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Abstract

Trophic diversification of Arctic charr (Salvelinus alpinus, Linn. 1758) into four
genetically distinct morphs, varying in life history characteristics, behavior, and trophic
morphology, has occurred in lake Thingvallavatn following the last glaciation. The aim of
this study was to investigate the genetic and developmental aspects of this diversification
thereby gaining insights into the evolution and the maintenance of the Thingvallavatn
morphs. In chapter I a population genetic screen of immunological candidate genes
revealed differences among morphs for Cath? and MHCII alpha that far exceeded
differentiation at neutral loci. This is consistent with a scenario were selection has led to
divergence in parts of the immune system. In chapter II embryonic and early post-hatching
craniofacial cartilage development is described. The ontogenetic trajectories of shape and
size indicated developmental heterochrony as a possible mechanism of morph divergence.
Chapter III describes subtle but significant differences in early post-hatching craniofacial
morphology between the progeny of three morphs of Arctic charr. Moreover hybrid
progeny of two contrasting morphs showed extreme (or transgressive) phenotypes well
outside of the parental range, indicating that the ecological divergence within the lake
might be enhanced by lowered fitness of hybrids. In chapter IV the level of integration and
modularity in craniofacial traits in morphs and hybrids is analysed. Chapter V describes
the annotation of Arctic charr miRNAs expressed during development and analyses of
candidate miRNAs involved in Arctic charr morphogenesis and diversification.



Utdrattur

Fra lokum sidustu isaldar hafa proast fjogur afbrigdi bleikju (Salvelinus alpinus, Linn.
1758) innan Pingvallavatns. Afbrigdin eru erfoafredilega adgreind og eru 6lik hvad snertir
lifsferla, atferli og utlit, og & pad sérstaklega vid um likamshluta er tengjast faedudflun.
Markmid pessarar rannsoknar var ad kanna erfdafraedilegar og proskunarfraedilegar orsakir
pessa fjolbreytileika og 6dlast pannig innsyn i préun og vardveislu bleikjuafbrigdanna i
bingvallavatni. Stofnerfdafreedilegri leit ad genum tengdum oOnzmiskerfinu sem syna
mismun milli afbrigda er lyst i fyrsta kafla ritgerdarinnar. bar & medal eru Cath2 og MHCII
alpha sem syna breytileika sem getur ekki talist hlutlaus og liklegast er ad ahrif natturulegs
vals 4 On@miskerfid hafi leitt til adgreiningar & pessum erfdasetum. Annar kafli lysir
proskun brjosks og beina i hofoi fostra og seida stuttu eftir klak. S& munur sem fram kemur
milli afbrigda i proskunarfreedilegum brautum utlits og staerdar pessara stodeininga bendir
til pess ad orsakanna sé ad leita i breytingum 4 timasetningu proskunaratburda. 1 pridja
kafla segir fra litlum en markteekum mun i utliti h6fudbeina a fyrstu stigum eftir klak seida
priggja afbrigda bleikju. Auk pess syna blendingar tveggja olikra afbrigda svipgerd sem
fellur ad verulegu leyti fyrir utan utlitsmengi beggja foreldra-afbrigdanna. bad bendir til
pess ad adskilnad afbrigdanna i vatninu megi rekja til minni heefni blendinga. Fjordi kafli
fjallar um proskunarfredileg tengsl valinna stodeininga i h6foi, p.e. hversu sjalfstaedar eda
sampattar paer eru, og hvernig peim er hattad hja kynblendingum olikra afbrigda 1 fimmta
kafla er miRNA sameindum bleikjunnar og tjaningu peirrra i proskun lyst i mismunandi
afbrigdum. Sérstaklega athygli fengu miRNA-gen sem syndu mismunandi
tjdningarmynstur & afbrigdunum en slik gen kunna ad leika mikilvaegt hlutverk i
formproskun hofudbeina og pannig verid undirstada utlitsmunar milli afbrigda.
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1 Chapterl

1.1 General introduction

A central question in evolutionary biology is how the spectacular ecological and
phenotypic diversity seen across the world’s biota is generated and maintained. Adaptive
divergence is regarded as the most important biological process leading to the evolution of
ecological differences and ultimately to the emergence of new species (Schluter 2000;
Gavrilets & Losos 2009). Adaptive radiations are examples of rapid divergence in
particular groups, which generates many and distinct species. Like evolution in general,
the process of adaptive radiation is dependent on historical contingencies and chance, and
influenced by ecological, genetic and developmental factors (Gavrilets & Losos 2009).
Adaptive radiation is characterized by four criteria: common ancestry, phenotype-
environment correlation, trait utility and rapid speciation (Schluter 2000). Although an
association between phenotype and environment can seemingly arise via non-adaptive
processes (Gould & Lewontin 1979), replicated occurrences of certain phenotypes in
multiple independent lineages are considered strong evidence for adaptive processes
(Endler 1986; Schluter & Nagel 1995; Harvey & Pagel 1998).

The parallel evolution along a benthic-limnetic axis, seen in diverse lineages of bony
fishes, is an excellent example of trophic adaptive divergence (Schluter & Rambaut 1996;
Wainwright 1996; Wainwright & Shaw 1999; Bouton et al. 1999; Snorrason & Skulason
2004). This ecological divergence is accompanied by changes in the morphology of the
feeding apparatus: species that feed on mobile prey (limnetic species) have long, evenly
protruding jaws adapted for suction feeding, whereas many benthic species that feed on
slow moving benthic prey, have shorter and more robust lower jaws (see references in
Willacker et al., 2010). Phenotypic diversity arises through the combined effects of genes
and the environment, and is built by the principles of development.

Development translates genotypes into phenotypes, which in turn will be available for
natural selection to act upon. The understanding of how trophic morphologies evolve in
response to environmental attributes will thus require knowledge of how these
morphologies are produced during development (Atchley & Hall 1991). Hence, species
with high within-species polymorphism and undergoing early stages of adaptive
divergence may be well suited for studying the role of development in phenotypic
variation.

The relationship between phenotypic divergence during evolution and individual
development has, over the last three decades, been the focus of the field of evolutionary
developmental biology (evo-devo) (Miiller 2007). The integration of evolutionary theory
with molecular and developmental genetics leads to the establishment of some general
principles, namely, that developmental genes constitute a genetic toolkit and phenotypes
most often evolve through changes in spatial and temporal regulation of functionally



conserved genes with cis regulatory elements being the focus of many studies (reviewed in
Carroll, 2008). However, the importance of post-transciptional regulation in morphological
evolution has recently recieved increasing attention. Micro-RNAs (miRNA’s) are small (~
22 nt) non-coding RNAs that post-transcriptionally regulate the expression of target genes,
thus making for a specific and “fine-tunable” response (reviewed in Li & Zhang, 2012). It
has been suggested that miRNAs may generally cover more restricted regulatory niches
than transcription factors (Hobert 2008) and might be involved in enhancing species
evolvability (Ebert & Sharp 2012).

A first step towards studying the role of development in producing variable trophic
morphologies is to identify fundamental developmental units of the trophic apparatus. The
next steps involve studies of the growth and shape changes during ontogeny as well as the
integration of these developmental units into complex, functional assemblages (Atchley &
Hall 1991). For example, the African cichlids, one of the most dramatic and best studied
case of adaptive radiation, exhibit a limited number of distinct trophic morphologies that
appear to have evolved repeatedly along the benthic/limnetic functional axis (Albertson &
Kocher 2006). This interesting phenomenon might be the result of developmental
processes constraining the variation in one or more axes of the morphospace (Brakefield
2011). Alternatively, genetic architecture or selection can shape the variance-covariance
structure in populations, and hence evolution (Pitchers et al. 2014).

Three distinct approaches to identify underlying molecular mechanisms for morphological
change can be employed: a candidate gene approach, mapping and genome wide screens.
The first approach takes advantage of the wealth of information accumulated over decades
of research in model organisms, whereas the second approach requires either genome wide
quantitative trait loci or association mapping. The third approach encompasses other types
of genome wide screens. Genome wide screens do not require any a priori information
about the genetic and developmental nature of phenotypic variation under study. The
candidate gene approach can take advantage of the extensive knowledge available from
studies on model species to generate or narrow down lists of relevant candidates
(Mallarino & Abzhanov 2012).

Because the majority of craniofacial mutants exhibit severe and often lethal defects, little is
usually known about craniofacial morphogenesis in post embryonic stages (Albertson &
Yelick 2004). Genome-wide screens represent a less biased way to find genes and
pathways related to divergence, however, mapping requires considerable statistical power
and large samples sizes. The vast amount of information generated in transcriptome
analyses is often hard to interpret and validate. Thus, a combination of genome wide and
candidate gene approaches can be employed to study morphological variation, especially
in non-model species. Natural systems exhibiting high morphological variation can be used
to assay the development and remodeling of traits beyond the embryonic stages (Abzhanov
et al. 2004; Kimmel et al. 2005; Albertson & Kocher 2006).

In this study a highly variable fish species, Arctic charr (Salvelinus alpinus), is utilized to
study the role of development in building variable trophic morphologies. Throughout its
circumpolar distribution this species exhibits high levels of inter-population phenotypic
variation with many populations showing trophic divergence along a benthic - limnetic
habitat axis (Klemetsen et al. 2003). The young evolutionary age (post-glacial) of such



polymorphism in Arctic charr, readily observable phenotypic variation, and tractable
ecological settings makes it an ideal species for the work presented in this thesis.

The Arctic charr in Lake Thingvallavatn, Iceland, constitute an extreme example of local
phenotypic diversity. Four distinct morphs have been described in the lake, two benthic
morphs (a large, LB, and a small, SB, benthivorous charr) and two limnetic morphs (a
planktivorous, PL, and a piscivorous, PI, morph). The four morphs inhabit different
ecological niches and, among other things, differ in parasite infection rate and prevalence
(Frandsen et al. 1989). The benthic morphs inhabit the stony littoral zone and feed on slow
moving benthic invertebrates, especially on the gastropod Lymnaea peregrea and littoral
chironomid larvae. These fish are dark in color, have stocky bodies, long pectoral fins,
blunt snouts, short lower jaws, and a low number of gill rakers. The planktivorous (PL)
and piscivorous (PI) feed on zooplankton and threespine stickleback, respectively. These
fish are more silvery, have fusiform bodies, smaller pectoral fins, pointed snouts, longer
lower jaws, and a greater number of gill rakers compared to the two benthic morphs
(Snorrason et al. 1989; Malmquist et al. 1992; Sandlund et al. 1992).

The morphs differ extensively in life-history characteristics: LB and PI take longer to
mature sexually (3-11 and 5-10 years, respectively) and mature at a minimum 20.5 and
25.6 cm. fork length, respectively. The two smaller morphs (SB and PL) mature at a
minimum of 7.2 and 15.2 cm. fork length, respectively, and have relatively short
maturation time (2-4 and 3-4 years, respectively) (Jonsson et al. 1988).

While all Arctic charr morphs spawn in the stony littoral habitat the timing and the level of
synchronization differ with the two smaller morphs (SB and PL) showing a partial spatial
and temporal overlap (Skulason ef al. 1989).

Common garden experiments with the progeny of the four morphs have shown a clear
genetic component to differences in growth, maturity age, development of trophic
morphology, body color and foraging behavior (Skilason er al. 1989, 1993; Smith &
Skulason 1996; Eiriksson et al. 1999).Additionally, phenotypic plasticity is also a
significant factor in molding the phenotypes (Parsons et al. 2010, 2011). Overall, these
results emphasize the adaptive nature of morph formation of Arctic charr in Lake
Thingvallavatn.

A variety of molecular and biochemical markers have been previously used to assess the
population genetic structure of Arctic charr in Thingvallavatn. While some were
insufficient to detect differentiation among morphs due to low amount of polymorphism
between individuals (Magnusson & Ferguson 1987; Danzmann ef al. 1991; Volpe &
Ferguson 1996), others detected significant differences among morphs belonging to
different morphotypes (limnetics vs benthics) but not within morphotypes (Volpe &
Ferguson 1996). The most recent and rigorous study used 10 microsatellite markers and
was based on samples of fully ripe spawners from five locations around the lakeshore. This
study revealed subtle but significant genetic differentiation between the three most
common morphs in Lake Thingvallavatn (PL, SB and LB). Further coalescent simulations
indicated a scenario of early evolution of reproductive isolation followed by slow
divergence by drift with restricted gene flow (Kapralova et al. 2011). The same study also
suggested small benthic charr have evolved independently in several other springs and
lakes in Iceland, providing the opportunity for comparative analyses of developmental



morphology and its genetic and molecular basis. Based on this previous research, the
Arctic charr in Iceland and of Lake Thingvallavatn provide an ideal ‘natural experimental’
system for studying the role of development in the evolution in adaptive divergence.

This dissertation is divided into five chapters organized like manuscripts with each one
addressing questions on i) population structure at putatively adaptive genes of the immune
system, ii) characterizing major events of early Arctic charr craniofacial development, iii)
how early in development shape changes arise between morphs and the effects of
hybridization of contrasting morphologies on craniofacial shape and development, iv)
patterns and level of modularity in Arctic charr pure morphs and hybrid crosses and v)
patterns of miRNA expression during the development of contrasting Arctic charr
morphologies.

In the first chapter I conducted a population genetics screen on four immunological
candidate genes Cathelicidin 2 (Cath2), Hepcidin (Hamp), Liver expressed antimicrobial
peptide 2a (Leap-2a), and Major Histocompatibility Complex Ila (MHClla) and a
mitochondrial marker (D-loop) among the three most common Lake Thingvallavatn charr
morphs (LB, PL and SB). Two of the loci (Cath2 and MHClIla) showed significant
differences in allele frequencies among morphs. In Cath2, SB deviated from the other two
(Fs1=0.13). One of the substitutions detected was an amino acid replacement
polymorphism in the antimicrobial peptide. This change is predicted to lead to an amino
acid replacement (replacement of arginine by serine in position 115), altering the charge of
the peptide and possibly its function.

A more striking difference was found in the MHCIIa. Two haplotypes were very common
in the lake, and their frequency differed greatly between PL and SB (from 22% to 93.5%,
Fsr=0.67). Next I surveyed the variation in Cath? and MHClla in nine Arctic charr
populations from around Iceland. The populations varied greatly in terms of allele
frequencies at Cath2. However the variation did not correlate with morphotype. The
variation at the MHClIla locus, was nearly identical to the variation in the two benthic
morphs of Lake Thingvallavatn. The results are consistent with a scenario where parts of
the immune systems have diverged substantially among Arctic charr populations in
Iceland, possibly from standing genetic variation.

In the second chapter I used the recently evolved polymorphism in Icelandic Arctic charr
to address questions about craniofacial development and evolution. First, dense
developmental series' were established and the timings of major events in head cartilage
and bone development were characterized. A total of eight (four pre- and four post-
hatching) time points were selected to study the ontogenetic trajectories related to growth
in three of the Thingvallavatn morphs, SB and LB (representing a benthic morphotype)
and PL and an aquaculture strain AC (representing a limnetic morphotype). The charr
morphs displayed segmental development of the pharyngeal arches, as is characteristic for
all vertebrates, and the order of events accompanying the craniofacial development was the
same as has been described for teleosts. The four Arctic charr varieties under study showed
similar general patterns of head growth during this period of development. On a finer scale
the growth rate differed among groups. The head starts out smaller in the benthic morphs
but, due to a sharp increase in growth rate at hatching, the LB morph ends up with the
largest heads at the post-hatching stages. The hatching period appears to be associated with
significant allometric shape changes. The four varieties differed in the size, orientation



and/or shape of their ontogenetic trajectories of shape. LB had the largest trajectory of all
the studied groups (i.e accumulated the most shape changes for the studied period) and
differed significantly (p < 0.05) from the two limnetic groups (PL and AC). On the other
hand, SB showed significant differences from the other three groups in the orientation of
their ontogenetic trajectory of shape. SB also displayed marginally significant differences
in the shape of ontogenetic trajectories compared to LB and AC. Interestingly, the two
limnetic groups did not show significant differences in any of the three attributes of
ontogenetic trajectories.

In the third chapter 1 used landmark based geometric morphometrics and multivariate
analyses of shape to address questions on the evolution and development of elements of
the Arctic charr feeding apparatus. I studied the progeny of pure morph crosses for SB, LB
and PL. Compared to the stages studied in chapter II, here I focused on later stages that
allowed the use of more landmarks. All studied groups displayed subtle differences in
early development during cartilage formation and growth. Next I investigated the effect of
hybridisation on the craniofacial morphology of Arctic charr by creating reciprocal crosses
between PL and SB. Interestingly, the majority of hybrid embryos exhibited craniofacial
phenotypes that were considerably displaced from the distributions seen in offspring of
pure crosses. No significant differences in head shape were detected between the two
reciprocal crosses, suggesting that the above transgressive genetic effects greatly
outweighed any maternal effects.

In the fourth chapter, data from the crosses used in the third chapter were analyzed to
address questions about integration and modularity in the developing trophic apparatus of
Arctic charr. These data have not been fully analyzed, and the chapter summarizes the first
descriptive and exploratory analyses. Preliminary results showed that during early post-
hatching stages the craniofacial skeleton is modular and this modularity appears to reflect
the developmental origins of the elements constituting it. The craniofacial integration was
compared in AC, LB, PL and SB groups of Arctic charr. These groups did not appear to
differ in the pattern, but rather in the level of their craniofacial modularity. Interestingly,
hybrid crosses between two contrasting Arctic charr morphs may have different patterns of
integration of their craniofacial skeleton compared to the pure crosses of the parental
morphs.

In chapter five I studied the expression of small non-coding RNAs (miRNAs) during
embryonic development of offspring from the two contrasting varieties; SB from Lake
Thingvallavatn and AC from the Holar aquaculture stock. To this end, four time points
(three embryonic and one just before first feeding) were selected for high-throughput
small-RNA sequencing. A total of 326 conserved and 427 novel miRNA candidates were
identified in Arctic charr of which 51 were conserved and six novel miRNA candidates
were differentially expressed among developmental stages. Furthermore, 53 known and 19
novel miRNAs showed significantly different levels of expression in the two contrasting
morphs. Some of these miRNAs are involved in regulating key developmental processes in
other species such as development of brain and sensory epithelia, skeletogenesis,
myogenesis and hematopoiesis. For example sal-miR-146, 183, 206 and 196a were highly
expressed in the benthic embryos and sal-miR-130, 30, 451, 133, 26, and 199a were highly
expressed in the limnetic embryos. The expression differences are confined to the
embryonic stages and the two morphs exhibited similar miRNA expression profiles in the
last stage. Interestingly, four of the 19 novel miRNA candidates were only detected in



either AC or SB.

As outlined above, ecological diversification of Arctic charr (Salvelinus alpinus) into four
phenotypic variants within lake Thingvallavatn has occurred in just 10,000 years following
the last glacial maximum. Ecological speciation may be progressing within this natural
experimental system as evidenced by distinct variation in life history characteristics,
behavior and trophic morphology. The research presented here contributes to the growing
body of work on the underlying mechanisms of Arctic charr adaptive divergence.

In addition to the papers described above, during my PhD studies I took part in two
additional studies, which have not been included in this dissertation. One, titled
"Validation of reference genes for expression studies during craniofacial development of
Arctic charr” was published in PloS One in 2013 (10.1371/journal.pone.0066389), and the
other one titled “Transcriptional dynamics of a conserved gene expression network
associated with benthic-limnetic craniofacial divergence in Arctic charr has just been
submitted to Evo-Devo.
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Abstract

Northern freshwater fish may be suitable for the genetic dissection of ecological traits because they invaded new habitats
after the last ice age (~10.000 years ago). Arctic charr (Salvelinus alpinus) colonizing streams and lakes in Iceland gave rise to
multiple populations of small benthic morphotypes, often in sympatry with a pelagic morphotype. Earlier studies have
revealed significant, but subtle, genetic differentiation between the three most common morphs in Lake Thingvallavatn. We
conducted a population genetic screen on four immunological candidate genes Cathelicidin 2 (Cath2), Hepcidin (Hamp),
Liver expressed antimicrobial peptide 2a (Leap-2a), and Major Histocompatibility Complex llz. (MHCllo) and a mitochondrial
marker (D-loop) among the three most common Lake Thingvallavatn charr morphs. Significant differences in allele
frequencies were found between morphs at the Cath2 and MHCllo loci. No such signal was detected in the D-loop nor in the
other two immunological genes. In Cath2 the small benthic morph deviated from the other two (Fsy=0.13), one of the
substitutions detected constituting an amino acid replacement polymorphism in the antimicrobial peptide. A more striking
difference was found in the MHCllz. Two haplotypes were very common in the lake, and their frequency differed greatly
between the morphotypes (from 22% to 93.5%, Fsy=0.67). We then expanded our study by surveying the variation in Cath2
and MHCllx in 9 Arctic charr populations from around Iceland. The populations varied greatly in terms of allele frequencies
at Cath2, but the variation did not correlate with morphotype. At the MHCll locus, the variation was nearly identical to the
variation in the two benthic morphs of Lake Thingvallavatn. The results are consistent with a scenario where parts of the
immune systems have diverged substantially among Arctic charr populations in Iceland, after colonizing the island ~10.000
years ago.
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Introduction
) ) ) novel habitats [6,7].
Processes of divergence and adaptation reflect evolutionary

species respond to geographic catastrophes or when they colonize

forces that alter the genetic make-up of populations over time [1].
While the bulk of these changes must be neutral, some are likely
driven by natural selection. By identifying genes relating to
adaptation we may be able to disentangle history, neutral forces
and the contribution of positive and purifying selection on these
evolutionary processes [2,3]. One approach to identify such loci is
to dissect the molecular genetics of major adaptations in highly

divergent species [4], another is to compare genetic architecture of

adaptive traits between closely related species or populations [5].
One of the advantages in studying recent (or ongoing) divergence
is that relatively few genetic changes differentiate populations or
sibling species, compared to the vast number of changes separating
major taxa. A potential downside to this approach is that, on short
evolutionary time scale, divergence is mainly shaped by drift and
fine tuning of preexisting adaptations. However, certain study
systems have the advantage of rapid evolution, for instance when
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Following the retreat of the last ice age cap (~10,000 years ago)
anadromous and freshwater fishes in the northern hemisphere
invaded and explored new habitats [8]. In some cases streams and
lakes provided novel niches, which the colonizing populations may
have adapted to. Multiple species (white fish, three spine
sticklebacks, several salmonids) show signs of repeated adaptive
changes in independent waterbodies [9-13], some of which have
been dissected genetically [14-17].

Evolutionary Immunology of Fishes

The invasion into new habitats, changes from anadromous to
“freshwater only” lifestyle, and sharing of habitat with other fishes
provides novel challenges to the immune system of fishes [8]. The
adaptive significance of immunological genes has been clearly
illustrated. There are data supporting the role of frequency
dependent selection, importance of local adaptation, the role of
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generalist vs. specialist lifestyle and parasites, involvement in
assortative/disassortative mating and even magic trait sympatric
speciation as defined by [18], see [19] for review.

Fish possess both an adaptive and an innate immune system.
The Major Histocompatibility complex (MHC) are cell surface
molecules (class I on most cells and class II on specialized cells) that
are involved in pathogen recognition and are central to adaptive
immunity [20-22]. The MHCII is a heterodimer protein made of
an o and a P chain, each with two domains (a1 and a2, Bl and B2
respectively). MHC genes have been identified in many teleost
species and in general the B chain tends to be highly polymorphic
[23]. The favoured explanation is that the multitude of infectious
agents and environmental heterogeneity favours heterozygotes and
rare alleles, which through balancing or frequency dependent
selection result in high MHC diversity [19]. MHC allele diversity
can be reduced in fish populations, as a consequence of local
adaptation [24,25]. The distribution of MHCIIo alleles in Arctic
charr is consistent with some degree of local adaptation [26],
which will be studied further in this paper. Similarly data from
brown trout (Salmo trutta) and Adantic salmon (S. salar) how
population differentiation in immunological genes, including TAP
(Transporter associated with antigen processing) and interleukin-1
beta [27,28]. Curiously MHCII genes have been lost in Atlantic
cod and related species [29], whereas in the Salmonidae they were
duplicated along with the whole genome about 25-100 millon
years ago [30]. There are two MHCII regions in Salmonids
(observed in Atlantic salmon and rainbow trout (Oncorlynchus
mykiss)), and evidence suggests at least four MHCIIx copies can be
expressed [31].

The innate immunity system constitutes an evolutionarily old
defense strategy, as the majority of gene families involved in it are
present throughout the animal kingdom [32]. Innate immunity
depends on a wide array of recognition, signal transduction and
defence molecules, which are thought to evolve fast in response to
pathogens. For instance, a comparison of 12 Drosophila species
genomes revealed signs of positive selection on protein sequence
and gene copy number in the sensory and effector genes of the
innate immunity [33]. Innate immunity is considered to be of key
importance in combating infections in fish [21,22]. Antimicrobial
peptides (AMPs) play a major role in this system and in mammals
these cationic peptides not only kill bacteria, but are multifunc-
tional effectors of the innate immune system [34,35]. Many AMPs
have been identified in fish including Cathelicidins (Cath), liver
expressed antimicrobial peptides (LEAP) and hepcidins (HAMP)
[36-40]. In salmonids two types of Cathelicidins have been
identified; Cathelicidin 1 and 2 [39-41]. Cathelicidins are
generally encoded by four exons with the exception of Cathelicidin
2 (Cath2) in the Salvelinus genus, which have lost exon 3. In fish
Cathelicidins expression increases due to bacterial infection and
the mature antimicrobial peptide has been shown to have
bactericidal activity [39,40,42—44]. Several studies have shown
signs of positive selection on AMPs (reviewed by Tennessen [45]),
specifically on the charged amino-acids. Population genetic studies
of the AMPs and other innate immunity genes are needed to
clucidate the distinct selection pressures that shape these ancient
defense systems.

Arctic Charr Diversity and Resource Polymorphism

Arctic charr is a widespread circumpolar species. While it’s
distribution reaches south along the coastal areas of the N-Atlantic
it is best described as an Arctic species and indisputably the most
cold tolerant of the salmonids [46]. In the high north Arctic charr
is often found in very cold waters and lakes with limited
productivity and with few or no other fish species present. A
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Genetic Differences among Arctic Charr Morphotypes

body of ecological studies document high diversity among Arctic
charr populations (e.g. refs. in [46-48]), and many instances of
resource polymorphism within lakes (see refs. in [8,49,50]). The
favored explanation is that diversity arises via ecological special-
ization in habitat use and diet, facilitated by relaxed inter-specific
competition, leading to morphological divergence among and
within lakes [8,51].

Icelandic Arctic charr descend from European charr [52] that
colonized the island after the glacial retreat. Large parts of Iceland
are constantly shaped by tectonic and volcanic activity which
appear to have created special habitats for dwarf forms of Arctic
charr that typically inhabit streams, ponds and lakes in the neo-
volcanic zone that traverses Iceland from the south-west to the
north-east. Kristjansson and coworkers have shown that in these
habitats these small fish show similar phenotypes across locations,
e.g. a typically benthic morphology, thus retaining a juvenile
morphotype [53]. However, their evidence also shows that the
morphological parallelism is incomplete [54,55]. In lakes with two
or more distinct morphs they usually conform to two types in
terms of morphology (i.e. morphotypes), a pelagic and a benthic
type, that typically reflect their modes of habitat utilization.
Multiple lines of evidence show that these differences stem both
from environmental and genetic causes [56-58].

The best studied and most extreme example of sympatric charr
morps are the four morphs in Lake Thingvallavatn [59]. Two
large morphs are found, a large benthivorous (LB-charr) and a
piscivorous morph (Pl-charr), and two small forms (morphs), a
small benthivorous (SB-charr) and planktivorous morph (PL-
charr). PL- and Pl-charr, display a pelagic morphotype and are
more inclined to operate in open water and feed on free swimming
prey, planktonic crustaceans and small fish, respectively. The two
benthic morphs show a benthic morphotype and mainly reside on
the bottom, feeding exclusively on benthic invertebrates. The very
small size of the SB-charr also allows them to utilize interstitial
spaces and crevices in the littoral zone typically consisting of
submerged lava which offers a rich source of benthic invertebrate
prey. As would be expected from the clear cut ecological
diversification of the morphs their macroparasitic fauna differs
distinctively [60].

Population genetic studies based on variation in mtDNA
revealed a common ancestry of Arctic charr in the Nordic
countries, Ireland and Iceland [52]. Within Iceland, allozyme,
mtDNA and microsatellite data reveal significant genetic differ-
ences between localities and in some cases between sympatric
morphs, like the four morphs in Lake Thingvallavatn [61-63].
The genetic differentiation among the Thingvallavatn morphs is
rather weak however, the average Fy7over 10 microsatellites being
0.03, and a coalescence model suggests a scenario of early
divergence with subsequent barriers to gene flow [63]. The
strongest indication of genetic differentiation between sympatric
charr morphs is a fixed difference in one microsatellite marker
between two morphotypes in Lake Galtabol [64]. On a larger scale
the available data suggest repeated evolution of dwarf forms (small
fish with a benthic phenotype) in numerous Icelandic lakes and
stream habitats in the neo-volcanic zone [53,63].

Molecular genetics have also been used to address the
developmental basis of morphotype differences in Icelandic Arctic
charr [65,66]. Macqueen and colleagues [66] conducted a study of
the expression of 21 mTOR and growth regulation genes in 7
distinct Icelandic charr populations (thereof 5 with a small benthic
morphotype), and revealed substantial divergence
expression of many pathway components. For instance mTOR
is less and 4E-BP-1 more highly expressed in the populations of
small benthic populations compared to other populations, a

in gene
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finding consistent with the role of these genes in protein synthesis
and growth regulation [55,66]. It is not clear whether those
pathways are the foci of selection for changes in size and form, or
realisitors of genes that promote dwarfism. Notably, considering
our focus on immunological genes, the mTOR pathway is also
involved in regulation of innate immunity [67,68].

We hypothesized that local differences in habitat use and diet
between the morphs in Lake Thingvallavatn and among other
Arctic charr populations and morphotypes in Iceland could impact
variation in important immunological genes. Using samples from
all major phylo-geographic groups of Arctic charr [52] Conejeros
and colleagues [26] reported on rich allelic variation at the
MHCIIx locus within and between charr populations. Their data
showed considerable shared diversity within populations and
across a broad geographic range, but are also consistent with
differentiation among populations reflected in unique haplotypes
and frequency differences. Here we present a study on a smaller
geographic scale analyzing variation in MHCIIx and four other
innate immunity genes in Icelandic Arctic charr. Our focus was on
the three most common sympatric morphs from Lake Thingvall-
vatn and 9 populations of small benthic, anadromous and lake
resident charr from the neo-volcanic zone (south, west and north)
in Iceland — that we studied previously with 9 microsatellites [63].
Thus in this study we could interrogate local differences in gene
frequencies and probe geographic patterns in these loci in small
benthic charr in Iceland. The results indicate marked differenti-
ation between sympatric morphotypes in Lake Thingvallavatn in
two loci, Cath? and MHCII that we investigated further. Our
findings have bearing on the understanding of those unique
sympatric Arctic charr morphotypes, and immune system diversity
in organisms with evolutionarily recent resource polymorphism.

Materials and Methods

Sampling

Specimens came from three collections of Arctic charr from
Icelandic lakes and rivers. First, we utilized a sample of 30 large
bentivorous charr (LB-charr, not sexed) caught on their spawning
grounds at Olafsdrattur, and a total of 406 spawning small
benthivorous charr (SB-charr, 102 females/83 males) and
plantkivorous charr (PL-charr, 83 females/115 males) caught at
Olafsdrattur and four other spawning locations in Lake Thing-
vallavatn in October 2005 (Table 1, Figure 1, inset) (for details see
Kapralova et al. [63] ). Second, we used another sample of 76 SB-
charr (17 females/59 males), 102 PL-charr (51 females/males) and
17 LB-charr (1 female/16 males) collected in Olafsdrattur and
Mjoanes, in September and October 2010 respectively. These two
samples were pooled as our previous results [63] and the data from
2005, did not suggest genetic differentiation by location. The
sampling in Lake Thingvallavatn focused on the SB and PL
morphs, and the LB morph was mainly used for reference (hence
the relatively lower sample size). For the 2010 sample, sex, fork
length, weight, maturity and age were documented and parasite
load (see below) assessed for every individual. DNA was extracted
from a fin clip following a standard phenol-chloroform protocol.
Third, we utilized samples from 9 populations of Arctic charr
selected from a larger survey throughout Iceland collected in
2003-2006 (Table 1, Figure 1) previously described [63]. Those
specimens were not sexed.

Fishing in Lake Thingvallavatn was with permissions obtained
both from the owner of the land in Mjoéanes and from the
Thingvellir National Park commission. Ethics committee approval
is not needed for regular or scientific fishing in Iceland (The
Icelandic law on Animal protection, Law 15/1994, last updated
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with Law 157/2012). However, sampling was performed with
University College Aquaculture Research Station (HUC-ARC)
personnel. HUC-ARC has an operational license according to
Icelandic law on aquaculture (Law 71/2008), that includes clauses
of best practices for animal care and experiments.

Molecular Work and Data Processing

We screened for sequence variation in four immunological
genes: Cath2, Leap-2a, Hamp and MHCIx among the three
Thingvallavatn morphs (SB-, PL- and LB-charr). Moreover we
studied a 510 bp region of the D-loop (starting at base 25 in the S.
alpinus  mtDNA  reference  genome, number
NC_000861.1) as a putative neutral marker or marker of maternal
lineage sorting. Loci were amplified by PCR with TEQ
polymerase (Prokaria-Matis). We used previously published
primers for MHCIIx [26] and new primers for D-loop, Leap-2a,
Hamp and Cath? (Table S1), designed with Primer3 (http://
primer3.wimit.edu/ [69]). The following PCR program was used
for all primer pairs, except MHCIIo.. Denaturation at 95°C for 5
min; 35 cycles of 95°C for 45 seconds; 45 seconds at a marker
specific annealing temperature (Table S1); 1 min at 72°C, then a
final step of 10 min at 72°C. For MHCIIx we used touchdown
PCR, initial denaturation at 94°C for 5 min; 16 cycles of 94°C for
45 seconds, 62°C for 45 seconds (decreasing by 0.5°C. every cycle),
1 min at 68°C; followed by 25 cycles of 94°C for 45 seconds, 53°C
for 45 seconds, 1 min at 68°C; then a final step of 10 min at 68°C.
PCR products were ExoSap purified, sequenced (BigDye) and run
on an Applied Biosystems 3500xL. Genetic Analyzer (Hitachi).

Raw sequencing data was base-called by Sequencing Analysis
Software v5.4 with KBTMBasecaller v1.41 (Applied Biosystems),
and run through Phred and Phrap [70], prior to trimming primer
sequences, visual editing of ambiguous bases and putative
polymorphisms in Consed [71]. Fasta files were exported and
aligned with  ClustalW  (http://www.ebi.ac.uk/Tools/msa/
clustalw2/, [72]) and manually inspected for alignment errors in
Genedoc (www.psc.edu/biomed/genedoc) [73]. All sequences
where deposited as Popsets in Genebank under the accession
numbers KC590653-KC591103, KC591105-KC591218,
KC591220-KC591303, KC591303-KC591626 and KC596075-
KC596117.

accession

Genotyping MHCllo.

Due to potential duplications or deletions of MHC genes and the
ancestral genome duplications in salmonids [30] the presence of
MHC paralogous genes has to be investigated in charr. Initially we
used the SAALDAA primers from Conejeros et al. [26], (Table S1)
that pick up part of exon 2 and intron 2 of MHCIIx, but obtained
several satellite bands. To confirm the amplification of MHC,
bands of various sizes (from a non-optimized PCR) were cloned
into a TOPO vector (Invitrogen) and sequenced. Blastn was used
to find related sequences in Genebank (NCBI — nucleotide
collection — at latest in April 2013). We obtained bands from 4 size
ranges. Most importantly, a ~400 bp fragment sequenced from 2
individuals (10 clones from each) yielded 3 different fragments of
MHCIIy (Table S2). One of these fragments, represented by 5
clones from each individual, was 99% identical to Saal-DAA*0801
[26]. The other two versions, each restricted to one individual, had
98% and 99% identity to Saal-DAA*0305/0306/0307 and Saal-
DAA*0305 [26], respectively (Table S2). The largest band
(~720bp) was only present in ~1% of the samples and all ten
clones from this band were identical to MHCIIx haplotype Saal-
DAA*0104 (intron haplotype hapl as defined by [26]. Two
smaller fragments, ~250 bp and ~150 bp, contained mixed
products of various origins unrelated to MHCII.
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Figure 1. Sampling locations of Arctic charr in Lake Thingvallavatn and around Iceland. Fishes where collected in five locations within
Lake Thingvallavatn (left), and from 9 other locations and populations around Iceland. In Lake Thingvallavatn, O: Olafsdrattur, M: Mjoanes, Re:
Reydarvik, R: Ridvikurtangi and S: Skalabrekka. Around the island, either small benthic (SB) and lake resident (LR) or anadromous (AN) charr in Myvatn
(My, LR), Haganes (Ha, SB), Lon (Lo, AN), Grafarlond (Gr, SB), Grimsnes (Gr, AN), Birkilundur (Bir, SB), Hvita (Hv, AN), Trussa (Tr, SB) and Husafell (Hus,

SB).
doi:10.1371/journal.pone.0069402.g001

The PCR protocol was optimized to reduce unspecific small
auxiliary bands (see above) and we proceeded with PCR and direct
sequencing. The first 32 MHCIIo sequences from Lake Thingval-
lavatn (2005 sample) were amplified with the SAALDAA primers,
and sequenced with both forward and reverse primers (error rate
of Single nucleotide polymorphisms (SNP’s) called was <0.1%).
Subsequently only the forward primer was used to sequence the
PCR products. In total PCR and direct sequencing of 413
individuals from the 2005 sample gave sequences of three major
types. Those corresponded to the large fragment (intron haplotype
hapl) and the two versions (similar to Saal-DAA*0303 and Saal-
DAA*0305), that we denote as second intron haplotypes 14 and
15. The fragment identical to Saal-DAA*0801 was never
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observed. PCR and direct sequencing clearly revealed individuals
heterozygotic for a single base insertion/deletion polymorphism
(indel) in the intron. To us the data suggest that two MHCIIo
paralogous genes are present in Arctic charr, with hapl4, hapl5
and possibly hapl being alleles of one paralog. The optimized
PCR preferentially amplifies this paralog. This is supported by two
observations. First, in the direct sequencing we never observe Saal-
DAA*0801 (the two suspected paralogs are easy to distinguish) and
second, the indel in the second intron conforms to Hardy
Weinberg Equilibrium, within each morph (see below).

Because of low DNA availability and degradation in the 2005
Icelandic lake samples, we designed new primers (Table S1.) that
gave a shorter amplicon and none of the satellite bands. With
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those primers fragments of MHCIlo from 6 individuals were
amplified, cloned and sequenced (as before). We sequenced on
average 8 clones per individual and in all cases the genotyping was
in perfect concordance with the genotyping from PCR and direct
sequencing. The suspected paralogous copy of MHCIIu (similar to
Saal-DAA*0801) was found in a low proportion of the clones (5/
45 sequences). The 2010 sample from Lake Thingvallavatn and
the 9 Iceland wide populations were amplified and sequenced with
these primers. Although there is a potential for ascertainment bias,
as samples from two years (2005 and 2010) were genotyped with
different primers, the results do not indicate a bias; the frequency
of the indel variation was not statistically different between years
(tested within morphs, see details below). Finally, we also did a
restriction enzyme analysis, that could distinguish hapl4 and
hap15 on basis of a G/A polymorphism 13 bp down stream of the
indel (TGAATGAATCAATAGGATTAATGTAGTAAAA/
—)TAGTCACCTCACT(G/ATAACCTCTCACATGTTG-
TATCATCTGTGGTATGG). These two polymorphisms were
fully coupled in the sequencing data. This restriction digest of 28
individuals (equal number from 2005 and 2010) was in perfect
concordance with the PCR and sequencing data.

Population Genetic Analyses

Tassel version 2.0.1 (www.maizegenetics.org) [74] and DNAsp
4 (www.ub.edu/dnasp/) [75] were used to calculate and analyze
population genetic statistics. Tests of Hardy Weinberg propor-
tions, allele and genotype frequencies between morphs, locations
and were implemented in R (version 2.12, R Development Core
Team, 2011). Arlequin v3.5.1.2 was also used to estimate Fg-[76—
78]. We tested determinants of genetic differentiation between
morphs within Lake Thingvallavatn with analyses of molecular
variance (AMOVA) using Arlequin. We analyzed variation in 3
amplicons (D-loop, Cath2 and MHCIIn), within Lake Thingvalla-
vatn with a two level AMOVA with morph (LB, SB, SP) as a
categorical variable, split by sex or sampling location.

The genetic relationships between and within morphs were
estimated with an unrooted neighbor-joining tree. The tree was
constructed using Cavalli-Sforza’s genetic distances obtained from
nine microsatellite loci [63] with the program NEIGHBOUR
available in PHYLIP3.69 [79].
estimated by 1000 bootstrap replicates.

Confidence intervals were
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Table 1. Details on sampling locations and the number of individuals collected in 2005 and 2010.

Location Morphotype Code Latitude Longitude 2005 2010
Thingvallavatn Large benthic TH_LB 64°11 21°08 30 17
Thingvallavatn Small benthic TH_SB 64°11 21°08 185 76
Thingvallavatn Planktivorous TH_PL 64°11 21°08 198 102
Grimsnes Anadromous Gri_AN 64°00 20°53 27

Birkilundur Small benthic Bir_SB 64°01 20°57 30

Hvita Anadromous Hv_AN 64°42 20°59 35

Trussa Small benthic Tr_SB 64°43 20°46 29

Husafell Small benthic Hus_SB 64°41 20752 31

Lon Anadromous Lon_AN 66°05 16°55 27

Grafarlond Small benthic Gr_SB 65°15 16°09 31

Myvatn Lake resident My_LR 65°37 17°03 34

Myvatn-Haganes Small benthic Hag_SB 65°37 17°03 35
doi:10.1371/journal.pone.0069402.t001

Parasite Analyses

The 2010 samples from Lake Thingvallavatn were used to
assess infection rates and loads of the eye parasite Diplostomum sp.,
the intestine parasite Fubothrium salvelini, Nematodes and Diphyllo-
bothrium sp. Both eyes were extracted from each individual. The
contents of each eye was poured on a flat slide, covered with a slip
and processed under a Leica KL200 LED microscope at 2X
magnification. The slide field was divided into 45 blocks, and the
average number of metacercaria of Diplostomum sp. was estimated.
We first screened all blocks, and in case of even distribution among
them, counted the metacercaria in 5 randomly selected blocks, and
then calculated average infection rate. In case of non-uniform
distribution or low infection we counted the parasites in all 45
blocks. We recorded both counts and used an infection scale [60] ;
0= total absence of parasites; 1 =1 or fewer parasites per blocks;
2 =1 to 3 individuals per block; 3 =4 to 10 parasites per block and
4 represented more than 10 Diplostomum sp. individuals per block.
The estimation was done by a single observer (S. Reynisdottir) on
a single eye per specimen. The correlation of infection rate
between eyes was high (Pearson r=0.75, p<0.003, for 25 pairs of
eyes studied).

Infections by Fubothrium salvelini were assessed by carefully
extracting the liver, stomach and intestine and documenting the
presence or absence of the adult tapeworm. Infections of
nematodes and plerocercoids of Diphyllobothrium sp. were estimated
by counting individual nematodes and Diphyllobothrium cysts
internal cavities and linings of flesh [60,80]. The Duphyllobothrium
sp. infection rate was scored using the following infection scale: 0 =
the total absence of parasites; 1 =1 to 3 per individual; 2=4 to 7
per individual and 3 equaled more than 8 parasites per individual.
For Nematodes the number per individual was recorded. All data
on intestinal parasites were obtained by a single observer (C. B.
Santos). Data of the 2010 and 2005 samples from Lake
Thingvallavatn were deposited in the Dryad Repository: http://
dx.doi.org/10.5061/dryad.81884.

Statistical Analyses of Parasite Infections

Statistical analyses were performed in R. The effects of morph,
sex and weight on the load of individual parasite species was
investigated with multivariate regression. Summary statistics were
calculated for weight, age and parasite loads separately for each
morph. Sex ratio was also calculated. For Diphyllobothrium sp. and
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Diplostomum sp. mean relative density (MRD) was calculated [60].
Statistical models for parasite load were applied to morph pairs to
test for difference between the morphs. As parasite loads turned
out to be different between morphs tests for other factors affecting
the load were applied to the morphs separately. The models had
the general structure:

Parasite load = Sex + Weight + Age+ Error.

A term for genotype was also added to evaluate the impact of
MHCIIx variation within morphotypes. The ANOVA function
from the car package [81] was used to perform F-tests and log-
likelihood tests. Raw counts of Diphyllobothrium sp. and Diplost
sp. were analyzed by multivariate linear regression and variable
effects tested with an F-test. The infections were also summarized
with an infection scale [60] and analyzed using multinomial logit
regression fitted with neural networks [82], with consistent results.
Effects were tested with log-likelihood tests. Logistic regressions
were applied to Nematodes and Eubothrium salvelini occurrence and
effects were tested with log-likelihood test.

Results

Nucleotide Polymorphism in Arctic Charr Morphs in Lake
Thingvallavatn

Different molecular markers have revealed significant but weak
genetic differentiation among the Lake Thingvallvatn charr
morphs [61-63]. Here we make use of genetic material from
individuals previously typed for 9 microsatellite markers [63] to
explore variation in four immunological loci, and test for
indications of population differentiation.

Four segregating sites were observed in the mitochondrial D-
loop, but nucleotide diversity was rather low (Table 2). Of the four
substitutions only one (m38A>G) had significant difference in
frequency between PL and SB (¢° [,]=9.36, p=0.002). The
Fg7-0.001, which was lower than the Fg7 for microsatellites

PLOS ONE | www.plosone.org

Table 2. Polymorphism in the mitochondrial D-loop and three immunological genes.
Gene/region Morph Size (bp) N S Indel 4 g Haplotypes
D-loop All 509 406 4 0 0.001 0.001 7
PL 509 190 3 0 0.001 0.001 4
SB 509 216 4 0 0.001 0.001 7
Hamp 5' UTR PL/SB* 454 12 0 0 0.000 0.000 1
Leap-2a 3' UTR All 559 15 4 1 0.001 0.004 3
PL 559 8 2 0 0.001 0.003 2
SB 559 7 3 1 0.002 0.003 3
Cath2 (intron 2) PL/LB/SB* 219 258 0 0 0.000 0.000 1
Cath2 (peptide) All 396 258 3 0 0.001 0.001 4
PL 396 138 2 0 0.000 0.001 3
LB 396 35 1 0 0.000 0.001 2
SB 396 86 3 0 0.001 0.001 4
Cath2 (3' UTR) All 407 17 2 1 0.002 0.002 3
PL 407 6 1 0 0.002 0.001 2
SB 407 1" 2 1 0.002 0.002 3
S: Segregating sites. Indel: Segregating insertion/deletion polymorphism. 7: The average number of nucleotide differences per site. 0: Wattersons estimator of diversity
per site. *The data from different morphs are summarized together as no differences in frequence were observed.
doi:10.1371/journal.pone.0069402.t002

between charr morphs in Lake Thingvallavatn [63]. A comparison
with S. alpinus D-loop in genebank [52,83] shows that none of the
four D-loop sites are restricted to Iceland. Analyzes of molecular
variance (AMOVA) confirm that the observed variation in this
part of the mtDNA of Lake Thingvallavatn charr is not affected by
morph, sex or sampling location (Table 3).

We screened three innate immunity genes Hamp, Leap-2a and
Cath2 for nucleotide variation. The 454 bp Hamp amplicon,
positioned in the untranslated 5'-region, proved invariant in a set
of 12 specimens (6 PL- and 6 SB-charr). Four segregating sites and
one insertion/deletion polymorphism (indel) were found in the
3"UTR of Leap-2a. These were at approximately equal frequency
in SB- and PL-charr. The Hamp and Leap-2a genes where not
studied further. Of the three regions surveyed in the Cathelicidin
gene (spanning ~1 kb), only the peptide region showed frequency
differences between morphs (Table 2) urging further investigation.
The sequenced part of intron 2 was invariant in the sample,
whereas the three mutations (one indel and two SNPs) in the
3'UTR were at about the same frequency in both morphs.

Sequencing of the antimicrobial peptide encoding region of
Cath2 in 264 individuals from Lake Thingvallavatn 2005 revealed
three variant sites (including one singleton). One mutation
(g558C>A) was found in intron 2. Another (g819C>A) was
found in the exon encoding the mature antimicrobial peptide (in
cathelicidins this region is on exon 4, but due to the lack of exon 3
in charr Cath2 [40], it is encoded by the third exon in S. alpinus,
Figure 2A). This mutation is predicted to lead to an amino acid
replacement in the mature peptide (replacement of arginine by
serine at position 115, Figure 2B). This alters the charge of the
peptide, from +8 to +7.

We compared the frequency of the two mutations among
morphs, sex and sampling locations in Lake Thingvallavatn. The
g558C>A is largely restricted to the SB morph (11.3% frequency);
it is not found in the LB-charr and only present in two of 134 PL-
charr. The more common g819C>A variant shows significant
frequency differences between morphs (4° [2] =43.91, p<0.0001).
The A allele is at 27% frequency in SB-charr, but is rarer in LB-
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(5.7%) and PL-charr (6.4%). This translates into an Fgz of 0.17
(p<0.0001) between the SB- and PL morphs, and Fer=0.13
(p<<0.0001) between the LB and SB samples. No differences in
allele frequency where found between PL- and LB-charr, sexes or
sampling locations. Analyses of Molecular Variance (AMOVA)
confirmed these patterns (Table 3).

MHCllx Variation in Lake Thingvallavatn

Due to the structural richness of MHC regions and the fact that
the common ancestor of salmonids underwent a whole genome
duplication, studies of MHC variation in those species are rather
complicated. We tackled this by genotyping with PCR and direct
sequencing, and assessed the specificity and reproducibility of this
genotyping method by cloning and restriction enzyme assays.

We concentrated on the highly variable intron 2 of MHCIIu
[26], by DNA sequencing of 413 charr (LB, SB and PL) from Lake
Thingvallavatn. There was high degree of polymorphism, with
many segregating mutations (10 SNPs and 2 indels in ~300 bp).
Two major and two minor versions of MHCIIx were identified.
The two major haplotypes hap 14 and hap 15 are quite distinct,
being separated by 6 segregating sites and 1 indel. These
polymorphism were were described by Conejeros et al. [26], but
the haplotypes involving them are unique and probably arose by
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Table 3. Analyses of molecular variance (AMOVA) of three loci by morphotypes (PL, LB and SB collected in 2005) and either

location or sex.

Gene Terms d.f. Sum of squares  Variance Variation (%) Fixation index p-value

D-loop* Among morphs 1 03 0 0.83 FSC : —0.01 ns.
Among locations within morphs 7 0.39 0 —1.44 FST: —0.01 ns.
Within locations 389 58.58 0.15 100.62 FCT : 0.01 HREX
Total 397 59.27 0.15
Among morphs 1 0.17 0 0.4 FSC: —0.01 ns.
Among sexes within morphs 2 0.11 0 —0.66 FST: 0 ns.
Within sexes 393 58.17 0.15 100.26 FCT: 0 HREX
Total 396 58.45 0.15

Cath2 Among morphs 2 4.56 0.02 12.64 FSC : 0.03 e
Among locations within morphs 7 22 0.01 3.02 FST:0.16 **
Within locations 253 42.18 0.17 84.34 FCT :0.13 *
Total 262 48.94 0.2
Among morphs 2 4.56 0.03 13.48 FSC : 0.01 HEER
Among sexes within morphs 2 0.45 [ 0.47 FST:0.14 ns.
Within sexes 258 43.94 0.17 86.05 FCT : 0.13 HER
Total 262 48.94 0.2

MHCllo Among morphs 2 50.76 0.22 63.2 FSC : 0.03 i
Among locations within morphs 8 0.88 0 —0.13 FST: 0.63 ns.
Within locations 402 50.93 0.13 36.92 FCT : 0.63 xR
Total a7 102.57 034
Among morphs 2 51.44 0.22 64.06 FSC: —0.01 i
Among sexes within morphs 2 0.04 0 —0.33 FST : 0.64 ns.
Within sexes 408 50.91 0.12 36.28 FCT : 0.64 i
Total 412 10239 034

*Only PL and SB were sequenced for the D-loop. d.f.: Degrees of freedom. Significance: ns. p>0.05,

*p<0.05,

**p<0.01,

*4p.<0,001,

**60 20,001,

doi:10.1371/journal.pone.0069402.t003

recombination. In addition two rare versions were observed,
hapl6 (just one site diverged from hapl4) and hapl (Saal-
DAA*0104) which contains a Hpa retrotransposon [26]. The hap1
and hapl6 haplotype were extremely rare in all morphs, for
instance hapl was found in four SB-charr from 3 sampling
locations (1.08%) and one LB-charr (1.67%). Our analyses focused
on the two dominant haplotypes, hap14 and hapl5.

As described in Materials and Methods, the cloning results
suggest the presence of two distinct MHCIIu paralogs in Arctic
charr in Iceland. One of these was never observed with the PCR
and direct sequencing, but only detected in the cloning (prior to
PCR optimization). The hapl4 and hap15 haplotypes are readily
distinguishable based on several markers, such as the indel in the
intron. We are quite certain that these are allelic variations (true
haplotypes, not paralogous genes) because Hardy Weinberg
proportions are respected for the indel polymorphism in MHCIIo
intron in all three morphs in Lake Thingvallavatn (LB: 7 [1=0,
p=1, SB: ¥* []=1.77, p=04, PL: * [}]=6.2, p=0.05).
Furthermore restriction enzyme analysis of 28 individuals was in
perfect concordance with the PCR and sequencing data.

As predicted [19,27] the nucleotide diversity was higher in
MHCIIy than in the other sequences studied; m was an order of
magnitude higher than for Cath2 and the D-loop (Table 2 and

July 2013 | Volume 8 | Issue 7 | 69402



Genetic Differences among Arctic Charr Morphotypes

Exon IV 3'UTR

A
5UTR  Exonl Exon Il Exon Il
B
SS cathelin AMP
btCath
asCath

acCath_A819
acCath_C819

QKIRTRRIGKASGGS
QKIRTRRIGKASGGS

*ohkkk Ak rkk Kk kK *oekk kA kkk

dok ook kkkkk ok ok ok ok ok ok ok ok ok ok ok ok

\

QKIRTRRIGKASGGS SGSNMGRKDSKGGGRGRPGSGSRPGFGSSIAGASGVNHGGTRTA
QKIRTRRGKPSGGSRGSKMGSKDSKGGWRGRPGSGSRPGEFGSSTIAGASGRDOGGTRNA
SNMGRKDSKGGRRGRPGSGSRPGFGSSIAGASGVNHGGTRTA
SNMGRKDSKGGRRGRPGSGSRPGFGSSTIAGASGVNHGGTRTA

cekkk ok Kk

Figure 2. Polymorphism in the antimicrobial peptide Cathelicidin 2. Cathelicidins have a conserved 4 exon structure (A) with the exception
of the Salvelinus Cathelicidins type 2 which have lost exon 3 (marked black). The peptides (B) are produced as pre-pro-peptides, where exon 1-3
encode the signal sequence (SS) and the conserved Cathelin region, while exon 4 encodes the processing site and the mature antimicrobial peptide
(AMP). An amino acid alignment of this region for Cathelicidin 2 of Atlantic salmon (asCath), brook trout (btCath) and Arctic charr (acCath) shows the
predicted processing site (vertical line) and the observed polymorphism (predicted peptide position 115) in Icelandic Arctic charr. Identical amino
acids are marked with *, amino acids with a similar and somewhat similar function are marked with : and. respectively.

doi:10.1371/journal.pone.0069402.9g002

below). We found large differences in MHCIIo frequencies among
the three morphs studied from Lake Thingvallavatn (Table 4),
with hapl5 being dominant in both benthic morphs, 93.5% and
88.3% in SB- and LB-charr respectively. In contrast hapl5 was at
22% frequency in the pelagic morph (PL). This translates into an
Fgrof 0.56 (p<<0.0001) between PL- and LB-charr, 0.67 between
PL- and SB-charr (p<<0.0001), and unsignificant Fg7 between the
two benthic morphs. This represents the strongest genetic
differentiation reported to date between any of these three
sympatric morphs. These findings were further supported by
AMOVA, the effect of morphotype (benthic versus pelagic)
dominating the explained variance (above 60%), while sex and
sampling location did not have significant effects (Table 3).

This strong difference in MHCIIx frequency between morpho-
types prompted several questions. Is the frequency difference
consistent between years? What is the geographic distribution of
variation in MHCIIx within Iceland? Do the haplotypes correlate
with phenotypic attributes? We set out to answer these questions.
Some hypotheses of MHC evolution involve temporal dynamics,

sampled in 2005 and 2010.

for instance due to frequency dependent selection [19]. To
evaluate this we used two approaches. We first compared the
frequency of MHCIIx hapl4 in the three morphs (PL-, LB- and
SB-charr) in two cohorts sampled in 2005 and 2010 (Table 4). On
all three morphs the haplotype frequencies were similar for the two
years, ° [;1=0.0301, p=0.9, z° [;]=0.08, p=0.8, % [;] = 3.63,
p=0.06, for PL-, LB- and SB-charr, respectively. The age
distribution was similar in the fishes collected, for instance the
average age in PL sampled in 2005 and 2010 was 6.94 and 6.96
years respectively (weighted t-test, p=0.96). No significant
differences in haplotype frequency between years (x° [5] =0.59,
p =0.74) or age-classes were observed within morphs (Figure 3) (4°
[12]=17.4, p=0.13 for 2005 and z° [;5]=10.5, p=0.57 for
2010).

Cath2 and MHCllo Polymorphism Across Morphotypes
and Geographic Regions

As the frequency of variants both in Cath2 and MHCIIo deviated
significantly between morphs within Lake Thingvallavatn, we

Table 4. The frequency of the three most common MHCllz haplotypes in the arctic charr morphotypes from Lake Thingvallavatn

LB SB PL
Haplotypes 2005 2010 2005 2010 2005 2010
hap1 1 (1.7%) 0 (0.0%) 4 (1.1%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
hap14 6 (10.0%) 5 (14.7%) 20 (5.4%) 2 (1.3%) 309 (78.0%) 155 (76.0%)
hap15 53 29 (85.3%) 346 (93.5%) 150 (98.7%) 87 (22.0%) 49 (24.0%)
(88.3%)
N 30 17 185 76 198 102

N: the total number of fishes genotyped in each sample.
doi:10.1371/journal.pone.0069402.t004
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Figure 3. Frequency of MHCllz.variations in PL-charr from 2005 and 2010 by age classes. The frequency of MHCllz hap14 (with 95%
confidence intervals) by age of PL charr, collected in years 2005 (A) and 2010 (B) at the spawning grounds in Lake Thingvallavatn.

doi:10.1371/journal.pone.0069402.9g003

wanted to know if the observations reflect a local or a broader
geographic or ecological pattern. Our previous microsatellite study
[63] enabled inference of relatedness among 9 Arctic charr
populations from the north, west and south of Iceland (Figure 1
and 4A). We surveyed variations in both genes in those small
benthic, anadromous and lake resident populations and superim-
posed on the microsatellite based tree.

There was very little polymorphism in MHCIIo in other
populations and lakes, at maximum 3 haplotypes in each
population (Table 5). The hapl4 haplotype which dominated in
the PL in Lake Thingvallavatn was only found in one other
population (SB from Husafell), at 3% in 2 individuals (Figure 4B).
The other haplotype (hapl5), most common in the LB and SB
morphs in Lake Thingvallavatn, dominated all other populations

PLOS ONE | www.plosone.org

(average frequency 94%, lowest 81%). Several other haplotypes
were observed, but all are one or few bases removed from hapl5
and at very low frequency. The results show clearly reduced
variation in this locus in Icelandic stocks of Arctic charr, except in
the sympatric morphs in Lake Thingvallavatn. Summaries of
nucleotide diversity reveal this pattern, as m (which responds to
frequency and diversity of haplotypes) is larger in PL-charr from
Lake Thingvallavatn than in the other charr populations surveyed
(Table 5).

The Cath? g819C>A was genotyped in 7 populations (105
individuals total) and its frequency differed significantly between
them (3° [4] =91.92, p<0.0001, Figure 4C). The g819C>A was
dominant and even fixed in several small benthic charr
populations (Birkilundur 100%, Haganes 86% and Grafarlond
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Figure 4. Arctic charr population history and variation in Cath2 and MHClle. A) A genealogy of the sampled populations was built from 9
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doi:10.1371/journal.pone.0069402.9g004

59%). Recall, within Lake Thingvallavatn the variant was at
highest frequency in the SB morph (27%), but lower in the other
two. However g819C>A was also fixed in the anadromous
Grimsnes population in the south of Iceland, and at high
frequency in the lake resident population of large charr in Myvatn
(71%) in the north. This translates into high interlocal Fgs; for
instance 0.85 between the anadromous populations in Hvita and
Grimsnes. The average Fg7 for Cath? among all the populations
was 0.29, while the average Fg; for microsatellites was 0.245 [63].
While the frequencies of the Cath2 g819A certainly differ between
the populations, the Cath2 locus is not associated with morphotype,
as for instance g819A is fixed in both anadromous and small
benthic populations. However, the Cath2 variation may corre-
spond, to some extent, to the relatedness of populations (Figure 4).
Note however that not all branches in the tree have strong
bootstrap support. Finally, there is no concordance between the
variation in the two loci (MHCIIo and Cath2), and no linkage
disequilibrium was observed between Cath? and MHCIIo varia-
tions and the microsatellites (¢° [5] =0.11, p=0.94).

Tests of Association between MHCllx Variation and
Macroscopic Parasitic Infections

Frandsen and colleagues [60] reported a difference in parasite
infection rate and prevalence between the four morphs in Lake
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Thingvallavatn. Can the differences in MHCIIx allele frequencies
between the PL morph and the benthic morphs in Lake
Thingvallvatn be driven by habitat-specific selection, caused by
marked differences of infectious agents in habitat and diet? In
immunity MHCII presents antigens of pathogens such as parasites
[20], which may lead to evolutionary change [19]. We tested
whether the MHCIx variation is related to infection rate/
prevelance of four classes of macroscopic parasites (Diphyllobothrium
sp., Diplostomum sp., parasitic nematodes and Fubothrium salvelinz), in
Lake Thingvallavatn charr. We sampled PL- (102), SB- (76) and
LB charr (17) in the fall of 2010, screened for parasites and
ascertained MHCIIo haplotypes. The pattern of parasite infection
rate and prevalence (Table 6) is consistent with previous reports
[60], with the Diplostomum sp. being most common in LB- and SB-
charr, but the other three parasites infecting a very high fraction of
PL-charr. This was confirmed by a generalized linear models
analyses (Table 7), which also revealed the effects of age
(Eubothrium salvelini in PL charr, Diplostomum sp. in SB- and LB
charr), weight (Diplostomum sp. in SB- and LB charr and
Diphyllobothrium sp. in PL charr) and sex (only significant for
Nematodes in PL charr). We added a term for the genotype, to test
the effects of MHCIIx on each of those parasite types. This was
only done for the PL. morph as there was almost no segregating
variation in the benthic morphs. The genotype terms were not
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Table 5. Nucleotide diversity in MHCllx in Lake
Thingvallavatn 2010 sample and 9 other populations around
Iceland.

Location Size (bp) S z g Haplotypes
TH_LB 293 8 0.013 0.014 3

TH_SB 293 8 0.003 0.010 3

TH_PL 293 10 0.018 0.014 4

All Lake 293 10 0.024 0.012 4
Thingvallavatn

Gri_AN 293 7 0.008 0.011 3

Bir_SB 293 2 0.001 0.003 2

Hv_AN 293 3 0.002 0.004 2

Tr_SB 293 3 0.002 0.005 2

Hus_SB 293 8 0.009 0.013 3

Lon_AN 293 3 0.003 0.005 3

Gr_SB 293 3 0005 0005 2

My_LR 293 2 0.001 0.003 2

Hag_SB 293 0 0.000 0.000 1

All Iceland w/o 293 12 0.003 0.011 8

Lake Thingvallavatn

S: the total number of segregating sites. n: The average number of nucleotide
differences per site. 0: Wattersons estimator of diversity per site. See Table 1 for
population identification code.

doi:10.1371/journal.pone.0069402.t005

significant, neither as a class or quantitative variable (Table 7).
The models were evaluated both on a parasite-scoring-scale and
raw counts, with consistent results (T'able 7). For exploration we
also tested interaction of genotype with other terms, which yield
borderline significance for Genotype by Sex interaction with
nematodes (p =0.07). Considering the number of tests preformed
and the poor replicability of genetic interaction terms [84] this is
almost certainly a spurious association. In summary, the data do

Table 6. Parasite infection rate in Lake Thingvallavatn Arctic
charr in 2010.
Morph
Parasite Measure SB LB PL
Diphyllobothrium sp.  MRD 0.07 0.02 1.25
Prevalence 15/113 5/19 125/131
Count 0.22 0.4 10.13
Score 0.15 037 232
Diplostomum sp. MRD 46.84 8.69 9.93
Prevalence 109/113 19/19 131/131
Count 1921 1783 703
Score 2.10 2.26 1.53
Nematodes Prevalence 1/82 115 55/105
Eubothrium salvelini ~ Prevalence  6/82 2/15 68/105
MRD: mean relative density. Both count and score are summarized by
arithmetic means.
doi:10.1371/journal.pone.0069402.t006
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not suggest that infection rate (or infection intensity) of those four
parasite classes is affected by the frequency of MHCII alleles in
Lake Thingvallavatn charr.

Discussion

The sharp distinction in form, size and ecology between the four
sympatric Arctic charr morphs in Lake Thingvallavatn [8,59] calls
for explanation. Earlier studies found evidence of subtle but
significant genetic differentiation among the morphs within the
lake [50,61-63,85]. Here we report substantial genetic differen-
tiation among the morphs within the lake, in two of the four
immunological genes investigated (Cath?2 and MHCIIx). The
pattern of divergence is not the same for both loci. In Cath2 the
strongest differentiation is between SB charr and the other two
morphs studied (LB- and PL charr). Whereas in the case of
MHCIIx the PL charr deviates markedly from the two benthic
morphs within the lake, which have very similar haplotype
frequencies. No differentiation was detected in two other innate
immunity genes (Hamp and Leap-2a) nor the D-loop. The lack of
association between mtDNA haplotypes and morphotypes, is
consistent with results on variation in Arctic charr (dwarf and large
forms) in 56 Siberian lakes [83]. Allele frequency differences can
be caused by neutral and selective forces, but several studies have
documented the impact of selection on immunological genes, with
most focus on MHC loci [19,33,45].

Which Evolutionary Forces Shaped the MHCll» and Cath2
Variation in Iceland?

We observe large frequency differences of the MHCII
haplotypes in the three sympatric morphs in Lake Thingvallavatn.
The highest Fy7was 0.67 between PL- and SB charr, while the Fgs
was 0.03 on average for 10 microsatellites between these morphs
[63]. This is in contrast to very litde difference in MHCIo
variation among 9 Arctic charr populations from around Iceland
(Figure 4). It is quite surprising to discover large differences at the
MHCII among morphs within one lake, while the populations
around Iceland were very similar. The pattern for Cath? was
different. A modest Fg7 of 0.23 among morphs in Lake
Thingvallavatn is notably (~8X) higher than the Fgr for
microsatellites [63]. On a larger geographic scale, we observe
very large Fgy ‘s at Cath? among populations (highest 0.85).
However there is no association of Cath? polymorphism with
morphotype, while there may be a connection between relatedness
and Cath2 variation. The extent of differentiation in this locus is
however stronger than seen in any individual microsatellite
marker. In the absence of population genetic data spanning the
relevant genomic regions, we cannot test for positive selection on
those (or neighboring) genes.

Coalescence simulations [63] based on microsatellites (on the
same fish studied here) support a model of very limited gene flow
among the PL- and SB morphs in Lake Thingvallavatn, for the last
10.000 years. Also, the observed variation in microsatellites among
arctic charr populations in Iceland and Lake Thingvallavatn,
suggests substantial standing genetic variation in the anadromous
stock(s) that colonized Icelandic waters. The reduced gene flow,
due to isolation of populations or morphs, and local selective
pressures could thus lead to differentiation in loci with fitness
consequences. Thus the observed patterns in MHCIIa and Cath2
within Lake Thingvallavatn and between Icelandic populations
may reflect chance, history, and/or interplay of isolation and
selection.
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infections in Lake Thingvallavatn charr in 2010.
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Table 7. Generalized linear model analyses of the contribution of morph, sex, weight, age and MHCllx genotype on parasite

Parasite N Morph Weight Age Sex MHCller
Diphyllobothrium sp. 263 PL vs. SB***; B vs. PL*** pL** ns. ns. ns.
Diplostomum sp. 263 PL vs. SB**¥; LB vs. SB*** SB***; | B*** SB*; LB*** ns. ns.
Nematodes 202 PL vs. SB***; LB vs. PL** ns. ns. PL* ns.
Eubothrium salvelini 202 PL vs. SB**¥; |B. vs. PL*** ns. PL* ns. ns.

Significance: ns. p>0.05,

*p<0.05,

**p<0.01,

*¥p<0,001.
doi:10.1371/journal.pone.0069402.t007

Reduced Variation in the MHCllo in Iceland?

One feature in the data demands special attention. MHC: loci
often exhibit extreme polymorphism and signs of balancing
selection in fish systems [19]. In Iceland MHCIIo variation is very
much reduced in all populations, except for the PL. morph in Lake
Thingvallavatn (which has two common haplotypes). Conejeros
and colleagues [26] studied MHCIIx variation in 6 populations of
Arctic charr across Europe, Asia and North America, and found
much higher diversity (7 or more haplotypes in 5 populations; at
most 14 individuals sequenced in each). Only the population from
Trinité (2 haplotypes at 50% frequency in 9 individuals) had
comparable level of variation to that observed in Lake Thingval-
lavatn PL charr. Part of the explanation may be that, we are
studying a slightly shorter fragment of the MHCIIx locus than
Conejeros and associates [26]. Many studies have documented
excessive variation in MHC genes within and between fish
populations, but there are also examples of local differences, in
part attributable to natural selection [19].

The low diversity in MHCIIo. among Icelandic Arctic charr
populations may reflect history, for instance low diversity within
the colonizing stock or a bottleneck in recent history. Alternatively
strong selection for certain AMHCIIx alleles in specific populations
may also have played a role. A putative case in point is is the
observation that the PL-charr is clearly distinct from the two
benthic morphs in Lake Thingvallavatn. MHC driven mate choice
has been extensively studied, with documented examples of both
assortative and disassortative mating [86-88]. Eizaguirre and Lenz
[19] conclude that under parasite mediated selection, MHC
mediated assortative mate-choice could promote local adaptation
and divergence. Our data cannot be used to evaluate such
scenarios, but it would be interesting to test whether MHCII
variation correlates with mating preferences of Arctic charr.

Fsr mapping and Putative Functional Alleles

Fg7 mapping can reveal both loci under positive selection and
genes with relaxed purifying selection in certain populations, that
stand out of the distribution of neutral variation. In this study a
small fraction of the genome was interrogated and candidates were
selected based on prior data and focus on particular pathways.
This approach, although unlikely to find genes with the strongest
signal of differentiation between groups, provided curious patterns
for the sequenced candidates. In future genome wide single base
polymorphism  [89], microsatellite [90,91], Rad-tag screens
[92,93] or even next generation sequencing of transcriptomes
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[94,95] from distinct populations/species are interesting strategies
to study this system in more detail.

The MHCII genomic regions have been cloned and sequenced
in S. salar [96], but not in S. alpinus. In light of the results, it would
be most interesting to clone and sequence the MHCII regions
from Arctic charr, possibly from distinct morphs, populations or
continents. Also, in salmon the regions contain several immuno-
logical genes, so differentiation at MHCIIo could be caused by
linked variants in other genes [31]. As we studied only a part of
intron 2 in MHCIx it is rather unlikely that functional
polymorphism(s) were surveyed in the data. The situation is
different with Cath2 where the strongest signal was a segregating
polymorphism that leads to an amino acid replacement, serine to
an arginine (S115R), in the predicted antimicrobial peptide region.
Cathelicidins are like most AMPs cationic and target specifically
the negative charged bacterial membrane, which ultimately leads
to the killing of the bacteria [34]. It has been suggested that Cod
cathelicidins (codCath) kill bacteria through lysis [44], but so far
little is known about the functional mechanisms of other fish
cathelicidins, which are less charged than codCath. Therefore it is
difficult to speculate on the effect an amino acid change in the
mature cathelicidin antimicrobial peptide in Arctic charr. Phylo-
genetic comparisons show that positive selection operates on
charged amino acids in AMPs [45]. Thus it is tempting to
speculate that the Cath2 S115R replacement is functional. One
way to test whether Cath2 is under positive selection is to assess Fgg
s along the locus and neighboring regions, to identify the marker
with strongest signal of genetic differentiation between morphs and
test formally for positive selection [97].

Tests of Association of Genes and Ecological Attributes
Several studies in S. salar and related species reveal strong
differentiation in immunological genes among populations or
morphotypes [27,98,99], which may be in part due to differences
in parasite diversity in distinct habitats. Eizaguirre et al. [100]
demonstrated with an experimental set up that parasitic nematode
infections change MHCIIP allele frequencies in a single generation.
Here we tested for association of four classes of large and prevalent
parasites (Diplostomum sp., Diphyllobothrium sp., Eubothrium salvelini
and Nematodes) and the MHCIIo haplotypes, but found no
significant associations. This does not formally exclude the
possibility that those parasites were not involved in shaping
MHCIIx diversity, for methodological and other reasons. On the
methodology side, the sample size is relatively small, compared to
association tests in human genetics [101,102] and the phenotypes
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are not measured in controlled environment as in quantitative
genetics [103,104]. Also, we only tested for association in a sample
of 4-10 year old fish from 2010, but an association may have been
between the genotype and parasites in the past (over many
generations or during episodes of high infection) or only in
juveniles. Reverse quantitative genetics can identify ecological
variables of importance and shed light on the interplay of history,
population genetic and ecological factors. However, failure of such
phenotype hunts do not devalue the genetic signatures of
differentiation among groups. QTL mapping within Arctic charr
populations have identified chromosome regions that relate to
ecologically important traits, e.g. spawning time and development
[58,105,106].By combining population genetic and QTL mapping
techniques, loci related to adaptation can be identified [107].

Freshwater Fishes to Study Adaptation

Following the last glaciation Nordic freshwater fishes expanded
territories. Several features, like novel habitats,
geographic isolation of stocks, in some cases small population
sizes or bottlenecks, reduced gene flow and the relatively simpler
ecosystem of arctic areas, could lead to rapid evolution via both
drift and selection. Some Arctic charr populations show dedicated
resource morphotypes while others retain ancestral phenotypes
[8,108]. Similar to the stickleback and Mexican cavefish [9,109]
the dozens of morphologically and ecologically distinct Arctic
charr populations are de facto natural experiments in parallel
evolution [53,63]. Genome-wide markers make it possible to
clucidate the history of the distinct and even sympatric populations
[93,107,110] and identify genes relating to adaptation

into new
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[14,15,95,111]. Northern species like Arctic charr, which have
invaded similar habitats multiple times and adapted to them in
relatively short evolutionary time, provide an interesting system to
dissect the genetics and ecology of parallel evolution, however
complicated and challenging.
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3.1 Abstract

This paper describes the embryonic and early post-hatching craniofacial cartilage
development in Arctic charr. Four Arctic charr varieties are studied: three natural morphs
(planctivorous (PL), large (LB) and small benthic (SB) from Thingvallavatn) and an
aquaculture strain from the Holar Aquaculture stock (AC). Arctic charr display segmental
development of the pharyngeal arches as is characteristic for all vertebrates, and the order
of events accompanying the craniofacial development is the same as in other teleosts. The
four Arctic charr varieties under study showed differences in their head growth rate. The
head starts out smaller in the benthic morphs but, due to a sharp increase in growth rate at
hatching, the LBs end up with the largest heads at the post-hatching stages. The hatching
period appears to be associated with significant allometric shape changes. SB differed
markedly from the others in terms of the orientation and/or shape of their ontogenetic
trajectories and LB differed from AC and PL in the length of their ontogenetic trajectories.
Together the data illustrate the strength of applying multivariate geometrics to analyses of
recently evolved trophic polymorphism during early development

28



3.2 Introduction

Understanding the series of events through which complex phenotypes arise and evolve is
a central aim in evolutionary-developmental biology. These processes (evolution and
development) are highly intertwined: diverse phenotypes arise through development and
changes in developmental processes will provide the necessary variation for natural
selection to act upon (Gould, 1977; Hall, 1999). Ontogeny can be regarded as the
progression of an organism through a multidimensional space defined by its size, shape
and age (Klingenberg, 1998). Thus a common strategy in studying the relationship
between evolution and development is to compare ontogenetic trajectories between closely
related species (Klingenberg, 1998).

The vertebrate skull, one of the most complex anatomical units, is composed of three broad
regions (spanchnocranium, neurocranium and dermatocranium) each of which is
characterised by a unique developmental and evolutionary origin. The feeding apparatus
(formed by the splanchnocranium and its dermal counterparts) is probably the most
complex and evolutionary diverse mechanical unit (Westneat, 2005) and its development
involves derivatives of all three germ layers (Szabo-Rogers ef al., 2010). The pharyngeal
skeleton originates from neural crest cells, which migrate from the dorso-lateral margins of
the neural folds (Basch and Bronner-Fraser, 2006) in a segmented manner following their
rhombomeric origin (Lumsden ef al., 1991; Knight and Schilling, 2006). Each segment
will give rise to a differentiated arch, which is subdivided, into individual dorsal and
ventral structures (Schilling and Kimmel, 1997). Evolutionarily, the striking variation seen
among vertebrates in the shape and function of pharyngeal cartilages is thought to be the
result of subtle differences in the patterning of the neural crest cells (Knight and Schilling,
2006).

Many morphological characters can be measured by simply recording their presence or
absence; other traits can be quantified based on simple linear measurements such as length
and width of the beak in birds (Badyaev et al., 2001), length of the jaws, or measures of
mechanical levers in African cichlids (Albertson et al., 2003, 2005) or measures of pelvic
girdle etc. in sticklebacks (Shapiro ef al., 2004). Some structures however, call for more
complex description of shape, that can summarise global and local changes in shape and
proportion (Palsson and Gibson, 2004; Klingenberg, 2010). These methods have
successively been used in studying morphological variation in development (Parsons et al.,
2008, 2014; Young et al., 2010; Gonzalez et al., 2011).

Using zebrafish as a model for studying the evolution and development of the craniofacial
elements in fish undoubtedly has its advantages in terms of ease of experimental
manipulation and controlled mutagenesis and a large body of work has generated valuable
insights into these processes (Neuhauss et al., 1996; Schilling, 1997; Yelick and Schilling,
2002; Dale et al., 2009). On the other hand, the extraordinary variation in natural
populations of freshwater fish provides an advantage model organisms do not have,
namely a unique possibility to examine actual evolutionary processes (Klingenberg, 2010).
Ongoing work on African cichlids (Albertson and Kocher, 2005; Albertson et al., 2005;
Roberts et al., 2011; Parsons et al., 2014) and threespine sticklebacks (Kimmel et al.,
2005, 2012; Jamniczky et al., 2014) and Antarctic notothenioid fishes (Albertson et al.,
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2010a) is generating important insights into the mechanisms involved in the developmental
aspects of morphological evolution.

The four morphs of Arctic charr (Salvelinus alpinus) from Lake Thingvallavatn, Iceland
offer an excellent opportunity to study craniofacial development in a context of a recent
ecological diversification. These four morphs differ extensively in morphology, life history
characteristics and ecology, as reflected in different habitat use, diet and endoparasite
fauna (Jonsson et al., 1988; Snorrason et al., 1989; Frandsen et al., 1989; Malmquist et al.,
1992; Sandlund et al., 1992). The Arctic charr morphs show subtle but significant neutral
genetic differentiation, and despite spatio-temporal overlap in spawning the level of gene
flow between the two smallest, most abundant morphs in the lake, planktivorous (PL) and
small benthivorous charr (SB), is restricted (Kapralova ef al., 2011). Even more
pronounced genetic differentiation among the morphs in the lake was detected in a study
on immune system genes (Kapralova et al., 2013), suggesting that parts of the immune
system had diverged among Arctic charr morphs in Thingvallavan since the colonization of
Iceland 10 000 years ago.

Based on the morphology of their feeding apparatus and the shape of the snout, the four
morphs can be classified into two morphotypes: a limnetic and a benthic (Snorrason et al.,
1989). The two morphs belonging to the limnetic morphotype, a planktivorous (PL) and
piscivorous (PI) charr, have pointed snouts and evenly protruding jaws. The two morphs
belonging to the benthic morphotype, a small (SB) and a large benthivorouscharr (LB),
have blunt snouts, short lower jaws and relatively large pectoral fins (Snorrason et al.,
1989). Common garden experiments have indicated that the differences in trophic
morphology of the Thingvallavatn morphs have a genetic basis (Skulason et al., 1989).
Moreover the characteristic short lower jaws and blunt snouts of LB and SB are thought to
be embryonic characteristics retained in the adult through heterochronies, which are
partially genetically determined (Skulason ef al., 1989) and to some extent the result of
plastic responses to different environments (Parsons et al, 2010, 2011). The role of
heterochrony in the development of Arctic charr morphologies was further demonstrated in
a study showing that some skeletal elements of the head start ossifying earlier and/or faster
in small benthivorous embryos than in embryos derived from the planktivorous morph
(Eiriksson et al., 1999).

In this study we used the recently evolved variability in Icelandic Arctic charr to address
questions about craniofacial development and evolution. We used dense developmental
series to study early craniofacial development and to characterize the timing of major
events in Arctic charr cartilage and bone development. We then selected 8 pre- and post-
hatching time points during the period when the major craniofacial elements are laid down
and the ossification of the trophic apparatus starts. We studied the ontogenetic trajectories
related to growth in three of the Thingvallavatn morphs, SB and LB (representing a benthic
morphotype) and PL and an aquaculture strain AC (representing a limnetic morphotype).
Given that egg size and yolk quality differ between the studied varieties of Arctic charr
(Skulason MSc thesis 1986, Leblanc PhD thesis 2012) and that maternal effects can
influence embryo size considerably throughout embryonic development (see references in
(Perry et al., 2004), we expect that the Arctic charr varieties under study will differ in size
during ontogeny. We also studied the role of allometry in the development of Arctic charr
morphs. As the selected time-points covered stages of intense cartilage growth we
hypothesised that the differences in shape associated with size will account for an
important part of the variation. Finally, we selected four developmental time points to
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study changes in head shape throughout ontogeny, before and after hatching. We defined
the craniofacial shape changes throughout development for each Arctic charr variety as a
multidimensional trajectory (ontogenetic shape trajectory) in morphological space (see
(Adams and Collyer, 2009) for details). We then compared the three attributes (size,
orientation and shape) of these trajectories between morphs.

3.3 Material and methods

3.3.1 Sampling of parent fish and rearing of offspring

For this study we used developmental time-series from pure crosses of four Arctic charr
varieties, three morphs, LB-, SB- and PL-charr, from lake Thingvallavatn and an
aquaculture strain from the Holar breeding programme (AC) (Svavarsson, 2007). Sexually
ripe fish from Thingvallavatn caught using gill-nets. Fishing permissions were obtained
from the Thingvellir National Park Commission and the land-owner of Mjoanes farm. Fish
were killed by a sharp blow to the head and for each group eggs from several females were
pooled and fertilized using milt from several males from the same group. Eggs were reared
under identical conditions in the same hatching tray (EWOS, Norway) with constant water
flow (at approximately 5°C at all times) and in complete darkness at the Holar University
College experimental facilities in Verid, Saudarkrokur. The rearing and collection of the
embryos was performed according to Icelandic regulations (license granted to Holar
University College aquaculture and experimental facilities in Verid, Saudarkrokur). Water
temperature was recorded twice daily to estimate the relative age of the embryos using tau-
somite (ts) units defined as the time it takes for one somite pair to form at a given
temperature (Gorodilov, 1996).

3.3.2 Staining and photographing

To describe the events of craniofacial differentiation and growth of the head, samples were
collected throughout development, fixed and stored in 4% PFA and stained for cartilage
(alcian blue) and bone (alizarin red) using a modified protocol from (Walker and Kimmel,
2007).

Based on the information obtained from these developmental series four embryonic (200,
223, 246, 266 1s) and four post-hatching stages (293, 305, 315 and 336 ts), were selected
for studying the variation in craniofacial development and growth of the four Arctic charr
varieties. A total of 296 individuals (Table 3.1) were stained and photographed. The
staining and photographing was performed in 3 staining batches: 1) embryonic stages 200,
223, 246 and 266 ts, 2) stages 293, 315 1s, and 3) stages 305 and 336 ts. In each batch,
samples from the four morphs under study were stained simultaneously.

Stained individuals were placed in a petri dish containing 50 ml of 1% agarose gel and
immobilized with dissecting needles to ensure the correct positioning of the embryo. The
head of each individual was photographed ventrally facing left using a Leica (MZ10)
stereomicroscope. The same magnification (2.0x) was used for each photo.
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Table 3-1 Sampling scheme outlining the number of individuals per morph and time point.

Morph
Stage (ts) Period AC LB PL SB
200 embryonic 8 9 9 8
223 embryonic 5 7 6 9
246 embryonic 5 8 7 8
266 embryonic 6 7 8 5
293 post hatching 12 10 12 12
305 post hatching 12 14 15 10
315 post hatching 15 12 8 9
336 post hatching 6 13 10 11
Total 69 80 75 72

3.3.3 Geometric morphometrics

We selected 15 landmarks (Figure 3.1) to describe the overall shape of the head as seen
from the ventral side, focusing on elements such as the hyoid arch, the lower jaw and the
ethmoid plate (Figure 3.2). Landmarks were digitized using tps.DIG2 (Rohlf, 2006). The
landmarks do not occupy the same 2D plane, but since the embryos are small and the
ventral aspect is rather flat at these stages of development, all of the landmarks are in
comfortable focus for digitizing. The shape information (landmark co-ordinates) for each
specimen was then extracted using a Generalized Procrustes analysis (GPA) in Morphol
(Klingenberg, 2011), and after accounting for scale, position and orientation all specimens
were superimposed on a common coordinate system (Rohlf and Slice, 1990; Goodall,
1991). Only the symmetric component of shape variation (Klingenberg et al., 2002) was
used for subsequent statistical analysis. The Centroid Size (defined as the square root of
the sum of the squared distances of all landmarks from their centroid) for each specimen
was retained after the Procrustes fit and was used as a measure of individual head size.
Each individual was digitized twice and the results from the repeated measurements were
averaged in the final data set. Measurement error was assessed by performing Principal
Component Analysis (PCA) on a dataset containing the two landmarking sessions. The
Principal component analysis did not show any separation between the landmarking
sessions (Figure S3.1).
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Figure 3.1 The head of an Arctic charr embryo/juvenile (stage 346 ts). The 15 landmarks (6 pairs of
bilateral and 3 mid-line landmarks) used in this study are indicated by red dots. Landmarks were selected to
describe the ventral aspect of the head shape of pre-hatching embryos and post-hatching juveniles of Arctic
charr, focusing in the major craniofacial elements such as Meckel’s cartilage, the hyoid and branchial
arches and the ehtmoid plate.

3.3.4 Statistical analysis

First we studied the changes in head size (represented by the Log transformed Centroid
size or LCS) throughout development for all four experimental groups. We compared the
head size of morph offspring throughout ontogeny using a two-way ANOVA, followed by
post hoc tests to evaluate which groups showed significant differences in head size.

To investigate whether morph offspring differed in shape we performed a Procrustes
ANOVA (Klingenberg et al., 2002). The shape variation was studied over eight
developmental time points (200, 223, 246, 266, 293, 305, 315 and 336 1s) for the four
varieties of Arctic charr AC, LB, PL and SB with a linear model (y~Morph+Stage, where
y is a two dimensional array of shape data). The significance of the tests was assessed with
1000 permutations. These analyses were performed using the ProcDist.Im function in the
geomorph package (Adams and Otarola-Castillo, 2013) in R.

We next investigated the nature of shape changes related to size (allometry) for the four
Arctic charr varieties by performing Principal Component Analysis (PCA) on the whole
dataset in MorphoJ. The shape changes associated with the three major Principle
Components (PCs) were visualised using deformation grids.
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Finally we used the phenotypic trajectory analysis approach (Adams and Collyer, 2007,
2009; Collyer and Adams, 2007) to describe and compare shape craniofacial changes
throughout ontogeny for the four studied groups, at four developmental stages. Briefly,
ontogenetic shape means were computed for each combination of morph and time from
linear models. The three attributes (size, orientation and shape) of the ontogenetic shape
trajectories were then computed and compared statistically between morphs. Trajectory
size is defined as the path-length distance along the ontogenetic trajectory and is calculated
as the sum of the distances between adjacent developmental points. Trajectory orientation
is described as the direction of its first PC. Trajectory shape is computed using Procrustes
approaches and corresponds to the relative configuration of points expressed in the
ontogenetic data space (for analytical details see (Adams and Collyer, 2009). The
ontogenetic shape trajectory analyses were performed using the trajectory.analysis function
in the geomorph package (Adams and Otarola-Castillo, 2013) in R.

3.4 Results

3.4.1 Development and growth of craniofacial elements

Although the trophic apparatus of salmonids can be described as primitive amongst
teleosts, the key elements seen in development are the same and as in other fish species
(Schilling and Kimmel, 1997; Albertson et al., 2010b). Viewed from the ventral side the
early, post-hatching (Stage 346 ts) craniofacial anatomy of Arctic charr is composed of
seven pharyngeal arches (Figure 3.2, Table 3.2 for abbreviations). The first arch (the
mandibular arch) is composed of a ventrally located Meckel’s cartilage, forming the base
for the dermal ossification of the lower jaw elements, and the adjoining palatoquadrates
with dorsolateral projections that form the bases for the upper jaws. The dentary bone is
taking shape and the articular-angular bone is starting to form. The ventral part of the
second arch (the hyoid arch) is composed of a large, central basihyal cartilage, next to that,
a pair of small cartilages (the hypohyals), and next to those, a pair of large cartilage bars
(the ceratohyals) extending postero-laterally and dorsally around the pharynx. The
remaining five pharyngeal arches are composed of four mid-ventral basibranchial
cartilages, four paired hypobranchial cartilages and five large paired ceratohyals. The
ventral aspect of the ethmoid plate and the first stage of ossification of upper jaw elements
can be seen (maxillae, pre-maxillae and denticles of the pre-maxilla and the palatines)
(Figure 3.2).
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Figure 3.2 Arctic charr juvenile showing major elements of the splanchnocranium as well as the anterior
projections of the neurochranium, e, g, the ethmoid plate (see Table 2 for abbreviations). Ossification of the
lower jaw (dentary and Articular-angular bones) and upper jaw elements (premaxillas and maxillas) is
advancing and teeth are being formed.

The first craniofacial elements to appear as clear units of cartilage formation in the ventral
aspect are the two trabeculae (appearing at stage 138 ts) and the Meckel’s cartilages and
palatoquatrates (at stage140 ts), shortly followed by the major elements of the hyoid and
branchial arches (stages 150-160 ts in Figure 3.3, Table 3.2). The minor elements (the
hypo- and basi-branchials) of these arches appear later and over a more extended period
(stages 187-266 ts in Figure 3.3, Table 3.2). The ethmoid plate starts forming around stage
180 ts and is fully fused centrally at stage 215 ts. Rudiments of the maxillae can be seen as
early as stage 200 ts and ossification of the maxillas and the dentary has started at stage
246 1s. At the time of hatching (280-285 ts) all major craniofacial elements have formed.
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Figure 3.3 Development and growth of craniofacial cartilage elements in pre-hatching Arctic charr
embryos. Ventral views of 8 stages: Stage 150 ts: the trabeculae (1), Meckel’s cartilages (mc) and
palatoquandrates (pq) can be seen clearly. Stage 160 ts: the hyoid arch (hy) and the ceratobranchials (cb)
can be seen. Stage 187 ts: the ethmoid plate (ep) starts forming as well as the hyohyal (hh) and the
basibranchial (bb) cartilages. Stage 200 ts: fusing of ep, hypobranchial cartilages (hb) 1-2 and cb 5 are
visible. Stage 215 ts: rudements of the maxillae (mx) appear. Stage 223 ts: the basihyal cartilage (bh) starts
forming and hb 3-4 appear. Stage 246 ts: mx and the dentary start ossifying. Stage 266 ts: pre-hatching, the
majority of the craniofacial cartilage elements are in place and some have started ossifying. Scale bar: 1mm.

The post-hatching period is characterised by growth of all cartilage elements (Figure 3.4).
The first craniofacial elements belonging to the dermatocranium to start ossifying are those
bordering the Meckel’s cartilages (Figure 3.4). Ossification can already be detected in late
embryonic stages (246 1s) (Figure 3.4). A detailed description of the timing of major
events during Arctic charr craniofacial development and the corresponding timing in
zebrafish is given in Table 3.2.
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Table 3-2 Sequence of appearance of craniofacial cartilages in Arctic charr.

Time of Time of
Cartilage Abreviation appearance in appearance in
Arctic charr* zebrafishe

Mandibular arch ma
Meckel's cartilage mc 146 55
palatoquandrate Pq 146 53
Hyoid arch ha
basihyal bh 223 54
ceratohyal ch 150 54
hyosymplectic hs 155 57
Branchial arches
basibranchials bb 187 68
hypobranchials hb 200 74
ceratobranchial 1 cb 1 160 56
ceratobranchial 2 cb2 160 60
ceratobranchial 3 cb 3 187 64
ceratobranchial 4 cb 4 187 68
ceratobranchial 5 cb 5 200 64
Neurocranium
trabeculae t 138 45
ethmoid plate ep 187 52
Dermatocranium
maxilae mx 200
pre-maxilae pm 336
anguloarticular aa

293
branchiostegal rays br

* Time is reported in ts (the time it takes for 1 somite to be formed, Gorodilov 1996).
* Time is reported in hour post fertilisation at 28.51C (from Schilling and Kimmel 1997)



293 305 315

336 346 370

Figure 3.4 Development and growth of craniofacial cartilage elements in post-hatching Arctic charr
Jjuveniles. Ventral views of 6 stages (293, 305, 315, 336, 346, 370 ts). These stages are characterised by fast
growth of the craniofacial elements, especially the basihyal cartilage (bh) and emergence and ossification of
important dermal bones such as the dentary (d), articular-angular (aa), maxillae (mx), premaxillae (pm),
and the branchiostegal rays (br). The emergence of the gills (g) can be seen clearly. Scale bar, Imm

3.4.2 Ontogenic trajectories in four Arctic charr morphs

Overall, the growth rate of the head (represented by the slope of LCS) appears to be
similar among Arctic charr varieties up to the first hatching stage (Figure 3.5).
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Figure 3.5 Pre- and post-hatching growth of the head of four Arctic charr varieties. Size is shown as the Log
transformed centroid size (LCS) # 95% c.l. for AC (black), LB (blue), PL (green) and SB (red) at eight
developmental time points (200, 223, 246, 266, 293, 305, 315 and 336 ts). A light blue bar indicates the
hatching period.

A more detailed analysis (ANOVA: LCS ~ Morph x Time) showed that the morphs differ
significantly in head size (F3,; = 103.133, p < 0.0001), and posthoc tests showed that the
LCS is significantly different between all pairs of morphs except PL and AC (Table 3.3).
The significant interaction of Morph and Time effects (p < 0.0001) also indicates
differences in the slope of growth among morphs at this fine developmental time scale.
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Table 3-3 Differences in head size (LCS) between four Arctic charr morphs (AC, LB, PL and SB) and eight
developmental stages.

Df SS MS F P

Morph 3 0.452 0.151 103.133 <2e-16
Time 7 10.417 1.488 1019.746  <2e-16
MxT 21 0.263 0.013 8.595 <2e-16
Total 226 0.330 0.002

diff Iwr upr p adj
LB-AC 0.053 0.035 0.070 0.000
PL-AC 0.016 -0.001 0.034 0.076
SB-AC -0.063 -0.080 -0.045 0.000
PL-LB -0.036 -0.053 -0.019 0.000
SB-LB -0.115 -0.132 -0.098 0.000
SB-PL -0.079 -0.097 -0.061 0.000

Noticeably, LB and SB start out having smaller heads than PL and AC, and while PL
shows a steady and more or less constant rate of increase in head size during the first 5
intervals, the growth in AC, LB and SB appears to slow down prior to hatching but then
may enjoy a spurt of growth around hatching. This was most prominent in LB which had
the largest heads in all samples taken after hatching. Although the increase of head size
was consistent throughout development for all studied groups, two deviations from this
pattern can be seen (Figure 5): what appears to be a decrease in head size between stages
246-266 1s for AC and between stages 305-315 ts for SB. We think this likely reflects
stochastic fluctuations as we had a relatively low sample size, especially for the pre-
hatching stages.

The sharp increase in head size during hatching is also reflected in craniofacial shape
changes. PCA analysis involving all the shape data (all stages and morphs) showed that the
first three components captured most of the variation (Figure 6). The two periods (pre- and
post-hatching) separate along PC1 (explains 34% of the variation) (Figure 6). Changes in
shape along PC1 are usually strongly associated with changes in size, i.e. growth. This was
confirmed by regressing PC1 scores on LCS (variation explained = 87%, p < 0.0001). So,
as expected, the overall changes in shape along the PCl axis are overwhelmingly
allometric. Shape changes along PC2 (24%) mainly included mainly narrowing of the
lower jaw (Figure 6A), whereas changes along PC3 (19%) consisted in a forward
protrusion of both the hyoid arch and the lower jaw (Figure 6B). Interestingly the scores
for PC2 and 3 appear to correlate with PC1 in the embryonic, but not in the post-hatching
stages.
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The role of allometry was further investigated with a multivariate regression of shape
(represented by the Procrustes distance coordinates) on size (LCS). The results showed
that size related shape changes during this period account for 29.9 % of the total shape
variation and this result was highly significant (p < 0.001). Moreover this proportion was
very similar for all groups, 35.6%, 33.07%, 25.25% and 31.95% for AC, LB, PL and SB,
respectively. Interestingly, the PCA results clearly indicate that there is a shift in shape
changes following hatching.
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Figure 3.6 Scatter plots of the PCA scores (A) PC2 on PC1 and B) PC3 on PC1) for the entire dataset (all 8
developmental stages) of Procrustes distances. The embryonic stages are shown with red dots and post-
hatching stages with blue dots. Confidence ellipses are set to 90%. The scale factor represents a change in
Procrustes distance and it’s set to 0.1 Wireframes depict shape changes associated with the two Principal
Components shown in each graph. In the wire frames the extreme - shape is shown in black and the extreme
+ shape is shown in grey.

To investigate the shape changes associated with ontogeny in the different Arctic charr
groups we did a Procrustes ANOVA (Table 4). Our results showed that, as expected, the
largest amount of the total shape variation was attributed to developmental time (F7, 257 =
37.9, p <0.001) and a significant but smaller amount of the shape variation was attributed
to Morph (F3257= 7.6, p < 0.001) and the interaction of Morph by Time (F32s7=3.09, p =
0.009).
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Table 3-4 Procrustes ANOVA comparing the shape variation over eight developmental time points for four
varieties of Arctic charr (AC, LB, PL and SB).

df SS MS F P R’
Morph 3 0.043 0.014 7.622 0.001 0.039
Time 7 0.503 0.072  37.900  0.001 0.458
MxT 21 0.123 0.006 3.094 0.009 0.112
Total 257 1.097 0.004

To further analyze the developmental events related to hatching we studied the ontogenetic
trajectories comprising four developmental stages, two before and two after hatching and
compared them between AC, LB, PL and SB (Figure 3.7). Overall, the ontogenetic
trajectories of shape change followed similar overall patterns for all four Arctic charr
varieties and showed a positive association with PC1. Shape changes along PC1 mainly
reflect extension of the lower jaw and a slight narrowing of the head. The trajectories
showed substantial fluctuation along the PC2 axis, which captured a narrowing of the head
in the pre-hatching period. Curiously, this is abruptly reversed upon hatching (Figure 3.7).
All four morphs showed a somewhat comparable zig-zag pattern. This large fluctuation in
PC2 may reflect changes in shape due to hatching (grey bar in Figure 3.7). The three
natural morphs from Lake Thingvallavatn (LB, SB and PL) displaied similar starting shape
for their trajectories, whereas the aquaculture variety (AC) had a sligtly different starting
shape. Interestingly, this appeared to change just before hatching, where AC, LB and PL
displaied similar shapes, whereas SB takes a dip along PC2. In the first post hatching stage
LB appears to have a different shape from the other three groups and spurs along PC2. The
two larger Arctic charr varieties (AC and LB) display similar end shapes of their
ontogenetic tragectories. The end shape of the ontogenetic shape trajectory appears also to
be relatively similar for the two small morphs from Lake Thingvallavatn (PL and SB).
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Figure 3.7 Scatter plot of the PCA scores for 4 of the developmental stages (200, 266, 293 and 336 1s).
Overlaid are ontogenic trajectories of the four Arctic charr groups (AC = black, LB = blue, PL= green and
SB=red) based on. For each trajectory, the first point is shown in white, the middle points are in gray and
the last point is displayed in black. Wireframes depict shape changes associated with PC1 (upper left inset)
and PC2 (lower right inset (see explanation in Fig. 3.6). Wireframes depict shape changes associated with
the two Principal Components shown in each graph. In the wire frames the extreme - shape is shown in
black and the extreme + shape is shown in grey.

We used the trajectory tool in geomorph to compare statistically the size, orientation and
shape of the ontogenetic trajectories of the three studied groups. It showed (Table 3.5) that;
i) the largest Arctic charr morph in this study, LB, differed significantly from AC and PL
in the size or magnitude of the ontogenetic trajectory (Table 3.5A), ii) the dwarf form, SB,
differed significantly from the three other Arctic charr varieties in the orientation of the
trajectory (Table 3.5B), and iii) SB also differed significantly from LB and AC in the
overall shape of the ontogenetic trajectory (Table 3.5C). The data indicate that the small
benthic morph differs both in terms of the shape and orientation of the ontogenetic
trajectory, at the stages around the hatching of the Arctic charr.
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Table 3-5 Size, orientation and shape defining the evolutionary-ontogenic trajectories of four varieties of
Arctic charr (AC, LB, PL and SB). Each component of the evolutionary-ontogenic trajectories was compared
between Arctic charr groups (varieties) using 1000 permutations. Significance codes are as follows: ‘**’
0.01 and "*’ 0.05. Four developmental time points were used (200, 266, 293 and 336 1s).

A) Size:
AC
AC -
SB
PL
LB

B) Orientation:
AC
AC -
SB
PL

LB

C) Shape:
AC
AC -
SB
PL
LB

44

SB
0.04

SB

90.67**

SB
0.33*

PL
0.01
0.03

PL

35.97

69.03*

PL
0.22
0.23

LB
0.08%*
0.04
0.07*

LB
15.90
95.49%*

34.13

LB
0.23
0.31%*
0.20



3.5 Discussion

Here we studied the chronology of events accompanying the emergence of major
craniofacial elements, their growth and shape changes, and the early ossification of
accompanying dermal bones in Arctic charr. As expected, the elements taking part are the
same and the sequence of events is very similar to what has previously been described for
other teleosts (Schilling and Kimmel, 1997). This is not surprising as it is the rate and the
timing of developmental processes that are thought to be most essential for evolution
(Gould, 1977; Klingenberg, 1998). In Arctic charr the formation, growth and shape
changes of the cartilage elements of the head skeleton occur mainly during late embryonic
stages and by the time of hatching the majority of these elements are already in place
(Figure 3.3). The late embryonic and post-hatching stages are characterised by rapid
growth and by ossification of the mandibular elements that are essential for the start of
efficient breathing movements and later for feeding (Figure 3.3 and 3.4).

The growth of the head follows a similar general pattern in all groups: a steady growth rate
during the embryonic stages and a spurt of growth during hatching. The variation seen
among the groups was mainly due to; (i) a temporary slowing of growth just before
hatching followed by a spurt of growth during and just after hatching seen in SB, LB and
AC, (ii) the spurt of growth being largest in LB, and (iii) the differences in head size at the
start of measurements (SB, LB < PL, AC). The spurt of growth during hatching may result
from the removal of the mechanical constrains of the chorion (Ninness ef al., 2006). In the
early post hatching stages the growth of the head appears accelerated in LB compared to
SB, the other benthic morph. To some extent the differences in the growth rates trajectories
between the four groups under study may stem from maternal effects related to egg size
and quality. It has been previously shown that SB has the smallest egg size of all
Thingvallavatn morphs (Skulason MSc 1986) and the specific energy content of eggs is
significantly higher in LB than in SB and PL (Leblanc, 2011 PhD thesis). This is relevant
because the juveniles rely on maternally deposited energy after hatching, as feeding will
not start for another 6 weeks. Irrespective of the underlying mechanisms, heterochronic
shifts in the timing and rate of growth during development can affect craniofacial
morphogenesis and lead to evolutionary change (Alberch et al., 1979).

3.5.1 Changes in trophic apparatus shape related to hatching

As was previously noted the period when hatching occurs is accompanied by a marked
increase in head size. This transition was also linked to significant allometric shape
changes (Figure 3.6). These shape changes concerned mainly the Meckel’s cartilage and
the width of the head and to a lesser extent the hyoid arch. While Meckel’s cartilage
transition from embryonic to post-hatching stage is accompanied with an overall forward
protrusion of the lower jaw, the hyoid arch appears to move slightly posteriorly. This
phenomenon may have a mechanistic explanation, as upon hatching the lower jaw will be
freed of all membranes attaching it to the remaining egg yolk, while the hyoid and gill
arches remain attached to the egg yolk for some time after hatching. The allometric shape
changes accompanying the hatching process appear to be relatively uniform for all the
Arctic charr varieties studied here.
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3.5.2 Morph specific changes in shape of the trophic apparatus
during development

Studying allometric shape changes of the craniofacial elements during ontogeny in
polymorphic groups is a step towards understanding the role of ontogeny in phenotypic
divergence. During ontogeny, organisms will change shape and these shape changes will
prepare them for vital functions such as respiration and feeding (Zelditch et al., 2012).
Here we studied the ontogenetic shape trajectories of four varieties of Arctic charr with
different feeding regimes: three natural morphs from Thingvallavatn: two that feed on
benthic invertebrates (LB and SB) and one that feeds on planktonic crustaceans in water
column (PL), as well as an aquaculture variety (AC). Overall the four varieties displayed
similar allometric shape changes with ontogeny as described above for the transition from
embryonic to post hatching stages. Interestingly, the starting point of the shape trajectory
was similar for the three natural morphs and different from AC, whereas the end point of
the trajectory was more similar within the small and the large variaties. This may be due to
the fact that during the first stages the cartilage is still being formed, while in the late
embryonic stages are characterised with intense growth.

The four groups studied also exhibited significant differences in one or more of the
attributes of the multidimensional ontogenetic trajectories, namely their size, their
orientation and/or their shape. LB exhibited had the longest trajectory of all studied groups
(i.e it accumulated the most shape changes throughput ontogeny) and differed significantly
from PL and AC. On the other hand, the small benthic (SB) differed significantly from the
other three groups, in terms of the orientation of their ontogenetic shape trajectory. While
all the studied groups appear to undergo similar shape changes prior to hatching, the
negative progression of SB along PC2 in the stage prior to hatching is much more
pronounced and might represent a real SB specific phenomenon related to the pre-hatching
stages. Furthermore, at the end of the trajectory, the average SB extends also shortest along
PC1. Those two observations probably explain why this morph has significantly different
axes of shape variation compared to AC, LB and PL.

Furthermore, SB displayed marginally significant differences in the shape of the
ontogenetic trajectory compared to LB and AC (but not PL). Unlike the other two
attributes of the ontogenetic trajectory (size and orientation) the differences in the shape of
ontogenetic trajectories are more difficult to interpret (Collyer and Adams, 2013). These
differences may imply that SB exhibits differences in the size and/or the orientation in
specific portions of its ontogenetic trajectory (Collyer and Adams, 2013). Interestingly, AC
and PL did not show significant differences in any of the three attributes of the ontogenetic
trajectories. These two groups are characterised by limnetic type morphology, therefore the
similarity of their ontogenetic shape trajectories might be related to the similarity in the
processes of involved in the building of this morphology.

In summary, Arctic charr display segmental development of the pharyngeal arches as is
characteristic for all vertebrates, and the order of events accompanying the craniofacial
development is the same as in other teleosts. The four Arctic charr varieties under study
showed similar general patterns of head growth during this period of development with a
slowing down of growth rate around hatching. On a finer scale the growth rate differed
among groups. The head starts out smaller in the benthic morphs but, due to a sharp
increase in growth rate at hatching, the LBs end up with the largest heads at the post-
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hatching stages. The hatching period appears to be associated with significant allometric
shape changes. Finally, the SB morph differed markedly from the others in terms of the
orientation and/or shape of their ontogenetic trajectories. Together the data illustrate the
strength of applying multivariate geometrics to analyses of recently evolved trophic
polymorphism during early development.
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3.7 Appendix

0.097 . Landmarking 2
0.06
0.031
0.00 1
-0.03 1

0.06

Principal component 2

-0.09 T T T T T T T |
-0.12 -0.09 -0.06 -0.03 0.00 0.03 0.06 0.09 0.12

Principal component 1

Figure S 3.1 - Scatter plot of the PCA scores for the entire dataset. The two separate landmarking sessions
are shown in grey (Landmarking session 1) and black (Landmarking session 2). No separation between the
two landmarking sessions could be detected.
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4.1 Abstract

This paper describes subtle but significant differences in early post-hatching craniofacial
morphology between the progeny of three sympatric morphs of Arctic charr from Lake
Thingvallavatn, Iceland (LB, SB and PL). Furthermore the effect of of hybridisation on the
craniofacial morphology of Arctic charr was investigated by creating reciprocal crosses
between two contrasting Arctic charr morphologies PL and SB. Interestingly, the hybrid
crosses exhibited extreme (or transgressive) craniofacial phenotypes compared to the pure
morph breeds, indicating that the ecological divergence within the lake might be enhanced
by lowered fitness of hybrids. While the shape of the feeding apparatus of the two
reciprocal hybrid crosses differed significantly from both pure crosses, no significant
differences in head shape were detected between the two reciprocal crosses, suggesting
that genetic effects outweigh maternal effects.
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4.2 Introduction

Understanding the developmental processes that translate genetic variation into phenotypes
is a central aim in evolutionary and developmental biology. While a great deal of work has
focused on genetics (Mousseau and Roff, 1987; Kruuk ef al.,, 2008) and selection
(Kingsolver ef al., 2001), less is generally known about the process by which phenotypic
variation arises (Travisano and Shaw, 2013). Evolution acts on a wide range of
ecologically-important traits, but in general morphological traits of ecological relevance
are easiest to study and the genotype to phenotype map best understood (Smith and
Skulason, 1996; Grant, 1999; Marchinko, 2009). This is in part because we have
considerable understanding of the principles of development and morphogenesis (Tickle,
2011) and many analytical methods are available for studies of variation in morphology
(Bookstein, 1997; Slice, 2006; Zelditch et al., 2012). Thus, morphological variation
currently is an ideal tool for disentangling the genotype-phenotype map for ecologically
improtant traits in an evolutionary context.

Morphological traits related to habitat use and especially to feeding have been widely
studied, not only on a macroevolutionary scale (Sidor, 2001; Darrin Hulsey, 2006; Bhullar
et al., 2012), but also within closely related species (Schluter, 2000; Abzhanov et al., 2004;
Roberts et al., 2011a) and even within populations (Smith and Skulason, 1996; Schluter
and Rambaut, 1996; Kimmel ef al., 2005; Landry and Bernatchez, 2010). Classic examples
of adaptive radiations resulting in trophic morphology diversification include Darwin's
finches (Lack, 1945; Bowman, 1961; Grant, 1999), African cichlids (Fryer, 1972; Cooper
et al., 2010) and honeycreepers (Amadon, 1950; Freed et al., 1987). Adaptive radiation
and divergence can be envisaged as localized ecological selection acting on an ancestral
phenotype where variations in the natural range of ancestral phenotypes tend towards
maximizing fitness at “adaptive peaks”. As fitness is maximized at adaptive peaks,
intermediate phenotypes in valleys between the adaptive peaks are expected to have lower
fitness (Simpson, 1965). Differences in fitness between “peak” and “valley” phenotypes is
a mechanism that eventually leads to the emergence of reproductive isolation (Gavrilets
and Losos, 2009). The tempo and mode of reproductive isolation is related to the relative
fitness differences between peak and valley phenotypes but gene flow among incompletely
isolated populations may still occur (Seehausen et al., 2014). Although gene flow is often
considered to break down adaptive divergence by homogenizing genetic variation among
populations, occasionally it can also facilitate adaptive divergence by maintaining genetic
diversity (Swindell and Bouzat, 2006). Whether incompletely isolated populations
progress towards speciation or divergence breaks down will depend on the underlying
genetic architecture (Nosil et al, 2009) and the antagonism between selection and
recombination (Felsenstein, 1981).

Crossbreeding between closely related species and/or divergent populations can sometimes
have a positive effect on fitness and ultimately lead to diversification. This diversification
by hybridisation can be triggered by a fluctuating environment, where even a small
proportion of the hybrids are fitter than the parental populations, leading to establishment
of new alleles by introgression (Dowling and DeMarais, 1993; Salzburger et al., 2002) or
even to new evolutionary lineages (Barton, 2001). However, outcrossing does not usually
enhance fitness but most often leads to outbreeding depression, where hybrids between
closely related species and even divergent populations of the same species exhibit lower
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fitness than the parental groups (Burke and Arnold, 2001). Outbreeding depression in
hybrids reflects accumulation of incompatible genes and is usually attributed to the
breaking up of co-adapted loci or favourable epistatic relationships (Lynch, 1991; Matute
etal., 2010).

The vertebrate skull is one of the most complex anatomical units and displays an
astonishing diversity in shapes among taxa, involving interactions between derivatives of
all three germ layers (neural crest, mesodermal mesenchyme and surrounding epithelia).
Bones determine how adjacent soft tissue and musculoskeletal elements connect and
function together. Studying the growth and shaping of cartilage and bone elements of the
feeding apparatus during morphogenesis and its subsequent remodelling can help us
understand how trophic morphologies evolve in response to environmental cues. Although
natural populations do not have the advantages of model organisms in terms of ease of
experimental and genetic manipulation, they offer a unique possibility to examine actual
evolutionary processes (Klingenberg, 2010). Ongoing work on various evolutionary
models such as Galapagos finches (Abzhanov et al., 2004, 2006; Mallarino et al., 2011,
2012), African cichlids (Albertson and Kocher, 2005; Albertson et al., 2005; Roberts et al.,
2011b; Parsons et al., 2014) and threespine sticklebacks (Kimmel et al., 2005, 2012;
Jamniczky et al., 2014) is generating important insights into the mechanisms involved in
the developmental aspects of morphological evolution.

Many morphological traits can be quantified on the basis of univariate measurements of
key structural and/or functional elements, for example the length and width of the beak in
birds (Badyaev et al., 2001), length of the jaws, or measures of mechanical levers in fish
(Albertson et al., 2003, 2005). Some structures call for more complex description of shape
that can summarise global and local changes in shape and proportions (Palsson and
Gibson, 2004; Klingenberg, 2010). Such methods have successively been applied in
studying morphological variation in trophic development (Parsons et al., 2008, 2014;
Young et al., 2010; Gonzalez et al., 2011).

North-temperate lacustrine ecosystems are ideal for studying the development and
evolution of ecologically important morphological traits. These systems are evolutionarily
youngas much of their diversity arose after the last glacial period (about 10,000 years ago),
and often they exhibit high levels of phenotypic polymorphism. Such polymorphisms can
be subtle, but often populations are composed of distinct phenotypes (morphs) that show
differences in morphological, ecological and life history traits. Looking at these traits
across populations (and even species) also reveals parallelisms as seen in the repeated
occurrence of benthic and limnetic morphs which are thought to have arisen via common
adaptations to the different challenges in foraging on benthic versus open water (pelagic)
prey (see references in (Skulason and Smith, 1995; Schluter and Rambaut, 1996)).

Icelandic Arctic charr (Salivelunus alpinus) originates from a single Atlantic lineage
(Brunner et al. 2001). This species shows an extremely high level of variation in
phenotype between populations and many examples of polymorphism (i.e. sympatric
morphs) have been documented (Gislason et al., 1999; Snorrason and Skulason, 2004;
Woods et al., 2012). The four morphs of Arctic charr in Lake Thingvallavatn represent an
extreme case of intralacustrine diversity. These morphs, grouped into two morphotypes,
differ greatly in morphology of the trophic apparatus (Snorrason et al., 1989). The two
morphs belonging to the limnetic morphotype, a planktivorous (PL) and a piscivorous (PI)
charr have pointed snouts and evenly protruding jaws, while the two benthic morphs, a
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small (SB) and a large benthic (LB) have blunt snouts, short lower jaws and relatively
large pectoral fins (Snorrason ef al., 1989). The four Arctic charr morphs also exhibit
strikingly clear differentiation in life history characteristics and ecology as reflected in
different habitat use, diet and endoparasite fauna (Jonsson et al., 1988; Frandsen et al.,
1989; Malmquist ef al., 1992; Sandlund et al., 1992). Common-garden experiments have
indicated that the development of Arctic charr trophic morphologies and behaviour are the
result of both genetic differences (Skulason et al., 1989a; Skulason et al., 1993) and
putatively adaptive plastic responses to different environments (Parsons et al., 2010;
Parsons, Sheets, et al., 2011).

The charr morphs all spawn in the stony littoral habitat but the timing of spawning and the
level of synchronization differs among the morphs (Skulason et al., 1989b). Opportunities
for interbreeding among morphs do exist, and in the case of the two smallest and most
abundant morphs (PL and SB) interbreeding opportunities seem wide open. Yet, a recent
study, using neutral microsatellite markers revealed subtle but significant genetic
differentiation between the three most common morphs in Lake Thingvallavatn (LB, PL,
and SB). Further, coalescent simulations indicated a scenario of early evolution of
reproductive isolation followed by slow divergence by drift with restricted gene flow
(Kapralova et al., 2011). Notably, a study of immune system genes revealed more
pronounced genetic differentiation, consistent with a scenario where parts of the immune
systems have diverged substantially among Arctic charr morphs in lake Thingvallavatn
(Kapralova et al., 2013). Previous studies of the ontogeny of the Thingvallavatn morphs
indicate a clear genetic basis for their morphological differences, likely rooted in
developmental heterochrony with significant maternal effects (Skulason ef al., 1989a). The
role of developmental heterochrony in the evolution of the Thingvallavatn Arctic charr
morphs was further demonstrated in a study showing that some skeletal elements of the
head start ossifying earlier and/or faster in small benthivorous embryos than in embryos
derived from the planktivorous morph (Eiriksson et al., 1999).

Here we use the recently evolved Arctic charr morphs of Lake Thingvallavatn and
landmark based geometric morphometrics to address questions about the evolution and the
development of diverging craniofacial morphologies. To this end we generated pure morph
crosses between three natural morphs of the Thingvallavatn morphs (SB, LB and PL), as
well as an Aquaculture strain (AC). When juveniles emerge and start active foraging and
feeding, the environment can induce plastic responses, e.g. different types of prey can
induce changes in craniofacial morphology (Parsons et al., 2010). To minimise the
environmental effects on morphological variation, we used a common garden set-up and
studied early post-hatching stages spanning from immediately after hatching to shortly
before the start of exogenous feeding. We predicted that craniofacial variation between
morphs, although subtle, would already be detectable in the early post-hatching stages. We
used a similar experimental set up to address questions regarding the effect of
hybridisation between two contrasting Arctic charr morphologies (SB and PL) on the
craniofacial morphology of the hybrid progeny. To account for maternal effects on
craniofacial morphology we established reciprocal hybrid crosses between PL and SB.
Using a similar experimental setup, although at later developmental stages, (Skulason et
al., 1989a) showed that some hybrid crosses between Arctic charr morphs have
intermediate morphologies and other crosses strongly resemble the maternal parental
group. We expect to detect these effects of hybridisation on craniofacial morphology in
early post hatching stages before the onset of exogenous feeding.
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4.3 Material and methods

4.3.1 Sampling

For this study we established developmental series for six crosses, four pure morph and
two hybrid crosses. The pure morph crosses included three morphs (LB, SB and PL) from
Lake Thingvallavatn and one of a strain from the Holar aquaculture station (AC). The two
reciprocal hybrid crosses were made between PL and SB. For that mature fish from the
planktivorous (PL), small and large benthic morphs (SB and LB) were caught in Lake
Thingvallavatn using gill-nets. Fishing permissions were obtained from the Thingvellir
National Park Commission and the landowner of Mjdanes farm. The AC crosses were
made with parents from the Hoélar breeding program (Svavarsson, 2007). A total of six
experimental groups (Table 4.1) were set up for this study (4 pure morph crosses and 2
reciprocal hybrid crosses). For each pure morph cross, eggs from several females were
pooled and fertilized using milt from several males from the same group. In the case of the
reciprocal hybrid crosses between PL and SB, eggs from several PL females were pooled
and fertilized with the milt of several SB males and vice versa. After stripping of gametes
the fish were killed by a sharp blow to the head. The eggs were reared at approximately
5°C in a hatching tray (EWOS, Norway) under constant water flow and in complete
darkness at the Holar University College experimental facilities in Verid, Saudarkrokur.
The rearing and collection of the embryos was performed according to Icelandic
regulations (licence granted to Holar University College aquaculture and experimental
facilities in Verid, Saudarkrokur). Exact water temperature was recorded twice daily to
estimate the relative age of the embryos using tau-somite T units defined as the time it
takes for one somite pair to form at a given temperature (Gorodilov, 1996). Embryos were
collected throughout development (Table 4.1) and fixed in 4% PFA.

Table 4-1 Sampling scheme: shown are the developmental stages (in tau units), the number of individuals
per morph for each time point and staining batches. AC=Aquaculture charr from the Holar breeding stock,
LB and SB =large and small benthic charr, respectively, PL=Planctivotouscharr, PLx= hybrid cross
between PL female and SB male, SBx=hybrid cross between SB female and PL male.

Stage Batch AC LB PL SB PLx SBx
293 1 12 10 12 12 8 10
305 2 12 14 15 10 - -
315 1 15 12 8 9 9 9
336 2 6 13 10 11 - -
346 | 10 9 11 10 10 10
370 2 10 8 9 10 - -
Total 65 66 65 62 27 29
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4.3.2 Staining and photographing

A total of 314 individuals (Table 4.1) were stained for cartilage (alcian blue) and bone
(alizarin red) using a modified protocol from (Walker and Kimmel, 2007). Individuals
were placed in a petri dish containing 50 ml of 1% agarose gel and immobilised with
dissecting needles to insure the correct positioning of the embryo. The head of each
individual was photographed ventrally facing left using a Leica (MZ10) stereomicroscope
at the same magnification (2.0x) for each photo. Samples were stained and photographed
in two batches (Table 4.1). To test for the effect of staining batch on shape, we performed
Principal components analysis (PCA) of the morph dataset (excluding the hybrids, as they
were all part of the same staining batch). PCA showed no separation between the two
staining batches (Figure S 4.1).

4.3.3 Geometric morphometrics

We selected 46 landmarks to describe the craniofacial shape including the developing
lower jaw, the hyoid arch, pharyngeal arches and the tip of the ethmoid plate and maxillas
(Figure 4.1) and digitized them using tps.DIG2 (Rohlf, 2006). Although the mandible and
the ethmoid plate do not occupy the same 2D space, at the stages of development under
study the head is rather flat and the landmarks describing the front of the ethmoid plate
were used as an approximation representing the tip of the mouth. The shape information
for each specimen was extracted using a Generalized Procrustes analysis (GPA) in
MorphoJ (Klingenberg, 2011) where, after accounting for scale, position and orientation,
all specimens are superimposed to a common coordinate system (Rohlf and Slice, 1990;
Goodall, 1991). Only the symmetric component of shape variation (Klingenberg et al.,
2002) was used for subsequent statistical analyses. The Centroid Size (defined as the
square root of the sum of the squared distances of all landmarks from their centroid) of
each specimen was retained after the Procrustes fit and used as a measure of individual
size.
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Figure 4.1 The 46 landmarks (red dots) used in this study. The landmarks were selected to describe major
craniofacial elements such as the ethmoid plate, the maxillas, Meckel’s cartilages, the hyoid arches, the gill
arches, the basihyal and basibranchial cartilages.

The data was screened for outliers using the function “find outliers” in Morpol. Samples
showing large deviations from the average landmark position were examined carefully and
either re-scored, when the deviation was present in only one of the two symmetric sides,
excluded if the specimen appeared to be damaged (11 specimen) or left in the data set if
they appeared to represent valid extremes in the natural sample variation (9 specimen).

To quantify measurement error we used Procrustes ANOVA (Klingenberg et al., 2002) in
MorphoJ. Digitizing error was about 7x smaller than the smallest biological effect
(Individual/Side). Although the digitizing error was rather small, we digitized each
individual 3 times and the results from the repeated measurements were averaged in the
final dataset.

To characterise allomety (variation in shape caused by variation in size), we regressed
shape on size (represented by the log transformed Centroid size or LCS) in MorphoJ. The
null hypothesis of this test is that shape does not change as a function of size (i.e that
growth is isometric). We used 10.000 permutations to estimate the statistical significance
of the test.

In order to investigate whether the different morphs undergo the same allometric change in
shape i.e whether the observed differences in shapes can be due to the impact of size on
shape, we conducted a permutational MANCOVA (multivariate analysis of covariance)
with LCS as a covariate using the “vegan” package in R (Dixon, 2003) and following the
methodology described in (Zelditch et al., 2012). Briefly, we tested whether the difference
in shape between experimental groups depends on the size at which they are compared. If
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the interaction between LCS and Morph is not significant and the null hypothesis cannot
be rejected, the effect of shape on size can be removed by using the regression residuals
obtained from the regression of shape on LCS. If, the null hypothesis is rejected,
regression can still be used to account for allometry; but must be done for each group
separately (Zelditch et al., 2012).

4.3.4 Quantifying shape differences

To quantify shape differences among morphs we used a combination of multivariate
analysis in MorpholJ. After accounting for allometry, the data containing all the morphs and
developmental time-points was subjected to Principal component analysis (PCA). Next we
studied the effect of Morph, Time and (Morph x Time) of each of the 6 major Principal
Components (PCs) with a generalised linear model in R (3.0.2 R Core Team 2012).

Canonical Variate analysis (CVA) was used to visualize the differences among groups.
CVA is an ordination method, which explores shape features distinguishing among a priori
defined groups. Differences between extremes are used to illustrate shape differences for
both PCA and CVA. Both Mahalanobis distances (which measures the distances of
separation between two groups scaled by the standard deviation in the respective
directions) and Procrustes distances (which measures the absolute amount of shape
variation) were generated and their statistical significance was assessed with 10.000
permutations. The same procedure as described above was used to quantify shape
differences between hybrids and the pure parental crosses. All analyses were performed
with the reciprocal hybrid crosses as separate groups and as a single combined “hybrid”

group.

4.4 Results

We set out to characterize the variation in trophic apparatus in developing Arctic charr,
using geometric morphometrics of bone and cartilege structures on the ventral side of the
developing head. First we tested for a potential effects of growth on shape. Allometry was
found to play a significant role (p < 0.0001) in post-hatching craniofacial development,
both in pure Morph (Figure S4.2) and hybrid progeny (Figure S 4.3) where it accounted for
8% and 11.8% of the total shape variation, respectively. The permutational MANCOVA
showed highly significant (p < 0.001) Morph and Size effects, with the Size effect being
4.5 times larger than the Morph effect (Table S4.1). No significant Morph x Size
interaction was detected, indicating that that the differences in shape between morphs do
not depend on the size at which they are compared. A similar pattern was observed for the
data including the hybrid and parental progeny groups, although the Morph effect on shape
variation was larger and comparable to the LCS (Table S4.2).

4.4.1 Quantifying craniofacial shape differences among 4
morphs of Arctic charr (AC, SB, LB and PL)

The first 6 Principal Components (PC) accounted for 82.3% of the variation in craniofacial
shape, with the first 3 alone accounting for 69.5% of the variation (Table S3). All of the 3
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major PCs had a significant Morph effect. PC1 (accounting for 30.5% of the variation) and
PC2 (22.7%) showed a significant time effect and PC3 (16.3%) exhibited a significant
(Morph x Time) effect (Table S4.3). The 3 major PCs showed shape variation in all
craniofacial elements under study: the pharyngeal arches, maxillas the lower jaw, hyoid
arch and ethmoid plate (Figure S4.3). The craniofacial shape differences among morphs
were further characterized with Canonical Variate Analysis (CVA). Shape changes
associated with CV1 (50.27%) include the pharyngeal arches, maxillas and the hyoid arch
(Figure 4.2). CV2 (28.32%) showed more subtle changes in the pharyngeal arches, maxilla
length and more pronounced differences in the shape of the lower jaw and hyoid arch
(Figure 4.2). Finally, CV3 (21.41%) showed pronounced overall shape changes, including
the pharyngeal arches, maxillas the shape of the lower jaw and hyoid arch and ethmoid
plate. AC separated from the three morphs from Thingvallavatn (LB, SB and PL) along
CV1, PL separated from the two benthic morphs LB and SB along CV2 whereas SB
separated from the rest along CV3 (Figure 4.2).

5B

Canonical variate 2
Canonical variate 3

Figure 4.2 Scatter plot of the CVA scores for four morphs of Arctic charr (AC=grey, LB=blue, PL=green
and SB=red). Wireframes depict shape changes associated with the two Canonical Variates shown in each
graph. In the wire frames the extreme negative value is shown in black and the extreme positive values in red.
The scale factor is in units of Mahalanobis distance and it’s set to 5. Confidence ellipses are set to 90% .

Pairwise comparisons using both Mahalanobis and Procrustes distances showed significant
differences between morphs (Table 4.2). Although significant for all comparisons, the
shape changes between all pairs of morphs measured by Procrustes distances are fairly
subtle (Table 4.2). The shape changes between pairs of morphs measured by Mahalanobis
distance are all highly significant. The largest Mahalanobis distances are between AC and
the three natural morphs from Lake Thingvallavatn (Table 4.2). Within Lake
Thingvallavatn the lowest Mahalanobis distance is between the two benthic morphs LB
and SB (2.76; equivalent to 2.76 times the standard deviation for the discriminant
function), while the Mahalanobis distances of the two benthic morphs (LB and SB) to the
pelagic morph (PL) are larger (3.25 and 3.05) respectively. In sum, the data show clearly
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that the four Arctic charr morphs studied here have separable morphologies at this early
stage of development, reflecting variation in multiple aspects of the cartilege and bones in
the head (visualized from the ventral side).

Table 4-2  Pairwise Mahalanobis (upper panel) and Procrustes distances (lower panel) between morphs
and their significance obtained with 10.000 permutations. AC = Aquaculture charr from the Holar breeding
stock, LB and SB = large and small benthivorous charr, respectively, PL = Planktivotous charr.

AC LB PL SB
AC - 4.02%** 3.85%** 3.61%**
LB 0.032%** . 3.25%* 2.76%%*
PL 0.028***  0.017* - 3.05%**
SB 0.015%* 0.026** 0.021** -

**%p<0.001,**p<0.001, * p<0.05

4.4.2 Hybrids show significant craniofacial shape differences

from the pure parental crosses

The data show that F1 hybrids of SB and PL are significantly different from both parental
strains in the shape of craniofacial morphology and these differences are so extreme that
they can be qualified as “transgressive” (i.e extreme or novel phenotypes relative to the
parental populations).

The first 6 Principal Components (PC) comparing SB, PL and the hybrids, accounted for
84% of the variation, with the first 2 alone accounting for 63.8% of the variation (Table
S4.4). The first 2 Principal Components PC1 (44.3%) and PC2 (19.5%) showed a highly
significant Morph effect (p < 0.001), a significant Time effect and PC1 also exhibited a
significant (p < 0.05) Morph x Time effect. PC3 (8.7%) however didn't show any Morph,
Time or Morph x Time effect (Table S4.4). The hybrid crosses separate from the pure
parental crosses along PC1 and to a lesser extend along PC2 (Figure 4.3). Shape changes
along PC1 include overall narrowing of the head, seen mainly in the shape of the lower
jaw, the hyoid arch and the pharyngeal arches (Figure 4.3). Shape changes along PC2
involve retraction of the ethmoid plate and broadening of the mandibular arches (Figure
4.3).
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Figure 4.3 Scatter plot of the PCA scores for the pure crosses SB (red) and PL (green) and the hybrid
crosses (PLYQ x SBSand SBQ x PLA combined in blue). Wireframes depict shape changes associated with
the two major Principal Components PC 1 (30.5%) and PC2 (22.7%). Wireframes depict shape changes
associated PC1 and PC2. In the wire frames the extreme negative value is shown in black and the extreme
positive values in red.The scale factor represents a change in Procrustes distance and is set to 0.05.
Confidence ellipses are set to 90%.

The differences between the hybrids and among the hybrids and the parental pure crosses
were further explored with Canonical Variate Analysis (CVA) (Figure 4.4). Hybrid crosses
separate from the SB pure cross along CV1 (52.8%) and from the PL pure cross along CV2
(31.4%). The shape changes along CV1 and CV2 to an extent resemble the ones seen along
PC1. i.e an overall narrowing of the head. The reciprocal hybrid crosses PLx and SBx
show some separation along CV3 (15.8%) but this is not significant.
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Figure 4.4 Scatter plot of the CVA scores for the pure parental crosses (PL and SB) and the resiprocal
hybrid crosses (PLx = PL eggs and SBx = SB eggs). Wireframes depict shape changes associated with each
Canonical Variate (CV). The scale factor is in units of Mahalanobis distance and it’s set to 5. Wireframes
depict shape changes associated with the two Canonical Variates shown in each graph. In the wire frames
the extreme negative value is shown in black and the extreme positive values in red. Confidence ellipses are
set to 90%.

Pairwise comparisons using Mahalanobis distances showed highly significant differences
(p < 0.001) between the hybrids and the pure parental strains and between the progeny of
the two pure parental strains (Table 4.3). Procrustes distances between the two reciprocal
crosses and the hybrids and the pure parental strains are considerably larger than the ones
seen between the pure morph crosses (Table 4.3) and highly significant (p < 0.001). The
Procrustes distances between the reciprocal crosses (SBx and PLx) were very low and not
significant (p = 0.06) (Table 4.3).

Table 4-3 Pairwise Mahalanobis(upper panel) and Procrustes distances (lower panel) between hybrid and
pure parental crosses and their significance obtained with 10.000 permutations.

PL SB PLx SBx
PL - 4.91%** 3.76%** 3.95%**
SB 0.020* - 4.96%** 4.72%x*
PLx 0.058***  (.045%** - 3.08%**
SBx 0.057***  (0.044%** 0.018 -

##% n<0,001, ** p<0.001, * p<0.05
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Because of the strong maternal effects influencing embryonic size in early development
(Perry et al., 2004), we compared the head size (represented by LCS) of the hybrids to the
pure maternal morph (Figure S4..4). In both comparisons PL vs. PLx and SB vs. SBx and
for the three stages tested, the hybrid progeny exhibited lower head size compared to the
progeny of the maternal morph. A more detailed analysis (ANOVA: LCS ~ Morph x Time)
showed that the morphs differ significantly in head size (Fs o6 = 25.448, p < 0.0001), and
post hoc tests showed that the LCS was significantly different between all pairs of morphs
except PLx and SBx (Table S4.5). The significant interaction of Morph and Time (p <
0.05) also indicates differences in size among morphs at finer time scales during
development.

4.5 Discussion

Teleost fish vary greatly in head morphology and especially in morphology of craniofacial
elements related to feeding, such as the lower and the upper jaw elements, operculum
bones etc. (Albertson et al., 2003; Kimmel et al., 2005; Jamniczky et al., 2014). These
elements emerge early and undergo extensive morphological changes, not only during
embryonic development, but also in larval stages and even during adulthood. In this study
we focused on a short time frame including only stages from hatching to just before the
first feeding starts. During these stages the splanchnocranium (the upper and lower jaws,
the ethmoid plate, the hyoid and the pharyngeal arches) is still a relatively simple structure
although all of its anatomical elements have already been formed and, as in the case for the
Meckel's cartilage, have started to be surrounded by dermal ossification. Significant inter-
morph differences in the shape of the major trophic elements observed well before the start
of feeding suggest a role of genetic architecture and/or development in the formation of
divergent Arctic charr trophic morphologies. The emergence of transgressive phenotypes
in the developing splanchnocranium in hybrids, made by crossing the benthic (SB) and
limnetic (PL) sympatric morphs, further emphasize a strong genetic component in the
trophic polymorphism in the Thingvallavatn charr. This phenomenon and the smaller
embryo head sizes seen in the hybrids both indicate the existence of developmental
incompatibilities with potentially detrimental effects on hybrid fitness.

4.5.1 Craniofacial shape development and evolution

An important first question in studyies of the developmental origins of morphological
differences is how early differences in shape can be detected. For example, the black-
bellied African seedcracker (Pyrenestes ostrinus) exhibits morphological distinct
polymorphism in bill size, which is evident by the time they start feeding on their
respective adult diets (Smith, 1987). Differences in mandibular morphology between the
two African cichlid species Labeotropheus fuelleborni (a biter feeder) and Metriaclima
zebra (a generalist feeder) can be detected as early as 7 days post-fertilisation (Albertson
and Kocher, 2005). Our study indicates that in Arctic charr, shape differences in trophic
elements can be detected during cartilage formation and well before first feeding (about 5
weeks before feeding if developing at 5°C). Although subtle, these differences were
significant among all the studied progeny groups. The largest shape difference (in
Mabhalanobis distance) were seen between AC and the three morphs from Lake
Thingvallavatn, while within the lake the distance between PL and the two benthic morphs
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was larger than the distance between SB and LB. This morphological pattern is similar to
what has previously been described for the adult fish in the lake (Snorrason et al., 1994),
where it was demonstrated that the four morphs of Arctic charr can be divided into two
morphological variants: a benthic and a limnetic morphotype. In our analysis the two
benthic morphs separate from the limnetic morph (PL) along the second canonical variate
(CV2). These shape differences are subtle, reflecting narrowing of the lower jaw in the two
benthic morphs, longer maxilla bones in PL and slightly shorter lower jaws in SB and LB.
While the length of the lower jaws is a major predictor of diet type (and hence morph) in
the adults (Snorrason et al., 1994), juveniles of all morphs studied here have subterminal
mouths. Clearly, the lengthening of the lower jaw is not completed at the developmental
stages we are looking at. Paedomorphosis, the retention of juvenile features in adults, has
been hypothesised as the evolutionary mechanism behind the evolution of the derived
benthic morphs in Lake Thingvallavatn (Skulason et al., 1989a). The differences between
morphs, especially in these trophic traits, become clearer as development progresses with
the benthic morphs retaining their embryonic characteristics including the subterminal
mouth in their adult phenotype, while the lower jaws of the limnetic morphs become more
protruded (Skulason et al., 1989a). These differences can be further enhanced through
plastic responses once the fish start feeding on their adult diets (Parsons et al., 2010).

4.5.2 Transgressive phenotypes new phenotypes or post-zygotic
reproductive barriers?

Despite the recent colonization of the lake, the two smallest and most abundant morphs PL
and SB are phenotypically (Snorrason et al., 1994) and genetically divergent (Volpe and
Ferguson, 1996; Kapralova et al., 2011) Yet the possibilities for interbreeding seem wide
open as both spawn in the stony littoral zone of the lake and although the breeding period
of PL is much more synchronized it completely overlaps with the breeding period of active
SB spawners. Importantly, intermediate, adult sized phenotypes of pelagic and benthic
morphs are rarely observed in the lake (Sigurdur S. Snorrason personal observations).
This fits with the hypothesis that the transgressive craniofacial morphology seen in F1
hybrid crosses between SB and PL is suboptimal. A number of explanations have been
offered as to the existence of transgressive phenotypes in hybridizing populations
(Rieseberg ef al., 1999), yet the consequences of this phenomenon will depend on the
heritability, the genetic architecture of traits and their effects on fitness (Burke & Arnold
2001). For example, transgressive segregation can generate phenotypic-genotypic diversity
necessary for the successful establishment of hybrid lineages in novel unexploited niches
(Lewontin and Birch, 1966; Lexer et al., 2003; Sechausen, 2004; Albertson and Kocher,
2005; Bell and Travis, 2005). However, if transgressive traits in hybrid populations are
maladaptive compared to the parental strains this may contribute to the formation of a
post-zygotic barrier (Rogers and Bernatchez, 2006).

As discussed above the estimated levels of gene flow between small benthic and pelagic
charr are very low and although pre-zygotic mechanisms such as mating behaviour and
small-scale temporal isolation can partly explain these observations, the indiscriminate
nature of male salmonid mating behaviour (Foote et al., 1997) suggests the presence of
post-zygotic barriers (Kapralova et al., 2011). Given the importance of the feeding
apparatus for fitness, we can speculate that strong natural selection against extreme hybrid
phenotypes could be an important barrier to gene flow between SB and PL charr at present.
Here we observed deviant, transgressive phenotypes in head shape for the hybrid crosses
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compared to the pure parental crosses, affecting the majority of the craniofacial elements
under study. As these elements will give rise to important parts of the trophic apparatus
this might have important consequences later in life, especially once feeding starts.
Furthermore, the head of the hybrid offspring was significantly smaller indicating slower
growth rate in the hybrids. This could affect important functional dimensions such as gape-
width of the alevins as they start feeding. Although not conclusive these findings suggest
that hybrids might have decreased fitness compared to offspringintra-morph, similar to
what was observed in whitefish hybrids (Rogers and Bernatchez, 2006).

As populations evolving via genetic drift or stabilizing selection are likely to possess
alleles with antagonistic effects, they are more likely to exhibit transgressive phenotypes
than populations diverging via constant directional selection (Rieseberg et al., 1999).
Evidence of such effects was found in a study by (Albertson and Kocher, 2005), where the
hybrid progeny of two closely related but morphologically divergent cichlid species
exhibited intermediate phenotypes in the shape of the lower mandible, whereas the shape
of the neurocranium exceeded the parental phenotypes. These two morphological traits
appear to have different selection histories (Albertson et al., 2003) and with the lower jaw
evolved in response to directional selection, and selective forces such as stabilizing
selection involved in the divergence of the cranium (Albertson and Kocher, 2005).

A previous study concluded that laboratory generated hybrid crosses between different
morphs of Arctic charr from Lake Thingvallavatn strongly resembled the maternal pure
breed crosses (Skulason ef al., 1989a). Interestingly, in our study the two reciprocal hybrid
crosses differed largely from both parental strains in craniofacial shape, but were rather
similar to one another. These findings do not necessarily contradict each other for couple
of reasons. Our study concentrated on earlier developmental stages, i.e. immediately after
hatching and before the onset of feeding as opposed to after the feeding had started in the
(Skulason et al., 1989a). Our data show that not all hybrids exhibit transgressive
phenotypes, a proportion of hybrid offspring falls into the parental range of craniofacial
shape variation (Figure 3). As hybrid mortality was not monitored here nor in the
(Skulason et al., 1989a) study, it is possible that higher mortally of transgressive
phenotypes preceeding their analysis could have led to biased phenotypic distributions.
Also, (Skulason et al., 1989a) used length measurements to estimate shape differences and
measurements were done using a lateral view of fish heads, while in our study we
concentrated on the ventral view. The levels of transgressive segregation can vary between
lateral and ventral aspects of the head as a consequence of the different genetic architecture
and/or selective history of the underlying traits (Parsons, Son, et al., 2011). While no
maternal effects on craniofacial elements were observed here, it is possible that they will
be revealed once the hybrid larvae start taking food.

4.5.3 A look ahead

The natural variation in trophic morphology seen in Icelandic Arctic charr both among and
within systems presents an excellent model for studying the early steps of divergence and
its developmental and genetic basis. At the developmental level, the nature of the
molecular mechanisms underlying the diverse morphologies of Arctic charr need to be
explored. Such studies are now underway in a number of vertebrate species. Recent studies
have indicated that BMP4 and CAMI are important for the shaping of the beaks of the
Galapagos finches and the evolution of craniofacial diversity in vertebrates (Abzhanov et
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al., 2004, 2006; Albertson et al., 2005; Parsons and Albertson, 2009). Moreover expanded
Wnt signalling through ontogeny has been associated with early ossification and retention
of rounded craniofacial profile (paedomorphosis) in cichlids and zebrafish (Parsons et al.,
2014). These molecular pathways are likely to have parallels in Arctic charr, and it is
possible that segregating variation in them is used during trophic evolution. Given the
short evolutionary history of freshwater Arctic charr in Iceland and other Arctic areas it is
likely that the molecular basis of this morphological differences arose mostly by
differences in gene regulation as opposed to changes in protein coding sequences. In our
recent studies (Ahi et al., 2013) (Ahi et al. in submitted) several genes involved in matrix
remodeling in bone formation showed consistent differences in expression during the
development of embryos derived from benthic and limnetic morphs of Arctic charr,
suggesting that these genes might be involved in the development of distinct Arctic charr
morphologies. Moreover a recent study found interesting candidate miRNAs (Kapralova et
al. in revision) for studying the involvement of non coding RNAs in developmental
regulation.

In our view, the transgressive phenotypes in head morphology seen during the
development of the hybrid offspring of SB and PL, begs further study of the genetics of
trophic differences among sympatric morphs and of other small benthic charr populations.
Given the recent evolutionary history of the Lake Thingvallavatn Arctic charr morphs,
their co-existence in sympatry, and the possibility of interbreeding, the barriers to gene
flow between SB and PL appear to be strong. Although the data suggest some post-zygotic
barriers to gene flow might be in place, tests for developmental mortality of hybrid crosses,
their fitness and fertility are needed. Importantly, these traits should be measured also in
the F2 and in backcrosses to both parental strains thus providing the opportunity to map
the fitness related loci and also study the segregation of the transgressive morphological
traits. These studies are not trivial because of the slow development of Arctic charr and the
difficulty of obtaining sufficient numbers of fertile offspring. Yet this is definitely an
important future research goal.

4.6 Conclusions

We use the recently evolved and highly polymorphic Arctic charr species to study the
evolution and development of elements of the feeding apparatus by using landmark based
geometric morphometrics and multivariate analyses of shape. Subtle differences among
three sympatric morphs of Arctic charr from Lake Thingvallavatn, Iceland were detected
early in development during cartilage formation and growth. Furthermore we investigated
the effect of hybridisation on the craniofacial morphology of Arctic charr by creating
reciprocal crosses between PL and SB. Interestingly, the hybrid crosses exhibit
transgressive craniofacial phenotypes compared to the pure morph breeds. While the shape
of the feeding apparatus of the two reciprocal hybrid crosses differed significantly from
both pure crosses, no significant differences in head shape were detected between the two
reciprocal crosses, suggesting genetic effects greatly outweigh maternal effects.
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4.8 Appendix

AC

PI

SB

Shape score

-0.06

Figure S 4.1 - Multivariate regression of shape (symmetric component) on size (LCS) for the offspring of the
Jour pure crosses. Allometry accounts for 8% of the total shape variance. Wireframe depict shape changes
associated with LCS, the shape associated with low LCS values are shown in black and the shape associated
with high LCS values in red.
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Shape score

PLx
SBx

Figure S 4.2 — Multivariate regression of shape (symmetric component) on size (LCS) for the offspring of PL

and SB pure crosses and their reciprocal crosses PLx and SBx.

PCI 30.5% PC222.7%

PC3 16.3%

Figure S 4.3 - Shape changes associated with the three major PCs from a PCA of shape data (size removed)
of pure morph crosses: wireframes depict shape changes associated with the three major Principal
Components (PCs). The scale factor is in units of Procrustes distance and it’s set to 0.05. Wireframes depict
shape changes associated with the two Principal Components shown in each graph. In the wire frames the
extreme negative value is shown in black and the extreme positive values in red.
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Figure S 4.4 - Boxplots of pure and hybrid cross head size (measured by the Log transformed Centroid Size)
at three developmental time points. A) Head size of PL (Planctivorous charr) and PLx (PL female x SB
male), B) Head size of SB (Small benthic charr) and SBx (SB female x PL male.)

Table 4-4 = MANCOVA of Shape (represented by the Procrustes coordinates) with morph (AC, LB, PL and
SB) as a variate and LCS (Log transformed centroid size) as a covariate.

Df SS MS FModel R2 Pr(>F)
LCS 1 0078  0.077998 19.4278 0.06794 0.001
Morph 3005133 0017111 42621  0.04472 0.001
LCS:Morph 3 0.01494 0.004979 1.2402  0.01301 0.216
Residuals 250 1.00369 0.004015  0.87433
Total 257 1.14796 1
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Table 4-5 - MANCOVA of Shape (represented by the Procrustes coordinates) with morph (PL, SB, PLx and
SBx) as a variate and LCS (Log transformed centroid size) as a covariate.

Df SS MS FModel R2 Pr(>F)
LCS 1 0.0543  0.054299 1421  0.094 0.001
Morph 2 0.08419  0.04209 11.01  0.146 0.001
LCS:Morph 2 0.01048  0.005241 1.37 0.018 0.146
Residuals 112 0.01048  0.003822 0.74
Total 117 0.57704 1

Table 4-6 - Effect of Time, Morph and Time x Morph on each of the 6 major Principal Components (PC) for
LB, PL, SB and AC tested with a generalized linear model. Significance codes “***’ 0.001, “** 0.01, ‘*’
0.05

% Time Morph  Time x Morph
PC1 30.5 * ok NS
PC2 22.7 otk ok NS
PC3 16.3 NS * *
PC4 6.4 *E ok NS
PC5 3.5 * o *
PC6 3 NS NS NS

Table 4-7 - Effect of Time, Morph and Time x Morph on each of the 6 major Principal components two pure
breeds (PL and SB) and two hybrid crosses PLx (PL female x SB male) and SBx (SB female and PL male)
tested with a generalized linear model. Significance codes ‘***’0.001, ***’0.01, ‘**’ 0.05

% Time Morph Time x Morph
PC1 443 * Hoxk *
PC2 19.5 kkx kokx NS
PC3 8.7 NS NS NS
PC4 4.6 NS NS *
PC5 4.2 NS NS NS
PC6 2.8 NS NS NS
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Table 4-8- Differences in head size (LCS) between hybrid and pure morph crosses. ANOVA of the Log
transformed centroid size (LCS) for four varieties of Arctic charr AC, LB, PL and SB and all stages followed
by post hoc tests for Morph.

Morph
Time
Morph x Time

Residuals

PLx-PL
SB-PL
SBx-PL
SB-PLx
SBx-PLx
SBx-SB

80

Df SS MS F Pr (>F)
3 0.1827 0.0609  25.448 1.77E-12
2 0.6551 03275  136.877 2.00E-16
6 0.0393 0.0066 2.738 0.0164
106  0.2537 0.0024
diff upr p-adj
-0.0918 -0.1266 -0.0569 0.0000
-0.0447 -0.0786 -0.0108 0.0045
-0.1020 -0.1362 -0.0678 0.0000
0.0470 0.0117 0.0824 0.0041
-0.0103 -0.0459 0.0254 0.8762
-0.0573 -0.0920 -0.0226 0.0002
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5.1 Abstract

This paper analyzes the level of integration and modularity in craniofacial traits in morphs
and hybrids. The results indicated that during early post-hatching stages the craniofacial
skeleton is modular and that this modularity appears to reflect the developmental origins of
the elements constituting it. We compared the craniofacial integration in four groups of
Arctic charr (LB, SB, PL from Thingvallavatn and AC) and saw indications that these
groups may differ in the level of their craniofacial modularity. The hybrid progeny of two
contrasting morphs appeared to have different patterns of integration of their craniofacial
skeleton compared to the pure crosses of the parental morphs. The hybrid crosses also
exhibited different patterns of allometry compared to the pure morphs. These results taken
together with the transgressive phenotypes in head morphology the hybrids exhibit may
indicate developmental instabilities during craniofacial morphogenesis in the hybrids.
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5.2 Introduction

A central question in evolutionary biology is how the spectacular ecological and
phenotypic biological diversity is generated and maintained. Adaptive radiation, a key
process in the evolution of ecological diversity, is regarded as the most important
biological process leading to the evolution of ecological differences and ultimately to the
emergence of new species (Schluter, 2000; Gavrilets and Losos, 2009). This process is
dependent on historical contingencies and influenced by ecological, genetic and
developmental factors (Gavrilets and Losos, 2009). Complex phenotypes arise through
development and their evolvability is influenced by the level of integration and modularity
of the morphological units constituting them (Klingenberg, 2005). Morphological
integration has a developmental, functional and often adaptive basis (Klingenberg, 2005)
and refers to the developmental and functional coordinated variation of traits
(Hallgrimsson et al., 2009). Modularity on the other hand refers to the organization of
organisms into distinct units or modules and is characterized by a strong integration within
each module and a relative independence among modules (Klingenberg, 2005). Strong
integration among developmental or anatomical units will have a constraining effect on
morphological evolution, while modularity will enhance evolutionary flexibility (Drake
and Klingenberg, 2010). Modularity will manifest itself as the relative covariation of traits
within an integrated functional unit and varies in strength rather than being an all-or-
nothing phenomenon (Klingenberg, 2003).

The vertebrate head is one of the most complex anatomical units and its morphological
integration has been the focus of many studies (see references in (Jamniczky and
Hallgrimsson, 2011)). A small proportion of these studies have addressed questions on the
relationships between variation in the shapes, proportions and placement of bones and
other tissues (e.g. (Richtsmeier et al., 2006; Jamniczky and Hallgrimsson, 2011; Zelditch
et al., 2012; Tsuboi et al., 2014). However the skull and its different bone elements have
received most attention when it comes to studying morphological integration of the head
(Drake and Klingenberg, 2010; Parsons et al., 2012a; Jamniczky et al., 2014). The feeding
apparatus and especially the mandible has been a major inspiration for the development
and implementation of various statistical methods for studies of modularity (Klingenberg
et al., 2003; Marquez, 2008; Parsons ef al., 2012b).

In vertebrates, the majority of the head skeleton originates from cranial neural crest cells,
which appear to migrate in a segmented manner according to their rhombomeric origin
(Lumsden et al., 1991). Each segment will give rise to a differentiated arch, which is
subdivided, into individual dorsal and ventral structures (Schilling and Kimmel, 1997). In
zebrafish the different segments show similar patterns of pre-cartilage condensation and
chondrification (cartilage differentiation), however a certain degree of variation in size and
shape can be detected between the anterior (Meckel's cartilage and the hyoid arch) and the
posterior arches. Differences in the developmental timing of their formation are considered
to be the underlying cause (Schilling and Kimmel, 1997).

The four morphs of Arctic charr (Salvelinus alpinus) from Lake Thingvallavatn, Iceland
offer an excellent opportunity to study morphological integration in the context of a recent
ecological diversification. These morphs (belonging to two morphotypes: limnetic and
benthic) exhibit striking differentiation in morphology of the trophic apparatus (Snorrason
et al., 1989), life history characteristics and ecology, as reflected in different habitat use,
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diet and endoparasite fauna (Jonsson ef al., 1988; Frandsen et al., 1989; Malmquist et al.,
1992; Sandlund et al, 1992) The two limnetic morphs, a planktivorous (PL) and a
piscivorous (PI) morph, have pointed snouts and evenly protruding jaws, while the two
benthic morphs, a small (SB) and a large benthivorous (LB) morph have blunt snouts, short
lower jaws and relatively large pectoral fins (Snorrason et al., 1989). This phenotypic
diversity covaries with ecological features of each morph's niche thus providing suggestive
evidence of the adaptive nature of this variation. Common-garden experiments have
demonstrated that the development of Arctic charr trophic morphologies and behaviors are
the result of both genetic differences (Skulason et al., 1989; Skulason et al., 1993;
Eiriksson et al, 1999) and plastic responses to different environments (Parsons et al.,
2010, 2011). Although the Thingvallavatn morphs show significant but subtle neutral
genetic differentiation, the levels of gene flow between morphs are restricted (Kapralova et
al., 2011). A more pronounced genetic differentiation among the morphs in the lake was
detected in a study on immune system genes (Kapralova et al, 2013). Subtle but
significant differences are detected during the development of Arctic charr head
morphologies, mainly in shape of the craniofacial elements during cartilage formation and
early growth, long before ossification of the craniofacial elements is completed. Moreover,
hybrids between PL and SB showed highly significant differences in craniofacial
morphology when compared to the pure parental crosses. These differences are so distinct
that hybrids can be qualified as “transgressive” in craniofacial morphology (i.e appearance
of extreme or novel phenotypes relative to the parental populations) (Paper III in this
thesis).

Here we use landmark based geometric morphometrics to address developmental and
evolutionary questions regarding Arctic charr craniofacial modularity. We base our
hypotheses on the segmented developmental origin of craniofacial bones (Lumsden et al.,
1991) and we predict that during early post-hatching stages the craniofacial elements will
exhibit low levels of integration and different modules will be defined by the
developmental origins of each bone group. We use the progeny of four Arctic charr
varieties that have presumably undergone different selection regimes: three natural morphs
from Lake Thingvallavatn (PL, LB and SB) and an aquaculture strain (AC) to address
evolutionarily questions on modularity. Because of the genetic divergence between these
varieties we predict that patterns and/or levels of integration of craniofacial elements will
vary among morphs. Finally, we investigated the level of post-hatching craniofacial
integration in hybrid crosses between SB and PL and compared it to the pure parental
crosses. As noted above these hybrids have been shown to have extreme (or transgressive)
phenotypes in craniofacial morphology (Paper III in this thesis). In light of this we expect
that the underlying mechanisms for the observed transgressive phenotypes might have also
influenced the degree or even the patterns of integration of the craniofacial elements in
hybrids.

5.3 Material and methods

5.3.1 Sampling

For this study we used post hatching embryos from pure crosses of four Arctic charr
varieties, three morphs (LB, SB and PL) from lake Thingvallavatn and an aquaculture
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strain from the Holar aquaculture station (AC), as well as two reciprocal hybrid crosses of
contrasting Thingvallavatn morphs (SB and PL). Fish from the planktivorous (PL), small
and large benthic morphs (SB and LB) were caught in lake Thingvallavatn using gill-nets.
Fishing permissions were obtained from the Thingvellir National Park Commission and the
land-owner of Mjdanes farm. The AC crosses were made with parents from the Holar
breeding program (Svavarsson, 2007). Fish were killed by a sharp blow to the head and for
each experimental group eggs from several females were pooled and fertilized using milt
from several males from the same group. Hybrid crosses were also made between SB and
PL. Eggs were reared at approximately 5°C in a hatching tray (EWOS, Norway) under
constant water flow and in complete darkness at the Holar University College experimental
facilities in Verid, Saudarkrokur. The rearing and collection of the embryos was performed
according to Icelandic regulations (licence granted to Holar University College
aquaculture and experimental facilities in Verid, Saudarkrokur). Exact water temperature
was recorded twice daily to estimate the relative age of the embryos using tau-somite T,
units defined as the time it takes for one somite pair to form at a given temperature
(Gorodilov, 1996). Embryos were collected throughout development (Table 5.1) and fixed
in 4% PFA.

Table 5-1 Numbers of embryos sampled for the study of developmental modularity in Arctic charr. Embryos
were sampled at six developmental stages,just after hatching (293, 305, 315, 336, 346, 370 1ts)).
AC=Aquaculture charr from the Holar breeding stock, PL=planktivorouscharr, LB and SB =large and
small benthic charr, respectively, and HY = hybrid crosses between SB and PL.

Stage Batch AC LB PL SB HY
293 1 12 10 12 12 18
305 2 12 14 15 10 -
315 1 15 12 8 9 18
336 2 6 13 10 11 -
346 1 10 9 11 10 20
370 2 10 8 9 10 -
Total 65 66 65 62 56

5.3.2 Staining and photographing

A total of 314 individuals (258 pure morph and 56 hybrid) were stained for cartilage
(alcian blue) and bone (alizarin red) using a modified protocol from Walker and Kimmel
(2007). Individuals were placed in a petri dish containing 50 ml of 1% agarose gel and
immobilised with dissecting needles to insure the correct positioning of the embryo. The
head of each individual was photographed ventrally facing left using Leica (MZ10)
stereomicroscope and the same magnification (2.0x) was used for each photo. Samples all
studied groups (the pure morphs and the hybrid crosses) were stained and photographed
simultaneously.
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5.3.3 Geometric morphometrics

We selected 35 landmarks (13 pairs of bilateral and 9 mid-line) to describe the craniofacial
shape of developing Arctic charr (Figure 5.1) and digitized them using tps.DIG2 (Rohlf,
2006). The landmarks were positioned in the lower jaw, the hyoid arch and the pharyngeal
arches (Figure 1). The shape information for each specimen was extracted using a
Generalized Procrustes analysis (GPA) in MorphoJ (Klingenberg, 2011), where after
accounting for scale, position and orientation, all specimen are superimposed on a common
coordinate system (Rohlf and Slice, 1990; Goodall, 1991). Only the symmetric component
of shape variation (Klingenberg ef al., 2002) was used for subsequent statistical analysis.
The Centroid Size (defined as the square root of the sum of the squared distances of all
landmarks from their centroid) for each specimen was retained after the Procrustes fit and
the Log transformed Centroid size (LCS) was used as a measure of individual size in
subsequent analysis.

Figure 5.1 The 35 landmarks (13 pairs of bilateral and 9 mid-line landmarks) used in this study. Landmarks
were selected to describe major craniofacial elements such as Meckel’s cartilage (MC), the hyoid arch (HA),
the ceratobranchial arches (CB 1-5), the basihyal (BH) and basibranchial cartilage (BB). The specimen on
the figure is at 3467,

Each landmark for every individual was digitised twice by the same observer and the
results from the repeated measurements were averaged in the final data-set. Measurement
error was accessed by performing Principal Component Analysis (PCA) on the two
landmarking sessions followed by discriminant function analysis (DFA). The Principal
component analysis did not show any separation between landmarking sessions (Figure S
5.1) nor could observations be classified as belonging to landmarking session 1 or 2 by
DFA (p=0.593).
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5.3.4 Evaluating modularity hypothesis for the developing Arctic
charr

We tested four hypotheses of the developmental modularity of Arctic charr by comparing
patterns of covariation among landmark positions following (Klingenberg, 2009a). As
allometry has an overall integrative effect and can conceal modularity (Klingenberg,
2009a), all analyses were performed both with and without accounting for allometry. To
account for allometry we regressed shape on size (measured by LCS) and used the
regression residuals for subsequent analyses. We used the Modulatiry function in Morphol
to test four hypotheses for landmark partitions (Figure 5.2) H1: 2 partitions (anterior vs
posterior), H2: 3a partitions: 1) Meckel's cartilage, 2) the hyoid arch and the basihyal and
basibranchial cartilage and 3) the branchial arches, H3: 3b partitions: 1) Meckel's cartilage,
2) the hyoid arch and the basihyal cartilage 3) the basibranchial cartilage and the branchial
arches and H4: 4 partitions: 1) Meckel's cartilage, 2) the hyoid arch, 3) the basibranchial
cartilage and 4) the branchial arches. The covariation between subsets of landmarks for
each hypothesis was measured by an RV coefficient (Escoufier, 1973) and the modularity
for each hypothesis was assessed by comparing its RV coefficient to all the RV
coefficients of spatially contiguous subset of landmarks (Figure 2) with the same number
of landmarks as the hypothesized partitions (Klingenberg, 2009a). If an a-priori hypothesis
of modularity is supported we would expect the hypothesized landmark partitions to show
a weaker correlation between modules than would be seen for other random partitions
containing the same number of landmarks. In other words the RV coefficient between the
hypothesized partitions is expected to be among the lowest of the RV coefficients for all
partitions.
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Figure 5.2 Four hypotheses on developmental modularity shown as partitioning of landmarks. Hypothetical
modules are shown as different coloured landmark dots: A) HIl: two partitions (anterior (red) vs posterior
(bright blue) elements); B) H2: three partitions (3a) 1) Meckel's cartilage (red) 2) the hyoid arch, the
basihyal and basibranchial cartilage (green) 3) branchial arches (dark blue) C) H3: three partitions (3b): 1)
Meckel's cartilage (red), 2) the hyoid arch and the basihyal cartilage (green) and 3) the branchial arches
and basibranchial cartilage (dark blue), and D) H4: four partitions: 1) Meckel's cartilage (red), 2) the hyoid
arch (bright blue), 3) the branchial arches and basibranchial cartilage (green) and 4) the branchial arch

cage (purple).

Note the analyses presented here just represent analyses of modules within each of the
groups. We have not compared modules or integration between groups or stages. Thus here
we just present preliminary data and analyses bearing on a comparison of integration in
hybrids and parental strains. A more thorough analyses will be conducted with custom
made scripts and permutation analyses, using methods developed by (Mitteroecker and
Bookstein, 2009; Mitteroecker et al., 2012).
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5.4 Results

5.4.1 Developmental modularity in craniofacial elements of
Arctic charr

To analyse size-related shape changes (allometry) in craniofacial elements in the period
between hatching and first feeding we regressed shape (represented by Procrustes shape
coordinates) on size (LCS). The results show that allometry accounts for a significant (p <
0.0001) part (10.5%) of the total shape changes during this period. Within each morph
allometry accounted for 2.4%, 12.9%, 14.5%, 15.9%, and 18.6% of the total shape
variation in LB, PL, SB, AC and the hybrids, respectively. These results were highly
significant (p < 0.0001) for all morphs except LB. Thus the subsequent analyses were
performed both without and with accounting for allometry.

Although removing the effect of allometry resulted in slightly lower RV coefficients and
lower p-values for the majority of the tested partitions with the symmetric component, the
overall results did not change between the two tests and in both cases all modularity
hypotheses of landmark partitions were supported (Table S 5.1). The RV coefficient
obtained for H1 was 0.492 and only 7 out of 1036 partitions (p = 0.007) showed lower RV
coefficient than the a-priori hypothesis (Figure 5.3 H1, Table S1). The multi-set RV-
coefficients for the 3a, 3b and 4 partitions (0.31, 0.44 and 0.39), respectively, were also
among the lowest values calculated for all partitions (Figure 3 H2, H3, H4, Table SI).
Landmark partition 3a (H2) had the lowest RV-coefficient and was the best supported
partition among the four tested partitions, while the RV-coefficients for 2 (H1) and 3b (H3)
partitions were among the highest (Figure 3 H1 and H3, Table S1).
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Figure 5.3 Modularity of craniofacial elements in post hatching Arctic charr: The histogram shows the
permutational distribution of RV-coefficients for contiguous partitions of the four modularity hypothesis: H1
(two partitions), H2 (3a partitions, H3 (3b partitions), H4 (4 partitions). RV-coefficient and the associated
P-value for each hypothesis are shown. The red arrows show the position of the relevant RV-coefficients
with respect to the corresponding permutational distributions. The analyses were performed using the
residuals from the regression of shape on size (LCS).

5.4.2 Craniofacial modularity and integration in different morphs
of Arctic charr

Accounting for allometry did not have an effect on the RV coefficients and p-values for
AC and LB, but it decreased the RV-coefficients and the p-values for the two smaller
morphs, PL and SB (Table 2). Out of all landmark partitions tested in this study, 3a (H2)
had the lowest RV coefficients and p-values for all studied morphs, while the anterior-
posterior partitioning (H1) had the highest RV-coefficients (Table 5.2). With a few
exceptions (the 3b partition (H3) for the two benthic morphs, SB and LB, and the 4
partition (H4) for SB) the RV coefficient between the hypothesized partitions were among
the lowest of the RV coefficients for all contiguous partitions (Table 5.2). While removing
the effect of allometry decreased both the RV coefficients and the p-values for SB, it had
no effect for LB. This is not surprising as size accounts only for 2.4% of the shape changes
and these results were not significant, which indicates that at the stages under study LB
appears to be growing isometrically.
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Table 5-2 Testing four hypotheses (H1-H4) on craniofacial modularity in post hatching Arctic charr: Shown
are RV-coefficients and p-values without (RV and P-val) and with accounting for allometry (RV residual and
P-val residual) for four pure crosses; three morphs from Lake Thingvallavatn (LB, SB and PL) and an
aquaculture strain from Holar Aquaculture station. The hypotheses of landmark partitions tested: H1) 2
partitions, H2) 3a partitions, H3) 3b partitions, H4) 4 partitions (See Figure 5.2).

RV P-val
Morph RV P-val residuals residuals Hypothesis
AC 0.515 0.0738 0.504 0.0430 H1
LB 0.593 0.0092 0.601 0.0055
PL 0.463 0.0022 0.426 0.0022
SB 0.517 0.0319 0.467 0.0135
AC 0.312 0.0000 0.292 0.0000 H2
LB 0.409 0.0011 0.422 0.0007
PL 0.351 0.0003 0.314 0.0003
SB 0.373 0.0084 0.314 0.0003
AC 0.402 0.0377 0.406 0.0326 H3
LB 0.532 0.0583 0.546 0.0570
PL 0.448 0.0207 0.416 0.0184
SB 0.455 0.0892 0.406 0.0262
AC 0.374 0.0874 0.374 0.0148 H4
LB 0.480 0.0392 0.498 0.0380
PL 0.423 0.0236 0.385 0.0093
SB 0.404 0.0576 0.381 0.0267

5.4.3 Craniofacial modularity in hybrid progeny of PL and SB

Note, here I present descriptive analyses of the four modularity hypotheses for two morphs
and their hybrids. Those are not direct comparisons of integration in those groups. For
hypotheses H1 and H2 the analyses of RV-coefficients showed similar results for the
progeny of the hybrid crosses as seen in the pure crosses. Despite being somewhat higher
in the hybrids, the RV-coefficients departed from the permutational distributions with a
high degree of significance (Figure 5.4, Table 5.3). Contrary to what was observed for the
progeny of the pure crosses (Table 5.2), the third hypothesis of landmark partition (H3)
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was not supported in the hybrid crosses (Figure 5.4 H3, Table 3). Similar results were
obtained with and without accounting for allometry (Table 5.3).
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Figure 5.4 Craniofacial modularity in post hatching offspring of hybrid crosses between SB and PL: See
Figure 3 for explanations.

Table 5-3 Testing four hypotheses (H1-H4) on craniofacial modularity in post hatching offspring of hybrid
crosses of two Arctic charr morphs (SB and PL) from Lake Thingvallavatn. See explanations in Table 3.

RV P-val RY residuals P-val residuals
H1 0.580 0.0083 0.631 0.0064
H2 0.450 0.0008 0.475 0.0049
H3 0.549 0.1192 0.592 0.1166
H4 0.489 0.0793 0.536 0.1120

Interestingly, accounting for allometry lead to higher RV-coefficients for all tested
partitions (Table 5.3). Given the overall integrative effect of allometry and its tendency to
mask existing modularity (Klingenberg, 2009b) obtaining higher RV-coefficients after
accounting for allometry was somewhat surprising. As changes of shape associated with
changes in size (allometry) usually affect the entire organism and are major factors of
morphological variation (Klingenberg, 2010), we decided to look further into how shape
changes with size for the pure morph and hybrid crosses. For that did Principal
components (PCA) of shape from the procrustes adjusted coordinates of the hybrid and
each of the pure morph crosses separately. The first three Principal Components (PCs)
with size (LCS) for each of the pure morph and hybrid groups were then regressed on size
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(LCS). PC1 and PC2 showed significant correlation with size for all studied groups, while
PC3 did not correlate with size for any of the studied groups (Table 5.4). Size explained
similar amount of the shape variation for PC1 and PC2 in the two pure morph crosses, but
it explained more than two times the variance in PC2 in the hybrid crosses (Table 5.3).
These results indicate that hybrids exhibit differences in their allometric growth compared
to the two pure parental crosses, that manifests most strongly in shape changes captured by
PC2 (Figure S 5.2). To further disentangle the allometric relationships between pure and
hybrid crosses, we next examined the correlation of two contrasting, simple size
measurements, i.e. the length (described by the log transformed euclidean distance
between LM 1 and 9) and the width (described by the log transformed euclidean distance
between LM 15 and 28) with the PC1 and PC2 scores for the pure and hybrid crosses
(Figure S 5.3). While the correlation with the PC2 scores for the width differed among the
three groups, the correlation of the width with the PC1 scores was similar for all three
groups (Figure S 5.3A). Similarly the correlation of the length with the PC2 differed
among the groups, while the correlation with PC2 scores differed among the groups, being
more similar for the hybrid and the pure SB cross (Figure S 5.3A). Finally we studied the
correlation of the log transformed ratio length/width (Figure S 5.3B) with PC1 and PC2 for
the pure and hybrid crosses. While all three groups show similar correlation of the ratio
with PC1 scores, the ratio in hybrids did not correlate with the PC2 scores (Figure S 5.3B).

Table 5-4 Shape changes explained by size (allometry) for the three major Principal components (PCs) of
shape. The PCs were computed separately for each group. The individual scores from each PC were then
regressed against LCS for PL, SB and Hyb separately. % depict the variation of shape explained by size and
the significance was obtained with 10.000 permutations (*** p<0.001, ** p<0.001, * p<0.05).

PL SB Hyb
PC1 17%* 29%** 10%*
PC2 21%** 29%** 62%***
PC3 ns ns ns

5.5 Discussion

The craniofacial development in all vertebrates is a segmental process where each
pharyngeal arch develops according to their thomomeric origin (Lumsden ef al., 1991).
Here we investigated the modularity of craniofacial elements in early post hatching stages
of Arctic charr. We predicted that during this developmental period the craniofacial
elements will exhibit low levels of integration and modules will be defined by the
developmental origins of the different cartilage groups. In accordance with our prediction
the Arctic charr face is highly modular and all four a priori hypothesis of landmark
partitions we tested were supported at the developmental stages studied here, just after
hatching and prior to feeding. The best-supported hypothesis, however (H2) has the
basihyal, basibranchial cartilages and the hyoid arch in the same module. Interestingly,
these are three separate cartilages with different developmental origins. This finding
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indicates that with the onset of breathing movements during late embryonic and early post-
hatching stages, the Arctic charr craniofacial elements become more integrated and this
integration is likely related to the onset of vital functional demands such as breathing. As
expected, allometry had an overall integrative effect (Klingenberg, 2009) and removing the
effect of allometry lead to lower RV coefficients (and in the majority of the cases to lower
p-values) for the four hypotheses of landmark partitions.

Natural selection can act on development to produce more functionally integrated
structures and thus can influence the direction of evolutionary change (Cheverud, 1996).
Two alternative hypotheses exist as to the relationship between modularity and evolution:
a hypothesis of modular stasis and the alternative hypothesis of modular reorganization
(Rogers and Jamniczky, 2014). (Jamniczky et al., 2014) found that patterns of modularity
of the trophic apparatus are conserved across oceanic and fresh-water stickleback
populations despite the differences of feeding behavior between populations, which is in
support of the hypothesis of modular stasis. However, in agreement of the contrasting
hypothesis of modular reorganization (Parsons et al., 2012b) showed that patterns of
modularity differed between cichlids adapted to two contrasting trophic niches (suction
feeders and biting species).

Here we investigated the modularity during early post-hatching of two distinct phenotypes
of Arctic charr (benthic and limnetic). Although the data do not indicate difference in the
pattern of modularity between morphotypes, the two benthic morphs (LB and SB) had
slightly higher RV coefficients and P-values for all a priory hypotheses of landmark
partitions tested in the study (Table 5.2). This indicates that the benthic and limnetic
morphologies of Arctic charr might differ in their level of craniofacial integration rather
than in patterns of integration. Another possibility is that the functional integration of the
craniofacial elements starts earlier in the benthic morphs. However more work is needed to
unravel the nature of phenotypic modularity in this system.

Finally, we studied the craniofacial modularity in developing hybrid crosses between SB
and PL. These hybrids exhibit extreme craniofacial phenotypes when compared to the pure
morph crosses (Paper III in this thesis). Interestingly, the RV coefficients and associated p-
values were higher in the hybrid than either of the two pure morph crosses. Although it is
hard to compare directly between datasets it is nonetheless an interesting pattern that
deserves further study. The changes of shape, associated with changes in size (allometry)
are major factors of morphological variation (Klingenberg, 2010), especially during
ontogeny when growth is the most intense. As growth affects the entire organism,
allometry usually has a strong integrative effect (Klingenberg, 2009a). Thus the fact that,
after accounting for allometry, the RV coefficients (and some of the associated P-values),
increased for all tested landmark partitions in the hybrids was intriguing. As mentioned
above allometry is a major factor in morphological variation and an evolutionary level it
reflects changes in growth patterns (Klingenberg, 2010) among closely related species
(Cardini and Elton, 2008; Gidaszewski et al., 2009; Wilson and Sanchez-Villagra, 2010) or
even between populations of the same species (Kimmel et al., 2007; Aguirre ef al., 2008).
Our analysis indicated that size had a similar effect on major axes of shape, seen in both
PC1 and PC2 in the pure parental crosses, but had a stronger effect on PC2 in the hybrids
and a relatively weak effect on PC1. The data show that allometric growth differs
substantially between the hybrid and the pure morph. This phenomenon is unlikely to
reflect morphological divergence, but might rather point towards developmental
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instabilities resulting from the combination of two diverged genomes (PL and SB). This
phenomenon is very interesting and deserves further study, from both developmental
(covering longer developmental period) and molecular perspectives (studying the
underlying molecular mechanisms).

In summary we showed that during early post-hatching stages the craniofacial skeleton is
modular and that this modularity appears to reflect the developmental origins of the
elements constituting it. We compared the craniofacial integration in four groups of Arctic
charr and saw indications that these groups may differ in the level of their craniofacial
modularity. The hybrid progeny of two contrasting morphs appeared to have different
patterns of integration of their craniofacial skeleton compared to the pure crosses of the
parental morphs. The hybrid crosses also exhibited different patterns of allometry
compared to the pure morphs. These results taken together with the transgressive
phenotypes in head morphology (see Paper III in this thesis) the hybrids exhibit may
indicate developmental instabilities during craniofacial morphogenesis in the hybrids. As
mentioned in the methods, however these results need to be treated with caution and more
thorough analyses will be conducted with the data.

5.6 References

Aguirre W, Ullmann B, Currey M, Cresko W, Kimmel C (2008). Allometric change
accompanies opercular shape evolution in Alaskan threespine sticklebacks. Behaviour
145: 669-691.

Cardini A, Elton S (2008). Variation in guenon skulls (II): sexual dimorphism. J Hum Evol
54: 638-47.

Cheverud JM (1996). Developmental Integration and the Evolution of Pleiotropy. Integr
Comp Biol 36: 44-50.

Drake AG, Klingenberg CP (2010). Large-scale diversification of skull shape in domestic
dogs: disparity and modularity. Am Nat 175: 289-301.

Eiriksson GM, Skulason S, Snorrason SS (1999). Heterochrony in skeletal development
and body size in progeny of two morphs of Arctic charr from Thingvallavatn, Iceland.
J Fish Biol 55: 175-185.

Escoufier Y (1973). Le Traitement des Variables Vectorielles. Biometrics 29: 751.

Frandsen F, Malmquist HJ, Snorrason SS (1989). Ecological parasitology of polymorphic
Arctic charr, Salvelinus alpinus (L.), in Thingvallavatn, Iceland. J Fish Biol 34: 281—
297.

Gavrilets S, Losos JB (2009). Adaptive radiation: contrasting theory with data. Science
323: 732-7.

Gidaszewski NA, Baylac M, Klingenberg CP (2009). Evolution of sexual dimorphism of
wing shape in the Drosophila melanogaster subgroup. BMC Evol Biol 9: 110.

Goodall C (1991). Procrustes methods in the statistical-analysis of shape. J R Stat Soc Ser
B 53:285-339.

95



Gorodilov YN (1996). Description of the early ontogeny of the Atlantic salmon, Salmo
salar, with a novel system of interval (state) identification. Environ Biol Fishes 47:
109-127.

Hallgrimsson B, Jamniczky H, Young NM, Rolian C, Parsons TE, Boughner JC, et al.
(2009). Deciphering the palimpsest: Studying the relationship between morphological
integration and phenotypic covariation. Evol Biol 36: 355-376.

Jamniczky HA, Hallgrimsson B (2011). Modularity in the skull and cranial vasculature of
laboratory mice: Implications for the evolution of complex phenotypes. Evol Dev 13:
28-37.

Jamniczky HA, Harper EE, Garner R, Cresko WA, Wainwright PC, Hallgrimsson B, et al.
(2014). Association between integration structure and functional evolution in the
opercular four-bar apparatus of the threespine stickleback, Gasterosteus aculeatus
(Pisces: Gasterosteidae). Biol J Linn Soc 111: 375-390.

Jonsson B, Skulason S, Snorrason SS, Sandlund OT, Malmquist HJ, Jonasson PM, et al.
(1988). Life History Variation of Polymorphic Arctic Charr ( Salvelinus alpinus ) in
Thingvallavatn, Iceland. Can J Fish Aquat Sci 45: 1537-1547.

Kapralova KH, Gudbrandsson J, Reynisdottir S, Santos CB, Baltanas VC, Maier VH, et al.
(2013). Differentiation at the MHCIIa and Cath2 Loci in Sympatric Salvelinus
alpinus Resource Morphs in Lake Thingvallavatn. (GH Yue, Ed.). PLoS One 8:
€69402.

Kapralova KH, Morrissey MB, Kristjansson BK, Olafsdéttir GA, Snorrason SS, Ferguson
MM (2011). Evolution of adaptive diversity and genetic connectivity in Arctic charr
(Salvelinus alpinus) in Iceland. Heredity (Edinb) 106: 472—487.

Kimmel CB, Aguirre WE, Ullmann B, Currey M, Cresko WA (2007). Allometric change
accompanies opercular shape evolution in Alaskan threespine sticklebacks.
Behaviour: 669-691.

Klingenberg CP Morphometric integration and modularity in configurations of landmarks:
tools for evaluating a priori hypotheses. Evol Dev 11: 405-21.

Klingenberg C (2003). Developmental instability as a research tool: using patterns of
fluctuating asymmetry to infer the developmental origins of morphological
integration. Dev Instab causes ...: 1-30.

Klingenberg CP (2005). Developmental constraints, modules, and evolvability. In:
Variation, Elsevier Inc., pp 219-247.

Klingenberg CP (2009a). Morphometric integration and modularity in configurations of
landmarks: tools for evaluating a priori hypotheses. Evol Dev 11: 405-21.

Klingenberg CP (2009b). Morphometric integration and modularity in configurations of
landmarks: tools for evaluating a priori hypotheses. Evol Dev 11: 405-21.

Klingenberg CP (2010). Evolution and development of shape: integrating quantitative
approaches. Nat Rev Genet 11: 623-35.

Klingenberg CP (2011). Morphol: an integrated software package for geometric
morphometrics. Mol Ecol Resour 11: 353-7.

96



Klingenberg C, Barluenga M, Meyer A (2002). Shape analysis of symmetric structures:
Quantifying variation among individuals and asymmetry. Evolution (N Y) 56: 1909—
1920.

Klingenberg CP, Mebus K, Auffray J-C (2003). Developmental integration in a complex
morphological structure: how distinct are the modules in the mouse mandible? Evol
Dev §: 522-531.

Lumsden A, Sprawson N, Graham A (1991). Segmental origin and migration of neural
crest cells in the hindbrain region of the chick embryo. Development 113: 1281-1291.

Malmquist HJ, Snorrason SS, Skulason S, Jonsson B, Sandlund OT, Jonasson PM (1992).
Diet differentiation in polymorphic Arctic charr in Thingvallavatn , Iceland. J Anim
Ecol 61: 21-35.

Marquez EJ (2008). A statistical framework for testing modularity in multidimensional
data. Evolution 62: 2688—708.

Mitteroecker P, Bookstein F (2009). The ontogenetic trajectory of the phenotypic
covariance matrix, with examples from craniofacial shape in rats and humans.
Evolution 63: 727-37.

Mitteroecker P, Gunz P, Neubauer S, Miiller G (2012). How to Explore Morphological
Integration in Human Evolution and Development? Evol Biol 39: 536-553.

Parsons KJ, Marquez E, Albertson RC (2012a). Constraint and opportunity: the genetic
basis and evolution of modularity in the cichlid mandible. 4m Nat 179: 64—78.

Parsons KJ, Marquez E, Albertson RC (2012b). Constraint and opportunity: the genetic
basis and evolution of modularity in the cichlid mandible. Am Nat 179: 64-78.

Parsons KJ, Sheets HD, Skulason S, Ferguson MM (2011). Phenotypic plasticity,
heterochrony and ontogenetic repatterning during juvenile development of divergent
Arctic charr (Salvelinus alpinus). J Evol Biol 24: 1640-52.

Parsons KJ, Skulason S, Ferguson M (2010). Morphological variation over ontogeny and
environments in resource polymorphic arctic charr (Salvelinus alpinus). Evol Dev 12:
246-57.

Richtsmeier JT, Aldridge K, DeLeon VB, Panchal J, Kane AA, Marsh JL, et al. (2006).
Phenotypic integration of neurocranium and brain. J Exp Zool Part B Mol Dev Evol
306: 360-378.

Rogers SM, Jamniczky HA (2014). The shape of things to come in the study of the origin
of species? Mol Ecol 23: 1650-2.

Rohlf FJ (2006). “tpsDig, version 2.10.” http://life.bio.sunysb.edu/morph/index. html.

Rohlf FJ, Slice D (1990). Extensions of the Procrustes Method for the Optimal
Superimposition of Landmarks. Syst Zool 39: 40.

Sandlund OT, Gunnarson K, Jonasson PM, Jonsson B, Lindem T, Magnusson KP, et al.
(1992). The Arctic charr Salvelinus alpinus in Thingvallavatn. Oikos 64: 305-351.

Schilling T, Kimmel C (1997). Musculoskeletal patterning in the pharyngeal segments of
the zebrafish embryo. Development 124: 2945-2960.

97



Schluter D (2000). The Ecology of Adaptive Radiation.

Skulason S, Noakes DL. G, Snorrason SS (1989). Ontogeny of trophic morphology in four
sympatric morphs of arctic charr Salvelinus alpinus in Thingvallavatn, Iceland*. Biol
J Linn Soc 38: 281-301.

Skulason S, Snorrason SS, Ota D, Noakes DLG (1993). Genetically based differences in
foraging behaviour among sympatric morphs of arctic charr (Pisces: Salmonidae).
Anim Behav 45: 1179-1192.

Snorrason SS, Skulason S, Sandlund OT, Malmquist HJ, Jonsson B, Jonasson PM (1989).
Shape polymorphism in sympatric Arctic charr, Salvelinus alpinus in Thingvallavath,
Iceland. Physiol Ecol Japan 1: 393—404.

Svavarsson E (2007). Arangur i kynbétum 4 bleikju og nzstu skref [reference in icelandic].
Freedaping landbunadarins (conference proceedings) 4: 121-125.

Tsuboi M, Gonzalez-Voyer A, Kolm N (2014). Phenotypic integration of brain size and
head morphology in Lake Tanganyika Cichlids. BMC Evol Biol 14: 39.

Walker MB, Kimmel CB (2007). A two-color acid-free cartilage and bone stain for
zebrafish larvae. Biotech Histochem 82: 23-8.

Wilson LAB, Sanchez-Villagra MR (2010). Diversity trends and their ontogenetic basis: an
exploration of allometric disparity in rodents. Proc Biol Sci 277: 1227-34.

Zelditch ML, Swiderski DL, Sheets HD (2012). Geometric Morphometrics for Biologists:
A Primer (Google eBook). Academic Press.

98



5.7 Appendix
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Figure S 5.1 - Scatter plot of the Principal Component Analysis (PCA) scores for the two separated
landmarking sessions. The first landmarking session is shown in grey and the second landmarking session is
shown in black. Principal Component Analysis (PCA) showed no separation between the two landmarking
sessions.

PCIL (40%) PC2 (20%)

Figure S 5.2: Shape changes associated with PCI and PC2 from a PCA of pure and hybrid crosses. The
scale factor is in units of Procrustes distance and it’s set to 0.05. Wireframes depict shape changes
associated with the two Principal Components shown in each graph. In the wire frames the extreme negative
value is shown in black and the extreme positive values in grey.
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Figure S 5.3 - Scatter plot of the PCA scores for the two major Principal Components (PC1-39% and PC2-
20%) of shape variation for two pure parental crosses, SB (red) and PL (green), and the two reciprocal
hybrid crosses (in grey) combined. A) Arrows indicate correlation vectors for the length of the head (solid
arrows) and the width of the head (dashed arrows) for each cross (SB=red arrows, PL=green arrows,
Hyb=black arrows). B) The scatter plot is the same as in A. Arrows indicate the correlation vectors of the
ratio of length/width of the head for each cross (SB=red arrow, PL=green arrow, Hyb=>black arrow).

Table S1 - Testing four hypotheses (HI1-H4) on craniofacial modularity in post hatching Arctic charr: Shown
are RV-coefficients and p-values without (RV and P-val) and with accounting for allometry (RV residual
and P-val residual) for 258 Arctic charr.The hypotheses of landmark partitions tested: Hl) 2 partitions, H2)
3a partitions, H3) 3b partitions, H4) 4 partitions.

H1
H2
H3
H4

100

RV
0.512
0.338
0.441
0.400

P-val
0.0174
0.0003
0.0471
0.0444

RY residuals

0.492
0.313
0.435
0.389

P-val residuals

0.0068
0.0003
0.0254
0.0272
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6.1 Abstract

Micro-RNAs (miRNAs) are now recognized as a major class of developmental regulators.
Sequences of many miRNAs are highly conserved, yet they often exhibit temporal and
spatial heterogeneity in expression among species and have been proposed as an important
reservoir for adaptive evolution and divergence. With this in mind we studied miRNA
expression during embryonic development of offspring from two contrasting morphs of the
highly polymorphic salmonid Arctic charr (Salvelinus alpinus), a small benthic morph
from Lake Thingvallavatn (SB) and an aquaculture stock (AC). These morphs differ
extensively in morphology and adult body size. We established offspring groups of the two
morphs and sampled at several time points during development. Four time points (3
embryonic and one just before first feeding) were selected for high-throughput small-RNA
sequencing. We identified a total of 326 conserved and 427 novel miRNA candidates in
Arctic charr, of which 51 conserved and 6 novel miRNA candidates were differentially
expressed among developmental stages. Furthermore, 53 known and 19 novel miRNAs
showed significantly different levels of expression in the two contrasting morphs.
Hierarchical clustering of the 53 conserved miRNAs revealed that the expression
differences are confined to the embryonic stages, where miRNAs such as sal-miR-130, 30,
451, 133, 26 and 199a were highly expressed in AC, whereas sal-miR-146, 183, 206 and
196a were highly expressed in SB embryos. The majority of these miRNAs have
previously been found to be involved in key developmental processes in other species such
as development of brain and sensory epithelia, skeletogenesis and myogenesis. Four of the
novel miRNA candidates were only detected in either AC or SB. miRNA candidates
identified in this study will be combined with available mRNA expression data to identify
potential targets and involvement in developmental regulation.
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6.2 Introduction

Since the initial discoveries of lin-4 and let-7 miRNAs have emerged as key regulators of
animal development (reviewed in [1,2]). These small (~ 22 nt) non coding RNAs, regulate
gene expression by inducing mRNA degradation or translational repression, making for a
specific and “fine-tunable” response (reviewed in [3]). miRNAs originate from different
parts of the genome (intergenic regions, exons or intronic sequences [4] and are transcribed
either as independent transcriptional units or as clusters of several miRNAs (reviewed in
[5]). A common feature of all miRNA genes, regardless of their genome location, is the
folding of their primary transcript into a stem-loop structure. This hairpin structure is
recognized and converted into a miRNA-miRNA* duplex by the miRNA processing
machinery (see [5]). One of the strands, dubbed the “mature” miRNA, is then loaded into
the miRISC complex while the complementary “star” sequence is often degraded [6]. In
most cases of miRNA mediated gene regulation the target repertoire is determined by the
“seed” region (nt 2-8 located at the 5' end of the mature miRNA) of the miRNA [7].

In general miRNAs are highly conserved among taxa [5]. Comparative studies show how
new miRNAs have continuously been emerging during the evolution of metazoan genomes
[8,9] through various mechanisms including gene duplications of preexisting miRNAs
followed by changes in their sequences, or de novo appearance from random hairpins [10].
However, once they become integrated into the regulatory network, their primary sequence
and particularly their seed region, becomes subject to strict selective constraints [5,11].
Variation in timing and expression patterns among species suggests that these molecules
may play an important role in shaping physiological differences. For example comparison
of two fish species (medaka and zebrafish) showed that heterochrony in miRNAs
expression is associated with neuromast and craniofacial development [12]. This was
suggested to reflect the differences in formation of the head and sensory epithelia observed
between medaka and zebrafish. Morphological differences arising in development can
potentially drive evolutionary change, adaptive divergence and speciation (discussed in
[1]). More specifically, it has been suggested that miRNAs may generally cover more
restricted regulatory niches than transcription factors and thus frequently be more
important in terminal differentiation programs [13]. It has also been proposed that miRNAs
are involved in enhancing species evolvability by stabilizing gene expression and signaling
cascades leading to the increased distinctness of developmental phenotypes, thereby
increasing heritability of traits and facilitating natural selection ([14] and discussion in

[15]).

6.2.1 Arctic charr as a model species to study adaptive
divergence.

The high level of phenotypic polymorphism present in Northern freshwater systems offers
an excellent opportunity to study adaptive divergence [16]. These watersheds, with their
rivers and lakes, were formed after the last glacial epoch 10 000 - 16 000 years ago. The
short evolutionary history characterized by physical variability and topographic dynamics
sets a stage where the early steps of divergence may be playing out in multiple locations
and species. Studies of whitefish (Coregonus clupeaformis), threespine stickleback
(Gasterostreus aculeatus) and Arctic charr (Salivelunus alpinus) have shown that fish
inhabiting these systems exhibit an extremely high level of inter-population variation in
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phenotype with many populations diversifying along a benthic to limnetic habitat axis [17—
20]. Although Arctic charr in Iceland originates from a single Atlantic lineage [21], this
species shows an extremely high level of variation in phenotype between populations and
many examples of polymorphism (i.e. sympatric morphs) have been documented [17,22—
24]. The Arctic charr morphs of Lake Thingvallavatn constitute an extreme example of
local phenotypic diversity. Four morphs grouped into two morphotypes have been
described in the lake: a limnetic morphotype represented by planktivorous (PL) and
piscivorous (PI) charr, with pointed snout and evenly protruding jaws, and a derived,
benthic morphotype represented by small (SB) and large benthivorous (LB) charr, blunt
snout, short lower jaw and relatively large pectoral fins [25]. These morphs also differ
extensively in life history characteristics (size and age at maturity) and embryology [26—
29]. The morphs also exhibit strikingly clear differentiation in ecology as reflected in
different habitat use, diet and endoparasite fauna [27,28,30]. Several common garden
experiments have shown that some key morph specific traits have a definite genetic basis
[31,32]. A recent study, using neutral microsatellite markers, revealed significant but
subtle genetic differentiation between the three most common morphs in Lake
Thingvallavatn, which is consistent with a scenario of early evolution of reproductive
isolation, followed by slow divergence by drift with restrictive gene flow [33]. Notably, a
study of immune system genes revealed more pronounced genetic differentiation among
the morphs in the lake, consistent with a scenario where parts of the immune systems have
diverged substantially among Arctic charr morphs from Lake Thingvallavatn [34]. The
adaptive nature of the trophic morphology and feeding behavior of the Thingvallavatn
morphs has been demonstrated in a series of laboratory rearing experiments [29,31,35].
Moreover the role of developmental heterochrony in the evolution of the Thingvallavatn
Arctic charr morphs was demonstrated in a study showing that some skeletal elements of
the head start ossifying earlier and/or faster in small benthivorous embryos than in
embryos derived from the planktivorous morph [35].

Some of the key differences in functional traits that define the charr morphs are without
doubt rooted in differences in the expression of developmental genes. We hypothesize that
miRNAs may, through their potentially stabilizing effect of phenotypes [14], play a
fundamental role in the divergence of developmental processes that induce differential
cranial morphologies in Arctic charr morphs. As a first step of addressing this hypothesis
we utilized high-throughput sequencing techniques to identify and annotate Arctic charr
miRNAs and to study their expression during the development of two contrasting Arctic
charr morphologies. To this end we used a common garden set up to generate embryonic
series of two contrasting Arctic charr morphotypes, a benthic morphotype, represented by
the SB-charr from Thingvallavatn and a limnetic morphotype represented by fish from the
Holar aquaculture stock (AC). These two morphs differ greatly in adult size, color and
head morphology (Figure 1): SB are small, dark and have a sub-terminal mouth and
rounded snout whereas AC are large, silvery and have a pointed snout and a longer lower
jaw. We sampled AC and SB embryos at four developmental time-points reflecting
important events in Arctic charr craniofacial development and used high-throughput
sequencing to quantify differences in miRNA expression between the morphs. More
specifically we identified and annotated Arctic charr miRNAs using homology to known
miRNAs in other species. Furthermore, we identified a large set of novel miRNA
candidates by aligning reads to genomic sequences from the closely related Atlantic
salmon, Salmo salar. Expression levels for both known and novel miRNAs were
compared between AC and SB.
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6.3 Material and Methods

6.3.1 Sampling and Methodology

All sampling from the wild and rearing in aquaculture was performed according to
Icelandic law and with proper permissions. Fish from Lake Thingvallavatn were caught by
the authors for the purpose of this study with fishing permissions obtained from the
Thingvellir National Park Commission and the owner of the Mjéanes farm. SSS and ZOJ
hold special permits for sampling fish from nature for scientific purposes according to
Icelandic law (clause 26 of law 61/2006 on salmonid fishing). Control fish from Hoélar
aquaculture stock were obtained from a national breeding programme, and were not
specifically bred for the purpose of this project. These fish are held at the arctic charr
breeding station, a quarantined rearing and holding facility, at Holar University College.
After stripping for gametes, parent fish were killed by a sharp blow to the head and
checked for absence of breathing when placed in water. Setting up crosses and the
subsequent killing of parents was performed by the authors. Ethics committee approval is
not needed for regular or scientific fishing in Iceland (The Icelandic law on animal
protection, Law 15/1994, last updated with Law 157/2012). The rearing of embryos was
performed according to Icelandic regulations (licence granted to Holar University College
aquaculture and experimental facilities) in Verid, Saudarkrokur, Iceland. Sampling of
embryos was performed by University College Aquaculture Research Station (HUC-ARC)
personnel. HUC-ARC has an operational license according to Icelandic law on aquaculture
(Law 71/2008), that includes clauses of best practices for animal care and experiments.
For this study the last gestation age at which embryos were sacrificed was 434 (tg) units.

For RNA extraction, samples were flash frozen in RNA later. Prior to freezing eggs were
permeabilized by puncture with a needle. Samples for staining (not described in this study)
were treated with an overdose of phenoxyethoanol before fixing.

For this study we used developmental time-series from pure crosses of two Arctic charr
morphs, Holar aquaculture charr (AC) and small benthic charr (SB) from Lake
Thingvallavatn. These strains were selected mainly for their pronounced differences in
body size, coloration and head morphology (Figure 6.1). As stated above, the AC crosses
were made with parents from the Holar breeding programme [36]. Fish from the small
benthic morph (SB) were caught in Lake Thingvallavatn using gill-nets. Eggs from several
females were pooled and fertilized using milt from several males from the same group.
Eggs were reared at approximately 5°C in a hatching tray (EWOS, Norway) under constant
water flow and in complete darkness at the Holar University College experimental
facilities in Verid, Saudarkrokur. Exact water temperature was recorded twice daily to
estimate the relative age of the embryos using tau-somite (tg) units defined as the time it
takes for one somite pair to form at a given temperature [37]. Embryos were collected
throughout development and either fixed in 4% PFA or stored in RNAlater (Ambion) at -
80°C. Based on embryos sampled at different developmental stages and stained with alcian
blue (cartilage) and alizarin red (bone), four time-points (141, 161, 200 and 434 t5) were

selected to represent important stages of bone and cartilage development. Stages 141, 161
and 200 are embryonic whereas stage 434 is a fry stage and for simplicity these stages will
be referred to as stages 1, 2, 3 and 4, respectively. Two independent samplings were
performed: one was used for high-throughput small-RNA-sequencing (miRNA-seq) and
the other one for qRT-PCR.
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Figure 6.1 Two contrasting Arctic charr morphs differing in size, coloration and head morphology: Top:
Arctic charr from aquaculture stock (AC) is large, silvery and has a pointed snout and long lower jaw,
Bottom: Small benthic charr from Thingvallavatn (SB) is small, dark and has a sub-terminal mouth and
rounded snout.

6.3.2 Small RNA sequencing

Total RNA from each stage of each morph was isolated from a pool of 6 whole embryos
and enriched for small RNAs using the mirVana kit (Ambion). The purity and amount of
small RNA was verified on a BioAnalyzer (Agilent Technologies). The samples were
prepared for sequencing following the small RNA v1.5 sample preparation protocol from
[Mlumina. Briefly, 3° and 5° RNA adapters were ligated to small RNAs, which were
subsequently, reverse transcribed into DNA and PCR amplified. The samples were then
run on polyacrylamide gels and the DNA eluted from bands corresponding to 20-30
nucleotide RNA fragments. miRNA and transcriptome sequencing (mRNA-seq) was
performed at deCODE Genetics (Reykjavik, Iceland) using the TruSeq smallRNA (v1.5)
kit (Illumina) on an Illumina GAllx instrument. Raw reads were submitted to NCBI
Sequence Read Archive (SRA) under accession number SRP039492.

6.3.3 miRNA-seq data processing

Raw reads were processed with cutadapt [38] as follows: First, adaptor sequences were
removed and only reads with adaptors were kept. Next, we used the FastX toolkit
(http://hannonlab.cshl.edu/fastx_toolkit/index.html) (script available on request) and the
quality scores associated with the reads to remove bases with a Phred based quality score
[39] of less than 20 from read ends. Sequences retaining less than 15 nucleotides after
filtering were discarded. Reads where 10% or more of the bases had a Phred quality score
lower than 20 were also discarded. Finally, identical reads were reduced to one copy with
the redundancy noted in the read name. The sequence filtering and collapsing was repeated
for each sample.
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6.3.4 Annotation of hcRNAs

To annotate sequences using known RNAs we used Rfam version 10.1[40] and miRBase
[41-44] version 20 databases. The Rfam database was searched with HMMER (version
3.0; http://hmmer.janelia.org/) with an e-value cutoff of 0.01. For the miRBase the ssearch
command from the fasta package version 36.3.6d [45] was used to detect homology
between the mature miRNAs and the collapsed sequences (e-value cutoff 0.01).

6.3.5 On a quest for novel miRNAs

To identify novel miRNAs we used a probabilistic model of miRNA biosynthesis
implemented in miRDeep 2 [46]. As a sequenced Arctic charr genome is not currently
available, we used the genome sequences from the closely related Atlantic salmon [47] for
reference. Collapsed reads were aligned to the Atlantic salmon genome with the mirDeep 2
mapping program (10 minimum reads per miRNA) for both morphs with the time-points
combined. To facilitate mapping, collapsed sequences with strictly lower read count than 4
were omitted from the detection. The miRDeep2 algorithm then uses the reference regions
bracketing the aligned reads to compute a hairpin structure and estimates the probability of
each sequence being a true miRNA precursor based on the position of the reads, their
frequency, the energetic stability of their secondary structure and conservation of the 5’
ends.

Sequences with log score greater or equal to 2 were considered as potential miRNAs, the
predicted hairpins were searched against hairpins from mirBase (version 20) with blastall
(version 2.2.26, -W 7)[48]. Candidates were annotated as known miRNAs if the alignment
length was greater or equal to 60 nucleotides and expected value for the match was lower
than 0.01 (-e 0.01) otherwise the hairpins were classified as novel.

6.3.6 PCR amplification and sequencing of miRNA clusters

To assess the degree of sequence conservation for genomic clusters containing known and
novel miRNAs between Arctic charr and Atlantic salmon we selected 4 clusters containing
known miRNAs (miR-19¢c, 18b* and 20b; miR-133a and miR-133b and miR-143-3p and
miR-143-5p; miR-219-3p and miR-219-5p) and 3 clusters containing novel miRNA
candidates (sal-nov-235, sal-nov-242 and sal-nov-343) and PCR amplified their genomic
regions from the Arctic charr genome. Primers were designed with Primer3
(http://primer3.wi.mit.edu/) (Table S1). The same PCR program was used for all primer
pairs: an initial denaturation at 95 °C for 5 min; 35 cycles of 95 °C for 45 seconds; 45
seconds at a 53 °C; 1 min at 72 °C, then a final step of 10 min at 72 °C. PCR products were
treated with ExoSap and sequenced on an Applied Biosystems 3500xL Genetic Analyzer
using BigDye chemistry. Raw sequencing data was base-called by Sequencing Analysis
Software v5.4 with KBTMBasecaller v1.41 (Applied Biosystems), and run through Phred
and Phrap, prior to trimming primer sequences, visual editing of ambiguous bases and
putative polymorphisms in Consed [49]. Fasta files were exported and aligned with
ClustalW  (http://www.ebi.ac.uk/Tools/msa/clustalw2/, and manually inspected for
alignment errors in Genedoc (www.psc.edu/biomed/genedoc). All sequences were
deposited in Genebank under the accession numbers [KJ573796-KJ573802]. These
sequences were then searched using blast against the salmon database. The conservation
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between Arctic charr and salmon ranged between 91-94% for the known miRNAs and 92-
98% for the novel miRNA candidates. Mismatches were always located outside of the
miRNA mature-star sequence.

6.3.7 Differential expression analysis

The R package edgeR [50] was used to study the differential expression of conserved and
novel miRNA candidates between morphs and among developmental time-points in a
generalized linear model, where the additive covariates (no-interaction) corresponded to
developmental time-point and different morphs. The normalization factors were calculated
for each sample using the function calcNormFactors. As there are no replicates in any of
the experimental conditions, the options method="deviance”, robust=TRUE and
subset=NULL were wused for estimating the common dispersion (function
estimateGLMCommonDisp) parameters as recommended by the edgeR user manual. The
trended and tagwise dispersion were also estimated (function estimateGLMTrendedDisp
and estimateGLMTagwiseDisp) with default options. The statistical significance of the
terms was assessed by comparing likelihood difference to a reduced model without the
time or the morph terms, with the function gImLRT in edgeR. The first 20 bases of each
annotated sequence (novel and previously described miRNAs) were used as an identifier
and the counts were aggregated for sequences that share the first 20 bases. This allowed us
to work at the sequence level without lumping together isoforms (isomiRs). An entry (first
20 bases) was only considered for the statistical testing if the counts per million reads were
strictly greater than 3 in at least two experimental points resulting in 1862 tags. We
adjusted for multiple testing using the Benjamini-Hochberg false discovery rate [51]. The
R script used for this analysis is available in supplementary File S 6.1.

6.3.8 Descriptive analysis

Cluster analysis was performed using the heatmap function and plotted using the gplots
package in R (http://www.r-project.org/). Prior to the clustering analysis expression levels
for each miRNA were normalized across samples using a Variance Stabilizing
Transformation.

6.3.9 Real-time qualtitative PCR analysis

In order to verify the observed differential expression between morphs in our miRNA-seq
data, we selected 9 miRNAs (sal-miR-17, sal-miR-26a, sal-miR-30b, sal-miR-122, sal-
miR-140, sal-miR-181a*, sal-miR-196a, sal-miR-199a and sal-miR-206) for qPCR
analysis. We concentrated on the 3 embryonic stages, as in both our analyses (for morph or
developmental effect) the expression profiles between the samples of the last stage
appeared to be very similar (see results). For the qPCR analysis two separate RNA
extractions (biological replicates) were used for each data point. RNA was extracted from
pools of 6 whole embryos/fry using a standard TRI Reagent (Sigma) protocol and treated
with DNasel (New England Biolabs) in order to limit genomic DNA contamination. All
samples were from the same sampling effort and were extracted and processed
simultaneously. cDNA was synthesized using the Exiqon universal cDNA Synthesis Kit I1.
The consistency of the cDNA synthesis among samples was verified using a spike in
template along with a Control primer set (Exiqon). For the gPCRs we used SYBR Green
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master mix (Exiqon) and LNA primers (Exiqon). All qPCRs were done in duplicates
(technical replicates) in a 10 pl reaction volume in 96 well-PCR plates on an ABI 7500
real-time PCR System (Applied Biosystems) following manufacturer instructions
(Exiqon). The same PCR program was used for all miRNA primer pairs: starting with a 2
min hold at 50°C followed by a 10 min initial denaturation at 95°C and 45 cycles of 10 sec
denaturation at 95°C and 1 min annealing/extension at 60°C. A melting curve analysis
was performed at the end of each PCR to verify the specificity of the amplification. U2
spliceosomal snRNA (Primer sequence: GGTACTGCAATACCGGGG) was initially
selected as a reference gene. However, the use of non-miRNA genes as reference has been
shown to be problematic and the use of mean expression is often more appropriate [52].
We therefore opted to use the geometric mean for the expression values of the miRNAs
under study as a reference. Relative expression (fold change) for each miRNA compared to
stage 1 in AC was calculated in R using a script provided in supplementary File S 6.2.

6.4 Results

6.4.1 Small RNA descriptive statistics

In order to identify miRNAs involved in Arctic charr development and morph differences,
we made 8 small RNA libraries from four developmental time-points of two contrasting
morphs of Arctic charr. The sequencing depth ranged from 29.1 to 33.9 million reads with
a mean depth of 32.4 million reads per sample. After removing the adapters using cutadapt
[38] and filtering out low quality reads wusing the FastX toolkit
(http://hannonlab.cshl.edu/fastx_toolkit/), we obtained on average 24.8 million reads per
sample (Table 6.1).

Table 6-1 Summary of read numbers from small RNA sequencing. Number of reads (NR, in millions of
reads) in high-throughput data from small RNA libraries of four developmental points and two morphs of
Arctic charr. AC = Aquaculture charr, SB = Small Benthic charr.

Number of NR after adapter NR after
Sample reads (NR) trimming collapsing

SB 1 33.4M 23.1M 2.4M
SB 2 32.8M 28.2M 0.9M
SB 3 33.9M 30.5M 0.7"M
SB 4 29.1M 21.6M 0.7M
AC1 32.8M 24.2M 1.7"M
AC2 32.5M 21.1M 2.0M
AC3 31.3M 23.2M 0.7M
AC4 33.6M 26.2M 1.0M
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The size distribution of the collapsed reads of all 8 libraries accounting for redundancy is
shown in Figure S1. The majority of the reads were 21-23 nucleotides, corresponding to
the typical miRNA size range. Details of the size distribution for both unique and
collapsed reads for all 8 libraries are shown in Figure S 6.2. All 8 libraries showed similar
distribution with a peak at 21-23 nt. Furthermore, annotation of the collapsed reads using
the Rfam database confirmed that our small RNA libraries were highly enriched with
miRNAs (Table 6.2).

Table 6-2 High-throughput reads annotated using the Rfam database.

snc RNA Number of reads
miRNA 50841311
rRNA 49033
mRNA 5755
tRNA 24451
SNORD 151004
U 208259
sno 25857

6.4.2 A total of 326 conserved and 427 novel miRNA candidates
were found in the data

All collapsed reads were compared to the mature miRNA sequences available in miRBase
(release 19) using ssearch [45] and 326 candidates (Table S 6.2) were identified with high
confidence (e-value < 0.001). The 10 most abundant miRNAs account for 65% of the total
conserved miRNAs (Figure 6.2) with sal-miR-206 and sal-miR-1 alone accounting for
36% of the total miRNAs. We identified 427 novel miRNA candidates (Table S 6.3) of
which 37% were represented by the 10 highest expressed putative miRNAs. We sequenced
the genomic regions of three novel miRNAs (sal-nov-235, sal-nov-242 and sal-nov-334).
They were all highly conserved between Arctic charr and Salmon (Table S 6.1).
Furthermore their mature and star sequences are located in highly conserved blocks in
medaka, fugu, tetraodon and stickleback. Several of the conserved miRNAs were present
in two or three isoforms (isomiRs). For example sal-miR-451 exists in 3 isoforms (Table S
6.2). Two of these (sal-miR-451 1 and sal-miR-451 3) are highly conserved among
vertebrates, whereas the third (sal-miR-451 2) has not previously been described in other
species. This derived isoform differs in one base (G->U substitution) located at the 3' end
of the mature sequence and is the predominant isoform of sal-miR-451 in our data (Table
S2). Another interesting example is sal-miR-152, where 4 isoforms are found in our data
(Table S 6.2) with the most abundant being the ancestor sequence. The three other
isoforms are one mutation away from the ancestral form. Interestingly, these mutations (T-
>A, C, or G) are located at the same site (position 5) for all 3 derived isoforms (Table S
6.2).
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Other miBRNAs 35%

miR-206 19%

miR-30e 1%
miR-181b 2%

miR—143 2%
miR—192 2%
miR-181a 3%

miR-1 17% miR-10b 3%

miR-21 8%

miR-9 9%

Figure 6.2 Relative abundance of known miRNAs in all samples combined. Together the 10 most abundant
known miRNAs constitute 65% of all known miRNAs.

6.4.3 51 known miRNAs and 6 novel miRNA candidates are
differentially expressed among developmental stages

We found 51 known miRNAs to be differentially expressed among developmental time-
points. Hierarchical clustering (Figure 6.3, see also Table S4 for background data) of
miRNA expression showed that the 8 samples grouped into four clusters according to
developmental time: one major division separates the three embryonic stages (1, 2 and 3)
from the last post-hatching stage (4) and three divisions for each of the three embryonic
stages (Figure 6.3). This major division between embryonic and post hatching stages
indicates a clear shift in miRNAs expression between these developmental phases. The
second division separates stage 3 from stages 1 and 2 and the third division separates
stages 1 and 2 (Figure 6.3). Interestingly, there are two major divisions in the miRNA
expression pattern clustering: node one depicts miRNAs that are highly expressed during
the embryonic stages and their expression decreases in the last stage while the second node
includes miRNAs with high expression in stage 4 and low expression in the embryonic
stages. For example members of the 430 family (miR-430 a, b, ¢ and d) are highly
expressed in the embryonic stages and their expression decreases markedly in late
development. In addition other miRNAs, such as sal-miR-219 a and b and miR-181c, show
higher expression in the embryonic stages. On the other hand, miRNAs such as sal-miR-
22a, 140, 182, 183, 192, 215 and different members of the let-7 family show increasing
expression over time. Of the novel candidates, 6 putative miRNAs were found to be
differentially expressed among developmental points (Table 6.3). Three of them sal-nov-1,
sal-nov-5 and sal-nov-18 are also differentially expressed between morphs.
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Figure 6.3 Heat-map showing relative expression of the 51 miRNAs significantly differentially expressed
among developmental stages. Expression levels for each miRNA were normalized across samples using
variance stabilizing transformation. Blue denotes high and white low relative expression. AC stands for
Aquaculture charr and SB stands for Small benthic charr. Numbers 1, 2, 3 and 4 depict the four
developmental time-points.
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Table 6-3 Novel miRNA candidates differentially represented between morphs and/or developmental stages
in the small-RNA-seq data. Included are miRNA names, differential expression and number of raw reads
per stage per morph.

Name
sal-nov_1
sal-nov_2
sal-nov_3
sal-nov_4
sal-nov_5
sal-nov_6
sal-nov_7
sal-nov_8
sal-nov_9
sal-nov_10
sal-nov_11
sal-nov_12
sal-nov_13
sal-nov_14
sal-nov_15
sal-nov_16
sal-nov_17
sal-nov_18
sal-nov_19

sal-nov_20
sal-nov_21

sal-nov_22
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Expressed
Morph/Time
Morph
Morph
Morph
Morph/Time
Morph
Morph
Morph
Morph
Morph
Morph
Morph
Morph
Morph
Morph
Morph
Morph
Morph/Time
Morph

Time
Time

Time

SBI
;

8
34
0

0
47
25
207
130

644
24

70

3472

121

SB2
4
13
78

168
59

13
12
44
32
22
1472
30
89

274

7090

107

SB3
1
16
63
0

0
14
1
20
13
12
16
13
112
31
32
1725
27
121

967
1262
5

56

SB4
1

9
17
0

0
18
9

7
54
10
9

6
133

31
983

372

5358

2636
9

ACl
17
104

13076
1800
73

48
256
268
45
104

113
27

966
65

207

128

5005

206

AC2
31
89

0
5397
563
58
45
117
361
53
89
17
110
25

648
41
11
63
213

4127

71

AC3
25
151

5755
343
23
14
47
173
52
151
15
236
96

944
69
17
107
988

10188

26

AC4
10
88
0
560

28

71
70
25
88

308
103
10
1011
50
219
15
6078

20766



6.4.4 53 known miRNAs and 19 novel miRNA candidates are
differentially expressed between AC and SB embryos

We tested for differential expression between morphs using a Generalised Linear Model
and adjusted for multiple testing using the Benjamin-Hochberg false discovery rate as
decribed in methods. We found 53 miRNAs to be differentially expressed between AC and
SB. These miRNAs cluster by morph during the embryonic stages (stages 1-3) (Figure 6.4,
see also Table S 6.4 for background data). During these 3 stages miRNAs such as sal-miR-
130, 133, 153, 17, 30, 451, 219, 26, 199a and 145 are highly expressed in AC, whereas sal-
miR- 206, 133, 122, 181a, 192, 196a and 223 are highly expressed in SB. The expression
of some of these “morph specific” miRNAs for example sal-miR-130, 153, 17, 30b and
30c in AC and sal-miR-196a, 206, 192 and 122 in SB observed in the embryonic stages
decreases markedly in the last stage. During the last stage the observed miRNA expression
differences between the two morphs disappear (Figure 6.4). Of the novel miRNA
candidates, 19 putative miRNAs were found to be differentially expressed between AC and
SB (Table 6.3). Two of them, sal-nov-4 and 5 were only expressed in AC and at most/all
stages whereas expression of another putative novel miRNA, sal-nov-3, was only detected
in SB offspring and at all four developmental points. With three exceptions (sal-nov-4, 5
and 16) all of the differentially expressed putative miRNAs showed very low expression
levels (Table 6.3).
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Figure 6.4 Heat-map showing relative expression of the 53 miRNAs significantly differentially expressed
between AC and SB morphs. Expression levels for each miRNA were normalized across samples using
variance stabilizing transformation. Blue denotes high and white low relative expression. AC stands for
Aquaculture charr and SB stands for Small benthic charr. Numbers 1, 2, 3 and 4 depict the four
developmental points.

We selected 9 miRNAs and further studied their expression by qPCR using independent
biological replicates. The selection was based on the dynamics and degree of differential
expression between morphs and/or among developmental points seen in the sequencing
data. We concentrated on the three embryonic stages, as in both our analyses (for morph or
developmental effect), the expression profiles between the samples of stage as the
expression profiles between the samples of stage 4 appeared to be very similar. Eight of
these miRNAs (miR-17, miR-26a, miR-30b, miR-140, miR-181a*, miR-196a, miR-199a
and miR-206) amplified well (Figure 5), whereas miR-122 showed double peaks in
melting curve analysis and was discarded from further analysis. Five (miR 17, 26a, 30b,
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140 and 206) out of eight miRNAs tested with qPCR showed similar expression patterns to
what was expected from the high-throughput sequencing (Figure 6.5, A-E). Three miRNAs
(miR-196a and miR-199a and miR-181a) exhibited similar expression patterns in one or
two of the three stages under study, (Figure 6.5, F-H).
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Figure 6.5 Comparison of expression of 8 selected miRNAs (miR-17, 26a, 30b, 140, 181a, 196a and 199a) at
three developmental time-points for two contrasting Arctic charr morphs (AC and SB) quantified by small
RNA-seq (upper panel) or gPCR (lower panel).
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6.5 Discussion

The molecular mechanisms underlying the development of Arctic charr morphologies are
likely to have parallels in other vertebrate species and studying them is of interest in both
developmental and evolutionary contexts. Given the recent divergence in northern
populations of Arctic charr, it is likely that the observed phenotypic polymorphism rooted
in development in this species arose mostly by differences in gene regulation as opposed to
changes in protein coding sequences. In a recent study [53] two genes involved in matrix
remodeling in bone formation (sparc and mmp2) showed consistent differences in
expression during the development of embryos derived from benthic and limnetic morphs
of Arctic charr, suggesting that these genes might be involved in the development of these
distinct Arctic charr morphologies. Little is known about what controls such differences in
expression. While numerous studies demonstrate the involvement of transcription factors
and other regulatory elements in the phenotypic evolution of birds [54] and fish [55-60],
there are few known examples of miRNAs playing a role in morphological variation. In a
recent study Arif er al. [61] experimentally demonstrated that differences in the “naked
valley” phenotype observed among natural populations of D. melanogaster were caused by
variation of miR-92a expression. Our study is the first phase of assessing the involvement
of miRNAs in the development of key morphological traits and their potential role in the
morphological evolution of the highly polymorphic Arctic charr. In so doing we also hope
to shed light on some of the developmental circuitry operating at these levels of
development.

Using small RNA-seq we found 326 known and 427 novel miRNA candidates in Arctic
charr. A few of the candidates, termed novel (Tables 3 and S2) are absent from miRbase
but have been previously identified in other salmonid species [62—64]. When only the 326
known miRNAs are considered, the 10 most abundant ones account for 65% of reads
(Figure 2). These miRNA are highly conserved among taxa and have been shown to have
important functions during development. The two most abundant miRNAs in our data,
miR-206 and miR-1, together account for 36% of the total known miRNAs (Figure 2).
Their role in skeletogenesis and myogenesis has been studied in some detail, for example
miR-206 has been found to induce myogenic differentiation [65-67] while inhibiting
osteoblast differentiation [68], and miR-1 has been found to regulate skeletal muscle and
cardiac development [69,70]. These miRNAs are highly conserved in animal evolution [8]
with miR-1 retaining its muscle-specific expression from C. elegans to human [71]. Other
highly expressed miRNAs are involved in cardiogenesis (miR-21), neurogenesis (miR-9),
gut and gall bladder development (miR-143 and miR-192) [72]. One of the oldest miRNAs
in the animal kingdom (miR-10) [8] is also among the 10 most highly expressed miRNAs
in our data. Encoded in the intron of hoxB4, this miRNA is suggested to play a role in
anterior posterior patterning.

A few miRNAs exist in multiple forms in our data. Among these the most interesting
examples are miR-152 and miR-451. In the case of miR-152 the polymorphism is located
in the seed region, which suggests functional divergence. In the case of miR-451 the
ancestral and derived forms differ in one base (G->U substitution) located in the 3' end of
the mature sequence. Interestingly the derived form of miR-451 is also the most abundant
one. Although not as essential as the seed region, 3' miRNA-target pairing has a role in
defining target specificity within miRNA families [73]. The derived form of miR-451
might have evolved following the whole genome duplication Salmonids underwent 25-100
million years ago or as a result of gene duplication. Other possibilities for the presence of
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this miRNA in our data include post-transcriptional editing of the ancestral form. However,
without a sequenced Arctic charr genome, distinguishing between evolutionary scenarios
represents a challenge. The derived form of mir-451 might be specific to Arctic charr as it
is not present in the salmon genome and has not been reported in rainbow trout. As
miRNAs often co-evolve with their targets [5] further phylogenetic analysis will help
shedding light on the evolution of miR-152 and miR-451 and their targets in Arctic charr.

51 previously annotated miRNAs were found to be differentially expressed among
developmental points. The cluster analysis of these miRNAs showed a clear shift in
miRNA expression between the embryonic stages and the post-hatching stage, visible from
both dendrograms. Although samples grouped by developmental stage, the major division
was between stages 1, 2, 3 and stage 4. These findings were further confirmed by the
existence of two major clades of miRNA expression: one containing miRNAs highly
expressed during the embryonic stages and one the last stage. Among the miRNAs
showing high expression in early development are the members of the 430 family (miR-
430 a, b, ¢ and d). In zebrafish these miRNAs are involved in the maternal to zygotic
transition by deadenylation and clearing of maternal transcripts [74]. The majority of the
miRNAs showed higher expression in the last developmental stage. Examples include
miR-1, members of the let-7 family, miR-22a, miR-140, miR-182, miR-183, miR-192 and
miR-215. The evolutionarily ancient and highly conserved let-7 family is involved in the
regulation of the timing of developmental events in C. elegans, in particular the transition
from larval stage 4 (L4) to adult [75]. In vertebrate development let-7 is temporally
regulated and it is thought to play a role in late temporal transitions during development
[75]. Other miRNAs found to be highly expressed in the last developmental stage are also
involved in major developmental processes such as muscle differentiation (miR-1),
endochondrial bone development (miR-140) and neuromast differentiation (miR-182 and
183) [12,82]. Overall 72 miRNAs (19 novel miRNA candidates and 53 conserved
miRNAs) were found to be differentially expressed between AC and SB at the
developmental points under study. Of those sal-miR-196a, sal-miR-206, 122, 192, 196a,
223 and 181a were more highly expressed in SB whereas sal-miR-26a, 30b, 17-5p, 153-3p,
130b and c, 199a were more highly expressed in AC (Figure 4). All of the conserved
miRNAs showing variation in expression between the Arctic charr morphs have been
found to play an important role in development. For example, miR-196a, which is encoded
in a Hox cluster, has been found to be involved in axial and appendicular patterning in
chicken [76] and zebrafish [77]. Another muscle specific miRNA, miR-206, shows large
expression differences between SB and AC especially at stage 3, where there is a 2.5 fold
difference between the two morphs. This miRNA is involved in muscle differentiation and
its expression is up-regulated by MyoD in differentiating muscle fibers. Loss of function of
MyoD leads to down-regulation of miR-206 and severe deformities in the craniofacial
elements [78]. miR-206 has also been shown to directly affect osteoblast differentiation
and its overexpression in the osteoblasts of transgenic mice leads to bone abnormalities
[68].

Other conserved miRNAs, miR-130b and ¢, miR-133, miR-199a-3p, miR-26a and miR-
451 were highly expressed in AC throughout early development compared to SB. Some of
these miRNAs are involved in myogenesis and skeletogenesis, for example, miR-199a-3p
is important for normal skeletal development. In mouse a knockdown of Dnm3os (the
primary precursor of a miR-214-miR-199a cluster) leads to skeletal abnormalities such as
craniofacial hypoplasia [79]. miR-26 contributes to neurogenesis and myogenesis [80] and
is involved in rainbow trout embryonic development [62] whereas miR-451 has been found
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to be involved in erythroid maturation in zebrafish [81]. Nineteen novel miRNA candidates
were found to be differentially expressed between the two Arctic charr morphs in this
study. Of those, two were only expressed in AC while one putative miRNA was only
expressed in SB. These novel miRNA candidates were detected in most/all stages in one
morph and not detectable in any of the stages in the other morph (Table 3), therefore it is
unlikely that they represent a sequencing or technical error. As we used the Salmon
genome to detect novel miRNAs, none of the novel miRNAs is likely to be morph or even
Arctic charr specific, although expression differences can be expected. Several scenarios
exist as to why these miRNAs are not expressed in both morphs, for example they might
have been lost, their sequence might have been modified leading to the instability of the
miRNA secondary structure or their expression repressed.

miRNAs are understudied in fishes and at present represent just a fraction of the miRNAs
described in mammals. In the latest release of mirBase (version 20) from June 2013 there
are only 255 mature miRNA sequences available for zebrafish, whereas 2578 mature
sequences have been described in humans. Here we find 427 novel miRNA candidates,
which are not Arctic charr specific. Some of these miRNAs are in highly conserved blocks
(sal-nov235, 242, 334) among fishes, indicating that these miRNAs might have arisen
early in the evolutionary history of fishes.

6.6 Concluding remarks and future directions

The theoretical underpinnings of our study are based on the general proposition that
differences in the level, timing and pattern of miRNA expression or acquisition of new
miRNAs can influence variation in developmental circuits, so as to generate diverse and
possibly discrete morphological phenotypes, thereby creating substrate for natural
selection to act upon. We use a system of two contrasting morphs of Arctic charr and as a
first step we surveyed miRNA expression at four developmental stages thereby homing in
on the miRNA genes that may have a bearing on the morphological and functional
differences between the morphs. Differences in expression levels were detected in 72
miRNAs. Interestingly, the majority of these miRNAs (53/72) are evolutionarily stable and
have been previously described as part of important developmental processes such as
neurogenesis, erythropoiesis, skeleto- and myogenesis, specifically in craniofacial
elements. Some miRNAs (e.g. the let-7 and miR430 families) show indications of
differences in timing of expression. Other miRNAs (sal-miR-152 and sal-miR-451) exhibit
sequence divergence. We are currently working on follow up experiments e.g. looking for
the putative targets of the interesting miRNA candidates found in this study and defining
their expression pattern using in situ hybridization in embryos derived from additional
morphs and populations.

6.7 Acknowledgements

We acknowledge Bjarni K. Kristjansson, Einar Svavarsson and Soizic Le Deuff for
assisting with the sampling of parents, generation and maintenance of and sampling from
embryo groups. We thank Johannes Gudbrandsson and Arnar Palsson for discussions and
advice on statistics. We also thank Valerie H. Maier and Ehsan Pashay Ahi for discussing
the project at various stages. We thank Gudbjorg b. Orlygsdottir, Steinunn Snorradéttir
and Olafur b. Magntisson at deCODE Genetics for technical support.

119



6.8 References

1. Plasterk RHA (2006) Micro RNAs in animal development. Cell 124: 877-881.

2. Mishima Y (2012) Widespread roles of microRNAs during zebrafish development and
beyond. Dev Growth Differ 54: 55-65. doi:10.1111/j.1440-169X.2011.01306.x.

3. LiJ, Zhang Z (2012) miRNA regulatory variation in human evolution. Trends Genet: 1—
9. doi:10.1016/j.tig.2012.10.008.

4. Zhao Y, Srivastava D (2007) A developmental view of microRNA function. Trends
Biochem Sci 32: 189-197. doi:10.1016/j.tibs.2007.02.006.

5. Berezikov E (2011) Evolution of microRNA diversity and regulation in animals. Nat
Rev Genet 12: 846-860. doi:10.1038/nrg3079.

6. Bartel DP, Lee R, Feinbaum R (2004) MicroRNAs: Genomics, Biogenesis, Mechanism,
and Function. Genomics: The miRNA Genes. 116: 281-297.

7. Lewis BP, Shih I, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of
Mammalian MicroRNA Targets. Cell 115: 787-798.

8. Heimberg AM, Sempere LF, Moy VN, Donoghue PCJ, Peterson KJ (2008) MicroRNAs
and the advent of vertebrate morphological complexity. Proc Natl Acad Sci U S A
105: 2946-2950. doi:10.1073/pnas.0712259105.

9. Tarver JE, Sperling EA, Nailor A, Heimberg AM, Robinson JM, et al. (2013) miRNAs:
Small Genes with Big Potential in Metazoan Phylogenetics. Mol Biol Evol 30:
2369-2382.

10. Liu N, Okamura K, Tyler DM, Phillips MD, Chung W-J, et al. (2008) The evolution
and functional diversification of animal microRNA genes. Cell Res 18: 985-996.
doi:10.1038/cr.2008.278.

11. Saunders MA, Liang H, Li W-H (2007) Human polymorphism at microRNAs and
microRNA target sites. Proc Natl Acad Sci U S A 104: 3300-3305.

12. Ason B, Darnell DK, Wittbrodt B, Berezikov E, Kloosterman WP, et al. (2006)
Differences in vertebrate microRNA expression. Proc Natl Acad Sci U S A 103:
14385-14389. doi:10.1073/pnas.0603529103.

13. Hobert O (2008) Gene regulation by transcription factors and microRNAs. Science
(80-)319: 1785-1786. doi:10.1126/science.1151651.

14. Peterson KJ, Dietrich MR, McPeek MA (2009) MicroRNAs and metazoan
macroevolution: insights into canalization, complexity, and the Cambrian explosion.
Bioessays 31: 736-747.

15. Ebert MS, Sharp P a (2012) Roles for microRNAs in conferring robustness to
biological processes. Cell 149: 515-524. doi:10.1016/j.cell.2012.04.005.

16. Wilson AJ, Gislason D, Sktilason S, Snorrason SS, Adams CE, et al. (2004) Population
genetic structure of Arctic charr, Salvelinus alpinus from northwest Europe on large
and small spatial scales. Mol Ecol 13: 1129-1142. doi:10.1111/.1365-
294X.2004.02149.x.

17. Snorrason SS, Skulason S (2004) Adaptive speciation in northern fresh water fishes —

120



18.

19.

20.

21.

22

23.

24.

25.

26.

27.

28.

29.

30.

31.

121

patterns and processes. In: Dieckmann U, Metz H, Doebeli M, Tautz D, editors.
Adaptive speciation. Cambridge University Press, Cambridge. pp. 210-228.

Robinson, B. W. and DS (2000) Natural selection and the evolution of adaptive genetic
variation in northern freshwater fishes. Adaptive genetic variation in the wild. New
York: Oxford University Press. pp. 65-94.

Schluter D (1993) Adaptive Radiation in Sticklebacks: Size, Shape, and Habitat Use
Efficiency. Ecology 3: 699-709.

Schluter D, McPhail JD (1993) Character displacement and replicate adaptive
radiation. Trends Ecol Evol 8: 197-200.

Brunner PC, Douglas MR, Osinov a, Wilson CC, Bernatchez L (2001) Holarctic
phylogeography of Arctic charr (Salvelinus alpinus L.) inferred from mitochondrial
DNA sequences. Evolution 55: 573-586.

. Gislason D, M Ferguson M, Skulason S, S Snorrason S, Ferguson MM, et al. (1999)

Rapid and coupled phenotypic and genetic divergence in Icelandic Arctic char
(Salvelinus alpinus). Can J Fish Aquat Sci 56: 2229-2234,

Cresko WA, Amores A, Wilson C, Murphy J, Currey M, et al. (2004) Parallel genetic
basis for repeated evolution of armor loss in Alaskan threespine stickleback
populations. Proc Natl Acad Sci U S A 101: 6050-6055.
doi:10.1073/pnas.0308479101.

Woods PJ, Skulason S, Snorrason SS, Kristjansson BK, Malmquist HJ, et al. (2012)
Intraspecific diversity in Arctic charr, Salvelinus alpinus, in Iceland: I. Detection
using mixture models.

Snorrason S., Sktilason S, Sandlund O., Malmquist H., Jonsson B, et al. (1989) Shape
polymorphism in Arctic charr, Salvelinus alpinus, in Thingvallavatn, Iceland.
Pysiological Ecol Japan 1: 393-404.

Jonsson B, Sktllason S, Snorrason SS, Sandlund OT, Malmquist HJ, et al. (1988) Life
History Variation of Polymorphic Arctic Charr ( Salvelinus alpinus ) in
Thingvallavatn, Iceland. Can J Fish Aquat Sci 45: 1537-1547.

Malmquist HJ, Snorrason SS, Skulason S, Jonsson B, Sandlund OT, et al. (1992) Diet
differentiation in polymorphic Arctic charr in Thingvallavatn , Iceland. J Anim Ecol
61: 21-35. doi:10.2307/5505.

Sandlund, O.T., Gunnarson, K., Jonasson, P.M., Jonsson, B., Lindem, T., Magnusson,
K.P., Malmquist, H.J., Sigurjonsdottir, H., Skulason, S. & Snorrason SS (1992) The
Arctic charr Salvelinus alpinus in Thingvallavatn. Oikos 64: 305-351.

Skulason S, Noakes DL. G, Snorrason SS (1989) Ontogeny of trophic morphology in
four sympatric morphs of arctic charr Salvelinus alpinus in Thingvallavatn, Iceland.
Biol J Linn Soc 38: 281-301. doi:10.1111/j.1095-8312.1989.tb01579.x.

Frandsen F, Malmquist HJ, Snorrason SS (1989) Ecological parasitology of
polymorphic Arctic charr, Salvelinus alpinus (L.), in Thingvallavatn, Iceland. J Fish
Biol 34: 281-297.

Skulason S, Snorrason SS, Ota D, Noakes DLG (1993) Genetically based differences
in foraging behaviour among sympatric morphs of arctic charr (Pisces: Salmonidae).
Anim Behav 45: 1179-1192.



32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48

Skulason S, Snorrason SS, Noakes DLG, Ferguson MM (1996) Genetic basis of life
history variations among sympatric morphs of Arctic char , Salvelinus alpinus. Can
J Fish Aquat Sci 53: 1807-1813.

Kapralova KH, Morrissey MB, Kristjansson BK, Olafsdottir GA, Snorrason SS, et al.
(2011) Evolution of adaptive diversity and genetic connectivity in Arctic charr
(Salvelinus alpinus) in Iceland. Heredity (Edinb) 106: 472—487.

Kapralova KH, Gudbrandsson J, Reynisdottir S, Santos CB, Baltanas VC, et al. (2013)
Differentiation at the MHCIIa and Cath2 Loci in Sympatric Salvelinus alpinus
Resource Morphs in Lake Thingvallavatn. PLoS One 8: €69402.

Eiriksson GM, Skulason S, Snorrason SS (1999) Heterochrony in skeletal development
and body size in progeny of two morphs of Arctic charr from Thingvallavatn,
Iceland. J Fish Biol 55: 175-185.

Svavarsson E (2007) Arangur i kynbotum 4 bleikju og naestu skref [reference in
icelandic]. Freedaping landbtinadarins (conference proceedings) 4: 121-125.

Gorodilov YN (1996) Description of the early ontogeny of the Atlantic salmon, Salmo
salar, with a novel system of interval (state) identification. Environ Biol Fishes 47:
109-127. doi:10.1007/BF00005034.

Martin M (2011) Cutadapt removes adapter sequences from high-throughput
sequencing reads. EMBnet.jounal 17: 10—12.

Ewing B, Green P (1998) Base-Calling of Automated Sequencer Traces Using Phred.
II. Error Probabilities. Genome Res 8: 186—194.

Burge SW, Daub J, Eberhardt R, Tate J, Barquist L, et al. (2013) Rfam 11.0: 10 years of
RNA families. Nucleic Acids Res 41: D226-32.

Griffiths-Jones S (2004) The microRNA Registry. Nucleic Acids Res 32: D109-11.
doi:10.1093/nar/gkh023.

Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase:
microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34: D140—
4,

Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for
microRNA genomics. Nucleic Acids Res 36: D154-8.

Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and
deep-sequencing data. Nucleic Acids Res 39: D152-7.

Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison.
Proc Natl Acad Sci 85: 2444-2448.

Friedlinder MR, Chen W, Adamidi C, Maaskola J, Einspanier R, et al. (2008)
Discovering microRNAs from deep sequencing data using miRDeep. Nat
Biotechnol 26: 407—415. doi:10.1038/nbt1394.

Di Génova A, Aravena A, Zapata L, Gonzalez M, Maass A, et al. (2011) SalmonDB: a
bioinformatics resource for Salmo salar and Oncorhynchus mykiss. Database
(Oxford) 2011: bar050. doi:10.1093/database/bar050.

. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment
search tool. ] Mol Biol 215: 403-410.

122



49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

123

Gordon D, Abajian C, Green P (1998) Consed: A Graphical Tool for
Sequence Finishing. Genome Res 8: 195-202. doi:10.1101/gr.8.3.195.

Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data. Bioinformatics 26:
139-140.

Benjamini Y, Hochberg Y (1995) Controlling the False Discovery Rate: A Practical and
Powerful Approach to Multiple Testing. J R Stat Soc Ser B 57: 289-300.

Mestdagh P, Van Vlierberghe P, De Weer A, Muth D, Westermann F, et al. (2009) A
novel and universal method for microRNA RT-qPCR data normalization. Genome
Biol 10: R64.

Ahi EP, Gudbrandsson J, Kapralova KH, Franzdottir SR, Snorrason SS, et al. (2013)
Validation of reference genes for expression studies during craniofacial development
in arctic charr. PLoS One 8: €66389.

Mallarino R, Campas O, Fritz JA, Burns KJ, Weeks OG, et al. (2012) Closely related
bird species demonstrate flexibility between beak morphology and underlying
developmental programs. Proc Natl Acad Sci U S A 109: 16222-16227.

Sylvester JB, Rich CA, Loh Y-HE, van Staaden MJ, Fraser GJ, et al. (2010) Brain
diversity evolves via differences in patterning. Proc Natl Acad Sci U S A 107: 9718—
9723.

Roberts RB, Hu Y, Albertson RC, Kocher TD (2011) Craniofacial divergence and
ongoing adaptation via the hedgehog pathway. Proc Natl Acad Sci U S A 108:
13194-13199.

Manousaki T, Hull PM, Kusche H, Machado-Schiaffino G, Franchini P, et al. (2013)
Parsing parallel evolution: ecological divergence and differential gene expression in
the adaptive radiations of thick-lipped Midas cichlid fishes from Nicaragua. Mol
Ecol 22: 650-669. doi:10.1111/mec.12034.

Henning F, Jones JC, Franchini P, Meyer A (2013) Transcriptomics of morphological
color change in polychromatic Midas cichlids. BMC Genomics 14: 171.

Filteau M, Pavey SA, St-Cyr J, Bernatchez L (2013) Gene coexpression networks
reveal key drivers of phenotypic divergence in lake whitefish. Mol Biol Evol 30:
1384-1396.

Yamamoto Y, Byerly MS, Jackman WR, Jeffery WR (2009) Pleiotropic functions of
embryonic sonic hedgehog expression link jaw and taste bud amplification with eye
loss during cavefish evolution. Dev Biol 330: 200-211.

Arif S, Murat S, Almudi I, Nunes MDS, Bortolamiol-Becet D, et al. (2013) Evolution
of mir-92a Underlies Natural Morphological Variation in Drosophila melanogaster.

Ramachandra RK, Salem M, Gahr S, Rexroad CE, Yao J (2008) Cloning and
characterization of microRNAs from rainbow trout (Oncorhynchus mykiss): their
expression during early embryonic development. BMC Dev Biol 8: 41.
doi:10.1186/1471-213X-8-41.

Ma H, Hostuttler M, Wei H, Rexroad CE, Yao J (2012) Characterization of the rainbow
trout egg microRNA transcriptome. PLoS One 7: €39649.



64. Bekaert M, Lowe NR, Bishop SC, Bron JE, Taggart JB, et al. (2013) Sequencing and
Characterisation of an Extensive Atlantic Salmon (Salmo salar L.) MicroRNA
Repertoire. PLoS One 8: €70136.

65. Kim HK, Lee YS, Sivaprasad U, Malhotra A, Dutta A (2006) Muscle-specific
microRNA miR-206 promotes muscle differentiation. J Cell Biol 174: 677-687.

66. Sweetman D, Goljanek K, Rathjen T, Oustanina S, Braun T, et al. (2008) Specific
requirements of MRFs for the expression of muscle specific microRNAs, miR-1,
miR-206 and miR-133. Dev Biol 321: 491-499.

67. Dey BK, Gagan J, Dutta A (2011) miR-206 and -486 induce myoblast differentiation
by downregulating Pax7. Mol Cell Biol 31: 203-214. doi:10.1128/MCB.01009-10.

68. Inose H, Ochi H, Kimura A, Fujita K, Xu R, et al. (2009) A microRNA regulatory
mechanism of osteoblast differentiation. Proc Natl Acad Sci U S A 106: 20794—
20799. doi:10.1073/pnas.0909311106.

69. Chen J-F, Mandel EM, Thomson JM, Wu Q, Callis TE, et al. (2006) The role of
microRNA-1 and microRNA-133 in skeletal muscle proliferation and
differentiation. Nat Genet 38: 228-233.

70. Liu N, Williams AH, Kim Y, McAnally J, Bezprozvannaya S, et al. (2007) An
intragenic MEF2-dependent enhancer directs muscle-specific expression of
microRNAs 1 and 133. Proc Natl Acad Sci U S A 104: 20844-20849.

71. Niwa R, Slack FJ (2007) The evolution of animal microRNA function. Curr Opin
Genet Dev 17: 145-150. doi:10.1016/j.gde.2007.02.004.

72. Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, et al.
(2005) MicroRNA expression in zebrafish embryonic development. Science 309:
310-311.

73. Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA-target
recognition. PLoS Biol 3: e85.

74. Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, et al. (2006) Zebrafish
MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312:
75-79. doi:10.1126/science.1122689.

75. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, et al. (2000)
Conservation of the sequence and temporal expression of let-7 heterochronic
regulatory RNA. Nature 408: 86—89.

76. McGlinn E, Yekta S, Mansfield JH, Soutschek J, Bartel DP, et al. (2009) In ovo
application of antagomiRs indicates a role for miR-196 in patterning the chick axial
skeleton through Hox gene regulation. Proc Natl Acad Sci U S A 106: 18610-18615.

77. He X, Yan Y-L, Eberhart JK, Herpin A, Wagner TU, et al. (2011) miR-196 regulates
axial patterning and pectoral appendage initiation. Dev Biol 357: 463—477.
do0i:10.1016/j.ydbio.2011.07.014.

78. Hinits Y, Williams VC, Sweetman D, Donn TM, Ma TP, et al. (2011) Defective cranial
skeletal development, larval lethality and haploinsufficiency in Myod mutant
zebrafish. Dev Biol 358: 102—112.

79. Watanabe T, Sato T, Amano T, Kawamura Y, Kawamura N, et al. (2008) Dnm3os, a

124



non-coding RNA, is required for normal growth and skeletal development in mice.
Dev Dyn 237: 3738-3748. doi:10.1002/dvdy.21787.

80. Wong CF, Tellam RL (2008) MicroRNA-26a targets the histone methyltransferase
Enhancer of Zeste homolog 2 during myogenesis. J Biol Chem 283: 9836-9843.

81. Pase L, Layton JE, Kloosterman WP, Carradice D, Waterhouse PM, et al. (2008) miR-
451 regulates zebrafish erythroid maturation in vivo via its target gata2. Blood 113:
1794-1804. doi:10.1182/blood-2008-05-155812.

82. Papaioannou G, Inloes JB, Nakamura Y, Paltrinieri E, Kobayashi T (2013) let-7 and
miR-140 microRNAs coordinately regulate skeletal development. Proc Natl Acad
Sci U S A 110: E3291-300.

125



6.9 Appendix

Counts
6e+07 8e+07
| |

4e+07
|

2e+07
1

]

T T T T 1 T 1 [ I R
15 17 19 21 23 25 27 29 31 33

Oe+00
|

Length

Figure S 6.1 - Length distribution of reads in the small-RNA-seq data for all samples combined. A major
peak is observed at 22 nt, corresponding to the typical miRNA
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Table S 6.1 Background information and primers used for amplification of selected miRNA clusters. The
names of S. salar contigs and miRNAs in clusters used for primer design, sequence identity (%) between
Arctic charr and Salmon, and forward and reverse primer sequences are shown.

gglr:r'g in Salmo glljzt’\é'? Primer sequence (5'-3") Lzentlty
20b-3p,
AGKD01198198.1  18b*, 19¢c TGAGGATATTGCAGTTTTCTGAAC 94
TAATCCGCCAGATGTTGTGA
AGKD01020894.1  133b, 133a TTTTTCTTTCTCTCTTTTCTAAACAGG 91
TGAATTTGACGTGATTCAGACAC
143-3p, 143-
AGKD01079956.1  5p CATTCCAAAACACCCCAAGT 92
GGCCAGGGTAATGCAGTAAA
219-5p, 219-
AGKD01039727.1  3p GAGACATACTTTGAGCCCTTGC 91
AGCACTAAGAGCCGCAAAAA
AGKD01040644.1  sal-nov-242 ~ CCCTTTACACAAAGCACTCG 96
TGTTTTGCACTGGTGTGAGA
AGKD01042615.1 sal-nov-334  AAATGACTTGGGTTTATTTTGTAGA 92
TGCAAGCAGTATATTAAGAGGATTTG
AGKD01070756.1  sal-nov-235 AAGCTCATTCTCCATATCCAACA 98
TCACCCACTGGACCAAAACT
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