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Abstract

The topic of this thesis is the development of a diagnostic model for autoimmune
disease. We present ten classifiers, based on the data mining of immunological blood
test results that are specific to each disease. Our training sets consist of immunological
blood test results from 1750 clinical attendees that presented symptoms of one or more
autoimmune diseases. The sparseness of the blood tests that are performed leads to
highly structured missingness of data. We develop a classifier that uses the distinction
between meaningless missing values and meaningful missing values to lead to improved
modeling of these incomplete sets of data. The implementation of this new approach to
modeling autoimmune blood test data is described from the perspective of rheumatoid
arthritis (RA) data. Several, competing data mining approaches were implemented for
our data, of which the best results were obtained for our hybrid classifier of Decision
trees and an inverse-distance-weighted k -Nearest neighbors (kNN) approach. Results
indicate that our model, assuming a certain margin of error, is classifying up to 100% of
the RA cases correctly, computed by a method of leave-one-out (LOO) cross-validation.
The classifiers specific to the other nine diseases all average more than 90% of correctly
classified cases, computed by LOO. New RA test cases were run through our classifier,
which successfully classified all the cases correctly. The method of Random forests
showed compatible results to our hybrid classifier, i.e. classified 97.91% of LOO RA
cases correctly, but did not compare in structural transparency. Prototypes of a clinical
solution system based on our work have been implemented on a web server.

Keywords: Disease advisor, Structured prediction, Mathematical model, MNAR,
Hybrid classifier, Autoimmune disease
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Útdráttur

Stærðfræðilegt Greiningarlíkan fyrir Sjálfsofnæmissjúkdóma

Umfjöllunarefni þessarar ritgerðar er þróun flokkunarlíkans fyrir sjálfsofnæmissjúk-
dóma. Við kynnum tíu flokkunarlíkön, sem hvert og eitt byggir á gagnanámi blóð-
prufuniðurstaða fyrir hvern sjúkdóm. Þjálfunargögn okkar eru samansafn blóðpruf-
uniðurstaða frá 1750 skjólstæðingum heilsugæslu sem höfðu klínísk einkenni sjálfsof-
næmissjúkdóma. Þar sem stórum hluta slíkra blóðprufa er yfirleitt sleppt fyrir úr-
vinnslu þá innihéldu gögnin mikið magn tómra gagnasvæða. Við kynnum nýja aðferð
til gagnanáms sem byggir á aðgreiningu þeirra tómu gagnasvæða sem hafa enga merk-
ingu annars vegar og hins vegar tómra gagnasvæða sem hafa merkingu. Þessari nýju
aðferð er lýst út frá gögnum fyrir iktsýki (RA). Margar vel þekktar gagnanámsaðferðir
voru útfærðar fyrir gögnin okkar en bestu greiningarniðurstöðurnar fengust með því að
setja líkanið fram sem blendingslíkan flokkunartrjáa og andhverfu-fjarlægðar-vigtaðra
k -Næstu granna (kNN). Niðurstöður okkar gáfu til kynna að með því að gera ráð fyrir
ákveðnu öryggisbili þá flokkaði líkanið okkar allt að 100% RA tilvikanna rétt, út frá
reikningum sem byggðu á einum-sleppt (LOO) sannprófunaraðferð. Hin, níu flokkun-
arlíkönin fengu öll niðurstöður upp á meira en 90% rétt flokkaðra tilfella, metin með
LOO. Ný prófunartilfelli fyrir RA voru keyrð gegnum flokkunarlíkanið okkar og náði
það að flokka öll tilfellin rétt. Aðferð Slembiskóga sýndi sambærilegar niðurstöður og
okkar líkan, eða um 97.91% rétt flokkaðra tilfella, metin með LOO sannprófunaraðferð,
en sú aðferð stóðst hins vegar ekki samanburð á gegnsæi líkananna. Fyrsta útgáfa af
hugbúnaði sem byggir á okkar niðurstöðum hefur nú verið sett upp á vefsvæði.

Lykilorð: Sjúkdómsgreinir, Uppbyggð gagnasvæði, Stærðfræðilíkan, MNAR, Blend-
ingslíkan, Sjálfsofnæmissjúkdómar

iv





Acknowledgements

I would like to express great thanks to my supervisor Bjarni V. Halldórsson, for giving
me opportunity, guidance, encouragement and cooperation throughout this project.
Special thanks go out to Erla Björg Skúladóttir, my aunt, for proofreading. Finally,
I would like to thank my thesis committee members Dr. Björn Rúnar Lúðvíksson,
for helping me with the theoretical background and data, and to Jón Guðnason for
introducing me to data mining and providing invaluable knowledge in the field.

vi





Contents

List of Tables x

List of Figures xi

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Project Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Disposition of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Theoretical Background 6
2.1 Artificial Intelligence in Medicine . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Medical Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Missing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Our Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Discriminant Function Analysis . . . . . . . . . . . . . . . . . . . . . . 13
2.4 k -Nearest Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 kNN Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 kNN Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Auxiliary Methods for Classification . . . . . . . . . . . . . . . . . . . . 17
2.5.1 The EM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.2 Cross-Validation and LOO . . . . . . . . . . . . . . . . . . . . . 18
2.5.3 Prediction Accuracy and the Mean Squared Error . . . . . . . . 19

2.6 Random Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Materials and Methods 22
3.1 The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Data Gathering and Establishing Class Labels . . . . . . . . . . 22
3.1.2 Challenges with the Data . . . . . . . . . . . . . . . . . . . . . 23

viii



Contents

3.2 Processing the Blood Test Data . . . . . . . . . . . . . . . . . . . . . . 24
3.3 The Backbone of the Model . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Bayesian Network Implementation . . . . . . . . . . . . . . . . . 26
3.3.2 Decision Tree Implementation . . . . . . . . . . . . . . . . . . . 27
3.3.3 Classification in Sub-regions of the Decision Tree . . . . . . . . 28
3.3.4 Performance Assessment . . . . . . . . . . . . . . . . . . . . . . 29
3.3.5 Implementing Random Forests . . . . . . . . . . . . . . . . . . . 30

4 Results 32
4.1 Leave-One-Out Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 Bayesian Network . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.2 Tree Implementation . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.3 DA Tree-based Model . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.4 kNN Tree-based Model . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.5 Model Refinements . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.6 Random Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Results from New Test Cases . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Discussion 47

6 Conclusions 49

Bibliography 50

A Results From Other Autoimmune Disease Classifiers 55

B Graphically Presented Results 56

C Web-based Prototypes 58

ix



List of Tables

3.1 Factors relevant to the structure of an RA diagnostic model. . . . . . . 25

4.1 Bayesian network LOO results. . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Built-in CART results, MNAR’s exchanged for EM means. . . . . . . . 36
4.3 LOO results from DA-based tree. . . . . . . . . . . . . . . . . . . . . . 37
4.4 First LOO results from the classification tree with Euclidean-based cal-

culations of kNN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5 Mahalanobis-based kNN results from LOO. . . . . . . . . . . . . . . . . 40
4.6 Euclidean-based kNN Results from LOO, before and after outlier cor-

rections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.7 Random forests LOO results. . . . . . . . . . . . . . . . . . . . . . . . 43
4.8 Results from the classification of new RA test cases. . . . . . . . . . . . 44
4.9 Results from each, individual classifier for the 12 RA cases. . . . . . . . 45

A.1 LOO results from the final, individual, autoimmune disease classifiers. . 55

x



List of Figures

2.1 Basic elements of a Bayesian network. . . . . . . . . . . . . . . . . . . . 11
2.2 An example of a simple Decision tree for RA. . . . . . . . . . . . . . . 13
2.3 Feature-weighting in kNN. . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Basic elements of a Bayesian network. . . . . . . . . . . . . . . . . . . . 26

4.1 The tree structure obtained from the "tree" package in R, output val-
ues associated with each sub-region of the tree are presented as linear
regression values of the target vector [47]. . . . . . . . . . . . . . . . . 35

4.2 The tree structure obtained from the "rpart" package in R [46]. . . . . 35
4.3 First results of the tree-based Euclidean kNN prediction for RA. . . . 38
4.4 Outliers presented in the development of the RA model. . . . . . . . . 41
4.5 The final RA model results. . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6 Random forests model results. . . . . . . . . . . . . . . . . . . . . . . 43

B.1 Graphical presentations of LOO results from all individual classifiers. . 57

C.1 Interface for the web-based classifiers, version 1. . . . . . . . . . . . . 58
C.2 Interface for the web-based classifiers, version 2. . . . . . . . . . . . . 59

xi



Chapter 1

Introduction

Autoimmune diseases are a group of systemic, inflammatory disorders caused by hy-
peractivity of the immune system [1, 2]. The disorders are commonly associated with
a range of autoantibodies that are secreted into the blood by the immune system
[2]. Initial clinical presentations of autoimmune diseases have been known to over-
lap substantially, both within the defined group of autoimmune disorders but also
with non-rheumatological disorders. Therefore, the detection of autoantibodies in the
bloodstream has been accepted as a preferable approach to relying solely on clinical
symptoms for the diagnosis of these diseases [3, 4]. However, there are dozens of avail-
able tests for measuring these autoantibodies, most of which can be performed in a
number of different ways [1]. Due to this, the diagnosis of autoimmune disorders gen-
erally consists of lengthy and unreliable analytical processes, producing a large number
of results that are uninterpretable to others than experts in rheumatology [3, 4]. Al-
though individual autoimmune diseases can be considered rare, around five percent of
the population of Western countries suffer from some variation of autoimmune disease
[2]. The need for a speedy and accurate diagnosis of these diseases is therefore pressing.

The focus of this thesis will be on the development of a classifier that uses known meth-
ods of data mining in new ways, to predict diagnostic outcomes of patients suspected of
suffering from autoimmune diseases. A clinical support system that bases its diagnostic
prediction on the classifier we describe here has already been established as a proto-
type. The first and second versions of this prototype are presented in the Appendix
of this thesis. The classifier’s development and training process were based on avail-
able data from ten autoimmune diseases; rheumatoid arthritis (RA), systemic lupus
erythematosus (SLE), Sjögren’s syndrome, mixed connective tissue disease (MCTD),
systemic sclerosis, polymyositis/dermatomyositis (PM-DM), Wegener’s granulomato-
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1.1. Motivation

sis, Churg-Strauss syndrome, microscopic polyangiitis and antiphospholipid syndrome.
The classification method was developed based on data obtained from healthcare at-
tendees suffering from these disorders. This produced specific classifiers for each of the
ten diseases. RA has the highest prevalence of the above mentioned disorders and the
criteria regarding RA diagnosis are among the best established criteria for autoimmune
diseases [2, 5]. Experiments that composed the developmental process of the classifier
were therefore carried out for the data set that originated from clinical cases of RA.
The methodology for these experiments is described from the perspective of the RA
data, and results obtained from various implementations of the RA-based classifier are
presented in Chapter 4. Currently, our final classifier for RA shows successful predic-
tions for 100% of clinical cases, produced by a leave-one-out cross-validation method
that assumes a certain margin of error. Furthermore, new test cases that were ob-
tained for final assessments of the classifier’s performance, showed correct diagnostic
outcomes for all available cases. The same approach as the one described for RA in
this text has been used for the development of the individual classifiers belonging to
the nine other autoimmune disorders. The results belonging to those individual clas-
sifiers are presented in the Appendix of this thesis, with leave-one-out results showing
more than 90% correctly classified cases for all diseases.

1.1 Motivation

The main difficulty of modeling medical data is the complex nature of such data sets.
Medical data generally don’t possess a formal, mathematically defined structure into
which the information involved with the data can be organized [6]. Most unprocessed
medical data sets are heterogeneous; they may be collected from images, patient in-
terviews, laboratory data and physician-based interpretations of presented symptoms
[6]. In many cases, combined information from all these different sources is necessary
to obtain a final diagnosis. An additional problem widely encountered in medical data
mining is the large number of missing values that is bound to accompany any larger
medical data sets [6]. Most medical data are acquired as a byproduct of standard diag-
nostic processes and are, as such, not collected in an organized, mathematical manner.
Values are also commonly omitted in medical data sets due to technical, economical or
ethical reasons [6]. Immunological blood tests are an example of this. They are known
to involve labor-intensive and very costly analytical processes [1]. Therefore, in most
cases, only about a half to one third of these tests are ordered and performed, leading
to a substantial missingness of data [1, 2]. The variables that compose the sets may
furthermore be hard to interpret, especially for non-experts in the field [2]. A demand

2



1.2. Project Description

for an expert system that can model such challenging data sets, and assist physicians
in the diagnostic process for autoimmune diseases has therefore arisen.

The aim of this thesis will be to describe our attempt to construct a classifier for
autoimmune diseases that can handle the structured data sets that accompany these
diseases. We show that we can build a classifier that identifies whether an individual
suffers from an autoimmune disease. Further we show that the classifiers we build
constitute the best approach to modeling this type of data.

1.2 Project Description

The project started out as an approach to mining already available autoimmune data.
This was to be carried out through the use of an interactive programming platform,
to possibly identify new trends in the data or develop a novel approach to modeling
this type of data. However, the project quickly developed into something more. An
idea had been evolving amongst Icelandic experts in rheumatology; to develop a diag-
nostics model that could knowledge-map autoimmune data into providing a prediction
for disease. The complex nature of the serological data available for this purpose
did, however, require the development of new implementations for known data mining
methods. We describe these new implementations, which lead to the final outcome of
an expert system able to mimic the decision-making processes of experts in rheuma-
tology. The platform that was employed throughout the development of our model
was the R programming interface [7]. Several built-in packages were utilized in the
development of the model, although the final version did not directly rely on any al-
ready established code from such packages. The reason for this was the nature of the
data; the sets of serology results of the various autoimmune tests were unique in that
previously defined rules had determined which tests were to be performed and which
were deemed unnecessary. Missing data in the sets were substantial, and there were
different reasons for different types of missing data entries. This invoked the need to
address the data mining in a newfound manner, by developing an algorithm that could
model these different types of missing data in the best possible way.

For most data mining problems, different approaches may result in similar accuracies.
However, in some cases few algorithms may perform unambiguously better than others.
We therefore subject our autoimmune data to analysis by several competing data
mining methods, including Bayesian networks, Decision tree learners and k -Nearest
neighbors classification.

3



1.3. Disposition of the Thesis

1.3 Disposition of the Thesis

The disposition of this thesis is as follows: In Chapter 2, a theoretical background of
the methods that were used in the development of the classifier is explained. In the
following chapter, Chapter 3, the methodology of the model development is described.
Results are discussed in Chapter 4, with a twofold approach; one reveals results that
are based on the leave-one-out method (to be discussed) and the other focuses on re-
sults obtained from running new test cases through the model. Finally, the Appendix
contains a list of leave-one-out results from the final classifiers belonging to each au-
toimmune disease, and a demo of the web-based interface of a clinical support system
that is, in part, based on our classifiers.
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Chapter 2

Theoretical Background

2.1 Artificial Intelligence in Medicine

Medical data sets have been considered an ideal field of application for artificial intel-
ligence (AI) techniques ever since AI was first developed as a tool for data analysis
[8]. Data accumulation in healthcare is considerable; the amount of patient data has
accumulated exponentially in recent years and as a result modern day hospitals pos-
sess large amounts of a wide variety of data sets [9]. Data mining, a subfield of AI,
can be described as the process of analyzing large amounts of data with the intention
of extracting meaningful information from it [10]. The data mining process involves
selecting useful data from a set of input variables, cleansing the data (which may in-
volve correcting for errors or handling missing data), transforming the data (such as
mapping individual variables in order to make them useful, weighting others, repre-
senting some as binary values etc.) and finally mining the data to discover interesting
patterns or trends within the sets [10].

Considering the large amounts of data available in healthcare, it was a somewhat
natural continuation in the development of AI to use data mining techniques as a means
to support and improve physician-based diagnostic processes [8]. Artificial intelligence
in medicine has since been established as an interdisciplinary field, a branch of applied
computer science that focuses on the analysis of complex medical data in order to
reveal useful information for diagnostic purposes [11].
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2.1. Artificial Intelligence in Medicine

2.1.1 Medical Classifiers

The most important aspects of a medical classifier involve good overall performance
of the underlying algorithm, i.e. with diagnostic accuracy at least as good as that
of a physician, the ability to deal with missing data, and the transparency of diag-
nostic knowledge [8]. This last aspect refers to the underlying classification system
being sufficiently transparent for a physician to be able to analyze and understand the
knowledge that the classifier generates. It has been estimated that for a wide variety
of clinical conditions, the rate of misdiagnosis averages about ten percent in Western
countries [12]. Misdiagnosis is therefore considered a relatively common problem; a
problem that can lead to adverse health-related effects [13, 14]. Risks associated with
misdiagnosis can range from emotional and economic implications to examples of renal
failure or pulmonary fibrosis [14]. Computer aided diagnostics offer a realistic solution
to this problem [13]. In fact, diagnostic models, or classifiers (the two terms will be
used interchangeably in this text), can substantially improve the reliability of diag-
nosis. Furthermore, they present the possibility of increasing diagnostic speed along
with the accuracy of prediction.

A common characteristic of medical data sets is the large number, or high dimensional-
ity of input variables [6]. This induces a problem to classification, the so-called "curse
of dimensionality", which refers to complications that may arise for data mining in
multiple dimensions [15]. Data sets are generally considered low-dimensional sets for
when the number of input variables is less than ten, d ≤ 10 [16]. For a classification
to be considered practical, especially in classification of medical data, the diagnostic
models have to be able to handle high-dimensional data without being affected by
dimensionality issues. In fact, many popular data mining methods are based on ad-
dressing the problem of high dimensionality directly [8]. Some of the most promising
models for medical data analysis are approaches that break the problem of mining
high dimensional data into sub-problems. They accomplish this by dividing the input
data into smaller and smaller sets, thereby reducing the dimensionality of the data [6].
Alternatively, dimensionality reduction can be achieved by manually selecting relevant
input variables [6].

Those classification methods that have shown greatest promise in dealing with medical
data are statistical methods for classification, especially Bayesian classifiers, Artificial
neural networks (ANN’s), Nearest neighbor (NN) algorithms and Decision tree learners
[8, 17]. Out of these, the methods that furthermore possess a sufficiently transparent
structure for applications in clinical diagnostics, are the approaches of Bayesian-theory
networks and Decision trees [15, 18]. Tree-based models have been widely accepted
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2.1. Artificial Intelligence in Medicine

and used within the field of medical diagnostics, the most recent applications involving
the diagnosis of heart disease [17, 19, 20].

The data mining methods that we have emphasized in the process of developing our fi-
nal classifiers for autoimmune disease are Decision tree learners and Bayesian networks,
since these were believed to be able to constitute an adequate backbone structure for
a diagnostic model. We furthermore explored the possibility of intertwining these ap-
proaches with other methods that have been known to perform well in the mining of
medical data; the method of k -Nearest neighbors (kNN) and Discriminant function
analysis [17, 21].

2.1.2 Missing Data

In applications of data mining, incomplete data sets are extremely common [22]. The
so-called missingness of data can have a range of origins, such as measurement errors,
a deliberate omission of measurements, device malfunctions, etc. [16]. There are two
conventional approaches that are widely accepted and used in dealing with missing data
[23]. The first approach involves deleting all variables that correspond to a defined
factor, if at least one of the variables is missing. The second approach addresses the
problem by imputing new values for all missing variables [22, 23]. Imputation can
be an ideal solution if the fraction of missing data is sufficiently small, but for larger
proportions of missing entries, or if the missing data entries originate from different
causes, the method begins to produce relevant errors [16]. Furthermore, it is important
to differentiate between various contexts of missing data. On the one hand there exists
missing data at induction time (i.e. in the training of the classification model) and on
the other, missing data at prediction time (when using the model) [22].

Most medical data sets are somewhat incomplete; missing or meaningless entries
commonly comprise the majority of the sets. Research on missing data in medical
databases has to date primarily been concerned with data missing at induction time,
i.e. in the training of the classification model [22]. Furthermore, missing values in med-
ical data sets commonly occur due to known, and possibly deliberate reasons [6]. If,
for example, a physician decides to omit a patient’s measurement because the patient’s
state is unreliable, that missing data value is distinctly non-random. Such non-random
missingness of data has a different meaning than values that have no meaning at all,
i.e. values that are missing completely at random [24]. To this extent, two types of
missing data can be defined. Data is considered to be missing at random (MAR) if the
probability of the missing values is independent of the set of data expected to contain

8



2.1. Artificial Intelligence in Medicine

missing variables [23].

P (Ymissing|Y,X) = P (Ymissing|X) (2.1)

Here Y is the part of the data set, X, for which missingness is to be assessed. Y

consists of both observed and missing variables, Y = {Yobserved, Ymissing} [23, 24]. If
Equation 2.1 is not fulfilled, the variable is defined as missing not at random (MNAR).

MAR entries are generally much easier to deal with, their absence does not involve
any hidden information and their values can be omitted during the mining itself [23].
If the missing data involved is MNAR the complexity of the mining problem is bound
to increase. The knowledge that is associated with the entries cannot simply be dis-
regarded during the mining process, and neither can the possibility be ignored that
these entries might be influential to the final diagnosis of a patient.

2.1.3 Our Classifier

We decided to base our approach to classification of autoimmune disease data on the
theory of supervised learning. Learning is the process of estimating a systemic struc-
ture of some given data by using the data as a basis [10]. The computer can accomplish
this through two approaches; supervised and unsupervised learning. Applications in
which the learning process is based on training the classification model with a previ-
ously defined set of data consisting of input variables and a target vector, are known
as supervised learning applications [15]. Our model uses training data that consists of
examples of possible cases along with their corresponding diagnostic values as target
variables. The problem was therefore directly identified as a supervised learning prob-
lem, where the learning is based on a process of feeding the classifier with established
cases of autoimmune patients.

Applications of data mining in medicine have primarily been based on a type of clas-
sification known as hard classification [13, 25]. Hard classifiers directly assign a new
instance to the suitable class, by estimating distinct boundaries between classes [25].
This can be advantageous in some clinical applications, e.g. for when a simple result
of "sick" versus "not sick" is desired. Another approach to classification, known as
soft classification, is based on estimating the class conditional probabilities associated
with a new input data point [25]. The new point is assigned to the class that shows
the greatest conditional probabilities for that particular point [25]. Soft classification
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can prove useful for when an assessment is needed of how close to, or far from a spe-
cific diagnostic result the output of the classifier is [10]. Soft classifiers can output a
value from a range of continuous variables, rather than a single class, as a regression
of sorts [25]. This way, an estimate can be obtained as to how close the delivered
results of the model are to the target values. For our data mining problem, soft classi-
fication provided an extremely convenient approach. If the problem would have been
approached as a hard classification problem, estimating the performance of the model
would have consisted solely of whether or not the delivered results fit the previously
defined classes: "Sick" or "not sick". However, the original estimates, or target values,
that were provided with our data sets consisted of values that were highly subjective
to the opinion of experts. Therefore, the knowledge of how close to, or how far from
these estimates the output of the classifier lies can give a more meaningful result than
the simple "correctly classified" versus "misclassified" result.

Immunological blood tests are very often omitted due to high costs, complex recovery
of results, etc. [1]. Much of the omitted tests constitute meaningless, MAR variables.
However, the data may be missing from different causes, and for autoimmune labora-
tory results this is exactly the case. A set of specific reasons or rules have been defined
for processing the serology results; these indicate which omitted measurements are
completely meaningless and which were omitted to avoid the high cost and complexity
associated with their recovery. This set of rules thus distinguishes between meaningless
missing data, MAR data, and meaningful missing data, MNAR. The most important
distinction lies in the fact that the MNAR data may indicate the probability of the
unmeasured factor being found in the blood, while MAR values contain no such in-
formation [23]. We attempt to utilize these MNAR variables as additional sources
of information for the development of our classification model. The mathematical
model that we introduce is furthermore based on the mining of data sets that contain
missing variables both at induction and prediction times, i.e. both training and test
sets are composed of structured data. Our training sets involve missing entries at
the induction time of the model, since they are mostly composed from the blood test
results of clinical attendees. Further, it can be assumed that the blood test results of
a new individual who is yet to be classified will consist of a structured data set. Our
model therefore has to take on prediction-time missing entries as well. Prediction-time
missing data is an aspect that has not been as popular in recent model development
[22].

The main contribution with our work is therefore the modeling of autoimmune disease
data that is composed of structured sets, including MNAR data, both in induction
and prediction.
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2.2 Graphical Models

Graphical models are based on diagrammatic representations of the variables of the
model, an aspect that makes easily explainable and transparent. We wanted the
structure of our classifier to be similar to real-life decision-making processes, and a
transparent model structure was therefore imperative. The choice of which graphical
model to apply was, however, not clear. This chapter describes the two different
graphical modeling approaches that were applied to our autoimmune data. Firstly,
the graphical method of Bayesian networks will be discussed, followed by an outline
of Decision tree methods.

2.2.1 Bayesian Networks

Probabilistic graphical models are a well-known approach to classification. They in-
volve applying simple probabilistic methods to random variables. One of the most
common algorithms in probabilistic graphical modeling is the method of Bayesian net-
works [26]. Bayesian networks have commonly been employed in biomedical classifiers.
Due to their ability to deal with incomplete data sets, they have proved especially use-
ful in probabilistic expert systems for medical diagnosis [27, 28, 29]. The Bayesian
networks approach involves probabilities being calculated for each relevant random
variable in the data set. The calculated probabilities are then linked to probabilities of
related variables in a network of random variable nodes that are conditional on each
other [30]. The network begins with one, or a few, parent nodes that are variables
assumed to have the highest correlation to the target values of the data set in question.
These are the variables that influence the outcome of the model the most. The parent
nodes lead to several child nodes, whose values are dependent on the values of the
parent nodes. The probabilities that are calculated for these child nodes are therefore
conditional probabilities [30].

ANA

Sick

RF

Figure 2.1: Basic elements of a Bayesian network.

Each node in a network of this sort contains the probabilities of a variable that is a
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determining factor to the final outcome of the classification model. Figure 3.1 shows
a simplified idea of a Bayesian network, where two blood tests that are commonly
performed for the diagnosis of RA (measurements of antinuclear antibodies (ANA)
and rheumatoid factor (RF)) lead to the diagnosis of a patient as "Sick". However,
the level of complexity of Bayesian networks can easily become very high, the con-
sideration of which should be kept in mind when developing such a model. Yet, the
calculations on which the networks are based are surprisingly simple; they are based
on the multiplication rule of probability [15, 24].

p(X1, X2) = p(X2|X1)p(X1) (2.2)

where X1 and X2 represent two independent factors, and the classical Bayes theorem
[15, 24]:

p(disease|data) = p(data|disease)p(disease)
p(data)

(2.3)

Equation 2.3 indicates how the conditional probability of disease can be obtained
by probabilistic calculations for the available data. In order for such a model to be
applicable to incomplete data sets, the probability calculations for each node must,
however, be possible even if the parent node is a missing entry. A solution to this can
be obtained by calculating both conditional and unconditional probabilities for each
node, and then using either outcome depending on whether or not the values that this
particular node is dependent on are available or not [26].

2.2.2 Decision Trees

Decision trees are generally preferred to other graphical techniques because of the
straightforward readability of their structure and the efficiency of training and eval-
uation of their outcome. Tree-based models rely on partitioning the input space, i.e.
data sets, into smaller subsets of data mining regions. A specific modeling method can
subsequently be applied to each region, thereby breaking the mining problem down
into smaller problems and furthermore leading to a more accurate result for each sub-
region [15]. Decision trees therefore constitute a highly advantageous approach for
data as complex as autoimmune serology results.
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RF positive

low CCP positive

medium high

no yes

no yes

Figure 2.2: An example of a simple Decision tree for RA.

Partition sites of a Decision tree can be either multi-branch splits, if the split param-
eter leads to a number of different outcomes, or binary splits, if the parameter has
two possible outcomes [10]. A binary tree is portrayed in Figure 2.2 as a simplified
application of a Decision tree for RA. Classification and regression trees (CART) are
a type of binary Decision trees. Breiman et al. developed the first CART algorithm
in 1984, a tree structure that was able to model both categorical predictor variables
(classification) and continuous ones (regression) [31]. The CART approach has since
become increasingly popular for all fields of data mining applications. A wide variety
of tree-based models are in existence. A model that best fits the data mining problem
at hand must be carefully chosen in each case, whether it is a pure classification tree,
a regression tree or a mixture of the two.

2.3 Discriminant Function Analysis

Discriminant function analysis (DA) is a method of classification that involves pre-
dicting the class label, or posterior probabilities, of a data point [32]. The labeling is
based on prior probabilities and a certain discriminant equation. This discriminant
equation returns a numerical value that is calculated from the input data point and
specific weights, which are distinctive features (internal variances, mean value etc.) of
a certain class, from a number of previously defined class [32]. The equation yields
a linear function of the data point, which indicates within which class the data point
would be best situated [32]. An equation is constructed for each defined class, based
on the part of the training data that belongs to the class in question. The best-known
approach of discriminant functions produces a strictly linear division, or boundary,
between the classes of the model, and has a close relation to linear regression analysis.
This approach is also known as Linear discriminant functions analysis (LDA), and is
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quite simple in its implementation. However, LDA assumes a common covariance ma-
trix1 for all classes and may therefore be limiting in applications to real problems; e.g.
for when the amount of missing data is relevant to the modeling approach being taken.
Another popular DA choice, which furthermore assumes varying covariance matrices
between classes, is the Quadratic discriminant function analysis (QDA). As the name
implies, this method produces a quadratic boundary between classes. When discrim-
inant functions are used in multi-class classification, the results obtained from fitting
the input data point to each discriminant equation are evaluated, with the highest
outcome indicating the best fit. The data point is then classified with the class whose
discriminant equation returns the highest numerical result [32].

2.4 k -Nearest Neighbors

The method of k -Nearest neighbors (kNN) is a widespread technique for estimating
density of data, i.e. finding data points that show definite similarities and can therefore
be assumed to belong to the same cluster of data points [10]. These similarities, most
commonly defined as metric distances between data points in Euclidean space, are
used to situate a new data point (in our case, a new patient) within the correct class
[33, 24]. Thus, some k nearest values are found and the new data point classified
with them. Most implementations of the classical kNN use Euclidean distances as a
basis for the calculations. In cases of highly correlated data, Euclidean distances may
however produce biased results, and a choice of basing the calculations on the so-called
Mahalanobis distance may be considered instead [33].

The main issue with kNN involves establishing the number of data points to be taken
into account for each region. If the data points are only one or two, the classification
of a new point may become biased, especially if the set has a high variance [24]. The
number of points also determines the degree of model smoothing2, so it can neither be
too small nor too large [15]. There are many approaches to selecting the proper value
for k, the simplest one being to run the algorithm several times with different values
and choose the value for k that results in the best performance of the classification
model [34, 35]. Nearest neighbor approaches generally don’t rely on previously known
probability distributions, i.e. they don’t make any specific assumptions about the
probability distributions that may or may not dominate the available data. kNN

1A covariance matrix is a matrix that contains covariances between all elements of a given set of
data [15].

2Smoothing refers to the complexity of a classification model, in kNN this relates to the size of
the defined "neighborhood" [24].
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does furthermore not assume a fixed region of space to which the modeling will be
constricted to, but rather defines the amount of relevant, available data points [15].
Therefore the size of the input space can undergo posterior change [15]. For these
reasons and others, kNN was considered an ideal approach for the data set of our
study.

2.4.1 kNN Metrics

The accuracy of kNN classification is highly dependent on the metric used for cal-
culating the distances between an input data point and points of the training set
[35]. Nearest neighbor estimations for standard implementations of kNN are based on
Euclidean distance calculations:

DE =

√√√√ n∑
i=1

(xi − yi)2 (2.4)

where xi and yi are the standard variables between which a distance is to be evalu-
ated, xi = {x1, x2} refers to points of the training data (xi = {x1, x2, x3, ...} for higher
dimensions) and yi to a new point that is to be classified [24]. In kNN these distances
are assessed for the entire set of training data and the k smallest distances define the
neighbor points with greatest similarity to the new data point, subsequently classifying
the new point with the most popular classes amongst these neighbors. The Euclidean
metric is the best-known approach to estimating distances, both in general mathemat-
ical applications and in data mining. However, Euclidean distances don’t take any
statistical regularities that might be presented within the data into account [35]. For
cases where trends and correlations are evident in the underlying set, a method that
identifies this statistical information can result in a better performance of classification
[35].

The Mahalanobis distance accounts for possible internal correlations. The distance
constitutes a measure between two data points in the space defined by relevant features
[36]. It accounts for unequal variances in the data, as well as correlations between
different parameters. Therefore, it provides an unbiased evaluation of the distances
by using a weight matrix, the covariance matrix [24]. The Mahalanobis distance is
calculated in the following way:
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DM =

√√√√ n∑
i=1

(xi − yi)TW (xi − yi) (2.5)

Here, W is the covariance matrix. Only when the parameters are uncorrelated, i.e.
when W becomes the identity matrix, will the distance computed by the Mahalanobis
distance metric be identical to the Euclidean distance [36].

2.4.2 kNN Weighting

kNN may need specific implementations for when the training data are of a variable
nature, and specifically if structured data become relevant for the data sets in question.
A method that is commonly employed to avoid the variable nature of data involves
weighting the variables of the input space with a specific, predetermined weight, wi ≥
0. This method is known as a feature-weighted kNN [37]. Common methods used to
achieve a feature-weighted kNN are e.g. adding a fixed weight to the parameters of
each feature of the input space. Figure 2.3 illustrates this, we can assume that the x1-
axis represents one feature from our data set and t the target vector (result variables).
If a certain weight, which is fitting to that exact feature, is added to the variables
belonging to the feature x1, then the variables are brought into closer proximity in the
feature space.
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(a) Unweighted data points
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(b) The feature x1 multiplied by a scaling factor
of 0.3

Figure 2.3: Feature-weighting in kNN.
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The distance metric for feature-weighted kNN simply becomes:

DFW =

√√√√ n∑
i=1

wi(xi − yi)2 (2.6)

where wi represents parameter weights, which can be a form of standardization values
that normalise the parameters to a range of [0, 1], or correlations between specific
parameters and the target vector [37].

Another implementation has proved beneficial for applications of kNN, especially when
the distances of the neighbors vary widely and closer neighbors are considered more
significant to the final prediction. This is a method that involves weighting the neigh-
bors with an inverse of their distances; therefore known as inverse-distance-weighting
[37]. The feature-weighted distances are first calculated for a defined number (k) of
neighbors, and an added weight is then added to those distances to emphasize the data
points closest to the new point.

wj =
1

D(xj, yj)
(2.7)

wj represents the inverse-distance-weights and D(xj, yj) the distance between the new
data point, yj, and a point in the training data, xj [37]. Using this method of inverse-
distance-weighting can be convenient for sparse data, or structured data sets [37].

A possible downside to classification by kNN is the high cost that the classification
of new instances entails [34]. This is due to the fact that the most computationally
demanding procedures of the method, i.e. the distance calculations, all take place at
prediction time rather than induction time. It has therefore been speculated that kNN
works best when employed for regions of smaller amounts of data, or combined with
other modeling approaches [36].

2.5 Auxiliary Methods for Classification

Machine learning applications commonly rely on auxiliary methods for purposes such
as estimating errors involved in the approach that is being implemented, as tools
for handling missing data etc. The most important tool that we employed was an
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algorithm that served as a method of imputation for our missing values. This was
the expectation-maximization (EM) algorithm [38]. Another auxiliary method that
was used extensively throughout the development of our classifier was a method for
performing cross-validation; the leave-one-out (LOO) approach.

2.5.1 The EM Algorithm

Data mining applications frequently have to deal with different problems of estimation.
The most commonly encountered estimation problem is probably the estimation of the
mean of a signal [15, 17]. Other common estimations involve finding values for missing
data in incomplete data sets [22]. The EM algorithm is ideally suited to problems
of this sort. It is a general method of finding a maximum likelihood estimate for
available parameters of an input data set, with the goal of using the estimate as an
imputation value for missing variables [17]. The likelihood function that the algorithm
uses does not have a closed-form formula that can be differentiated and optimised. The
likelihood is rather obtained through an iterative procedure; first an expectation (E )
is assumed by evaluating posterior probabilities for the likelihood parameters, and
then a maximization (M ) is performed, where the parameters are re-estimated [15].
This way, the total likelihood increases and finally a maximum likelihood estimate is
obtained [15]. The estimate can be used as an imputation value, e.g. as a numerical
representation of the information that is hidden within MNAR entries.

2.5.2 Cross-Validation and LOO

To incorporate the testing of our model with the ongoing development of the clas-
sification methods, some sort of test data was needed. Blood test data from new
patients was however unavailable at the time of the development. In such cases, a
special case of cross-validation can be applied to the classification model in question,
in order to obtain preliminary results that can serve as indicators of the performance
accuracy of the model. One of the most widely employed methods of cross-validation
is the so-called leave-one-out approach [13]. The method is based on the reduction of
a data set of a total of n entries, by one data point, which is used as a test case for
the method. The remaining n − 1 data points are then used as training data for the
assessment of the performance of the model [13]. LOO can be applied for the whole
set, thus providing a type of test data with size equal to that of the training set. This
way relatively unbiased, preliminary results are obtained. For smaller data sets, of less
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than 100 data points, results from LOO cannot be considered reliable since these in-
stances may invoke overfitting of the model to the limited number of cases the learning
is based on [23]. Still, for larger sets of data, computations involved in LOO cross-
validation become increasingly demanding, so LOO works best for intermediate-sized
(n ' 100− 500) sets of data [13].

2.5.3 Prediction Accuracy and the Mean Squared Error

Prediction accuracy and error estimation constitute a specific field in data mining
[23]. Estimating the accuracy that a classifier provides is important to the process
of evaluating future performances of a classifier, as well as for selecting the model
that best suits the classification task at hand [39]. For pure classification models, the
performance can be estimated by examining the misclassification rate of the model.
The misclassification rate should preferably be minimized for the model in question; a
so-called confusion table is often used to monitor the misclassification rate and make
adjustments to the model according to the lowest possible rate of misclassification [15].
For regression models the mean squared error (MSE) is more commonly applied for
estimating model performances. The method is presented as a measurement of the
deviation of the model output from the provided target vector [39]:

MSE =
1

n

n∑
i=1

{y(x)− t}2 (2.8)

where y(x) is a regression vector outputted by the model, and t is the target vector
provided with the training data. The lower the value obtained from MSE calculations,
the closer the model is to the desired output [39].

2.6 Random Forests

A fairly recent approach to several learning algorithms has become increasingly popu-
lar in recent years; these are the so-called ensemble learning methods [40]. Significant
improvements in classification performances have especially been shown for implemen-
tations of ensemble Decision tree learners, compared to stand-alone classification trees
[41, 42]. The Random forests algorithm, initially developed by Breiman and Cutler
in 2001 (as a Fortran code), is a method that involves growing an ensemble of trees
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and letting them vote amongst themselves for the most prevalent class [41]. Each tree
of these forests is constructed using random subsets of the input data [40]. Separator
variables for a tree, i.e. the variables defining the branching sites, are randomly se-
lected and restricted for each split in the tree [42]. This way the contribution of each
separator variable to the final prediction can be better examined [42]. Two of the main
parameters to influence the performance of Random forests classifiers are the number
of trees in the forest, and the number of randomly preselected separator variables
[42]. According to the Random forests Fortran-based implementation, available as an
R-package interface, the default number of trees in a forest is 500 and the number
of separator variables is five [43]. These can be optimized through cross-validation
procedures, although a generally accepted approach is to increase the number of trees
for increasing sizes of input data [43]. The trees are grown using a classification and
regression tree methodology, and normally without pruning3 [42].

Applications of Random forests for medical data mining have been growing more
common in recent years [44, 45]. The results of a Random forests method can vary
from run to run, so the method is considered a truly random statistical method, a
fact that can be both beneficial and disadvantageous for applications in diagnostic
modeling [42]. However, Random forests have been shown to be extremely robust to
overfitting, and are therefore convenient for a variety of applications [40].

3Pruning is commonly employed in tree growing, a bottom-up procedure that shortens the tree to
find an optimal number of terminal nodes [24][31].
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Chapter 3

Materials and Methods

3.1 The Data

3.1.1 Data Gathering and Establishing Class Labels

The training data for our classifier consisted of blood test results from 1750 clinical
attendees suspected of suffering from one or more autoimmune diseases, along with
some predefined cases to represent the more uncommon symptoms of autoimmune
disorders. With each and every suspected autoimmune case, a great deal of serological
information is presented. Dozens of measurements can be performed in order to detect
various autoantibodies from blood samples, and experts in rheumatology face the
difficult task of evaluating which measurements are necessary and whether or not
obtained results are sufficient to present a diagnosis. Objectivity is difficult under
such circumstances, and the process as a whole (estimating which measurements are
necessary, interpreting significance from a wide range of test results, etc.) is extremely
time-consuming. These reasons, among others, were the motives behind developing a
classifier for the diagnosis of autoimmune diseases.

A target vector was obtained in the form of diagnostic estimates belonging to each
of the 1750 clinical cases. Experts in the field of rheumatology provided these inputs
to our model, by assessing the status of each case. Their estimates were originally
presented as the probability each patient had of suffering from a specific autoimmune
disease; "none", "very low", "low", "medium" and "high" probability of disease [28].
Classification criteria were established from these probabilistic estimates, and a set of
classes defined with the estimates comprising the class labels. To represent the esti-
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mates as numerical labels they were mapped to the values 0, 1, 2, 3, or 4, corresponding
to increasing likelihood of disease. Therefore, five distinct classes were defined for our
classifier, with labels ranging from 0 to 4.

3.1.2 Challenges with the Data

A challenging characteristic of our data, and a core issue in medical data mining,
was the large number of input variables or high dimensionality that the raw data sets
presented [44]. Dimensionality reduction is normally considered a necessary part of
preprocessing raw, medical data. The reduction of dimensions of the data sets, or fea-
ture reduction, can be achieved through feature filtering [44]. This involves selecting
those variables of the input space that contribute the most to the final output of the
model. Statistical properties of the input data can be used as a means to identify-
ing relevant variables, thus "filtering" out the variables most suitable for serving as a
classification basis [44]. This is an approach that we utilized for the dimensionality
reduction process of our classifiers. The autoimmune data sets originally presented
around 20 features (parameters related to autoantibody measurements), but were re-
duced to the 5-10 features most relevant to the classification. Other properties than
statistical information may be used to achieve dimensionality reduction. For our dis-
tinct sets of data, specific to each autoimmune disorder, different variables were of
different importance to the final output of the classifiers. Variables, or autoantibody
measurements, that did not present statistical importances but were still known to be
specific to the disease in question, were included as features for those classifiers.

Another difficult aspect of modeling our data was attributed to how much of the
values of the sets were missing, and missing due to different causes, i.e. the high
structuredness of the underlying data sets (see Section 2.1). Much of the missing
entries were meaningless, missing at random (MAR) data that were easily manageable
for classification [23]. Other missing entries of the set represented missing results that
could be traced back to specific blood tests being omitted. A large number of blood
tests are omitted in immunoassays due to high cost, complex recovery of results, etc.
These omitted measurements still possess some meaning, i.e. they are not MAR data
but defined as missing not at random (MNAR). The MNAR values were found among
all autoantibodies, since nearly all blood sample analyses involve some tests being
knowingly omitted. These values were handled differently for each method that was
implemented in the developmental process of our classifier.
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3.2 Processing the Blood Test Data

All immunological blood test that were obtained for the purpose of developing this
classifier were subjected to extensive interpretation and preprocessing. Raw serology
results have a range of manifestations, from being presented as a mere positive-negative
result to being a specific value from a continuous scale of values [4]. All available
results were converted to numerical form according to a standard that was defined
for the process. Results above a certain numerical threshold, were assigned the value
of that threshold, other results that were presented as simply a positive or negative
result were given a binary form of 1 or 0, respectively, and so on. As an addition to
the variables that comprised our training set, a set of rules was supplied with the data.
These rules presented a comprehensive overview of reasons for missing entries within
the sets, therefore defining the missing entries as either MAR data or MNAR values.
For example, a missing measurement of rheumatoid factor (RF) is always handled as an
MNAR entry, since RF is a discriminative factor for almost all autoimmune disorders
and even when measured as negative, that result can still contribute to a diagnosis by
eliminating a variety of disorders [4]. The only variables that can be deemed MAR are
omitted measurements of some factors, or autoantibodies, that are directly related to
the manifestation of other factors in the bloodstream. And so if the dominant factors
have been measured as negative and measurements for the dependent factors were
omitted they can be deemed MAR values [4, 23].

The actual development of our diagnostic model began by an intricate study of the
data. This meant learning the meaning of each type of entry and searching for obvious
characteristics or patterns within the data frame. The majority of the entries of the
data sets were direct measurements of different autoantibodies detected in the blood-
stream, others were some variations of the direct measurements. The set of rules that
had been supplied with the data, describing the meaning of omitted variables along
with the importance of each factor of the set, were applied to the set to distinguish
the MAR variables from the MNAR entries. This constituted an extremely important
step in the data processing stage.

In order to estimate which factors of the data sets had a significant statistical effect on
the stage of the diseases, regression analysis was performed on each of the factors with
regards to the target vector of the data set. Considering two parameters specifically,
the r2 and β values, regression analysis was run for each factor of the set [24]. The β
coefficient represented the degree of linearity, i.e. the amount of increase of the target
value induced by each factor, and r2 provided information regarding the correlations
of the variables of the set [24]. The results of the statistical methods were studied,
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resulting in an overview of all relevant factors for our model structure. For RA, these
were the variables that are listed in Table 3.1.

Table 3.1: Factors relevant to the structure of an RA diagnostic model.

Cyclic citrullinated peptide
(CCP)

Antinuclear antibodies
(ANA)

RF-ELISA

Rheumatoid RF-IgM

factor (RF) RF-IgG

RF-IgA

A knowledge-based estimation of the results of the most determinative factors was
used in this manner, to determine which autoantibodies would be used as relevant
features for the classifier of each autoimmune disease. However, some of the factors of
the data sets were altered in order to observe linearity under other circumstances or
to check for underlying linear behavior. Such alterations mainly involved logarithmic
mappings of the factors; if these indicated advantageous statistical results, the data
sets were subsequently augmented to contain the mapped factors.
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3.3 The Backbone of the Model

A graphical model was considered an ideal choice for the backbone of our model,
aiming for maximum transparency of the decision-making process of the classifier.

3.3.1 Bayesian Network Implementation

The Bayesian network modeling of our data was developed as a linked net of factors
that were considered to have a fundamental impact on the likelihood of whether or not
a patient was suffering from a specific disease. Our approach involved the calculated
probabilities being based on the knowledge that the determining factor’s parent nodes
were either positive or negative. This type of Bayesian network assumes a binary form
of the variables, i.e. they are either positive or negative, and this form of Bayesian
networks is what we chose to focus on in the development of our autoimmune classifier.
Figure 3.1 shows a simplified Bayesian network, similar to the one that was set up for
our RA data.

CCP

ANAPattern

Rheumatoid
Arthritis

RF

ELISA

Figure 3.1: Basic elements of a Bayesian network.

The factors CCP and RF, which are factors extremely specific to the diagnosis of RA,
have been defined as the roots of the network, and other measurements, such as those
of antinuclear antibodies (ANA), an ELISA measurement and pattern presentations
of certain autoantibodies are represented as factors conditional on CCP and RF. Basic
calculations of the nodal probabilities were obtained from examining the network and
calculating the joint probabilities of the data that comprises the network:

p(Data) = p(CCP )p(ANA|CCP )p(Pat|CCP )...

...p(RF )p(ELISA|RF )
(3.1)
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Thus, traversing the nodes of the network, and performing a point-wise product of the
conditional probabilities rendered the final probability of a new data point fitting to a
given class. The conditional probabilities of the factors in each node were calculated as
the mean of the previously known probabilistic estimates ("none" ' 0% probability of
disease to "high" ' 95% probability), which could be attributed to that factor being
either positive or negative in the underlying data set.

3.3.2 Decision Tree Implementation

Having decided upon a graphical model as the best fit for the backbone of the model,
an approach through Decision tree learners had seemed like an ideal approach to our
data from the very beginning. Preliminary results of the Bayesian network method,
presented in Chapter 4, indicated insufficient accuracies for the performance of indi-
vidual classifiers based on this method. The focus was therefore turned towards a
tree-based model.

Establishing the basic structure of a Decision tree involved identifying those variables
that provided the greatest separation of the input space (the training data) into de-
cision regions; thus creating smaller subsets of data in these regions [15]. A couple
of built-in packages were tested in the predevelopment of the Decision tree. The pur-
pose of testing various approaches of tree models was first and foremost to employ the
learning involved with these models to establish those variables that would provide
the best separation of the data into prediction regions, i.e. leaves of the tree. There
are various implementations of classification trees available in the R programming
language. Among these are two CART algorithms, the tree algorithm and the rpart
algorithm. The rpart is a recursive partitioning and regression algorithm, while tree
is a more basic classification tree algorithm [46, 47]. Both algorithms are based on a
tree-growing method that consists of three phases [17, 31]:

1. Start with a single node containing all points.

2. Stop if all the points in the node can be assumed to belong to the same class.

3. Otherwise, search over all binary splits of all variables for the one that will
reduce the input set as much as possible. If one of the resulting nodes contains
less than some predefined number of points, stop. Otherwise, take the split and
create two new nodes.

4. Go back to step 1 for each new node.
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3.3. The Backbone of the Model

After having used the built-in CART algorithms as a tool to establishing an ideal
structure for our tree, the actual implementation of our tree-based model was begun.
Our tree was not a strictly learned tree, in the sense that we previously defined the
separator variables of the branching sites. These separators were obtained from both
the learned approach of the built-in CART algorithms, but were in some cases those
variables that had resulted in highest statistical importance for a specific autoimmune
disease. The tree structure was implemented as a series of if-else statements, with each
branching taking place at such a statement.

The CART algorithms employed linear regression in the leaves of their trees, resulting
in a final output value. In those cases where the branching of our trees had lead to a
determined section of variables, which all were known to indicate either a high affinity
of disease or very low affinity, the numerical values according to the diagnosis induced
by those variables (e.g. 4 for a "high" probability of disease or 3 for a "medium"
probability) were hard-coded into the model. Thus for extreme, high-probability cases,
i.e. where all variables strongly indicated a specific diagnosis, the results were returned
as hard-coded values. In those leaves where the division of the input region had not
lead to as distinct a result, the final prediction was obtained by a manner of model
hybridization, i.e. by adding other classification methods to the classification tree. The
act of combining multiple models into one classifier, or hybrid modeling, has often been
found to improve the performance of a classifier [48, 49]. Therefore, implementations of
a suitable method for classification that involved this sort of hybrid modeling, defined
the following steps in the developmental process of our classifier [15].

3.3.3 Classification in Sub-regions of the Decision Tree

In order to establish which methods to use in the hybrid model, two methods that
have shown promise in combining models for classification were implemented for our
data; the classical approaches of Discriminant function analysis (DA) and k -Nearest
neighbors (kNN).

The implementation of a classifier based on discriminant functions involved a com-
parison between two methods of DA; a linear and a quadratic discriminant function.
The discriminant function was, in both cases, calculated from the covariance matrix/-
matrices and mean values of the factor in question. In the linear (LDA) approach, a
single covariance matrix was constructed for the data set as a whole, before any class
labels were established. The set was then divided into five classes, according to the
blood test results of each patient. The first class was thus defined as patients with
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3.3. The Backbone of the Model

zero probability of having the disease, the second defined as those with a very low like-
lihood of the disease and so on. With the implementation of a quadratic discriminant
(QDA), a specific covariance matrix was constructed for each class. These independent
covariance matrices tended to yield a zero determinant, due to induced incalculability
(logarithm of a zero determinant). For the cases in which this occurred, a method of
switching into a linear model was carried out, thereby constituting a mixture model
of sorts.

The implementation of k -Nearest neighbors for the leaves of our Decision tree involved
some specific approaches to calculating the distances of the neighbors. The fact that so
many crucial factors of the training set were missing, MNAR values, proved challeng-
ing for when distances to these factors were to be calculated. This was especially true
since we wanted to include the information stored in the MNAR values for the final
prediction. In the MNAR cases, the EM algorithm was used to estimate an imputation
value for these missing entries. Distances to the imputed values were subsequently cal-
culated, thus obtaining those k neighbors closest to our new data point. An additional
challenge involved establishing the optimum number of k for adequate modeling of the
data. The nearest neighbors taken into account in our model were originally defined
as five. Five is a standard number of neighbors for k -Nearest neighbors applications,
although in some cases five points do not address the problem with adequate precision.
The value for k was tried from 2 to 20 points for our data, but none of those tests
indicated a better result than for keeping k as five. In fact, since we took the approach
of inverse-distance-weighting the neighbors that were found for a new data point, the
value we chose for k didn’t account for as large a part of the model performance as it
would have otherwise, since this approach involves weighting the neibhors’ distances
after a k number of neighbors have been found [37].

3.3.4 Performance Assessment

In order to obtain a rough estimate for how well each implemented method was per-
forming, LOO cross-validations were carried out constantly. These provided a per-
centage that described the amount of cases being classified correctly, but did not give
any other indications of the reliability of the classification. However, calculating the
mean squared error (MSE) of the results vectors of each implementation provided the
information necessary to be able to assess the reliability of the different methods. Fur-
thermore, the MSE is directly related to the amount of outliers4 presented for a LOO
run of a model. Outliers presented by the various models were thus detected both

4Outliers are output values that deviate considerably from expected target values [15].
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by visually estimating the more extreme outliers from graphical presentations of the
results, and by calculating the MSE of the output values.

In the final stages of development of the classifier, the observed outliers were exam-
ined further. In some cases these outliers indicated severe cases of misclassification.
A physician might e.g. have estimated a patient as having a "high" probability of au-
toimmune disease, but the model gave prediction results of a "low", or in some cases
"very low" probability of disease. This problem was approached as an interactive pro-
cess, set up between the author and experts in rheumatology. The outliers predicted
by our model were presented to experts so as to verify that they were indeed either
severe cases of misclassification, or due to an inconsistency in the estimates that had
originally been provided with the data sets. Most of these outliers were in fact found
to be due to the latter, an inconsistency in the diagnostic estimates of experts, and
these same data points were subsequently updated for the training data sets. Other
outliers were mainly minimal deviations from the proposed expert estimates, and were
therefore left unaltered to avoid overfitting of the model.

3.3.5 Implementing Random Forests

After having established a final structure for the classifier and obtained adequate
results, a new method was applied to the data sets. This was the method of Random
forests, developed by Leo Breiman et al. A built-in package in the R programming
interface exists for the Random forests method, implemented for R directly from the
original Fortran code by Breiman [41]. This package was employed for the purpose of
testing the method with minimal handling of the data. The variables that had been
established as determinant factors for the outcome of our classifier in previous methods
were used as separators for the forest setup. However, the method of Random forests
uses different separator variables for each of its trees to provide a broader spectrum
of possible data mining results. The model was therefore supplied with sufficient,
possible separator variables so as to be able to choose from. A controlled approach
to the size of the forest was taken at first, with the forest size set as 100 trees and
the random assortment of separators limited to three separator variables for each tree.
The approach of allowing for more freedom within the algorithm itself was tried in
subsequent tests, where the algorithm decided upon an ideal number of trees and
separators. Finally, the results from the Random forest approach were compared to
the results previously obtained from our specifically designed classifier. A thorough
discussion and comparison of the two can be found in the following chapter.
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Chapter 4

Results

All methods that have been discussed in this thesis were implemented as diagnostic
models, specifically adjusted to each of the ten autoimmune disorders. However, the
results presented here are those that were obtained from implementations specific
to the RA data set. The RA data consists of blood test results from 240 patients,
including a target vector of 240 diagnostic estimates on the scale of 0 to 4. The
cross-validation results are mainly presented as the percentage of how well model
output values matched the target vector values. In the case of RA we had 240 such
match or mismatch indications, although these were presented as regression results
rather than a match-mismatch classification. The output of the model was therefore
on a continuous scale, from 0 to 4, which provided more meaningful results than a
classification otherwise would have, since it indicates how close to or how far from a
known prediction the output actually is. It is known that a relatively low difference
can be between diagnostic classes obtained from the possibly subjective estimates
of physicians, where a "medium" likelihood of disease does not provide a distinct
difference from either a "low" or "high" possibility of disease. In accordance to this,
the results that we present have been given a defined margin of error to indicate a
correct or false prediction value. The margin of error corresponds to one class higher
or lower than the actual outputted value.

Some implementations have been presented graphically as the linear relationship be-
tween the target values, which are in fact the diagnostic estimates of experts in rheuma-
tology, and the values outputted by the model. The diagonal of these graphical presen-
tations represents a perfect linear fit. However, the points that fall within the margin
of error of one class (indicated as a shaded area) are also defined as correctly clas-
sified points due to the difficult distinction between the diagnostic classes that were
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4.1. Leave-One-Out Results

defined prior to building the classifier. The results are presented separately; Section
4.1 describes those results that were obtained through the LOO cross-validation and
comprise the actual developmental process leading to our final classifier, concluding
that the final version of the classifier shows a 100% success rate in classification. Sec-
tion 4.2 presents a more accurate assessment of the performance of our model, with
results for the classification of twelve new test cases showing that all of the cases were
successfully classified.

4.1 Leave-One-Out Results

Results were produced and studied throughout the developmental process of our clas-
sifier. This enabled constant assessment of the performance of the model, allowing
different approaches and implementations to be tested. The method of LOO cross-
validation was utilized for this purpose, revealing preliminary results for each imple-
mentation of the methods that have been discussed in Chapter 3. We present the
LOO results as a form of comparison to the target vector of the original data set, as a
percentage or by graphical representation. The results should give a good indication
of the effectiveness of each implementation, although a certain bias is always bound
to accompany such validation approaches.

4.1.1 Bayesian Network

The outcome of the Bayesian network-based model was not as good as had been
expected, the classification showed promising results from a probabilistic point of view
only. However, when a complete prediction, based on both the prior probabilities and
conditional probabilities of each Bayesian node, was estimated, the results were found
to be poor.

Table 4.1: Bayesian network LOO results.

Compliance to target Mean squared
values (%) error

Bayesian 53.4 0.536network

As Table 4.1 shows, first results from LOO cross-validation of the model indicated
53.4% correctly classified cases and presented a mean squared error of 0.536. This
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4.1. Leave-One-Out Results

misclassification rate describes a highly unreliable classifier, as no conclusions can be
drawn from a mere 50% probability of the classifier classifying new cases correctly.

The unfavorable results from our implementation of a Bayesian network were believed
to originate from two possible causes. Firstly, the model, in a similar way as blood
tests performed for suspected autoimmune patients do, bases its prediction on two
roots (two main parameters). This can result in problematic conditional probability
calculations. If either one, or both of these roots is not measured, it becomes extremely
difficult for the Bayesian network to produce conditional probabilities for the rest
of the nodes. Secondly, many of the variables taken into account in the model, are
interrelated in a more complex way, with internal correlations that cannot be described
in as simple a way as the Bayesian network intends to do. These complex relations
are e.g. correlations between a child node and more than one grandparent node, or
sibling nodes being related in various ways. As the amount of calculations required to
obtain a conditional probability outcome for each node grows exponentially with the
number of parents related to that particular node, increasing the network links was
not attempted for our model [26].

4.1.2 Tree Implementation

The main limitation we faced when intending to use built-in R packages for the de-
velopment a Decision tree, was the lack of control over specific actions available for
missing data values. This proved especially limiting in this project, since the main goal
was to be able to distinguish between different types of missing values (MAR versus
MNAR) and have the classifier take action based on that distinction. For the purpose
of a final classification, or prediction, the built-in packages were therefore only used
to decide which factors would best serve as separator variables in the tree structure.
We ran our RA data through two available CART packages to obtain some useful
information about an adequate tree structure, such as the ideal depth of a Decision
tree for the data (obtained from automatic pruning) and the variables that provided
the best separation of the training data into decision regions. The packages that were
tried were the rpart and tree packages, which have been discussed in Section 3.3.2.
These obtain their outputs from linear regression of the target values associated with
the parameters in each decision region (leaves of the trees), as can be seen in Figures
4.1 and 4.2.
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4.1. Leave-One-Out Results

Figure 4.1: The tree structure obtained from the "tree" package in R, output values
associated with each sub-region of the tree are presented as linear regression values of
the target vector [47].

Figure 4.2: The tree structure obtained from the "rpart" package in R [46].
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A decision was made to handle the MNAR values by imputation through the EM
algorithm. LOO results that were obtained from both of the built-in packages are
shown in Table 4.2.

Table 4.2: Built-in CART results, MNAR’s exchanged for EM means.

CART algorithms Compliance to target values (%)

tree 93.43

rpart 95.05

Even though the rpart package resulted in a higher percentage of correctly classified
cases, both trees were regarded as relevant in the ongoing development of the classifier.
The results were found to be especially useful in respect to the structure of the tree.
Both algorithms involved automatic tree pruning, and the structures seen in Figures
4.1 and 4.2 were obtained for the optimum amount of pruning. When developing the
tree-structure of our classifier, the structures that were obtained from the rpart and tree
packages were therefore used as a basis. A mean squared error was not estimated for
the CART models since they were not intended for a final comparison of classification
methods.

The backbone for our classifier had now been established. The separator variables
obtained from the CART packages, as well as the variables that presented a statistically
relevant effect to the final diagnosis of a patient (see Table 3.1) were implemented
through a series of if-else statements as various branching sites of the tree. To obtain
final prediction values from these branching sites, several values were hard-coded into
the model in a similar way as the values returned by the CART packages, shown in
Figures 4.1 and 4.2. This was only considered appropriate for cases where measured
autoantibodies showed a very strong indication of a specific probability of disease,
e.g. as can be seen from Figure 4.2 where the factor CCP, which is a factor that has
shown high specificity for RA patients, is measured as higher than 145.5, that case
is almost surely a high-probability RA case and the according prediction value of 4
can be hard-coded into the model. In other cases, the results from the blood tests
are not so definite. The following sections describe our attempt to intertwine other
classification methods with the tree structure to hopefully obtain a final classifier with
the best performance possible for our autoimmune disease data.

36



4.1. Leave-One-Out Results

4.1.3 DA Tree-based Model

As has been discussed, the act of combining other methods with the basic tree structure
was considered an ideal approach to modeling our incomplete sets of autoimmune data.
First implementations for this purpose involved a Discriminant function analysis (DA)
in the leaves of the Decision tree, an approach that was intended as a more accurate
classification approach for the sub-regions into which the tree had partitioned the
input data. However, the first runs of an LOO cross-validation for the DA-tree hybrid
classifier resulted in worse classification percentages than the built-in CART packages
had previously shown. This can be seen in Table 4.3.

Table 4.3: LOO results from DA-based tree.

Compliance to target Mean squared
values (%) error

Tree-based 68.20 0.410DA

Comparing the result of 68.2% correctly classified points to the results from the rpart
package, which amounted to 95.05% of correctly classified points, the DA approach
was determined to be ineffective for the desired classification task of modeling our
autoimmune data.

These inadequate results are believed to be due to the fact that autoimmune data
are comprised of parameters that usually increase in value according to class rank.
Thus, values coherent to the highest class can be expected to give the best results
for the classification of a point in many instances, since that discriminant equation
would produce a maximum value [6]. Therefore, an excessive amount of cases will be
classified as high-probability cases, resulting in a poor diagnostic model.

4.1.4 kNN Tree-based Model

The kNN model for classification was the subsequent method to be implemented with
the structural backbone of a Decision tree. Most classical approaches to classification
through kNN use the standard Euclidean distance for finding the nearest neighbors.
Our first implementations therefore made use of the Euclidean metric for distance
calculations. So as to involve the information from the MNAR values of our set, these
missing values were temporarily filled in for by EM estimations of the corresponding
factor. The distances were furthermore inverse-distance-weighted, thus emphasising
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the contribution of the closest neighbors even further for the final output value of the
model. Having implemented this approach, the first results for Euclidean-based kNN
were obtained, and are shown in Table 4.4 and Figure 4.3.

Table 4.4: First LOO results from the classification tree with Euclidean-based calcula-
tions of kNN.

Compliance to target Mean squared
values (%) error

Tree-based 96.65 0.307Euclidean kNN

These first results of using kNN for classification in the leaves of the tree were extremely
promising, as can be seen in Table 4.4, where 96.65% of the cases have been successfully
predicted. However, in the case of highly correlated data the Euclidean distance can
produce biased results, as has been discussed in Chapter 3. The approach of basing
the distance calculations on the Mahalanobis distance was therefore tried as well, and
those results will be presented in the following text.
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Figure 4.3: First results of the tree-based Euclidean kNN prediction for RA.
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Figure 4.3 shows the expert estimates of each RA case, ranging from "none" to "high"
probability (0 to 4) of disease. These are plotted against the outputs of our tree-
based Euclidean kNN model to examine linearity between the two, or the compliance
of the model outputs to the target values (expert estimates). As can be seen in the
figure, nearly all cases fall within the predefined margin of error (shaded area) and
are therefore correctly classified. Those points that fall outside of the shaded area
are regarded as misclassified, and will be discussed in greater detail in the following
sections.

The Mahalanobis calculations required a covariance matrix to be obtained of the fac-
tors of the set, as has been described in Section 2.4.1. Calculating the covariance
matrix involved some complications. These were mainly related to the high missing-
ness of data in the sets, where all missing entries (MAR’s and MNAR’s) were initially
omitted for calculations of the covariance matrix. This lead to the matrix becoming
biased, the covariance entries of the matrix were not always calculated for the same two
numbers. Therefore, the covariance matrices that were obtained, frequently became
singular, or had negative eigenvalues. In these cases the matrices had to be forced
into a positive-definite5 state, in order to be applicable in the Mahalanobis distance
calculations. Forcing the covariance matrix into a positive-definite state was believed
likely to lead to poor final results, and was furthermore demanding. Other options
than simply omitting all missing values were therefore considered. The first option in-
volved simply fixing distances to the MNAR values as one standard deviation from the
mean value presented by the measured instances of the factor in question. A second
option involved applying the EM algorithm to the MNAR values, before calculating
the covariance matrix. The EM estimates for the MNAR values were thus used as
imputation values for the MNAR’s to estimate the distance to these values, instead of
simply ignoring the MNAR’s in the nearest neighbor estimation.

5A matrix is positive-definite if its eigenvalues are non-negative [24].
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The results for the different variations of the Mahalanobis-based kNN are presented
in Table 4.5.

Table 4.5: Mahalanobis-based kNN results from LOO.

Compliance to target Mean squared
values (%) error

MNAR entries omitted 92.89 0.544

MNAR value distances set as 95.82 0.320one std.dev. from factor values

EM algorithm used to obtain 95.82 0.315means for MNAR values

None of the Mahalanobis-based approaches resulted in better performances than the
Euclidean-based kNN approach. This, combined with the fact that the covariance
matrix calculations were computationally demanding, lead to the decision of relying
solely on the approach of Euclidean-based kNN.

4.1.5 Model Refinements

Initial versions of the classifier resulted in some extreme outliers from the expert es-
timates that had been associated with these cases. These misclassified points were
regarded as severe, since such results can distort the overall performance of the model.
Figure 4.4 shows the misclassified points of patients who are in fact medium risk RA
patients, being classified as very low risk patients.
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Figure 4.4: Outliers presented in the development of the RA model.

Furthermore, a substantial number of data points are classified outside of the previ-
ously defined margin of error of one class (gray area). In order to try to rectify these
misclassified instances, the outliers were examined with regard to their expected tar-
get value. Some of the outliers could be attributed to a false estimate of the patients’
status, based on their blood test results. These were mainly statuses ranging from a
"very low" probability of disease to a "medium" probability. The outliers that could be
traced to faulty target values, obtained for the data set, were subsequently corrected
after having been submitted to experts in rheumatology.
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Table 4.6 shows the improvement in performance accuracy, achieved from outlier rec-
tifications.

Table 4.6: Euclidean-based kNN Results from LOO, before and after outlier corrections.

Compliance to target Mean squared
values (%) error

Before outlier 96.65 0.307improvements

After improvements 100.00 0.297

The extremely good results of a 100% of correctly classified cases (with a margin of
error of one class) were obtained for when the outliers had been adjusted; an improve-
ment of nearly 3.5%. Figure 4.5 shows the results of the final tree-based kNN model
for RA, with adjusted outliers.
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Figure 4.5: The final RA model results.
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4.1.6 Random Forests

As a final approach to developing a classifier suitable for the task of classifying au-
toimmune data, the relatively new method of Random forests was implemented for
our set. For this purpose, use was made of a built-in package in R, which is described
as the R interface for the original Fortran code that was developed by Breiman et al.
[41]. LOO results from this implementation are shown in Table 4.7.

Table 4.7: Random forests LOO results.

Compliance to target Mean squared
values (%) error

Random forests 97.91 0.326approach

The performance can furthermore be seen in Figure 4.6.
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Figure 4.6: Random forests model results.
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4.2. Results from New Test Cases

The approach of Random forests introduced some intriguing results with the LOO run
showing that 97.91% of cases were being predicted correctly. However, some extreme
outliers were presented as well, as can be seen from Figure 4.6, and so the model would
require some significant reforms before being presented as an actual diagnostic model.
Such reforms can prove difficult for an approach through built-in, already established
packages. The Random forests method itself is extremely complex and was considered
overly extensive for a hands on implementation of each tree to be attempted within
the scope of this thesis.

4.2 Results from New Test Cases

Very recent additional data has been obtained for rheumatoid arthritis. This data,
intended as test cases for the model, enabled the unbiased validation of our model.
This was considered an extremely important aspect in verifying that the model had not
been overly trained, or overfitted to our data. The results from the run of these new
test cases through our model are presented in Table 4.8 as a "yes" or "no" to being
classified as RA cases, with the prediction value presented as well (usually ranging
from 0 to 4).

Table 4.8: Results from the classification of new RA test cases.

Case number Positive for RA Prediction value

1 yes 4.00
2 yes 4.00
3 yes 4.00
4 yes 4.00
5 yes 3.00
6 yes 4.00
7 yes 3.00
8 yes 4.00
9 yes 4.00
10 yes 4.00
11 yes 4.00
12 no 3.66

Table 4.8 shows that only one case, out of the twelve presented, was incorrectly classi-
fier. This indicates that the overall performance of our model for the task of classifying
new patients is good. A more detailed overview of the results for each case, is provided
in Table 4.9.

44



4.3. Summary

Table 4.9: Results from each, individual classifier for the 12 RA cases.

Cases and corresponding prediction values

Disease 1 2 3 4 5 6 7 8 9 10 11 12

RA 4.00 4.00 4.00 4.00 3.00 4.00 3.00 4.00 4.00 4.00 4.00 3.00
Sjögren’s 0.00 2.00 0.59 2.20 0.59 1.01 0.40 1.84 2.01 1.44 1.92 3.66
SLE 2.24 1.89 0.60 0.76 0.60 2.38 0.60 0.97 1.20 1.20 2.00 2.61
MCTD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Anti-SX 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ch-Strauss 1.80 1.80 0.40 1.80 0.40 1.40 2.00 0.60 0.40 0.40 1.40 1.40
Micro-Poly 1.80 1.80 0.40 1.80 0.40 1.40 2.00 0.60 0.40 0.40 1.40 1.40
PM-DM 1.00 1.60 0.40 0.75 0.40 1.00 0.40 0.97 0.63 1.20 2.60 2.25
Systemic 2.17 3.00 0.40 0.77 0.40 2.00 0.40 0.96 1.20 1.20 2.20 1.31
Wegener’s 1.60 1.60 1.00 1.60 1.00 0.00 1.00 2.20 0.00 0.20 3.40 3.00

Table 4.9 shows individual prediction results from all the classification models we
have developed, for running the established RA cases that we obtained as test data
through the models. The prediction values that may indicate the presence of disease are
accented in the table. It is evident that in some instances, more than one autoimmune
disease is possible, and even probable. This is, in fact, a known complication in
the diagnosis of autoimmune disorders, many of the disorders overlap significantly in
autoimmune patients. The twelfth case of the test data we obtained was classified as a
Sjögren’s case, with the prediction value of 3.66 for Sjögren’s syndrome. However, the
case also scored the prediction value of 3.00 for RA and Wegener’s Granulomatosis,
and may therefore be a case of clinical overlapping of these three disorders. The
final version of a diagnostic model will integrate the output probabilities from all ten
autoimmune disorders, and as such introduce diagnoses for overlap disorders as well.

4.3 Summary

This chapter has presented results from all stages of the development of our final,
hybrid classifier. Most results were obtained for LOO runs, constituting the ongoing
test results from the developmental process. The results that were obtained from
new test cases are however just as important, if not of greater importance, to the
final assessment of the model’s performance. These results were encouraging, as they
indicated that all test cases were correctly classified, if we assume that the possibility
of overlapping disorders exists. These test runs furthermore showed that no severe
overfitting of the model had occurred.
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4.3. Summary

After having presented results from implementations of various methods that were
considered likely candidates for the classification of autoimmune data, we can truly say
that our hybrid model of a Decision tree and inverse-distance-weighted kNN surpassed
all other candidates. However, results from the method of Random forests did appear
to have the possibility of presenting a comparable performance, with a mere 2.09%
difference in success rates. The final chapters follow up on the results that have been
presented here with a more detailed discussion and conclusions of our findings.
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Chapter 5

Discussion

The classifier that we have presented shows an extremely encouraging performance for
its task of correctly predicting the presence of autoimmune disease. Several methods
were implemented and cross-validated, including the method of Bayesian networks,
Discriminant analysis and Random forests, but the best results and performance were
obtained for our final classifier of a Decision tree combined with an inverse-distance-
weighted kNN model.

Decision trees presented an obvious choice for the underlying model structure, with
the other graphical model candidate, the Bayesian network, not being able to pro-
vide a reliable classification when implemented for our data. However, the method
of Random forests seemed to produce results compatible to those of our Decision
tree classifier. Nonetheless, the transparency of a single classification tree will always
provide an additional advantage over the forests model for applications in clinical di-
agnostics. The decision of developing the tree structure into a hybrid model, rather
than using a stand-alone tree, arose from the fact that a Decision tree by itself, using
linear regression in its leaves, could not provide reliable outputs for non-extreme cases.
A tree by itself could furthermore not utilize the information stored in the meaningful
missing (MNAR) variables to its advantage. In fact, one of the greatest challenges
we faced in developing our classifier was implementing the methods to be applied in
sub-regions of the classification tree so that they would model the MNAR variables
adequately. The approach of basing kNN distances on MNAR values, through tempo-
rary imputation of EM-means, and re-weighting those distances by an inverse distance,
proved successful for including the MNAR information in the prediction. The method
of Discriminant function analysis did not compare to the classification by kNN, and
furthermore presented a relatively high performance error.
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A classifier this specific to the characteristics of autoimmune disease blood test data
has, to our knowledge, not been presented before. The methods we have described
and implemented for the purpose of finding the ideal classifier for this type of data are
all well-established methods in the field of artificial intelligence in medicine. However,
the data gathered from autoimmune disease blood tests are unique in their aspects of
MNAR values. We believe that our hybrid classifier is the best approach to handling
this type of data, a belief supported by the favourable classification results that have
been presented in this thesis.

Classifiers for supervised learning approaches are highly dependant on the quality and
amount of underlying training data. Therefore, it can be assumed that the classifiers
we have developed for the more prevalent autoimmune disorders will be more reliable
in their predictions than those containing a smaller amount of available blood test
data. The classification models that are presented as individual classifiers in this
thesis have, in fact, been integrated into a final model as part of a clinical solution
system. The prototype of this system, shown in Appendix C, indicates that integrating
the individual classifiers into one final model has proved beneficial, even though some
of the individual classifiers can be considered more reliable than others.
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Chapter 6

Conclusions

Our implementation of a Decision tree and inverse-distance-weighted kNN into a sin-
gle, hybrid classifier has shown to successfully classify all available test cases of RA
correctly, as well as providing the possibility of diagnosing overlapping autoimmune
disorders. LOO cross-validation results for RA indicated a 100% success rate of clas-
sification, and LOO results for the other nine diseases (see Appendix A for further
details) all show over 90% correctly classified cases. The method that came closest to
achieving similar success as our hybrid classifier was the method of Random forests,
resulting in 97.91% of RA cases being correctly classified. However, our hybrid classi-
fier still has an advantage of 2.09% in performance over the Random forests approach,
and the additional advantage of a more transparent structure.

A final software that makes use of our classifier is already available as part of a web-
based solution system. The system is currently being made available to healthcare
professionals; two versions of a demo-interface for the system are presented in Appendix
C. Further work on the classifiers presented here will involve expanding the models
so as to cover an increased number of autoimmune disorders, such as seronegative
arthritis and fibromyalgia. Even though the scope of this thesis has been limited to
the field of autoimmune diseases, the methodology we have described here can easily
be adjusted to other classification problems. Hopefully, it will prove useful for data
mining approaches of similar challenges to those we have faced in our classification of
autoimmune data.
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Appendix A

Results From Other Autoimmune
Disease Classifiers

Table A.1: LOO results from the final, individual, autoimmune disease classifiers.

Autoimmune Number of LOO Prediction
Disorder Patients Results (%)

Lupus (SLE) 322 99.07

Sjögren’s Syndrome 305 99.34

Systemic Sclerosis 299 94.59

MCTD 293 97.93

RA 240 100.00

Antiphospholipid SX 68 98.46

Wegener’s Granulomatosis 62 98.36

Microscopic Polyangiitis 57 98.21

Churg-Strauss 56 98.18

PM-DM 33 90.63
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Appendix B

Graphically Presented Results
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Figure B.1: Graphical presentations of LOO results from all individual classifiers.
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Appendix C

Web-based Prototypes

Figure C.1: Interface for the web-based classifiers, version 1.

58



Figure C.2: Interface for the web-based classifiers, version 2.
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