time for (a) B = 0.1 T and
(b) B = 0.225 T. The photon field is y polarized.

Figure 12 shows the time evolution of Q%(r) and QX (z).
In the long-time response regime at time ¢ = 200 ps, the
picture is very similar to the x-polarized photon field case: for
B = 0.1 T, the charge is mainly accumulated at the left-hand
side, Q% = 0.720e and Q% = 0.256¢ and for B = 0.225 T, the
left and right charges are of similar magnitude, Q% = 0.462¢
and Q§ = 0.431e. However, in the B = 0.225 T case, the MB
energies of the mostly occupied MB levels are E ,yo = 1.3846
meV and Ej = 1.3683 meV such that AEj |, = 0.0163 meV.
Thus the energy level difference of the mostly occupied
MB levels is only 44% of the case of x-polarized photon
field: Eg,, ~ 0.44 x Ej ,,. The corresponding TL oscillation

period of the closed system would be ‘L'-?L = 254 ps. The oscil-
lation period is too long to be observed clearly in Fig. 12(b),
but we know from the analysis of the TL system defined by the
two mostly occupied states that the low-frequency oscillation
starts with its first maximum of Qé(t) at t = 65 ps. Our
findings suggest that the energy difference of the two mostly
occupied levels controls not only the charge distribution, but
also photonic suppressions of the AB current. The different
connectivity (probability density on the left or right ring part)
to the leads found within the TL dynamic suggests that the
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FIG. 13. (Color online) Charge density distribution p(r,?) (e/ ai)
in the central system for (a) B = 0.1, (b) 0.225, and (c) 0.425 T in
the y-polarized photon field case at r = 200 ps.

probability of a photon coupled electron transition between
these levels plays a major role in understanding the photonic
modifications of the AB current pattern.

Figure 13 shows the charge density distribution in the
central ring system for magnetic field (a) B = 0.1, (b) 0.225,
and (¢) 0.425 T at t = 200 ps. In the case of B = 0.1 T shown
in Fig. 13(a), the electrons are highly accumulated on the
left-hand side of the quantum ring with very weak coupling
to the right lead, and hence strongly blocking the left charge
current and suppressing the right charge current.
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FIG. 14. (Color online) Local current through the top I, (solid
red) and bottom /lyoyom (long-dashed green) ring arms and total Iy
(short-dashed blue) and circular I (dotted purple) local currents vs
the magnetic field and averaged over the time interval [180,220] ps
in the case of y-polarized photon field.

In the integer flux quanta case of B = 0.225 T shown in
Fig. 13(b), the electrons are equally well accumulated on both
sides of the quantum ring. This situation is related to the
manifestation of the current peaks observed in Fig. 10 by
enhancement of the likelihood for electrons to flow through
the quantum ring to the right-hand side of the central system
and further to the right lead.

Figure 13(c) shows the charge density for B = 0.425 T (two
flux quanta), which is similar to the half-integer flux quanta
case Fig. 13(a). This feature is therefore not predicted by the
AB effect, but is caused by the influence of the y-polarized
photons. However, any MB spectrum degeneracy of the mostly
occupied MB states [see Fig. 9(b)], whether it originates from
the AB effect [see Fig. 13(a)] or the photons [see Fig. 13(c)],
influences the density distribution in a similar way.

In Fig. 14, we show the magnetic field dependence of the
local currents /iop and Jyoom through the top and bottom arms,
respectively, the total local current I across x = 0, and the
circular local current I. The local current through the two
current arms, Iy, is suppressed in the case of half-integer flux
quanta showing a similar behavior to the nonlocal currents
I}, and Iy (see Fig. 10). We find more irregularities due to
the stronger effective influence of the y-polarized photon field
than for x polarization. It is interesting to note that the current
suppression dip at B = 0.425 T (marked by the blue arrow in
Fig. 10) appears also in the local current (blue short-dashed
curve) flowing through both ring arms from the left to the
right.

The “persistent” circular local current reaches a maximum
absolute value of max || = 1.905 nA at B = 0.625 T, which
is by 0.939 nA smaller than for x polarization. It is clearly
visible from a comparison of Figs. 14 and 8 that the circular
current is considerably smaller than in the x-polarized photon
case, while the total local current is of the same order. Thus the
capability of the magnetic field to drive a rotational ring current
is weakened by having the electromagnetic field y-polarized.
In particular, this can be said about the diamagnetic part of the
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circular local current leading to the much smaller value I =
0.675 nA at low magnetic field B = 0.05 T. The periodicity
of the circular local current is preserved better for x-polarized
photon field as is for the total local current emphasizing the
perturbing influence of the y-polarized photon field.

IV. CONCLUDING REMARKS

We have presented a time-convolutionless generalized
master equation formalism that allows us to calculate the
nonequilibrium transport of Coulomb interacting electrons
through a broad quantum ring in a photon cavity under
the influence of a uniform perpendicular magnetic field.
The topologically nontrivial broad ring geometry allows
for substantial electron-electron correlations relative to their
kinetic energy and, hence, a large basis is required for sufficient
numerical accuracy. The central quantum ring 1ES are charged
quickly. Electron-electron correlation and sequential tunneling
slow down the 2ES charging in the long-time response regime.
Aharonov-Bohm charge current oscillations can be recognized
in the long-time response regime with magnetic field period
By = ®y/A, which is related to the flux quantum @, and ring
area A.

In the case of x-polarized photon field, we have found
charge oscillations between the left and right parts of the
quantum ring when the magnetic field is associated with
integer flux quanta. The oscillation frequency agrees well with
the energy difference of the two mostly occupied states. The
relatively high energy difference for x-polarized photons is
related to a relatively high transient current through the ring.
The amplitude of the charge oscillations through the quantum
ring is decreasing in time due to dissipation effects caused by
the coupling to the leads. Usually, the local current through
the upper ring arm exhibits opposite sign to the local current
through the lower ring arm. Hence the “persistent” circular
local current is usually larger than the total local charge current
through both ring arms from the left to the right. The persistent
current shows a periodic behavior with magnetic field, but
with a tendency to clockwise rotation due to the contact region
vortex structure.

In the case of y-polarized photon field, the magnetic field
dependence of the left and right charge current exhibits a
pronounced dip at magnetic field B = 0.425 T corresponding
to two flux quanta that is therefore clearly not related to
the Aharonov-Bohm effect. The dip is associated with a
degeneracy of the two mostly occupied MB states at magnetic
field associated with two flux quanta. The additional level
crossing appears only for y-polarized photons, but influences
the spatial distribution of the charge density and flow similarly
to any other MB degeneracy. The generally lower energy
difference of the two mostly occupied MB states in the case
of y polarization perturbs the constructive phase interference
condition for the bias driven charge flow through the quantum
device and decreases the persistent current magnitude.

In conclusion, we have demonstrated for our ring geometry
that y-polarized photons perturb our system stronger than
x-polarized photons, suppressing or enhancing magnetic
field induced and bias-driven currents and perturbing flux
periodicity beyond finite width effects. It is interesting to
compare these findings to the quantum wire case, where it was
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found that mainly x-polarized photons attenuate the central
system charging due to a closer agreement of the photon mode
energy and the characteristic electronic excitation energy in x
direction.>® In this paper, we have considered a more complex
geometry, which reduces effectively the y-confinement en-
ergy 29 = 1.0 meV. The characteristic electronic excitation
energy in y direction may therefore be much closer to
the photon mode energy fiw = 0.4 meV, thus leading to a
relatively strong influence of the y-polarized photon field
on the electronic transport. Transient spectroscopy has been
applied to semiconductor microstructures.>** We can only
speculate that methods from quantum optics combined with
methods developed for time-dependent electron transport can
be used to make the time scale in our nanostructures accessible.

PHYSICAL REVIEW B 87, 035314 (2013)

The conceived magnetic field influenced quantum ring system
in a photon cavity could serve as an elementary quantum device
for optoelectronic applications and quantum information pro-
cessing with unique characteristics by controlling the applied
magnetic field and the polarization of the photon field.
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We demonstrate that with a stepwise introduction of complexity to a model of an electron system embedded
in a photonic cavity and a carefully controlled stepwise truncation of the ensuing many-body space it is
possible to describe the time-dependent transport of electrons through the system with a non-Markovian
generalized quantum master equation. We show how this approach retains effects of the geometry of an
anisotropic electronic system. The Coulomb interaction between the electrons and the full electromagnetic
coupling between the electrons and the photons are treated in a non-perturbative way using “‘exact numerical
diagonalization”.
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1 Introduction

Advances in techniques constructing and experimenting with quantum electrodynamic circuits have re-
sulted in systems with very strong electron-photon coupling [1-3]. Traditionally, some version of the
Jaynes-Cummings model [4] is used to describe the energy spectrum of the closed system or its time
evolution [5]. Recently, we have shown that for a strong electron-photon coupling in a semiconductor
nanostructure the Jaynes-Cumming model may not be adequate and one may have to consider a model
with more than two electron levels and the diamagnetic term in the coupling [6]. In continuation we have
used our experience with describing the dynamics of open systems in terms of the generalized master
equation (GME) [7, 8] to start the exploration of time-dependent transport properties of circuit quantum
electrodynamic (circuit-QED) systems [9].

Here, we will describe our approach with a special emphasis on what we call: “A stepwise introduction
of complexity to a model and a carefully controlled stepwise truncation of the ensuing many-body space”.
We will discuss technical issues that are common to models of different phenomena and fields, but we will
use the model of Coulomb interacting electrons in a photonic cavity as an example to display our approach
and findings.
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Fig. 1 (online colour at: www.fp-journal.org) A schematic view of the total system consisting of a finite quantum
wire (green, the central electronic system) in a photon cavity (bold black), coupled to external left (red) and right
(blue) leads at different chemical potentials, p1, and pur. An external homogeneous magnetic field B (magenta) is
perpendicular to the system and the leads. The lengths are not shown to scale. The length of the central system is
300 nm, but the characteristic lengths of the cavity are on the millimeter scale. The GaAs leads and central system
contain a quasi-one-dimensional (Q1D) electron gas in 1 to 4 subbands of width 60 to 120 nm for the parameters to be
introduced below. The cavity photon modes (yellow) are standing waves in the z-direction with an electric component
in the z- or y-direction. The applied bias between the left and right leads is indicated by placing them at different levels
with respect to the central system.

2 The model of the closed system

The closed electron-photon system is a finite quasi-one-dimensional (Q1D) quantum wire placed in the
center of a rectangular photon cavity (see Fig. 1). It is described by the Hamiltonian [9]

1
Hy= Y Eidld; + hwa'a + 5 > i |Vooulrs)d! didsd,

jrs

+5CZd§dj gij{a—i—aT} (1

)

() D4 () o o).

where E; is the single-electron spectrum for the finite quantum wire with hard walls at x = +L,/2
and parabolic confinement in the y-direction with characteristic energy f£)y. A static classical external
magnetic field B = V x A, = Bz renormalizes the frequency of the y-confinement Q2 = w? + Q2
and the natural length scale a,, = \/h/(m*Q,,) with the cyclotron frequency w. = eB/(m*c). d; is an
annihilation operator of the non-interacting single-electron state (SES) |i) with energy E;, and a is the
annihilation operator for the single-photon mode with energy iw. The kernel for the Coulomb interaction
of the electrons is

e2

k(@ =22+ (y—y)+n?

with the small regularization factor selected such that /a,, ~ 7.1 x 10~2 when a,, ~ 33.5nmat B = 0.1
T for GaAs parameters, i. e. the effective mass m* = 0.067m., and the dielectric constant k = 12.4.

VCoul(r - rl) -

@)
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The second line in the Hamiltonian (1) is the paramagnetic interaction between electrons and photons
(—[drj-A)/c, and the last line stems from the diamagnetic term in the interaction (—e [drpA?)/(2m*c?).
In terms of the field operators the charge current density and charge density are, respectively,

= 5= {vt w0 + (7ul) v}, 3)
and

p=—eply, “)
where

™= (p + ZAext) : )

The photon cavity is assumed to be a rectangular box (z,y, z) € {[—ac/2,ac/2] X [—ac/2,ac/2] X
[—d./2,d./2]} with the finite quantum wire centered in the z = 0 plane. In the Coulomb gauge the
polarization of the electric field can be chosen parallel to the transport in the x-direction by selecting the
TE11 mode, or perpendicular to it by selecting the TE;o; mode

~ Ty

A(I‘)Z(?z)A{a—i—aT} eon () COS(E) TEous ©)

€y cos (Z—“:) de TE101

A is the amplitude of the cavity vector field defining a characteristic energy scale £. = eAQ,a.,/c = ¢
for the electron-photon interaction and leaving an effective dimensionless coupling tensor

EM

5 = 5o [ dr i) (e m) w000} + (@ m) i)} v o), ™

defining the coupling of individual single-electron states |:) and |j) to the photonic mode. In the calcu-
lations of the energy spectrum of the Hamiltonian (1) we will retain all resonant and antiresonant terms
in the photon creation and annihilation operators so we will not use the rotating wave approximation, but
in the calculations of the electron-photon coupling tensor (7) we assume a.,, L, << a. and approximate
cos(m{x,y}/ac) ~ 1in Eq. (6) for the cavity vector field A.

The energy spectrum and the states of the Hamiltonian for the closed electron-photon system have to
be sought for an unspecified number of electrons as we want to open the system up for electrons from the
leads later. We will be investigating systems with few electrons present in the finite quantum wire, but it
is not a trivial task to construct an adequate many-body (MB) basis for the diagonalization of Hj since in
addition to geometrical and bias (set by the leads) considerations we have strong requirements set both by
the Coulomb and the photon interaction. Our solution to this dilemma and a mean to keep a tight lid on the
exponential growth of the size of the required many-body Fock space is to do the diagonalization in two
steps.

First, we select the lowest Nggg single-electron states (SESs) of the finite quantum wire. These have
been found by diagonalizing the Hamiltonian operator for a single electron in the Q1D confinement and
in a perpendicular constant magnetic field in a large basis of oscillator-like wave functions. Originally, we
constructed a many-electron Fock space with Nyps = 27V5Es states |) [10, 11]. (We use Latin indices for
the single-electron states and Greek ones for the many-electron states). This “simple binary” construction
for the Fock-space does not deliver the optimal ratio of single-, two-, and higher number-of-electrons states
for an interacting system when their energy is compared. Usually one ends up with too few SESs compared
to the MESs. Here we will select 18 SESs and construct all possible combinations of 2-4 electron states.
This can be refined further. These MESs, which are in fact Slater determinants, and which we denote as |1)

www.fp-journal.org ©2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



4 V. Gudmundsson et al.: GME transport

(with an angular right bracket) are then used to diagonalize the part of the Hamiltonian (1) for the Coulomb
interacting electrons only, supplying their spectrum Eu and states |u) (denoted now with a rounded right
bracket). The eigenvectors from the diagonalization procedure define the unitary transform between the
two sets of MESs, |11) = > Vual|a). As the action of the creation and annihilation operators is only
known in the non-interacting electron basis {|x)} we need this transform to write Hy in the new Coulomb
interacting basis {|u)}

= S Bl + hewaa+ €S ) IV dlds Vv (v gis {a+ ot}
o

pig

Ee 1 1
+ & <ﬁQw> Z'“ (uv*dld;v|v)(v| {( a+ 2) +t3 (aa—kaTaT)}. (8)

l/’L

In order to finally obtain the energy spectrum of the electron-photon Hamiltonian (8) we need to construct
a MB-space |11) ® |[Npn) — |i)e—rm out of the Coulomb interacting MESs |1) and the eigenstates of
the photon number operator |Npy). To properly take account of the effects of the Coulomb interaction
we selected a large basis {|u)} and many photon states since the strong coupling to the cavity photons
requires many states. For the system parameters to be introduced later we find that basis build up of the
64 lowest in energy Coulomb interacting MESs and 27 photon states is adequate for the transport bias
windows and the electron-photon coupling to be selected later. The catch is that the unitary transform has
to be performed with the full untruncated basis since V can not be truncated. In other words each of the 64
interacting MESs |11) remains a superposition of all of the 2”sEs noninteracting MESs |u) with the same
number of electrons N, i. e. |11) is a linear combination of a subset of (N sEs) terms. (A similar issue is
met when the dimensionless coupling tensor g;; (7) is transformed from the original single-electron basis
to the single-electron states |i)).

The diagonalization of Hj produces the new interacting electron-photon states |1) = > Wyal|ad)e—EMm
with a known integer electron content, but an indefinite number of photons, since the photon number
operator does not commute with Hy. The MB energy spectra for the x- and y-polarization of the photon
mode are shown in Fig. 2 in comparison with the subbandstructure of the single-electron spectrum of
the leads. The difference in the energy spectra for the z- and the y-polarization stems from the anisotropic
electron system. The photon mode selected with energy 0.4 meV is close to be in resonance with the motion
in the z-direction, but quite far from the fundamental energy in the y-direction, 1.0 meV. The spectrum for
the z-polarization thus displays stronger dispersion and interaction of levels than the spectrum for the
y-polarization.

The states of the closed system in Fig. 2 have a definite number of electrons and an undetermined
number of photons of one given polarization. Later when the system is coupled to the leads one can expect
the electrons entering the system to radiate photons with any polarization. A preferred polarization could
though be influenced by the aspect ratio of the cavity. In the treatment of the time-dependent system
to follow we assume the electrons only to radiate photons with one given polarization. This is done to
facilitate the numerical calculations and the analysis of a system with a strong spatial anisotropy.

3 Opening of the system, coupling to external leads

At time ¢ = 0 the closed system of Coulomb interacting electrons coupled to cavity photons described by
the Hamiltonian (8) is connected to two external semi-infinite quasi-one-dimensional quantum wires in a
perpendicular magnetic field [8]. We use an approach introduced by Nakajima and Zwanzig to project the
time evolution of the total system onto the central system by partial tracing operations with respect to the
operators of the leads [12, 13]. The coupling Hamiltonian of the central system (i. e. the short Q1D wire)
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Fig. 2 (online colour at: www.fp-journal.org) The single-electron energy spectrum of the leads (left panel) versus the
“subband momentum” ga.,, and the many-body energy spectra for Coulomb interacting electrons coupled to quantized
cavity photon modes with the electric component polarized along the finite quantum wire (x-polarization, center panel),
and perpendicular to the wire (y-polarization, right panel) versus the electron-photon coupling strength g™ = &.. In
the energy range shown there are states with no electrons (horizontal solid green), one electron (solid red), and two
electrons (dashed blue). In order to reach convergence for high & in this figure we use Nsgs = 200 here. B = 0.1 T,
hQo = 1.0 meV, iw = 0.4 meV, 1QY = 1.0 meV, L, = 300 nm, m* = 0.067m., x = 12.4, the dielectric constant
of GaAs.

to the leads is of the form
Hr(t) =Y X'(t) / dq {Téic;ldi + (Téi)*djcql}, )
il

where [ € {L, R} refers to the left or the right lead, and x!(t) is the time-dependent switching function
of the coupling. The operators ¢, and cjﬂ annihilate and create an electron in the [-lead with a quantum
number g referring both to the continuous momentum ¢ and the subband n/, see Fig. 2 for the corresponding
energy spectrum. To represent the geometry of the leads and the central system, the coupling tensor Téi
of single-electron states |¢) in the lead [ to single-electron states states |i) in the system is modeled as a
non-local overlap integral of the corresponding wave functions in the contact regions of the system, le,
and the lead [, ©; [11]

tl= [ [uo)] S o) (10
QL x
The function
— El — Gl
ol ) = ghexp [~ — ')~ 84ty — y')?] x exp [ 2D ar
E
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6 V. Gudmundsson et al.: GME transport

withr € Qé and r’ € §; defines the ‘nonlocal Gaussian overlap’ determined by the constants 4; and do,
and the affinity of the states in energy Ag. The energy spectra of the leads are represented by €' (q).
The time-evolution of the total system is determined by the Liouville-von Neumann equation

W (t) = [H (1), W(t)], W(t<0)=pLorps, (12)
with TV the statistical operator of the total system and p; the equilibrium density operator of the discon-
nected lead I € {L, R} having chemical potential 1,

e~ B(Hi—piN)

PL= Ty {e—BH=mND Y

(13)

where H; is the Hamiltonian of the electrons in lead I € {L,R} and N; is their number operator. The
Liouville-von Neumann equation (12) is projected on the central system of coupled electrons and photons
by a partial tracing operation with respect to the operators of the leads. Defining the reduced density
operator (RDO) of the central system

PSs (t) = TI'LTI”RW(t)7 Ps (0) = pPs, (14)

we obtain an integro-differential equation for the RDO, the generalized master equation (GME)

ps(t) = —,% [Hs, ps(t)] — %{ [HT@),/O at’ [Ut—t)He()UT(t—t),

}7 (15)

where the time evolution operator for the closed systems of Coulomb interacting electrons coupled to
photons on one hand, and on the other hand noninteracting electrons in the leads is given by U(t) =
exp {—i(Hs + Hcou + Hem + Hy, + Hg)t/h}, without the coupling to the leads Hr(t). Here, H., is the
Hamiltonian for the electrons in the central system, H oy, their mutual Coulomb interaction, Hgy is the
Hamiltonian for the photons in the cavity together with their interaction to the electrons, and Hy, g are the
Hamiltonian operators for the electrons in the left and right leads. The time evolution of the closed system
of Coulomb interacting electrons interacting with the photons is governed by Uy(t) = exp {—iHot/h}.
The GME (15) is valid in the weak system-leads coupling limit since we have only retained terms of second
order in the coupling Hamiltonian H~ in its integral kernel. It should though be stressed that we are not
approximating the GME to second order in the coupling as its integral structure effectively provides terms
of any order, but with a structure reflecting the type of the integral kernel.

Commonly, the GME is written in terms of spectral densities for the states in the system instead of the
coupling tensor (10). We do not make this transformation but the spectral densities for the 10 lowest SESs
used in our system have been presented elsewhere [9] (Here the overall coupling is one quarter of the value
used in [9]). The spectral density is a particularly useful physical concept as it demonstrates the spectral
broadening of the SESs in the finite system due to the coupling to the leads.

Un(t — 1')ps(#)Uy (¢ — )pv.or]

4 Transport characteristics

The time-dependent coupling betweeen the leads and the central system is modeled by the switching func-
tions x!(¢). These functions may be considered input elements of the transport problem: stepwise func-
tions, periodic, relatively phase-shifted, etc. In the following examples the left and right leads are coupled
simultaneously smoothly to the central system by use of the switching function

Lin - 2
‘0= (1- o). e a6
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with o/ = 0.3 ps~!. The temperature of the leads 7' = 0.5 K, and the overall coupling strength géai,/ 2=

13.3 meV, is much lower than in our earlier calculation [9]. We choose 51172a121, = 0.4916 meaning that
states of a lead and the central system with considerable charge density within a length equivalent to 2a,,
(aw ~ 33.5 nm here) could be well coupled.

The energy of the photon mode is iw = 0.4 meV, and the electron confinement in the y-direction has the
energy scale 72y = 1.0 meV. The energy separation of the lowest states for the motion in the z-direction
is lower, ~ 0.2 meV. The Coulomb interaction has a characteristic energy scale 0.5¢%/(ka,,) ~ 1.7 meV.
The external magnetic field is low enough so that only the highest lying SESs show any effects of the
Lorentz force. We expect thus the transport properties of the system to be anisotropic at a low energy scale
with respect to polarization of the photon field along (z-direction) or perpendicular (y-direction) to the
transport.
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gp YN —— ‘ ‘
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g 7 t (ps)
z
v Ng=0, Nyp=1
04 1
x, 1ph, | —— 4
y,1ph, | —— A
X, 1ph,h —— = ]
02r y,iphh — 4 7§
X, 4 ph, | %
y,4ph, | il
X, 4 ph,h ——
o ‘ ‘ _ vi4phh —— ]
0 50 100 150 200 250 0 50 100 150 200 250
t (ps) t(ps)

Fig. 3 (online colour at: www.fp-journal.org) The total mean number of electrons (Ne(t)) (left panel), and the total
mean photon number (Npn(t)) (right panels) as a function of time, polarization of the photon field (z or y) and
bias window low (I: ur = 2.0 and ur = 1.4 meV) or high (h: ur = 3.0 and ur = 2.5 meV). B = 0.1 T,
g™ = 0.1 meV, A% = 1.0 meV, L, = 300 nm, hw = 0.4 meV, Ak, = 0.25 meV, ghat/> = 13.3 meV,

8t pal, = 0.4916, m* = 0.067me., and k = 12.4.

In the present calculations we start with a central system empty of electrons, but with one or four photons
in the cavity. For Nggg = 18 the state with no electron, but one photon, is |§) for both polarizations. The
state containing 4 photons and no electrons is |14) for the z-polarization and |15) in the case of the y-
polarization. The time evolution of the total mean electron number (N, (¢)) is seen in the left panel of
Fig. 3 and the total mean number of photons (N, (%)) is displayed in the lower right panel for the case of
initially one photon and in the upper panel for initially 4 photons. The charging of the system is in most
cases fastest for the higher bias window as the active states of the central system are well coupled to states
in the leads that carry a large current in this energy range. The presence of photons in the system sharply
diminishes the charging speed, especially for their polarization along the transport direction (z-direction).
The time evolution of the total mean number of photons in the system does not give much insight into what
is happening in the system, but it is though clear that it varies more in case of the z-polarization.

Very similar information can be read from the graphs of the total currents in the left (L) or the right (R)
leads shown in Fig. 4. The negative values for the current into the right lead indicate a flow from the lead
to the central system. A note of caution here is that we are concentrating on the charging time-regime here

www.fp-journal.org ©2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Fig. 4 (online colour at: www.fp-journal.org) The total current from the left lead (L), and into the right lead (R) as a
function of time for g™ = 0.1 meV and polarization of the photon field (x or y). Initially, at ¢ = 0 there is one photon
in the cavity (top panel), or 4 photons (bottom panel). The bias window is low (7, = 2.0 and pr = 1.4 meV) for the
left panels and high (7, = 3.0 and pr = 2.5 meV) for the right panels. B = 0.1 T, 229 = 1.0 meV, L, = 300 nm,
hw = 0.4 meV, ur, = 2.0 meV, ur = 1.4 meV, AL, = 0.25 meV, ghai/> = 13.3 meV, 6} ,a2, = 0.4916,
m* = 0.067me, and Kk = 12.4.

and we are not trying to reach a possible steady state, but clearly we are most likely in a Coulomb blocking
range. It is our experience that a considerable probability for two electrons in the system is only seen after
several two-electron states are in or under the bias window. The reason for this is most likely the different
coupling between states in the leads and the system, how far the system is from equilibrium and, and how
the coupling strength influences the rate of occupation of various dynamically correlated states. We have
verified that a still higher bias leads to a nonvanishing steady state current. Here, we always have at least
one photon initially in the cavity and we notice that the charging rate and the currents are mostly higher
for the y-polarization. The time-scale for the charging in the x-polarization gets very long as the photon
number is increased from 1 to 4. This is not a total surprise since the energy of the photons is closer to
characteristic excitation energies for a motion in the x-direction.

A detailed view of the charging processes can be obtained by observing the time-dependent probabilities
for occupation of the available many-body states (MBS) by electrons or photons. In Fig. 5 we see the mean
charge in the MBS for the transport through the lower bias window 17, = 2.0 and g = 1.4 meV. The MBS
|i1) are numbered according to increasing energy. We see clearly that the system is not close to equilibrium
and the charge is “scattered” to more states for the z-polarization than the y-polarization. The presence of
photons has large effects on the electrons in the system.

©2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.fp-journal.org
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Fig. 5 (online colour at: www.fp-journal.org) The mean number of electrons (Ne(t)) in a MBS |ft) for a low bias
window (ur, = 2.0 and ur = 1.4 meV) for z-polarization (left) and y-polarization (right) as a function of time.
Initially, at ¢ = 0, there is one photon in the cavity (top panels), or 4 photons (bottom panels). The initial number of

electrons is zero in all cases. B = 0.1 T, gEM = 0.10 meV, hw = 0.4 meV, iQ = 1.0 meV, AL, = 0.25 meV,

ghat/® = 13.3 meV, 6} ,a2, = 0.4916, L, = 300 nm, m* = 0.067m., and x = 12.4.

Very similar story can be said about the results for the higher bias window, pi;, = 3.0 and pr = 2.5 meV
displayed in Fig. 6. Especially interesting is to see that the results for both polarizations are almost identical
for the higher and lower bias window for the case of 4 photons initially in the central system. The effects
of the bias window are washed out by the strong interaction with the quantized electromagnetic field in
the cavity. We have though to bring in a note of caution here and admit that this effect should be studied
further using a larger MB basis for the RDO.

A complete picture can not be reached without exploring the time-evolution of the mean photon number
per MBS presented in Fig. 7 for the lower bias window and in 8 for the higher bias window. Again we
notice that the state of the system, the distribution of the photon component into various MBS, is almost
independent of the the bias window in the case of 4 photons initially in the cavity.

But, here another very important fact about the system evolution becomes evident. The occupation
of the initial photon state seems to vary much faster with time than the total mean number of photons
shown in Fig. 3. The slow decay of the charging current in Fig. 4 for the system with 4 photons initially
might also indicate that radiation processes here are slow. Why then do we have a fast redistribution of the
photon component between the available MBS initially, during the switch-on process? The resolution of
this dilemma comes from remembering the structure of the interaction terms. Part of the interaction is an
integral over the term j - A. We have a vector field initially present in the system. The high current into the
system during the transient phase, when the contacts between the leads and the central system are switched
on, creates a strong interaction that can “scatter” the electrons and the photons to different MBS, few or
many, depending on selections rules and resonances. This initial rushing of electrons from both ends of
the finite quantum wire is a longitudinal (irrotational) current that enhances the coupling to the photon
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Fig. 6 (online colour at: www.fp-journal.org) The mean number of electrons (N (¢)) in a MBS |jz) for a high bias
window (ur, = 3.0 and ur = 2.5 meV) for z-polarization (left) and y-polarization (right) as a function of time.
Initially, at ¢ = 0, there is one photon in the cavity (top panels), or 4 photons (bottom panels). The initial number of
electrons is zero in all cases. B = 0.1 T, gEM = 0.10 meV, lw = 0.4 meV, 29 = 1.0 meV, AlE = 0.25 meV,
ghat/? = 13.3 meV, 6} ,a2 = 0.4916, L, = 300 nm, m* = 0.067m., and x = 12.4.

field. This effect can be seen very well by comparing the photon distribution into the MBS at the low bias
window and for the case of only one photon initially present in the cavity.

In case of the z-polarization we see that the system seems to develop a higher “impedance” acting
against its charging as the number of photons is increased, and at the same time the electrons that enter
the system are scattered to a wide range of MBS. The “impedance” has to be understood from the fact that
the photon field is polarizing the electron density inside the system along the z-direction. Effectively, the
states may gain coupling strength to the leads, but that works in both ways. The electrons enter the system
easily and leave it equally easily at the same end before they can be transported through it. The charging of
the system is counteracted by an effective scattering of a localized photon field. A phenomena that should
be similar for a system with localized phonons.

S Summary

In this publication we have shown how we have successfully been able to implement a scheme which we
wish to call: “A stepwise introduction of complexity to a model description and a careful counteracting
stepwise truncation of the ensuing many-body space” to describe a time-dependent transport of Coulomb
interacting electrons through a photon cavity. We have used this approach to demonstrate how the geometry
of a particular system leaves its fingerprints on its transport properties. We guarantee geometrical depen-
dence by using a phenomenological description of the system-lead coupling based on a nonlocal overlap
of the single-electron states in the leads and the system in the contact area, and by using a large basis of
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Fig. 7 (online colour at: www.fp-journal.org) The mean number of photons (Npn(¢)) in a MBS |f2) for a low bias
window (ur, = 2.0 and ur = 1.4 meV) for z-polarization (left) and y-polarization (right) as a function of time.
Initially, at ¢ = 0, there is one photon in the cavity (top panels), or 4 photons (bottom panels). B = 0.1 T, g*™ =
0.1 meV, hw = 0.4 meV, A% = 1.0 meV, Al = 0.25 meV, ghai/* = 13.3 meV, 6t ,a2 = 0.4916, L, = 300 nm,
m”* = 0.067m., and kK = 12.4.

SESs in order to build our MBS. The Coulomb interaction is implemented by an “exact numerical diago-
nalization”, and the coupling to the quantized electromagnetic cavity field of a single frequency is carried
out using both the paramagnetic and the diamagnetic part of the charge current density. The coupling of
the electrons and the photons is also treated by an exact numerical diagonalization without resorting to the
rotating wave approximation. This approach is thus applicable for the modeling of circuit-QED elements
in the strong coupling limit.

We have deployed the GME method to include memory effects without a Markov approximation. More-
over, the GME approach is utilized to describe the coupling of the electron-photon system to the external
leads. At this moment in the development of the model we ignore the spin variable of freedom, but it
can easily be included. The inclusion of the spin is (more or less) straight forward, but it requires a dou-
ble amount of computer memory and an increased number of MBSs in the GME solver. This is work in
progress now.

We concentrate our investigations on the charging regime of the system and find that it is strongly
influenced by the presence of photons in the cavity, their polarization and the geometry of the system. We
consider these results presented here as the mere initial steps into the exploration of a fascinating regime
of circuit-QED elements.

For the numerical implementation we rely heavily on parallel processing, but we foresee further refine-
ment in the truncation schemes for the many-body spaces and in the parallelization that will allow us to
describe systems of increased complexity.

www.fp-journal.org ©2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Fig. 8 (online colour at: www.fp-journal.org) The mean number of photons (N, (£)) in a MBS |t) for a high bias
window (ur, = 3.0 and ur = 2.5 meV) for z-polarization (left) and y-polarization (right) as a function of time.
Initially, at ¢ = 0, there is one photon in the cavity (top panels), or 4 photons (bottom panels). B = 0.1 T, g*™ =
0.1 meV, hw = 0.4 meV, A% = 1.0 meV, Al = 0.25 meV, ghai/* = 13.3 meV, 6t ,a2 = 0.4916, L, = 300 nm,
m* = 0.067me, and Kk = 12.4.
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ABSTRACT

We explore the influence of a circularly polarized cavity photon field on the transport properties of a finite-
width ring, in which the electrons are subject to spin-orbit and Coulomb interaction. The quantum ring is
embedded in an electromagnetic cavity and described by “exact” numerical diagonalization. We study
the case that the cavity photon field is circularly polarized and compare it to the linearly polarized case. The
quantum device is moreover coupled to external, electrically biased leads. The time propagation in
the transient regime is described by a non-Markovian generalized master equation. We find that the spin
polarization and the spin photocurrents of the quantum ring are largest for circularly polarized photon field
and destructive Aharonov—Casher (AC) phase interference. The charge current suppression dip due to the
destructive AC phase becomes threefold under the circularly polarized photon field as the interaction of the
electrons' angular momentum and spin angular momentum of light causes many-body level splitting leading
to three many-body level crossing locations instead of one. The circular charge current inside the ring, which
is induced by the circularly polarized photon field, is found to be suppressed in a much wider range around
the destructive AC phase than the lead-device-lead charge current. The charge current can be directed
through one of the two ring arms with the help of the circularly polarized photon field, but is superimposed
by vortices of smaller scale. Unlike the charge photocurrent, the flow direction of the spin photocurrent is
found to be independent of the handedness of the circularly polarized photon field.
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1. Introduction

Quantum rings are interferometers with unique properties
owing to their rotational symmetric geometry. Because of their
non-trivially connected topology, a variety of geometrical phases
can be observed [1-4], which can be tuned via the magnetic flux
through the ring in the case of the Aharonov-Bohm (AB) phase, or
the strength of the spin-orbit interaction (SOI) in the case of the
Aharonov-Casher (AC) phase. Furthermore, the rotational symme-
try of the ring resembles the characteristics of a circularly
polarized photon field suggesting a strong light-matter interaction
between single photons and the ring electrons. Circularly polar-
ized light emission [5] and absorption [6] have been studied for
quantum rings. Moreover, circularly polarized light has been used
to generate persistent charge currents in quantum wells [7] and
quantum rings [8-11]. The basic principle behind this is a change
of the orbital angular momentum of the electrons in the quantum
ring by the absorption or emission of a photon leading to the
circular charge transport. We would like to mention that one can
improve over circularly polarized light to achieve optimal optical
control for a finite-width quantum ring [12]. Rather than trying to
optimize quantum transitions, we are focusing here on various
interesting effects that a circularly polarized photon field has on
quantum rings of spin-orbit and Coulomb interacting electrons.

The transport properties of magnetic-flux threaded rings, which
are connected to two leads have been investigated in detail [13,14].
The conductance of the ring shows characteristic oscillations with
period &= hcle, called AB oscillations, which were measured for the
first time in 1985 [15]. The electrons’ spin is not only interacting with
a magnetic field via the Zeeman interaction, but also with an electric
field via a so-called effective magnetic field stemming from special
relativity [16]. The interaction between the spin and the electronic
motion in, for example, the electric field, is called the Rashba SOI [17],
which leads to the AC effect. Experimentally, the strength of the
Rashba interaction can be varied by changing the magnitude of the
electric field when it is oriented parallel to the central axis of the
quantum ring. Another type of SOI is the Dresselhaus interaction [18],
leading to the AC effect as well. The combined effects of SOI and an
applied magnetic field on the electronic transport through quantum
rings connected to leads have been addressed in several studies
[19-23]. In this work, we use a small magnetic field outside the AB
regime and a tunable Rashba or Dresselhaus SOI up to a strength
corresponding to an AC phase difference A®~ 3z and use cavity
quantum electrodynamics to describe the interaction of the electro-
nic system with a circularly polarized photon field in a cavity.

While the magnetic flux through the ring causes only equili-
brium persistent charge currents [24,25], SOI can also induce
equilibrium persistent spin currents [26,27]. Dynamical spin cur-
rents can be obtained by two asymmetric electromagnetic pulses
[28]. Optical control of the spin current can be achieved by a non-
adiabatic, two-component laser pulse [29]. The persistent spin
current is in general not conserved [30]. Proposals to measure
persistent spin currents by the induced mechanical torque [31] or
the induced electric field [30] exist.

Quantum systems embedded in an electromagnetic cavity have
become one of the most promising devices for quantum informa-
tion processing applications [32-34]. We are considering here
the influence of the cavity photons on the spin polarization of the
quantum ring and on the transient charge and spin transport
inside and into and out of the ring. We treat the electron-photon
interaction by using exact numerical diagonalization including
many levels [35], i.e. beyond a two-level Jaynes—Cummings model
or the rotating wave approximation and higher order corrections
of it [36-38]. The electronic transport through a quantum system
that is strongly coupled to leads has been investigated for linearly
polarized electromagnetic fields [39-43]. For a weak coupling

between the system and the leads, the Markovian approximation,
which neglects memory effects in the system, can be used [44-47].
To describe a stronger transient system-lead coupling, we use
a non-Markovian generalized master equation [48-50] in a time-
convolutionless form [51,52], which involves energy-dependent
coupling elements. We used this type of master equations earlier
to explore the interplay of linearly polarized cavity photons and
topological phases of quantum rings for the AB [52] and AC [53]
phase. The influence of a quantized cavity photon mode of circularly
polarized light on the time-dependent transport of spin-orbit
and Coulomb interacting electrons under non-equilibrium conditions
through a topologically nontrivial broad ring geometry, which is
connected to leads has not yet been explored beyond the Markovian
approximation. We note that we can compare our results to the
analytic results for a one-dimensional quantum ring with Rashba or
Dresselhaus SOI [53].

The paper is organized as follows. In Section 2, we describe the
Hamiltonian for the central quantum ring system including SOI,
which is embedded in a photon cavity and our time-dependent
generalized master equation formalism for the transient coupling
to semi-infinite leads. In addition, various transport quantities that
are shown in Sections 3 and 4, are here defined. Section 3 shows
the numerical results concerning the spin polarization of the
quantum ring, both for linear and for circular polarization.
Section 4 is devoted to the transport of charge and spin. First,
the non-local currents (lead-ring currents) between the leads and
the system are discussed. Second, the change of the local currents
inside the quantum ring due to the photon cavity (photocurrent) is
considered. Finally, conclusions will be drawn in Section 5.

2. Theory, model and definitions

Here, we describe the Hamiltonian of the central system
including the potential used to model the quantum ring, the
Hamiltonian for the leads and the time evolution of the whole
system described by a non-Markovian master equation. Further-
more, we define various quantities describing the transient charge
and spin transport and their accumulation in the quantum ring
and the parameters used for the numerical results.

2.1. Central system Hamiltonian

The time-evolution of the closed many-body (MB) system
composed of the interacting electrons and photons relative to the
initial time t=0,
Os(t) = exp( st ). M

is governed by the MB system Hamiltonian

As= /dzr\iﬁ(r)

~2
(p +V5(r)) +Hy +Hy(®)+Hp(@®) | W)+ Hee + A d,

2m*
2
with the spinor
. P(1,1)
¥(r)= <lf/(¢,r)> 3)
and
¥im= (¢ a0 % 1), 4
where
(0 =Zw0Ca )
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is the field operator with x=(r, ), o € {1, ]} and the annihilation
operator, Cq, for the single-electron state (SES) wi(x) in the central
system. The SES y/a(x) is the eigenstate labeled by a of the
Hamiltonian Hg—Hee—flwa a when we set the photonic part of
the vector potential A’ (r) in the momentum operator,

. px(m™\ n
= ==V A A’ 6
p(r) ( py(r)> +2|Am+A" @), ®)
to zero. The Hamiltonian in Eq. (2) includes a kinetic part, a static
external magnetic field B =Bz, in Landau gauge being represented
by the vector potential A(r) = —Byey, and a photon field. Further-
more, in Eq. (2),

B
H, =", ™

describes the Zeeman interaction between the spin and the mag-
netic field, where gs is the electron spin g-factor and ug=
en/(2mec) is the Bohr magneton. The interaction between the spin
and the orbital motion is described by the Rashba part

=(0sby 0= 0yp 1)) ®

with the Rashba coefficient « and the Dresselhaus part

Hg(r) =

Fin®) = 2(0p0)— 0,p, 1) ©

with the Dresselhaus coefficient g. In Egs. (7)-(9), ox 0y and o,
represent the spin Pauli matrices.
Eq. (2) includes the electron-electron interaction

T /
ee_ /dx /d PTx)¥ (x)’i’(x)?’(x) 10
Ir— l"|2+'1

with e >0 being the magnitude of the electron charge, which
is treated numerically exactly. Only for numerical reasons, we
include a small regularization parameter »=0.2387 nm in Eq. (10).
The last term in Eq. (2) indicates the quantized photon field, where
a' is the photon creation operator and % is the photon excitation
energy. The photon field interacts with the electron system via the
vector potential

AP — Aea+e*a’) an
with
€x, TEo11
ey, TE101
e= \/li[ex +iey], RHcircular (12)
x/ij[eX —ie,], LHcircular

for a longitudinally-polarized (x-polarized) photon field (TEqq),
transversely-polarized (y-polarized) photon field (TEqq;), right-
hand (RH) or left-hand (LH) circularly polarized photon field. The
electron-photon coupling constant gt = eAa,,,/c scales with
the amplitude A of the electromagnetic field. It is interesting to
note that the photon field couples directly to the spin via Egs. (8),
(9) and (6). For reasons of comparison and to determine the
photocurrents, we also consider results without photons in the

system. In this case, Aph(r) and hwd'a drop out from the MB
system Hamiltonian in Eq. (2). Our model of a photon cavity can be
realized experimentally [32,33,54] by letting the photon cavity
be much larger than the quantum ring (this assumption is used in
the derivation of the vector potential, Eq. (11).

2.2. Quantum ring potential

The quantum ring is embedded in the central system of length
L,=300 nm situated between two contact areas that will be

150

X(nmy 0 100

150-150

Fig. 1. System potential Vs(r) of the central ring system connected to the left and
right leads.

Table 1
Parameters of the ring potential in the central region.

i Vi (meV) P (nm~1) Xoi (nm) Byi (nm~1)
1 10 0.013 150 0

2 10 0.013 —150 0

3 111 0.0165 € 0.0165

4 —47 0.02 149 0.02

5 —47 0.02 —149 0.02

6 —5.33 0 0 0

coupled to the external leads, as is depicted in Fig. 1. The system
potential is described by

5 1
Vs®) = X Vi expl—(Bux—xo))’ = (B 1+ 5m" 2", (13)
i=
with the parameters from Table 1. xg3 =¢ is a small numerical
symmetry breaking parameter and |¢|=10"> nm is enough for

numerical stability. In Eq. (13), 7229 = 1.0 meV is the characteristic
energy of the confinement in the system.

2.3. Lead Hamiltonian

The Hamiltonian for the semi-infinite lead [ € {L, R} (left or right
lead),

/dz /d2 i ()8 — )[(

+H; +HR(r)+HD(r)} W(r), (14)

with the momentum operator containing the kinetic momentum
and the vector potential leading only to the magnetic field (i.e. not
to the photon field)

Bin) ="V + SAm) (15)

We remind the readgr that the Rashba part, Hg(r), (Eq. (8)) and the
Dresselhaus part, Hp(r), (Eq. (9)) of the SOI are momentum-
dependent. For the leads, the momentum from Eq. (15), is used

for the Rashba and Dresselhaus terms in Eq. (14). Eq. (14) contains

the lead field operator

10 = Zwa(®)Cy (16)
q
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in the spinor

- #y(1,1)
W (r) = (f’z(l,l‘)> 17)

and a corresponding definition to Eq. (4) for the Hermitian
conjugate of ¥(r) in Eq. (17). In Eq. (16), yy(x) is a SES in the
lead [ (eigenstate with quantum number ¢ of the Hamiltonian of
Eq. (14)) and CI, is the associated electron annihilation operator.
The lead potential

Vi(r) = I m*Qly? (18)

confines the electrons parabolically in the y-direction in the leads
with the characteristic energy 70, =2.0 meV.

2.4. Time-convolutionless generalized master equation approach

We use the time-convolutionless generalized master equation
[51] (TCL-GME), which is a non-Markovian master equation that is
local in time. This master equation satisfies the positivity condi-
tions [55] for the MB state occupation probabilities in the reduced
density operator (RDO) usually to a relatively strong system-lead
coupling [52]. We assume the initial total statistical density matrix
to be a product state of the system and leads density matrices,
before we switch on the coupling to the leads,

W(0)=p; ® pg ® ps(0), (19)

with p,, le{L,R}, being the normalized density matrices of the
leads. The coupling Hamiltonian between the central system and
the leads reads

o= 3 [l [i’<q>6ql+6zli”<q) . (20)

The coupling is switched on at t=0 via the switching function
2

hy=1-——=— 21
7 T 21
with a switching parameter o' and
N o
T@=Z STha@lCylp). (22)

Q a

Eq. (22) is written in the MB eigenbasis {|a)} of the system
Hamiltonian, Eq. (2). The coupling tensor [56]

T, = ;; Qldzr /Q 1 iy r,0) x ghy(r.¥ 0,0 Wi . 0) (23)
“ “ S

couples the lead SES {y(r,0)} with energy spectrum {€l(q)} to
the system SES {y3(r, o)} with energy spectrum {E,} that reaches
into the contact regions [57], €5 and @, of system and lead I,
respectively, and the coupling kernel

8uy(1.1,0,0) = ghdo.o exp|—Sx—x 1] x exp| -5,y -y?]

_ .l
Xexp<_|Ea . (q)|> 24)
E

suppresses different-spin coupling. Note that the meaning of x in
Eq. (24) is r=(x,y) and not x=(r,¢). In Eq. (24), g is the lead
coupling strength and & and 55, are the contact region parameters
for lead [ in x- and y-directions, respectively. Moreover, AL denotes
the affinity constant between the central system SES energy levels
{E.} and the lead energy levels {¢!(q)}.

When propagated with the TCL-GME [51,52], the RDO of the
system,

ps(t)=Tr, TrR[W(0), (25)

evolves to second order in the lead coupling strength via

ps(t) = — T, ps(t)] - L > [ dat'@.2'q.0ps0

—FE@)(ps(6). 2 (q. )] +H.c. (26)
with the Fermi distribution function f(E),
2(q.0 =50 e~ 4t(@ ) = Usto @005 @7
and
o= [ a oo (G ) o) < Ulert @0 29

2.5. Transport quantities used in the numerical results

We investigate numerically the non-equilibrium electron trans-
port properties through a quantum ring system, which is situated
in a photon cavity and weakly coupled to leads for the parameters
given in Appendix A. To explore the influence of the circularly
polarized photon field and the Rashba and Dresselhaus coupling
on the non-local charge and the spin polarization current from and
into the leads, we define the non-local right-going charge current
I{(t) (lead-ring charge current) in lead I=L,R by

If(®) = cTrlp§(0Q] (29)
with ¢;=1 and cg = —1, with the charge operator
0= / d*rif(r) (30)

and the time-derivative of the RDO in the MB basis due to the
coupling of the lead [ e {L,R}
sty =— / dq[T' (@), [2'(q, Dps(®) —f( @)ips(t), 2'(q. I +H.c.

(31
The charge density operator 7i(r) in Eq. (30) is given in Appendix B,
Eq. (B.1). Similarly, we define the non-local right-going spin
polarization current Ij(t) for S; spin polarization (lead-ring spin
polarization current) in lead [=L,R by
i = Trp5OS:] (32)
with i=x,y,z and the spin polarization operator for S; spin polariza-
tion

§,‘= /dzr fli(l'), (33)

where the spin polarization density operator for spin polarization S,
f'(r), is defined in Eq. (B.2) in Appendix B. To get more insight
into the local current flow in the ring system, we define the top
local charge (y=c) and the spin (y=x,y,z, where y describes the spin
polarization) current through the upper arm (y > 0) of the ring

Fop(t) = /O dyji(x=0.y.t) (34)

and the bottom local charge and the spin polarization current
through the lower arm (y < 0) of the ring

0
[ottom(D) = /_ N dyji(x=0,y,0). (35)

Here, the charge and spin polarization current density

o\
F@0={ G g | =TrpsO) @ (36)
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is given by the expectation value of the charge and spin polarization
current density operator, (Eqs. (B.3), B.5), (B.6) and (B.7) in Appendix B.
We note that while the charge density is satisfying the continuity
equation

%n‘(l‘, 0H+Vj(r,t)=0, 37)

the continuity equation for the spin polarization density includes in
general the source terms

si(r, ) :%n"(r, )+ Vi, t). (38)

The definition for the spin polarization current density ((Eqs. (B.5), B.6)
and (B.7) from the appendix) corresponds to the minimal (simplest)
expression for the source operator [53] and agrees with the definition
of the Rashba current when we limit ourselves to the case without
magnetic and photon field and without Dresselhaus SOI [58,59].
Furthermore, to distinguish better the structure of the dynamical
transport features, it is convenient to define the total local (TL) charge
or the spin polarization current

T4(®) = Tiop(O) + Fygiiom (D) (39

bottom

and circular local (CL) charge or spin polarization current

1
I4(®) = 5lot0m(©) = Tiop (), (40)

which is positive if the electrons move counter-clockwise in the ring.
The TL charge current is usually bias driven while the CL charge
current can be driven by the circularly polarized photon field (or
a strong magnetic field). The TL spin polarization current is usually
related to non-vanishing spin polarization sources while a CL spin
polarization current can exist without such sources.

To explore the influence of the photon field, we define the TL
charge or spin photocurrent

I a® =10~ 10(0) @1
and CL charge or spin photocurrent
I a®© =IO =I5 (D), (42)

which are given by the difference of the associated local currents
with (I”P(t)) and without ("°(t)) photons, where p=x,yr,l
denotes the polarization of the photon field (x: x-polarization,
y: y-polarization, r: RH circular polarization, I: LH circular polar-
ization). The total charge of the central system is given by

Q(t) =Tr[ps(t)Q] (43)
and the spin polarization of the central system

Si(t) = Trips(HSil. (44)

3. Spin polarization

In this section, we show the spin polarization of the central
ring system for linearly or circularly polarized photon field as a
function of the Rashba or Dresselhaus parameter. The ring is
connected to leads, in which a chemical potential bias is main-
tained. The spin polarization S = (Sy, Sy, S;) is a three-dimensional
vector, which, in the Rashba case, is influenced by the effective
magnetic field associated with the Rashba effect.

3.1. Linear photon field polarization

Here, we will compare the spin polarization in the central
system for x- or y-polarization of the photon field with the spin
polarization in the case that the photon cavity is removed. Fig. 2
shows the spin polarization as a function of the Rashba coefficient.
The critical value of the Rashba coefficient, which describes the
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Fig. 2. Spin polarization S=(Sy,Sy,S;) of the central system versus the Rashba
coefficient « averaged over the time interval [180,220] ps with (w) (a) x-polarized
photon field and (b) y-polarized photon field or without (w/o) photon cavity (=0
and B=10"°T).

position of the destructive AC interference is o~ 13 meV nm,
where the TL charge current has a pronounced minimum [53]. The
spin polarization is largest around a = a¢ due to spin accumulation
in the current suppressed regime. For «— 0, the spin polarization
should vanish, except for the minor spin polarization in S, due to
the Zeeman interaction with the small magnetic field. Apart from
that, only the S, spin polarization seems to be significant in Fig. 2.
The direction of the spin polarization vector can be explained
with the concept of the effective magnetic field,
- p xE
Br= "

) (45)
occurring due to the electronic motion in the electric field E = Ee,.
Consequently, we can write the Rashba term

/1 .
e By (46)

I:!Rz%a-(f)xl-:):—

with o =«/E. The spin polarization densities vanish in a one-
dimensional (1D) ring with only Rashba SOI due to Kramers
degeneracy for the time-reversal symmetric system (see also
Ref. [53]). It is therefore clear that the spin polarization densities
in the case without photon cavity result only from the geometric
deviations from the 1D ring model, for example, the contact regions.
The main transport and canonical momentum in the contact regions
are along the x-direction. As a consequence, the Rashba effective
magnetic field, Bg, should be parallel to the y-direction and induce a
spin polarization in mainly the y-direction as is in fact depicted in
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Fig. 2. With photon cavity, the x-polarized photons should lead to an
additional kinetic momentum of the electrons in the x-direction
increasing the S, spin polarization further. This is also very well
in agreement with Fig. 2(a). However, it is interesting that the
y-polarized photons do not induce an S, spin polarization although
the vector potential contribution to the kinetic momentum would
suggest this. Here, the reason for the vanishing S, and S, spin
polarization is that the spin polarization density distribution for the
Sx and S, spin polarization is constrained to an antisymmetric
function in y around the x-axis (y=0) for any time t, when the
central system is initially empty (N, ;ni =0). The spin polarization
density distribution for spin polarization S, is symmetric around
y=0 permitting the non-vanishing spin-polarization S,. As a result,
the y-polarized photon field increases only the S, spin polarization,
but less than in the x-polarized case (Fig. 2(b)). The symmetry
properties and, as a consequence, the non-vanishing components of
the spin polarization change if Ngjnc > 0. Alternatively, Sy#0 and
S;#0 could be achieved with a circularly polarized photon field.

3.2. Circular photon field polarization

The circularly polarized photon field has a non-vanishing spin
angular momentum perturbing the angular orbital motion of the
electrons. Electrons in a 1D ring geometry (as an approximation of
our geometry) do not show a circular charge current for vanishing
magnetic field [53], but placing them in a photon cavity with
circularly polarized photon field would let them move around the
ring due to the spin angular momentum of light. The circular
motion is a much stronger perturbation of the ring electrons than
the perturbation caused by the linearly polarized photon field. The
angular electronic motion in the electric field causes an effective
magnetic field and a local spin polarization in the radial direction.
In our 2D geometry, we will see that the circularly polarized
photon field induces also vortices of the size of the ring width. As a
consequence, the spin polarization is not only a local quantity. It
should be substantially larger than for linear polarization due to
the strong perturbation of the circularly polarized photon field
with the electronic system.

Fig. 3 shows the spin polarization for (a) LH circularly polarized
photon field and (b) and (c) RH circularly polarized photon field.
Different from all other subfigures of Figs. 2 and 3, 3¢ shows the
spin polarization as a function of the Dresselhaus instead of the
Rashba coefficient. The spin polarization is indeed substantially
larger for circular polarization than for linear polarization, Fig. 2.
Furthermore, the spin polarization could take any direction due
to spin precession. This is a fundamental difference between the
linearly and circularly polarized photon field, where only the S,
spin polarization was substantially different from zero. Only the
circularly polarized photon field can induce S, spin polarization
although the y-polarized photon field leads to an effective mag-
netic field in the x-direction.

It might seem surprising that the S, spin polarization is
relatively small for the circularly polarized photon field. Fig. 4
shows the normalized vector field for the charge current density
j°(x,y) for RH circularly polarized photon field and two values of
the Rashba coefficient, symmetrically located around a = a¢. The
vortices disappear or are much weaker without photon cavity or
with linearly polarized photon field. They are also weaker for
circularly polarized photon field and Rashba coefficient values,
which are associated with a smaller spin polarization. The charge
current density is in general a complicated superposition of many
vortices. We would like to mention that it is important that we
have used a ring geometry with a finite width. Otherwise, our
numerical calculations would not give a realistic picture of the
spin polarization. The relatively strong vortices in Fig. 4, which are
located close to the contact regions to the leads, are usually not as
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Fig. 3. Spin polarization S = (S, Sy, S;) of the central system averaged over the time
interval [180,220] ps with (w) or without (w/o) photon cavity and (a) LH circularly
polarized photon field versus the Rashba coefficient a (=0), (b) RH circularly
polarized photon field versus the Rashba coefficient « (=0) and (c) RH circularly
polarized photon field versus the Dresselhaus coefficient g (a=0).

symmetric in the x-direction around their center than they are in
the y-direction. Correspondingly, there is often a relatively strong
net y-component of the canonical momentum leading to a Rashba
effective magnetic field in the x-direction and a much stronger S,
spin polarization than S, spin polarization.

It is in particular interesting to observe the local antisymmetric
behavior of the x- and z-component of the spin polarization
around the level crossings at a« = o (Fig. 3(b)), which are the spin
polarizations induced by the circularly polarized photon field. By
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Fig. 4. Normalized vector fields of the charge current density j(x,y) in the central
system for (a) the Rashba coefficient =11 meVnm and (b) a=15meV nm at
t=200 ps with RH circularly polarized photon field and Dresselhaus coefficient p=0.

contrast, the S, spin polarization is clearly not antisymmetric
around a = ¢ for the linearly polarized photon field (see Fig. 2).
It can be seen from a comparison of Fig. 4(a), where a < af, and
Fig. 4(b), where a > af, that the circulation direction of the strong
vortex at the left contact region is inversed. This leads to the local
antisymmetric behavior of the S, and S, spin polarization around
a=a‘. Since the pronounced vortex structure is mainly due to the
circular polarization of the photon field, only the components of
the spin polarization, which are induced by the circularly polarized
cavity photon field show the local antisymmetric behavior. The
fact that the S, spin polarization is not antisymmetric for linear
photon field polarization can be understood as follows: qualita-
tively, as said before, only the canonical momentum due to the
deviations from the 1D ring geometry (and the photon cavity,
which is unimportant for S, in the case of circular photon field
polarization) allows for spin polarization in the central system. The

contact regions in the x-direction cause only smaller perturbations
of the central system spectrum beyond the level-crossing structure
from the 1D ring geometry (in which only the circularly polarized
photon field can perturb). It is not likely that these smaller
perturbations would lead to additional level-crossings around
a~13 meV nm, which we have found to be responsible for the
antisymmetric behavior of Sy and S, for circular polarization.
Therefore, a local antisymmetry of S, around a~ 13 meV nm
cannot be found.

The x- and z-components of the spin polarization are also
antisymmetric with respect to the handedness of the circularly
polarized light (Fig. 3(a) in comparison with Fig. 3(b)). As the S,
and S, spin polarizations are a direct and pure consequence of
circular polarization meaning that they are vanishing in the case
without photon cavity and in the case with linear polarized photon
field, it is understandable that a sign change in the handedness
would follow a sign change in the effective magnetic field and spin
polarization. In fact, also the vortex circulation direction is inversed
by an inversion of the handedness of the circularly polarized photon
field. The situation is different for the S, spin polarization, which is
different from zero in the absence of photons. The circularly
polarized photon field changes the S, spin polarization only slightly.
Furthermore, comparing the Rashba and Dresselhaus case for RH
circularly polarized photon field (Fig. 3(b) and (c)), we can verify the
spin polarization symmetries

SxD SyR
Sw | =—| S« (47)
SzD SzR

due to the structure of the Rashba and Dresselhaus Hamiltonian.

4. Charge and spin polarization currents

Here, we show our numerical results for the charge and spin
polarization currents, both between the leads and the system
and in the system (quantum ring) itself. Emphasis is laid on the
phenomena caused by the photon cavity with a focus on the
circularly polarized photon field.

4.1. Non-local currents

Fig. 5 shows the non-local (lead-ring) charge currents from the
left lead into the system and further into the right lead as a function of
the Rashba coefficient « at time t=200 ps and circularly polarized
photon field. We note in passing that the result depends not on the
handedness of the circularly polarized light. Left- or right-handedness
would only interchange the meaning of the otherwise indifferent
upper and lower ring arm. With increasing initial number of
photons the current tends to get suppressed due to the in general
smaller energy differences between the MB levels and the fact that
the states having a larger photon content lie in general higher in
energy. However, more interestingly, we observe two additional
current dips for smaller and larger a, while the current dip at a = ¢
appears weaker. With increasing number of initial photons, the two
dips for smaller or larger Rashba coefficient move to even smaller
(a~ {11,8,3} meV nm) or larger (a ~ {15, 16.5, 18.5} meV nm) Rashba
coefficients, respectively, as the initial photon number increases
(Nphinit = {1, 2, 3}). The dips are indicated in Fig. 5 by arrows in the
color of the charge current from the left lead, If. The circularly
polarized photon field has a spin angular momentum, which is
proportional to the number of photons in the system. The spin
angular momentum of the photons interacts with the total (orbital
and spin) angular momentum of the electrons in the ring. For a one-
dimensional ring of radius a with only Rashba interaction [53]
the electron states are fourfold degenerate at =0 and in general
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Fig. 5. Non-local lead-system charge currents If and I; versus the Rashba coeffi-
cient « at time t=200 ps and with RH circularly polarized photon field for different
initial number of photons Npj it = 0,1, 2,3. The Dresselhaus coefficient =0.

twofold degenerate for « > 0, as will be explained here in detail. The
eigenstates are

i@, 1)\ exp(ing) A
o R _ exp(ing) 8 48
Fin®) ( len (@, ) 2ra A,Iiz exp(ip) o

with the 2 x 2 coefficient matrix

R_(aR 4R\ _ [ €O (%) sin(%)
A= (A”’l A”'Z) - < sin (%) —cos(%) ) (49)

1—/1+4x2
tan <%>:J (50)

XR

and the dimensionless Rashba parameter, xz (and Dresselhaus
parameter, Xp) is defined by

XR 2m*af @
<xD>‘=7<ﬁ>' ©b

We remind the reader that a is the ring radius. We call n the total
angular momentum quantum number and v = + 1 the spin quan-
tum number (the latter according to the cardinality of the set of
possible values). One can show that n describes indeed the total (i.e.

spin and orbital) angular momentum:
ay=n(nsd). 2

In the Dresselhaus case, (vn [fz|un) in Eq. (52) would depend on n and
xp since [J,, Hp] # 0. We note in passing that [f,, Hz] =0 such that,
in the Rashba case, J, =n+1/2 is indeed a “good” quantum number
(constant). Furthermore, one can define a quantum number

_ 1\ 1 @nlf,ny 1
m:=v <n+2> ty=vr—()  t3 (53)

- - ho h
n|f,lvny=@n|L,+S;|lvn)y = <vn 7@4-50'2

While the exact physical meaning of m and » remains unclear, these
quantum numbers are convenient to describe the degeneracies in
the 1D Rashba ring. (We assume that they both contain angular
momentum and therefore reflect the spin angular momentum of
light.) States with the same m, but different v are degenerate for all a.
Additional degeneracies in m appear at «=0 and further single
points, where the states are fourfold degenerate in total.

How can the degeneracy in v be lifted? As said before, most
likely, the spin quantum number v contains inherently also orbital
angular momentum. It is though clear that it contains angular
momentum of some kind. As a consequence, we expect that the
circularly polarized photon field would have a different influence

on states of different v (because of the different angular momen-
tum content), which would imply that it could lift the degeneracy.
However, we would not expect that the linearly polarized photon
field could lift the degeneracy, as it couples not to the angular
momentum. Only the circularly polarized photon field with a non-
vanishing spin angular momentum can therefore lift the degen-
eracy in v. It is interesting to note that for the two-dimensional
ring without photons (Fig. 6(a)) or linearly polarized photons
(Fig. 6(b)), the states are in general double degenerate for all
values of a except single crossing points. The m-degeneracy at a=0
is split due to the 2D geometry. The v-degeneracy and its energy
splitting for « > 0 by the circularly polarized photon field are here
of main interest (Fig. 6). We would like to draw the attention of the
reader to a subtle difference between the 1D and 2D case. First, we
consider the 1D case with two states with different m, which are
split in energy for a > 0. Second, we consider the 2D case with
circularly polarized photon field with two states with different v,
which are split in energy for « > 0. In both cases, we look at the
crossings at a >0 around the critical values in « corresponding
to the AC phase differences A®=nz with n=1,2,.... Then, the
difference can be stated as follows: in the 1D case one state crosses
with a state that is lower, and the other state, with a state that is
higher in energy at «=0; in the 2D case the two states cross also
with two other states, but here the latter are degenerate at a=0.

To understand the three dips in the non-local (lead-ring)
charge current better, we take a look at the MB spectrum. Fig. 6
shows the energy spectrum of the central system versus the
Rashba coefficient. We note that Fig. 6(c) is independent of the
handedness of the circularly polarized photon field. The state
crossing of the mostly occupied states leading to dips in the non-
local charge current are shown by dotted black lines. These states
include at least about 50% of the charge in the central quantum
ring system. The zero-electron states are shown by filled squares
and the SES by filled circles. The photon content, which can be a
fractional number due to the light-matter coupling is shown by a
continuous range of colors. A photon content of Ny, =0 is shown in
blue, Nppb=1.5 is shown in red and Np,=3 is shown in yellow.
Nph=4 is shown in green color. When we start with one photon
initially, Npp inic=1, the MB spectrum for the linearly and circularly
polarized fields shown in Fig. 6(b) and (c) leads to the situation
that the mostly occupied states are states with a photon content
Nph =~ 1. These states have a color close to purple or violet red and
lie 0.4 meV higher in the spectrum than the mostly occupied states
without photon cavity (which have of course photon content
Nph=0), see Fig. 6(a).

In the case without photons, Fig. 6(a), and with linearly
polarized photon field, Fig. 6(b), the SES are double degenerate,
but become split for « >0 in the case of circularly polarized
photon field, Fig. 6(c). Consequently, without photon cavity or
for linearly polarized photons, the four crossings of the four mostly
occupied states are at one value of a = . With circularly polarized
photon field, the four crossings of the four mostly occupied states
become to lie at three different values of a. Two crossings are at
the intermediate a-value, which is located close to «f, the third
crossing is at « <a and the fourth is at a > af. The three MB
crossing locations in the circularly polarized photon field case are
the reason for the three dips of the non-local (lead-ring) charge
current. To summarize the essence of Fig. 6, each Rashba coeffi-
cient « with a crossing of the mostly occupied states is corre-
sponding to a dip of the non-local charge current. Without photon
cavity or for linearly polarization of the photon field, we have one
Rashba coefficient, o, with crossings and therefore one dip—for
circular polarization, we have three values of the Rashba coeffi-
cient with crossings and therefore three dips.

Fig. 7 shows the non-local (lead-ring) spin polarization currents
for (a) x-polarized photon field and (b) y-polarized photon field
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Fig. 6. Many-electron (ME) or many-body (MB) energy spectrum of the system
Hamiltonian Eq. (2) versus the Rashba coefficient « (a) without photon cavity,
(b) with x-polarized photon field and (c) with RH circularly polarized photon field.
The states are differentiated according to their electron content N, by the shape of
the dots and according to their fractional photon content Ny, by their color. Zero-
electron states (N.=0, OES) are represented as filled squares (the green color means
that Np,=4) and single electron states (N.=1, SES) as filled circles with the
continuous color spectrum from blue over red to yellow corresponding to the range
Nph € [0, 3]. The chemical potential y; of the left lead is shown by a solid black line. The
mostly occupied states, which contribute to the current dips, are connected by black
dotted lines close to their crossings as a guide to the eye. Note that the spectra are
shown for different energy ranges. (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)

from the left lead into the system I} = (I",I’L’, 7) or from the system
to the right lead Iz = (I}, I}, I;). Similar to the spin polarization,
Fig. 2, the y-polarized photons do not induce a non-local current
for S, spin polarization neither from the left nor to the right lead.
Also the non-local current for S, spin polarization is vanishing. In
the strong Rashba regime a €[19,24] meV nm, the S, spin polar-
ization is overall emptied in the system without photon cavity
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Fig. 7. Non-local spin polarization currents I and I into and out of the central
system versus the Rashba coefficient « averaged over the time interval [180,220] ps
with (w) (a) x-polarized photon field and (b) y-polarized photon field or without
(w/o) photon cavity. I}, I, I} and I} are not shown as they are vanishing. The
Dresselhaus coefficient p=0.

meaning that F < I%, however, with x-polarized photon field, we
observe in total S, spin injection (I > F}). The y-polarized photon
field is not in general able to invert the spin emptying into spin
injection in the strong Rashba regime given above.

4.2. Local photocurrents

Fig. 8 shows the TL and CL charge photocurrents. The photon
cavity reduces in general the TL charge current (Fig. 8(a)) (negative
photocurrent). However, at the destructive AC interference at
a=a‘ the TL charge current is enhanced in particular for the
circularly polarized photon field. By the photonic perturbation
of the AC phase difference, the electrons can flow more freely
through the ring and the electron dwell time is reduced. In the
case of the circularly polarized photon field, at the smaller and
larger values a~ {11, 15} meV nm, where the additional non-local
(lead-ring) charge current dips appear (Fig. 5), the TL charge
photocurrent is very negative. This gives some further evidence
about the photonic nature of the additional non-local charge
current dips. The TL current is independent of the handedness of
the circularly polarized photon field since the ring is otherwise
symmetric with respect to the x-axis. The CL charge photocurrent
has different sign for RH or LH circularly polarized photon field
since the circular motion of electrons changes with the spin
angular momentum of the photons in sign (Fig. 8(b)). In contrast,
the CL charge current remains uninfluenced by the linearly
polarized photon field. With the aid of the angular motion of
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Fig. 8. (a) TL and (b) CL charge photocurrents I;ﬁ.n versus the Rashba coefficient a

averaged over the time interval [180,220] ps with (p=x) x-polarized photon field,
(p=Yy) y-polarized photon field, (p=r) RH circularly polarized photon field and
(p=1) LH circularly polarized photon field. The Dresselhaus coefficient g=0.

electrons induced by the circularly polarized photon field, the
charge flow can be controlled to pass through the upper or lower
ring arm. Around the destructive AC interference, the CL charge
photon current gets suppressed due to the unfavorable phase
relation. The suppression spans a relatively wide region ae
[9,23] meV nm when compared to the non-local charge current
dip. The CL charge photon current might therefore serve as an
alternative tool to detect AC phase interference phenomena, which
minimizes the likelihood to overlook an AC destructive phase
interference because of the narrowness of the non-local charge
current dip in the parameter space (consider for example the dip
at a = af in Fig. 5). We note that the TL and CL charge current is
independent from the kind of SO, i.e. Rashba or Dresselhaus, as it
is a spin-independent quantity.

Fig. 9 shows the TL spin photocurrent for the spin polarization
Sy and the CL spin photocurrent for the spin polarization S,. As
opposed to the charge photocurrents, the spin photocurrents drop
to zero for the Rashba coefficient «—0 (when only a very weak
Zeeman term distinguishes the spin). The influence of the circu-
larly polarized photon field is strong in a relatively wide range
around the position of the destructive AC phase at « = o and weak
around the constructive AC phases (a=0meV nm and a=~ 21
meV nm). For the destructive AC phase, the reduced electron
mobility increases the electron dwell time leading to the strong
spin photocurrents. In general, the influence of the circularly
polarized photon field is a bit stronger than the influence of the
linearly polarized photon field. We note in passing that the other
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Fig. 9. (a) TL spin photocurrents for spin polarization Sy, P;;h.n and (b) CL spin

photocurrents for spin polarization S,, If, ., versus the Rashba coefficient «

averaged over the time interval [180,220] ps with (p=x) x-polarized photon field,
(p=y) y-polarized photon field, (p=r) RH circularly polarized photon field and
(p=1) LH circularly polarized photon field. The Dresselhaus coefficient p=0.

spin photocurrents, which are not shown, Iy, g, I a1, By, and I g,
are about one order of magnitude smaller than I{Jh q and Iy . The

local spin polarization currents without photons, I{’]'O and Iﬁio, were

also much larger than 5%, I5°, ;° and IZ°, meaning that the photon
cavity is not changing the set of major local spin polarization
currents. It is interesting to note that the handedness of the
circularly polarized photon field does not affect the major spin

photocurrents including even the CL spin photocurrent If,hyd.

5. Conclusions

The interaction between spin-orbit coupled electrons in a
quantum ring interferometer and a circularly polarized electro-
magnetic field shows a variety of interesting effects, which do not
appear for linear polarization of the photon field. The AC phase
that controls the transport of electrons in such a quantum device is
influenced by the photons. We found that the spin polarization
in a ring, which is connected to leads and mirror symmetric with
respect to the transport axis, is perpendicular to the transport
direction. A linearly polarized photon field with polarization in or
perpendicular to the transport direction, increases only the mag-
nitude of the spin polarization while keeping the direction of the
spin polarization vector uninfluenced. The spin polarization accumu-
lates to larger magnitudes when the transport of electrons is
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suppressed by a destructive AC phase. The circularly polarized photon
field enhances the spin polarization much more than the linearly
polarized photon field. Furthermore, the spin polarization vector is no
longer bound to a specific direction as the circularly polarized photon
field excites the orbital angular motion of the electrons around the
ring and pronounced vortices of the charge current density of smaller
spatial scale. The latter show the importance to resolve the finite
width of our ring as we did in our model. The circulation direction of
the vortices is found to depend on the handedness of the photon field
and the value of the Rashba coefficient « relative to o

The charge current from the left lead into the quantum ring
device and out to the right lead shows three AC dips around «°
instead of one for the circularly polarized photon field. The reason
for it is a small splitting of degenerate states by the interaction of
the angular momentum of the electrons and the spin angular
momentum of light, which leads to MB crossings at three different
values of the Rashba coefficient. The distance in « between the
dips increases with the number of photons in the system due to
the larger spin angular momentum of light. The charge photo-
current from the left to the right side of the quantum ring is
usually negative meaning that the photon cavity suppresses the
charge transport thus increasing the device resistance (except
close to o, where the AC phase interference is destructive). The
circulating part of the charge photocurrent can only be excited by
the circularly polarized photon field. The handedness of the circula-
tion depends on the handedness of the light. This way, it is possible
to confine the charge transport through the ring to one ring arm
(upper or lower). The circular charge photocurrent is suppressed in a
wide range of the Rashba coefficient around a=af and might
therefore serve as a reliable quantity to detect destructive AC phases.
The spin photocurrents are especially strong around « = ¢ (due to
the longer electron dwell time) and for circular polarization (for
geometrical reasons). The handedness of the light does not influence
the spin polarization current including the current for S, spin
polarization, which circulates around the ring.

In summary, strong spin polarization, spin photocurrents and
charge current vortices as well as splitting of the AC charge current
dip into three dips and control over the local charge flow through
the ring arms are important effects that only appear for circularly
polarized photon field. These effects are crucial to know about for
the development of spin-optoelectronic quantum devices in the
field of quantum information processing. For instance, interest
might arise to build a spintronic device, which can break (block)
an electrical circuit at a specific, sharply defined (critical) gate
potential, which corresponds to the magnitude of the electric field
leading to a destructive AC phase interference in a ring inter-
ferometer. The critical gate potential of the quantum switch could
be adjusted by variation of the ring radius [53]. A possible
experimental approach to determine the ring radius would be to
measure the circular charge current around the ring (for example
indirectly by its induced magnetic field) that is caused by a circularly
polarized cavity photon field. We predict that this approach is better
than direct resistance measurements of the quantum switch without
the photon cavity. This is because the data that a certain number of
measurements with the circularly polarized cavity photon field yields
are more relevant for suggesting the proper ring radius due to
the broadness of the corresponding Aharonov—Casher feature in the
Rashba coefficient.
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Appendix A. Parameters used for the numerical results

We assume GaAs-based material with electron effective mass
m* = 0.067m, and background relative dielectric constant xk=12.4.
As stated earlier, the Rashba coefficient « can be tuned by changing
the magnitude of an electric field, which is perpendicular to the
plane containing the quantum ring structure. The range of «
investigated in this paper is about one order of magnitude larger
than typical values of « for GaAs. However, we point out that the
predicted features are at fixed positions in xz (Eq. (51)) and not in
a. Therefore, by increasing the ring radius, experiments could be
performed in a smaller range of the Rashba coefficient if it seems
difficult to increase the electric field sufficiently by a gate. For our
numerical calculations, it is inconvenient to increase the ring
radius further, as we would have to consider a larger number of
many-body states to get converged results. With the state of the
art computational facilities, however, we are limited to about 200
MB states for our numerically exact approach. Alternatively, other
materials as InAs could be used, for which the Rashba coefficient is
about one order of magnitude larger [60]. The Dresselhaus
coefficient g is determined by the bulk properties of the material
and could only be changed by using a different material. The value
for GaAs would be g=3.0 meV nm. When using g > 0, we would
also decrease slightly the a-range for which our features due to the
destructive AC phase appear. However, our features would become
more complex when both Rashba and Dresselhaus spin-orbit
interaction are present [23].

We consider a single photon cavity mode with fixed photon
excitation energy #m=0.4meV. The electron-photon coupling
constant in the central system gf™ =0.1 meV. The temperature
of the reservoirs is T=0.5 K. The chemical potentials in the leads
are y; =1.55meV and uip=0.7 meV leading to a source-drain
electrical bias window Au = 0.85 meV.

A very small external uniform magnetic field B=10">T is
applied through the central ring system and the lead reservoirs to
lift the spin degeneracy in the numerical calculations. The applied
magnetic field B<By=®/A~0.2T is order of magnitudes out-
side the AB regime. The two-dimensional magnetic length would
be very large: |=[c#/(eB)]'/? =8.12 ym. However, the parabolic
confinement of the ring system in the y-direction leads to the
much shorter magnetic length scale

A 1/2 1
tw = (m*Q(;) VT411 +[eB/(m*co)]

A o\12
%<m*790> =33.7 nm.

To model the coupling between the system and the leads, we
let the affinity constant AL =0.25 meV to be close to the char-
acteristic electronic excitation energy in the x-direction. In addi-
tion, we let the contact region parameters for lead [e {L,R} in
x- and y-directions be 6, =4, =439 x 10~* nm~2. The system-
lead coupling strength gl =1.371 x 107> meV/nm3/2, Before
switching on the system-lead coupling at t=0 with the time-
scale (o)1 = 3.291 ps, we assume the central system to be in the
pure state with electron occupation number N, = 0 and—unless
otherwise stated—photon occupation number Npp jnit = 1. The SES
charging time-scale zsgs =~ 30 ps, and the two-electron state (2ES)
charging time-scale 7,5 > 200 ps, which is described in the sequential
tunneling regime. We study the non-equilibrium transport properties
around t=200 ps, when the system has not yet reached a steady state.
Some dynamical observables are averaged over the time interval

(A1)



T. Arnold et al. / Physica E 60 (2014) 170-182 181

[180,220] ps to give a more representative picture in the transient
regime. The charge in the quantum ring system at t=200ps is
typically of the order of Q(t = 200 ps) ~ 1e.

Appendix B. Operators for the charge and spin polarization
density and charge and spin polarization current density

The charge density operator
A°(r) = e’ (0)¥(r) (B.1)
and the spin polarization density operator for spin polarization S;
Alr) = g\iﬁ(r)a,-\i‘(r). (B.2)

The component labeled with j e {x, y} of the charge current density
operator

Jj (l')— [‘I‘ (I')V]‘I’(l') (VJ‘I’ (0)¥(1)]

+%‘i’*(r)(ﬂox—aoy)\i'(r)axj
+%\iﬁ(r)(aox — po )5, (B.3)

with the space-dependent vector potential including the static
magnetic field and cavity photon field part

Am) =A@ +A"(r). (B4)

The current density operator for the j-component and S, spin
polarization

jim= I (0,

4m*
- (VJ (l'))O'x‘I’(l‘)]
A (r)‘l’ (r)o W (1)

2m*
+M‘iﬁ(r)‘i’(r). (B.5)
the current density operator for S, spin polarization

3= v

- (Vj‘l’ )o y‘l‘(l‘)]

2m* A (r)‘l‘ (l')ay‘l’(r)

Ay i+ POy it A
—’“’T/”W (r)¥(r). (B.6)
and S, spin polarization

Jj j )= [‘I’ (l')O'zV,‘I‘(l')

- (Vj‘l‘ )o z‘I‘(l‘)]

2m* A (r)‘I’ (r)az‘l’(r) (B.7)
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Abstract. We calculate the persistent charge and spin polarization current inside a finite-width quantum
ring of realistic geometry as a function of the strength of the Rashba or Dresselhaus spin-orbit interaction.
The time evolution in the transient regime of the two-dimensional (2D) quantum ring connected to elec-
trically biased semi-infinite leads is governed by a time-convolutionless non-Markovian generalized master
equation. The electrons are correlated via Coulomb interaction. In addition, the ring is embedded in a
photon cavity with a single mode of linearly polarized photon field, which is polarized either perpendicular
or parallel to the charge transport direction. To analyze carefully the physical effects, we compare to the
analytical results of the toy model of a one-dimensional (1D) ring of non-interacting electrons with spin-
orbit coupling. We find a pronounced charge current dip associated with many-electron level crossings at
the Aharonov-Casher phase A® = 7, which can be disguised by linearly polarized light. Qualitative agree-
ment is found for the spin polarization currents of the 1D and 2D ring. Quantitatively, however, the spin
polarization currents are weaker in the more realistic 2D ring, especially for weak spin-orbit interaction,
but can be considerably enhanced with the aid of a linearly polarized electromagnetic field. Specific spin
polarization current symmetries relating the Dresselhaus spin-orbit interaction case to the Rashba one are

found to hold for the 2D ring, which is embedded in the photon cavity.

1 Introduction

Geometrical phases have captured much interest in the
field of quantum transport. Electrons in a non-trivially
connected region like a quantum ring can show a variety of
geometrical phases. An Aharonov-Bohm (AB) phase [1] is
acquired by a charged particle moving around a magnetic
flux. An Aharonov-Casher (AC) phase [2] is acquired by
a particle with magnetic moment encircling, for example,
a charged line. The Aharonov-Anandan (AA) phase [3]
is the remaining phase of the AC phase when subtract-
ing the so-called dynamical phase. When the system is
propagated adiabatically, the dynamical phase describes
the whole time-dependence leaving an AA phase, which
is static. This can be seen by introducing time-dependent
parameters of the Hamiltonian [4]. In the non-adiabatic
case, if the AA phase is defined similarly to the AA phase
of the adiabatic system (for an alternative definition see
Ref. [5]), a dependence of the AA phase on time-dependent

* Supplementary material in the form of nine mpg files avail-
able from the Journal web page at
http://dx.doi.org/10.1140/epjb/e2014-50144~-y

® e-mail: tlal@hi.is

fields can in general not totally be avoided. The dynami-
cal phase captures then only part of the dynamics of the
global phase. Filipp [6] showed that the splitting of the
global phase into the AA phase and the remaining dynam-
ical phase can be achieved also in the non-adiabatic case.
The Berry phase [7] is the adiabatic approximation of the
AA phase. Transport properties of magnetic-flux threaded
rings [8-11] have been investigated and the influence of a
cavity photon mode on the AB oscillations explored [12].
Furthermore, the magnetic field leads to persistent charge
currents [13]. Both, the persistent current [14] and the con-
ductance through the ring show characteristic oscillations
with period @y = hc/e, the latter were first measured in
1985 [15].

The AC effect can be observed in the case of a more
general electric field than the one produced by a charged
line, i.e. including the radial component and a compo-
nent in the z-direction [16]. Experimentally, it is relatively
simple to realize an electric field in the z-direction, i.e.
which is directed perpendicular to the two-dimensional
(2D) plane containing the quantum ring structure. By
changing the strength of the electric field, the spin-orbit
interaction strength of the Rashba effect [17] can be
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tuned. The AC effect appears also for a Dresselhaus spin-
orbit interaction [18], which is typically stronger in GaAs.
Persistent equilibrium spin currents due to geometrical
phases were addressed for the Zeeman interaction with an
inhomogeneous, static magnetic field [19]. Later, Balatsky
and Altshuler [20] studied persistent spin currents related
to the AC phase. Several authors addressed the persis-
tent spin current oscillations as the strength of the spin-
orbit interaction [16,21,22] (or magnetic flux through the
ring [23]) is increased. As opposed to the AB oscillations
with the magnetic flux, the AC oscillations are not pe-
riodic with the spin-orbit interaction strength. Optical
control of the spin current can be achieved by a nona-
diabatic, two-component laser pulse [24]. Suggestions to
measure persistent spin currents by the induced mechani-
cal torque [25] or the induced electric field [26] have been
proposed. An analytical state-dependent expression for
a specific spin polarization of the spin current has been
stated in reference [27].

Charge persistent currents in quantum rings can be
produced by two time-delayed light pulses with perpendic-
ularly oriented, linear polarization [28] and phase-locked
laser pulses based on the circular photon polarization
influencing the many-electron (ME) angular momen-
tum [29]. Moreover, energy splitting of degenerate states
in interaction with a monochromatic circularly polarized
electromagnetic mode and its vacuum fluctuations can
lead to charge persistent currents [30,31]. Furthermore,
the nonequilibrium dynamical response of the dipole mo-
ment and spin polarization of a quantum ring with spin-
orbit interaction and magnetic field under two linearly
polarized electromagnetic pulses has been studied [32].
Quantum systems embedded in an electromagnetic cavity
have become one of the most promising devices for quan-
tum information processing applications. We are consid-
ering here the influence of the cavity photons on the tran-
sient charge and spin transport inside the ring. We treat
the electron-photon interaction by using exact numerical
diagonalization including many levels [33], i.e. beyond a
two-level Jaynes-Cummings model or the rotating wave
approximation and higher order corrections of it [34-36].

Concentrating on the electronic transport through a
quantum ring connected to leads, which is embedded in a
magnetic field, several studies exist for only Rashba spin-
orbit interaction [37-39], only Dresselhaus spin-orbit in-
teraction [40] or both [41]. When the light-matter interac-
tion is combined with the strong coupling of the quantum
ring to leads, further interesting phenomena arise (espe-
cially when the leads have a bias, which breaks additional
transport symmetries). The electronic transport through
a quantum system in a strong system-lead coupling regime
was studied for longitudinally polarized fields [42-44], or
transversely polarized fields [45,46] — though without tak-
ing into consideration spin-orbit effects. For a weak cou-
pling between the system and the leads, the Markovian
approximation, which neglects memory effects in the sys-
tem, can be used [47-50]. To describe a stronger transient
system-lead coupling, we use a non-Markovian generalized
master equation [51-53] involving energy-dependent cou-
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pling elements. The dynamics of the open system under
non-equilibrium conditions and realistic device geometries
can be described with the time-convolutionless general-
ized master equation (TCL-GME) [12,54], which is suit-
able for higher system-lead coupling and allows for a con-
trolled perturbative expansion in the system-lead coupling
strength.

The time-dependent transport of spin-orbit and
Coulomb interacting electrons through a topologically
nontrivial broad ring geometry, embedded in an electro-
magnetic cavity with a quantized photon mode, and con-
nected to leads has not yet been explored beyond the
Markovian approximation. One of the objectives of the
present work is to present and explain the similarities and
differences of the charge and spin polarization current be-
tween one-dimensional (1D) and 2D rings [37,55]. To dis-
cern effects from the realistic 2D structure with Coulomb
interaction between the electrons and transient coupling
to electrically biased leads, we compare our results for the
persistent spin polarization current in the 2D ring to the
analytical results in the 1D ring with only Rashba or Dres-
selhaus spin-orbit interaction. For the 2D ring, we per-
formed numerical calculations as analytical solutions are
known only for rings without spin-orbit interaction [56].
Furthermore, we embed the 2D ring in a photon cavity
with z- or y-polarized photon field to explore the influ-
ences of the photon field and its linear polarization on the
current. The comparisons are performed in the range of
the Rashba or Dresselhaus interaction strength almost up
to an AC phase difference AP == 3.

The paper is organized as follows. In Section 2, we pro-
vide a general description of the central ring system and
its charge and spin polarization currents, which applies to
both the 1D and 2D ring. Section 3 describes our dynami-
cal model for the correlated electrons in the opened up 2D
ring embedded in a photon cavity. Section 4 shows the nu-
merical transient results for the 2D ring and sets them in
comparison with the analytical 1D results (as described in
the Appendices) as a function of the Rashba spin-orbit in-
teraction strength. The influence of the linearly polarized
electromagnetic cavity field on the spin polarization cur-
rents is studied for different photon field polarization. Fur-
thermore, the differences between the Rashba and Dres-
selhaus interaction in a ring system are addressed. Our
results lead to numerous interesting conclusions (Sect. 5),
which we believe will be of practical use in experiments.
The time- and space-dependence of the spin photocurrents
are provided as supplementary material.

2 General description of the central
ring system

In this section, we give the most general Hamiltonian that
we consider for the central ring system including a ho-
mogeneous magnetic field in the z-direction, Zeeman in-
teraction, Rashba and Dresselhaus spin-orbit interaction,
Coulomb repulsion between the electrons and a single cav-
ity photon mode interacting with the electronic system.
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Furthermore, we use this general Hamiltonian to derive in
two independent ways operators for the charge and spin
polarization density, charge and spin polarization current
density and spin polarization source terms. The spin po-
larization source terms result from the fact that the spin
transport is not satisfying a continuity equation due to
the spin-orbit coupling.

2.1 Central system Hamiltonian

The time-evolution operator of the closed system with re-
spect to t =0,

Us(t) = exp (;ﬁst) | )
is defined by a many-body (MB) system Hamiltonian

Hg = /d2r \iﬁ(r)[ <2f;j* +Vg(r)) + Hy

+Hﬂﬂ+ﬁb@ﬂ@@ﬂlﬁeHwﬁi (2)

with the two-component vector of field operators

and

where

W) =Y 5 (x)Ca (5)

is the field operator with = (r,0), o € {7, |} and the an-
nihilation operator, Cy, for the single-electron state (SES)
Y3 (x) in the central system. The SES v2 () is defined as
the eigenstate labeled by a of the Hamiltonian of equa-
tion (2), but without photons and Coulomb interaction
(Hs — H,o — hwi'a for AP (r) = 0, see Eq. (6)). The

momentum operator is

p®_<mm>ﬁv+iAm+Awm] (6)

Py(r) v

The Hamiltonian in equation (2) includes a kinetic part,
a constant magnetic field B = Bz, in Landau gauge be-
ing represented by A(r) = —Bye, and a photon field.
Furthermore, in equation (2),

Hy — ,UBQSBUZ (7)
2
describes the Zeeman interaction between the spin and the
magnetic field, where gg is the electron spin g-factor and
up = eh/(2mec) is the Bohr magneton. The interaction
between the spin and the orbital motion is described by
the Rashba part
. @

Hpr(r) =, (00Dy(r) — oypa(r)) (8)
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with the Rashba coefficient o and the Dresselhaus part,
which here is restricted to the first-order term in the
momentum,

Hp(r) = 7 (02pe(x) — 0,,(r) 0

with the Dresselhaus coefficient 5. In equations (7)—(9),
0z, 0y and o, represent the spin Pauli matrices. Equa-
tion (2) includes the exactly treated electron-electron
interaction

g o€ / Ul ()01 () (") ()
He = 2ﬂ/d$ /dw \/|I‘—I‘I|2+7’]2

with e > 0 being the magnitude of the electron charge
and the integral over x being composed of a continuous
2D space integral and a sum over the spin. Only for nu-
merical reasons, we include a small regularization param-
eter n = 0.2387 nm in equation (10). The last term in
equation (2) indicates the quantized photon field, where
a and a' are the photon annihilation and creation opera-
tors, respectively, and Aw is the photon excitation energy.
The photon field interacts with the electron system via
the vector potential

(10)

APt = A (ed +e*al) (11)
with
o JCo TEo11 (12)
ey, TEjn

for longitudinally-polarized (z-polarized) photon field
(TEo11) and transversely-polarized (y-polarized) photon
field (TEjp1). The electron-photon coupling constant
gPM = eAa,$2,/c scales with the amplitude A of the
electromagnetic field. It is interesting to note that the pho-
ton field couples directly to the spin via equations (6), (8)

and (9).

2.2 Charge and spin operators

The charge density satisfies the continuity equation
0
ot

while the continuity equation for the spin polarization
density includes in general source terms

0
ot

né(r,t) + Vj(r,t) =0 (13)

n'(r,t) + Vj'(r,t) = s'(r,t) (14)
for all spin polarizations ¢ = x, y, z. Some controversy has
been raised about spin currents and their conservation
and several conserved spin currents proposed [57,58]. To-
day, it is accepted that a redefinition of the Rashba ex-
pression [59] is not necessary [26,60] as conservation laws
cannot be restored in general [26,61]. We derived the ex-
pressions for all the corresponding operators from equa-
tions (13) and (14) by two independent ways, and come to
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the same conclusion, which is: though other definitions of
the spin current are possible by a related compensation of
the source, it is not possible to eliminate a spin polariza-
tion source term for our Hamiltonian. First, we calculated
the electron group velocity operator

V= mlz (W - iecA(r)) + (73:: <_a?’> + g <U;y> (15)

with the space-dependent vector potential

A(r) = A(r) + AP (r) (16)
in first quantization for the standard expression, equa-
tion (6) in reference [59]. Second, we use the commutation
relations for the field operators to derive expressions for
the density, current density and source operators in second
quantization in the Heisenberg picture with the equation
of motion,

L0 . -
ih g, (1) = (@), Hs (17)
starting from the continuity equation,
0 (\wr )5, ¥ (r t)) . [\wr )5, 9 (r, t)Hs
ot T ih T
— HsW'l(r,t)5., ¥ (r,t)| (18)

with ¢, being proportional to the unity matrix if v = ¢
(describes the charge), 6. = elz, or Pauli spin matrix coef-
ficients if v = ¢ = z,y, z (describes the spin polarization),
ZUZ'.

In equation (18), the system Hamiltonian Hg from
equation (2) has to be written with Heisenberg operators
instead of the Schrédinger operators. We attribute every
contribution, which can be written in the form, Vj(r,t), to
the current density operator, thus aiming towards the sim-
plest possible expression for the source operator. Finally,
we transform the operators into the Schrodinger picture.
The expressions for the charge and spin polarization den-
sity operators, charge and spin polarization current den-
sity operators and spin polarization source operators are
given in Appendix A. We note that our result agrees with
the definition of the Rashba current when we limit our-
selves to the case without magnetic and photon field and
without Dresselhaus spin-orbit interaction [59,62].

;=

3 Theoretical model for a 2D ring coupled
to external leads

In this section, we describe the open finite-width quantum
ring, which can only be treated numerically. The general
expressions of the last section are elaborated for a realis-
tic system. We define the central system potential Vg for
the broad quantum ring and its connection to the leads.
The electronic ring system is embedded in an electromag-
netic cavity by coupling a many-level electron system with

Eur. Phys. J. B (2014) 87: 113
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Fig. 1. Equipotential lines in the central ring system connected
to the left and right leads. Note that the isolines are refined
close to the bottom of the ring structure.

photons using the full photon energy spectrum of a sin-
gle cavity mode. The central ring system is described by a
MB system Hamiltonian Hyg with a uniform perpendicular
magnetic field, in which the electron-electron interaction
and the electron-photon coupling to the z- or y-polarized
photon field is explicitly taken into account. We employ
the TCL-GME approach to explore the non-equilibrium
electronic transport when the system is coupled to leads
by a transient switching potential.

3.1 Quantum ring potential

The quantum ring is embedded in the central system of
length L, = 300 nm situated between two contact areas
that will be coupled to the external leads, as is depicted
in Figure 1. The system potential is described by

6
Vs(r) = Y- Viexp [~ (Buala = 200))” = (Byu0)°

+ ;m*93y2, (19)
with the parameters from Table 1, which are selected such
that the potential is a bit higher at the contact regions
(the place where electrons tend otherwise to accumulate)
than at the ring arms to guarantee a uniform density dis-
tribution along the ring. xg3 = € is a small numerical sym-
metry breaking parameter and |e¢|] = 1075 nm is enough
for numerical stability. In equation (19), hf2p = 1.0 meV
is the characteristic energy of the confinement and m* =
0.067m, is the effective mass of an electron in GaAs-based
material. The ring radius a ~ 80 nm, which is important
to know for the relation between o and the Rashba pa-
rameter, xg, see equation (B.3) in Appendix B, yielding
a =~z X 7.1 meV nm. The definition of the Rashba pa-
rameter is convenient to reduce the dependency of the AC
phase on the ring size.
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Table 1. Parameters of the central region ring potential.

i ViinmeV [ in nin xo; in nm  [y; in nin
1 10 0.013 150 0

2 10 0.013 -150 0

3 11.1 0.0165 € 0.0165
4 -4.7 0.02 149 0.02

5 -4.7 0.02 -149 0.02

6 -5.33 0 0 0

3.2 Lead Hamiltonian

The Hamiltonian for the semi-infinite lead [ € {L, R} (left
or right lead),

H, = /dzr /dzr’ Uli(r)o(x —r)
52

(B, +1i00) + iz + i) + o) \iw((;;

with the momentum operator containing only the kinetic
momentum and the vector potential coming from the mag-
netic field (i.e. no photon field)

pulr) = 'V + A, 1)

We remind the reader that the Rashba part, H r(r),
(Eq. (8)) and Dresselhaus part, Hp(r), (Eq. (9)) of the
spin-orbit interaction are momentum dependent and it is
the momentum from equation (21), which is used for these
terms in equation (20). Equation (20) contains the lead
field operator

U(x) = > ta(@)Cq (22)
in the two-component vector
- WAI(T) I')
U(r)=1| . 23
l( ) <wl(la r)) ( )

and a corresponding definition of the Hermitian conjugate
to equation (4). In equation (22), ¢y (x) is a SES in the
lead [ (eigenstate with quantum number ¢ of Hamiltonian
Eq. (20)) and Cy; is the associated electron annihilation
operator. The lead potential

Vile) = 2y (24)
confines the electrons parabolically in the y-direction. We
use a relatively strong confinement, hf2; = 2.0 meV, to re-
duce the number of subbands in the leads and thereby the
computational effort for our total time-dependent quan-
tum system.

Page 5 of 20

3.3 Time-convolutionless generalized master
equation approach

We use the TCL-GME [54], which is a non-Markovian
master equation that is local in time. This master equa-
tion satisfies the positivity conditions [63] for the MB
state occupation probabilities in the reduced density op-
erator (RDO) usually to a higher system-lead coupling
strength [12]. We assume, the initial total statistical den-
sity matrix can be written as a product of the system and
leads density matrices, before switching on the coupling
to the leads,

W(0) = pr ® pr ® ps(0), (25)

with p;, I € {L, R}, being the normalized density matri-
ces of the leads. The coupling Hamiltonian between the
central system and the leads reads

fir()) = 3 [ dox') [F@Cu+ C@). (20
I=L,R

The coupling is switched on at t = 0 via the switching
function 5

l
t)=1-—
X() ealt+1

with switching parameter o! and

Tg) =D 0)(B1 Y Tya(alClIB).
af3 a

(27)

(28)

Equation (28) is written in the system Hamiltonian MB
eigenbasis {|a)}. The coupling tensor [64]

! 2 2 *
Tqa:;;/mdr /ledr’wa(r,o)

X g (01 0,0") 45 (t, o) (29)

couples the lead SES {9q(r,o)} with energy spectrum
{€l(q)} to the system SES {47 (r,o)} with energy spec-
trum {FE,} that reach into the contact regions [65], 2
and §2;, of system and lead [, respectively, and

gzlzq(rv rlv g, OJ) = 9650,0/ eXp [752(17 - .’,E/)2 - 6é(y - y/)Z]

o
LS
E

includes the same-spin coupling condition. Note that the
meaning of x in equation (30) is r = (x,y) and not « =
(r,0). In equation (30), g} is the lead coupling strength.
In addition, ¢! and 6; are the contact region parameters
for the lead [ in the x- and the y-direction, respectively.
Moreover, AL, denotes the affinity constant between the
central system SES energy levels { E, } and the lead energy
levels {€(q)}.
The time evolution of the RDO of the system,

ps(t) = Tr, Trp [W(t)} :

is governed by the TCL-GME of reference [12]. It is writ-
ten in the Schrodinger picture and its kernel is second
order in the lead coupling strength.

(30)

(31)
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4 Results

We investigate the non-equilibrium electron transport
properties through a quantum ring system, which is situ-
ated in a photon cavity and weakly coupled to leads. We
assume GaAs-based material with electron effective mass
m* = 0.067m, and background relative dielectric constant
k = 12.4. We consider a single cavity mode with fixed pho-
ton excitation energy hw = 0.4 meV. The electron-photon
coupling constant in the central system is g = 0.1 meV.
Before switching on the coupling, we assume the central
system to be in the pure initial state with electron occu-
pation number N jnix = 0 and photon occupation number
Nph,init = 1 of the electromagnetic field.

A small external perpendicular uniform magnetic field
B = 1075 T is applied through the central ring system and
the lead reservoirs to lift the spin degeneracy. The area of
the central ring system is A = ma? ~ 2 x 10* nm? leading
to the magnetic field By = @y/A ~ 0.2 T corresponding to
one flux quantum @y = he/e. The applied magnetic field
B < By is therefore order of magnitudes outside the AB
regime. The temperature of the reservoirs is assumed to be
T = 0.5 K. The chemical potentials in the leads are py =
1.55 meV and pur = 0.7 meV leading to a source-drain
bias window Aup = 0.85 meV. We let the affinity constant
AZE = 0.25 meV to be close to the characteristic electronic
excitation energy in the z-direction. In addition, we let the
contact region parameters for lead I € {L, R} in the a- and
y-direction be 6. = 6, = 4.39 x 107* nm~2. The system-
lead coupling strength gh = 1.371 x 1073 meV/nm?/2.

There are several relevant length and time scales that
should be mentioned. The 2D magnetic length is [ =
[ch/(eB)]'/? = 8.12 pm. The ring system is paraboli-
cally confined in the y-direction with characteristic energy
hi2y = 1.0 meV leading to a much shorter magnetic length
scale

ho\Y? 1
o = (m*%) 1+ [eB/ (m*c2))?

= 33.74 nm. (32)

The time-scale for the switching on of the system-lead
coupling is (a!)~1 = 3.291 ps, the one-electron state (1ES)
charging time-scale migs ~ 30 ps, and the two-electron
state (2ES) charging time-scale Topg > 200 ps described
in the sequential tunneling regime. We study the transport
properties for 0 < t < 7ogs, when the system has not yet
reached a steady state.

To get more insight into the local current flow in the
ring system, we define the top local charge (y = ¢) and
spin (v = z,y, 2) current through the upper arm (y > 0)
of the ring

f@w=ﬁ dy 72(x = 0,y,1) (33)

and the bottom local charge and spin polarization current
through the lower arm (y < 0) of the ring

0
Il;yottom (t) = /

— 00

dy ji(x =0,y,1). (34)
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Here, the charge and spin polarization current density,

j%ﬂ(m”vﬁpmmmy (33)

gy (x51)

is given by the expectation value of the charge and spin
polarization current density operator (Eqgs. (A.3)—(A.6)).
Furthermore, to distinguish better the type and driving
schemes of the dynamical transport features, we define
the total local (TL) charge or spin polarization current

It’{ (t) = It’);p (t) + Il;yottom (t)
and circular local (CL) charge or spin polarization current

I;Yl(t> = ; [Igottom(t) - I&)p(tﬂ ’

which is positive if the electrons move counter-clockwise
in the ring. The TL charge current is usually bias
driven while the CL charge current could be driven by
a magnetic field or circularly polarized photon field. The
TL spin polarization current is usually related to non-
vanishing sources while a CL spin polarization current
can exist without sources. In the Supplementary material*
(J ph™x,x.mpg, j ph”yx.mpg, j ph"zx.mpg, j ph"x,y.mpg,
j ph"y,ympg, j ph"z,y.mpg), we present the spin pho-
tocurrent densities

TP ) = PP (e ) = 0, 8),

which are given by the difference of the associated lo-
cal spin polarization current densities with (j7P(r,t))
and without (j7°(r,t)) photons, where p = z,y denotes
the polarization of the photon field (z: a-polarization, y:
y-polarization) and v € {z,y, z}. Below, we shall explore
the influence of the Rashba and Dresselhaus parameter
and the photon field polarization on the non-equilibrium
quantum transport in terms of the above time-dependent
currents in the broad quantum ring system connected to
leads.

(36)

(37)

(38)

4.1 Local charge current in Rashba ring

Here, we will describe the charge currents for the finite-
width ring with only Rashba spin-orbit interaction and
relate them to the ME spectrum. Figure 2 shows the local
charge currents as a function of the Rashba coefficient.
The CL charge current is close to zero as the linearly
polarized photon field and negligible magnetic field pro-
mote no circular charge motion. This is in agreement with
the exact result of the 1D closed (i.e. not connected to
electron reservoirs) Rashba ring, where the charge cur-
rent vanishes (see Appendix B). The non-vanishing TL
charge current is therefore solely induced by the bias be-
tween the leads. Around the critical Rashba coefficient
a® = 13 meV nm (blue arrow), the TL charge current
has a pronounced minimum (dip) coming from the AC
destructive phase interference at the critical Rashba pa-
rameter, 14 = 1§ = V3 ~ 1.73 (see Appendix B), which
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Fig. 2. TL current (I{}) and CL current (1) versus the Rashba
coefficient and averaged over the time interval [180, 220] ps to
give a more representative picture in the transient regime with
(w) (a) z-polarized photon field and (b) y-polarized photon
field or without (w/o) photon cavity. The Dresselhaus coeffi-
cient # = 0. The blue arrow denotes the position of the first
destructive AC phase.

corresponds to o ~ x4 x 7.1 meV nm = 12.3 meV nm.
This confirms that the predicted AC phase manifests it-
self in the behavior of a measurable quantity (the charge
current). The dip is very sharp, i.e. it is in a very nar-
row range of the the Rashba coefficient az around a‘. The
linearly polarized photons tend in general to suppress the
local charge current as the increasing number of possible
MB states tends to constrict them to smaller energy dif-
ferences in the MB spectrum. However, especially for the
y-polarized photon field (Fig. 2b), the AC minimum ap-
pears weaker, and for large values a > 18 meV nm, the
TL current is sometimes enhanced.

To investigate the charge current minimum (blue ar-
row in Fig. 2) further, we have a look at the ME spectrum
as a function of the Rashba coefficient (Fig. 3), where
the zero-electron state (OES) is marked in green color,
the 1ES in red color and the 2ES in blue color. Around
a &~ 13 meV nm, we observe crossings of the 1ESs (inside
the orange parallelogram in Fig. 3), which correspond to
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Fig. 3. ME energy spectrum of the system Hamiltonian equa-
tion (2) versus the Rashba coefficient o without photon cavity.
The states are differentiated according to their electron content
Ne: zero-electron state (N. = 0, OES, green dot), one-electron
states (N = 1, 1ES, red dots) and two-electron states (Ne = 2,
2ES, blue crosses). The Dresselhaus coefficient 8 = 0. The bias
window [ur, pr] is depicted by solid black lines. The orange
parallelogram indicates the location of 1ES crossings.

the AC destructive phase interference at x4 (similar to
the situation in Fig. B.1). We see clearly that the phase
relation and the TL charge current behavior are linked
due to the appearance of a current-suppressing ME de-
generacy [12]. It is also interesting to notice that the crit-
ical Rashba coeffient describing the location of the cross-
ing point is the smaller the higher a selected 1ES lies in
energy. As the spin-orbit wavefunctions of the higher-in-
energy 1ESs are more extended the associated effective

2 0
1D ring radius a increases. Now, since af = ;mefl’l ob-
tained from equation (B.3), the first crossing point value
ag is located at smaller a-values for the 1ESs, which are

higher in energy.

4.2 Local spin polarization current in Rashba ring

Here, we will describe our numerical results for the local
spin polarization currents for the finite-width ring with
only Rashba spin-orbit interaction and compare them to
the corresponding exact analytical expressions for a 1D
ring. The latter are described in detail in Appendix B.
Our aim with the comparison to the analytical results is to
clarify the role of the different parts of the central Hamil-
tonian (Eq. (2)).

In Figure 4, we compare the 2D local Rashba spin po-
larization currents I Je1ap,r Without photon field with
the analogously defined 1D TL Rashba spin polarization
current

1,e/0 d,efo [(T0 .1,e/o0 a
Itl,l/D,R =—Jr / ( ) +Jr / (_ ) (39)
2 2
and 1D CL Rashba spin polarization current
i,efo 1 defo (T .i,e/o0 ™
liipr = (35 (2) TR (72)) - 1o
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Fig. 4. 2D TL Rashba spin polarization current I}; or 2D CL
Rashba spin polarization current I’ averaged over the time
interval [180, 220] ps without photon cavity in comparison with
the 1D TL Rashba spin polarization current Itlfi/s, r or 1D
CL Rashba spin polarization current I Zl’i/ g’ r for even or odd
cardinalities and with the electron number N, taken from the
2D case. The Rashba spin polarization currents are shown for
(a) Sy spin polarization and (b) S spin polarization versus the
Rashba coefficient «. The Dresselhaus coefficient § = 0 and the
ring radius @ = 80 nm. The 1D TL and CL spin polarization

; y,e/o  _ rzefo
currents, which are equal to zero, ICLID’R =Iypr =0, are
not shown.

For the electron number N, which ji’g/ % depends on, we

have chosen the corresponding value of the 2D Rashba
ring without photon cavity averaged over the time inter-
val [180, 220] ps. We need to compare the 2D local Rashba
spin polarization currents to both the case of even and
odd cardinalities (numbers of occupied states) for the 1D
Rashba spin polarization current jig/ 7% (see Appendix B).
This is because, first, N./2 is not an integer number in
general and, second, the state occupancies in the central

Eur. Phys. J. B (2014) 87: 113

system are not following a sharp Fermi distribution due
to electron correlations and the geometry- and energy-
dependent coupling to the biased leads. For S, spin po-
larization, in a plot of the same scale as Figure 4, the 2D
TL and CL Rashba spin polarization currents, I{; and I3,
cannot be distinguished from a zero line.

We are now analyzing the similarities and differences
between the 2D and 1D Rashba spin polarization currents
in detail. First, there is strong agreement in the spin polar-
ization currents, which are zero: Iff o1 g, I8 op r> Ih 2D R
and I o p are almost vanishing. In agreement with this,
the corresponding 1D TL and CL Rashba spin polarization

currents are vanishing: Ifl’i/;R = Ifl’i/[(;R = Igl’i/gR =
Iz,e/o

w1p.r = 0 Second, some similarities can be found re-
garding the position in « of the zero transitions when the
even cardinality case is taken as a reference. Regarding the
differences, Figure 4 reveals that the 2D spin polarization
currents are in general smaller than the 1D spin polariza-
tion currents (often in between the 1D Rashba spin polar-

ization currents for even and odd cardinality, I 5 and

I} g respectively). This is because many fractionally oc-
cupied ME states are contributing to the 2D currents. In
addition the “peaks” of the 1D currents at a-values close
to the constructive or destructive AC phase, A® = nm,
n =0,1,..., are smoothened in « (and thereby reduced)
due to the 2D structure.

Figure 5 shows how the z- or y-polarized photon field
influences the Rashba local spin polarization currents,
which are far from zero (the photon field has no influence
on the set of vanishing currents). For reasons of compari-
son also the currents without photon field are shown. For
a < 8 meV nm the photon cavity field enhances the spin
polarization currents for both polarizations as opposed to
the local charge current. In general, the modifications of
the y-polarized photon field are a bit stronger due to the
closer agreement of the characteristic electronic excitation
energy in the y-direction with the photon mode energy
hw = 0.4 meV.

To continue our discussion about the similarities be-
tween the 2D and 1D Rashba spin polarization currents,
we also would like to present the spatial distribution of the
2D currents. Figure 6 shows the spin polarization current
densities j*(x, y) (top panels), j¥(z,y) (middle panels) and
J?(x,y) (bottom panels). The photon field is switched off
(left panels) or it is z-polarized (right panels). The spin
polarization current densities are depicted for a Rashba
coefficient @ = 5 meV nm below the first destructive AC
interference (we note that the spin polarization current
densities show increasingly vortex structures for larger «).
The results without photon cavity (left panels) have the
following similarities to the 1D ring: first, the .S, spin po-
larization current density is maximal at ¢ = 0, 7 (Fig. 6a)
and the Sy spin polarization current density is maximal
at ¢ = —7/2,7/2 (Fig. 6b), which is in agreement with
Figure B.2. Second, the S spin polarization current den-
sity is almost homogeneous in ¢ (Fig. 6¢), which is also in
agreement with Figure B.2. Third, the relative directions
of the spin flow are in agreement between the 2D and 1D
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Fig. 5. (a) TL Rashba spin polarization current I} for S,
spin polarization and (b) CL Rashba spin polarization current
4 for S. spin polarization averaged over the time interval
[180, 220] ps without (w/o) photon cavity, z-polarized photon
field and y-polarized photon field versus the Rashba coefficient
a for the ring of finite width. The Dresselhaus coefficient 8 = 0.

case, when the flow directions for the different spin polar-
izations are related. Fourth, the spin flow is also in the
2D case along the (p-direction, except the vortices around
charge density maxima at the contact regions of the 2D
ring for S, spin polarization.

Next, we want to study the influence of the linearly
polarized photons on the spin polarization current den-
sity distributions (right versus left panels in Fig. 6). All
spin polarization current densities are a bit larger for
x-polarized photons except the vortices at the contact re-
gions due to a redistribution of the charge density (i.e. the
density of potential spin carriers) from the contact regions
to the ring arms. For the time regime shown in Figure 6,
the time dependence of the spin polarization current den-
sities is still considerable, in particular with photon field.
The time dependence of the spin polarization current den-
sities without photon cavity in the non-equilibrium situ-
ation is shown in the supplementary material® (j"x.mpg,
j y.mpg, j"z.mpg). The time dependence of the spin pho-
tocurrent densities is shown in the files (j ph™x,x.mpg,

j ph7y,x.mpg, j ph”z,x.mpg, j ph"x,y.mpg, j ph”y,y.mpg,
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j ph*z,y.mpg). In all files, the Rashba coefficient is cho-
sen to be a = 5 meVnm and the Dresselhaus coefficient

B8=0.

4.3 Local spin polarization current in Dresselhaus ring

Here, we will present the results for the Dresselhaus ring
and compare them to the results for the Rashba ring. The
exact analytical expressions for a 1D Dresselhaus ring are
described in Appendix D. The 2D charge currents from
Figure 2 remain the same in the Dresselhaus case. How
the 2D spin polarization currents shown in Figures 4 and 5
look like in the Dresselhaus case can be deduced from Fig-
ure 7, which shows the TL and CL 2D spin polarization
currents with and without x-polarized photon field. The
left panels correspond to the situation of only Rashba spin-
orbit interaction, the right panels to the situation of only
Dresselhaus spin-orbit interaction. It becomes clear from
these figures that the symmetries between the Rashba and
Dresselhaus ring (Eq. (D.7)), apply to the non-equilibrium
situation of a 2D ring of interacting electrons, which is
connected to leads. This is because neither the Coulomb
interaction nor the 2D ring potential depend on the spin.
The leads include spin-orbit interaction and the contact
regions allow for tunneling of electron between same-spin
states of the central system and leads (Eq. (30)). This is
why the symmetries (Eq. (D.7)), are conserved (to sup-
port this, we note in passing that also the spin polariza-
tion currents from the left lead into the ring and from the
ring into the right lead, satisfy Eq. (D.7)). Furthermore,
the ring may be embedded in a photon cavity with lin-
early polarized photons without breaking the symmetry
relations (Eq. (D.7)) (the symmetries are conserved also
for y-polarization, not shown in Fig. 7). It can be eas-
ily understood that the photon field does not break this
symmetry as the photonic part of the vector potential op-
erator APP(r) enters the Rashba Hamiltonian (Eq. (8))
and Dresselhaus Hamiltonian (Eq. (9)) in the same way
as the momentum operator.

Figure 8 shows the spin polarization current densities
J*(z,y) (top panels), j¥(z,y) (middle panels) and j*(z,y)
(bottom panels) for the 2D Rashba (left panels) and 2D
Dresselhaus ring (right panels) in comparison. It confirms
that equations (D.7) are valid at any location in the cen-
tral system. Finally, we note that the Zeeman term equa-
tion (7) breaks the symmetry relations. The intricate effect
from the magnetic field can be recognized for B > 0.1 T.

5 Conclusions

The transport of electrons can be controlled by various in-
terference phenomena and geometric phases. In this work,
we turned our focus to physical effects connected to the
AC phase, which can be influenced by the strength of the
spin-orbit coupling, ring radius, device geometry and cav-
ity photons. For our open non-Markovian quantum sys-
tem, it appears most convenient to us to consider di-
rectly the AC phase without separating the dynamical
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Fig. 7. TL and CL 2D spin polarization current, I, and I,
respectively, averaged over the time interval [180, 220] ps with
(w) z-polarized photon field or without (w/o0) photon cavity for
(a) Sz spin polarization and Rashba interaction (5 = 0), (b) Sa
spin polarization and Dresselhaus interaction (o = 0), (c) Sy
spin polarization and Rashba interaction (8 = 0), (d) Sy spin
polarization and Dresselhaus interaction (a = 0), (e) S: spin
polarization and Rashba interaction (8 = 0) and (f) S. spin
polarization and Dresselhaus interaction (o« = 0). Note that
the scale for the ordinate may differ dramatically between the
subfigures.

part. In an open system the adiabatic approximation is
not valid [66] (especially when thinking about a non-
Markovian formalism) and therefore the AA phase could
not be reduced to the Berry phase. Furthermore, for a
mixed state, the definition of a geometric phase would
have to be revisited [67]. We have presented the charge
and spin polarization currents inside a quantum ring, in
which the spin of the electrons interacts with their orbital
motion via the Rashba or Dresselhaus interaction. We pre-
sented analytical results for the currents in a simple 1D
ring in Appendices B and D. For zero temperature and
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divisibility of the electron number by 4, we predict a fi-
nite spin current of non-interacting electrons in the limit
of the electric field causing the Rashba effect approaching
zero. The current for the S, spin polarization is flowing
homogeneously around the ring, but the currents for the
other spin polarizations, flows from a local source to a lo-
cal sink. For a finite-width ring connected to leads, where
the electrons are correlated by Coulomb interaction, we
calculated numerically the transient currents before the
equilibrium situation is reached using a TCL-GME for-
malism. We included spin-orbit coupling, but excluded
Coulomb interaction in the electrically biased leads. In
addition, we allow the system electrons to interact with
a single cavity photon mode of x- or y-polarized photons.
The broad ring geometry together with the spin degree
of freedom required a substantial computational effort on
state of the art machines.

A pronounced AC charge current dip can be recog-
nized in the TL current flowing from the higher-biased
lead through the ring to the lower-biased lead at the pre-
dicted position of the Rashba coefficient derived from the
1D model. The critical Rashba coefficient is related to two
experimentally adjustable parameters, the ring radius and
the gate voltage leading to the average electric field caus-
ing the Rashba effect. The dip structure is linked to cross-
ings in the ME spectrum and can be removed partly by
embedding the ring system in a photon cavity of prefer-
ably y-polarized photons. The spin polarization currents
of the 1D and 2D rings agree qualitatively in their kind
(TL or CL) and spin polarization (S, Sy or S,), the posi-
tion of sign changes with respect to the Rashba parameter
and the geometric shape of the current flow distribution.
Quantitatively, we can conclude that it is preferable to
choose a narrow ring of weakly correlated electrons to ob-
tain a strong spin polarization current. The linearly polar-
ized photon field interacting with the electrons suppresses
in general the charge current but enhances the spin po-
larization current in the small Rashba coefficient regime.
Therefore, the linearly polarized photon field might be
used to restore to some extent the strong spin polariza-
tion current for S, spin polarization in the small Rashba
coefficient regime, which is suppressed for the broad ring
with electron correlations and coupling to the leads. This
information could be very useful for experiments with spin
polarization currents (for suggestions to measure it, see
Refs. [25,26]) since the number of materials with a strong
spin current could be considerably enhanced (without the
requirement of a gate). The local spin polarization current
and spin photocurrent inside the quantum ring are sub-
jected to stronger changes in time than non-local quanti-
ties as the total charge in the system (which change due
to the transport between the leads and ring). This shows
that the non-equilibrium local transport promises to be a
particularly interesting subject to study further. We es-
tablished symmetry relations of the spin polarization cur-
rents between the Rashba and Dresselhaus ring. We have
shown that they remain valid for a finite-width ring of cor-
related electrons connected to electrically biased leads via
a spin-conserving coupling tensor. Furthermore, switching
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Fig. 8. Spin polarization current densities j’(z,y), ¢ = z,y,z at t = 200 ps for (a)—(c) only Rashba spin-orbit interaction
(e =5 meVnm and 8 = 0) or (d)—(f) only Dresselhaus spin-orbit interaction (v = 0 and 8 = 5 meV nm) and for (a) and (d)
Sz spin polarization, (b) and (e) Sy spin polarization or (e) and (f) S spin polarization. The photon field is z-polarized. A spin
polarization current density vector of length a., corresponds to 1.25 X 1073 meV/ay.
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on the cavity photon field does not destroy the symmetry
relations. The sign of the spin polarization current for S,
spin polarization could be used to distinguish the Rashba
and Dresselhaus spin-orbit interactions provided that they
are not too strong (z < z%). In this case, the bias differ-
ence between the leads should be reduced, to constrict the
magnetic field induced by the charge current.

The conceived quantum ring system in a photon cav-
ity with adjustable spin-orbit interaction and photon field
polarization could be helpful in the development of spin-
optoelectronic quantum devices for quantum information
processing. For example, our system suggested here could
be directly considered as a spintronic device, which blocks
an electrical circuit when the gate potential is very close
to a specific value (see Fig. 2). This critical gate poten-
tial, which could be tuned with the ring radius (compare
with Eq. (B.3)), corresponds to the critical magnitude of
an electric field in the z-direction, which causes the AC
phase in the ring interferometer to be precisely destruc-
tive. Thus, our device could be used as a quantum switch,
which is extremely sensitive to the gate voltage.
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Appendix A: Charge and spin polarization
(current) density and spin polarization
source operators

Here, we give the expressions for several operators: the
charge density operator

nc(r) = e®l(r)¥(r) (A1)

and the spin polarization density operator for spin polar-
ization S;

(A.2)

The component labeled with j € {z,y} of the charge cur-
rent density operator is given by

iy = ) ) — (91 (0)) E()]
O A @
+ W @) (B0, — a0, ) E(1)3,,
+ W (@) (a0, — o, E(1)3, (A.3)
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The current density operator for the j-component and S,
spin polarization

= [ @)k~ (V1) o)
£, A ()0 (r)
1 0 000 Gt 1y () (A.4)

The current density operator for S, spin polarization

= [# @), V) — (V) 0]
£, A ()0, e ()
_ . ;“w B () B (), (A5)

and S, spin polarization

A 2 A A A A
IHOE 477;*@' V()0 V8 (x) - (V,91(1)) 0. ()]
2;? A (1) B (). (A.6)
The spin polarization source operator for S, spin
polarization
() = "9 g ()0, 0 ()
— i; [6‘6:1: (\iff(r)) 0. ¥ (r) — ¥f(r)o, ;x\il(r)}
- 225 [;y (\iff(r)) 0. ¥(r) — @T(r)az(%\il(r)}
— chAm(r)\IlT(r)olel(r)
- iﬁAy(r)@(r)azi(r), (A7)

Sy spin polarization

310 = "0 1 ) ()
_ f [ai (1)) 0% (x) — ¥ (x)o- gxﬁl(r)}
- Z; {gy (\iﬁ(r)) oW (r) — \iﬂ(r)azgy\i:(r)]
- igflz(r)\lﬁ(r)aqu(r)
=AY ()0 B () (A8)
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and S, spin polarization
1709 /4 .
Az _ + . .
#) =, [ o (\1/ (r)) (iaoy +ifo,) ¥(r)

— Ui(r) (iao, + iﬂay

_|_

3 Loy (¥10)) (G0, + fac,) ¥10)
- \ilT(r) (ifoy + iaay }
+ A (x)¥(r) (zaam + zﬁay) U(r

A, (r)¥(r) (ifo, —i—iozay)lil(r). (A.9)

Appendix B: 1D Rashba ring

In this Appendix, we derive and describe analytical re-
sults for an ideal 1D ring, i.e. with infinitely narrow con-
finement, and with only Rashba spin-orbit interaction.
We will neglect the magnetic field, electron-electron in-
teraction and the photons. According to these assump-
tions, we use the general expressions of Section 2 for the
Hamiltonian, equation (2), and the charge and spin op-
erators (Egs. (A.1)—(A.9)), in a simplified form for our
derivations here.

Our Hamiltonian containing the kinetic and the
Rashba term

h2
2m*

H=— v2+q[%a a] (B.1)
1

dy Yo

where o is the Rashba coefficient and o, and o, are the
spin Pauli matrices, has the 1D ring limit [68,69]:

2
1D . :
HY” = hQagﬂ ihwg (cos(p)oy + sin(p)oy) p

- i‘i‘;R (cos(p)ay — sin(p)os) . (B.2)

It is convenient to introduce the dimensionless Rashba
parameter, xr, which scales linearly with the Rashba co-
efficient «, given by

WR
TR ‘= 0 (BS)
with the Rashba frequency wpr := a/(ha) and kinetic fre-
quency {2 := h/(2m*a?®). The advantage of the Rashba
parameter xi over the Rashba coefficient « is that the
eigenvalues and eigenfunctions (except for a normaliza-
tion constant) and physical properties based on them be-
come independent of the ring radius a. In this sense, equa-
tion (B.3) is in agreement with the radius dependence
of the AC oscillations found in reference [70] indicating
that the oscillation length is smaller in the Rashba coeffi-
cient a when the radius is larger. The eigenvalues of the
Hamiltonian in equation (B.2) are [71]:
Pv\? 2
E,, =h{ (n 27r) 4 ] (B.4)

Eur. Phys. J. B (2014) 87: 113
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30 | e U

E (hQ)
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(a)

E (hQ)

Fig. B.1. Spectrum from equation (B.4) as a function of x =
zr or x = xp for (a) v = —1 and (b) v = 1. The vertical
black lines indicate the positions of the constructive (short-
dashed line, A® = 2nmw, n = 0,1,...) and destructive (solid
line, A® = (2n+ 1)m, n=10,1,...) AC phase.

with the AC phase

—— [1 Fov1+ 172} , (B.5)
where we call n the total angular momentum quantum
number, v = +1 the spin quantum number and z = zp
in the Rashba ring case. The spectrum is shown in Fig-
ure B.1. For zero temperature, T = 0, the lowest N, /2
states are occupied both for » = —1 and v = 1. This leads
to occupation changes at every other level crossing point.
The eigenfunctions are
)
)

wE(o,1
vl (o, ]

_ exp(iny) (

v (o) =

R
Al/l

V2ma AEQ ex’p(ig0)> (B6)

with the 2 x 2 coefficient matrix
cos(‘g ) sin(eg‘)

AR = (am, amy) = (02 (8.7
4= (o) k)

and
1—+/1 2
tan <GR> _ Vi (B.8)
2 TR
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In our derivation of the exact analytical expressions for
the spin polarization currents given in Appendix C, we
assume that the number of electrons, N., is even, as this
results in the same amount of states (distinguished by n)
with v = —1 or ¥ = 1 to be occupied provided that T'= 0
(except possibly at the crossing points of the spectrum).
Mathematically, we could phrase it that the cardinality
(number of elements) of the two sets of occupied states Ny
for v = 1 is equal meaning that |[N_| = |[Ny| = N./2.
The charge density is given by

eN,
2ra

ng = (B.9)

and the charge current j% = 0. The spin polarization den-
sities are all vanishing:

(B.10)

The reason behind this is the Kramers degeneracy for
the time-reversal symmetric Hamiltonian (Eq. (B.1)). The
spin polarization currents are given by

hjg cos(p) (:cR —ap/1+ x%)

Jr(e) =
N, (24203 - 2/1+ %)
x| > @n+1)= Y (2n+1)
neN_ neN4
y
+ ‘TR ]¢2COS(SD)7 (B.ll)
oy Sin(p) B.12
]R(SD) COS((,O)JR(SD) ( . )
and
y
j5 = I {(2—1—%%—2\/14-95%%)
N. (2+20%-2¢/1+2%,)

X[Zn— Z(n—i—l)

neN_

2
+xR

Z n— Z(nJrl)

neN_ neN4

}, (B.13)

where jo = N.h/(4mm*a?) is the maximum absolute
value of the persistent charge current in units of the elec-
tron charge e as a function of the magnetic flux @ for
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« = [ = 0. Finally, the spin polarization source terms

5?{(4,0) _ hsul(@)]@
Nea (24203 = 2/1+ 2%
X { <2mR—|—x§% — 2:ER\/1 +ZC%)
X [ Z (n+1)— Z n
neN_ neN4
tah| >+ = > n” (B.14)
neN4 neN_

shie) = = o) silv) (B.15)

and s% is vanishing as expected since j% depends not on ¢.

To account properly for the rearrangements of the sets
of occupied states N_ and N, we have to distinguish the
case with the cardinalities, |N_| and |Ny| = |[N_|, to be
even and state rearrangements at x% = /(2n +1)2 — 1,
n=0,1,... and the case with odd cardinalities and state
rearrangements at z = \/(Qn +2)2-1,n=0,1,... In
the even cardinality case, we define a multi-step function
X¢ =nfor 2, <z < a7,;,n =01,... In the odd
cardinality case, x° = 0 for z < 2§ and x° = n+1for z), <
xz < xp,,n=01,... Here, z is the Rashba parameter
xr or Dresselhaus parameter zp to be defined later. Then,
in the case of a given even cardinality, we have the sets of
occupied states

N ={—|N%|/2 + x° + 1,

—|NC|/24+Xx°+2,...,IN°|/2+x°}  (B.16)
and
NS¢ = {-|Ng[/2—x°— 1,
—INS[/2 = x5, INS /2=y -2} (BAT)

while in the case of a given odd cardinality, we have the
sets

N? ={—(IN2[ - 1)/2+x°,
—(IN°|=1)/24X° +1,...,(IN°| = 1)/2 + x°}
(B.18)

and

NG = {~(IN3| —1)/2 = x° — 1,
— (NS = 1)/2 = X% (INS] = 1)/2 = x° — 1},

(B.19)
The spin polarization currents are
.x,e/o h]
iR () = "7 cos(@)f*(er),  (B.20)
. hj : e/o
JE Q) = T sin(@)@r)  (B21)
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and y
3=y g ) (B.22)
The non-vanishing source terms are
z, hjo e/o :
s57°(p) = = ol ar) sin(p) (B.23)
and y
SHop) = 5 /() cos(sp). (B.24)

2a

The functions f¢/°(z) and ¢°/°(z) describing the depen-
dency on the Rashba parameter x = xp or Dresselhaus
parameter x = xp have to be distinguished according to
their cardinality.

For even cardinality, we have

22 — 221 + 22

(z) = 24+ 2% +=x B.25
pa) = T ] (B.25)
and
2
ex — $2[ e+ :|
9°() 2+2x22\/1+x2[ X 2
3
- (2+x2—2\/1+:v2) {2 +er. (B.26)
For odd cardinality, they are
21 — 22v/1 + 22
°(z) = 1+2¢°l + 2 B.27
)= T e (2D
and
2
0:17 _ 172 o
9°() 2+2x272\/1+x2[ X
7<2+x272\/1+:172)[1+xo]}. (B.28)

Equations (B.20)—(B.28) represent the main result of this
section. In the following, the properties of these Rashba
spin polarization currents and spin polarization source
terms will be described.

Figure B.2 shows the geometrical arrangement of the
sources and spin polarization currents. For the z- and y-
component of the spin (Figs. B.2a and B.2b), respectively,
source and sink term are largest on opposite sites of the
ring. Correspondingly, a non-homogeneous spin polariza-
tion current is flowing from the source to the sink with
maxima at the intermediate positions, where the source
term is zero. The only difference between the spin com-
ponents S, and S, is a rotation by 7/2. The source can
interchange its position with the sink if we allow for vari-
ations in the Rashba parameter xp. The ranges of xp,
where the case of Figure B.2 applies is dependent on the
cardinality and can be alternatively summarized by ei-
ther the condition f¢/°(xg)) < 0 or ¢*/°(xg) > 0. The
current for S, spin polarization in Figure B.2c is equally
large everywhere and circulating around the ring similar to
the persistent current invoked by a magnetic flux [72,73].

Eur. Phys. J. B (2014) 87: 113

Sx Sy sz
— -
\ ) R 7
(a) Z (b) — © —
Fig. B.2. Geometrical arrangement of (a) the source term

sxR’e/o(go) and spin polarization current j;’e/o(cp) of the

z-component of the spin, (b) s%%°() and j%°/°(¢) of the
y-component and (c) j;’c/ ® for the z-component in the case
that B = ( = 0. The spin polarization current for the
z-component of the spin is homogeneous in space due to the
absence of the source term s;ﬁc/o(ap). The “47-sign and “-’-
sign indicate source and sink, respectively, in the case that xr
is such that f¢°(zgr)) < 0 or ¢g*/°(xr) > 0 and the arrows
indicate the corresponding spin polarization current direction
and are shown (a) and (b) at the positions of maximum cur-
rent magnitude and (c) at arbitrary positions for j;c/ °, which
is homogeneous in space.

The z-component of the spin is therefore source-free. This
might be understood in the following way: similarly to the
magnetic field acting on the spin via the Zeeman term,
one can define an effective magnetic field for the Rashba
spin-orbit interaction, Bg = —p x E/(m*¢), due to the
electronic motion inside the electric field E = Fe, caus-
ing the Rashba interaction. The effective magnetic field is
perpendicular to the electric field in the z-direction and
the effective momentum of the electrons in the direction
of e,. Consequently, the effective magnetic field is always
perpendicular to the S, spin polarization suggesting that
gtnz (r,t) = 0. In a local interpretation of the spin conti-
nuity equation (14), this corresponds to the case that the
driving mechanism, i.e. the source term sjz’c/o(go) =0. We
note that the geometrical aspects of the spin polarization
current flow could be summarized by stating that the spin
polarization current for spin polarization S; flows freely in
the plane perpendicular to the unit vector e;. In our case,
the spin polarization current is confined to a 1D system
along e,. The spin polarization current magnitude along
the ring is then given by the projection e, onto the plane
perpendicular to e;. For S, spin polarization, e, is inside
this plane and therefore the spin polarization current is
space independent. As the spin polarization currents are
not dependent on time, we will call them persistent spin
polarization currents, not distinguishing whether they are
homogeneous in space or not.

Figure B.3 shows the spin polarization currents as
a function of the Rashba parameter xr. As opposed to
the magnetic flux dependency of the charge current, the
Rashba parameter dependency of the spin polarization
currents is not exactly periodic, in particular for small zp.
At the zero points of all the even cardinality spin polar-
ization currents, the odd cardinality spin polarization cur-
rents are largest, changing discontinuously by sign due to
sudden reoccupations among states of the same spin quan-
tum number v. Likewise, at the discontinuities of the even
cardinality spin polarization currents, the odd cardinality
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Fig. B.3. Rashba parameter dependency ofj;;’e/o(:cR)/ cos(p),
3%°/°(xR)/ sin(yp) and j;’c/o(xR) for B= /=0 and (a) N/2
even, and (b) N¢/2 odd. The vertical black lines indicate the
positions of the constructive (short-dashed line, A® = 2nm,
n = 0,1,...) and destructive (solid line, A® = (2n + 1)m,
n=0,1,...) AC phase.

spin polarization currents are zero. It is interesting to note
that the z-component of the spin polarization current is
commonly larger for small xz and, in particular, that an
infinitesimal small Rashba coefficient should lead to the
relatively large spin polarization current j5;° = h%‘? pro-
vided that the total electron number N, is divisible by 4.
This way, an infinitesimal small effective electric field is
enough to generate a considerable persistent AC current
provided the system can be cooled down and ME inter-
actions neglected. We note that for xr exactly equal to
zero, all spin polarization currents are correctly vanishing
as j5° changes discontinuously at zp = 0.

Appendix C: Derivation of equation (B.11)

Here, we show only the derivation of equation (B.11) in
detail. All other Rashba or Dresselhaus charge or spin po-
larization densities, currents or source terms (Egs. (B.9)-
(B.15) and, in the Dresselhaus case, Egs. (D.3) and (D.6)
and the corresponding expressions, which can be inferred
from Eq. (D.7) can be derived in analogy). For a 1D
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ring geometry without magnetic and photon field, equa-
tion (A.4) can be simplified and the ¢-component of the
current density along the ring is given in first quantization

with 3, N, = N,:

7o) = 4i:1*a > .

v=+1neEN,

0

0
= Tnlin )y Fonl )]

+ 2O S S (e Do)

v=+1neN,
7, (9, (i, 1)

0

0
W%n(% T

(C.1)

Now, we introduce the eigenfunctions, equation (B.6), into
equation (C.1) making already use of the fact that the
coefficients Aff, from equation (B.7) are real:

. h? .
Jr(p) = Srm* a2 A§1AE2 exp(iy)

x Y (n+1)+ Af AT, explip)
neN_

x Y (n+ 1)+ Af AR explip)
neN4

X Z n+ AF, AL, exp(ip)
neN_

X Z n+ A7 Af, exp(—ip)
neNL

X Z n -+ A§1A§2 exp(—ip)
neN_

X Z n+ A7 A, exp(—ip)
neN4

X Y (n+1)+ Af AT, exp(—ig)
nenN_

X Y (n2+1)
neNL
acos(p) 2 2

+ (AR I+ (4B N

2 2
+ (AR,)” IN-| + (AF)" N4 ] (C.2)
This can be further simplified and the coefficients from
equation (B.7) introduced yielding for even electron
number N,.:

- hja cos(p) cos( 021? ) sin( 92R )
Jr(e) = N
X[ (D)= (n+1)+ > n=> n
neN_ neNy neN_ neNy
acos(p)Ne
+ dra (C.3)
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With the aid of equation (B.8), a relation

6 0 - 1+ 2%
cos( R)sin( R) = R fR\/ +xR2 (C4)
2 2 2+ 22% — 2¢/14 2%
can be established and introduced in equation (C.3)
together with the definition of the Rashba parameter

(Eq. (B.3)), to get equation (B.11).

Appendix D: 1D Dresselhaus ring

In this Appendix, we derive and describe analytical re-
sults for an ideal 1D ring with only Dresselhaus spin-orbit
interaction. We will neglect the magnetic field, electron-
electron interaction and the photons. According to these
assumptions, we use the general expressions of Section 2
for the Hamiltonian (Eq. (2)), and the charge and spin
operators (Egs. (A.1)—(A.9)), in a simplified form for our
derivations here.

The Hamiltonian containing the kinetic and the
Dresselhaus term,

2
I
2

151:7 4
2m Or Uy(?y

(D.1)
where [ is the Dresselhaus coefficient. In analogy to the
Rashba parameter x g, it is convenient to introduce the di-
mensionless Dresselhaus parameter, xp, which scales lin-
early with the Dresselhaus coefficient 3, given by

xp = wé) (D.2)

with the Dresselhaus frequency wp := 3/(ha). The advan-
tage of the Dresselhaus parameter xp over the Dresselhaus
coefficient [ is that the eigenvalues and eigenfunctions (ex-
cept for a normalization constant) become independent of
the ring radius a. The Dresselhaus eigenvalues and coeffi-
cient matrix are derived in Appendix E. The Dresselhaus
and Rashba spectrum are identical and shown in Fig-
ure B.1. The charge density is constant as in the Rashba
case,

eN,

2ma

ng = , (D.3)
and the charge current j% = 0.

Thus, the spectrum, charge density and charge cur-
rent are the same for the Rashba and Dresselhaus ring.
More interestingly, we have calculated also the spin po-
larization densities, spin polarization currents and spin
polarization source terms in analogy to the Rashba case.
For the Dresselhaus ring, we will present the results by a
comparison to the Rashba case and give an explanation
of our findings by a comparison of the two Hamiltonians.
The Dresselhaus Hamiltonian (Eq. (D.1)) is invariant to
the Rashba Hamiltonian (Eq. (B.1)), if the replacement

&4 —6,
_ a'x

Jé] «@

Uy —

(D.4)
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Fig. D.1. Same as Figure B.2, but for the Dresselhaus ring
(the case B =a = 0).

is performed. Moreover, using the commutation relation
G, = [04,0y]/(2), the z-spin Pauli matrix transforms ac-
cording to 6, — —a&,. This suggests the following relations
for the Dresselhaus spin densities for xp = zp:

x Yy

ny —nf
Y _ Y

nh | = | —n%k (D.5)
z z

np —NR

As a consequence, also in the Dresselhaus case, all spin
polarization densities are vanishing:

np(p) =np(p) = np(p) = 0. (D.6)
Furthermore, the Dresselhaus spin polarization currents

and spin polarization sources are related to the Rashba
ones for xp = zg:

j%c/o _j}y%.,c/o Sgc/o _Sg};%,c/o
j%.,c/o _ _j}z%,c/o , ngc/o _ _S:Ic%,c/o
jgc/o _jlz%,c/o Sgc/o —S;C/O
(D.7)

Figure D.1 shows the geometrical arrangement of the
sources and spin polarization currents. The differences to
the Rashba ring can be stated as follows.

1. The transport pattern for the x-component of the spin
is rotated by —m/2.

2. The transport pattern for the y-component of the spin
is rotated by /2.

3. The ¢-independent current for the z-component of the
spin flows in the opposite direction.

Appendix E: Dresselhaus eigenvalues
and coefficient matrix

The Hamiltonian equation (D.1) has the 1D ring (strong
confinement) limit [69] as can be derived in analogy to
reference [68],

. 2 0
HlD — _ . ~ . ~
h$? 9,2 + ithwp(cos(p)dy + sin(p)dy) B,
+iP (cos()64 — sin(9)5,), (E.1)

2
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which can be reformulated

i) —he | (=i 0~ a) - D
dp 2 4

with
70~ (o
7 enito-7) 0

Using the ansatz
V() =

exp(in A5)1ex i
- 3%?( ,A,E’]Z( w) =Y

leads to the eigenvalue problem

1 i"p\ (AP, AP
2D [; = (Advn —n) 1:; ) (E.5)
—i"P 0 AV’2 Al,,2

where A,,, is related to the Dresselhaus eigenvalues Eﬁl
of Hamiltonian (Eq. (E.2)) by

zh

1)

The resulting Dresselhaus eigenvalues are identical
with the Rashba eigenvalues (Eq. (B.4)). The complex
Dresselhaus coefficient matrix is given by

%,COS(GQD) Sin(GQD))> (E.7)

—1sin (GQD) — cos (GD

EP =m0 (A,‘i‘n - (E.6)

AP = (AP, ADy) = (

0p
tan( 9 )
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