
DEVELOPING A NEXT-GENERATION
MOBILE SECURITY SOLUTION
FOR ANDROID

Paolo Rovelli
Master of Science
Software Engineering
April 2014
School of Computer Science
Reykjavík University

M.Sc. RESEARCH THESIS
ISSN 1670-8539

Developing a next-generation Mobile Security solution for
Android

by

Paolo Rovelli

Research thesis submitted to the School of Computer Science
at Reykjavík University in partial fulfillment of

the requirements for the degree of
Master of Science in Software Engineering

April 2014

Research Thesis Committee:

Ýmir Vigfússon, Supervisor
PhD, Assistant Professor, Reykjavík University

Gianfranco Tonello, Co-Supervisor
MSc, CEO, TG Soft S.a.s.

Marjan Sirjani
PhD, Associate Professor, Reykjavík University

Copyright
Paolo Rovelli

April 2014

Developing a next-generation Mobile Security solution for
Android

Paolo Rovelli

April 2014

Abstract

The exponential growth of the Android platform in the recent years has made
it a main target of cyber-criminals. As a result, the amount of malware for
Android is constant and rapidly growing (F-Secure, 2013; Panda Security,
2013b; Sophos, 2013b; G Data Software, 2013). This exponential growth of
malware given, there is a need for new detection models designed to specif-
ically target Android malware in order to better protect the end-users and,
eventually, to counter the rise of Android malware itself.
We strongly believe that, before starting to address a problem, we firstly need
to understand it deeply. Thus, in this work of thesis, we firstly investigate the
current state-of-the-art of Android and Android malware, presenting a clas-
sification and characterisation of the current “in the wild” Android malware.
Afterwards, we investigate possible detection models that can be applied to
secure Android devices from the major classes of threats. As a result, we
present VirIT Mobile Security, a mobile security solution specifically de-
signed and developed to counter Android malware. VirIT Mobile Security
has been designed and developed in collaboration with and commercialised
by TG Soft, an Italian antivirus firm. In particular, we propose two different
approaches together, the first being a reactive approach done with the use of a
signature-based detection model and used to detect whether a mobile device
is infected or not. The latter one, instead, is a proactive approach used to spot
zero-day or next-generation malware as they emerge.
As to test VirIT Mobile Security, we use different experiments, one for each
detection mechanism developed. Experimental results show that our signature-
based detection system was able to properly detect and remove 95.95% of
the malware in our test, while our Permission-based Malware Detection Sys-
tem (PMDS) was able to detect more than 94% of previously unseen mal-
ware. Finally, our behavioural detection system was able to spot and report
back to the Anti-Malware Research Center of TG Soft (CRAM) 75% of the
zero-day or next-generation malware in our test.

iv

A Andrea, mi musa y amor.

vii

Acknowledgements

I do not remember when exactly I started to get interested in computer security. Perhaps,
I always was. I think that, at the very beginning, it was the idea of protecting the weak
and the helpless. Only after, I have discovered how deep and challenging is the “rabbit
hole”.
I do not see this work of thesis as the end of anything, but rather as a first step and achieve-
ment in the field of computer security.
All this would not have been possible without the wonderful people that have filled my
life and that I wish to thank.
The first thanks are for my parents, for giving me the amazing opportunity of studying
in a sparkling country as Iceland, and my girlfriend, for unconditionally supporting and
encouraging me.
A special thanks to all the friends who walked alongside me, the childhood ones from
Monza as well as the ones I have met during my studies both in Italy and in Iceland, and
the ones I have met during my period in TG Soft.
Thanks to Ýmir Vigfússon and to Gianfranco and Enrico Tonello for giving me the op-
portunity of working in a university-industry joint work.
The last thanks is for all the researchers who have enlightened my path towards computer
security.

This is just the beginning.

Paolo

viii

ix

Publications

During the period of this work of thesis, the author was a guest speaker in the “Conto cor-

rente sotto attacco: come l’evoluzione dei Trojan Banker minaccia i nostri soldi” work-
shop at SMAU Padova 2014, where he spoke about Android Trojan-Banker, repackaging
(see Chapter 2) and possible countermeasures. (CRAM, 2014; Tonello, 2014)
Furthermore, the following articles and malware analysis have been published on the
web:

• Analysis of Trojan://Android/FakeMarket.A and on the safety of Google Play store:
(Rovelli, 2014)

• Analysis of Trojan-Spy://Android/SMSAgent.C: (Rovelli, 2013b)

• Analysis of Trojan-SMS://Android/Agent.B: (Rovelli, 2013a)

• Analysis of Trojan-Banker://Android/ZitMo: (Rovelli, 2013e)

• Analysis of Rogue-AV://Android/AndroidDefeder.A: (Rovelli, 2013c)

• Analysis of Trojan://Android/SMSAgent.A: (Rovelli & Tonello, 2013)

• Wi-Fi Security: (Rovelli, 2013d)

x

xi

Contents

List of Figures xiv

List of Tables xxiv

List of Abbreviations xxvii

1 Introduction 1

2 Android and Android malware 7
2.1 Android . 7

2.1.1 The Android Operating System 7
2.1.2 The APK File Format . 9
2.1.3 Google Play Store and Third-Party Markets 10

2.2 Android Malware Taxonomy . 11
2.2.1 Malware Naming Scheme . 11
2.2.2 Malware Types . 12
2.2.3 Malware Propagation Methodologies 17

2.3 Related Work . 22
2.4 Conclusion . 23

3 Implementing a Signature-based Malware Detection System in Android 25
3.1 Introduction . 25
3.2 Related Work . 27
3.3 Design . 28

3.3.1 Malware Signatures . 29
3.3.2 Signatures Database . 30
3.3.3 Signatures Extraction and Signature Matching Engine 31

3.4 Implementation . 32
3.4.1 Signature Matching Engine . 33
3.4.2 On-Demand Scanner . 37

xii

3.4.3 On-Install Scanner . 40
3.4.4 On-Access Scanner . 43

3.5 Evaluation . 45
3.5.1 Environment . 46
3.5.2 Results . 46

3.6 Conclusion . 47

4 Implementing a Real-Time Monitor in Android 49
4.1 Introduction . 49
4.2 Design and Implementation . 50

4.2.1 On-Execution Scanner . 50
4.2.2 On-Update Scanner . 52
4.2.3 Live Scanner . 52
4.2.4 Cloud Scanner . 54

4.3 Evaluation . 56
4.3.1 Environment . 57
4.3.2 Results . 58

4.4 Related Work . 60
4.5 Conclusion . 61

5 PMDS: Permission-based Malware Detection System for Android 63
5.1 Introduction . 63
5.2 Related Work . 64
5.3 Design . 65

5.3.1 Permissions as (possible) behavioural markers 65
5.3.2 Custom Permissions . 67
5.3.3 PMDS Classifier . 67

5.4 Implementation . 68
5.5 Evaluation . 71

5.5.1 Environment . 71
5.5.2 Classification with standard machine learning algorithms 72
5.5.3 Classification with boosted machine learning algorithms 75

5.6 Conclusions . 76

6 Implementing Network Protection and a Behavioural Detection System in
Android 79
6.1 Introduction . 79
6.2 Web Filter . 80

xiii

6.3 Network Monitor . 82
6.4 Community Network and Behavioural Detection 83
6.5 Evaluation . 84

6.5.1 Results . 85
6.6 Conclusion . 86

7 Conclusions and Future Work 89

Bibliography 93

xiv

xv

List of Figures

1.1 Top mobile Operating Systems on September 2013 (StatCounter.com).
As one can see, Android is the most widespread mobile platform in the
world. 1

1.2 New mobile threat families and variants from Q1 2012 to Q1 2013 (F-
Secure) (F-Secure, 2013). The exponential growth in mobile devices
adoption, together with the wealth of sensitive information carried with
them (e.g. personal and bank information, GPS location, emails, etc...),
have inevitably driven to the evolution of malware targeting mobile plat-
forms. Many other factors have contributed to make mobile malware are
one of the greatest computer threats in our time. 2

1.3 Number of Android malware samples in the AV-TEST database between
January 2011 and June 2013 (AV-TEST) (AV-TEST, 2013). The total
number of Android malware samples was expected to exceed 1 million in
the Summer of 2013. 3

1.4 Android Threat Exposure Rate (TER) in 2013 (Sophos) (Sophos, 2013b).
The TER is measured as the percentage of PCs and Android devices that
experienced a malware attack, whether successful or failed. The experi-
ment was run over a period of three month. 3

2.1 Android Operating System architecture. Android is a multi-user Linux
system where each application is a different user and runs in its own Linux
process, with its own instance of the Dalvik Virtual Machine. Therefore,
an application’s code runs in isolation from other applications. The sys-
tem architecture is composed of five abstract layers: Linux kernel, native
libraries, Android runtime, application framework and applications. . . . 8

xvi

2.2 The APK package structure. Android applications use the Android pack-
age (APK) file format, which is an archive file built on the ZIP fie format
and contains: the classes.dex executable file, which represents the set of
all the Java classes compiled in the Dalvik EXecutable (dex) file format
understandable by the Dalvik Virtual Machine, the AndroidManifest.xml

file, which provides semantic-rich information about the application it-
self and its components, the resources.arsc file, which describes the pre-
compiled resources, the lib directory, which contains the compiled code
that is specific to a software layer of a processor, the assets and res direc-
tories, which contains the application assets and resources respectively,
and the META-INF directory, which contains the digital certificate with
which the application was signed and the signatures of all the files within
the APK package. (The Android Open Source Project, n.d.) 9

2.3 The list of files within the APK package of a malicious application (Trojan-

Banker://Android/ZitMo.B). 10
2.4 The Android malware types. Most of the existing Android malware types

are directly inherited from the desktop space (e.g. Adware or Rogue-AV),
even if some of them have additional capabilities due to the mobile space.
However, there are also others Android malware types that are unique to
mobile space (e.g. Trojan-SMS). 12

2.5 The Android malware types in percentage, for both the number of fami-
lies (on the left) and variants (on the right). The data refer to a dataset of
1500 samples, taken from the Android Malware Genome Project (Y. Zhou
& Jiang, 2012), Contagio Mobile (Mila, 2013) and other on-line sources.
The collected samples where later subdivided by type, obtaining a num-
ber of 826 samples of Trojan (divided into 33 families), 359 samples of
Backdoor (divided into 17 families), 98 samples of Trojan-Spy (divided
into 25 families) and 95 samples of Trojan-SMS (divided into 24 families)
among the others. 13

xvii

2.6 Ad libraries’ behaviours and their levels of severity in 2013 (Symantec).
In Android, many applications are distributed or have a free version which
includes in-app advertisements. Some ad libraries (defined as “aggres-
sive”), however, are able to leak personal and sensitive information or ex-
hibit annoying behaviours. In this graph, the ad libraries’ behaviours are
divided accordingly to their aggressiveness. In low severity (green) are
grouped all those ad libraries which display ads inside the applications
and do not leak any data. In medium severity (yellow) are grouped all
those ad libraries which leaks non-harmful data (e.g. location or mobile
network). In high severity (red) are grouped all those ad libraries which
leak private data (e.g. phone number or user account) or annoy/lure the
user (e.g. show ads in the notification bar or play a voice ad when mak-
ing a phone call). According to Symantec, in 2013, there were 65 known
ad libraries of which over 50% of them were classified as aggressive.
(Uscilowski, 2013) . 14

2.7 On the left a screenshot of Rogue-AV://Android/AndroidDefeder.A, which
claims to have found 6 malware on the device and asks to purchase a li-
cence in order to remove them, while on the right a screenshot of Trojan-

SMS://Android/Agent.B, which pretends to be a version of Microsoft In-
ternet Explorer for Android but subscribes the user to paid services auto-
matically answering to specific SMS messages. 15

2.8 An example of repackaging. A benign application is downloaded from
an Android market (usually Google Play Store) and disassembled. A ma-
licious payload is then injected into the application, the package is re-
assembled and, finally, the new “Trojanised” version of the application is
uploaded back into an alternative, third-party Android market. 20

2.9 The Android “Master Key” vulnerability allows attackers to inject mali-
cious code into an APK package without having to digitally re-sign the
application. Here, two classes.dex and two AndroidManifest.xml files are
putted in the same APK package. The Android system verifies the dig-
ital signature of the first (the legitimate one) but installs the latter (the
malicious one). 21

2.10 An example of AndroidManifest.xml file in which it is included the devel-
oper’s publisher IDs given by an ad network (MiniMob in this example).
Cyber-criminals can replace the original publisher IDs with their own in
order to steal the ad revenues. 22

xviii

3.1 The home screen of VirIT Mobile Security. The Activity changes dynam-
ically, displaying the relative security-related messages (picture on the left). 26

3.2 The architecture of the signature-based detection system in VirIT Mobile
Security. Thanks to the on-install scanner, the applications installed from
Google Play or other third-party markets (see Seciton 2.1.3) are automat-
ically scanned (after the installation) by the signatures matching engine
(see Seciton 3.4.3). The application installed from the SD Card, instead,
can be also scanned before the installation. Thanks to the on-demand
scanner, the user can always decide to launch a scan on the installed ap-
plications and on the External Storage (see Seciton 3.4.2). Finally, thanks
to the on-access scanner, each file on the External Storage is scanned ev-
ery time it is written (see Seciton 3.4.4). For the overall VirIT Mobile
Security architecture see Figure 6.1 . 29

3.3 The on-demand scanner of VirIT Mobile Security. A scan is performed
before on the installed applications and after on the External Storage. In
case some malicious applications are found, the “Solve” button will ap-
pear in order to show to the user the list of threats found (see Figure 3.4) . 38

3.4 The threats report of the on-demand scanner of VirIT Mobile Security
(see Figure 3.3). Before are listed the (malicious) installed applications
then the files in the External Storage. By tapping on a specific threat, an
user can see more information about that particular threat or signal it to
the Anti-Malware Research Center of TG Soft (CRAM) as a (possible)
false positive. 40

3.5 The on-install scanner of VirIT Mobile Security, which scans the applica-
tions before they are installed from the External Storage. In the pictures,
the on-install scanner detects the installation of the Trojan://Android/FakeMarket.A,
which pretends to be the Google Play store application but runs silently in
the background to perform click fraud. (Rovelli, 2014; AndroTotal, 2014) 41

3.6 The on-install scanner of VirIT Mobile Security, which scans the appli-
cations at installation. In the picture on the right, the on-install scanner
detects the installation of the Trojan://Android/FakeMarket.A, which pre-
tends to be the Google Play store application but runs silently in the back-
ground to perform click fraud. (Rovelli, 2014; AndroTotal, 2014) 43

xix

3.7 The on-access scanner of VirIT Mobile Security, which scans the files in
the External Storage at creation and any modification. In the picture on
the right, the on-access scanner detects that the Trojan://Android/SpySMS.A

has been written in the External Storage (precisely in the SD Card root di-
rectory: /storage/sdcard). 45

3.8 Testing the robustness of the signature-based detection system in VirIT
Mobile Security. With the term robustness we mean the ability of our
solution to prevent Android malware from penetrating a device at all. We
tested VirIT Mobile Security with a dataset of 1200 samples, 148 labelled
as malicious applications and 1052 labelled as benign ones. 47

4.1 A possible cloud scanner implementation is the one of dividing the so
called Cloud Device Simulator (CDS), which will contain the virtual
representations of the subscribed devices, and the Cloud App Reposi-
tory (CAR), which will contain all the APK packages of known Android
applications. Basically, a CDS instance contains the list of references of
the applications installed on the real device at any moment in time. The
scanner will scan all the applications installed by each CDS instance, re-
trieving the actual APK packages from the CAR. When a malware is
detected on a CDS instance, this will be immediately reported to the cor-
responding real device. 55

4.2 Live Scanner: Number of updates needed to catch one malware in the
100.000 simulations with the configuration of the live scanner at 20%.
In a situation in which we release one update a day, this is equal to the
number of days needed to catch one malware. The complete results are
shown in Table 4.2. 58

4.3 Live Scanner: Average number of updates/scans needed to catch at least
one malware in relation to the percentage of application scanned for each
update. The various lines show the number of malware in the device, from
1 (blue line) to 5 (light blue line). In a situation in which we release one
update a day, the number of updates is equal to the number of days needed
to catch one malware. The complete results are shown in Table 4.2. 59

4.4 Live Scanner: Highest number of updates/scans needed to catch at least
one malware in relation to the percentage of application scanned for each
update. The various lines show the number of malware in the device, from
1 (blue line) to 5 (light blue line). In a situation in which we release one
update a day, the number of updates is equal to the number of days needed
to catch one malware. The complete results are shown in Table 4.2. 60

xx

5.1 The Privacy Advisor of VirIT Mobile Security, which makes use of the
PMDS rule-based (RIPPER) classifier in order to retrieve and display the
potentially dangerous applications installed on the device. As shown in
the picture on the right, an application can be manually whitelisted (so
that it will not display as potentially dangerous in future scans), scanned
with the on-demand scanner (see Section 3.4.2) and/or sent to the Anti-
Malware Research Center of TG Soft (CRAM) for the analysis. In the pic-
ture at the centre, the Privacy Advisor reports both the Trojan-Spy://Android/Wapsx.A

(the first of the list) and the Trojan-SMS://Android/FakeFlappyBird.A (the
second of the list) as possibly dangerous. 64

5.2 Example of a malicious application (Trojan-Banker://Android/ZitMo.B)
which requires for a specific group of permissions. On the right the per-
missions are required during the installation process, while on the left the
AndroidManifest.xml file in which the required permissions are declared. . 66

5.3 The architecture of the antivirus in VirIT Mobile Security. The applica-
tions are firstly scanned by the signature-based detection system and after-
wards, if no signature matches them, they are scanned by the Permission-
based Malware Detection System (PMDS) rule-based classifier in order
to detect possible zero-day or next-generation malware. For the overall
VirIT Mobile Security architecture see Figure 6.1 67

5.4 The “heuristic analysis on permissions” of the on-install scanner of VirIT
Mobile Security (see Figure 3.6), which makes use of the PMDS rule-
based (RIPPER) classifier in order to alert if potentially dangerous appli-
cations are installed on the device. In the first two pictures (on the left),
the on-install scanner detects the installation of the Trojan-Spy://Android/Wapsx.A

and the Trojan-SMS://Android/FakeFlappyBird.A respectively. In the last
picture (on the right) it is shown that applications can be manually whitelisted,
so that they will not display as potentially dangerous in future scans. . . . 68

5.5 The Permission-based Malware Detection System (PMDS) architecture.
The permissions declared in the AndroidManifest.xml file of an appli-
cation are automatically extracted using the Android Asset Packaging
Tool (aapt). Then, the classifier automatically labels the application be-
haviour, as either benign or (potentially) malicious, according to the com-
bination of permissions the application requires. 69

xxi

5.6 Count of the most frequently requested permissions by the samples (both
benign and malicious) in our dataset of 2950 samples - 1500 benign and
1450 malicious. The blue lines show the number of times the specific
permissions have been requested by benign applications, while the red
lines show the number of times they have been requested by malicious
applications. 72

5.7 The Receiver Operating Characteristic (ROC) Curve of our J48 (left) and
K* (right) classifiers respectively. The Area Under the Curve (AUC) rep-
resents the probability that a classifier will rank a randomly chosen posi-

tive instance higher than a randomly chosen negative one. The colour of
the curve depicts the value of the threshold (i.e. closer to blue corresponds
to the lower threshold value). Indeed, each point in the curve illustrates
a prediction tradeoff that can be obtained by varying the threshold value
between classes. Or, in other words, every point corresponds to setting
a threshold on the probability assigned to the positive class. The typical
threshold value of 0.5 means the predicted probability of positive must be
higher than 0.5 for the instance to be predicted as positive. 73

5.8 The Receiver Operating Characteristic (ROC) Curve of our RIPPER (left)
and Näive Bayes (right) classifiers respectively. The Area Under the
Curve (AUC) represents the probability that a classifier will rank a ran-
domly chosen positive instance higher than a randomly chosen negative

one. The colour of the curve depicts the value of the threshold (i.e. closer
to blue corresponds to the lower threshold value). Indeed, each point in
the curve illustrates a prediction tradeoff that can be obtained by varying
the threshold value between classes. Or, in other words, every point cor-
responds to setting a threshold on the probability assigned to the positive

class. The typical threshold value of 0.5 means the predicted probabil-
ity of positive must be higher than 0.5 for the instance to be predicted as
positive. 73

xxii

5.9 The Receiver Operating Characteristic (ROC) Curve of our AdaBoost
classifier using J48 as base classifier. The Area Under the Curve (AUC)
represents the probability that a classifier will rank a randomly chosen
positive instance higher than a randomly chosen negative one. The colour
of the curve depicts the value of the threshold (i.e. closer to blue cor-
responds to the lower threshold value). Indeed, each point in the curve
illustrates a prediction tradeoff that can be obtained by varying the thresh-
old value between classes. Or, in other words, every point corresponds to
setting a threshold on the probability assigned to the positive class. The
typical threshold value of 0.5 means the predicted probability of positive

must be higher than 0.5 for the instance to be predicted as positive. 76
5.10 The Receiver Operating Characteristic (ROC) Curve of our AdaBoost

classifier using RIPPER (left) and Näive Bayes (right) as base classifiers
respectively. The Area Under the Curve (AUC) represents the probabil-
ity that a classifier will rank a randomly chosen positive instance higher
than a randomly chosen negative one. The colour of the curve depicts the
value of the threshold (i.e. closer to blue corresponds to the lower thresh-
old value). Indeed, each point in the curve illustrates a prediction tradeoff
that can be obtained by varying the threshold value between classes. Or,
in other words, every point corresponds to setting a threshold on the prob-
ability assigned to the positive class. The typical threshold value of 0.5
means the predicted probability of positive must be higher than 0.5 for the
instance to be predicted as positive. 77

6.1 The overall architecture of VirIT Mobile Security. Suspicious applica-
tions detected by the behavioural detection system are forwarded to the
Anti-Malware Research Center of TG Soft (CRAM). If it is the case of a
zero-day or next generation malware - i.e. a malicious application which
is not detected by the antivirus - a proper signature is extracted and, in
turn, an update of the signatures database is released. 80

6.2 The Web Filter of VirIT Mobile Security, which scans the URLs when
surfing the web with the default Android browser and Google Chrome.
Thanks to the Web Filter we can alert the user when a malicious or phish-
ing website is opened. 82

xxiii

6.3 The Network Monitor of VirIT Mobile Security, which monitors the net-
work usage of each application. Thanks to the Network Monitor we
can have an overview of the incoming and outgoing network traffic for
each application and, possibly, decide if it is the case of a zero-day or
next-generation malware - i.e. a malicious application which is not de-
tected by the antivirus. In the picture, we can see the daily network
usage of both the Trojan://Android/FakeMarket.A, which pretends to be
the Google Play store application but runs silently in the background to
perform click fraud (Rovelli, 2014; AndroTotal, 2014), and the Rogue-

AV://Android/AndroidDefeder.A, which pretends to be an antivirus solu-
tion and claims to detect some threats on the victims’ devices in order to
lure the victims to pay to remove the non-existent threats (Rovelli, 2013c;
Ducklin, 2013). 84

6.4 Testing the resilience of VirIT Mobile Security. With the term reactive
detection rate we mean the number of malware properly detected at the
first scan (i.e. the robustness of the antivirus), while with the term proac-
tive detection rate we mean the number of malware detected in a second
scan (i.e. the resilience of the antivirus). 86

xxiv

xxv

List of Tables

2.1 An overview of some of the most known Android malware. For each
malware, it is shown: its type, its family, the propagation method, if it
tries a privilege escalation (root the device), if it connects to a Command
and Control (C&C) server and in that case with which channel (e.g. SMS,
HTTP or SMTP), if it leads to direct financial costs (e.g. by sending SMS
messages or performing phone calls) and if it steal personal information
(e.g. mobile operator, telephone number, IMEI, contacts, web history,
geographical location, SMS messages and phone calls logs). 18

3.1 Results of the robustness experiments on VirIT Mobile Security. With the
term robustness we mean the ability of our solution to prevent Android
malware from penetrating a device at all. In the table, for all the antivirus
solutions tested, we point out the True Positives (TP) (i.e. the number of
malware detected out of a total of 148 malware on the device) and the
corresponding detection rate. 46

4.1 An overview of the presented real-time protection mechanisms. For each
model, it is shown: whether it requires significant system resources or
time (i.e. resource-intensive), whether it performs more scans than the
ones needed (i.e. redundancy), the detection rate on the known malware
(i.e. effectiveness) and the maximum number of days a malware will last
after a proper malware signature update has been released (i.e. maximum
infection time frame). 57

xxvi

4.2 Results of the live scanner experiments. In order to evaluate the efficiency
of the live scanner, we simulate a real device with a total number of 265
installed applications. We set the live scanner in order to scan 10, 20, 30,
40 and 50% of the application after every update respectively. Then, we
run the simulation 100.000 times and, finally, we calculate the average
(approximated) and the highest number of scans/updates needed to catch
the malware. In a situation in which we release one update a day, this is
equal to the number of days needed to catch one malware. 59

5.1 Permission-based Malware Detection System (PMDS): Experimental re-
sults using four different classifiers - i.e. a Decision Tree-based learner

(J48), a Lazy (Instance-based) learner (K*), a Rule-based learner (RIP-
PER) and a Bayesian learner (Näive Bayes) - in order to automatically
label the behaviour of previously unseen applications (as either benign
or malicious). The experiments are performed using the standard tenfold
cross-validation, which takes 90% of the dataset for training and 10% for
testing, repeating the test 10 times. 73

5.2 Permission-based Malware Detection System (PMDS): Experimental re-
sults using AdaBoost in conjunction with the previous machine learning
algorithms - i.e. J48, RIPPER and Näive Bayes - in order to automatically
label the behaviour of previously unseen applications (as either benign or
malicious). The experiments are performed using the standard tenfold
cross-validation, which takes 90% of the dataset for training and 10% for
testing, repeating the test 10 times. 76

6.1 Results of the resilience experiments on VirIT Mobile Security. With the
term resilience we mean the ability of our solution to recover from zero-
day or next-generation malware which do manage to get installed into a
device. In the table, for all the antivirus solutions tested, we point out the
True Positives (TP) (i.e. the number of malware detected out of a total of
8 malware on the device) and the corresponding detection rate. 85

xxvii

List of Abbreviations

aapt Android Asset Packaging Tool

ACC Accuracy

AdaBoost Adaptive Boosting

AOT Ahead-Of-Time

API Application Programming Interface

APK Android package

ARFF Attribute-Relation File Format

AUC Area Under the Curve

C&C Command and Control

CAR Cloud App Repository

CDS Cloud Device Simulator

CPU Central Processing Unit

xxviii

CRAM Anti-Malware Research Center of TG Soft

dex Dalvik EXecutable

EoF End of File

ER Error Rate

FN False Negatives

FP False Positives

FPR False Positives Rate

GPS Global Positioning System

HTTP Hypertext Transfer Protocol

JIT Just-In-Time

UID kernel User-ID

MIME Multipurpose Internet Mail Extensions

OS Operating System

PC Personal Computer

PMDS Permission-based Malware Detection System

xxix

RAT Remote Administration Tool

RIPPER Repeated Incremental Pruning to Produce Error Reduction

ROC Receiver Operating Characteristic

SDK Software Development Kit

SMS Short Message Service

SMTP Simple Mail Transfer Protocol

TCP Transmission Control Protocol

TER Threat Exposure Rate

TN True Negatives

ToS Term Of Service

TP True Positives

TPR True Positives Rate

VM Virtual Machine

UDP User Datagram Protocol

URL Uniform Resource Locator

xxx

USB Universal Serial Bus

XML eXtensible Markup Language

1

Chapter 1

Introduction

In recent years, we have witnessed an exponential growth in mobile devices adoption. Ac-
cording to CNN (CNN, 2011), from 2008 to 2011 the number of smartphone shipments
has tripled, and this number is still increasing. According to a report of Strategy Analytics
(Strategy Analytics, 2012), in the third quarter of 2012, the number of smartphones in use
worldwide have surpassed one billion-unit for the first time ever. Furthermore, according
to a report of the International Data Corporation (IDC, 2013), in the first quarter of 2013
the total number of smartphones shipped has exceeded the one of feature phones.

Figure 1.1: Top mobile Operating Systems on September 2013 (StatCounter.com). As one can see, Android is the most widespread
mobile platform in the world.

All these mobile devices, together with the wealth of sensitive information carried with
them (e.g. personal and bank information, GPS location, SMS messages and emails),
have inevitably driven to the evolution of malware targeting mobile platforms.
Since the very beginning of the mobile adoption, many papers have been carried out ex-
ploring possible threats to the mobile space (Leavitt, 2000; Foley & Dumigan, 2001;
Dagon, Martin, & Starner, 2004; Hypponen, 2007; Lawton, 2008). Most of those papers
agreed that the mobile space would have become a major security issue. Nevertheless,

2 Developing a next-generation Mobile Security solution for Android

we were not able to prevent mobile malware from their rising, rising which we are facing
today.
Cyber-security firms have firstly addressed the mobile space as if it were an extension of
the desktop space (and some of them are still persisting on doing so). However, there
are key differences between the mobile and desktop spaces (Dagon et al., 2004; Lawton,
2008). Academic security researchers, on the other hand, have focused more on hypo-
thetical, complex threats rather than on “in the wild”, often simpler ones (Spreitzenbarth
& Freiling, 2012; Y. Zhou & Jiang, 2012). But attackers tends to choose the shortest path
to exploitation, favouring over elegance and challenge.
To all these factors, other and more influential ones have been added, contributing to make
mobile malware one of the greatest computer threats in our time: for example, the usu-
ally slow patch cycle of the mobile platforms1, the fact that malware can be successful
even without exploiting system vulnerabilities (especially Rogue-AVs and Trojans) and
the drastic change of malware landscape from a for-fun activity to a profit-driven criminal
business. Furthermore, many companies still do not provide protection for their employ-
ees’ mobile devices (Lawton, 2008).

Figure 1.2: New mobile threat families and variants from Q1 2012 to Q1 2013 (F-Secure) (F-Secure, 2013). The exponential growth
in mobile devices adoption, together with the wealth of sensitive information carried with them (e.g. personal and bank information,
GPS location, emails, etc...), have inevitably driven to the evolution of malware targeting mobile platforms. Many other factors have
contributed to make mobile malware are one of the greatest computer threats in our time.

Among all the mobile platforms available, Android has become the more targeted one (see
Figures 1.2 and 1.3). This is probably due to the fact that Android is the most widespread
platform and to some technical particularities, such as the fact that Android applications
are really easy to reverse engineer and to modify/repackage (see Repackaging in Sec-
tion 2.2.3).

1 According to Lookout, it took 42 weeks to the Exploit://Android/Exploid to reach its vulnerability
half-life and even more to the Exploit://Android/RageAgainstTheCage (Wyatt, 2011).

Paolo Rovelli 3

Figure 1.3: Number of Android malware samples in the AV-TEST database between January 2011 and June 2013 (AV-TEST) (AV-
TEST, 2013). The total number of Android malware samples was expected to exceed 1 million in the Summer of 2013.

Over the course of 2012, Lookout has estimated the likelihood of an Android user click-
ing on an unsafe link at 36% (Lookout, 2012). In 2013, Sophos has reported that, in
some countries (i.e. Australia, Germany and the USA), the Android Threat Exposure
Rate (TER) has exceeded those of PCs (Sophos, 2013b) (see Figure 1.4). In the same
year, Panda Security has predicted that “Android will continue to be the number one mo-
bile target for cyber-crooks, and the coming year will set a new record for the number of
threats targeting this platform” (Panda Security, 2013a).

Figure 1.4: Android Threat Exposure Rate (TER) in 2013 (Sophos) (Sophos, 2013b). The TER is measured as the percentage of PCs
and Android devices that experienced a malware attack, whether successful or failed. The experiment was run over a period of three
month.

It seems current approaches are failing to consider key differences between mobile and
desktop environments. As Zhou and Jiang point out in (Y. Zhou & Jiang, 2012), this

4 Developing a next-generation Mobile Security solution for Android

exponential growth of Android malware given, there is an actual call for the need of next-
generation mobile security solutions.
We strongly believe that, before starting to address a problem, we firstly need to under-
stand it deeply. Thus, in this work of thesis, we firstly investigate the current state-of-the-
art of Android and Android malware. Afterwards, we introduce VirIT Mobile Security,
a mobile security solution specifically designed and developed to counter Android mal-
ware. VirIT Mobile Security has been designed and developed in collaboration with and
commercialised by TG Soft, an Italian antivirus firm.
The contributions presented in this work of thesis can be summarized as follows:

• We present a classification and characterisation of the current “in the wild” Android
malware;

• we investigate possible detection models, either proactive or reactive, that can be
applied to secure Android devices from the major classes of threats;

• we introduce the Android real-time malware detection problem and we discuss dif-
ferent possible solutions;

• we present a novel Android malware detection technique, called Permission-based
Malware Detection System (PMDS), which is based on machine learning algo-
rithms and, therefore, has the potential to detect previously unknown malware;

• we discuss the Android network protection problem.

The document is organized as follows.
In Chapter 2, we firstly introduce the Android Operating System and we present a classi-
fication and characterisation of the current “in the wild” Android malware.
In Chapter 3, we introduce the malware detection problem and we present a signature-
based detection system specifically designed for Android.
In Chapter 4, we introduce the Android real-time malware detection problem and we dis-
cuss different possible solutions, with their benefits and drawbacks.
In Chapter 5, we propose a novel malware detection technique, called Permission-based
Malware Detection System (PMDS), which is based on machine learning analysis of the
Android permissions that an application requests.
In Chapter 6, we present the Android network protection problem and propose a Web
Filter, which alerts the user about malicious and phishing websites, and a Network Mon-
itor, which monitors the network usage of each application. Furthermore, we present a
simple but effective behavioural detection system, known as Community Network, which
collects and signals (potentially) dangerous applications to the Anti-Malware Research
Center of TG Soft (CRAM) in order to spot zero-day or next-generation malware - i.e.

Paolo Rovelli 5

malicious applications which are not detected by the antivirus - as they emerge.
Finally, in Chapter 7, we draw the conclusions on our work of thesis and we discuss about
the Android API, from a security-features prospective, and the future work.

6

7

Chapter 2

Android and Android malware

In this chapter we introduce the Android Operating System (see Section 2.1) and present
a classification and characterisation of the current “in the wild” Android malware (see
Section 2.2).

2.1 Android

In order to understand Android malware, and accordingly our design choices, it is firstly
important to understand the Android architecture.

2.1.1 The Android Operating System

Android is an Operating System (OS) primarily designed for touchscreen mobile devices
(i.e. smartphones and tablets). It was initially designed and developed by the namesake
Android Inc., a startup bought by Google in 2005. Android was officially unveiled in
2007, and its source code was released by Google under the Apache License. (Google,
2013)
The Android OS is built on top of a modified version of the Linux kernel (see Figure 2.1).
In particular, Android is a multi-user Linux system where each application is a different
user and runs in its own Linux process. (The Android Open Source Project, 2013d)
On top of the Linux kernel there are the native libraries, such as OpenGL and WebKit,
and the Dalvik Virtual Machine (VM), an open source Virtual Machine originally written

8 Developing a next-generation Mobile Security solution for Android

Figure 2.1: Android Operating System architecture. Android is a multi-user Linux system where each application is a different user
and runs in its own Linux process, with its own instance of the Dalvik Virtual Machine. Therefore, an application’s code runs in
isolation from other applications. The system architecture is composed of five abstract layers: Linux kernel, native libraries, Android
runtime, application framework and applications.

by Dan Bornstein (who named it after the Icelandic village of Dalvík) and optimized to
run Java applications in mobile devices. The Dalvik VM uses a register-based architecture
(with its own 16-bit instruction set) and Just-In-Time (JIT) compilation to run Dalvik EX-
ecutable (dex) files. From the version 4.4, Android also supports ART Virtual Machine,
a new experimental Virtual Machine that uses Ahead-Of-Time (AOT) compilation to run
oat executable files. (The Android Open Source Project, 2013m)
On top of the Android system architecture there are the applications (commonly referred
as apps), which run on an application framework made of Java-compatible libraries based
on Apache Harmony.
User applications are installed in the /data/app directory and their data are saved into
the /data/data directory, while the system applications are installed in the /system/app

and, starting from Android 4.4 KitKat, in the /system/priv-app ones. Without the root
privileges, a third-party application cannot access to the other applications’ /data/data di-
rectory. Furthermore, each application in Android runs in its own process, with its own
instance of the Dalvik VM. Therefore, an application’s code runs in isolation from other
applications.

Paolo Rovelli 9

2.1.2 The APK File Format

Android applications are distributed and installed using the Android package (APK) file
format. This is an archive file, built on the ZIP file format, and have the .apk file ex-
tension. Since it is basically a ZIP file, also the header signature of an APK package
will be 0x504B0304 (big-endian). The MIME type associated with APK packages is:
application/vnd.android.package-archive.
As shown in Figure 2.2, an APK package contains all the application’s code, its resources

Figure 2.2: The APK package structure. Android applications use the Android package (APK) file format, which is an archive file
built on the ZIP fie format and contains: the classes.dex executable file, which represents the set of all the Java classes compiled in
the Dalvik EXecutable (dex) file format understandable by the Dalvik Virtual Machine, the AndroidManifest.xml file, which provides
semantic-rich information about the application itself and its components, the resources.arsc file, which describes the pre-compiled
resources, the lib directory, which contains the compiled code that is specific to a software layer of a processor, the assets and res
directories, which contains the application assets and resources respectively, and the META-INF directory, which contains the digital
certificate with which the application was signed and the signatures of all the files within the APK package. (The Android Open
Source Project, n.d.)

and assets, the digital certificate and a manifest file. In particular it contains:

• classes.dex: it is the Dalvik Virtual Machine executable file. It contains the set of all
the Java classes compiled in the Dalvik EXecutable (dex) file format (The Android
Open Source Project, 2013h);

• AndroidManifest.xml: it is a binary XML file, a compact representation of XML,
that provides semantic-rich information about the application itself (e.g. name,
version and permissions required) and its components (e.g. Activities, Services and
BroadcastReceivers) (The Android Open Source Project, 2013f);

• resources.arsc: it describes the pre-compiled resources (e.g. binary XML);

• assets: it is a directory which contains the application assets;

10 Developing a next-generation Mobile Security solution for Android

• res: it is a directory which contains all the resources (e.g. layouts, menu, images,
strings, ...) not compiled into the resources.arsc file;

• lib: it is a directory which contains the compiled code that is specific to a software
layer of a processor;

• META-INF: it is a directory which contains the digital certificate with which the ap-
plication was signed (the CERT.RSA1 file), and the signatures of all the files within
the APK package (the MANIFEST.MF and the CERT.SF files contain the list of
files and the SHA-1 hashes, of the files and of their declarations in the Android-

Manifest.xml file respectively).

Figure 2.3: The list of files within the APK package of a malicious application (Trojan-Banker://Android/ZitMo.B).

2.1.3 Google Play Store and Third-Party Markets

Google Play Store, formerly Android Market, is the main digital distribution platform for
Android applications and media contents. Applications can be downloaded directly to
an Android device through the Play Store application or can be deployed to an Android
device from the Google Play website.
In addition to Google Play Store, tens of alternative, third-party Android markets are born
in the last years (e.g. Amazon Appstore, AndroLibs, AppBrain, Aptoide, F-Droid, LG
World, Opera Mobile Store, Samsung Apps and many more). These third-party Android
markets offer either exclusive apps and apps that were banned from Google Play Store.

1 In the first versions of Android the name of the digital certificate might be different than CERT.RSA,
such as: PACKAGENAME.DSA/RSA.

Paolo Rovelli 11

2.2 Android Malware Taxonomy

The importance of a malware taxonomy is twofold. On one hand, it characterises the
current known threats, helping us to better understand their behaviour and to generate ef-
fective detection models. On the other hand, it helps us to anticipate what kinds of threats
will come and, consequently, to response faster to new threats.
Thus, in order to generate effective Android malware detection models, our first step is to
identify and classify the different kinds of “in the wild” Android malware.

2.2.1 Malware Naming Scheme

Malware is an umbrella-term for various types of unwanted piece of software and/or exe-
cutable codes that are used to perform unauthorized, often harmful, actions on computing
devices.
A malware naming scheme has been proposed by Skúlason and Bontchev back in 1991
(Skulason & Bontchev, 1991). Even if this naming scheme is nowadays slightly outdated,
it still remains the only existing standard that most computer security companies and re-
searchers ever attempted to adopt. (Szor, 2005)
Nowadays, the malware naming is often abbreviated in its minimum form:

<malware_type>://<platform>/<family_name>.<variant>

e.g. Trojan://Android/DroidKungFu.A

In practice, many slightly different variants of this naming scheme has been adopted by
the various computer security companies and researchers, such as:

Trojan:Android/DroidKungFu.A

Android/Trojan.DroidKungFu.A

Android.Trojan.DroidKungFu.A

Android.DroidKungFu.A [Trojan]

In this work of thesis, we decided to use the standard naming scheme proposed by Skúla-
son and Bontchev.

12 Developing a next-generation Mobile Security solution for Android

2.2.2 Malware Types

Malware can be firstly classified according to their behaviour, i.e. their malicious activi-
ties.
Note that due to architecture design/limits (see Section 2.1.1), under Android there are no
computer viruses in the strict sense of the term (i.e. “a code that recursively replicates a
possibly evolved copy of itself” (Szor, 2005)).

In Android most of the existing malware types are directly inherited from the desktop

Figure 2.4: The Android malware types. Most of the existing Android malware types are directly inherited from the desktop space
(e.g. Adware or Rogue-AV), even if some of them have additional capabilities due to the mobile space. However, there are also others
Android malware types that are unique to mobile space (e.g. Trojan-SMS).

space (e.g. Adware or Rogue-AV), even if some of them have additional capabilities due
to the mobile space (e.g. all the contacts information stored in one place, the ability to
send SMS messages and to perform phone calls). However, there are also others malware
types that are unique to mobile space (e.g. Trojan-SMS).
Most of the Android malware are actually “Trojanised” versions of legitimate applica-
tions. In particular, we collected a dataset of 1500 samples, taken from the Android
Malware Genome Project (Y. Zhou & Jiang, 2012), Contagio Mobile (Mila, 2013) and
other on-line sources. Subdividing the collected samples by type, we got a number of 826
samples of Trojan (divided into 33 families), 359 samples of Backdoor (divided into 17
families), 98 samples of Trojan-Spy (divided into 25 families) and 95 samples of Trojan-
SMS (divided into 24 families) among the others (see Figure 2.5).
In particular, the most common types are:

Paolo Rovelli 13

Figure 2.5: The Android malware types in percentage, for both the number of families (on the left) and variants (on the right). The
data refer to a dataset of 1500 samples, taken from the Android Malware Genome Project (Y. Zhou & Jiang, 2012), Contagio Mobile
(Mila, 2013) and other on-line sources. The collected samples where later subdivided by type, obtaining a number of 826 samples
of Trojan (divided into 33 families), 359 samples of Backdoor (divided into 17 families), 98 samples of Trojan-Spy (divided into 25
families) and 95 samples of Trojan-SMS (divided into 24 families) among the others.

• Adware: it is a particular application that automatically displays annoying, often
misleading, advertisements in order to generate revenue for its author.
In Android, many applications are distributed or have a free version which includes
in-app advertisements. Some ad libraries (defined as “aggressive”), however, are
able to leak personal and sensitive information or exhibit annoying behaviours, such
as: displaying ads in the notification bar or full screen, creating ad icons or changing
web browser bookmarks. According to Symantec, in 2013, there were 65 known
ad libraries of which over 50% of them were classified as aggressive. (Uscilowski,
2013)
Furthermore, the very mild policies (or non-policies) of Google in the field of in-
app advertising are contributing to the significant rising of the number of Adware
hosted in Google Play store. Trojan://Android/FakeMarket.A

• Backdoor: it is a particular application - also known as Remote Administration
Tool (RAT) - that allows an attacker to take control of the device (without the user
consent or knowledge) and perform various malicious activities from a remote lo-

14 Developing a next-generation Mobile Security solution for Android

Figure 2.6: Ad libraries’ behaviours and their levels of severity in 2013 (Symantec). In Android, many applications are distributed
or have a free version which includes in-app advertisements. Some ad libraries (defined as “aggressive”), however, are able to leak
personal and sensitive information or exhibit annoying behaviours. In this graph, the ad libraries’ behaviours are divided accordingly
to their aggressiveness. In low severity (green) are grouped all those ad libraries which display ads inside the applications and do not
leak any data. In medium severity (yellow) are grouped all those ad libraries which leaks non-harmful data (e.g. location or mobile
network). In high severity (red) are grouped all those ad libraries which leak private data (e.g. phone number or user account) or
annoy/lure the user (e.g. show ads in the notification bar or play a voice ad when making a phone call). According to Symantec, in
2013, there were 65 known ad libraries of which over 50% of them were classified as aggressive. (Uscilowski, 2013)

cation, such as: intercept phone calls and SMS messages, make phone calls, send
SMS messages, open websites, download and install other applications, delete files,
collect and send information back to the attacker.
The victim devices (called bots) receive commands from the attacker (called bot-

master) through a Command and Control (C&C) server and perform corresponding
actions.
An example of a Backdoor is the Backdoor://Android/OBad.A, which is considered
one of the most complicated existing Android malware. This malware is capa-
ble of downloading and installing other malware, re-sending the downloaded mal-
ware via Bluetooth, sending SMS messages to premium-rate numbers, connecting
to specific web pages, opening a remote shell, collecting and forwarding to the
C&C server various private information of its victims. These private information
includes: Bluetooth MAC address, mobile operator, telephone number, IMEI and
user account balance. (Unuchek, 2013)

• Rogue (also known as FraudTool): it is a deceptive application that pretends to be
a well-known or trusted software in order to steal money and/or confidential data.
An example of a Rogue is the Rogue://Android/FakeFlash.A, which tries to lure
its victims to pay 5 Euro to download the Adobe Flash Player app. Adobe does
not offer the “standalone” app on Google Play Store anymore. However, the Flash

Paolo Rovelli 15

Player functionality has been integrated into the Adobe AIR app, which can be
downloaded for free on Google Play Store. (SB, 2014)

– Rogue-AV (also known as FakeAV): it is the main and mostly unique sub-type
of Rogue. This kind of Rogue pretends to be an antivirus solution and claims
to detect some threats on the victims’ devices in order to lure the victims to pay
to remove the non-existent threats. (Corrons & Correll, 2010; Stone-Gross et
al., 2013)
An example of such a malware is the Rogue-AV://Android/AndroidDefeder.A

(see Figure 2.7). (Rovelli, 2013c; Ducklin, 2013)

• Rootkit: it is a particular malware that operates at the kernel level of the Android
Operating System and, thus, it is difficult to detect and require special operations to
be removed.
Albeit various researches have been carried out on the topic (Oi, 2011; Jiang, 2012a;
Brodbeck, 2012; Ayer, n.d.), we have found only one family of “in the wild” Rootk-
its so far, known as Rootkit://Android/Oldboot. (Xiao, Dong, Zhang, & Jiang, 2014)

Figure 2.7: On the left a screenshot of Rogue-AV://Android/AndroidDefeder.A, which claims to have found 6 malware on the device
and asks to purchase a licence in order to remove them, while on the right a screenshot of Trojan-SMS://Android/Agent.B, which
pretends to be a version of Microsoft Internet Explorer for Android but subscribes the user to paid services automatically answering
to specific SMS messages.

• Trojan (or Trojan Horse): it is a deceptive application that intentionally conceals its
malicious actions, pretending to perform other functionalities. In order to persuade
the user to install it, a Trojan generally disguises itself as an attractive application,
such as videogame or an application to improve the performance or the safety of the
device. Thanks to repackaging (see Section 2.2.3), in Android, it is really common
to see “Trojanised” versions of legitimate applications.
Examples of “in the wild” Trojans are the Trojan://Android/FakeMarket.A and the

16 Developing a next-generation Mobile Security solution for Android

Trojan://Android/SMSAgent.A. The first one was distributed on Google Play store
as a videogame application. Once installed, the malware pretends to be the Google
Play store application, but it runs silently in the background to perform click fraud
(Rovelli, 2014; AndroTotal, 2014). The latter, instead, tries to hidden itself from
the user in order to steal its personal information (such as the phone number and
the IMEI) and to take control of SMS (Rovelli & Tonello, 2013).
Some Trojans are further subdivided accordingly to their malicious actions. For
example, if a Trojan’s financial revenues and malicious actions are only related
to send SMS messages to premium-rate numbers, then this Trojan is classified as a
Trojan-SMS. Similarly, a Trojan which aims only to spy its victims and to steal their
personal and sensitive information is classified as a Trojan-Spy. However, not all
the Trojans can be sub-classified. Indeed, most of the Trojans use perform multiple
malicious actions together and, thus, cannot be specifically labelled. Furthermore,
in Android, most of the Trojans have botnet capabilities - i.e. they are able to open
a backdoor from which send and receive commands.

– Trojan-Banker: it is a particular sub-type of Trojan that aims to steal its vic-
tims’ online banking account credentials (i.e. username and password) and/or
other data related to online payments (e.g. credit card details or SMS one-time
passwords). The collected data are then forwarded to remote Command and
Control (C&C) server via a communication channel, such as: HTTP, SMTP
or SMS.
Examples of such a malware are the various Trojan-Banker://Android/ZitMo

variants, which intercept all incoming SMS messages and forward them to a
C&C server, via HTTP POST requests or SMS messages depending on the
variant. The Trojan-Banker://Android/ZitMo represents a classic example of
Man-in-the-Mobile attack which is able to defeat the SMS-based two-factor
authentication. (Rovelli, 2013e; Castillo, 2011; Maslennikov, 2011; Barroso,
2010)

– Trojan-Downloader: it is a particular sub-type of Trojan that, unbeknownst
to its victims, downloads and installs other malicious applications on the de-
vice. The information about which applications have to be downloaded and
where to find them can be hard-coded in the Trojan-Downloader itself or re-
trieved from the web.
Examples are the Trojan-Downloader://Android/DroidDream.A and the Trojan-

Downloader://Android/RootSmart.A. In order to gain the root privileges, the
first one makes use of the Exploit://Android/Exploid and, in case of failure, of
the Exploit://Android/RageAgainstTheCage. In case of success, the malware

Paolo Rovelli 17

installs (in the system folder) a second application that will start and manage
the downloads of other applications (Lookout, 2011; Svajcer, 2011). The lat-
ter one, instead, checks if the device is exploitable (i.e. Android version less
or equal to 2.3.4) and if it has not been exploited before. If that is the case, the
malware downloads and executes the Exploit://Android/GingerBreak in order
to gain the root privileges. Then, it downloads a Remote Administration Tool
(RAT) and starts installing other malicious applications. (Mullaney, 2012;
Jiang, 2012b; Spreitzenbarth, 2012)

– Trojan-Password: it is a particular sub-type of Trojan that aims to steal its
victims’ account credentials (i.e. username and password).
An example of such a malware is the Trojan-Password://Android/FakeNetflix.A,
which tries to steal the Netflix account credentials and to send them via HTTP.
(Asrar & Imano, 2011)

– Trojan-SMS: it is a particular sub-type of Trojan in which the malicious ac-
tions and the financial revenues are strictly related to SMS messages (e.g. send
SMS messages to premium-rate numbers). An example of an such a malware
is the Trojan-SMS://Android/Agent.B (see Figure 2.7), which tries to subscribe
the user (without his/her knowledge) to paid services automatically answering
to specific SMS messages. (Rovelli, 2013a)

– Trojan-Spy (also known as Spyware): it is a particular sub-type of Trojan
which strictly aims to spy its victims’ actions (e.g. sent/received SMS mes-
sages or performed/received phone calls) and to collect their personal and
sensitive information (e.g. mobile operator, telephone number, IMEI, user
account balance, contacts and current location). The harvested data are then
forwarded to remote Command and Control (C&C) server via a communica-
tion channel, such as: HTTP, SMTP or SMS.
An example of such a malware is the Trojan-Spy://Android/SMSAgent.B, which
collects all the SMS received by the user and forwards them via email to a spe-
cific address. (Rovelli, 2013b)

2.2.3 Malware Propagation Methodologies

Malware can also be classified according to the way in which they spread.
Also in this kind of classification, in Android, there are either propagation methods that
are common also in the desktop space (e.g. drive-by download) and others that are mostly
unique to Android space (e.g. repackaging).

18 Developing a next-generation Mobile Security solution for Android

Type Family Propagation Privilege
Escala-
tion

Remote
C&C

Direct
Financial
Charges

Privacy
Leak

Backdoor

AnserverBot Update No HTTP SMS No
Obad Standalone Yes HTTP

and
SMS

SMS Yes

Geinimi Repackaging No HTTP Calls and
SMS

Yes

SpamSoldier Repackaging No HTTP SMS No

Rogue FakeFlash Standalone No - - No
JobOffer Standalone No - - No

Rogue-AV AndroidDefeder Standalone No - - No
FakeDefeder Standalone No HTTP - No

Rootkit Oldboot Pre-Installed - HTTP - Yes

Trojan

BaseBridge Repackaging
or Update

Yes HTTP Calls and
SMS

No

DroidKungFu Repackaging Yes HTTP - Yes
FakeMarket Standalone No - - No
GoldDream Repackaging No HTTP Calls and

SMS
Yes

Plankton Update No HTTP - No
Skullkey “Master Key” Yes HTTP SMS Yes

Trojan-Banker ZitMo Drive-by
Download

No HTTP
or SMS

SMS Yes

SpitMo Drive-by
Download

No HTTP SMS Yes

Trojan-Downloader DroidDream Repackaging Yes HTTP - No
RootSmart Repackaging Yes HTTP - Yes

Trojan-Password FakeNetflix Standalone No HTTP - Yes

Trojan-Spy

ADRD Repackaging No HTTP - Yes
Loozfon Standalone No HTTP - Yes
Nickyspy Standalone No HTTP SMS Yes
SMSZombie Repackaging No SMS SMS Yes

Trojan-SMS

Hippo Repackaging No - SMS Yes
Lemon Standalone No HTTP SMS Yes
OpFake Repackaging No - SMS No
Raden Repackaging No - SMS No

Table 2.1: An overview of some of the most known Android malware. For each malware, it is shown: its type, its family, the
propagation method, if it tries a privilege escalation (root the device), if it connects to a Command and Control (C&C) server and
in that case with which channel (e.g. SMS, HTTP or SMTP), if it leads to direct financial costs (e.g. by sending SMS messages or
performing phone calls) and if it steal personal information (e.g. mobile operator, telephone number, IMEI, contacts, web history,
geographical location, SMS messages and phone calls logs).

Paolo Rovelli 19

In particular, the most common types are:

• Drive-by Download: it is a Social Engineering attack in which an application is
downloaded and installed on the device without the user knowledge or understand-
ing. Drive-by download usually happens due to the user clicking on a deceptive
pop-up (e.g. proposing a killer-feature application) or due to a malware already
installed on the device.
A classic example of a drive-by download attack is the one performed by Trojan-

Banker://Win32/ZeuS. Indeed, when one is doing online banking on a PC infected
with the Trojan-Banker://Win32/ZeuS, he/she will be redirected to download a par-
ticular mobile application that is claimed to enhance the safety of online banking.
However, the downloaded application is the Trojan-Banker://Android/ZitMo, which
intercepts all the incoming SMS and forward them to a C&C server in order to de-
feat the SMS-based two-factor authentication (see Trojan-Banker in Section 2.2.2).
(Rovelli, 2013e; Maslennikov, 2011)

– Malicious Ad Libraries: it is one of the most recent attack discovered in the
Android space. In this attack, malware are spreading through the ad libraries
used by benign (non-malicious) applications. Indeed, in Android, many ap-
plications are distributed or have a free version which includes in-app adver-
tisements. These ads displayed, however, are not controlled by the application
developers, but by the chose ad libraries. Malicious ad libraries display normal
ads until a big enough number of users is reached, then they start displaying
misleading ads that claim there are some updates but instead install malware
on the device.
In April, Panda Security reported that they have found 32 applications avail-
able in Google Play that were using malicious ad libraries. The total number
of downloads of these applications through Google Play reached 9 million.
(Panda Security, 2013b)

• Repackaging: it is the most common attack used in the Android space. Thanks to
Repackaging, malicious payloads can be injected into popular, benign applications
(see Figure 2.8).
Basically, the APK package of a benign application is retrieved from an Android
market (usually Google Play Store) and disassembled (usually the Dalvik bytecode
is converted into JAR or smali code). Then, the malicious payload is injected and
the APK package is re-assembled. Finally, the new “Trojanised” version of the ap-
plication is submitted to one or more alternative, third-party Android markets (see

20 Developing a next-generation Mobile Security solution for Android

Figure 2.8: An example of repackaging. A benign application is downloaded from an Android market (usually Google Play Store) and
disassembled. A malicious payload is then injected into the application, the package is re-assembled and, finally, the new “Trojanised”
version of the application is uploaded back into an alternative, third-party Android market.

Seciton 2.1.3).
Since it is strictly based on the APK package structure (see Seciton 2.1.2) and on
the possibility of re-publishing an application in third-party Android markets, this
kind of attacks is unique to the Android environment.
A classic example of repackaging is given by Trojan-Downloader://Android/RootSmart.A,
which is a repackaged version of the legitimate application named QuickSettings

(see Trojan-Downloader in Section 2.2.2). (Mullaney, 2012; Jiang, 2012b)
A total of 1083 out of 1260 (the 86%) of the samples collected by Zhou et al. in
their Android Malware Genome Project are repackaged (Y. Zhou & Jiang, 2012). In
the literature, many frameworks that are designed specifically to detect repackaged
applications have been proposed, such as DroidMOSS (W. Zhou, Zhou, Jiang, &
Ning, 2012) and DNADroid (Crussell, Gibler, & Chen, 2012)
It is important to note that, in classic Repackaging, due to the Android platform
design, the “Trojanised” versions of the original applications have to be digitally re-
signed with their own certificate. Indeed, in Android all installed applications have
to be digitally signed with a certificate whose private key is held by the applica-
tion’s developer (The Android Open Source Project, 2013r). If there’s a mismatch
between the certificate and the APK package, the application is rejected. This is
clearly a main limitation of the classic repackaging attack, since an examination of
the application’s certificate file (i.e. CERT.RSA) can instantly show whether it was
created by the legitimate publisher or not.

Paolo Rovelli 21

– Android “Master Key” vulnerability: it is one of the most recent repack-
aging attack discovered in the Android space that allows attackers to inject
malicious code into an APK package without having to digitally re-sign the
application. Indeed, if two files with the same name would be putted in an
APK package (see Figure 2.9), the Android system verifies the digital signa-
ture of the first but installs the latter. Thus, it can be the case in which the
system verifies the original, legitimate application but installs its “Trojanised”
versions. (Forristal, 2013; Sophos, 2013a)
The first discovered “in the wild’ malware that used this technique was the
Trojan://Android/Skullkey.A, which allows to remotely control the infected de-
vices, steals sensitive data and sends SMS messages to premium-rate numbers.
(Symantec Security Response, 2013)

Figure 2.9: The Android “Master Key” vulnerability allows attackers to inject malicious code into an APK package without having to
digitally re-sign the application. Here, two classes.dex and two AndroidManifest.xml files are putted in the same APK package. The
Android system verifies the digital signature of the first (the legitimate one) but installs the latter (the malicious one).

– Update: it is an attack in which, instead of injecting the entire malicious
payloads into an APK package, only an update component is injected. This
update component will be responsible to retrieve the malicious payload at run-
time. A classic example of an update attack is given by some variants of the
Trojan://Android.BaseBridge, where at the first run a dialogue that claims that
a new version of the application is available is displayed. The new version is
actually stored inside the application’s APK package as an resource file. If the
user accepts to install the “update”, the application containing the malicious
payload will be installed. (Y. Zhou & Jiang, 2012; NQ Mobile, 2012)

– Usurping ads: it is a specific repackaging attack in which the only changes
regard the publisher IDs in the AndroidManifest.xml file.
As already said (see Malicious ad libraries in Section 2.2.3), in Android, many
applications take advantage of in-app advertisements. In order to do that, the
developers have to register to one or more ad networks, which in turn assign
one or more publisher IDs to each developer. These publisher IDs are used

22 Developing a next-generation Mobile Security solution for Android

to properly identify and revenue developers for the user clicks and ad traffics.
Ad libraries typically require that the developer includes its publisher IDs into
meta-tags in the AndroidManifest.xml file (see Figure 2.10). Thus, by replac-
ing the original publisher IDs with the cyber-criminal ones, the repackaged
applications will behave exactly as the original one but the ad revenues will
be collected by the cyber-criminals. (W. Zhou et al., 2012)

Figure 2.10: An example of AndroidManifest.xml file in which it is included the developer’s publisher IDs given by an ad network
(MiniMob in this example). Cyber-criminals can replace the original publisher IDs with their own in order to steal the ad revenues.

• Standalone: it is a Social Engineering attack in which an application misleads users
for downloads. It is often the case of malware that masquerade as legitimate appli-
cations (e.g. Rogue or Trojan) or that actually provide the claimed functionalities
but, unbeknownst to the user, they also perform other malicious actions.

– Malicious ToS: it is the most recent attack discovered in the Android space.
In this attack, malicious applications lure the user into accepting misleading
Term Of Service (ToS) - usually too small to be read - through which, for
example, the user is unwittingly accepting to be subscribed to premium-rate
SMS service. (Corrons, 2013b)

2.3 Related Work

A complete, standard (desktop) classification of malware according to their propagation
methods and goals can be found in (Bontchev, 1998).
In (Felt, Finifter, Chin, Hanna, & Wagner, 2011), Felt et al. survey the state-of-the-art of
mobile malware “in the wild” and discusses possible defences. The authors study mal-
ware samples on three different mobile platforms: Android (16 samples), iOS (4 samples)
and Symbian (24 samples). The main difference with our work is that, having a broader
dataset, we focus only on Android malware.

Paolo Rovelli 23

In (Y. Zhou & Jiang, 2012), Zhou et al. systematically characterise existing Android
malware from various aspects, including their installation methods and activation mech-
anisms. Zhou et al. work is more detailed than ours. We have preferred just to give an
overview of the topic in order to focus more on Android malware detection (see Chap-
ters 3, 5 and 6). However, since our work is more recent and malware are continually
evolving, we discuss about malware families and propagation methodologies that did not
exist, or had not yet been discovered, at the time (see for example Malicious ad libraries,
Android “Master Key” vulnerability and Usurping ads in Section 2.2.3).
In (Spreitzenbarth & Freiling, 2012), Spreitzenbarth et al. give an overview of the exist-
ing Android malware families and their main functionality.
In (Suarez-Tangil, Tapiador, Peris-Lopez, & Blasco, 2014), Suarez et al. propose Den-
droid, a text mining approach to analyzing and classifying code structures in Android
malware families. The authors use these code structures in order to investigate hierarchi-
cal relationships (phylogenetic tree) among malware families.

2.4 Conclusion

In this chapter we have introduced the Android Operating System and presented a classi-
fication and characterisation of the current “in the wild” Android malware.
In our opinion, the exponential rise of Android malware can be attribute to four main
factors:

• The continuous growth in Android adoption, by both device manufacturers and end
users;

• Android malware can be successful even without exploiting system vulnerabilities
(especially Rogue-AV, Trojan-Banker and Trojan-SMS);

• The trust of Android users in Google Play Store and in third-party Android market
as well (which is in turn leading to an increasing number of services for buying
downloads and ratings in Google Play, in order to lure the user to download an
application);

• The policies (or non-policies) of Google in the field of in-app advertising.

New propagation methodologies will surely appear in the coming years. In particular,
we will probably face an increasing number of attempts to infect mobile devices directly
from PCs and Social Networks. (Corrons, 2013a; Liu, 2014)

24 Developing a next-generation Mobile Security solution for Android

Furthermore, we are already seeing and increasing number of digital currency-mining
Trojan (JS & AB, 2014; Rogers, 2014) and of Ransomware (Zorabedian, 2014). How-
ever, given their success, we suppose Trojan-SMS and premium SMS frauds will still re-
main the biggest threat in Android during the next year. However, starting from Android
4.4 (KitKat), Google has introduced some changes to the API which should significantly
slow down the rise of such threat. (Main, Scott and Braun, David, 2013)
We would like to share a particular, final, though on the Google policies in the field of
in-app advertising and on the recent rise of Android Adware (Uscilowski, 2013). Indeed,
in Android, on the very opposite of other mobile platforms, in-app advertising has be-
come really popular. Many Android developers use ad libraries to legally monetize their
applications by displaying advertisements on them. In the beginning of 2013, in order
to make in-app advertising more effective, Google has removed all the ad blocking ap-
plications from Google Play Store. However, with its extensive policies, Google had let
the spreading of many applications which use “aggressive” ad libraries, which are able to
leak sensitive information or mislead the user to download other malware. In September
2013, Google have finally updated the Term Of Service (ToS) and consequentially re-
moved around 36.000 Adware from Google Play Store (Gamble, 2012). However, there
is a lot still to do in order to reduce the number of “in the wild” Adware drastically.

25

Chapter 3

Implementing a Signature-based
Malware Detection System in
Android

In this chapter we introduce the malware detection problem (see Section 3.1) and present
a signature-based detection solution specifically designed for Android (see Sections 3.3
and 3.4).
Experimental results show that our signature-based detection system was able to properly
detect and remove 95.95% of the malware in our test.

3.1 Introduction

Modern antivirus software typically rely on a variety of methods to detect and identify
malware, such as: signature-based (Ask, 2006; ClamAV, 2007; Griffin, Schneider, Hu, &
Chiueh, 2009), heuristic (Arnold & Tesauro, 2000; Szor, 2008), and behavioral detection
(Jacob, Debar, & Filiol, 2008).
As first malware detection approach of VirIT Mobile Security, we decided to opt for
signature-based detection. Although reactive in nature - i.e. a malware has to infect a
device before it is identified -, and thus it will practically never lead to reach 100% of de-
tection rate, signature-based detection is still the most prevalent approach used to detect
and identify malware. This is due to several factors, first of which that it is a consolidate,
easily customizable and effective method that, if properly implemented, generates a very
low (close to zero) number of false positives - benign files wrongly detected as malicious.

26 Developing a next-generation Mobile Security solution for Android

Figure 3.1: The home screen of VirIT Mobile Security. The Activity changes dynamically, displaying the relative security-related
messages (picture on the left).

Furthermore, signature-based detection systems rely on the consideration that, generally
speaking, the more infective a malware is the faster arrives in the hands of security re-
searchers. Thus, even if it does not guarantee perfection, it guarantees the protection from
the most widespread threats.
In this sense, it is important to realise that VirIT Mobile Security does not aim to perfectly
detect all possible Android malware.
In (F. Cohen, 1987), Frederick B. Cohen proved that there is no algorithm that can per-
fectly detect all possible/future computer viruses in finite time. Precise detection is unde-
cidable.
According to Cohen, absolute protection can actually be attained by absolute isolation-
ism, which is usually an unacceptable solution. However, as Cohen himself stated, there
are methods that can be used to limit undetected spreading.
Limit the undetected spreading of malware is particularly important in order to avoid an
epidemic. Indeed, an enormous number of new pieces of malware are produced every
day1 and, as security researchers, we cannot just leave the users without a proper protec-
tion. We need to try to fight malware back, even if our detection systems will never be
perfect and lead to a 100% detection rate.
Catching the malware as they emerge is even more important in the mobile space, where
most of the malware are able to lead to direct loss of money (e.g. by sending SMS mes-

1 In (Williams, 2012), Mikko Hyppönen (F-Secure) stated that about 200.000 malware arrive in F-Secure
office every day. In (Lyne, 2013), James Lyne (Sophos) stated that approximately 250.000 new pieces of
malware are created every day.

Paolo Rovelli 27

sages or performing phone calls) and to steal personal and sensitive information (see
Section 2.2.2).
Luckily, our detection systems do not necessarily need to be perfect as a single. We can
count on multiple systems - or layers of defence - in order to protect a device from being
infected and/or to recover from attacks which do manage to get their way into it.
Finally, it is also important to realise that VirIT Mobile Security is a standard Android
application and, therefore, it is subject to all the limitations of the current Android ap-
plication model (see Section 2.1). An example of such limitations is that VirIT Mobile
Security is not able to protect the device against exploits targeting specific kernel vulner-
abilities.

3.2 Related Work

During the years, many works on cyber-security have been carried out. In this section we
review some of the most known works in Android malware detection.
So far two main approaches for malware analysis and detection have been proposed: the
static analysis (Christodorescu & Jha, 2006; Shabtai, Moskovitch, Elovici, & Glezer,
2009; Schmidt, Camtepe, & Albayrak, 2010) and dynamic analysis (Lee & Mody, 2006;
Christodorescu, Jha, & Kruegel, 2008; Bose, Hu, Shin, & Park, 2008; Schmidt et al.,
2009). Basically, static analysis is based on code inspection, while dynamic analysis
is based on runtime behaviour control. Both the two types of analysis have their own
strengths and limitations.
In (Arp, Spreitzenbarth, Hübner, Gascon, & Rieck, 2013), Arp et al. propose DREBIN, a
lightweight Android malware detection system which can be run directly on an Android
device. DREBIN performs a broad static analysis on both the AndroidManifest.xml file
and the dex one. From the first one, it gathers the hardware components, the permissions
required, the application components (i.e. Activity, BroadcastReceiver, ContentProvider

and Service) and the filtered Intents, while from the dex file it gathers the restricted and the
suspicious API calls, the used permissions and the network addresses. All the extracted
features are then mapped to a joint vector space, such that typical malware patterns can
be automatically detected.
DREBIN, as well as VirIT Mobile Security, is a standard Android application. However,
while DREBIN relies only on static analysis and, specifically, only on a single machine
learning technique, VirIT Mobile Security takes also advantage of other detection sys-
tems, such as signature-based detection and the dynamic analysis of applications’ network

28 Developing a next-generation Mobile Security solution for Android

usage.
In a similar fashion, in (Shabtai, Kanonov, Elovici, Glezer, & Weiss, 2012), Shabatai et al.
present Andromaly, a host-based framework for anomaly detection on Android devices.
Andromaly continuously monitors various features and events obtained from the mobile
device and then applies data mining anomaly detectors to classify the collected data as
either benign or malicious.
Other works have proposed a cloud-based security model, such as Android Application
Sandbox (AASandbox) (Blasing, Batyuk, Schmidt, Camtepe, & Albayrak, 2010) and
DroidRanger (Y. Zhou, Wang, Zhou, & Jiang, 2012). The first one is a system able to
perform both statical and dynamical analysis to automatically detect suspicious applica-
tions. AASandbox firstly perform a statical analysis on the APK package in order to
detect malicious patterns. Afterwards, the dynamical analysis is performed in a fully iso-
lated environment. During the dynamical analysis, all the events occurring in the device
are monitored.
On the other hand, DroidRanger, by Zhou et al., is a permission-based behavioral foot-
printing scheme to detect new samples of known Android malware families. In DroidRanger,
applications are firstly filtered based on the Android permissions required and, then, an
heuristics-based filter is applied.
Finally, in (ForeSafe, 2013) the authors present ForeSafe Mobile Security, which com-
bined static and dynamic analysis. ForeSafe Mobile Security performs static analysis
directly on the device, by decompiling the Dalvik bytecode back into the Java bytecode
and finally into the Java source code. On the other hand, ForeSafe Mobile Security can
perform dynamic analysis on-demand via a cloud sandbox.
Even if, like VirIT Mobile Security, also ForeSafe Mobile Security uses a signature-based
detection, the two works are pretty different. Indeed, at present, our signature-based de-
tection rely only on the binary code. Thus, our engine does not reconstruct the Java source
code. Furthermore, VirIT Mobile Security also offers other (on-device) detection mecha-
nisms and, at present, it does not offer a cloud scanner.

3.3 Design

In this section we present the design of the signature-based detection system in VirIT
Mobile Security.
First we present the malware signatures and, in particular, the string malware signatures.
Afterwards, we explain the design choices related to our signatures database and signature

Paolo Rovelli 29

matching engine.

Figure 3.2: The architecture of the signature-based detection system in VirIT Mobile Security. Thanks to the on-install scanner,
the applications installed from Google Play or other third-party markets (see Seciton 2.1.3) are automatically scanned (after the
installation) by the signatures matching engine (see Seciton 3.4.3). The application installed from the SD Card, instead, can be
also scanned before the installation. Thanks to the on-demand scanner, the user can always decide to launch a scan on the installed
applications and on the External Storage (see Seciton 3.4.2). Finally, thanks to the on-access scanner, each file on the External Storage
is scanned every time it is written (see Seciton 3.4.4). For the overall VirIT Mobile Security architecture see Figure 6.1

3.3.1 Malware Signatures

As already said, between others, antivirus software relies on signatures in order to prop-
erly detect and identify malware.
A signature is a sequence of bytes that represent and identify, with the best accuracy pos-
sible (theoretically unequivocally), a particular malware or variant of malware.
Substantially, a malware is analysed (by malware researchers or by dynamic analysis sys-
tems), then a signature is extracted and added to the signatures database of the antivirus
software. When a particular file has to be scanned, the antivirus compares its content with
all the malware signatures in its signatures database. If the file matches one signature,
then it is almost surely malicious. Instead, if the file does not match any signature, it
cannot be said anything for sure. It might be benign or it might be a malware that has not
been yet encountered, and thus analysed, therefore its signature is not yet in the signatures
database. These kind of malware are known as zero-day or next-generation malware.

30 Developing a next-generation Mobile Security solution for Android

It is clear that the accuracy of a signature-based detection system is heavily based on the
correctness of the malware signatures and on the completeness of the signatures database.
Indeed, an inaccurate malware signature may lead to the non-detection of a malware or to
a false positive - benign files wrongly detected as malicious. On the other hand, the per-
formance of a signature-based detection system depends also on the number of malware
signatures in the signatures database.
There are many methods of extracting malware signatures, such as: file hash, byte signa-
ture, hex signature, wildcards and regular expressions.
As first signature-based detection method we decided to rely on string signatures. A
string signature is made of a variable number of (not consecutive) byte signatures, which
are short sequences of contiguous bytes extracted from the malware binary code (e.g. a
dex file).
String signatures give many advantages, first of which that string signatures are easy to
extract and change (e.g. in case of false positives or to improve an existing signature),
and that each string signature can cover several malware files. Furthermore, using string
signatures, we can take advantage of current, existing system to automatically generate
malware signatures (Ask, 2006; Griffin et al., 2009).

3.3.2 Signatures Database

Since our scope is the one of developing a mobile security solution specifically designed
for Android platform, we have decided to focus only on malware specific for the An-
droid platform. Thus, no signature of malware for Windows or other platforms has been
included. However, it is important to understand that a mobile device may be used
as vehicle to carry a malware from one computer to another. For example, the Back-

door://Android/Ssucl.A tries to execute a Windows malware when the infected device is
plugged to a PC (F-Secure, 2013; Chebyshev, 2013; AB, 2013). However, in our opin-
ion, adding all the signatures of Windows malware to the signatures database would not
be worthy. Indeed, the signatures database would become unnecessarily heavy and slow
down the scan. This is an important concern above all when we think about old devices,
which does not have a lot of storage capability. A solution to this might be to scan locally
for Android malware and to use a cloud scanner to scan for Windows malware. However,
since this is out of the scope of this work of thesis, we did not implement such function-
ality.

Paolo Rovelli 31

3.3.3 Signatures Extraction and Signature Matching Engine

In order to properly understand how we extract the malware signatures, we firstly have to
understand what we actually can scan in an Android device.
As explained in Section 2.1.1, by design, in Android application’s code runs in isolation
from other applications. Thus, it is not possible to read another application’s memory. All
we can do to decide if an application is malicious or not, without modifying the Android
Operating System itself, is to scan its APK package saved in the /data/app directory (see
Chapter 2.1).
Since an APK package is basically a ZIP file, a natural question can be raised: what is a
good signature of an APK package? Or, in other words, what should we actually scan of
an APK package?
One can read, and in turn scan, the APK package as a (stand-alone) binary file or, since
it is a package, it is possible to extract and scan its entries - the files contained into the
APK package (see Section 2.1.2). However, generally speaking, taking signatures from
the binary code of an APK package is not a good strategy. Indeed, such signatures are
not robust to (little) changes into the APK packages and, as a result, many signatures will
have to be generated for the same malware variants - APK packages were the actual mali-
cious payload is the same or almost the same - leading to a huge signatures database and
a slow scan.
Thus, one should extract the signatures from the files within an APK package. But, this
raises another question: from which file/s we should extract the signature?
Since in an APK package all the Java classes are compiled into the dex file (see Sec-
tion 2.1.2), a malware should be detectable from the code in its classes.dex file2. That
means we can theoretically restrict the scan of an APK package to the one of its classes.dex

file, rather then scanning all the enclosed files (which are usually many). This would sig-
nificantly reduce the number of comparison the signature matching engine must perform.
A similar technique, named filtering technique, is used in many antivirus engine in order
to limit the comparison of a particular kind of file only to the subset of signatures that
represents malware that typically infect that kind of file (Szor, 2005).
However, by limiting the scan (signatures matching) to only the classes.dex file might
lead to less accuracy. Indeed, there might be the case in which the antivirus does not have
the signature of a particular malware in its signatures database, but it has anyway the one

2 In future versions of Android the dex file format will probably be replaced with the oat one, since
ART will probably replace DalvikVirtual Machine (The Android Open Source Project, 2013m). However,
since at present this is only an experimental feature and there is still a lack of documentation about oat file
format, we have preferred not to take this into account. Anyway, our design can be easily modified at any
time in order to threat also oat files as executables (actually, with DeepScan enabled, our scanners already
scan also those files).

32 Developing a next-generation Mobile Security solution for Android

of an “object” included inside the APK package of that malware. For example, in some
malicious applications, the exploit binaries used to root the device are included in the
APK package itself (usually in the assets directory or in the res/raw/ one). There might
also be the case in which an application “carries” a malicious lib file or another malicious
APK inside itself (see Update attack in Section 2.2.3). Moreover, in some cases, it might
be simpler (and lead to catch more variants of the same malware) to take a signature also
on a particular resource file, rather than only on the dex file. This is also important be-
cause, in Android, we can stop the scan at the first signature matched, since the only way
of cleaning an infection is to remove the entire application, no matter which infection is.
Thus, in most of the cases, it is not really important to tell apart two different malware or
two different variants of the same malware.
Finally, even if limiting only to the scan of the dex file, it would anyway be a good practice
to scan for every dex file inside the APK package. Theoretically, there should be only one
of them in each APK package, and only one should matter. However, as recently showed
by the Android “Master Key” vulnerability (see Section 2.2.3), this might not be the case.
Taking all what we said into account, we have decided to develop two different scan mech-
anisms: a “fast scan”, in which only the dex files will be scanned, and a “full scan” (also
known as DeepScan). In the latter scan all the entries within an APK package are scanned.
Moreover, if a second APK package or a ZIP file is encountered inside the scanned APK,
then it is recursively scanned. This theoretically exposes to the risk of archive bombs -
files that are repeatedly compressed (F-Prot, 2013) - and slows down the scan, but ensure
a better accuracy. Finally, in order to accelerate the scan with DeepScan enabled, the dex
files are anyway scanned firstly. So, if one of them matches a signature, the rest of the
APK package entries can be skipped.

3.4 Implementation

In this section we present the implementation of the signature-based detection system in
VirIT Mobile Security.
First we discuss the implementation of the signatures matching engine and, after, we
present three different scanners which make use of the engine: on-demand, on-install and
on-access scanners.

Paolo Rovelli 33

3.4.1 Signature Matching Engine

Since APK packages are basically ZIP files, in order to scan their entries - comparing
them with all the malware signatures in the signatures database -, we need or to unpack
and save all the entries in a temporary folder or to directly access to the entries in-memory.
It is also possible to use a mix of the two techniques. Indeed, for example, an engine can
scan all the APK packages in-memory (see an example in Listing 3.1) but the enclosed
multi-level APK package, which can be unpacked and recursively scanned.

/∗
∗ Given :
∗ − appDi r : t h e a p p l i c a t i o n d i r e c t o r y .
∗ /

f i n a l Z i p F i l e z i p F i l e = new Z i p F i l e (new F i l e (appDi r)) ;

/ / R e t r i e v e a l l t h e e n t r i e s (bo th f i l e s and f o l d e r s) i n t h e APK package :
Enumera t ion <? e x t e n d s ZipEn t ry > z i p E n t r i e s = z i p F i l e . e n t r i e s () ;

w h i l e (z i p E n t r i e s . hasMoreElements ()) {
f i n a l Z i p E n t r y z i p E n t r y = z i p E n t r i e s . n e x t E l e m e n t () ;

f i n a l S t r i n g f i l eName = z i p E n t r y . getName () ;
f i n a l l ong f i l e S i z e = z i p E n t r y . g e t S i z e () ;
f i n a l I n p u t S t r e a m i s = z i p F i l e . g e t I n p u t S t r e a m (z i p E n t r y) ;

. . .
}

z i p F i l e . c l o s e () ;

Listing 3.1: Example of unzipping an APK package in-memory, using the ZipFile class (The Android Open Source Project, 2013w),
in order to access to its entries.

In Listing 3.1 is showed how it is possible to retrieve the InputStream (The Android Open
Source Project, 2013l) of the entries in an APK package. Once we access to the Input-

Stream, we can read it in order to compare its content with the signatures database (see
Listing 3.2).
The InputStream class offers the mark() method to set a mark location in this stream and
the reset() method to reset the stream to the last marked location. Furthermore, it offers
the skip() method in order to skip a given number of bytes.
Since an InputStream is a sequential construct (a stream indeed), the skip() method is not
like jump or seek in a random access. skip() actually reads the stream content without re-
turning it (The Android Open Source Project, 2013n). Moreover, there is no guarantee on
how many bytes will actually be skipped. Indeed, the method may choose to skip fewer
bytes than requested (but never more).

/∗
∗ Given :
∗ − i s : t h e f i l e I n p u t S t r e a m .
∗ − f i l e S i z e : t h e f i l e s i z e .
∗ − o f f s e t : b y t e a r r a y c o n t a i n i n g t h e s i g n a t u r e o f f s e t s (o r d e r e d) .

34 Developing a next-generation Mobile Security solution for Android

∗ − b u f f e r : b y t e a r r a y o f t h e same s i z e o f t h e s i g n a t u r e .
∗ /

f i n a l B u f f e r e d I n p u t S t r e a m b i s = new B u f f e r e d I n p u t S t r e a m (i s) ;

i n t fp = 0 ; / / f i l e p o i n t e r
l ong numBytesSkipped = 0 ;
long numBytesToSkip = 0 ;
i n t numBytesRead = 0 ;

/ / Check whe the r t h e b i g g e s t o f f s e t i s g r e a t e r t h a n t h e f i l e s i z e o r n o t :
i f (f i l e S i z e < o f f s e t s [o f f s e t s . l e n g t h −1]) {

r e t u r n ; / / t h e f i l e i s t o o s m a l l t o match t h e s i g n a t u r e !
}

f o r (i n t i =0 ; i < o f f s e t s . l e n g t h ; i ++) {
t r y {

/ / Jump t o t h e o f f s e t [i] :
w h i l e (fp < o f f s e t s [i]) {

numBytesToSkip = o f f s e t s [i] − fp ;
numBytesSkipped = b i s . s k i p (numBytesToSkip) ;

fp += numBytesSkipped ;
}

/ / Check whe the r i t has jump p r o p e r l y o r n o t :
i f (fp != o f f s e t s [i]) {

r e t u r n ; / / i t d i d NOT jump p r o p e r l y !
}

/ / Read [b u f f e r . l e n g t h] number o f b y t e s t h e i n t h e f i l e s t a r t i n g a t o f f s e t [i] :
numBytesRead = b i s . r e a d (b u f f e r) ;

[. . .] Compare b u f f e r w i th t h e a l l t h e malware s i g n a t u r e s [. . .]

fp += numBytesRead ;
}
c a t c h (IOExcep t ion e) { . . . }
c a t c h (IndexOutOfBoundsExcep t ion e) { . . . }

}

/ / C lose t h e B u f f e r I n p u t S t r e a m :
b i s . c l o s e ()

Listing 3.2: Example of scanning a file from its InputStream (The Android Open Source Project, 2013l). The InputStream class
offers the mark() method to set a mark location in this stream and the reset() method to reset the stream to the last marked location.
Furthermore, it offers the skip() method in order to skip a given number of bytes. However, since an InputStream is a sequential
construct (a stream indeed), the skip() method is not like jump or seek in a random access. skip() actually reads the stream content
without returning it. Moreover, there is no guarantee on how many bytes will actually be skipped. Indeed, the method may choose to
skip fewer bytes than requested (but never more).

Clearly scanning a file from its InputStream is not a robust enough solution. Indeed, espe-
cially with big files, the skip() method may need to be called many times in order to reach
the desired location in the file. Of course, from a program-flow prospective, we know we
will reach that desired location and, since before starting the offsets comparison we check
that the greatest offset is actually inside (smaller than) the file size, we do not need to
worry about reaching the End of File (EoF). However, from a performance prospective,
since we are going to compare every file with a huge number of malware signatures, we
may want to prevent to be stuck in a cycle of too many skip() calls for each comparison.
Definitely, limiting the maximum number of skip() calls is not a solution, since it may
lead not to arrive to the desired location, resulting in the impossibility to properly scan
the file.

Paolo Rovelli 35

Thus, what we need to achieve is to have a random access to the file. This is possible, for
example, using the RandomAccessFile class (The Android Open Source Project, 2013q).
As shown in Listing 3.3, scanning a RandomAccessFile is a robust and fast solution.

/∗
∗ Given :
∗ − fp : t h e RandomAccessFi le i n s t a n c e .
∗ − f i l e S i z e : t h e f i l e s i z e .
∗ − o f f s e t : b y t e a r r a y c o n t a i n i n g t h e s i g n a t u r e o f f s e t s (o r d e r e d) .
∗ − b u f f e r : b y t e a r r a y o f t h e same s i z e o f t h e s i g n a t u r e .
∗ /

i n t numBytesRead = 0 ;

/ / Check whe the r t h e b i g g e s t o f f s e t i s g r e a t e r t h a n t h e f i l e s i z e o r n o t :
i f (f i l e S i z e < o f f s e t s [o f f s e t s . l e n g t h −1]) {

r e t u r n ; / / t h e f i l e i s t o o s m a l l t o match t h e s i g n a t u r e !
}

f o r (i n t i =0 ; i < o f f s e t s . l e n g t h ; i ++) {
t r y {

/ / Jump t o t h e o f f s e t [i] :
fp . s eek (o f f s e t s [i]) ;

/ / Read [b u f f e r . l e n g t h] number o f b y t e s t h e i n t h e f i l e s t a r t i n g a t o f f s e t [i] :
numBytesRead = fp . r e a d (b u f f e r) ;

[. . .] Compare b u f f e r w i th a l l t h e malware s i g n a t u r e s [. . .]
}
c a t c h (IOExcep t ion e) { . . . }
c a t c h (IndexOutOfBoundsExcep t ion e) { . . . }

}

/ / C lose t h e RandomAccessFi le :
fp . c l o s e () ;

Listing 3.3: Example of scanning a RandomAccessFile (The Android Open Source Project, 2013q). This solution is much more robust
than the one of scanning the file from its InputStream (see Listing 3.2).

However, if we are starting from an InputStream (for example because we are unzipping
the APK package in-memory using the ZipFile class), we need to turn it into a Rando-

mAccessFile before. This might not be as smooth as before. Indeed, in order to do that,
we need to create a temporary (cached in our case) file and open it in random access (see
Listing 3.4).
Even if creating temporary files will slow down the scan, in our opinion, scanning a Ran-

domAccessFile is much more robust solution than scanning a file InputStream. Further-
more, the more signatures there will be in the signatures database the better this solution
will be in comparison with the other one. Indeed, we will initially lose time creating the
temporary copy of the file, but then we will have a random access to the file - which is a lot
faster than having to go through the stream for every signature comparison (as state pre-
viously, skip() actually reads the stream content without returning it (The Android Open
Source Project, 2013n)).

/∗
∗ Given :
∗ − i s : t h e f i l e I n p u t S t r e a m .

36 Developing a next-generation Mobile Security solution for Android

∗ − f i l eName : t h e f i l e name .
∗ − f i l e S i z e : t h e f i l e s i z e .
∗ /

f i n a l F i l e t e m p F i l e = F i l e . c r e a t e T e m p F i l e (f i leName , n u l l , g e t C a c h e D i r ()) ;
f i n a l RandomAccessFi le fp = new RandomAccessFi le (t empF i l e , " rw ") ;

/ / An a r r a y has an i n t e g e r s i z e (we do n o t want i n t e g e r o v e r f l o w h e r e . . .) :
i f (f i l e S i z e > I n t e g e r .MAX_VALUE) {

f i l e S i z e = I n t e g e r .MAX_VALUE;
}

b y t e [] b u f f e r = new b y t e [f i l e S i z e] ;
i n t numBytesRead = 0 ;

w h i l e ((numBytesRead = i s . r e a d (b u f f e r)) != −1) {
fp . w r i t e (b u f f e r , 0 , numBytesRead) ;

}

fp . s eek (0) ;

r e t u r n r a n d o m A c c e s s F i l e ;

Listing 3.4: Example of converting InputStream to RandomAccessFile. This is needed, for example, if we unzipped the APK package
in-memory using the ZipFile class (see Listing 3.1). This solution creates temporary (cached) files, and this will slow down the scan.
However, in our opinion, scanning a RandomAccessFile is much more robust solution than scanning a file InputStream. Furthermore,
the more signatures there will be in the signatures database the better this solution will be in comparison with the other one. Indeed,
we will initially lose time creating the temporary copy of the file, but then we will have a random access to the file - which is a lot
faster than having to go through the stream for every signature comparison (as state previously, skip() actually reads the stream content
without returning it).

One particular warning for mobile space is that a mobile application does not usually
have as much available (heap) memory as a desktop program. Thus, the code shown in
Listing 3.4 to convert an InputStream into a RandomAccessFile object may fail at the byte
array (buffer) instantiation throwing an OutOfMemoryError exception. This kind of ex-
ception is thrown when a request for memory is made that cannot be satisfied using the
available platform resources (The Android Open Source Project, 2013o). This will hap-
pen especially when we need to deal with files that have a “large” size (sometimes it is
enough a size greater than 2 MB). A solution to this problem can be to programmatically
assign the size of the buffer based on the space we can actually allocate (see Listing 3.5).
To speed up the check, we also previously cut down all the sizes we already know will fail.

/∗
∗ Given :
∗ − f i l e S i z e : t h e f i l e s i z e .
∗ /

b y t e [] b u f f e r ;

w h i l e (t r u e) {
t r y {

b u f f e r = new b y t e [f i l e S i z e] ; / / you need t o c a s t t o i n t h e r e !
r e t u r n b u f f e r ;

} c a t c h (OutOfMemoryError e) {
/ / Reduce t h e memory a l l o c a t i o n (o f a f a c t o r o f 1 0) :
i f (f i l e S i z e > 10) {

f i l e S i z e /= 1 0 ;
}
e l s e {

i f (f i l e S i z e > 1) {
f i l e S i z e = 1 ;

Paolo Rovelli 37

}
e l s e {

throw new IOExcep t i on () ; / / what t h e h e l l ? !
}

}
}

}

Listing 3.5: Dynamically allocating a byte array. This is particularly important in mobile space, because a mobile application does not
usually have as much available (heap) memory as a desktop program. Thus, the code shown in Listing 3.4 to convert an InputStream
into a RandomAccessFile object may fail at the byte array (buffer) instantiation throwing an OutOfMemoryError exception. This kind
of exception is thrown when a request for memory is made that cannot be satisfied using the available platform resources.

3.4.2 On-Demand Scanner

In order to let the user to manually scan Android applications, we decided to start im-
plementing an on-demand scanner (see Figures 3.3 and 3.4), which makes use of the
signatures matching engine presented in Section 3.4.1, firstly focusing on scanning the
installed applications.
Scanning the installed applications
Retrieving the list of applications currently installed on an Android device - whether they
are user or system applications (see Section 2.1.1) - is possible using the PackageMan-

ager class, through which is also possible to retrieve various kinds of information related
to them. (The Android Open Source Project, 2013p)
As shown in the Listing 3.6, in order to retrieve the list of installed applications, one needs
to call the getInstalledApplications() method of the PackageManager class. The method
returns a list of ApplicationInfo objects. Each of these objects represents an installed ap-
plication, from which we can retrieve many useful information, such as the application
name, its package and its directory. (The Android Open Source Project, 2013e)

f i n a l PackageManager pm = ge tPackageManager () ;
f i n a l L i s t < A p p l i c a t i o n I n f o > l i s t O f I n s t a l l e d A p p s = pm . g e t I n s t a l l e d A p p l i c a t i o n s (PackageManager .GET_META_DATA) ;

f o r (f i n a l A p p l i c a t i o n I n f o a i : l i s t O f I n s t a l l e d A p p s) {
f i n a l S t r i n g appName = pm . g e t A p p l i c a t i o n L a b e l (a i) . t o S t r i n g () ;
f i n a l S t r i n g appPackage = a i . packageName ;
f i n a l S t r i n g appDi r = a i . s o u r c e D i r ;

. . .
}

Listing 3.6: Example of how to retrieve the list of installed applications in Android. The getInstalledApplications() method of the
PackageManager class returns a list of ApplicationInfo objects. Each of these objects represents an installed application, from which
we can retrieve many useful information.

In particular, once we have an application APK package directory, we call the proper
method of our signatures matching engine (see Section 3.3.3) in order to scan all its en-
tries by comparing them with all the malware signatures in the signatures database (see

38 Developing a next-generation Mobile Security solution for Android

Figure 3.3: The on-demand scanner of VirIT Mobile Security. A scan is performed before on the installed applications and after on
the External Storage. In case some malicious applications are found, the “Solve” button will appear in order to show to the user the
list of threats found (see Figure 3.4)

Chapter 3.3.1). Scanning the storage
Once we were able to scan the installed applications, we extended our on-demand scanner
to the External Storage (The Android Open Source Project, 2013s). In Android, under this
umbrella term are grouped external SD cards and possible internal non-removable stor-
ages.
Although, in Android, the External Storage should be always mounted as non-executable
(The Android Open Source Project, 2013j), it might be used from applications to save/-
download temporary files, including APK packages and/or exploit binaries. Furthermore,
a user (or a malware) can upload an APK package on the SD card directly from a com-
puter when the device is connected via USB.
In Android, it is possible to retrieve the primary External Storage directory of a device
using the getExternalStorageDirectory() method of the Environment class (The Android
Open Source Project, 2013i). However, the External Storage (if exists) may not be always
accessible (The Android Open Source Project, 2013s). Indeed, it may happen that it has
been removed from the device or mounted on a computer, or some other problem has hap-
pened. Therefore, before accessing it, we need to check its current state. This can be done
with the getExternalStorageState() method of the Environment class (see Listing 3.7).
Furthermore, we might have more than one External Storage. For example, we can be
in the case of having one external SD Card and one internal non-removable storage. In
the Android API there is no reference of a standard method to retrieve all the External
Storages. However, like in every Unix/Linux system, all the mounting storage devices are

Paolo Rovelli 39

stored/linked in a common directory. For Android this is usually the /mnt directory (the
standard Unix/Linux directory for mounting storage devices) or, in the newest versions,
the /storage one. In any case, as shown in Listing 3.7, we can easily retrieve this “root”
directory from the primary External Storage one (it will be its parent). If not empty, every
of its subdirectory - but the USB drive ones - will be a different External Storage.

f i n a l L i s t < F i l e > s t o r a g e D i r e c t o r i e s = new A r r a y L i s t < F i l e > () ;
S t r i n g s t o r a g e R o o t D i r e c t o r y = n u l l ;

/ / R e t r i e v e t h e p r i m a r y E x t e r n a l S t o r a g e :
f i n a l F i l e p r i m a r y E x t e r n a l S t o r a g e ;
f i n a l S t r i n g p r i m a r y E x t e r n a l S t o r a g e D i r e c t o r y = System . g e t e n v ("EXTERNAL_STORAGE") ;
i f ((p r i m a r y E x t e r n a l S t o r a g e D i r e c t o r y != n u l l) && ! p r i m a r y E x t e r n a l S t o r a g e D i r e c t o r y . e q u a l s (" ")) {

p r i m a r y E x t e r n a l S t o r a g e = new F i l e (p r i m a r y E x t e r n a l S t o r a g e D i r e c t o r y) ;
}
e l s e {

p r i m a r y E x t e r n a l S t o r a g e = Envi ronment . g e t E x t e r n a l S t o r a g e D i r e c t o r y () ;
}

/ / Check whe the r t h e p r i m a r y E x t e r n a l S t o r a g e i s a r e a l / r e a d a b l e d i r e c t o r y o r n o t :
i f ((p r i m a r y E x t e r n a l S t o r a g e != n u l l) && p r i m a r y E x t e r n a l S t o r a g e . i s D i r e c t o r y () &&

p r i m a r y E x t e r n a l S t o r a g e . canRead () && (p r i m a r y E x t e r n a l S t o r a g e . l e n g t h () > 0)) {
s t o r a g e R o o t D i r e c t o r y = p r i m a r y E x t e r n a l S t o r a g e . g e t P a r e n t () ;

/ / Add t h e p r i m a r y E x t e r n a l S t o r a g e d i r e c t o r y :
s t o r a g e D i r e c t o r i e s . add (p r i m a r y E x t e r n a l S t o r a g e) ;

}

/ / R e t r i e v e a l l t h e s e c o n d a r y E x t e r n a l S t o r a g e :
f i n a l S t r i n g s e c o n d a r y E x t e r n a l S t o r a g e D i r e c t o r i e s = System . g e t e n v ("SECONDARY_STORAGE") ;
i f ((s e c o n d a r y E x t e r n a l S t o r a g e D i r e c t o r i e s != n u l l) && ! s e c o n d a r y E x t e r n a l S t o r a g e D i r e c t o r i e s . e q u a l s (" ")) {

i f (s e c o n d a r y E x t e r n a l S t o r a g e D i r e c t o r i e s . c o n t a i n s (" : ")) { / / more t h a n one s e c o n d a r y E x t e r n a l S t o r a g e . . .
f o r (f i n a l S t r i n g s t o r a g e : s e c o n d a r y E x t e r n a l S t o r a g e D i r e c t o r i e s . s p l i t (" : ")) {

i f ((s t o r a g e != n u l l) && ! s t o r a g e . e q u a l s (" ")) {
f i n a l F i l e f i l e = new F i l e (s t o r a g e) ;

/ / Check whe the r i t i s a r e a l / r e a d a b l e d i r e c t o r y o r n o t :
i f (f i l e . i s D i r e c t o r y () && f i l e . canRead () && (f i l e . l i s t F i l e s () . l e n g t h > 0)) {

/ / Add a l l t h e s u b d i r e c t o r y i n t h e E x t e r n a l S t o r a g e r o o t d i r e c t o r y :
i f (! s t o r a g e D i r e c t o r i e s . c o n t a i n s (f i l e)) {

s t o r a g e D i r e c t o r i e s . add (f i l e) ;
}

}
}

}
}
e l s e { / / on ly one s e c o n d a r y E x t e r n a l S t o r a g e . . .

f i n a l F i l e f i l e = new F i l e (s e c o n d a r y E x t e r n a l S t o r a g e D i r e c t o r i e s) ;

/ / Check whe the r i t i s a r e a l / r e a d a b l e d i r e c t o r y o r n o t :
i f (f i l e . i s D i r e c t o r y () && f i l e . canRead () && (f i l e . l i s t F i l e s () . l e n g t h > 0)) {

/ / Add a l l t h e s u b d i r e c t o r y i n t h e E x t e r n a l S t o r a g e r o o t d i r e c t o r y :
i f (! s t o r a g e D i r e c t o r i e s . c o n t a i n s (f i l e)) {

s t o r a g e D i r e c t o r i e s . add (f i l e) ;
}

}
}

}
e l s e {

i f ((s t o r a g e R o o t D i r e c t o r y != n u l l) && ! s t o r a g e R o o t D i r e c t o r y . e q u a l s (" ")) { / / t h e r e ’ s a p a r e n t d i r e c t o r y . . .
f i n a l F i l e s t o r a g e R o o t = new F i l e (s t o r a g e R o o t D i r e c t o r y) ;

/ / Check whe the r t h e r o o t s t o r a g e f o l d e r i s a r e a l / r e a d a b l e d i r e c t o r y o r n o t :
i f (s t o r a g e R o o t . i s D i r e c t o r y () && s t o r a g e R o o t . canRead () && (s t o r a g e R o o t . l e n g t h () > 0)) {

f i n a l F i l e [] f i l e s = s t o r a g e R o o t . l i s t F i l e s () ;

i f ((f i l e s != n u l l) && f i l e s . l e n g t h > 0) { / / t h e r e a c t u a l l y i s a t l e a s t one f i l e . . .
f o r (f i n a l F i l e f i l e : f i l e s) { / / f o r each f i l e i n t o t h e E x t e r n a l S t o r a g e r o o t d i r e c t o r y . . .

/ / Check whe the r i t i s a r e a l / r e a d a b l e d i r e c t o r y o r n o t :
i f (f i l e != n u l l && f i l e . i s D i r e c t o r y () && f i l e . canRead () && f i l e . l i s t F i l e s () . l e n g t h > 0) {

40 Developing a next-generation Mobile Security solution for Android

/ / Add a l l t h e s u b d i r e c t o r y i n t h e E x t e r n a l S t o r a g e r o o t d i r e c t o r y :
i f (! s t o r a g e D i r e c t o r i e s . c o n t a i n s (f i l e)) {

s t o r a g e D i r e c t o r i e s . add (f i l e) ;
}

}
}

}
}

}
}

Listing 3.7: Example of how to retrieve all the External Storage directories in Android. External Storage is an umbrella term under
which are grouped external SD cards and possible internal non-removable storages.

As before, once we retrieved the files directories - whether they are APK packages or other
files -, we call the proper method of our signatures matching engine (see Section 3.3.3) in
order to scan the files by comparing them with all the malware signatures in the signatures
database (see Chapter 3.3.1). However, in this case, we also need to check the actual file
type. Indeed, it might be an APK or a ZIP package, of which we want to extract and scan
the entries, or a standard/plain file, which can be scanned directly.

Figure 3.4: The threats report of the on-demand scanner of VirIT Mobile Security (see Figure 3.3). Before are listed the (malicious)
installed applications then the files in the External Storage. By tapping on a specific threat, an user can see more information about
that particular threat or signal it to the Anti-Malware Research Center of TG Soft (CRAM) as a (possible) false positive.

3.4.3 On-Install Scanner

Of course an on-demand scanner is not enough to give a proper layer of security, espe-
cially because it heavily depends on the user. Thus, we have decided to implement also
an on-install scanner (see Figures 3.6 and 3.5).

Paolo Rovelli 41

Due to platform design, in Android, it is not possible to interact with the installation pro-
cess.

As shown in Listings 3.8 and 3.9, when one tries to install an APK package from the

Figure 3.5: The on-install scanner of VirIT Mobile Security, which scans the applications before they are installed from the External
Storage. In the pictures, the on-install scanner detects the installation of the Trojan://Android/FakeMarket.A, which pretends to be the
Google Play store application but runs silently in the background to perform click fraud. (Rovelli, 2014; AndroTotal, 2014)

External Storage, it is actually possible to scan an application before it is installed.

< a c t i v i t y a n d r o i d : n a m e ="com . example . o n I n s t a l l P a c k a g e A c t i v i t y " a n d r o i d : l a b e l =" . . . " a n d r o i d : e x c l u d e F r o m R e c e n t s =" t r u e ">
< i n t e n t−f i l t e r >

< a c t i o n a n d r o i d : n a m e =" a n d r o i d . i n t e n t . a c t i o n . VIEW" / >
< c a t e g o r y a n d r o i d : n a m e =" a n d r o i d . i n t e n t . c a t e g o r y . DEFAULT" / >
< d a t a a n d r o i d : s c h e m e =" c o n t e n t " / >
< d a t a a n d r o i d : s c h e m e =" f i l e " / >
< d a t a andro id :mimeType =" a p p l i c a t i o n / vnd . a n d r o i d . package−a r c h i v e " / >

< / i n t e n t−f i l t e r >
< / a c t i v i t y >

Listing 3.8: (XML) Example of Activity to scan an application before it is installed, when it is installed from the SD Card.

p u b l i c c l a s s o n I n s t a l l P a c k a g e A c t i v i t y e x t e n d s A c t i v i t y {
/∗∗

∗ S t a r t up t h e A c t i v i t y .
∗
∗ @param s a v e d I n s t a n c e S t a t e i f t h e a c t i v i t y i s b e i n g re−i n i t i a l i z e d a f t e r p r e v i o u s l y b e i n g s h u t down
∗ t h e n t h i s Bundle c o n t a i n s t h e d a t a i t most r e c e n t l y s u p p l i e d i n o n S a v e I n s t a n c e S t a t e (Bundle) .
∗ Otherwise , i t i s n u l l .
∗ /

@Override
p r o t e c t e d vo id o n C r e a t e (Bundle s a v e d I n s t a n c e S t a t e) {

t r y {
/ / R e t r i e v e t h e l o c a l I n t e n t :
f i n a l I n t e n t l o c a l I n t e n t = g e t I n t e n t () ;

i f (l o c a l I n t e n t != n u l l) {
f i n a l Ur i l o c a l U r i = l o c a l I n t e n t . g e t D a t a () ;

i f (l o c a l U r i != n u l l) {
/ / R e t r i e v e t h e package d i r e c t o r y :

42 Developing a next-generation Mobile Security solution for Android

f i n a l S t r i n g appDi r = l o c a l U r i . g e t E n c o d e d S c h e m e S p e c i f i c P a r t () ;

[. . .] Scan t h e APK package [. . .]
}

}
}
c a t c h (Run t imeExcep t ion e) { . . . }

}
}

Listing 3.9: (Java) Example of Activity to scan an application before it is installed, when it is installed from the SD Card.

However, this is not possible when an application is installed from Google Play Store or
another third-party markets. All we can do is to register and handle the event that a new
application has been installed. Therefore, our on-install scanner will detect a malware
only after it has been installed. However, it should be able to detect it before it can do
harm.
In order to “hook” our scanner to the installation process, we create and register a Broad-

castReceiver for the PACKAGE_ADDED and ACTION_PACKAGE_REPLACED broad-
cast actions (see Listing 3.10). The first action is broadcasted every time a new application
package has been installed on the device, while the latter every time a new version of an
application package has been installed, replacing an existing version that was previously
installed.
Once the BroadcastReceiver is triggered, the information on the installed package are ex-
tracted and a scan on the APK package is performed (see Listing 3.11).

< r e c e i v e r a n d r o i d : n a m e ="com . example . o n I n s t a l l B r o a d c a s t R e c e i v e r " a n d r o i d : e x p o r t e d =" f a l s e ">
< i n t e n t−f i l t e r a n d r o i d : p r i o r i t y =" 1000 ">

< a c t i o n a n d r o i d : n a m e =" a n d r o i d . i n t e n t . a c t i o n .PACKAGE_ADDED" / >
< a c t i o n a n d r o i d : n a m e =" a n d r o i d . i n t e n t . a c t i o n . ACTION_PACKAGE_REPLACED" / >
< d a t a a n d r o i d : s c h e m e =" package " / >

< / i n t e n t−f i l t e r >
< / r e c e i v e r >

Listing 3.10: (XML) Example of BroadcastReceiver that handles the on-install event, thanks to the PACKAGE_ADDED and AC-
TION_PACKAGE_REPLACED broadcast actions. The first action is broadcasted every time a new application package has been
installed on the device, while the latter every time a new version of an application package has been installed, replacing an existing
version that was previously installed.

p u b l i c c l a s s o n I n s t a l l B r o a d c a s t R e c e i v e r e x t e n d s B r o a d c a s t R e c e i v e r {
/∗∗
∗ R e c e i v i n g an I n t e n t b r o a d c a s t .
∗
∗ @param c o n t e x t t h e C o n t e x t i n which t h e r e c e i v e r i s r u n n i n g .
∗ @param i n t e n t t h e I n t e n t b e i n g r e c e i v e d .
∗ /

@Override
p u b l i c vo id onRece ive (C o n t e x t c o n t e x t , I n t e n t i n t e n t) {

S t r i n g a c t i o n = i n t e n t . g e t A c t i o n () ;

i f (a c t i o n . e q u a l s (I n t e n t . ACTION_PACKAGE_ADDED) | | a c t i o n . e q u a l s (I n t e n t . ACTION_PACKAGE_REPLACED)) {
/ / R e t r i e v e t h e i n s t a l l e d / u p d a t e d package :
f i n a l S t r i n g appPackage = i n t e n t . g e t D a t a () . g e t E n c o d e d S c h e m e S p e c i f i c P a r t () ;

[. . .] Scan t h e APK package [. . .]
}

}
}

Paolo Rovelli 43

Listing 3.11: (Java) Example of BroadcastReceiver that handles the on-install event, thanks to the PACKAGE_ADDED and AC-
TION_PACKAGE_REPLACED broadcast actions. The first action is broadcasted every time a new application package has been
installed on the device, while the latter every time a new version of an application package has been installed, replacing an existing
version that was previously installed.

Figure 3.6: The on-install scanner of VirIT Mobile Security, which scans the applications at installation. In the picture on the right, the
on-install scanner detects the installation of the Trojan://Android/FakeMarket.A, which pretends to be the Google Play store application
but runs silently in the background to perform click fraud. (Rovelli, 2014; AndroTotal, 2014)

3.4.4 On-Access Scanner

In order to complete the layer of security provided by our mobile antivirus, we decided to
introduce a last scanner: an on-access scanner (see Figure 3.7). This automatically scans
the files in the External Storage at creation and at any subsequent modification. The ben-
efits/limits of such a scanner are the same discussed in Section 3.4.2 for the on-demand
scanner on the External Storage.
In Android it is possible to use the FileObserver class to monitor the files into a specific
directory. This is based on the Linux inotify files change notification system. Events will
be triggered when a file is accessed or changed by any process on the device. (The An-
droid Open Source Project, 2013k)
In particular, between all the events that will be triggered by the FileObserver, we are in-
terested by the CREATE event, triggered when a new file or subdirectory is created under
the monitored directory, and by the MODIFY and/or CLOSE_WRITE events, which are
respectively triggered when data are written to a file under the monitored directory and
when someone had a file or directory open for writing and closed it (See Listing 3.12).

44 Developing a next-generation Mobile Security solution for Android

A FileObserver instance monitors only the (first-level) files and subdirectories inside a
given directory. However, the sub-files and sub-subdirectories recursively contained into
the subdirectories are not monitored. Therefore, we need to extend the FileObserver class
in order to (recursively) monitor also the file in the subdirectories. Alternatively, it is pos-
sible to instantiate a FileObserver for each directory and recursively for their subdirectory
in the External Storage. In any case, as shown in Listing 3.12, when a new directory is
created into a monitored directory, we need to add it to the monitored directories.

/ / I n s t a n t i a t e and r e g i s t e r t h e F i l e O b s e r v e r :
MyFi l eObse rve r f i l e O b s e r v e r ;
f i l e O b s e r v e r . s t a r t W a t c h i n g () ;

p r i v a t e c l a s s MyFi l eObse rve r e x t e n d s F i l e O b s e r v e r {
p r i v a t e s t a t i c f i n a l i n t mask = F i l e O b s e r v e r . ALL_EVENTS ;
p r i v a t e S t r i n g p a t h ;

/∗∗
∗ C l a s s C o n s t r u c t o r .
∗
∗ @param d i r e c t o r y t h e d i r e c t o r y t o be m o n i t o r e d / o b s e r v e d .
∗ /

p u b l i c E x t e r n a l S t o r a g e O b s e r v e r (S t r i n g d i r e c t o r y) {
s u p e r (d i r e c t o r y , mask) ;

t h i s . p a t h = d i r e c t o r y ;
}

/∗∗
∗ A c o n t e n t change o c c u r s .
∗
∗ @param e v e n t t h e e v e n t code (e . g . F i l e O b s e r v e r . CREATE, F i l e O b s e r v e r . CLOSE_WRITE or F i l e O b s e r v e r . MODIFY) .
∗ @param f i l e D i r t h e d i r e c t o r y o f t h e m o d i f i e d f i l e .
∗ /

@Override
p u b l i c vo id onEvent (i n t even t , S t r i n g f i l e D i r) {

i f (f i l e D i r == n u l l) {
r e t u r n ;

}

f i n a l S t r i n g f i l e A b s o l u t e D i r = t h i s . p a t h + " / " + f i l e D i r ;

/ / Check whe the r a new f i l e was c r e a t e d under t h e m o n i t o r e d d i r e c t o r y :
i f ((F i l e O b s e r v e r . CREATE & e v e n t) != 0) {

f i n a l F i l e f i l e = new F i l e (f i l e A b s o l u t e D i r) ;

/ / Check whe the r t h e f i l e i s a d i r e c t o r y :
i f (f i l e . i s D i r e c t o r y ()) {

[. . .] Add t h e new d i r e c t o r y t o t h e m o n i t o r e d d i r e c t o r i e s [. . .]
}
e l s e {

i f (f i l e . l e n g t h () > 0) {
[. . .] Scan t h e new f i l e [. . .]

}
}

}

/ / Check whe the r d a t a was w r i t t e n t o a f i l e :
i f ((F i l e O b s e r v e r . CLOSE_WRITE & e v e n t) != 0) {

f i n a l F i l e f i l e = new F i l e (f i l e A b s o l u t e D i r) ;

i f (! f i l e . i s D i r e c t o r y () && f i l e . l e n g t h () > 0) {
[. . .] Scan t h e m o d i f i e d f i l e [. . .]

}
}

[. . .]

Paolo Rovelli 45

}
}

Listing 3.12: Example of FileObserver used to monitor the files into a specific directory. Events will be triggered when a file is
accessed or changed by any process on the device. In particular, between all the events that will be triggered by the FileObserver, we
are interested by the CREATE event, triggered when a new file or subdirectory is created under the monitored directory, and by the
MODIFY and/or CLOSE_WRITE events, which are respectively triggered when data are written to a file under the monitored directory
and when someone had a file or directory open for writing and closed it.

Since many Android applications use to save log files (and edit them frequently), the
on-access scanner will continuously scan all these log files at any modification, resulting
in an intensive use of the CPU and a consequent quick discharge of the device battery.
A possible solution to this problem may be the one of keeping a queue of the recently
scanned files in order to prevent that a file is scanned twice or more in a reduce amount of
time. However, this may lead not to scan a malicious file properly because it is changed
twice in the same “time-frame”.

Figure 3.7: The on-access scanner of VirIT Mobile Security, which scans the files in the External Storage at creation and any
modification. In the picture on the right, the on-access scanner detects that the Trojan://Android/SpySMS.A has been written in the
External Storage (precisely in the SD Card root directory: /storage/sdcard).

3.5 Evaluation

In order to see the real effectiveness of an antivirus software, we want to test its robustness
as well as its resilience (Hawes, 2013). With the term robustness we mean the ability of
our solution to prevent Android malware from penetrating a device at all. On the other

46 Developing a next-generation Mobile Security solution for Android

Mobile Security solution TP Detection Rate
AV-1 132 89.19%
AV-2 122 82.43%
AV-3 146 98.65%
AV-4 138 93.24%
VirIT 142 95.95%

Table 3.1: Results of the robustness experiments on VirIT Mobile Security. With the term robustness we mean the ability of our
solution to prevent Android malware from penetrating a device at all. In the table, for all the antivirus solutions tested, we point out the
True Positives (TP) (i.e. the number of malware detected out of a total of 148 malware on the device) and the corresponding detection
rate.

hand, with the term resilience we mean the ability of our solution to recover from zero-
day or next-generation malware which do manage to get installed into a device.
In this section we present the results of the robustness test, while in Section 6.5 we present
the results of the resilience test.
It is important to understand that such an experiment is definitely not to be considered
complete in order to state the robustness of our solution. Indeed, the dataset we used was
rather too small to asses the overall robustness of VirIT Mobile Security solution. How-
ever, it can give a rough idea.

3.5.1 Environment

In order not to be bias and to make an effective real-world protection test, we decided to
separately collect a dataset from various web sources and markets. We have collected a
total of 1200 samples.
In order to estimate the approximate number of benign and malicious applications in the
dataset, we scan the dataset with four different antivirus solutions. We find out that our
dataset was composed by 148 malicious applications, of which 125 were detected by at
least two antiviruses and 23 were detected by only one antivirus (no matter which one),
and 1052 applications considered benign - i.e. not detected by anyone of the antivirus.
Of course, in order to perform a real-world protection test, we did not study further these
malicious applications nor we add their signatures to our signatures database.

3.5.2 Results

After collecting the samples, we start installing them on an Android emulator in which
VirIT Mobile Security was already installed.

As showed in Table 3.1 Figure 3.8, the on-install scanner successfully detects and re-

Paolo Rovelli 47

moves 142 malicious applications, 123 of those labelled as malicious by at least two
antiviruses and 19 of those labelled as malicious by only one antivirus. That means a
detection rate of 95.95%.
Even if the results were good, it is important to note that a robustness test such as this

Figure 3.8: Testing the robustness of the signature-based detection system in VirIT Mobile Security. With the term robustness we
mean the ability of our solution to prevent Android malware from penetrating a device at all. We tested VirIT Mobile Security with a
dataset of 1200 samples, 148 labelled as malicious applications and 1052 labelled as benign ones.

one it is not enough to state the real protection provided by a mobile security solution.
Indeed, such a test shows only the malware detection rate of the different antivirus in a
particular moment in time. But, what about the next days/months/years? And, above all,
what about the malware that were not detected? We address these and other questions in
Section 6.5, were we actually evaluate the complete VirIT Mobile Security solution rather
than only its signature-based detection system.

3.6 Conclusion

In this chapter we have introduced the malware detection problem and presented a signature-
based detection solution specifically designed for Android.
Our signature matching engine has proven effective, being able to detect 95.95% of the
malware in our test. However, signature-based detection systems, like most of the exist-
ing security systems, are reactive approaches. This means that a malware has to infect a
device before it is identified and, in turn, properly blocked/removed.
Clearly, in order to have a strong detection, we cannot exclusively rely on signatures. We

48 Developing a next-generation Mobile Security solution for Android

need to have a second detection mechanism that works alongside the signature-based de-
tection in order to spot zero-day or next-generation malware as they emerge. This kind of
approach is known as proactive approach.
We introduce this second kind scanners in Chapter 5 (heuristic) and in Section 6.4 (be-
havioural detection).

49

Chapter 4

Implementing a Real-Time Monitor in
Android

In this chapter we introduce the Android real-time malware detection problem (see Sec-
tion 4.1) and we discuss different possible solutions, with their benefits and drawbacks
(see Section 4.2).

4.1 Introduction

In Android, as shown in Chapter 3, it is possible to develop an on-demand scanner (see
Section 3.4.2) and an on-install scanner (see Section 3.4.3) for Android applications.
However, the layer of security provided by these two scanners might not be enough, es-
pecially if a user does not perform complete scans often enough.
For example, we can think about the unlucky but recurrent situation in which a zero-day
or next-generation malware - i.e. a malicious application which is not detected by the
antivirus - does manage to get installed into a device. Now, even if the malware eventu-
ally arrives to the security firm which develops the antivirus (see Section 6.4), a proper
signature of the malware is extracted and the antivirus is actually up-to-date, the malware
will not be detected and, thus, removed until an on-demand scan will be performed.
Besides unacceptable, since it exposes the user to the risk of an extended infection, this
is clearly caused by the fact that we did not implement a real-time detection/protection
mechanism. Furthermore, an extended infection is even more dangerous in the mobile
space, where malware may have the ability to send SMS messages and/or to perform
phone calls (see Section 2.2.2), resulting in high financial losses for the user.

50 Developing a next-generation Mobile Security solution for Android

Unfortunately, at present, there is no framework-provided way to register a callback when
an application is launched/run and, thus, to develop a real-time scanner for Android appli-
cations. However, some possible workarounds can be used in order to provide a real-time
protection for the user.

4.2 Design and Implementation

In this section we discuss several different possible real-time detection mechanism.
First we present two solutions which are currently used by some commercial mobile se-
curity products, i.e. the on-execution scanner (Section 4.2.1) and the on-update scanner

(Section 4.2.2), of which we actually implemented only the second one. Afterwards, we
propose a novel concept known as “live scanner” and we discuss a possible design for a
cloud scanner.

4.2.1 On-Execution Scanner

One possible solution to provide a real-time protection is the one of scanning the running
applications recursively, every once in a while.
In Android, indeed, it is possible to schedule an application to be run at some point in the
future thanks to AlarmManager. Basically, we can set up an AlarmManager and, when
the alarm goes off, a registered Intent is broadcast by the system, automatically starting
the target application if it is not already running. (AlarmManager, 2013)
Thus, using AlarmManager, we can set up a Service, to be run every 5 or 10 minutes, in
order to retrieve and scan the running applications.
Retrieving the list of applications currently running on an Android device - whether they
are user or system applications - is possible using the ActivityManager class, through
which is also possible to interact with the overall activities running in the system. (The
Android Open Source Project, 2013a)
As shown in the Listing 4.1, in order to retrieve the list of running applications, one needs
to call the getRunningAppProcesses() method of the ActivityManager class. The method
returns a list of RunningAppProcessInfo objects. Each of these objects represents a run-
ning application process, from which we can retrieve many useful information, such as
the process name, its pid and all the packages that have been loaded into the process. (The

Paolo Rovelli 51

Android Open Source Project, 2013b)

f i n a l A c t i v i t y M a n a g e r a c t i v i t y M a n a g e r = (A c t i v i t y M a n a g e r) c o n t e x t . g e t S y s t e m S e r v i c e (A c t i v i t y . ACTIVITY_SERVICE) ;
f i n a l L i s t < A c t i v i t y M a n a g e r . Runn ingAppProcess In fo > runningApps = a c t i v i t y M a n a g e r . g e t R u n n i n g A p p P r o c e s s e s () ;

i f (runn ingApps != n u l l) {
f o r (f i n a l A c t i v i t y M a n a g e r . Runn ingAppProces s In fo runningApp : runn ingApps) {

f i n a l S t r i n g processName = runningApp . processName ;
f i n a l i n t p r o c e s s P I D = runningApp . p i d ;
f i n a l S t r i n g [] appPackages = runningApp . p k g L i s t ;

. . .
}

}

Listing 4.1: Example of how to retrieve the list of running applications in Android. The getRunningAppProcesses() method of the
ActivityManager class returns a list of RunningAppProcessInfo objects. Each of these objects represents a running application process.

Of course, the main advantage of this solution is that (with a low enough time frame be-
tween one scan and the next one) it really provides a real-time protection. Indeed, after
the mobile security is updated with a proper signature of a previously unknown malware,
the latter will be detected, and thus removed, as soon as it will be executed (that is imme-
diately if it is already running).
However, this solution is not designed taking into account the particular Android archi-
tecture and, therefore, it has many drawbacks. First of all, running a Service constantly
(or anyway that often) is both CPU and battery expensive. Furthermore, most of the scans
performed will actually be useless. Indeed, assuming that an on-install scanner is cor-
rectly working on the device (see Section 3.4.3), the installed application packages will
not be changed from one “on-execution” scan to the next one (see Chapter 3.3.3). Or, in
other words, if an application is not detected in a first scan it will not be detected in a
second one either, and so on so forth until the signatures database will be updated.
The number of applications scanned at every on-execution scan can be significantly re-
duced. For example, one can keep a queue of the recently scanned applications in order
to prevent that an application is scanned twice or more in a reduce amount of time. Of
course, in order to properly re-scan applications after they have been updated, a signature
of the application (such as the MD5 or SHA-256 hash) should be stored. Finally, in order
to provide real-time protection, the queue of the recently scanned applications should be
cleaned after every update of the signatures database. However, also with these improve-
ments, an on-execution scanner will still perform more scans than the one actually needed.

52 Developing a next-generation Mobile Security solution for Android

4.2.2 On-Update Scanner

As we stated, an on-execution scanner introduces a lot of redundancy, or in other words it
performs more scans than the one needed. Indeed, a scan should be performed only when
the malware signatures actually change. Therefore, a more efficient solution is the one of
scanning all the installed applications automatically after every update of the signatures
database.
After every update of the malware signatures of our mobile security, we can launch a scan
on the installed applications. The list of applications currently installed on an Android
device - whether they are user or system applications - can be easily retrieved as shown
in Section 3.4.2.
As well as the on-execution scanner, also this solution provides a real-time protection.
Indeed, a previously unknown malware will be removed as soon as the Mobile Security
will be updated with a proper signature of the malware.
However, the performance of this solution clearly depends on the number of updates re-
leased per day/week. Generally speaking, in a situation of no more than one update a
day, an on-update scanner would be less CPU and battery expensive than an on-execution

scanner. Indeed, even if an on-update scan is performed on all the installed applications,
this is performed only when new malware signatures are actually available and, thus, pre-
viously unknown malware can now be detected.
The main drawback of this solution is that the more updates will be released, the more
CPU and battery expensive the scanner will be. In a situation in which several small up-
dates a day are released, which should be the best strategy in a security prospective, the
performance of an on-update scanner will be much worst than the one of an on-execution
scanner.
In order to guarantee the maximum effectiveness being the less resource-intensive as pos-
sible, in VirIT Mobile Security, we opt for an on-update scanner which performs a “fast
scan” - only the dex files are scanned (see Section 3.3.3) - on all the installed applications
(see Figure 3.6).

4.2.3 Live Scanner

As we stated, the performance of an on-update scanner will be good as long as we do
not release more than one update every second day or, at most, every day. In order to
tackle the real-time protection problem and to improve the performance of the on-update

scanner in situations of multiple updates a day, we have designed a novel concept known
as “live scanner”.

Paolo Rovelli 53

Basically, given an amount of N installed applications, after every update of the signa-
tures database, we randomly select a small percentage of the N installed applications
(such as the 5 or 10%) and scan it. Of course, there is no certainty that, even if a mali-
cious application is installed on the device, it will actually be selected to be scanned.
Given N the total number of installed applications and knowing that one and only one of
them is malicious, the probability of selecting the malicious application in one extraction
is:

p =
1

N

Then, the probability of selecting one in k random extractions (rounds) is:

P [selecting_the_malware_in_k_rounds] =

= P [not_selecting_all_benign_apps_in_k_rounds] = 1− (1− p)k ' 1− e−pk

That, if N is equal to 100 (installed applications) and k is equal to 10 (we randomly select
the 10% of them), is:

p =
1

100
= 0.01

P [selecting_the_malware_in_k_rounds] = 1−(1−p)10 = 1−(99
100

)10 ≈ 0.0956 ≈ 9.56%

Thus, having 100 installed applications, if we consider to extract and scan the 10% of
them after every update, we will approximately have the 9.56% of probability to detect
the malware at each update.
In order to have at least 1 − ε probability of selecting the malware, we must set the vari-
able k such that:

1− e−pk ≥ 1− ε

Which implies that:

−pk ≤ log(ε)

Or, in other words, that:

54 Developing a next-generation Mobile Security solution for Android

k ≥ 1

p
log(

1

ε
)

Thus, if we want to have a probability of at least 50% of selecting the malware:

k ≥ 1

p
log(2)

That, if N is equal to 100, is:

k ≥ 100 log(2)⇔ k ≥ 69.3147

Thus, in order to have a probability of about 50% of selecting the malware, we need to
select approximately the 68-69% of the total amount of installed applications. This is a
quite high amount given our initial motivation.
However, in all these calculation, we did not take into account several factors. First of all,
we designed the live scanner in order to handle multiple updates per day without com-
promising the resource as it would happen with an on-update scanner. Thus, we assume
we are in a situation in which the live scan will be repeated many times a day and, ac-
cordingly, the likelihood of selecting the malware should increase at each scan. Hence,
theoretically, having around 25% of likelihood for a single scan should be good enough.
Indeed, which such a probability we should already be able to “catch” the malware after
few updates/scans. Furthermore, the likelihood of selecting at least a malware is dramati-
cally higher in the situation in which there is more than one in the device.

4.2.4 Cloud Scanner

An even better workarounds, completely different from all the previous one, is the one
of storing all the applications installed in a device remotely on a web server and scan
them through a cloud scanner. (Oberheide, Cooke, & Jahanian, 2007, 2008; Martignoni,
Paleari, & Bruschi, 2009)
A cloud scanner has several advantages, first of which the fact that it is not subjected to
the Android architecture design/limitations. Thus, with a cloud scanner we can perform
a more accurate analysis, eventually resulting in a higher detection rate. A second main
advantage is the fact that most of the resources are not spent on the device itself, and this
in turn improve the battery lifetime.

Paolo Rovelli 55

However, developing a cloud scanner for a mobile device poses two main issues: we can-
not trust the mobile devices to be connected round-the-clock and we should take care of
using as less network traffic as possible.

Figure 4.1: A possible cloud scanner implementation is the one of dividing the so called Cloud Device Simulator (CDS), which will
contain the virtual representations of the subscribed devices, and the Cloud App Repository (CAR), which will contain all the APK
packages of known Android applications. Basically, a CDS instance contains the list of references of the applications installed on the
real device at any moment in time. The scanner will scan all the applications installed by each CDS instance, retrieving the actual
APK packages from the CAR. When a malware is detected on a CDS instance, this will be immediately reported to the corresponding
real device.

For example, a possible design for mobile space, that should work alongside a local (on-
device) mobile security application, is the one of developing a Cloud Device Simula-
tor (CDS) and a Cloud App Repository (CAR). The CDS will contain one instance for
each subscribed device. A CDS instance represents a virtual model of the device. Basi-
cally, a CDS instance contains the list of all the applications installed in the device at any
moment in time. However, this is just a list of references (e.g. MD5 or SHA-256 hashes).
On the contrary, the actual APK packages and their behaviours (e.g. benign, malicious or
unknown) are all stored into the CAR, which is basically a database of all the known An-
droid application. In this way we can eliminate duplicate APK package transfer, storing
and analysis.
When a user install or uninstall an application, the local mobile security application sig-
nals this event to the CDS. In particular, in the case of the installation of an unknown ap-
plication - an application that has not been encountered before and, thus, it is not present

56 Developing a next-generation Mobile Security solution for Android

into the Cloud App Repository -, the CDS will ask to the local mobile security application
to upload also the actual APK package to the CAR.
On the server, of course, all the applications installed by each CDS instance will be
scanned at least after every malware signatures update. The scanner will retrieve the
actual APK packages from the CAR.
Since, as already said, a cloud scanner has the advantage of not being subjected to the
Android architecture design/limitations, ideally, we can also take advantage of dynamic
analysis and sandboxes.
If the cloud scanner, at some point, detects a malware installed on a CDS instance, this
will be immediately reported to both the CAR and the corresponding real devices.
As already said, one issue of a cloud scanner for mobile devices is the overall network
traffic generated. In the presented cloud scanner, it should be clear that the more sub-
scribed devices the CDS has and the more likely will be that an application has already
been uploaded into the Cloud App Repository. However, it is possible to lighten further
the network traffic required by each device, for example, by using web services that run
on the CAR server and continuously download new Android applications from various
sources, such as: Google Play Store, third-party markets (see Section 2.1.3) and other
websites.

4.3 Evaluation

In this section we discuss the effectiveness (i.e. detection rate on the known malware)
and the maximum infection time frame (i.e. the maximum number of days a malware will
last after a proper malware signature update has been released) of the discussed solutions.
This is because, these two values are the ones that shows if our solution is actually able to
detect malware in real-time.
As shown in Table 4.1, weekly and daily scans cannot be considered real-time detection
mechanisms. Indeed, even if their detection rate on the known malware is 100%, they
expose the user to remain infected for a period of time up to 7 and 1 day/s, respectively.
Also the on-execution scanner does not guarantee that a malware, which managed to get
installed into the device, will be removed immediately after a proper signature is released.
However, it provides a reasonably enough real-time protection, since the malware will be
detected, and thus removed, the first time it will be executed (assuming it will not be in
execution for less than the time frame between one on-execution scan and the next one).
Both the on-update scanner and the cloud scanner guarantees a real-time protection. In-

Paolo Rovelli 57

Resource-Intensive Redundancy Effectiveness Maximum Infection
Time Frame [days]

Weekly Scan No No 100% 7

Daily Scan Yes No (≤ 1 update/day) 100% 1Yes (> 1 update/day)

On-Execution Scanner Yes Yes 100% *The first time the
malware will be executed

On-Update Scanner No (< 1 update/day) No 100% 0Yes (≥ 1 update/day)

Live Scanner No No
< 100%* ≥ 0*

*Depending on *Depending on

the configuration the configuration

Cloud Scanner No No 100% 0

Table 4.1: An overview of the presented real-time protection mechanisms. For each model, it is shown: whether it requires significant
system resources or time (i.e. resource-intensive), whether it performs more scans than the ones needed (i.e. redundancy), the detection
rate on the known malware (i.e. effectiveness) and the maximum number of days a malware will last after a proper malware signature
update has been released (i.e. maximum infection time frame).

deed, a malware which managed to get installed into the device will be removed as soon
as a proper signature will be released.
Finally, since both the effectiveness and the maximum infection time frame of the live

scanner depends on how it is configured, we decided to run some evaluation tests in order
to asses them (see Secitons 4.3.1 and 4.3.2).

4.3.1 Environment

In order to evaluate the efficiency of the live scanner, we simulate a real device with a total
number of 265 applications, of which 215 system applications and 50 user applications
respectively. Then, we run different simulations on it in order to see how long zero-day or
next-generation malware will last on the device after a proper update has been released.
Therefore, in our experiments, we assume that:

• One or more next-generation malware have been previously installed on the device;

• We have received the samples of those malware and updated the signatures database
of our mobile security;

• The mobile security is up-to-date.

Moreover, we decided to test 5 different configurations of the live scanner, 10 to 50% of
the installed applications, increasing with steps of 10%. Therefore, respectively: 27, 53,
80, 106 and 133 distinct applications will be selected after each update of the signatures
database.

Our simulation continuously scan the device with the live scanner, keeping trace of
how many scans are needed in order to detect the presence of the malicious applica-

58 Developing a next-generation Mobile Security solution for Android

Figure 4.2: Live Scanner: Number of updates needed to catch one malware in the 100.000 simulations with the configuration of the
live scanner at 20%. In a situation in which we release one update a day, this is equal to the number of days needed to catch one
malware. The complete results are shown in Table 4.2.

tions. These, in turn, will be the number of updates needed before the zero-day or next-
generation malware is actually detected.
We run the simulation 100.000 times and, then, we calculate the average of scans needed

and the highest number as well. Furthermore, we run the simulation for different weights
- i.e. different number of malicious applications in the device.

4.3.2 Results

In Table 4.2, and in Figures 4.3 and 4.4, are shown the results for the average and worst
case.
In average, having only one next-generation malware installed on the device and setting
the live scanner in order to scan the 10% of the installed application, the live scanner needs
about 10 updates before catching the malware. This is absolutely too much. By setting
the live scanner at 20% (see Figure 4.2), we reduce this number at about 5 updates. This
means that, even releasing only couple of updates per day, we will need less than three
days to properly detect the malware presence. By setting the live scanner at 30%, we are
able to catch the malware after about 3 updates, which seems a perfect compromise.
As we expected, the results are even better if more than one malware is installed on the
device. Furthermore, in case one malware is found by the live scanner, a user might decide
to launch a full scan (we might also design the live scanner in order to suggest this or to
do it automatically).
However, if we look at the worst case (see Table 4.2), the results are not so good. Indeed,

Paolo Rovelli 59

Number of malware Number of scanned Number of updates (average / worst case) needed to catch
in the device applications 1 malware 2 malware 3 malware 4 malware 5 malware

1 malware

10% 10.16 / 113 - - - -
20% 4.99 / 46 - - - -
30% 3.35 / 32 - - - -
40% 2.49 / 22 - - - -
50% 2.01 / 17 - - - -

2 malware

10% 5.33 / 57 10.70 / 65 - - -
20% 2.76 / 30 5.56 / 40 - - -
30% 1.97 / 20 3.94 / 20 - - -
40% 1.56 / 11 3.13 / 17 - - -
50% 1.33 / 9 2.67 / 14 - - -

3 malware

10% 3.75 / 42 7.47 / 57 11.21 / 53 - -
20% 2.03 / 19 4.9 / 22 6.13 / 27 - -
30% 1.52 / 11 3.05 / 16 4.57 / 17 - -
40% 1.27 / 8 2.54 / 9 3.82 / 13 - -
50% 1.14 / 7 2.28 / 8 3.43 / 9 - -

4 malware

10% 2.95 / 29 5.89 / 34 8.82 / 47 11.77 / 52 -
20% 1.69 / 13 3.37 / 18 5.06 / 19 6.75 / 21 -
30% 1.32 / 9 2.64 / 13 3.94 / 16 5.27 / 18 -
40% 1.15 / 7 2.29 / 8 3.44 / 10 4.58 / 12 -
50% 1.07 / 4 2.14 / 7 3.20 / 8 4.26 / 10 -

5 malware

10% 2.46 / 23 4.94 / 28 7.40 / 32 9.85 / 35 12.32 / 45
20% 1.48 / 10 2.96 / 13 4.45 / 16 5.92 / 18 7.41 / 21
30% 1.20 / 6 2.40 / 9 3.61 / 12 4.81 / 13 6.01 / 15
40% 1.08 / 6 2.16 / 7 3.25 / 9 4.33 / 9 5.41 / 11
50% 1.03 / 4 2.06 / 5 3.09 / 6 4.13 / 8 5.16 / 9

Table 4.2: Results of the live scanner experiments. In order to evaluate the efficiency of the live scanner, we simulate a real device
with a total number of 265 installed applications. We set the live scanner in order to scan 10, 20, 30, 40 and 50% of the application
after every update respectively. Then, we run the simulation 100.000 times and, finally, we calculate the average (approximated) and
the highest number of scans/updates needed to catch the malware. In a situation in which we release one update a day, this is equal to
the number of days needed to catch one malware.

Figure 4.3: Live Scanner: Average number of updates/scans needed to catch at least one malware in relation to the percentage of
application scanned for each update. The various lines show the number of malware in the device, from 1 (blue line) to 5 (light blue
line). In a situation in which we release one update a day, the number of updates is equal to the number of days needed to catch one
malware. The complete results are shown in Table 4.2.

with only one next-generation malware installed, even setting the live scanner at 50%
there has been a simulation in which the live scanner needed 17 updates in order to detect

60 Developing a next-generation Mobile Security solution for Android

the malware presence. By setting the live scanner at 30%, the registered worst case was
32 updates. This means that, even releasing five updates per day, we will need roughly
one week to detect the malware presence. That is clearly not an option.

Figure 4.4: Live Scanner: Highest number of updates/scans needed to catch at least one malware in relation to the percentage of
application scanned for each update. The various lines show the number of malware in the device, from 1 (blue line) to 5 (light blue
line). In a situation in which we release one update a day, the number of updates is equal to the number of days needed to catch one
malware. The complete results are shown in Table 4.2.

4.4 Related Work

As already stated, there is surprisingly little research on the Android real-time protection
problem.
As far as we know, nowadays, only one commercial mobile security solution offers an on-

execution scanner (Section 4.2.1), while there are couple of commercial mobile security
solutions which actually offer an on-update scanner (Section 4.2.2). Most of the others
mobile security solutions on the market seem to rely only on weekly scans.
On the other hand, most of the academic literature has been focused on cloud scanners.
Examples of these scanners are ThinAV (Jarabek, Barrera, & Aycock, 2012) and Paranoid

Android (Portokalidis, Homburg, Anagnostakis, & Bos, 2010).
ThinAV, proposed by Jarabek et al., is a cloud-based antivirus solution for Android that
uses pre-existing web-based scanning services for malware detection. The main advan-
tages of ThinAV is that it is a cheap and lightweight solution, and it does not generate an

Paolo Rovelli 61

excessive network traffic. However, it suffer of a main drawback: it needs to modify the
Android architecture and, thus, it cannot be installed directly on an Android device as an
application.
Paranoid Android, proposed by Portolakidis et al., is a cloud security architecture where
analysis are performed on remote servers that host replicas of the mobile devices in vir-
tual environments. Also Paranoid Android does not generate an excessive network traffic.
The authors have shown that, even during periods of high activity (e.g. browsing), the
transmission overhead can be kept well below 2.5KiBps.
Both ThinAV and Paranoid Android are related to the possible cloud scanner implementa-
tion proposed in Section 4.2.4. Indeed, even if our implementation was primarily designed
in order to handle the real-time detection problem, the architectures of both ThinAV and
Paranoid Android are somehow similar to the ours. Furthermore, in Paranoid Android,
the authors use synchronised replica of real devices which, even if different in design and
implementation, is a similar concept of our Cloud Device Simulator (CDS) instances.

4.5 Conclusion

In this chapter we have introduced the Android real-time malware detection problem and
we have discussed four different possible solutions. All the discussed solutions have their
own benefits and drawbacks.
The on-execution scanner provides a reasonable enough real-time protection. However,
this solution introduces a lot of redundancy (i.e. it perform more scans than the ones
needed) and, as a consequence, it is resource-intensive (it requires significant system re-
sources or time).
The on-update scanner guarantees that previously unknown malware will be removed as
soon as the mobile security will be updated with proper signatures. However, the per-
formance of this solution depends on the number of updates released per day/week. The
more updates will be released, the more resource-intensive the scanner will be.
The live scanner has shown to be a feasible alternative to the on-update scanner in sit-
uations of multiple updates a day, but it needs to be improved. At present, in a worst
case perspective, the only feasible configuration with no more than 5 updates a day is to
scan the 50% of the installed applications. As already stated, a good and easy first im-
provement should be the one of scanning the remaining installed applications in case one
malware is found.
Finally, the cloud scanner has shown to be the overall best solution, even if the more

62 Developing a next-generation Mobile Security solution for Android

expensive one to develop. As already stated, the proposed solution should be designed to
work alongside a local (on-device) mobile security application, in order to provide real-
time protection as well as to increase the detection capabilities and to reduce the resource
requirements.

63

Chapter 5

PMDS: Permission-based Malware
Detection System for Android

In this chapter we propose a novel Android malware detection technique, called Permission-
based Malware Detection System (PMDS), which has been later integrated into VirIT
Mobile Security (see Figures 5.3, 5.1 and 5.4) in order to provide heuristic detection on
zero-day or next-generation malware which are not detected by the signature-based de-
tection system (see Chapter 3).
Experimental results show that our PMDS was able to detect more than 94% of previously
unseen malware.

5.1 Introduction

In order to provide the best protection possible for the end user, we have to take advantage
of everything. However, if we want to improve the state-of-the-art of mobile security, we
cannot restrict our work in just catching/spotting “bugs” in malware implementation.
For example, we can (and should) take advantage of the typical patterns of SMS messages
used by botnets, or of the typical code mistakes that malware authors make in Android
applications (e.g. declaring a permission twice in the AndroidManifest.xml file or set the
priority of an intent-filter at more than the maximum permitted value - i.e. 1000). How-
ever, bypassing these kinds of rule-based detection is pretty simple for cyber-criminals,
since they just need to change the patterns their botnets use or have a better look at the
Android API.
Therefore, we also need to seek the “flows” in malware implementation. Because these

64 Developing a next-generation Mobile Security solution for Android

Figure 5.1: The Privacy Advisor of VirIT Mobile Security, which makes use of the PMDS rule-based (RIPPER) classifier in or-
der to retrieve and display the potentially dangerous applications installed on the device. As shown in the picture on the right,
an application can be manually whitelisted (so that it will not display as potentially dangerous in future scans), scanned with the
on-demand scanner (see Section 3.4.2) and/or sent to the Anti-Malware Research Center of TG Soft (CRAM) for the analysis. In
the picture at the centre, the Privacy Advisor reports both the Trojan-Spy://Android/Wapsx.A (the first of the list) and the Trojan-
SMS://Android/FakeFlappyBird.A (the second of the list) as possibly dangerous.

are the main limitations a cyber-criminal might not be able to work around. For exam-
ple, a repackaged application will always have some differences with the original one or,
similarly, an application that wants to have access to particular system components will
always have to ask for specific permissions.
This is the main reason that led us to the design and implementation of the Permission-
based Malware Detection System (PMDS) (see Chapter 5.3), which takes advantage of
the group of permissions declared by an application - which in Android represents the
group of actions an application can perform (see Section 5.3.1) - in order to classify its
behaviour as either benign or malicious.

5.2 Related Work

Besides traditional malware detection methodologies (e.g. signature-based detection),
there is an increasing amount of attempts to apply machine learning and data mining
techniques to detect new or unknown malicious code. These, however, have been concen-
trated mostly on Microsoft Windows malware. (Siddiqui, Wang, & Lee, 2008; Ye, Wang,
Li, & Ye, 2007; Schultz, Eskin, Zadok, & Stolfo, 2001; Kolter & Maloof, 2006; Tabish,
Shafiq, & Farooq, 2009; Kiem, Thuy, & Quang, 2004; Firdausi, Lim, Erwin, & Nugroho,

Paolo Rovelli 65

2010; Dua & Du, 2011)
On the other hand, there is also an increasing amount of attempts to detect Android mal-
ware using permissions, even if most of them does not make use of machine learning.
In (Huang, Tsai, & Hsu, 2013), Huang et al. explore the possibility of detecting mali-
cious applications using permissions. In order to retrieve the permissions, the authors
disassemble the APK packages, identify the invoked Android system functions and, then,
reconstruct the permissions used. To evaluate their detection model, the authors use a
dataset of 124.769 benign applications and 480 malicious ones, and 4 machine learn-
ing algorithms, respectively: AdaBoost, Näive Bayes, Decision Tree and Support Vector

Machine. However, in order to help the detection mechanism, the authors use several
other features (e.g. the number of particular file formats and both the number of under-
privileged and over-privileged permissions) in additions to the permissions. The authors
claim that their experiments show that a single classifier is able to detect about 81% of
malicious applications.
Although there are some similarities, the latter approach is mainly different from ours.
Indeed, the main aim of our work is the one of exploring the possibility of using the
Android permissions, founded in the AndroidManifest.xml file, in order to enhance our
existing signature-based detection system, rather then the one of creating a stand-alone
malware detection system based on the permissions used.
Other related works that take advantage of permissions are DroidRanger (Y. Zhou et
al., 2012), a permission-based behavioural footprinting scheme to detect new samples
of known Android malware families, and (Sarma et al., 2012), which use probabilistic
generative models to compute a risk score depending on the permissions required by an
application. Both the two works, however, are different from ours since they do not use
machine learning algorithms.

5.3 Design

In this section we present the design of our Permission-based Malware Detection System
(PMDS).

5.3.1 Permissions as (possible) behavioural markers

In the Android architecture (see Section 2.1.1), each application has access only to the
components that it requires to do its work and no more. In other words, an application

66 Developing a next-generation Mobile Security solution for Android

that wants to have access to particular system components will always have to ask for spe-
cific permissions. This creates a very secure environment in which an application cannot
access parts of the system for which it is not given permission (The Android Open Source
Project, 2013d, 2013t).
All the permissions an application requires have to be explicitly declared in the Android-

Manifest.xml file (The Android Open Source Project, 2013t), which is an entry file in
APK packages that provides semantic-rich information about the application itself and its
components (see Section 2.1.2).
It is important to note that, since each permission is related to an action, the permissions
required by an application can be seen as a marker of its (possible1) behaviour, or at least
of part of it.
However, it is also important to realise that not all the malware actually ask for a danger-

Figure 5.2: Example of a malicious application (Trojan-Banker://Android/ZitMo.B) which requires for a specific group of permissions.
On the right the permissions are required during the installation process, while on the left the AndroidManifest.xml file in which the
required permissions are declared.

ous combination of permissions. Some might also not ask for any permission at all (see
Update attack in Section 2.2.3).
The aim of our work, indeed, is the one of exploring a possible novel technique that may
work alongside traditional malware detection systems (e.g. signature-based detection),
rather then creating a stand-alone detection algorithm.

1 It is important to note that the declaration of certain permissions in the AndroidManifest.xml file does
not necessarily imply their use at runtime.

Paolo Rovelli 67

5.3.2 Custom Permissions

Android applications (and libraries) can enforce their own, custom permissions (The An-
droid Open Source Project, 2013f, 2013t). These custom permissions are also declared in
the AndroidManifest.xml file together with the system ones.
Since the aim of our study is the one of understanding whether there is a correlation be-
tween the group of (system) permissions required by an application with its behaviour
(i.e. benign or malicious), the custom permissions will result as noise for our classi-
fier. Therefore, we decided to analyse only the system permissions available in the API
documentation (The Android Open Source Project, 2013c), for a total of 130 permissions.

Figure 5.3: The architecture of the antivirus in VirIT Mobile Security. The applications are firstly scanned by the signature-based
detection system and afterwards, if no signature matches them, they are scanned by the Permission-based Malware Detection System
(PMDS) rule-based classifier in order to detect possible zero-day or next-generation malware. For the overall VirIT Mobile Security
architecture see Figure 6.1

5.3.3 PMDS Classifier

The aim of our study is the one of understanding whether there is a correlation between
a group of permissions required by an application with its behaviour (i.e. benign or ma-
licious) and, if that is the case, how we can use this correlation to automatically identify
(potentially) dangerous behaviours of previously unseen applications.

68 Developing a next-generation Mobile Security solution for Android

Such a system can be designed in many ways. Clearly, since our main goal is the one
of protecting Android users, the first place in which our system should be is directly on
Android devices. However, the same classifier might also be used outside an Android
device. For example, a third-party market can apply it directly on its servers, in order to
scan the applications when the developers upload them.
Albeit it is often the case, we cannot trust the mobile devices to be connected round-
the-clock. Thus, at present, we prefer designing a local (on-device) system which works
alongside our signature-based detection system. Future works may move our detection
mechanism in the cloud.
As shown in Figure 5.3, the applications are firstly scanned by the signature-based de-
tection system and afterwards, if no signature matches them, they are scanned by the
Permission-based Malware Detection System (PMDS) rule-based classifier in order to
detect possible zero-day or next-generation malware.

Figure 5.4: The “heuristic analysis on permissions” of the on-install scanner of VirIT Mobile Security (see Figure 3.6), which makes
use of the PMDS rule-based (RIPPER) classifier in order to alert if potentially dangerous applications are installed on the device.
In the first two pictures (on the left), the on-install scanner detects the installation of the Trojan-Spy://Android/Wapsx.A and the
Trojan-SMS://Android/FakeFlappyBird.A respectively. In the last picture (on the right) it is shown that applications can be manually
whitelisted, so that they will not display as potentially dangerous in future scans.

5.4 Implementation

In this section we present the implementation of our Permission-based Malware Detection
System (PMDS).

Paolo Rovelli 69

Figure 5.5: The Permission-based Malware Detection System (PMDS) architecture. The permissions declared in the AndroidMan-
ifest.xml file of an application are automatically extracted using the Android Asset Packaging Tool (aapt). Then, the classifier auto-
matically labels the application behaviour, as either benign or (potentially) malicious, according to the combination of permissions the
application requires.

To create the classifier’s dataset of the known benign and malicious applications, we de-
veloped a program in Python which automatically extracts the permissions declared in the
AndroidManifest.xml file of an APK package (see Figure 5.5).
In order to extract the permissions, we decided to use the Android Asset Packaging
Tool (aapt), a tool that is part of the Android SDK. Using aapt it is possible to retrieve
various information about the APK package and its AndroidManifest.xml file (elinux.org,
n.d.). In particular, thanks to the “aapt dump permissions” command it is possible to list
the permissions declared by an application (see Listing 5.1).

$ a a p t dump p e r m i s s i o n s MyApkPackage . apk | sed 1d | awk ’{ p r i n t $NF } ’

Listing 5.1: The Android Asset Packaging Tool (aapt) shell command used to retrieve the permissions declared in the AndroidMani-
fest.xml file of an APK package (elinux.org, n.d.). In order to avoid custom permissions we collect only the 130 system permissions
available in the Android API documentation (The Android Open Source Project, 2013c).

After extracting the permissions, the program automatically save the information in the
Weka’s Attribute-Relation File Format (ARFF) (The University of Waikato, 2002, 2008).
We finally use Weka (Holmes, Donkin, & Witten, 1994; Machine Learning Group at the
University of Waikato, n.d.) to train multiple classifiers in order to detect new and unseen
malware.
Since, as already said in Section 5.3.2, Android applications can enforce their own custom
permissions, and these may result as noise to our classifier, we decided to avoid them and
to collect only the system permissions available in the Android API documentation, for a
total of 130 permissions. (The Android Open Source Project, 2013c)

70 Developing a next-generation Mobile Security solution for Android

As showed in Listing 5.2, we decided to represent each application as a vector of boolean
values, one for each permission, where TRUE stays for the presence of that particular per-
mission while FALSE stays for its absence. Together with the permissions, we also store
the application behaviour, saved as either benign or malicious.
We decided not to store the total number of permissions found. That is because, by adding
it, we might eventually change the meaning of the results that we will find. Indeed, as al-
ready said, every permission has a particular meaning and we want to relate groups of
them together with a specific behaviour (i.e. benign or malicious).

FALSE , FALSE , FALSE , FALSE , FALSE , TRUE, FALSE , TRUE, FALSE , FALSE , FALSE , FALSE , FALSE , FALSE , FALSE , FALSE , FALSE , FALSE ,
FALSE , FALSE , FALSE , FALSE , FALSE , FALSE , TRUE, TRUE, TRUE, FALSE , FALSE , FALSE , FALSE , TRUE, TRUE, FALSE , TRUE, FALSE ,
FALSE , FALSE , FALSE , FALSE , TRUE, FALSE , TRUE, FALSE , FALSE , FALSE , FALSE , FALSE , FALSE , FALSE , FALSE , FALSE , FALSE , FALSE ,
FALSE , FALSE , TRUE, TRUE, FALSE , FALSE , FALSE , FALSE , FALSE , TRUE, FALSE , FALSE , FALSE , FALSE , TRUE, FALSE , FALSE , FALSE ,
FALSE , FALSE , FALSE , FALSE , FALSE , TRUE, FALSE , TRUE, FALSE , FALSE , FALSE , FALSE , FALSE , TRUE, FALSE , TRUE, FALSE , FALSE ,
TRUE, FALSE , TRUE, FALSE , FALSE , FALSE , FALSE , FALSE , FALSE , FALSE , FALSE , FALSE , FALSE , FALSE , FALSE , FALSE , FALSE , TRUE,
FALSE , FALSE , TRUE, TRUE, FALSE , FALSE , TRUE, TRUE, TRUE, FALSE , FALSE , FALSE , TRUE, FALSE , FALSE , FALSE , TRUE, TRUE,
TRUE, FALSE , FALSE , FALSE , m a l i c i o u s

Listing 5.2: Permission-based Malware Detection System (PMDS): Example of application representation in the Weka’s Attribute-
Relation File Format (ARFF). The applications are represented as vectors of boolean values - one value for (the presence or absence
of) each permission - with the last value that represents the application behaviour - as either benign or malicious.

In order to automatically and properly label the behaviour of previously unseen applica-
tions (as either benign or malicious), we firstly decided to train four different classifiers,
which use the following machine learning algorithms:

• J48: an open source Java implementation of the Ross Quinlan’s C4.5 Decision

Tree-based learning algorithm. The C4.5 algorithm is able to build decision trees
from a set of training data using the concept of information entropy. The decision
trees are then used as predictive models which map observations about an item (i.e.
its features) to conclusions about the item’s target value (i.e. its class label). (Witten
& Frank, 2005; Quinlan, 1993; Holmes et al., 1994)

• K*: a Lazy (Instance-based) learning algorithm developed by Cleary and Trigg.
K* algorithm classifies an instance by comparing it to a database of pre-classified
examples and using entropy as a distance measure. (Cleary & Trigg, 1995)

• RIPPER (Repeated Incremental Pruning to Produce Error Reduction): a Rule-

based learning algorithm developed by William W. Cohen. RIPPER algorithm
classifies an instance according to a sequence of boolean clauses linked by logical
AND operators, which together imply the membership of the instance to a particular
class. (W. W. Cohen, 1995)

• Näive Bayes: a Bayesian learning algorithm developed by John and Langley. Näive
Bayes algorithm is based on applying Bayes’ theorem with strong (näive) indepen-
dence assumptions. In other world, for this algorithm, the presence (or absence) of

Paolo Rovelli 71

a particular feature is unrelated to the presence (or absence) of any other feature of
a class. (John & Langley, 1995)

5.5 Evaluation

In this section we describe the results of the experiments performed on our Permission-
based Malware Detection System (PMDS).

5.5.1 Environment

To test the efficiency of our PMDS, we use a dataset of 2950 samples, divided into 1500
unique benign samples (i.e. no updated versions of the same applications are included)
and 1450 malicious ones respectively. All the benign samples were taken from Google
Play (Google, 2013), while all the malicious samples were taken from both the Android
Malware Genome Project (Y. Zhou & Jiang, 2012) and Contagio Mobile (Mila, 2013). To
make the analysis more effective, we collect only those applications that actually requires
permissions.
In Figure 5.6 are shown the most frequently requested permissions by the samples (both
benign and malicious) in our dataset. The top required permission - i.e. INTERNET - is
the same for both benign and malicious applications. On the other hand, as one can see,
there is a vast difference in the total number of applications using certain permissions,
such as: READ_PHONE_STATE, ACCESS_WIFI_STATE, READ_SMS, WRITE_SMS,
SEND_SMS, RECEIVE_SMS, READ_CONTACTS and CALL_PHONE.
In order to evaluate the accuracy of each classifier, we use the standard tenfold cross-

validation. Cross-validation is a model validation method that divides data into two seg-
ments, one used to train the machine learning algorithm and one used to test it. In particu-
lar, the tenfold cross-validation takes 90% of the dataset for training and 10% for testing,
repeating the test 10 times (with different parts used for training and testing) and averag-
ing the accuracy over the runs.
In order to evaluate the results of the performed experiments, the following standard eval-
uation measures are used:

• True Positives (TP): the number of applications correctly classified as malicious;

• True Negatives (TN): the number of applications correctly classified as benign;

• False Positives (FP): the number of applications mistakenly classified as mali-
cious;

72 Developing a next-generation Mobile Security solution for Android

Figure 5.6: Count of the most frequently requested permissions by the samples (both benign and malicious) in our dataset of 2950
samples - 1500 benign and 1450 malicious. The blue lines show the number of times the specific permissions have been requested by
benign applications, while the red lines show the number of times they have been requested by malicious applications.

• False Negatives (FN): the number of applications mistakenly classified as benign;

• True Positives Rate (TPR = TP
TP+FN

): the fraction of TP out of the sum of TP
and FN ;

• False Positives Rate (FPR = FP
FP+TN

): the fraction of FP out of the sum of FP

and TN ;

• Accuracy (ACC = TP+TN
TP+TN+FP+FN

): the fraction of applications correctly classi-
fied (that is TP + TN) out of the total amount of applications;

• Error Rate (ER = FP+FN
TP+TN+FP+FN

): the fraction of applications mistakenly clas-
sified (that is FP + FN) out of the total amount of applications;

• Receiver Operating Characteristic (ROC) curve: a graphical plot of the TPR

versus the fraction of false positives out of the total actual negatives (i.e. FP
TN+FP

),
at various threshold settings.

5.5.2 Classification with standard machine learning algorithms

In Table 5.1, and in Figures 5.7 and 5.8, are shown the results obtained in our first cam-
paign of experiments, where we used the four machine learning algorithms presented
before (i.e. J48, K*, RIPPER and Näive Bayes).
As one can see, in this first campaign, the overall best results were obtained using K*,

with which we achieved a detection rate of 92.28% and a false positives rate of 1.52% (the

Paolo Rovelli 73

TP TN FP FN TPR FPR ACC ER
J48 1340 1456 44 110 92.41 % 3.03 % 94.78 % 5.22 %
K* 1338 1478 22 112 92.28 % 1.52 % 95.46 % 4.54 %
RIPPER 1338 1465 35 112 92.28 % 2.4 % 95.02 % 4.98 %
Näive Bayes 1155 1450 50 295 79.66 % 3.45 % 88.31 % 11.69 %

Table 5.1: Permission-based Malware Detection System (PMDS): Experimental results using four different classifiers - i.e. a Decision
Tree-based learner (J48), a Lazy (Instance-based) learner (K*), a Rule-based learner (RIPPER) and a Bayesian learner (Näive Bayes)
- in order to automatically label the behaviour of previously unseen applications (as either benign or malicious). The experiments are
performed using the standard tenfold cross-validation, which takes 90% of the dataset for training and 10% for testing, repeating the
test 10 times.

lowest achieved in all the experiments). We achieved the highest detection rate (92.41%)
using J48 (see its pruned tree in Listing 5.3), while the highest accuracy (95.02%) using
RIPPER (see its rules set in Listing 5.4). The worst result, in term of both detection rate
and false positives rate, were obtained using Näive Bayes.

Figure 5.7: The Receiver Operating Characteristic (ROC) Curve of our J48 (left) and K* (right) classifiers respectively. The Area
Under the Curve (AUC) represents the probability that a classifier will rank a randomly chosen positive instance higher than a randomly
chosen negative one. The colour of the curve depicts the value of the threshold (i.e. closer to blue corresponds to the lower threshold
value). Indeed, each point in the curve illustrates a prediction tradeoff that can be obtained by varying the threshold value between
classes. Or, in other words, every point corresponds to setting a threshold on the probability assigned to the positive class. The typical
threshold value of 0.5 means the predicted probability of positive must be higher than 0.5 for the instance to be predicted as positive.

Figure 5.8: The Receiver Operating Characteristic (ROC) Curve of our RIPPER (left) and Näive Bayes (right) classifiers respectively.
The Area Under the Curve (AUC) represents the probability that a classifier will rank a randomly chosen positive instance higher than
a randomly chosen negative one. The colour of the curve depicts the value of the threshold (i.e. closer to blue corresponds to the lower
threshold value). Indeed, each point in the curve illustrates a prediction tradeoff that can be obtained by varying the threshold value
between classes. Or, in other words, every point corresponds to setting a threshold on the probability assigned to the positive class.
The typical threshold value of 0.5 means the predicted probability of positive must be higher than 0.5 for the instance to be predicted
as positive.

74 Developing a next-generation Mobile Security solution for Android

READ_SMS = TRUE
| MANAGE_ACCOUNTS = TRUE: ben ig n (9 . 0)
| MANAGE_ACCOUNTS = FALSE : m a l i c i o u s (8 4 8 . 0 / 3 . 0)
READ_SMS = FALSE
| SEND_SMS = TRUE
| | GET_ACCOUNTS = TRUE: ben ig n (7 . 0 / 1 . 0)
| | GET_ACCOUNTS = FALSE : m a l i c i o u s (1 2 0 . 0)
| SEND_SMS = FALSE
| | CHANGE_WIFI_STATE = TRUE
| | | READ_PHONE_STATE = TRUE
| | | | BROADCAST_STICKY = TRUE: be n ig n (8 . 0)
| | | | BROADCAST_STICKY = FALSE
| | | | | USE_CREDENTIALS = TRUE: be n ig n (5 . 0)
| | | | | USE_CREDENTIALS = FALSE
| | | | | | BATTERY_STATS = TRUE: be n ig n (2 . 0)
| | | | | | BATTERY_STATS = FALSE
| | | | | | | GET_PACKAGE_SIZE = TRUE: be n ig n (2 . 0)
| | | | | | | GET_PACKAGE_SIZE = FALSE
| | | | | | | | GET_ACCOUNTS = TRUE
| | | | | | | | | CAMERA = TRUE: m a l i c i o u s (2 . 0)
| | | | | | | | | CAMERA = FALSE : be n ig n (7 . 0 / 1 . 0)
| | | | | | | | GET_ACCOUNTS = FALSE
| | | | | | | | | WAKE_LOCK = TRUE
| | | | | | | | | | RECEIVE_BOOT_COMPLETED = TRUE: m a l i c i o u s (3 8 . 0)
| | | | | | | | | | RECEIVE_BOOT_COMPLETED = FALSE
| | | | | | | | | | | ACCESS_COARSE_LOCATION = TRUE: m a l i c i o u s (4 . 0 / 1 . 0)
| | | | | | | | | | | ACCESS_COARSE_LOCATION = FALSE
| | | | | | | | | | | | MODIFY_AUDIO_SETTINGS = TRUE: m a l i c i o u s (2 . 0)
| | | | | | | | | | | | MODIFY_AUDIO_SETTINGS = FALSE : be n i gn (8 . 0)
| | | | | | | | | WAKE_LOCK = FALSE : m a l i c i o u s (1 9 9 . 0 / 1 . 0)
| | | READ_PHONE_STATE = FALSE : ben ig n (2 1 . 0)
| | CHANGE_WIFI_STATE = FALSE
| | | INSTALL_PACKAGES = TRUE: m a l i c i o u s (1 5 . 0)
| | | INSTALL_PACKAGES = FALSE
| | | | WRITE_APN_SETTINGS = TRUE: m a l i c i o u s (1 1 . 0)
| | | | WRITE_APN_SETTINGS = FALSE
| | | | | DELETE_CACHE_FILES = TRUE: m a l i c i o u s (4 . 0)
| | | | | DELETE_CACHE_FILES = FALSE
| | | | | | RECEIVE_SMS = TRUE
| | | | | | | GET_ACCOUNTS = TRUE: be n ig n (2 . 0)
| | | | | | | GET_ACCOUNTS = FALSE : m a l i c i o u s (1 7 . 0)
| | | | | | RECEIVE_SMS = FALSE
| | | | | | | ACCESS_LOCATION_EXTRA_COMMANDS = TRUE
| | | | | | | | READ_PHONE_STATE = TRUE: m a l i c i o u s (1 9 . 0 / 2 . 0)
| | | | | | | | READ_PHONE_STATE = FALSE : be n ig n (9 . 0 / 1 . 0)
| | | | | | | ACCESS_LOCATION_EXTRA_COMMANDS = FALSE
| | | | | | | | READ_CONTACTS = TRUE
| | | | | | | | | MANAGE_ACCOUNTS = TRUE: be n ig n (1 3 . 0)
| | | | | | | | | MANAGE_ACCOUNTS = FALSE
| | | | | | | | | | ACCESS_FINE_LOCATION = TRUE: be n i gn (8 . 0 / 1 . 0)
| | | | | | | | | | ACCESS_FINE_LOCATION = FALSE
| | | | | | | | | | | WAKE_LOCK = TRUE
| | | | | | | | | | | | DISABLE_KEYGUARD = TRUE: m a l i c i o u s (2 . 0)
| | | | | | | | | | | | DISABLE_KEYGUARD = FALSE : be n i gn (6 . 0)
| | | | | | | | | | | WAKE_LOCK = FALSE : m a l i c i o u s (3 5 . 0 / 6 . 0)
| | | | | | | | READ_CONTACTS = FALSE
| | | | | | | | | ACCESS_NETWORK_STATE = TRUE
| | | | | | | | | | SYSTEM_ALERT_WINDOW = TRUE
| | | | | | | | | | | WRITE_EXTERNAL_STORAGE = TRUE: be n i gn (1 5 . 0 / 2 . 0)
| | | | | | | | | | | WRITE_EXTERNAL_STORAGE = FALSE
| | | | | | | | | | | | ACCESS_WIFI_STATE = TRUE: m a l i c i o u s (5 . 0)
| | | | | | | | | | | | ACCESS_WIFI_STATE = FALSE : be n i gn (2 . 0)
| | | | | | | | | | SYSTEM_ALERT_WINDOW = FALSE : be n ig n (1 2 2 8 . 0 / 6 0 . 0)
| | | | | | | | | ACCESS_NETWORK_STATE = FALSE
| | | | | | | | | | READ_PHONE_STATE = TRUE
| | | | | | | | | | | WAKE_LOCK = TRUE
| | | | | | | | | | | | DISABLE_KEYGUARD = TRUE: m a l i c i o u s (2 . 0)
| | | | | | | | | | | | DISABLE_KEYGUARD = FALSE : be n i gn (9 . 0 / 2 . 0)
| | | | | | | | | | | WAKE_LOCK = FALSE : m a l i c i o u s (4 7 . 0 / 4 . 0)
| | | | | | | | | | READ_PHONE_STATE = FALSE
| | | | | | | | | | | BLUETOOTH = TRUE: m a l i c i o u s (6 . 0 / 1 . 0)
| | | | | | | | | | | BLUETOOTH = FALSE
| | | | | | | | | | | | ACCESS_FINE_LOCATION = TRUE
| | | | | | | | | | | | | WAKE_LOCK = TRUE: m a l i c i o u s (5 . 0)
| | | | | | | | | | | | | WAKE_LOCK = FALSE : be n ig n (8 . 0 / 1 . 0)
| | | | | | | | | | | | ACCESS_FINE_LOCATION = FALSE : be n i gn (2 0 0 . 0 / 1 8 . 0)

Paolo Rovelli 75

Listing 5.3: The pruned tree generated by our J48 classifier in order to decide whether an application has a (potentially) malicious
behaviour or not. J48 is an open source Java implementation of the Ross Quinlan’s C4.5 Decision Tree-based learning algorithm. The
C4.5 algorithm is able to build decision trees from a set of training data using the concept of information entropy. The decision trees
are then used as predictive models which map observations about an item - in our case the permission requested - to conclusions about
the item’s target value - in our case the application’s behaviour (i.e. benign or malicious). (Witten & Frank, 2005; Quinlan, 1993;
Holmes et al., 1994)

(READ_SMS = TRUE) and (RECORD_AUDIO = FALSE) => b e h a v i o u r = m a l i c i o u s (8 3 1 . 0 / 2 . 0)

(READ_PHONE_STATE = TRUE) and (CHANGE_WIFI_STATE = TRUE) and (WAKE_LOCK = FALSE) => b e h a v i o u r = m a l i c i o u s (2 0 8 . 0 / 2 . 0)

(READ_PHONE_STATE = TRUE) and (ACCESS_NETWORK_STATE = FALSE) and (WAKE_LOCK = FALSE) => b e h a v i o u r = m a l i c i o u s (1 0 9 . 0 / 4 . 0)

(READ_PHONE_STATE = TRUE) and (ACCESS_LOCATION_EXTRA_COMMANDS = TRUE) => b e h a v i o u r = m a l i c i o u s (5 1 . 0 / 4 . 0)

(RECEIVE_SMS = TRUE) and (GET_ACCOUNTS = FALSE) => b e h a v i o u r = m a l i c i o u s (7 3 . 0 / 0 . 0)

(READ_PHONE_STATE = TRUE) and (GET_ACCOUNTS = FALSE) and (READ_CONTACTS = TRUE) => b e h a v i o u r = m a l i c i o u s (3 1 . 0 / 5 . 0)

(READ_PHONE_STATE = TRUE) and (RECEIVE_BOOT_COMPLETED = TRUE) and (READ_EXTERNAL_STORAGE = FALSE) and
(GET_ACCOUNTS = FALSE) and (ACCESS_COARSE_LOCATION = FALSE) and (CHANGE_WIFI_STATE = TRUE) and
(BLUETOOTH = FALSE) => b e h a v i o u r = m a l i c i o u s (1 5 . 0 / 0 . 0)

(READ_PHONE_STATE = TRUE) and (WAKE_LOCK = FALSE) and (RECEIVE_BOOT_COMPLETED = TRUE) and (WRITE_SETTINGS = TRUE)
=> b e h a v i o u r = m a l i c i o u s (1 1 . 0 / 2 . 0)

(READ_PHONE_STATE = TRUE) and (WRITE_APN_SETTINGS = TRUE) => b e h a v i o u r = m a l i c i o u s (9 . 0 / 0 . 0)

(ACCESS_NETWORK_STATE = FALSE) and (SEND_SMS = TRUE) => b e h a v i o u r = m a l i c i o u s (7 . 0 / 0 . 0)

(ACCESS_NETWORK_STATE = FALSE) and (WAKE_LOCK = TRUE) and (CAMERA = FALSE) and (ACCESS_FINE_LOCATION = TRUE)
=> b e h a v i o u r = m a l i c i o u s (6 . 0 / 0 . 0)

(INSTALL_PACKAGES = TRUE) and (WAKE_LOCK = FALSE) => b e h a v i o u r = m a l i c i o u s (1 4 . 0 / 0 . 0)

(READ_PHONE_STATE = TRUE) and (WRITE_EXTERNAL_STORAGE = FALSE) and (CAMERA = FALSE) and (GET_TASKS = TRUE)
=> b e h a v i o u r = m a l i c i o u s (5 . 0 / 0 . 0)

(ACCESS_NETWORK_STATE = FALSE) and (BLUETOOTH = TRUE) => b e h a v i o u r = m a l i c i o u s (6 . 0 / 1 . 0)

=> b e h a v i o u r = b en ig n (1 5 7 4 . 0 / 9 4 . 0)

Listing 5.4: The rules generated by our RIPPER classifier in order to decide whether an application has a (potentially) malicious
behaviour or not. RIPPER is a Rule-based learning algorithm developed by William W. Cohen. RIPPER algorithm classifies an
instance according to a sequence of boolean clauses linked by logical AND operators, which together imply the membership of the
instance to a particular class - in our case the application’s behaviour (i.e. benign or malicious). (W. W. Cohen, 1995)

5.5.3 Classification with boosted machine learning algorithms

We decide to try to improve our classifiers further by using Adaptive Boosting (AdaBoost),
a machine learning meta-algorithm developed by Yoav Freund and Robert Schapire that
can be used in conjunction with many other learning algorithms to improve their per-
formance. Substantially, AdaBoost uses a boosting approach in which multiple different
classifiers are trained and, then, their output is combined into a weighted sum in order to
have an accurate prediction. (Freund & Schapire, 1995)
In Table 5.2, and in Figures 5.9 and 5.10, are shown the results obtained in our second
campaign of experiments, where we use AdaBoost in conjunction with the previous ma-

76 Developing a next-generation Mobile Security solution for Android

TP TN FP FN TPR FPR ACC ER
J48 1366 1443 57 84 94.21 % 3.93 % 95.22 % 4.78 %
RIPPER 1353 1442 58 97 93.31 % 4 % 94.75 % 5.25 %
Näive Bayes 1345 1362 138 105 92.76 % 9.52 % 91.76 % 8.24 %

Table 5.2: Permission-based Malware Detection System (PMDS): Experimental results using AdaBoost in conjunction with the
previous machine learning algorithms - i.e. J48, RIPPER and Näive Bayes - in order to automatically label the behaviour of previously
unseen applications (as either benign or malicious). The experiments are performed using the standard tenfold cross-validation, which
takes 90% of the dataset for training and 10% for testing, repeating the test 10 times.

chine learning algorithms.
As one can see, in this second campaign, the overall best results were obtained using J48

as base classifier of AdaBoost, with which we achieved a detection rate of 94.21% and a
false positives rate of 3.93%. Even if the results using Näive Bayes as base classifier for
AdaBoost were the worst one, in term of both detection rate and false positives rate, it
was the algorithm that showed the highest improvement thanks to the use of AdaBoost.

Figure 5.9: The Receiver Operating Characteristic (ROC) Curve of our AdaBoost classifier using J48 as base classifier. The Area
Under the Curve (AUC) represents the probability that a classifier will rank a randomly chosen positive instance higher than a randomly
chosen negative one. The colour of the curve depicts the value of the threshold (i.e. closer to blue corresponds to the lower threshold
value). Indeed, each point in the curve illustrates a prediction tradeoff that can be obtained by varying the threshold value between
classes. Or, in other words, every point corresponds to setting a threshold on the probability assigned to the positive class. The typical
threshold value of 0.5 means the predicted probability of positive must be higher than 0.5 for the instance to be predicted as positive.

5.6 Conclusions

In this chapter we have proposed a novel Android malware detection technique, called
Permission-based Malware Detection System (PMDS). Our work aimed to build a classi-
fier that was able to automatically identify (potentially) dangerous behaviours/intents of
previously unseen applications based on the combination of permissions they require.

Paolo Rovelli 77

Figure 5.10: The Receiver Operating Characteristic (ROC) Curve of our AdaBoost classifier using RIPPER (left) and Näive Bayes
(right) as base classifiers respectively. The Area Under the Curve (AUC) represents the probability that a classifier will rank a randomly
chosen positive instance higher than a randomly chosen negative one. The colour of the curve depicts the value of the threshold (i.e.
closer to blue corresponds to the lower threshold value). Indeed, each point in the curve illustrates a prediction tradeoff that can be
obtained by varying the threshold value between classes. Or, in other words, every point corresponds to setting a threshold on the
probability assigned to the positive class. The typical threshold value of 0.5 means the predicted probability of positive must be higher
than 0.5 for the instance to be predicted as positive.

Even if with a little high False Positives Rate, the experimental results shows the fea-
sibility of using these classifiers in order to provide heuristic detection on zero-day or
next-generation malware which are not detected by the signature-based detection system
(see Chapter 3).
However, even if the experimental results were good, at present, our approach has a
main limitation. Indeed, we do not take in account implied permissions and the fact that
the permissions declared by Android applications might change based on the API they
are supporting/targeting. For example, the READ_EXTERNAL_STORAGE permission,
which allows an application to read from the External Storage, is implicitly granted by
the system if the targeted API level is equal or lower than 3 or if the application requires
the WRITE_EXTERNAL_STORAGE permission, which allows an application to write to
the External Storage. Furthermore, the READ_EXTERNAL_STORAGE permission is en-
forced only from API level 19, from which this permission is not required to read files in
the application-specific directories anymore.
Another example is the READ_CALL_LOG permission, which allows an application to
read the user’s call log. If an application targets API level equals or lower than 15, this
particular permission is implicitly granted by the system if the application requires also
the READ_CONTACTS permission, which allows an application to read the user’s con-
tacts data.
Thus, it is possible that an application is able to use some permissions without declaring
them in its AndroidManifest.xml file. Therefore, in future works, we should take into ac-
count these implied permissions in order to have a better correlation between the group of
permissions required by applications (i.e. their actions) and their behaviour.
Furthermore, as already said, a main concern is that the declaration of certain permissions
in the AndroidManifest.xml file does not necessarily mean that these are actually used at

78 Developing a next-generation Mobile Security solution for Android

runtime. Theoretically, since an application should request only the permissions it needs,
this should not be a matter. However, according to several works, a large percentage
(about one-third) of Android applications are over-privileged (Felt, Chin, Hanna, Song, &
Wagner, 2011; Felt, Greenwood, & Wagner, 2011; Wei, Gomez, Neamtiu, & Faloutsos,
2012).
The final area we considered is the kinds of applications that are being considered. In-
deed, at present, we are able to correlate a group of permissions required by an application
with its behaviour, meant as either benign or (potentially) malicious. In future works, we
might divide the dataset of benign applications based on their type (e.g. browser, mail
client, etc...) and the malware one as well (e.g. Adware, Trojan, etc...). This should theo-
retically give us a better overview and, accordingly, a better detection.

79

Chapter 6

Implementing Network Protection and
a Behavioural Detection System in
Android

In this chapter we present the Android network protection problem and propose a Web
Filter, which alerts the user about malicious and phishing websites (see Section 6.2),
and a Network Monitor, which monitors the network usage of each application (see Sec-
tion 6.3). Finally, in Section 6.4, we present a simple but effective behavioural detection
system, known as Community Network, that uses both the information provided by the
PMDS rule-based (RIPPER) classifier (see Section 5) and the Network Monitor in order
to collect and signal (potentially) dangerous applications to the Anti-Malware Research
Center of TG Soft (CRAM). This allows TG Soft to spot zero-day or next-generation
malware - i.e. malicious applications which are not detected by the antivirus - as they
emerge.
Experimental results show that our Community Network was able to spot 75% of the
zero-day or next-generation malware in our test.

6.1 Introduction

Most of the mobile devices are nowadays connected to the Internet round-the-clock. As
already stated, in 2012 Lookout has reported that the global yearly likelihood of an An-
droid user clicking on an unsafe link is 36% (Lookout, 2012).

80 Developing a next-generation Mobile Security solution for Android

Figure 6.1: The overall architecture of VirIT Mobile Security. Suspicious applications detected by the behavioural detection system
are forwarded to the Anti-Malware Research Center of TG Soft (CRAM). If it is the case of a zero-day or next generation malware
- i.e. a malicious application which is not detected by the antivirus - a proper signature is extracted and, in turn, an update of the
signatures database is released.

Thus, in an effective mobile security solution it is crucial to monitor application’s incom-
ing and outgoing network traffic, preventing it if unauthorized, and to protect the user
against the risk that one is exposed to while browsing the web (i.e. malicious, infected
and phishing websites).
Unfortunately, at present, in Android there is no way to build a network filtering system
without having the root privileges. Furthermore, by design, in Android it is not possible to
interact with the network interface in order to read a web page content or its URL before
it is actually loaded in the browser.
However, even with this and other main limitations, some possible workarounds can be
used in order to at least warning an user in case a malicious or phishing website is opened
(see Section 6.2) and to monitor the network usage of each application (see Section 6.3).

6.2 Web Filter

As already said, by design, in Android it is not possible to interact with the network in-
terface in order to read a web page content or its URL before it is actually loaded in the
browser. However, it is possible to use the ContentObserver class in order to retrieve
the visited URLs from the default Android browser’s history (The Android Open Source
Project, 2013g) (See Listing 6.1).
It is important to realise that we can only check the URLs the user visits, not the actual

Paolo Rovelli 81

content of the web pages, and only the ones that are visited with the default Android
browser or with Google Chrome. Another main limitation to this approach is that it is
not sure that we will be able to scan an URL before its web page content will actually be
loaded. Moreover, even if an URL is detected as malicious before the actual content has
been finished to be loaded, with the design of the Android application model, we will not
be able to block it or to close the web page. Thus, such a Web Filter is totally useless to
protect the user from some web-based attacks (e.g. malicious JavaScript). However, even
with this main limitation, our Web Filter can protect the user from other web threats, such
as phishing websites.

p r i v a t e s t a t i c c l a s s Browse rObse rve r e x t e n d s C o n t e n t O b s e r v e r {
/ / Query v a l u e s :
f i n a l S t r i n g [] p r o j e c t i o n = new S t r i n g [] { Browser . BookmarkColumns .URL } ;
f i n a l S t r i n g s e l e c t i o n = Browser . BookmarkColumns .BOOKMARK + " = 0 " ;
f i n a l S t r i n g s o r t O r d e r = Browser . BookmarkColumns .DATE + " DESC" ;

/∗∗
∗ C l a s s C o n s t r u c t o r .
∗
∗ @param h a n d l e r t h e h a n d l e r t o run onChange (b o o l e a n) on , o r n u l l i f none .
∗ /

p u b l i c Browse rObse rve r (Hand le r h a n d l e r) {
s u p e r (h a n d l e r) ;

}

/∗∗
∗ A c o n t e n t change o c c u r s .
∗
∗ @param s e l f C h a n g e t r u e i f t h i s i s a s e l f−change n o t i f i c a t i o n .
∗ /

@Override
p u b l i c vo id onChange (b o o l e a n s e l f C h a n g e) {

onChange (se l fChange , n u l l) ;
}

/∗∗
∗ A c o n t e n t change o c c u r s .
∗
∗ @param s e l f C h a n g e t r u e i f t h i s i s a s e l f−change n o t i f i c a t i o n .
∗ @param u r i t h e Ur i o f t h e changed c o n t e n t , o r n u l l i f unknown .
∗ /

@Override
p u b l i c vo id onChange (b o o l e a n se l f Change , Ur i u r i) {

s u p e r . onChange (s e l f C h a n g e) ;

i f (u r i != n u l l) {
/ / R e t r i e v e a l l t h e v i s i t e d URLs :
f i n a l Cu r s o r c u r s o r =

g e t C o n t e n t R e s o l v e r () . que ry (Browser .BOOKMARKS_URI, p r o j e c t i o n , s e l e c t i o n , n u l l , s o r t O r d e r) ;

/ / R e t r i e v e t h e l a s t−v i s i t e d URL:
c u r s o r . moveToFi r s t () ;
i f (! c u r s o r . i s A f t e r L a s t ()) {

f i n a l S t r i n g u r l = c u r s o r . g e t S t r i n g (c u r s o r . ge tColumnIndex (p r o j e c t i o n [0])) ;

/ / C lose t h e c u r s o r :
c u r s o r . c l o s e () ;

[. . .] Scan t h e URL [. . .]
}
e l s e {

/ / C lose t h e c u r s o r :
c u r s o r . c l o s e () ;

82 Developing a next-generation Mobile Security solution for Android

}
}

}
}

Listing 6.1: Example of ContentObserver used to retrieve the visited URLs from the default Android browser’s history. Thanks to it
we can develop a Web Filter which alerts the user in case a malicious or phishing website is opened.

At present, our Web Filter (see Figure 6.2) is designed to be integrated with both the
default Android browser and Google Chrome.

Figure 6.2: The Web Filter of VirIT Mobile Security, which scans the URLs when surfing the web with the default Android browser
and Google Chrome. Thanks to the Web Filter we can alert the user when a malicious or phishing website is opened.

6.3 Network Monitor

As already said, in Android it is not possible to monitor the applications’ network traffic.
However, it is still possible to retrieve the network usage of each application (see Fig-
ure 6.3).
By monitoring the network usage of the installed applications we can have an overview of
the incoming and outgoing network traffic for each application and, possibly, decide if it
is the case of a zero-day or next-generation malware - i.e. a malicious application which
is not detected by the antivirus.
Starting from API 8 it is possible to use the Android TrafficStats class (The Android Open
Source Project, 2013u) in order to retrieve the bytes received and/or transmitted (with

Paolo Rovelli 83

both TCP and UDP) by a given kernel User-ID (UID)1 since device boot (see Listing 6.2).

/∗
∗ Given :
∗ − u i d : t h e k e r n e l User−ID .
∗ /

f l o a t t o t a l D o w n l o a d T r a f f i c = (f l o a t) T r a f f i c S t a t s . ge tUidRxBytes (u i d) ;
f l o a t t o t a l U p l o a d T r a f f i c = (f l o a t) T r a f f i c S t a t s . ge tUidTxBytes (u i d) ;

i f ((t o t a l D o w n l o a d T r a f f i c == T r a f f i c S t a t s . UNSUPPORTED) && (t o t a l U p l o a d T r a f f i c == T r a f f i c S t a t s . UNSUPPORTED)) {
Log . e (TAG, " The d e v i c e does n o t s u p p o r t T r a f f i c S t a t s m o n i t o r i n g ! ") ;

}

Listing 6.2: Example of monitoring the network usage with TrafficStats. Thanks to it we can develop a Network Monitor which, by
monitoring the network usage of all the installed applications, have an overview of the incoming and outgoing network traffic for each
application and, possibly, decide if it is the case of a zero-day or next-generation malware.

However, as already said, TrafficStats returns the network usage only from the device
boot. Therefore, we need to take care of calculating and storing the total amount of daily,
monthly and yearly network usage. Since, in Android, there is no way to know when the
device is going to be turned off, we check the values returned by the TrafficStats many
times a day - for example every 10 or 15 minutes - in order to update the total amount of
daily (incoming and outgoing) network traffic.
If an unknown, next-generation malware is installed on the device, and if it connects to
the Internet, one might be able to spot it by looking at its network usage.

6.4 Community Network and Behavioural Detection

As already said in Section 3.3.1, the accuracy of a signature-based detection system is
heavily based on the completeness of the signatures database. Thus, besides working at
the implementation and improvement of external systems that automatically gather new
malware samples, we have included into VirIT Mobile Security (see Figure 6.1) a be-
havioural detection system, called Community Network, which uses behavioural analysis
based on the applications’ life cycle.
At present, the aim of our behavioural detection system is not the one of being a reliable
malware detection system, but rather the one of collecting and signalling (potentially) dan-
gerous applications to the Anti-Malware Research Center of TG Soft (CRAM), in order
to spot zero-day or next-generation malware. In these way, the CRAM researchers and/or
dynamic analysis systems can study further the suspicious applications in order to decide
whether they actually are malware or not. If it is the case of zero-day or next-generation

1 It is important to note that, currently, the UID is not a unique identifier. Multiple applications can have
the same UID (usually the one of the same developer). (The Android Open Source Project, 2013v)

84 Developing a next-generation Mobile Security solution for Android

Figure 6.3: The Network Monitor of VirIT Mobile Security, which monitors the network usage of each application. Thanks to
the Network Monitor we can have an overview of the incoming and outgoing network traffic for each application and, possibly,
decide if it is the case of a zero-day or next-generation malware - i.e. a malicious application which is not detected by the antivirus.
In the picture, we can see the daily network usage of both the Trojan://Android/FakeMarket.A, which pretends to be the Google
Play store application but runs silently in the background to perform click fraud (Rovelli, 2014; AndroTotal, 2014), and the Rogue-
AV://Android/AndroidDefeder.A, which pretends to be an antivirus solution and claims to detect some threats on the victims’ devices
in order to lure the victims to pay to remove the non-existent threats (Rovelli, 2013c; Ducklin, 2013).

malware, a proper signature is extracted and, in turn, an update of the signatures database
is released. This allows TG Soft to dramatically shorten the life of those threats.
Since our goal is the one of detecting zero-day or next-generation malware, our be-
havioural detection system is applied only to those applications which have not already
been detected and removed by the signature-based detection system (see Chapter 3).
However, at present, our behavioural detection system is pretty simple and relies only on
the PMDS rule-based (RIPPER) classifier (see Section 5) and on few others hard-coded
rules regarding the network usage (see Section 6.3).

6.5 Evaluation

As already said, in order to see the real effectiveness of an antivirus software, we want to
test its robustness as well as its resilience (Hawes, 2013).
In this section we present the results of the resilience experiments, that is the ability of
our solution to recover from zero-day or next-generation malware which do manage to
get installed into a device.
Generally speaking, testing the resilience is much more complicated than testing the ro-

Paolo Rovelli 85

Mobile Security solution TP Detection Rate
AV-1 7 87.5%
AV-2 4 50%
AV-3 5 62.5%
AV-4 5 62.5%
VirIT 6 75%

Table 6.1: Results of the resilience experiments on VirIT Mobile Security. With the term resilience we mean the ability of our solution
to recover from zero-day or next-generation malware which do manage to get installed into a device. In the table, for all the antivirus
solutions tested, we point out the True Positives (TP) (i.e. the number of malware detected out of a total of 8 malware on the device)
and the corresponding detection rate.

bustness. Ideally, a test can be seeing how long all those threats that have not been initially
detected by the antivirus will last. Indeed, thanks to the behavioural detection system or
to other external systems which gather new malware samples (see Section 6.4), we should
be able to collect previously unknown malware samples and release proper updates of the
signatures database. Once VirIT Mobile Security will be updated, the on-update scanner

should be able to properly detect and remove the malware from the device (see Sec-
tion 4.2.2).
Thus, in order to evaluate the resilience of VirIT Mobile Security, we decide to re-run the
same experiments we run Section 3.5.1 in order to evaluate its robustness.
Since our aim is the one of stating the resilience of our mobile security, we re-run them
with the same exactly configuration and signatures database.

6.5.1 Results

As shown in Section 3.5.2, the signature-based detection system of VirIT Mobile Security
was able to properly detect and remove 142 malicious applications our of 148, that is a
reactive detection rate of 95.95%.
In addition, this time, the behavioural detection system of VirIT Mobile Security was
able to report 10 applications in less than a day. Analysing these applications, we dis-
cover that 4 of them were actually part of the group of malware we did not catch. Of
the remaining 6 applications, we have discovered that 2 of them were actually zero-day
or next-generation malware that were not detected by any of the other antivirus solutions
used, while the other 4 were benign applications.
According to these numbers, VirIT Mobile Security has shown a proactive detection rate

of 75%, being able to catch 6 malware out of the remaining 8.
In order to compare our result with the one of the others, we decide to re-scan our dataset
with the previously used antivirus solutions. The results are shown in Table 6.1.
Finally, in Figure 6.4 it is possible to see the overall reactive and proactive (RAP) results.

It is important to note that this experiment was a little bit unfair. Indeed, we run our

86 Developing a next-generation Mobile Security solution for Android

Figure 6.4: Testing the resilience of VirIT Mobile Security. With the term reactive detection rate we mean the number of malware
properly detected at the first scan (i.e. the robustness of the antivirus), while with the term proactive detection rate we mean the number
of malware detected in a second scan (i.e. the resilience of the antivirus).

mobile security solution directly on an Android emulator and, by doing so, we were able
to take advantages of our behavioural detection system. On the other hand, however, we
gave to our detection systems a time frame of 1 day on a single device (emulator), while
the other antivirus solutions had several weeks and runs simultaneously on thousands or
millions of devices.
As already stated, since the dataset used was rather too small, this experiment is not to
be considered complete in order to state the robustness of our mobile security solution.
However, it can give a rough idea.

6.6 Conclusion

In this chapter we have present the network protection problem and proposed possible
workarounds. Indeed, at present, implementing network protection mechanisms in An-
droid is infeasible, at least without having the root privileges. However, we were able to
design and implement a Web Filter, which is able to protect users from phishing websites.
Furthermore, we have implemented and evaluated a behavioural detection system, known
as Community Network, that helps us to spot zero-day or next-generation malware as they
emerge.
Although with a too high number of false alerts (40%), our behavioural detection system

Paolo Rovelli 87

has proven effective, being able to discover 6 zero-day or next-generation malware.

88

89

Chapter 7

Conclusions and Future Work

In this work of thesis we have presented VirIT Mobile Security, a mobile security solution
specifically designed and developed to counter Android malware.
To this end, we have firstly analysed the “in the wild” Android malware, characterising
the current known threats and discussing possible feature ones.
Afterwards, we have implemented different malware detection models, in order to pro-
vide both reactive and proactive protection to Android end-users. In particular we have
designed and implemented: a signature-based detection system, with four different scan-
ners (i.e. on-demand, on-install, on-access and on-update), a novel heuristic Permission-
based Malware Detection System (PMDS), and, finally, a behavioural detection system.
In our experiments, all those malware detection systems have shown encouraging results.
Indeed, our signature-based detection system was able to properly detect and remove
95.95% of the malware in our test, while our PMDS was able to detect more than 94%
of previously unseen malware. Finally, our behavioural detection system was able to spot
and report back to the Anti-Malware Research Center of TG Soft (CRAM) 75% of the
zero-day or next-generation malware.
In order to implement VirIT Mobile Security, we have dealt with several challenges. In-
deed, at present, although the Android architecture and application model have shown to
create a very secure environment, they also show some main limitations.
In our work of thesis we have often encountered such limitations, such as in the imple-
mentation of a real-time monitor (see Section 4.1) or in the implementation of network
protection mechanisms (see Section 6.1).
It is clear that, albeit these limitations we faced are also limitations for cyber-criminals,
with this security model it is impossible to properly protect the end-users from some
threats (e.g. exploits targeting specific kernel vulnerabilities and web attacks). Indeed,
apart for Web Filter (see Section 6.2) which is able to protect users from phishing attacks,

90 Developing a next-generation Mobile Security solution for Android

our work of thesis has been mostly limited to malware detection and prevention. How-
ever, there is much more to do in order to protect mobile users. Indeed, in the mobile
space there are other threats, such as privacy leaks (Enck et al., 2010; Gibler, Crussell,
Erickson, & Chen, 2012) and Wi-Fi vulnerabilities (Rovelli, 2013d).
In our opinion, among many others, there are at least two main functionalities that Google
should add to the Android API in order to improve the effectiveness of mobile security
solutions:

• Extending the inotify files change notification system in order to be able not only
to monitor the files into a specific directory, but also to retrieve which application
is accessing these files;

• Monitoring the incoming and outgoing network traffic, that is to be able to de-
termine which application is opening which URL.

As far as we can tell, adding these permissions should not broke the Android security
model, and it would surely provide useful features to improve the end-user protection.
Another possible workaround, similar to the “default SMS app” concept introduced start-
ing from Android 4.4 (KitKat) (Main, Scott and Braun, David, 2013), might be the one of
creating a “default security app” which will be the only application in the system able to
perform certain security related actions, such as interacting with the installation process
- i.e. the ability to scan applications before they are actually installed - and filtering web
contents. This would end up being very useful also in order to cut down the threat of the
Rogue-AVs.
Besides continually improving all the existing detection mechanisms, in future, we would
like to focus more on our behavioural detection system in order to make it more reliable
and effective. A possible detection approach might be the one taken by Shabtai et al. in
Andromaly, a machine learning Android malware detection system which continuously
monitors various features and events obtained from the system and then applies standard
machine learning classifiers to classify collected observations as either benign or mali-
cious. (Shabtai et al., 2012)
Furthermore, in VirIT Mobile Security, we opted for an on-update scanner as real-time
protection mechanism. In our design the on-update scanner performs a “fast scan” - only
the dex files are scanned (see Section 3.3.3) - on all the installed applications after every
update. In future releases, if we will be able to improve it, we might think to replace
it with the live scanner. However, in our opinion, the best option is given by the cloud
scanner, so we might prefer implementing it rather than improving the live scanner.
Other possible future works regard static analysis of both dex and AndroidManifest.xml

files, for example in order to extract URLs and ad networks, and telemetry information.

Paolo Rovelli 91

Indeed, having many customers spread all over the world, there are lots of telemetry in-
formation we can use to decide, or to help to decide, whether an application observed by
a certain customer in a certain location is likely malicious or not.
Cyber-criminals will not stop trying to improve, so do we.

92

93

Bibliography

AB. (2013, February). Android malware infects Windows PCs with spy bot! G Data
Software. Retrieved from http://blog.gdatasoftware.com/blog/

article/android-malware-infects-windows-pcs-with-spy

-bot.html

AlarmManager. (2013). ActivityManager.RunningAppProcessInfo. Retrieved
from http://developer.android.com/reference/android/app/

AlarmManager.html

AndroTotal. (2014, January). Android FakeMarket Analysis. Retrieved
from http://blog.andrototal.org/post/73944579198/android

-fakemarket-analysis

Arnold, W., & Tesauro, G. (2000). Automatically generated win32 heuristic virus detec-
tion. In Proceedings of the 2000 international virus bulletin conference.

Arp, D., Spreitzenbarth, M., Hübner, M., Gascon, H., & Rieck, K. (2013). DREBIN:
Efficient and Explainable Detection of Android Malware in Your Pocket.

Ask, K. (2006). Automatic Malware Signature Generation.
Asrar, I., & Imano, S. (2011, October). Will Your Next TV Manual Ask You to

Run a Scan Instead of Adjusting the Antenna? Symantec. Retrieved from
http://www.symantec.com/connect/blogs/will-your-next-tv

-manual-ask-you-run-scan-instead-adjusting-antenna

AV-TEST. (2013, February). Protection Apps for Android. Retrieved
from http://www.av-test.org/fileadmin/pdf/avtest_2013-01

_android_testreport_english.pdf

Ayer, E. (n.d.). Mobile Malware and Rootkits in Perspective.
Barroso, D. (2010, September). ZeuS Mitmo: Man-in-the-mobile. S21sec.

Retrieved from http://securityblog.s21sec.com/2010/09/zeus

-mitmo-man-in-mobile-i.html

Blasing, T., Batyuk, L., Schmidt, A.-D., Camtepe, S. A., & Albayrak, S. (2010). An
android application sandbox system for suspicious software detection. In Malicious

http://blog.gdatasoftware.com/blog/article/android-malware-infects-windows-pcs-with-spy-bot.html
http://blog.gdatasoftware.com/blog/article/android-malware-infects-windows-pcs-with-spy-bot.html
http://blog.gdatasoftware.com/blog/article/android-malware-infects-windows-pcs-with-spy-bot.html
http://developer.android.com/reference/android/app/AlarmManager.html
http://developer.android.com/reference/android/app/AlarmManager.html
http://blog.andrototal.org/post/73944579198/android-fakemarket-analysis
http://blog.andrototal.org/post/73944579198/android-fakemarket-analysis
http://www.symantec.com/connect/blogs/will-your-next-tv-manual-ask-you-run-scan-instead-adjusting-antenna
http://www.symantec.com/connect/blogs/will-your-next-tv-manual-ask-you-run-scan-instead-adjusting-antenna
http://www.av-test.org/fileadmin/pdf/avtest_2013-01_android_testreport_english.pdf
http://www.av-test.org/fileadmin/pdf/avtest_2013-01_android_testreport_english.pdf
http://securityblog.s21sec.com/2010/09/zeus-mitmo-man-in-mobile-i.html
http://securityblog.s21sec.com/2010/09/zeus-mitmo-man-in-mobile-i.html

94 Developing a next-generation Mobile Security solution for Android

and unwanted software (malware), 2010 5th international conference on (pp. 55–
62).

Bontchev, V. V. (1998). Methodology of computer anti-virus research.
Bose, A., Hu, X., Shin, K. G., & Park, T. (2008). Behavioral detection of malware

on mobile handsets. In Proceedings of the 6th international conference on mobile

systems, applications, and services (pp. 225–238).
Brodbeck, R. C. (2012). Covert Android Rootkit Detection: Evaluating Linux Kernel

Level Rootkits on the Android Operating System (Tech. Rep.). DTIC Document.
Castillo, C. (2011, July). Dissecting Zeus for Android (or Is It Just SMS Spy-

ware?). McAfee. Retrieved from https://blogs.mcafee.com/

mcafee-labs/dissecting-zeus-for-android-or-is-it-just

-an-sms-spyware

Chebyshev, V. (2013, February). Mobile attacks! Kaspersky. Retrieved from https://

www.securelist.com/en/blog/805/Mobile_attacks

Christodorescu, M., & Jha, S. (2006). Static analysis of executables to detect malicious

patterns (Tech. Rep.). DTIC Document.
Christodorescu, M., Jha, S., & Kruegel, C. (2008). Mining specifications of malicious

behavior. In Proceedings of the 1st india software engineering conference (pp.
5–14).

ClamAV. (2007). Creating signatures for clamav. Retrieved from http://www

.clamav.net/doc/latest/signatures.pdf

Cleary, J. G., & Trigg, L. E. (1995). K*: An Instance-based Learner Using an Entropic
Distance Measure. In Icml (pp. 108–114).

CNN. (2011). Smartphone Shipments Tripled Since ’08. Dumb Phones Are Flat.

Retrieved from http://tech.fortune.cnn.com/2011/11/01/

smartphone-shipments-tripled-since-08-dumb-phones-are

-flat

Cohen, F. (1987). Computer viruses: theory and experiments. Computers & security,
6(1), 22–35.

Cohen, W. W. (1995). Fast effective rule induction. In Icml (Vol. 95, pp. 115–123).
Corrons, L. (2013a, February). Android users under attack through ma-

licious ads in Facebook. Panda Security. Retrieved from http://

pandalabs.pandasecurity.com/android-users-under-attack

-through-malicious-ads-in-facebook/

Corrons, L. (2013b, February). New malware attack through Google Play. Panda
Security. Retrieved from http://pandalabs.pandasecurity.com/new

-malware-attack-through-google-play/

https://blogs.mcafee.com/mcafee-labs/dissecting-zeus-for-android-or-is-it-just-an-sms-spyware
https://blogs.mcafee.com/mcafee-labs/dissecting-zeus-for-android-or-is-it-just-an-sms-spyware
https://blogs.mcafee.com/mcafee-labs/dissecting-zeus-for-android-or-is-it-just-an-sms-spyware
https://www.securelist.com/en/blog/805/Mobile_attacks
https://www.securelist.com/en/blog/805/Mobile_attacks
http://www.clamav.net/doc/latest/signatures.pdf
http://www.clamav.net/doc/latest/signatures.pdf
http://tech.fortune.cnn.com/2011/11/01/smartphone-shipments-tripled-since-08-dumb-phones-are-flat
http://tech.fortune.cnn.com/2011/11/01/smartphone-shipments-tripled-since-08-dumb-phones-are-flat
http://tech.fortune.cnn.com/2011/11/01/smartphone-shipments-tripled-since-08-dumb-phones-are-flat
http://pandalabs.pandasecurity.com/android-users-under-attack-through-malicious-ads-in-facebook/
http://pandalabs.pandasecurity.com/android-users-under-attack-through-malicious-ads-in-facebook/
http://pandalabs.pandasecurity.com/android-users-under-attack-through-malicious-ads-in-facebook/
http://pandalabs.pandasecurity.com/new-malware-attack-through-google-play/
http://pandalabs.pandasecurity.com/new-malware-attack-through-google-play/

Paolo Rovelli 95

Corrons, L., & Correll, S. (2010). The Business of Rogueware: Analysis of the New
Style of Online Fraud. Web Application Security, 72, 7–7.

CRAM. (2014, April). Anche quest’anno il C.R.A.M. sarÃ presente a SMAU Padova con

un workshop formativo. TG Soft. Retrieved from http://www.tgsoft.it/

italy/news_archivio.asp?id=583

Crussell, J., Gibler, C., & Chen, H. (2012). Attack of the Clones: Detecting Cloned
Applications on Android Markets. In Computer security–esorics 2012 (pp. 37–54).
Springer.

Dagon, D., Martin, T., & Starner, T. (2004). Mobile Phones as Computing Devices: The
Viruses are Coming! Pervasive Computing, IEEE, 3(4), 11–15.

Dua, S., & Du, X. (2011). Data mining and machine learning in cybersecurity. Taylor &
Francis.

Ducklin, P. (2013, May). Android malware in pictures - a blow-by-blow

account of mobile scareware. Sophos. Retrieved from http://

nakedsecurity.sophos.com/2013/05/31/android-malware-in

-pictures-a-blow-by-blow-account-of-mobile-scareware/

elinux.org. (n.d.). Android Asset Packaging Tool. Retrieved from http://elinux

.org/Android_aapt

Enck, W., Gilbert, P., Chun, B.-G., Cox, L. P., Jung, J., McDaniel, P., & Sheth, A. (2010).
TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitor-
ing on Smartphones. In Osdi (Vol. 10, pp. 255–270).

F-Prot. (2013). What is an archive bomb? Author. Retrieved from http://www.f

-prot.com/support/windows/fpwin_faq/90.html

F-Secure. (2013). F-Secure Mobile Threat Report Q1 2013. Author. Retrieved
from http://www.f-secure.com/static/doc/labs_global/

Research/Mobile_Threat_Report_Q1_2013.pdf

Felt, A. P., Chin, E., Hanna, S., Song, D., & Wagner, D. (2011). Android permissions
demystified. In Proceedings of the 18th acm conference on computer and commu-

nications security (pp. 627–638).
Felt, A. P., Finifter, M., Chin, E., Hanna, S., & Wagner, D. (2011). A survey of mobile

malware in the wild. In Proceedings of the 1st acm workshop on security and

privacy in smartphones and mobile devices (pp. 3–14).
Felt, A. P., Greenwood, K., & Wagner, D. (2011). The effectiveness of application permis-

sions. In Proceedings of the 2nd usenix conference on web application development

(pp. 7–7).
Firdausi, I., Lim, C., Erwin, A., & Nugroho, A. S. (2010). Analysis of machine learning

techniques used in behavior-based malware detection. In Advances in computing,

http://www.tgsoft.it/italy/news_archivio.asp?id=583
http://www.tgsoft.it/italy/news_archivio.asp?id=583
http://nakedsecurity.sophos.com/2013/05/31/android-malware-in-pictures-a-blow-by-blow-account-of-mobile-scareware/
http://nakedsecurity.sophos.com/2013/05/31/android-malware-in-pictures-a-blow-by-blow-account-of-mobile-scareware/
http://nakedsecurity.sophos.com/2013/05/31/android-malware-in-pictures-a-blow-by-blow-account-of-mobile-scareware/
http://elinux.org/Android_aapt
http://elinux.org/Android_aapt
http://www.f-prot.com/support/windows/fpwin_faq/90.html
http://www.f-prot.com/support/windows/fpwin_faq/90.html
http://www.f-secure.com/static/doc/labs_global/Research/Mobile_Threat_Report_Q1_2013.pdf
http://www.f-secure.com/static/doc/labs_global/Research/Mobile_Threat_Report_Q1_2013.pdf

96 Developing a next-generation Mobile Security solution for Android

control and telecommunication technologies (act), 2010 second international con-

ference on (pp. 201–203).
Foley, S. N., & Dumigan, R. (2001). Are handheld viruses a significant threat? Commu-

nications of the ACM, 44(1), 105–107.
ForeSafe. (2013). ForeSafe Mobile Security: Redesigned Security for Android. Retrieved

from http://www.foresafe.com/ForeSafe_WhitePaper.pdf

Forristal, J. (2013, July). Uncovering Android Master Key That Makes 99% of De-

vices Vulnerable. Bluebox Security. Retrieved from http://bluebox.com/

corporate-blog/bluebox-uncovers-android-master-key

Freund, Y., & Schapire, R. E. (1995). A desicion-theoretic generalization of on-line
learning and an application to boosting. In Computational learning theory (pp.
23–37).

G Data Software. (2013, June). G Data Mobile Malware Report: January-June 2013.

Author. Retrieved from http://blog.gdatasoftware.com/uploads/

media/GData_MobileMWR_H1_2013_EN_01.pdf

Gamble, J. (2012, February). 2013: Made-to-Measure Malware and the Battle Against

Adware. Lookout. Retrieved from https://blog.lookout.com/blog/

2014/02/20/malware-made-to-measure/

Gibler, C., Crussell, J., Erickson, J., & Chen, H. (2012). Androidleaks: Automatically
detecting potential privacy leaks in android applications on a large scale. In Trust

and trustworthy computing (pp. 291–307). Springer.
Google. (2013). Android Open Source Project. Retrieved from http://source

.android.com

Google. (2013). Google Play. Retrieved from https://play.google.com/

store

Griffin, K., Schneider, S., Hu, X., & Chiueh, T.-c. (2009). Automatic generation of string
signatures for malware detection. In Recent advances in intrusion detection (pp.
101–120).

Hawes, J. (2013, November). Are anti-virus testers measuring the right things?

Sophos. Retrieved from http://nakedsecurity.sophos.com/2013/

11/05/are-av-testers-measuring-the-right-things/

Holmes, G., Donkin, A., & Witten, I. H. (1994). Weka: A machine learning workbench.
In Intelligent information systems, 1994. proceedings of the 1994 second australian

and new zealand conference on (pp. 357–361).
Huang, C.-Y., Tsai, Y.-T., & Hsu, C.-H. (2013). Performance Evaluation on Permission-

Based Detection for Android Malware. In Advances in intelligent systems and

applications-volume 2 (pp. 111–120). Springer.

http://www.foresafe.com/ForeSafe_WhitePaper.pdf
http://bluebox.com/corporate-blog/bluebox-uncovers-android-master-key
http://bluebox.com/corporate-blog/bluebox-uncovers-android-master-key
http://blog.gdatasoftware.com/uploads/media/GData_MobileMWR_H1_2013_EN_01.pdf
http://blog.gdatasoftware.com/uploads/media/GData_MobileMWR_H1_2013_EN_01.pdf
https://blog.lookout.com/blog/2014/02/20/malware-made-to-measure/
https://blog.lookout.com/blog/2014/02/20/malware-made-to-measure/
http://source.android.com
http://source.android.com
https://play.google.com/store
https://play.google.com/store
http://nakedsecurity.sophos.com/2013/11/05/are-av-testers-measuring-the-right-things/
http://nakedsecurity.sophos.com/2013/11/05/are-av-testers-measuring-the-right-things/

Paolo Rovelli 97

Hypponen, M. (2007). State of cell phone malware in 2007. USENIX. Retrieved from
www.usenix.org/events/sec07/tech/hypponen.pdf

IDC. (2013, 4). More Smartphones Were Shipped in Q1 2013 Than Feature Phones,

An Industry First According to IDC. Retrieved from http://www.idc.com/

getdoc.jsp?containerId=prUS24085413

Jacob, G., Debar, H., & Filiol, E. (2008). Behavioral detection of malware: from a survey
towards an established taxonomy. Journal in computer Virology, 4(3), 251–266.

Jarabek, C., Barrera, D., & Aycock, J. (2012). ThinAV: truly lightweight mobile cloud-
based anti-malware. In Proceedings of the 28th annual computer security applica-

tions conference (pp. 209–218).
Jiang, X. (2012a, February). Clickjacking Rootkits for Android: the Next Big Threat?

Retrieved from http://web.ncsu.edu/abstract/technology/wms

-jiang-clickjack/

Jiang, X. (2012b, March). Security Alert: New RootSmart Android Malware Utilizes

the GingerBreak Root Exploit. NC State University. Retrieved from http://

www.csc.ncsu.edu/faculty/jiang/RootSmart/

John, G. H., & Langley, P. (1995). Estimating continuous distributions in Bayesian
classifiers. In Proceedings of the eleventh conference on uncertainty in artificial

intelligence (pp. 338–345).
JS, & AB. (2014, February). Android Malware goes “To The Moon!”: Mobile

devices are being misused as cash collectors. G Data Software. Retrieved
from https://blog.gdatasoftware.com/blog/article/android

-malware-goes-to-the-moon.html

Kiem, H., Thuy, N., & Quang, T. (2004). A Machine Learning Approach to Anti-virus
System. In Proceedings of joint workshop of vietnamese society of ai, sigkbs-jsai,

ics-ipsj and ieice-sigai on active mining, hanoi-vietnam (pp. 61–65).
Kolter, J. Z., & Maloof, M. A. (2006). Learning to Detect and Classify Malicious Exe-

cutables in the Wild. The Journal of Machine Learning Research, 7, 2721–2744.
Lawton, G. (2008). Is it finally time to worry about mobile malware? Computer, 41(5),

12–14.
Leavitt, N. (2000). Malicious code moves to mobile devices. IEEE Computer, 33(12),

16–19.
Lee, T. J., & Mody, J. (2006, April). Behavioral classification. In Proceedings of eicar

2006.

Liu, F. (2014, January). Windows Malware Attempts to Infect Android Devices

. Symantec. Retrieved from http://www.symantec.com/connect/

blogs/windows-malware-attempts-infect-android-devices

www.usenix.org/events/sec07/tech/hypponen.pdf
http://www.idc.com/getdoc.jsp?containerId=prUS24085413
http://www.idc.com/getdoc.jsp?containerId=prUS24085413
http://web.ncsu.edu/abstract/technology/wms-jiang-clickjack/
http://web.ncsu.edu/abstract/technology/wms-jiang-clickjack/
http://www.csc.ncsu.edu/faculty/jiang/RootSmart/
http://www.csc.ncsu.edu/faculty/jiang/RootSmart/
https://blog.gdatasoftware.com/blog/article/android-malware-goes-to-the-moon.html
https://blog.gdatasoftware.com/blog/article/android-malware-goes-to-the-moon.html
http://www.symantec.com/connect/blogs/windows-malware-attempts-infect-android-devices
http://www.symantec.com/connect/blogs/windows-malware-attempts-infect-android-devices

98 Developing a next-generation Mobile Security solution for Android

Lookout. (2011, March). Technical Analysis: DroidDream Malware. Author. Retrieved
from https://blog.lookout.com/droiddream/

Lookout. (2012). Lookout Malwarenomics: 2012 Mobile Threat Predictions. Au-
thor. Retrieved from https://blog.lookout.com/blog/2011/12/13/

2012-mobile-threat-predictions

Lyne, J. (2013, February). Everyday cybercrime – and what you can do about it. TED.
Retrieved from http://www.ted.com/talks/james_lyne_everyday

_cybercrime_and_what_you_can_do_about_it.html

Machine Learning Group at the University of Waikato. (n.d.). Weka. Retrieved from
http://www.cs.waikato.ac.nz/ml/weka

Main, Scott and Braun, David. (2013). Getting Your SMS Apps Ready

for KitKat . Android Developers Blog. Retrieved from http://

android-developers.blogspot.it/2013/10/getting-your

-sms-apps-ready-for-kitkat.html

Martignoni, L., Paleari, R., & Bruschi, D. (2009). A framework for behavior-based
malware analysis in the cloud. In Information systems security (pp. 178–192).
Springer.

Maslennikov, D. (2011, October). ZeuS-in-the-Mobile - Facts and Theories. Kasper-
sky. Retrieved from http://www.securelist.com/en/analysis/

204792194/ZeuS_in_the_Mobile_Facts_and_Theories

Mila. (2013). Contagio Mobile. Retrieved from http://contagiominidump

.blogspot.it

Mullaney, C. (2012, February). Android.Bmaster: A Million-Dollar Mobile Bot-

net. Symantec. Retrieved from http://www.symantec.com/connect/

blogs/androidbmaster-million-dollar-mobile-botnet

NQ Mobile. (2012, February). 2011 Mobile Security Report. Retrieved from http://

docs.nq.com/2011_NQ_Mobile_Security_Report.pdf

Oberheide, J., Cooke, E., & Jahanian, F. (2007). Rethinking antivirus: Executable analy-
sis in the network cloud. In 2nd usenix workshop on hot topics in security (hotsec

2007).

Oberheide, J., Cooke, E., & Jahanian, F. (2008). CloudAV: N-Version Antivirus in the
Network Cloud. In Usenix security symposium (pp. 91–106).

Oi, T. (2011). Yet Another Android Rootkit. Black Hat. https://media. blackhat.

com/bhad-11/Oi/bh-ad-11-Oi-Android_Rootkit-WP. pdf (accessed December 13,

2012).
Panda Security. (2013a, December). Malware creation and Android security

threats will hit record-high numbers in 2014. Author. Retrieved from

https://blog.lookout.com/droiddream/
https://blog.lookout.com/blog/2011/12/13/2012-mobile-threat-predictions
https://blog.lookout.com/blog/2011/12/13/2012-mobile-threat-predictions
http://www.ted.com/talks/james_lyne_everyday_cybercrime_and_what_you_can_do_about_it.html
http://www.ted.com/talks/james_lyne_everyday_cybercrime_and_what_you_can_do_about_it.html
http://www.cs.waikato.ac.nz/ml/weka
http://android-developers.blogspot.it/2013/10/getting-your-sms-apps-ready-for-kitkat.html
http://android-developers.blogspot.it/2013/10/getting-your-sms-apps-ready-for-kitkat.html
http://android-developers.blogspot.it/2013/10/getting-your-sms-apps-ready-for-kitkat.html
http://www.securelist.com/en/analysis/204792194/ZeuS_in_the_Mobile_Facts_and_Theories
http://www.securelist.com/en/analysis/204792194/ZeuS_in_the_Mobile_Facts_and_Theories
http://contagiominidump.blogspot.it
http://contagiominidump.blogspot.it
http://www.symantec.com/connect/blogs/androidbmaster-million-dollar-mobile-botnet
http://www.symantec.com/connect/blogs/androidbmaster-million-dollar-mobile-botnet
http://docs.nq.com/2011_NQ_Mobile_Security_Report.pdf
http://docs.nq.com/2011_NQ_Mobile_Security_Report.pdf

Paolo Rovelli 99

http://press.pandasecurity.com/news/malware-creation

-and-android-security-threats-will-hit-record-high

-numbers-in-2014/

Panda Security. (2013b). PandaLabs Report: April-June 2013. Author. Retrieved from
http://press.pandasecurity.com/wp-content/uploads/2010/

05/Quarterly-Report-PandaLabs-April-June-2013.pdf

Portokalidis, G., Homburg, P., Anagnostakis, K., & Bos, H. (2010). Paranoid Android:
versatile protection for smartphones. In Proceedings of the 26th annual computer

security applications conference (pp. 347–356).
Quinlan, J. R. (1993). C4.5: programs for machine learning (Vol. 1). Morgan kaufmann.
Rogers, M. (2014, March). CoinKrypt: How criminals use your phone to mine digital

currency. Lookout. Retrieved from https://blog.lookout.com/blog/

2014/03/26/coinkrypt/

Rovelli, P. (2013a, October). Discovered a new malware for Android which subscribes

its victims to paid services via SMS! TG Soft. Retrieved from http://www

.tgsoft.it/english/news_archivio_eng.asp?id=565

Rovelli, P. (2013b, November). Discovered the first Android malware that uses

SMTP! TG Soft. Retrieved from http://www.tgsoft.it/english/

news_archivio_eng.asp?id=568

Rovelli, P. (2013c, September). The FraudTools arrive also on Android... the CRAM team

analyzes AndroidDefender.A! TG Soft. Retrieved from http://www.tgsoft

.it/english/news_archivio_eng.asp?id=556

Rovelli, P. (2013d, September). Wi-Fi networks and the new bad habits. TG Soft. Re-
trieved from http://www.tgsoft.it/english/news_archivio_eng

.asp?id=555

Rovelli, P. (2013e, October). ZitMo for Android: Analysis of a Man-in-the-Mobile

attack! TG Soft. Retrieved from http://www.tgsoft.it/english/

news_archivio_eng.asp?id=561

Rovelli, P. (2014, January). How safe is really Google Play Store? TG Soft. Re-
trieved from http://www.tgsoft.it/english/news_archivio_eng

.asp?id=574

Rovelli, P., & Tonello, G. (2013, September). A new menace for Android... it is the

TrojanSMS.Agent.A! TG Soft. Retrieved from http://www.tgsoft.it/

english/news_archivio_eng.asp?id=554

Sarma, B. P., Li, N., Gates, C., Potharaju, R., Nita-Rotaru, C., & Molloy, I. (2012).
Android permissions: a perspective combining risks and benefits. In Proceedings

of the 17th acm symposium on access control models and technologies (pp. 13–22).

http://press.pandasecurity.com/news/malware-creation-and-android-security-threats-will-hit-record-high-numbers-in-2014/
http://press.pandasecurity.com/news/malware-creation-and-android-security-threats-will-hit-record-high-numbers-in-2014/
http://press.pandasecurity.com/news/malware-creation-and-android-security-threats-will-hit-record-high-numbers-in-2014/
http://press.pandasecurity.com/wp-content/uploads/2010/05/Quarterly-Report-PandaLabs-April-June-2013.pdf
http://press.pandasecurity.com/wp-content/uploads/2010/05/Quarterly-Report-PandaLabs-April-June-2013.pdf
https://blog.lookout.com/blog/2014/03/26/coinkrypt/
https://blog.lookout.com/blog/2014/03/26/coinkrypt/
http://www.tgsoft.it/english/news_archivio_eng.asp?id=565
http://www.tgsoft.it/english/news_archivio_eng.asp?id=565
http://www.tgsoft.it/english/news_archivio_eng.asp?id=568
http://www.tgsoft.it/english/news_archivio_eng.asp?id=568
http://www.tgsoft.it/english/news_archivio_eng.asp?id=556
http://www.tgsoft.it/english/news_archivio_eng.asp?id=556
http://www.tgsoft.it/english/news_archivio_eng.asp?id=555
http://www.tgsoft.it/english/news_archivio_eng.asp?id=555
http://www.tgsoft.it/english/news_archivio_eng.asp?id=561
http://www.tgsoft.it/english/news_archivio_eng.asp?id=561
http://www.tgsoft.it/english/news_archivio_eng.asp?id=574
http://www.tgsoft.it/english/news_archivio_eng.asp?id=574
http://www.tgsoft.it/english/news_archivio_eng.asp?id=554
http://www.tgsoft.it/english/news_archivio_eng.asp?id=554

100 Developing a next-generation Mobile Security solution for Android

SB. (2014, February). Worth looking again: fake Flash Player apps in Google Play store.

G Data Software. Retrieved from http://blog.gdatasoftware.com/

blog/article/worth-looking-again-fake-flash-player-apps

-in-google-play-store.html

Schmidt, A.-D., Camtepe, S. A., & Albayrak, S. (2010). Static smartphone malware
detection.

Schmidt, A.-D., Peters, F., Lamour, F., Scheel, C., Çamtepe, S. A., & Albayrak, Ş. (2009).
Monitoring smartphones for anomaly detection. Mobile Networks and Applications,
14(1), 92–106.

Schultz, M. G., Eskin, E., Zadok, F., & Stolfo, S. J. (2001). Data Mining Methods for
Detection of New Malicious Executables. In Security and privacy, 2001. s&p 2001.

proceedings. 2001 ieee symposium on (pp. 38–49).
Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., & Weiss, Y. (2012). “Andromaly”: a

behavioral malware detection framework for android devices. Journal of Intelligent

Information Systems, 38(1), 161–190.
Shabtai, A., Moskovitch, R., Elovici, Y., & Glezer, C. (2009). Detection of malicious

code by applying machine learning classifiers on static features: A state-of-the-art
survey. Information Security Technical Report, 14(1), 16–29.

Siddiqui, M., Wang, M. C., & Lee, J. (2008). A Survey of Data Mining Techniques for
Malware Detection using File Features. In Proceedings of the 46th annual southeast

regional conference on xx (pp. 509–510).
Skulason, A. F., & Bontchev, V. (1991). A new virus naming convention. In Caro

meeting.

Sophos. (2013a, July). Anatomy of a security hole - Google’s “Android Master Key” de-

bacle explained. Author. Retrieved from http://nakedsecurity.sophos

.com/2013/07/10/anatomy-of-a-security-hole-googles

-android-master-key-debacle-explained/

Sophos. (2013b). Sophos Security Threat Report 2013. Author. Re-
trieved from http://www.sophos.com/en-us/medialibrary/PDFs/

other/sophossecuritythreatreport2013.pdf

Spreitzenbarth, M. (2012, February). Detailed Analysis of Android.Bmaster. forensic
blog. Retrieved from http://forensics.spreitzenbarth.de/2012/

02/12/detailed-analysis-of-android-bmaster/

Spreitzenbarth, M., & Freiling, F. (2012). Android Malware on the Rise. University of

Erlangen, Germany, Tech. Rep. CS-2012-04.
Stone-Gross, B., Abman, R., Kemmerer, R. A., Kruegel, C., Steigerwald, D. G., & Vigna,

G. (2013). The underground economy of fake antivirus software. In Economics of

http://blog.gdatasoftware.com/blog/article/worth-looking-again-fake-flash-player-apps-in-google-play-store.html
http://blog.gdatasoftware.com/blog/article/worth-looking-again-fake-flash-player-apps-in-google-play-store.html
http://blog.gdatasoftware.com/blog/article/worth-looking-again-fake-flash-player-apps-in-google-play-store.html
http://nakedsecurity.sophos.com/2013/07/10/anatomy-of-a-security-hole-googles-android-master-key-debacle-explained/
http://nakedsecurity.sophos.com/2013/07/10/anatomy-of-a-security-hole-googles-android-master-key-debacle-explained/
http://nakedsecurity.sophos.com/2013/07/10/anatomy-of-a-security-hole-googles-android-master-key-debacle-explained/
http://www.sophos.com/en-us/medialibrary/PDFs/other/sophossecuritythreatreport2013.pdf
http://www.sophos.com/en-us/medialibrary/PDFs/other/sophossecuritythreatreport2013.pdf
http://forensics.spreitzenbarth.de/2012/02/12/detailed-analysis-of-android-bmaster/
http://forensics.spreitzenbarth.de/2012/02/12/detailed-analysis-of-android-bmaster/

Paolo Rovelli 101

information security and privacy iii (pp. 55–78). Springer.
Strategy Analytics. (2012, 10). Global Smartphone Installed Base by Op-

erating System for 88 Countries: 2007 to 2017. Retrieved from
http://www.strategyanalytics.com/default.aspx?mod=

reportabstractviewer&a0=7834

Suarez-Tangil, G., Tapiador, J. E., Peris-Lopez, P., & Blasco, J. (2014). Dendroid: A text
mining approach to analyzing and classifying code structures in android malware
families. Expert Systems with Applications, 41(4), 1104–1117.

Svajcer, V. (2011, March). Aftermath of the Droid Dream Android Market malware

attack. Sophos. Retrieved from http://nakedsecurity.sophos.com/

2011/03/03/droid-dream-android-market-malware-attack

-aftermath/

Symantec Security Response. (2013, July). First Malicious Use of ’Mas-

ter Key’ Android Vulnerability Discovered. Symantec. Retrieved from
http://www.symantec.com/connect/blogs/first-malicious

-use-master-key-android-vulnerability-discovered

Szor, P. (2005). The art of computer virus research and defense. Pearson Education.
Szor, P. (2008, August). Heuristic detection of malicious computer code by page tracking.

Google Patents. (US Patent 7,418,729)
Tabish, S. M., Shafiq, M. Z., & Farooq, M. (2009). Malware Detection using Statical

Analysis of Byte-Level File Content. In Proceedings of the acm sigkdd workshop

on cybersecurity and intelligence informatics (pp. 23–31).
The Android Open Source Project. (n.d.). Building and Running. Retrieved from

http://developer.android.com/tools/building/index.html

The Android Open Source Project. (2013a). ActivityManager. Retrieved
from http://developer.android.com/reference/android/app/

ActivityManager.html

The Android Open Source Project. (2013b). ActivityManager.RunningAppProcessInfo.

Retrieved from http://developer.android.com/reference/

android/app/ActivityManager.RunningAppProcessInfo.html

The Android Open Source Project. (2013c). Android Permissions. Retrieved
from http://developer.android.com/guide/topics/security/

permissions.html

The Android Open Source Project. (2013d). Application Fundamentals. Re-
trieved from http://developer.android.com/guide/components/

fundamentals.html

The Android Open Source Project. (2013e). ApplicationInfo. Retrieved from

http://www.strategyanalytics.com/default.aspx?mod=reportabstractviewer&a0=7834
http://www.strategyanalytics.com/default.aspx?mod=reportabstractviewer&a0=7834
http://nakedsecurity.sophos.com/2011/03/03/droid-dream-android-market-malware-attack-aftermath/
http://nakedsecurity.sophos.com/2011/03/03/droid-dream-android-market-malware-attack-aftermath/
http://nakedsecurity.sophos.com/2011/03/03/droid-dream-android-market-malware-attack-aftermath/
http://www.symantec.com/connect/blogs/first-malicious-use-master-key-android-vulnerability-discovered
http://www.symantec.com/connect/blogs/first-malicious-use-master-key-android-vulnerability-discovered
http://developer.android.com/tools/building/index.html
http://developer.android.com/reference/android/app/ActivityManager.html
http://developer.android.com/reference/android/app/ActivityManager.html
http://developer.android.com/reference/android/app/ActivityManager.RunningAppProcessInfo.html
http://developer.android.com/reference/android/app/ActivityManager.RunningAppProcessInfo.html
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/guide/components/fundamentals.html

102 Developing a next-generation Mobile Security solution for Android

http://developer.android.com/reference/android/content/

pm/ApplicationInfo.html

The Android Open Source Project. (2013f). App Manifest. Retrieved
from http://developer.android.com/guide/topics/manifest/

manifest-intro.html

The Android Open Source Project. (2013g). ContentObserver. Retrieved
from http://developer.android.com/reference/android/

database/ContentObserver.html

The Android Open Source Project. (2013h). Dalvik EXecutable Format (DEX). Re-
trieved from http://source.android.com/devices/tech/dalvik/

dex-format.html

The Android Open Source Project. (2013i). Environment. Retrieved from
http://developer.android.com/reference/android/os/

Environment.html

The Android Open Source Project. (2013j). External Storage Technical Informa-

tion. Retrieved from http://source.android.com/devices/tech/

storage/

The Android Open Source Project. (2013k). FileObserver. Retrieved from
http://developer.android.com/reference/android/os/

FileObserver.html

The Android Open Source Project. (2013l). InputStream. Retrieved
from http://developer.android.com/reference/java/io/

InputStream.html

The Android Open Source Project. (2013m). Introducing ART. Retrieved from http://

source.android.com/devices/tech/dalvik/art.html

The Android Open Source Project. (2013n). OpenJDK java.io.InputStream. Retrieved
from http://grepcode.com/file/repository.grepcode.com/

java/root/jdk/openjdk/6-b14/java/io/InputStream.java#

InputStream.skip%28long%29

The Android Open Source Project. (2013o). OutOfMemoryError. Retrieved
from http://developer.android.com/reference/java/lang/

OutOfMemoryError.html

The Android Open Source Project. (2013p). PackageManager. Retrieved from
http://developer.android.com/reference/android/content/

pm/PackageManager.html

The Android Open Source Project. (2013q). RandomAccessFile. Retrieved
from http://developer.android.com/reference/java/io/

http://developer.android.com/reference/android/content/pm/ApplicationInfo.html
http://developer.android.com/reference/android/content/pm/ApplicationInfo.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/reference/android/database/ContentObserver.html
http://developer.android.com/reference/android/database/ContentObserver.html
http://source.android.com/devices/tech/dalvik/dex-format.html
http://source.android.com/devices/tech/dalvik/dex-format.html
http://developer.android.com/reference/android/os/Environment.html
http://developer.android.com/reference/android/os/Environment.html
http://source.android.com/devices/tech/storage/
http://source.android.com/devices/tech/storage/
http://developer.android.com/reference/android/os/FileObserver.html
http://developer.android.com/reference/android/os/FileObserver.html
http://developer.android.com/reference/java/io/InputStream.html
http://developer.android.com/reference/java/io/InputStream.html
http://source.android.com/devices/tech/dalvik/art.html
http://source.android.com/devices/tech/dalvik/art.html
http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/6-b14/java/io/InputStream.java#InputStream.skip%28long%29
http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/6-b14/java/io/InputStream.java#InputStream.skip%28long%29
http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/6-b14/java/io/InputStream.java#InputStream.skip%28long%29
http://developer.android.com/reference/java/lang/OutOfMemoryError.html
http://developer.android.com/reference/java/lang/OutOfMemoryError.html
http://developer.android.com/reference/android/content/pm/PackageManager.html
http://developer.android.com/reference/android/content/pm/PackageManager.html
http://developer.android.com/reference/java/io/RandomAccessFile.html
http://developer.android.com/reference/java/io/RandomAccessFile.html

Paolo Rovelli 103

RandomAccessFile.html

The Android Open Source Project. (2013r). Signing Your Applications. Re-
trieved from http://developer.android.com/tools/publishing/

app-signing.html

The Android Open Source Project. (2013s). Storage Options: Using the Exter-

nal Storage. Retrieved from http://developer.android.com/guide/

topics/data/data-storage.html#filesExternal

The Android Open Source Project. (2013t). System Permissions. Retrieved
from http://developer.android.com/guide/topics/security/

permissions.html

The Android Open Source Project. (2013u). TrafficStats. Retrieved
from http://developer.android.com/reference/android/net/

TrafficStats.html

The Android Open Source Project. (2013v). UID (kernel User-ID). Retrieved from
http://developer.android.com/reference/android/content/

pm/ApplicationInfo.html#uid

The Android Open Source Project. (2013w). ZipFile. Retrieved from
http://developer.android.com/reference/java/util/zip/

ZipFile.html

The University of Waikato. (2002). Attribute-Relation File Format (ARFF). Retrieved
from http://www.cs.waikato.ac.nz/ml/weka/arff.html

The University of Waikato. (2008). ARFF. Retrieved from http://weka

.wikispaces.com/ARFF

Tonello, G. (2014, April). Conto corrente sotto attacco: come l’evoluzione

dei Trojan Banker minacciano i nostri soldi... SMAU. Retrieved from
http://www.smau.it/padova14/schedules/conto-corrente

-sotto-attacco-come-levoluzione-dei-trojan-banker

-minacciano-i-nostri-soldi/

Unuchek, R. (2013, June). The most sophisticated Android Trojan. Kasper-
sky. Retrieved from https://www.securelist.com/en/blog/8106/

The_most_sophisticated_Android_Trojan

Uscilowski, B. (2013, October). Mobile Adware and Malware Analysis. Syman-
tec. Retrieved from http://www.symantec.com/content/en/

us/enterprise/media/security_response/whitepapers/

madware_and_malware_analysis.pdf

Wei, X., Gomez, L., Neamtiu, I., & Faloutsos, M. (2012). Permission evolution in the An-
droid ecosystem. In Proceedings of the 28th annual computer security applications

http://developer.android.com/reference/java/io/RandomAccessFile.html
http://developer.android.com/reference/java/io/RandomAccessFile.html
http://developer.android.com/tools/publishing/app-signing.html
http://developer.android.com/tools/publishing/app-signing.html
http://developer.android.com/guide/topics/data/data-storage.html#filesExternal
http://developer.android.com/guide/topics/data/data-storage.html#filesExternal
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/reference/android/net/TrafficStats.html
http://developer.android.com/reference/android/net/TrafficStats.html
http://developer.android.com/reference/android/content/pm/ApplicationInfo.html#uid
http://developer.android.com/reference/android/content/pm/ApplicationInfo.html#uid
http://developer.android.com/reference/java/util/zip/ZipFile.html
http://developer.android.com/reference/java/util/zip/ZipFile.html
http://www.cs.waikato.ac.nz/ml/weka/arff.html
http://weka.wikispaces.com/ARFF
http://weka.wikispaces.com/ARFF
http://www.smau.it/padova14/schedules/conto-corrente-sotto-attacco-come-levoluzione-dei-trojan-banker-minacciano-i-nostri-soldi/
http://www.smau.it/padova14/schedules/conto-corrente-sotto-attacco-come-levoluzione-dei-trojan-banker-minacciano-i-nostri-soldi/
http://www.smau.it/padova14/schedules/conto-corrente-sotto-attacco-come-levoluzione-dei-trojan-banker-minacciano-i-nostri-soldi/
https://www.securelist.com/en/blog/8106/The_most_sophisticated_Android_Trojan
https://www.securelist.com/en/blog/8106/The_most_sophisticated_Android_Trojan
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/madware_and_malware_analysis.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/madware_and_malware_analysis.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/madware_and_malware_analysis.pdf

104 Developing a next-generation Mobile Security solution for Android

conference (pp. 31–40).
Williams, G. (2012, March). The digital detective: Mikko Hypponen’s war on malware is

escalating. Wired. Retrieved from http://www.wired.co.uk/magazine/

archive/2012/04/features/the-digital-detective

Witten, I. H., & Frank, E. (2005). Data Mining: Practical machine learning tools and

techniques. Morgan Kaufmann.
Wyatt, T. (2011, August). Inside the Android Security Patch Lifecycle. Look-

out. Retrieved from https://blog.lookout.com/blog/2011/08/04/

inside-the-android-security-patch-lifecycle/

Xiao, Z., Dong, Q., Zhang, H., & Jiang, X. (2014, January). Oldboot:

the first bootkit on Android. Qihoo 360 Technology. Retrieved from
http://blogs.360.cn/360mobile/2014/01/17/oldboot-the

-first-bootkit-on-android/

Ye, Y., Wang, D., Li, T., & Ye, D. (2007). IMDS: Intelligent Malware Detection Sys-
tem. In Proceedings of the 13th acm sigkdd international conference on knowledge

discovery and data mining (pp. 1043–1047).
Zhou, W., Zhou, Y., Jiang, X., & Ning, P. (2012). Detecting Repackaged Smartphone

Applications in Third-Party Android Marketplaces. In Proceedings of the second

acm conference on data and application security and privacy (pp. 317–326).
Zhou, Y., & Jiang, X. (2012). Dissecting Android Malware: Characterization and Evolu-

tion. In Security and privacy (sp), 2012 ieee symposium on (pp. 95–109). Retrieved
from http://www.malgenomeproject.org

Zhou, Y., Wang, Z., Zhou, W., & Jiang, X. (2012). Hey, You, Get Off of My Market:
Detecting Malicious Apps in Official and Alternative Android Markets. In Pro-

ceedings of the 19th annual network and distributed system security symposium.

Zorabedian, J. (2014, May). Android “police warning” ransomware -

how to avoid it, and what to do if you get caught. Sophos. Re-
trieved from http://nakedsecurity.sophos.com/2014/05/19/

android-police-warning-ransomware-how-to-avoid-it-and

-what-to-do-if-you-get-caught/

http://www.wired.co.uk/magazine/archive/2012/04/features/the-digital-detective
http://www.wired.co.uk/magazine/archive/2012/04/features/the-digital-detective
https://blog.lookout.com/blog/2011/08/04/inside-the-android-security-patch-lifecycle/
https://blog.lookout.com/blog/2011/08/04/inside-the-android-security-patch-lifecycle/
http://blogs.360.cn/360mobile/2014/01/17/oldboot-the-first-bootkit-on-android/
http://blogs.360.cn/360mobile/2014/01/17/oldboot-the-first-bootkit-on-android/
http://www.malgenomeproject.org
http://nakedsecurity.sophos.com/2014/05/19/android-police-warning-ransomware-how-to-avoid-it-and-what-to-do-if-you-get-caught/
http://nakedsecurity.sophos.com/2014/05/19/android-police-warning-ransomware-how-to-avoid-it-and-what-to-do-if-you-get-caught/
http://nakedsecurity.sophos.com/2014/05/19/android-police-warning-ransomware-how-to-avoid-it-and-what-to-do-if-you-get-caught/

School of Computer Science
Reykjavík University
Menntavegi 1
101 Reykjavík, Iceland
Tel. +354 599 6200
Fax +354 599 6201
www.reykjavikuniversity.is
ISSN 1670-8539

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Android and Android malware
	Android
	The Android Operating System
	The APK File Format
	Google Play Store and Third-Party Markets

	Android Malware Taxonomy
	Malware Naming Scheme
	Malware Types
	Malware Propagation Methodologies

	Related Work
	Conclusion

	Implementing a Signature-based Malware Detection System in Android
	Introduction
	Related Work
	Design
	Malware Signatures
	Signatures Database
	Signatures Extraction and Signature Matching Engine

	Implementation
	Signature Matching Engine
	On-Demand Scanner
	On-Install Scanner
	On-Access Scanner

	Evaluation
	Environment
	Results

	Conclusion

	Implementing a Real-Time Monitor in Android
	Introduction
	Design and Implementation
	On-Execution Scanner
	On-Update Scanner
	Live Scanner
	Cloud Scanner

	Evaluation
	Environment
	Results

	Related Work
	Conclusion

	PMDS: Permission-based Malware Detection System for Android
	Introduction
	Related Work
	Design
	Permissions as (possible) behavioural markers
	Custom Permissions
	PMDS Classifier

	Implementation
	Evaluation
	Environment
	Classification with standard machine learning algorithms
	Classification with boosted machine learning algorithms

	Conclusions

	Implementing Network Protection and a Behavioural Detection System in Android
	Introduction
	Web Filter
	Network Monitor
	Community Network and Behavioural Detection
	Evaluation
	Results

	Conclusion

	Conclusions and Future Work
	Bibliography

