
USING RANGE INFORMATION TO REDUCE
LOCAL DESCRIPTOR COMPUTATIONS

Stefán Freyr Stefánsson
Master of Science
Computer Science
January 2011
School of Computer Science
Reykjavík University

M.Sc. RESEARCH THESIS
ISSN 1670-8539

Using Range Information to Reduce
Local Descriptor Computations

by

Stefán Freyr Stefánsson

Research thesis submitted to the School of Computer Science
at Reykjavík University in partial fulfillment of

the requirements for the degree of
Master of Science in Computer Science

January 2011

Research Thesis Committee:

Björn Þór Jónsson, Supervisor
Associate Professor, Reykjavik University, Iceland

Kristinn R. Thórisson
Associate Professor, Reykjavik University, Iceland

Laurent Amsaleg
Research Scientist, IRISA/CNRS, France

Copyright
Stefán Freyr Stefánsson

January 2011

Using Range Information to Reduce
Local Descriptor Computations

Stefán Freyr Stefánsson

January 2011

Abstract

Object recognition is of particular interest for mobile robot vision systems.
Local image descriptor methods are widely used for this purpose. However,
hardware limitations, coupled with the amount of processing power needed
to generate these descriptors, limit their usefulness. Meanwhile, range imag-
ing has been rapidly becoming more affordable and easy to deploy on mobile
platforms with the introduction of mass-market time-of-flight range cameras.
In this thesis, we present a case study of a complete vision system employ-
ing such a range camera along with a regular RGB camera. In the first part
of the thesis we describe and evaluate the architecture and performance of
this system, which is based on YARP, an open source, cross-platform toolkit
that enables a clean decoupling of modules. In the second part of the thesis,
we propose two methods for improving the performance of local descrip-
tor computation using range information. First, segmenting the RGB im-
age based on distance reduces the number of descriptors produced. Second,
using the range information reduces computation spent on enforcing scale-
invariance. Our findings indicate that the proposed techniques can result in
significant performance improvements with minimal compromising of result
quality.

Notkun fjarlægðarupplýsinga til að flýta
útreikningum á staðbundnum lýsipunktum

Stefán Freyr Stefánsson

Janúar 2011

Útdráttur

Í tölvusjónarkerfum fyrir kvika róbóta er mikilvægt að greina og þekkja
hluti. Staðværir lýsipunktar eru oft notaðir í þessum tilgangi. Hins vegar
er nýting þeirra bundin við takmarkanir á vélbúnaði og hversu mikið reikni-
afl þarf til að búa þá til. Fjarlægðarmyndavélar hafa lækkað ört í verði og
minnkað að stærð og því er orðið fýsilegt að nota slíkar vélar á kvikum róbó-
tum. Í þessari ritgerð kynnum við rannsóknir okkar á heildstæðu tölvusjó-
narkerfi sem notar slíka fjarlægðarmyndavél ásamt venjulegri litmyndavél.
Í fyrri hluta ritgerðarinnar leggjum við mat á hönnun og útfærslu kerfisins,
en það er byggt á YARP sem er samsafn opins hugbúnaðar sem keyrir á
mörgum stýrikerfum og einfaldar aðskilnað eininga kerfisins. Í seinni hluta
ritgerðarinnar leggjum við til tvær aðferðir til að nýta fjarlægðarupplýsingar
til að hraða gerð staðværra lýsipunkta. Sú fyrri er að hluta niður litmyndina
samkvæmt upplýsingum úr fjarlægðarmyndinni og fækka þannig lýsipunk-
tum. Hin síðari nýtir fjarlægðarupplýsingarnar til að minnka vinnsluna sem
fer í að tryggja þol gagnvart stærðarbreytingum. Niðurstöður okkar gefa til
kynna að með þessum aðferðum sé hægt að ná fram talsverðri aukningu á
hraða með lágmarks fórn á gæðum niðurstaðna.

To my parents, for their support and encouragement throughout the years.

vii

Acknowledgements

It’s been a long journey, but I’ve made it. I would like to acknowledge the people who
helped me get here.

My supervisor, Dr. Björn Þór Jónsson, for his endless patience, support, and constructive
criticism.

My committee, Dr. Kristinn R. Thórisson and Dr. Laurent Amsaleg, as well as Dr. Patrick
Gros, for their valuable input and ideas.

My good friend, Arnar Birgisson, for all his invaluable help and advice.

The YARP team (especially Paul Fitzpatrick, Giorgio Metta, Lorenzo Natale) and Rob
Hess for their excellent software and, particularly, for making it open-source for me to
play with.

And last but certainly not least, my family. Without their support and encouragement I
never would have gotten here in the first place.

viii

ix

Publications

Part I of this thesis is adapted from technical report (Stefánsson et al., 2008). A part of that
technical report was also published in Proceedings of the Fourth International Conference
on Computer Vision Theory and Applications (VISAPP) (Stefánsson et al., 2009). While
Björn Þór Jónsson and Kristinn R. Thórisson contributed significantly to the writing of
the technical report and conference paper, the implementation and experimentation in Part
I is entirely my own work, as is the material in Part II.

x

xi

Contents

List of Figures xiii

1 Introduction 1
1.1 Object Recognition and Local Image Descriptors 1
1.2 Range Information . 2
1.3 Overview and Contributions . 3

Part I: Architectural Framework 5

2 Architectural Requirements 7
2.1 Sensory Requirements . 7
2.2 Hardware Requirements . 8
2.3 Processing Requirements . 9
2.4 Communication Requirements . 9

3 Communication Infrastructures 11
3.1 YARP . 11
3.2 Alternative Architectures . 12

4 Experimental Environment 15
4.1 Hardware . 15
4.2 Video Stream Producer . 15
4.3 Image Processing Components . 15

5 Experimental Evaluation 17
5.1 Experiment 1: Transport Mechanisms 18
5.2 Experiment 2: Parallel Pipelines . 20
5.3 Experiment 3: YARP Overhead . 22

6 Summary 25

xii

Part II: Range Enhanced SIFT Processing 27

7 Background 29
7.1 Local Image Descriptors . 29
7.2 Scale-Invariant Feature Transform (SIFT) 30
7.3 Database Storage and Retrieval of Descriptors 33
7.4 Range Imaging . 34

8 Methods 37
8.1 The Processing Pipeline . 37
8.2 Image Segmentation . 40
8.3 Scale-Space Reduction . 41
8.4 Summary . 43

9 Experimental Setup and Hypotheses 45
9.1 Hardware and Software . 45
9.2 Object Collection and Workload . 46
9.3 Compensating for Collection Size . 47
9.4 Metrics . 50

10 Results 51
10.1 Performance . 51
10.2 Quality . 53
10.3 Conclusion and Summary . 56

11 Conclusions 57

xiii

List of Figures

2.1 Architectural Requirements. 8

5.1 The basic pipeline setup. 17
5.2 Exp. 1: Frame rate at receiver. 18
5.3 Exp. 1: Frame drops in pipeline. 19
5.4 Exp. 1: Latency of received frames. 19
5.5 The parallel pipelines setup. 20
5.6 Exp. 2: Frame drops per receiver. 21
5.7 Exp. 2: Latency of received frames. 21
5.8 Exp. 3: Latency of YARP and stand-alone process. 23

7.1 Difference-of-Gaussians pyramid. 32
7.2 Extrema detection in a DOG scale. 33
7.3 Example of a color/range image pair. 35

8.1 The processing pipeline. 38
8.2 Illustration of range partitioning. 42
8.3 Illustration of the rescaling principle. 43

9.1 Cameras and experiment setup. 47
9.2 Movie posters used for the experiments. 48
9.3 Comparison of descriptor distance and scale difference (query: 2m; DB:

2m). 49

10.1 Performance (FPS) of Sifter with database distance fixed at 4 meters. . . . 52
10.2 Performance (FPS) of Sifter with database distance fixed at 2 meters. . . . 53
10.3 Quality of Searcher with database distance fixed at 4 meters. 54
10.4 Comparison of descriptor distance and scale difference (query: 3m; DB:

4m). 55
10.5 Quality of Searcher with database distance fixed at 2 meters. 56

xiv

1

Chapter 1

Introduction

One of the most important sensory mechanisms for mobile robots is a sense of vision
that robustly supports movement and manipulations in a three-dimensional world. Here,
we use the term “vision” broadly to encompass any visuospatial sensory inputs and pro-
cessing required for an understanding of the environment. Accumulated experience has
shown, however, that for such robotic vision it is necessary to employ a number of sensors
and processing mechanisms, integrated in various ways—often dynamically—to support
real-time action in various contexts. Such systems are often constrained by heavy process-
ing requirements but limited resources, because on-board computers are typically chosen
for their power consumption characteristics, and may yet need to handle a large amount
of data in real-time for immediate reactive processing.

In this thesis, we focus on such a vision system, which employs a number of techniques,
including (a) color video cameras, which provide shape and color information but do not
easily give any distance information, (b) time-of-flight cameras, which can yield suffi-
cient range information to create a depth map of the environment, (c) image descriptions,
such as local image descriptors, which can be used for object recognition and obstacle
detection, and (d) a communications infrastructure.

1.1 Object Recognition and Local Image Descriptors

Robot vision systems commonly use advanced image processing techniques such as ob-
ject recognition. Object recognition is an important sub-domain of computer vision and
serves as a foundation for many higher level solutions. One of the primary algorithms
used for object recognition is SIFT (Lowe, 2004). The SIFT algorithm produces a set

2 Using Range Information to Reduce Local Descriptor Computations

of descriptors for a given input image. These descriptors are called local descriptors,
referring to the fact that each of them contains a detailed description of a single point
of interest in the processed image, and furthermore, that all descriptors are independent
from one another. A major benefit of this approach for object recognition is that it is
possible to keep a reference database of recognizable objects and, with a high degree of
confidence, locate these objects in a scene despite partial occlusion, rotation or changes
in illumination.

A downside to using SIFT for object recognition is the processing time required for gen-
erating the descriptors. Considering the robustness of the descriptors, the SIFT algorithm
could be considered quite fast, but nevertheless it is not suitable for real-time applica-
tions. Some variations have been proposed to SIFT to increase processing speed, such as
PCA-SIFT (Ke and Sukthankar, 2004) and GLOH (Mikolajczyk and Schmid, 2005) but
these improvements still fall short for real-time applications. Processing speed has also
been improved by implementing the SIFT algorithm using the GPU; while this provides
significant speed improvements it requires specialized hardware which is typically energy
consuming.

With most of these improvements to the algorithm itself, the focus has primarily been
on reducing the dimensionality of the descriptors or otherwise reducing the computation
time per descriptor. Intelligently reducing the number of descriptors that are generated is
a viable option for reducing the overall computation time but this has received relatively
little attention thus far.

1.2 Range Information

Recent hardware advances have resulted in the availability of range cameras for accurate
distance measurements. A question then arises whether such distance information can be
used to speed up processing for methods such as SIFT.

By segmenting the input image in such a way that segments contain only interesting re-
gions of the image, such as foreground objects, the number of descriptors that are gener-
ated may be reduced, and thereby the total processing effort needed for both generation
and matching. Such segmentation can be implemented by using range information to
detect objects that protrude from their surroundings.

Another way to utilize range information is by reducing the effort spent on ensuring scale
invariance for the descriptors. If the collection of objects to be recognized is created
using a reference distance, it is possible to compensate for any scale differences between

Stefán Freyr Stefánsson 3

the segment and the reference database, using the range data associated with each image
segment.

1.3 Overview and Contributions

This thesis presents a case study of a system to facilitate efficient processing of SIFT
descriptors for object recognition by utilizing distance information from a range camera.
The thesis makes the following two major contributions.

The first part of the thesis describes and evaluates our computer vision architecture. This
architecture is based on YARP, which is an open source, cross-platform collection of APIs
and utilities that enable a clean decoupling of modules and abstracts the communication
between them. We demonstrate that the resulting infrastructure is flexible, yet allows for
efficient communications between processes and/or computers. This architecture is then
used in the remainder of the thesis.

In the second part of the thesis, we explore the possibility of improving the performance
of object recognition through two techniques. First, we segment the image using range
information, thereby reducing the number of SIFT descriptors produced. Second, we
utilize the range information to reduce computation spent on scale-invariance in the SIFT
algorithm. The potential efficiency of the resulting system is then demonstrated through
an experimental study.

4

5

Part I: Architectural Framework

In order to study the use and interactions of complex vision systems it is clearly nec-
essary to use an architectural framework supporting flexible manipulation of such com-
pound, multimodal data on diverse hardware platforms. Such a framework must allow for
easy runtime configuration of the processing pipeline, while incurring limited overhead.
Low-level options, such as shared memory and/or remote procedure calls, are not flexi-
ble enough, as they must be augmented with mechanisms for handling variable latency,
priorities or other necessary features of complex architectures and soft-realtime response
generation. What is needed is a higher-level framework that supports free selection of
communication methods, including shared memory and TCP/IP, depending on the data
and architectural constraints at any point in time.

Several frameworks exist which partially address our needs, but very few address all of
them. One of these frameworks is YARP (Yet Another Robot Platform), which is a set of
libraries to cleanly decouple devices from software architecture (Metta et al., 2006; Fitz-
patrick et al., 2008). It is an attempt to provide a foundation that makes robot software
more stable and long-lasting, while allowing for frequent changes of sensors, actuators,
processors and networks. As the authors themselves say: “YARP is written by and for
researchers in robotics, particularly humanoid robotics, who find themselves with a com-
plicated pile of hardware to control with an equally complicated pile of software” (Metta
et al., 2006, p. 1).

In this part we report on an effort to evaluate the use of YARP for architectures that capture
and manipulate data from a standard video stream. We explore how well the platform
supports our basic needs, such as for sequential processing in a pipeline architecture, how
easy the platform is to use and how well it performs.

The remainder of this part is organized as follows. We outline our requirements in Chap-
ter 2. Then we describe YARP and other communication infrastructures in Chapter 3. We
report on our architecture in Chapter 4 and analyze its performance in Chapter 5, before
summarizing the results in Chapter 6.

6

7

Chapter 2

Architectural Requirements

Any computer vision architecture has a set of requirements that must be satisfied. The
main requirements for our project are shared with many other mobile robot projects and
put a strong emphasis on multimodal integration. The requirements are illustrated in Fig-
ure 2.1, which depicts four major categories of requirements: sensory aparati, actuators
and other hardware, software, and communication. We now describe each of these.

2.1 Sensory Requirements

As Figure 2.1 shows, a robot sensory and vision system must handle input from a variety
of sensors, such as:

• Video cameras, which capture 2-D image streams.

• Range sensors, such as time-of-flight cameras. Their output can be used to build
a map of the area, be combined with data from other range sensors such as laser
range finders, and/or be combined with the video stream to yield image+depth in-
formation.

• Proximity sensors can augment a standard computer vision system, for example
through collision detection, as range cameras typically have an upper and lower
limit on their range.

• Position sensors for head motion provide information about the direction that cam-
eras and other sensors point in; the robot’s head has cameras and a directional mi-
crophone, which, when combined with depth information, could be used to deter-
mine the source of environmental sounds, e.g. human speech.

8 Using Range Information to Reduce Local Descriptor Computations

Communication

Sensors

Hardware

Software

SIFT

OpenCV

...

Figure 2.1: Architectural Requirements.

Furthermore, advanced processing methods can be used to build “super sensors”, such
as head-motion sensors, through a combination of image analysis, face detection, out-
line detection, and other means. This is discussed further in the section on processing
requirements.

Finally, most sensors require or allow some parameter settings and it is imperative that
the infrastructure allows easy runtime access to those.

2.2 Hardware Requirements

Mobile robots typically have at least one on-board computer. The processing power of on-
board computers, however, tends to be less than the average desktop machine for reasons
of energy efficiency. Such low-power, slow computers can nonetheless be used for im-
portant real-time analysis such as collision avoidance and other critical tasks. Performing
more significant processing on a mobile robot thus requires off-robot processing, e.g. on
computing clusters, necessitating network communication with the robot. Ideally the de-
veloper should not need to be much concerned with whether processes are located locally
or remotely; changing the configuration should be as seamless as possible. In a similar
manner, the sensor/processing architecture must gracefully handle access to sensors that
necessitate dedicated hardware and/or software.

Stefán Freyr Stefánsson 9

2.3 Processing Requirements

We divide processing requirements roughly into three categories, based on complex-
ity:

• Routine signal processing and pre-processing tasks. Good examples are standard
routines included in OpenCV and other image processing libraries, including image
resizing, sharpening, blurring, brightness adjustment, and so on.

• Ad-hoc image processing tasks, including multimodal fusion such as the merger of
information from a multitude of sensors.

• Advanced image description tasks such as database searches, semantic analysis,
and/or tagging and the like.

An example of an ad-hoc image processing task is the segmentation of a color image
based on distance information. As the depth camera can not be located at exactly the
same spot as the color image camera, and is quite unlikely to have exactly the same focal
length, the two images will always differ in some respects, especially for close objects.
Determining how to project the distance information onto the image is a typical complex
and ad-hoc image processing task (Lindner and Kolb, 2007).

As an example of an advanced image description task, the SIFT image description scheme
supports well the recognition of objects (Lowe, 2004). In this scheme, each image is
described through a set of high-dimensional vectors of numbers; an object is recognized
through the matching of SIFT descriptors from a current image to descriptors from pre-
described images in a reference collection. The architectural framework should be able
to handle the conversion of the image to such an image description, communicate with a
search engine, and deliver lists of matching objects.

2.4 Communication Requirements

The communication infrastructure is a key component of any vision or multimodal sen-
sory system. To satisfy the requirements above, it must:

• Transparently allow any hardware to work together, by abstracting the communica-
tion protocol from the processing tasks. It must at least support shared memory and
TCP/IP transport (other protocols may be useful as well).

10 Using Range Information to Reduce Local Descriptor Computations

• Provide support for processing tasks of any complexity, e.g. by allowing processes
to communicate any data structures between themselves, whether locally or re-
motely over networks. For example, it must be possible to augment video streams
with additional information, and it must be easy to publish such information even
though it may be represented by non-standard data types, such as image descriptor
streams or object lists. In many cases, control and tagging messages must also be
transmitted.

• It must be easy to use for the developer. The chosen infrastructure should enable
the developer to focus on the sensory/perception system exclusively and not draw
away their attention to communication issues.

• It must strive to minimize overhead. Although some overhead is acceptable—and
indeed unavoidable as a trade-off for all the above benefits—any significant over-
head will eventually lead to the abandonment of the communication infrastructure
in favor of hard-coded, specialized solutions.

11

Chapter 3

Communication Infrastructures

There are several potential candidates that can be chosen as underlying communication
infrastructure for video data, including YARP (Metta et al., 2006; Fitzpatrick et al., 2008),
OpenAIR (Thórisson et al., 2007), CAVIAR (List et al., 2005), Psyclone (Thórisson et al.,
2005), Robot Operating System (ROS) (Quigley et al., 2009), and others. In the remainder
of this chapter we first give a short description of YARP, and our reasons for evaluating
it, and then briefly describe some of the alternatives.

3.1 YARP

YARP (Yet Another Robot Platform) is a set of libraries to decouple devices, processing,
and communication. YARP provides loose coupling between sensors, processors, and
actuators, thus supporting incremental architecture evolution. The processes implemented
on top of YARP often lie relatively close to hardware devices; YARP does therefore not
“take control” of the infrastructure but rather provides a set of simple abstractions for
creating data paths.

A key concept in YARP is that of a communications “port”. Processes can have zero, one
or more input ports, and produce output on zero, one or more output ports. Ports are also
not restricted to a single producer or receiver—many producers can feed a single port,
and many receivers can read from a single port. To keep track of ports, YARP requires
a special registry server running on the network. The data communicated over the ports
may consist of arbitrary data structures, as long as the producer and receiver agree on
the format. YARP provides some facility to translate common data types between hard-
ware architectures and such translation can be easily implemented in user defined data

12 Using Range Information to Reduce Local Descriptor Computations

types as well. Each port may be communicated via a host of transport mechanisms, in-
cluding shared memory, TCP/IP and network multicasting. YARP is thus a fairly flexible
communication protocol that leaves the programmer in control.

Our main reason for for evaluating YARP is the fact that it is unobtrusive and basic. Other
reasons include the following:

• YARP abstracts the transport mechanism from the software components, allowing
any software component to run on any machine. It supports shared memory for
local communication, and TCP/IP, UDP, and multicast for communication over a
network.

• YARP interacts well with C/C++ code, which is required for our use of the SR-
3000 time-of-flight camera. YARP can be used with several other programming
languages too.

• YARP can communicate any data structure as long as both receiver and sender
agree on the format. Furthermore, it provides good built-in support for various
image processing tasks and the OpenCV library.

• It is open-source software. As we wish to make our framework freely available,
the communication infrastructure must also be freely available (indeed, we have
already sent in a few patches for YARP).

• Finally, although this was by no means obvious from any documentation, the sup-
port given by YARP developers has been very responsive and helpful.

These requirements are undoubtedly also met by alternative frameworks and libraries;
we have not yet made any formal attempt to compare YARP to these other potential ap-
proaches. As described in Chapter 6, the overall experience of using YARP has been
good. With a host of tradeoffs the choice of low-level or mid-level middleware/libraries
can be quite complex. We leave it for future work to compare YARP in more detail to the
approaches described next.

3.2 Alternative Architectures

OpenAIR is “a routing and communication protocol based on a publish-subscribe archi-
tecture” (Thórisson et al., 2007). It is intended to help AI researchers develop large archi-
tectures and share code more effectively. Unlike YARP, it is based around a blackboard
information exchange and optimized for publish-subscribe scenarios. It has thoroughly

Stefán Freyr Stefánsson 13

defined message semantics and has been used in several projects, including agent-based
simulations (Thórisson et al., 2005) and robotics (Ng-Thow-Hing et al., 2007). OpenAIR
has been implemented for C++, Java and C#.

CAVIAR (Tweed et al., 2005) is a system based on one global controller and a number
of modules for information processing, especially geared for computer vision, provid-
ing mechanisms for self-describing module parameters, inputs and outputs, going well
beyond the standard services provided by YARP and OpenAIR. The implementation con-
tains a base module with common functionalities (interface to controller and parameter
management).

Psyclone (see www.cmlabs.com) is an AI “operating system” that incorporates the Open-
AIR specification. It is quite a bit higher-level than both OpenAIR and YARP and pro-
vides a number of services for distributed process management and development. Psy-
clone was compared to CAVIAR by List et al. (List et al., 2005) as a platform for com-
puter vision. Like CAVIAR, Psyclone has mechanisms for self-describing semantics of
modules and message passing. Unlike CAVIAR, however, Psyclone does not need to
pre-compute the dataflow beforehand but rather manages it dynamically at runtime, op-
timizing based on priorities of messages and modules. Both CAVIAR and Psyclone are
overkill for the relatively basic architecture we intend to accomplish at present, at least in
the short term, but it is possible that with greater expansion and more architectural com-
plexity, platforms such as Psyclone would become relevant, perhaps even necessary.

Robot Operating System (ROS) (Quigley et al., 2009) is a relative newcomer to the
field but is rapidly gaining popularity. As described in http://www.ros.org/wiki: “ROS
is an open-source, meta-operating system for your robot. It provides the services you
would expect from an operating system, including hardware abstraction, low-level de-
vice control, implementation of commonly-used functionality, message-passing between
processes, and package management. There are numerous similarities in how ROS and
YARP handle process communication, although in ROS messages are defined in a more
abstract way to support language neutrality while YARP allows lower level control of the
message types being sent. In addition, at the time of starting work for this thesis, ROS
was in its infant state while YARP was mature and had an active development community
behind it.

Compared to CAVIAR, Psyclone and OpenAIR, YARP looks like a fairly standard library—
neither does it do its own message scheduling nor does it provide heavy-handed semantics
for message definitions or networking. It incurs minimal semantic overhead to the im-
age processing pipeline and offers an almost transparent way of changing the underlying
transport mechanism with which image streams are communicated. This combination of

14 Using Range Information to Reduce Local Descriptor Computations

simplicity and flexibility, as well as its maturity, make YARP seem the most attractive
option for our purpose.

It should be noted that all of the above toolkits provide significant benefits to any robotics
software system such as ours. Choosing one over the other will always be heavily depen-
dent on the context and characteristics of each project.

15

Chapter 4

Experimental Environment

We have constructed a preliminary vision system using YARP as the communication in-
frastructure. We now describe the hardware, video stream producer, and image processing
components implemented in our setup.

4.1 Hardware

Our experimental setup runs on a 2.6 GHz Pentium 4 Dell OptiPlex GX270 computer
with 1.2 Gb RAM. It is equipped with an NVIDIA GeForce 6600 GT 3D accelerated
graphics card. No processing is done on the GPU in our case, although YARP does
provide modules and libraries to aid with such tasks.

4.2 Video Stream Producer

We use a simple application to produce a 320x240 pixel video stream. Since the process-
ing in our experiments does not depend on the video stream content, the producer simply
outputs a static image repeatedly at a given frame rate. This minimizes the processing
spent on producing the video stream.

4.3 Image Processing Components

While YARP handles module communication, we use OpenCV (see http://www.opencv.org)
for most image and signal processing. OpenCV is an open source computer vision and

16 Using Range Information to Reduce Local Descriptor Computations

machine learning software library. It provides numerous algorithms for image manipula-
tion, everything from basic convolution algorithms to advanced high-level functionality
such as face recognition. In our experiments, we use a trivial blur operation to represent
a processing module in the YARP pipeline. This is described in more detail in Chapter
5.

17

Chapter 5

Experimental Evaluation

In this chapter, we report on an initial performance study of the YARP transport mech-
anisms, focusing on single processor configurations. At present, the goal is not to study
the scalability of the system, but rather to compare some configuration choices of YARP
for vision.

To that end, we set up a basic processing pipeline, shown in Figure 5.1. The pipeline con-
sists of 1) a producer, which produces 320x240 pixel image frames at a given frame rate;
2) a number of blur operators, which run the “simple” OpenCV blur algorithm over the
frames; and 3) a receiver, which receives the frames. We change the processing pipeline
length, or the number of blur operators, to study the effects of overloading the com-
puter.

Each frame is augmented by sequence numbers and time stamps by each of these compo-
nents, which are used to measure dropped frames and latency, respectively. Other metrics
collected include the frame rate observed by the receiver (lower frame rate occurs when
frames are dropped) and CPU load.

Blur nProducer Blur 1 Receiver...

Figure 5.1: The basic pipeline setup.

18 Using Range Information to Reduce Local Descriptor Computations

0

10

20

30

40

50

1 2 3 4 5

F
ra

m
e
 R

a
te

 (
fr

a
m

e
s
/s

e
c
)

Number of Pipelines

Shared Memory
Local TCP/IP

Multicast

Figure 5.2: Exp. 1: Frame rate at receiver.

5.1 Experiment 1: Transport Mechanisms

In this experiment, the frame rate of the producer was set to 50 frames per second, which
is similar to a high-quality video stream. The length of the processing pipeline was varied
from one to five consecutive blur operators. We ran measurements using shared memory,
local TCP/IP and network multicast connections, with the expectation that shared memory
should be fastest. For each configuration, the experiment was run until the receiver had
received 50,000 frames.

Figure 5.2 shows the frame rate observed by the receiver. The x-axis shows the length of
the processing pipeline. Overall, two effects are visible in the figure. First, using local
TCP/IP and shared memory maintains a frame rate of 50 frames per second, until the
pipeline consists of four or more blur processes. At that point, the processor is overloaded
and frames are dropped as a result, leading to lower frame rates observed by the receiver.
Shared memory performs slightly better due to lower communication overhead.1

Second, turning to the performance of multicast, Figure 5.2 shows that the processing
pipeline achieves a much lower frame rate, ranging from 25 to 8 frames per second. The
reason for the lower frame rate is clearly visible in Figure 5.3, which shows the number of
frames that are dropped for each configuration. As Figure 5.3 shows, even with only one
blur operator, every other frame is dropped with the multicast transport mechanism. The
reason for this remains unclear but as a result, the frame rate observed by the receiver is
only half the frame rate of the producer. As more blur operators are added, more frames
are dropped, explaining the lower frame rates seen in Figure 5.2.

1 Our early experiments demonstrated a problem in the shared memory transport implementation, which
has subsequently been fixed by the YARP developers.

Stefán Freyr Stefánsson 19

0

50

100

150

200

250

1 2 3 4 5

D
ro

p
p
e
d
 F

ra
m

e
s
 (

th
o
u
s
a
n
d
s
)

Number of Pipelines

Shared Memory
Local TCP/IP

Multicast

Figure 5.3: Exp. 1: Frame drops in pipeline.

Turning to latency, Figure 5.4 shows that, as expected, latency of the multicast transport
mechanism is very high and constantly increasing with pipeline length as frames can be
dropped anywhere in the pipeline. For the other two transport mechanisms, latency is
relatively low until the pipeline consists of five blur operators. At that point, the CPU
is saturated and scheduling conflicts occur. Again, latency is significantly lower using
shared memory than TCP/IP due to the lower communication overhead.

We conclude that the multicast transport mechanism is not suitable for local processing,
and that the shared memory transport is slightly more efficient than the TCP/IP trans-
port.

0

50

100

150

200

1 2 3 4 5

L
a
te

n
c
y
 (

m
s
)

Number of Pipelines

Shared Memory
Local TCP/IP

Multicast

Figure 5.4: Exp. 1: Latency of received frames.

20 Using Range Information to Reduce Local Descriptor Computations

...

Blur 1 Receiver 1

Producer

Blur n Receiver n

Figure 5.5: The parallel pipelines setup.

5.2 Experiment 2: Parallel Pipelines

The previous experiment showed that while the shared memory and TCP/IP transport
mechanisms have similar performance, the multicast mechanism performs much worse.
Since the pipeline was linear, however, the experiment did not exercise the potential ben-
efit of the multicast mechanism. To achieve this we set up an experiment with multiple
parallel processing pipelines each consisting of a chain of a single blur operator and a
receiver which logs the same information as in our previous experiment.

A single producer still provides a stream of images at 50 frames per second. This stream
then gets published to all the independent pipelines, using one of the three transport mech-
anisms (we use the shared memory transport mechanism between each blur operator and
the corresponding receiver). In this experiment we thus increase the number of pipelines
that the producer sends the video stream to as opposed to increasing the number of blur
operators within a linear pipeline. Figure 5.5 shows this setup.

Figure 5.6 shows the number of frames dropped by each of the transport mechanisms. As
before, the x-axis shows the number of blur operators in the configuration, but in contrast
to the previous experiment each blur operator is now part of a separate pipeline. The
figure shows that while dealing with one or two blur operators, frame drops are virtually
non-existent for all of the transport mechanisms. When the third blur operator is added,
however, the shared memory and TCP/IP transport mechanisms still have negligible frame
drops, while the multicast transport mechanism suddenly starts dropping about half of the
frames that are produced. Close examination of the log files revealed that roughly every
other frame that is produced gets dropped before it reaches any of the blur operators. The
reason is that as before, the cost of the multicast transport mechanism means that full
CPU utilization can not be achieved. Since frames are being broadcast they either reach
all blur operators or none.

The shared memory and TCP/IP transport mechanisms start experiencing frame drops
with four concurrent blur operators and the drop rate increases slightly more than twofold

Stefán Freyr Stefánsson 21

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5

D
ro

p
p
e
d
 F

ra
m

e
s
 (

th
o
u
s
a
n
d
s
)

Number of Pipelines

Shared Memory
Local TCP/IP

Multicast

Figure 5.6: Exp. 2: Frame drops per receiver.

once the fifth blur operator is added. These frame drops are explained by the fact that once
four blur operators are started, the CPU is fully utilized and processing each frame takes
too long for the operators to be able to keep up with the frame rate of the producer.

Figure 5.7 shows the latency of frames as the number of blur operators increases. As the
figure shows, the latency increases steadily for the multicast transport mechanism, while
the latency for shared memory and TCP/IP jumps once there are four blur operators. The
different behavior is due to the different ways that frames get dropped depending on the
transport mechanism used.

With the multicast transport mechanism, every other frame is not being received by the
blur operators and so no processing is wasted on them. The blur operators therefore have

0

10

20

30

40

50

60

1 2 3 4 5

L
a
te

n
c
y
 (

m
s
)

Number of Pipelines

Shared Memory
Local TCP/IP

Multicast

Figure 5.7: Exp. 2: Latency of received frames.

22 Using Range Information to Reduce Local Descriptor Computations

enough CPU power to keep up with the frames that they receive and the only increase
in latency is because each frame is being processed at nearly the same time by all the
parallel blur operators. This results in longer processing times and increased latency due
to saturation of the CPU.

The shared memory and TCP/IP transports display the same gradual increase for up to
three concurrent blur operators but once the fourth is added a jump in latency is observed.
The reason for this jump is that at four blur operators, the CPU is saturated. This means
that the blur operators cannot keep up with the frame rate and frames that are sent from
the producer do not get picked up instantly and wait until either the blur operator finishes
or until the next frame is produced. In the former case the wait results in increased latency
while in the latter case the frame that was waiting will get dropped.

The conclusion we draw from this experiment is consistent with that of the previous one.
Due to significant frame drops, the multicast transport mechanism is not suitable for local
processing even when using parallel processing pipelines.

5.3 Experiment 3: YARP Overhead

The previous two experiments show that the multicast transport mechanism is not suitable
for local processing, and that using shared memory is slightly more efficient than using
local TCP/IP communication. The goal of our final experiment is to measure the overhead
of the shared memory transport mechanism, compared to a stand-alone process running
the entire pipeline.

With a stand-alone process, there is no inter-process communication, and all the CPU
power is spent on the processing pipeline. In order to measure the overhead accurately,
we modified the basic processing pipeline of Figure 5.1 slightly. The producer now pro-
duces a single frame and waits until it is received by the receiver (the receiver sends a
notification to the producer). In order to guarantee delivery, we used a synchronization
feature of YARP. This experiment therefore gives a strict upper bound on the overhead of
YARP.

Due to the simple configuration, the overhead is identical whether measured in terms of
CPU cost, latency, or observed frame rate. Figure 5.8 shows the latency of YARP com-
pared to the stand-alone process. The overhead is most significant for a short processing
pipeline, about 77%, but is quickly reduced to 50–60%. The reason for the high overhead
for shorter pipelines is that for a pipeline of length n there are n+1 communication ports;
as there are more blur operators the effect of the additional port are less pronounced.

Stefán Freyr Stefánsson 23

0

5

10

15

20

25

1 2 3 4 5

L
a
te

n
c
y
 (

m
s
)

Number of Pipelines

Shared Memory
Process

Figure 5.8: Exp. 3: Latency of YARP and stand-alone process.

Based on this experiment, we conjecture that for a complex processing pipeline, we could
expect about 50% overhead compared to a well-tuned, handwritten code. We believe that
to be a good tradeoff for all the convenience that YARP has to offer.

24

25

Chapter 6

Summary

We have described our efforts towards a flexible computer vision infrastructure based on
the YARP toolkit. YARP greatly simplifies making the infrastructure flexible towards
sensors, hardware, processing, and communication requirements, compared to starting
from scratch. We also compared YARP to a number of other toolkits and while we found
all of them to be applicable to our scenario we chose YARP mostly for its lightweight
characteristics and small semantical footprint.

Overall, we have found YARP to be satisfactory and easy to use. Installing and learning to
use YARP took about one man-week, while most of our time was spent on creating hard-
ware drivers and working with the cameras. Our experiments showed that the overhead is
a reasonable tradeoff for the convenience gained.

26

27

Part II: Range Enhanced SIFT
Processing

In this second part of this thesis, we explore two methods for utilizing range images, in
combination with regular color images, to increase the performance of SIFT based object
recognition.

The first method involves segmenting an input image based on range information. Pro-
truding objects are isolated in the range image and their coordinates translated to the color
image. Instead of generating local descriptors for the whole image, the processing effort
is limited to the segments of the image that are likely to contain foreground objects.

The second method we investigate focuses on the SIFT algorithm itself. We use the
distance information from the range image to compensate for any scale changes between
the observed object and the objects kept in a reference database. When SIFT descriptors
are calculated for a segment of the input image, it is possible to reduce the computation
needed to maintain scale-invariance.

The remainder of this part is organized as follows. We provide the necessary background
information in Chapter 7. In Chapter 8 we describe our methods. Chapter 9 details
our experimental environment and an evaluation is provided in Chapter 10. Finally, we
conclude and discuss future work in Chapter 11.

28

29

Chapter 7

Background

In this chapter we provide the necessary background information on the SIFT algorithm
and range imaging. We begin by giving a general overview of local descriptors in Section
7.1. Then we provide some details of the SIFT algorithm needed to understand our work
in Section 7.2. In Section 7.3 we discuss methods of storing and retrieving local image
descriptors. Finally we explain range imaging in Section 7.4.

7.1 Local Image Descriptors

Local image descriptors are multi-dimensional data points describing a small area of an
image. These descriptors are typically robust and invariant to a number of transformations
and have high applicability in a range of areas, such as robotic mapping and navigation,
image stitching, 3D modeling, gesture recognition, video tracking, and more.

Local image descriptors are also one of the fundamental techniques used in computer
vision tasks such as object recognition. A database of descriptors for images of known
objects enables a robot to recognize these objects by generating descriptors for a frame
from a camera and performing a nearest neighbor search against the descriptors stored
in the database. Each neighboring descriptor found in the database then contributes a
vote for the object to which that descriptor belongs, and the object with the most votes is
considered the most likely candidate.

Many algorithms exist for generating such local descriptors. These include SIFT (Lowe,
2004), GLOH (Mikolajczyk and Schmid, 2005), RIFT (Lazebnik et al., 2004), SURF (Bay
et al., 2006), PCA-SIFT (Ke and Sukthankar, 2004), Eff2 (Lejsek et al., 2006), and more.

30 Using Range Information to Reduce Local Descriptor Computations

Studies have shown that SIFT descriptors (and their derivatives) provide the most robust
and stable features (Mikolajczyk and Schmid, 2005; Lejsek et al., 2006).

7.2 Scale-Invariant Feature Transform (SIFT)

Scale-Invariant Feature Transform (SIFT) has been one of the predominant methods for
local image descriptor computation since it was published in 1999 by David Lowe (Lowe,
1999). They were further described in (Lowe, 2004) where they were shown to be in-
variant to image scaling, translation and rotation, and partially invariant to illumination
changes and affine or 3D projection.

The SIFT method can, in general, be split into two phases. The first phase is the inter-
est point detection where potential interest point locations in the image are found using
scale-space extrema detection. This identifies points in the image that are likely to pro-
duce stable local descriptors at different scales of the image. Some of these points are
filtered out based on measurements of their potential instability, such as low contrast re-
gions or regions with high edge response. The second phase is the actual local descriptor
generation, where the descriptors for the remaining interest points are calculated.

Attempts have been made to improve SIFT in various ways to either make the local de-
scriptors more distinctive and/or robust, or to decrease the processing effort needed to
generate and use the descriptors. PCA-SIFT uses principal components analysis to in-
crease robustness and reduce dimensionality resulting in faster matching times (Ke and
Sukthankar, 2004). RIFT descriptors also reduce dimensionality to increase processing
speed (Lazebnik et al., 2004). Eff2 descriptors reduce the dimensionality as well, but
also constrain the number of descriptors and apply various optimizations (Lejsek et al.,
2006). SURF is a SIFT-inspired descriptor that is based on sums of approximated 2D
Haar wavelet responses and makes efficient use of integral images for faster descriptor
computation (Bay et al., 2006).

For the purpose of this thesis, we chose to use the original SIFT method as the baseline
for our study. There are three main reasons for this. First, we feel that this will provide a
better insight into the properties of our methods, as numerous other comparative studies
use the original SIFT method as their baseline. Secondly, the SIFT method is well doc-
umented and discussed in the literature. Finally, open source implementations exist for
SIFT that we are able to use. One such in particular, developed by Rob Hess at Oregon
State University (Hess, 2010), serves as the basis of our work.

Stefán Freyr Stefánsson 31

In the following we describe the steps involved in the creation of SIFT descriptors. For
further details, see (Lowe, 2004).

7.2.1 Scale-Space

SIFT searches for stable features across all possible scales, using a continuous function of
scale known as scale-space (Witkin, 1983). More specifically, Lowe proposes using the
difference-of-Gaussian function to construct a scale-space pyramid.

7.2.2 Difference-of-Gaussians

In the first step, a scale-space is constructed by convolving the input image several times
with a Gaussian function. The scale-space for an input image I(x, y) is defined by the
function:

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (7.1)

where ∗ is the convolution operator and G(x, y, σ) is a variable-scale Gaussian. In each
iteration, the width of σ is increased by a constant factor k.

After producing a scale-space for an image, a number of difference-of-Gaussian (DOG)
images are computed by subtracting adjacent scales. These are defined by the func-
tion:

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ) (7.2)

7.2.3 Octaves

Instead of continuing the increase of σ, the image that has twice the initial value of σ in
that scale can be re-sampled by taking every second pixel in each row and column. This
reduces the size of the image by half without affecting the accuracy of sampling relative to
σ and thereby greatly reduces computation. This generates a scale-space pyramid where
each set of same-sized scale images is known as an octave.

In (Lowe, 2004), features are searched for across all possible scales. In the context of
octaves, this means that a new octave is generated until the size of the generated image

32 Using Range Information to Reduce Local Descriptor Computations

Figure 7.1: Difference-of-Gaussians pyramid [image adapted from (Lowe, 2004)].

becomes less than the size of the Gaussian kernel being used. Figure 7.1 shows a graph-
ical explanation of the difference-of-Gaussian pyramid and the relation of octaves and
scales.

7.2.4 Extrema Detection

After the scale-space pyramid has been created, keypoint candidates are found by locating
local maxima and minima in the scale-space. This is done by comparing each sample
point to its eight neighbors in the current image and nine neighbors in the scale above and
below, as shown in Figure 7.2. It is selected as a potential interest point only if it is either
larger or smaller than all of its neighbors.

7.2.5 Filtering

After locating keypoint candidates, a detailed fit to the nearby data for location, scale
and ratio of principal curvatures is performed on each of them. This allows points to
be rejected that either have low contrast or high edge response. Filtering is important at
this point in the algorithm as it reduces the needed computation at later stages since low
quality keypoint descriptors will not be generated.

Stefán Freyr Stefánsson 33

Figure 7.2: Extrema detection in a DOG scale [image from (Lowe, 2004)].

7.2.6 Orientation Assignment

For the remaining keypoints, a consistent orientation is assigned to each one. This is done
by creating a 36 bin gradient magnitude histogram from pixels in the neighboring area of
the keypoint with each bin representing a 10◦ range. The dominant gradient direction (the
bin with the highest magnitude) is used as the orientation for the keypoint. Additionally,
when other gradient directions have a magnitude of 80% or higher compared to the largest
one, a new keypoint is created with that orientation. Keypoint descriptors can then be
represented relative to this orientation and are therefore invariant to image rotation.

7.2.7 Descriptor Generation

The final step is to calculate the actual SIFT descriptor for each of the remaining key-
points. This is done based on gradient magnitude and orientation around the keypoint and
the result is a 128 dimensional vector. Further explanation is beyond the scope of this
thesis as it does not relate to the methods proposed here; for a detailed explanation of the
descriptor generation, refer to (Lowe, 2004).

7.3 Database Storage and Retrieval of Descriptors

Local image descriptors can be compared to each other using simple nearest neighbor
calculations. In order to compare a set of SIFT descriptors generated for a query image,
descriptors for reference images need to be stored in some sort of a database along with a
reference to their origin. This origin is often the image that the descriptors were generated
from, but in some cases the origin may refer to some other entity such as an identifier of

34 Using Range Information to Reduce Local Descriptor Computations

a real world object that the reference image depicted. In this thesis we will use the latter
definition, that is, a descriptor database maps SIFT descriptors to an object ID.

A lookup can be performed in such a database by comparing the query image descriptors
to the descriptors stored in the database. For each query descriptor, a k-nearest-neighbor
search is performed against the database, either by performing a full scan or using some
indexing technique, such as the NV-Tree (Lejsek et al., 2009), or some of the methods
described in (Samet, 2006). A simple voting mechanism is then employed where each of
the k nearest neighbor descriptors vote for the object ID they refer to. After searching for
all the descriptors generated from the query image, the object ID with the most votes is
considered to be the closest match.

7.4 Range Imaging

A range image, sometimes referred to as a depth map, is a single channel image, where the
value of each pixel represents the distance from the camera to a solid object, as opposed
to the intensity of light reflected by that object as in regular images. The higher the pixel
value, the longer the distance from the camera to that point.

Many techniques can be used to produce a range image. Some examples include stereo tri-
angulation (stereo vision), structured light, and time-of-flight measurement. Since we use
a time-of-flight camera in this thesis, we briefly describe the basic principle here.

The time-of-flight principle is used in a variety of devices to measure distances. Sev-
eral technologies exist but for the purpose of this thesis, we use a device that uses an
amplitude-modulated near-infrared light source to illuminate the scene. A CMOS/CCD
sensor picks up the reflected light and the phase-shift of the incoming signal is calculated
by taking four samples, each phase-shifted by 90◦ relative to each other. The phase of
the incoming signal is compared to that of the source and the phase-shift between the two
used to calculate the distance value.

Figure 7.3 shows an example of a color image (Figure 7.3(a)) and a range image (Fig-
ure 7.3(b)) pair from our experimental setup. The black area in the range image is “un-
defined” as the camera does not register a proper reading for it. The white area around
the bottom of the poster, however, is the background wall. Different material reflects the
near-infrared light in different ways and here we can see that the wall is highly reflective
while the floor and a panel mounted on the wall are not reflecting enough light back for
the camera to determine a distance value.

Stefán Freyr Stefánsson 35

(a) Color image (b) Range image

Figure 7.3: A color image (a) and the corresponding range image (b). The poster stands
about 4 meters from the back wall.

36

37

Chapter 8

Methods

In this chapter we describe in some detail the methods that we use in our experimental
setup. In Section 8.1 we describe the overall vision processing pipeline, and outline the
techniques used in each module. We then focus on the two methods that we propose to
reduce the cost of local descriptor computations.

First, the range image is partitioned based on the distance information, and these partitions
are used to create the image segments which protrude from the background. In Section 8.2
we describe the image segmentation process in more detail.

Second, each image segment is rescaled to match a reference distance used in our object
collection, allowing to reduce the requirements for scale invariance. In Section 8.3 we
describe the method used to reduce scale-space computations.

8.1 The Processing Pipeline

Figure 8.1 shows an overview of the pipeline setup. The input to the pipeline is produced
by two cameras, a regular video camera and a range camera. These images traverse
through the pipeline and are manipulated by a number of modules. At the end of the
pipeline, a database lookup is performed in an attempt to identify objects in the input
images. In the following, we describe each module of the pipeline in more detail.

8.1.1 Fuser

The Fuser acquires the frames that get produced from each camera and produces a com-
posite RGB/range frame.

38 Using Range Information to Reduce Local Descriptor Computations

Range

RGB Fuser

Controller

Sifter

Searcher

RGB image + SID

SIFT descriptor list + SID

RGB/range frame

SID + Object IDDescriptor DB

Figure 8.1: The processing pipeline.

Input: Two ports receive image streams from the cameras. One port receives the three
channel RGB image from the color camera, while the second one receives the single
channel range image from the range camera.

Output: A single port produces a composite data structure, containing one RGB frame
and one range frame.

Method: Since no hardware synchronization is done between the two cameras, the Fuser
minimizes the latency between the two frames by always keeping track of the two most
recent frames from each camera ([C0, C1] for the color camera and [R0, R1] for the range
camera). It also stores the arrival time of each frame, represented here by t(·). When a new
composite frame is published, it picks a pair of frames [Ci, Rj] such that |t(Ci)− t(Rj)|
is minimal.

To avoid publishing redundant frames, the Fuser then waits until it acquires a fresh frame
from both cameras before publishing a new composite frame.

8.1.2 Controller

The Controller is the logic unit of the pipeline. It receives the composite RGB/range frame
from the Fuser and produces a set of (zero or more) RGB segments for further processing.
Each segment produced is assigned a unique identification number that we call a segment
ID (SID) to enable later stages in the pipeline to reference a specific segment. This SID is
a simple running counter that is reset each time the system is restarted so it is only unique
within each session.

Input: A single port receives a composite RGB/range frame.

Stefán Freyr Stefánsson 39

Output: A single port produces RGB segments along with their SID. The segment images
should contain one or more potentially interesting subjects, depending on the pipeline
configuration.

Method: There are two main processing operations that the Controller executes:

• Image Segmentation: The Controller attempts to isolate foreground objects in a
received frame and produces one RGB image per detected object. We call these
produced images segments. Each segment is assigned a unique segment identi-
fication number (SID) to enable referencing in later stages of the pipeline. The
produced segments are essentially only the regions of the original RGB input frame
that contain foreground objects as detected in the range image.

The main purpose of this image segmentation is to eliminate the processing time
that would be spent on generating SIFT descriptors for the regions of the input
frame that contain only the background. This reduces the response time for object
recognition and may also facilitate parallel processing if multiple objects are iso-
lated from a single input frame. The image segmentation is further described in
Section 8.2.

• Segment Rescaling: After isolating foreground objects, the Controller may rescale
the segment images depending on the pipeline configuration. The idea is that the
range information can help eliminate expensive computation steps in the SIFT al-
gorithm. The segment rescaling is described in more detail in Section 8.3.

8.1.3 Sifter

The purpose of the Sifter is to compute and produce a list of SIFT descriptors for an image
it receives.

Input: A single port receives a segment RGB image along with its segment ID.

Output: A single port produces a list of SIFT descriptors computed from the input image,
along with the segment ID of the incoming segment image.

Method: The SIFT generation software of (Hess, 2010) is applied to the input image.
If the Sifter receives image segments that have been rescaled, it only generates a single
octave when calculating the input image scale-space. This reduces both the computa-
tion time and number of descriptors that are generated. Further details are provided in
Section 8.3.

40 Using Range Information to Reduce Local Descriptor Computations

8.1.4 Searcher

The Searcher performs a nearest neighbor search in a SIFT descriptor database. The
database contains descriptors for images of objects that we wish to recognize. It produces
its results, enabling any interested modules to subscribe to notifications of any object
matches.

Input: A single port receives a list of SIFT descriptors along with the segment ID they
were generated from.

Output: A single port produces the results from a database lookup. This is a key-value
pair where the key is the segment ID of the incoming SIFT descriptors, and the value is
an object ID of the matched object from the database.

Method: The Searcher executes a sequential scan over all descriptors in its database. This
proved to be sufficient for our needs but for a real-world application, more sophisticated
indexing needs to be implemented.

For the purpose of this thesis, we only print match results to a log file for analysis but
more sophisticated logic units could easily manipulate this information for higher level
intelligence.

8.2 Image Segmentation

As described above, in our setup we use two cameras, a color camera and a range camera,
to obtain color+range information. In this section we describe the methods used to isolate
foreground objects from the color video stream by using the range image provided by the
range camera.

8.2.1 Alignment

The alignment of video streams from color cameras with range data from range cameras
has been the subject of a number of studies (Reulke, 2006; Santrac et al., 2006; Lindner
et al., 2008). Most of these methods strive for pixel accurate alignment using complicated
algorithms. While our system would clearly benefit from high alignment accuracy, we
opted to only perform a simple, manual calibration of the cameras for our experiments.
This is sufficient to enable a simple projection from the range coordinates to the RGB
image with trivial linear scaling.

Stefán Freyr Stefánsson 41

The manual camera alignment was done by setting up markers in the environment and
adjusting the camera angle while visually observing the video streams from both cam-
eras.

8.2.2 Range Partitioning

When a pair of images (color+range) are received, the range image is partitioned based on
pixel values. In our setup we use 9 range bins that are divided equally over the potential
pixel value range. As the range camera we are using has an effective range of about 8
meters, using 9 range bins means that each bin represents roughly a 90 cm range. We
create a binary image for each of the bins and then scan once through the original range
image. For each pixel, we check which bin it falls into and flip that pixel on for the
corresponding bin image. This results in 9 binary images, each containing white blobs if
objects are found in that image’s assigned range. A top-down view of a hypothetical scene
is depicted in Figure 8.2 along with the binary images for the bins that contain objects in
that particular scene. Note that the objects, depicted as blue shapes in the top-down view,
are standing on the ground in our hypothetical example.

The optimal number of bins will be highly dependent on the type of workload and the
expected level of detail in the scenes being analyzed. The choice of using 9 bins for
our setup is somewhat arbitrary but in the context of our workload which is described in
Section 9.2 we believe that this is a good fit.

8.2.3 Image Segmentation

After generating the range-partitioned binary images, we apply the contour-finding al-
gorithm built into the OpenCV library to each of them. Once we have the contours of
the “blobs”, we calculate their bounding box, resulting in a region of interest that cor-
responds to an isolated foreground object2. The coordinates are projected using simple
linear scaling and the region extracted from the RGB image.

8.3 Scale-Space Reduction

If the pipeline is configured to perform image rescaling, some further processing needs
to be done on each image segment. Image rescaling means that the Controller rescales

2 A single segment may contain more than one object. In this study, we do not consider this case.

42 Using Range Information to Reduce Local Descriptor Computations

Figure 8.2: Illustration of range partitioning (see text).

the image segment so that it looks as if the camera was positioned at a specified dis-
tance.

8.3.1 Segment Rescaling

In order to rescale segments, the Controller must know three things: 1) the distance to
the object, 2) the height of the input segment, and 3) the distance at which the object
should appear to be. The object distance is simply read from the range image by taking
the median value of all range pixels for that segment region. The median value is chosen
to minimize errors caused by potential outliers and it is also likely to be representative
for the dominant object in the segment if there should be more than one objects. The
segment height is simply the pixel height, and the desired distance is given as a runtime
configuration option to the Controller.

The scaling factor is found by looking at the problem as a set of similar triangles sepa-
rated by the point B which represents the focal point of the camera. This is depicted in
Figure 8.3. When considering a particular object, f and h are fixed. Given a value for d
as the measured distance from the range camera, and a corresponding value for h′ as the

Stefán Freyr Stefánsson 43

h

d

f

B
h'

Figure 8.3: Illustration of the rescaling principle (see text).

observed pixel height of the segment, we can calculate a new value for h′ for any value of
d since f

h′ =
d
h

.

8.3.2 Processing Reduction

If a segment has been rescaled before local descriptors are calculated, the need for scale
invariance should be reduced significantly. This means that we should be able to reduce
the SIFT computation by limiting the scale-space. This is in fact one of the main subjects
of our experiments and to support this, the Sifter can be started with a runtime config-
uration option that specifies the number of octaves to generate when computing SIFT
descriptors.

In Chapter 10, we consider two cases: multi-octave computation where processing is not
reduced, and single-octave computation, where only a single octave is generated.

8.4 Summary

In this chapter, we have outlined the two techniques used to reduce the cost of local
descriptor computation using range information. In the following chapters we analyze the
impact of these techniques.

44

45

Chapter 9

Experimental Setup and Hypotheses

Our hypothesis is that we can use the two methods described in chapters 8.2 (Image
Segmentation) and 8.3 (Scale-Space Reduction) to increase the throughput of our vision
system while positively affecting the object recognition result quality.

In this chapter we explain the setup and execution of our experiments. Due to time con-
straints, we present simple experiments that do not prove the validity of our hypothesis.
The results do, however, strongly support the hypothesis and they give very valuable in-
sight into the tradeoffs between performance and quality.

9.1 Hardware and Software

In our setup, we use two cameras; a Point Grey Chameleon CCD color camera and the
Swiss Ranger SR-3000 depth camera from Mesa Imaging AG. The two cameras were put
together on a rig, as shown in Figure 9.1.

The Point Grey Chameleon camera is a USB 2.0 color camera with a Sony ICX445 1/3“
EXview HAD CCD. It can provide 1296x964 pixel video resolution at 8 bits per pixel and
18 frames per second. As the driver software for the Chameleon camera is proprietary
software, we had to implement a YARP device driver wrapper for it.

The SR-3000 camera provides both intensity and depth information. Depth information
is obtained using a phase-measuring time-of-flight principle. The camera allows adjust-
ments of various parameters, such as integration time and amplitude threshold, which
makes it suitable for a variety of applications and environments. The camera produces
176x144 pixel images with 16-bit depth resolution.

46 Using Range Information to Reduce Local Descriptor Computations

We also developed a small utility application for publishing the SR-3000 camera video
streams onto YARP ports. Due to a limitation of the YARP device implementation, we
were unable to incorporate this into the standard YARP device appliance as it only sup-
ports devices that produce a single output stream. Discussion with the YARP developers
has produced some ideas on how to improve this, which may be incorporated into YARP
at some point.

To simplify the execution of experiments, a utility application was developed that recorded
the output of the Fuser module—the combined camera and range image stream—to a file.
The file contains the exact data stream sent through the Fuser’s output port along with
message timing data. Another utility application could then be used to read this file and
play back the data stream in real-time. This greatly simplifies the execution of experi-
ments since the camera equipment does not have to be connected to the computer and the
experiment scene does not need to be set up at all times.

9.2 Object Collection and Workload

The workload was created by placing specific objects at specific distances from the cam-
era rig and recording a short sequence. The objects that we chose were six movie posters
which were placed 2, 3, 4, and 5 meters away from the camera rig. The background was a
white wall at a distance of approximately 7 meters. One sequence was recorded for each
object at each distance, resulting in a total of 24 recordings. Since the scene is stationary,
only a short recording was made (~3 seconds) which was then looped during actual exper-
iment runs. Figure 7.3 showed an example of a movie poster and the background.

Once all the recordings were done, a set of reference object databases was created as
follows. First, a single color image frame from each recording was extracted and saved as
a regular image file. The poster in the image was then manually isolated by using image
editing software to crop the image. This provided us with a still image of each poster at
each distance.

An object database then consists of the SIFT descriptors of all images at a given distance.
Each poster was assigned an ID that was consistent between all databases. For each dis-
tance, two types of databases were created, one containing the original SIFT descriptors
and the other containing descriptors that were generated from a single scale-space octave.
We refer to the former version as multi-octave (mo) and the second as single-octave (so).
We therefore produced 8 reference databases in total (2 types for all 4 distances).

Stefán Freyr Stefánsson 47

(a) The camera rig. (b) The setup of the camera equipment.

Figure 9.1: Cameras and experiment setup.

Admittedly, this workload is not representative for many real world scenarios in which
robots might have to deal with a much more complex environment such as an office
where multiple objects overlap and clutter the scene. Our setup also assumes that a single
object will fall into a single range bin which will not always be the case in real world
situations. Properly segmenting such a complex scene is a highly complicated task and
outside the defined scope of this thesis due to time constraints. We opted to focus instead
on evaluating the feasibility of using the segmentation and rescaling methods described in
Sections 8.2 and 8.3 to increase performance of object recognition tasks using local im-
age descriptors. The use of movie posters was convenient as we had access to many such
posters and chose ones with different properties. One had very specific visual properties
(a poster for a cartoon) while another was very uniform and generated few descriptors.
We also chose a few that had similar visual properties amongst themselves. Figure 9.2
shows the posters that we used for our experiements.

9.3 Compensating for Collection Size

We acknowledge the fact that the object databases we are working with are quite small.
One reason for using a small database is simplicity as we can use a simple sequential
scan to perform descriptor searches. By using a sequential scan we also avoid relying on
approximation methods that are commonly used for large multidimensional data collec-
tions. Another reason is to keep the effort spent on searching to a minimum to avoid it

48 Using Range Information to Reduce Local Descriptor Computations

(a) Megamind (b) Life As We Know It (c) The Tempest

(d) Due Date (e) Charlie St. Cloud (f) The Town

Figure 9.2: Movie posters used for the experiments.

affecting our results. The Searcher should not be a bottleneck in the pipeline as we are
focusing on the SIFT processing methods.

To compensate for this small database size to some degree, we set a limit to the distance
between a query descriptor and its nearest neighbor found in the database. If the nearest
neighbor is farther away than this cutoff distance, we do not consider it to be a match.
This simulates a large-scale collection, where descriptors that are far away can not be
expected to be found.

To determine this cutoff value, we ran a single-octave query against a single-octave
database where the database distance was the same as the query distance. We ran a sep-
arate query for each object and logged both the Euclidean distance between the query
descriptor and its nearest neighbor from the database as well as the difference in scale
between the query descriptor and its nearest neighbor. Since the database and query are
both single-octave, the scale difference is in the range [−1...1]. We also logged whether
the nearest neighbor descriptor found in the database belonged to the query object. If that
was the case, we defined that nearest neighbor to be a match. Otherwise, if the nearest
neighbor descriptor belonged to a different object, we defined it to be a miss.

Stefán Freyr Stefánsson 49

1

10

100

1000

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

D
e

s
c
ri
p

to
r

D
is

ta
n

c
e

Scale Difference

cutoff

(a) Matches

1

10

100

1000

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

D
e

s
c
ri
p

to
r

D
is

ta
n

c
e

Scale Difference

cutoff

(b) Misses

Figure 9.3: Comparison of descriptor distance and scale difference (query: 2m; DB: 2m).

Figure 9.3 shows the result of these runs. Each point in the figure represents a query de-
scriptor and its nearest neighbor in the database; the figure aggregates the results for 10
frames for each query object, for a total of 60 frames. The x-axis shows the scale differ-
ence between the two while the y-axis represents their Euclidean distance. Figure 9.3(a)
shows the pairs that were defined as a match (the query object was the same as the object
that the nearest neighbor descriptor from the database belonged to) while Figure 9.3(b)
shows the pairs that were defined as misses.

Consider first the distribution of matching descriptors in Figure 9.3(a). The figure clearly
shows that a large number of descriptors are found in the exact same scale-space level
and at a very small distance. There are, however, also many descriptors that are found at
a significantly larger distance, and many of these are found in different scale-space levels,
indicating that these are worse matches that are likely to be lost in a large collection.

Looking at the distribution in Figure 9.3(b), which shows the distribution of misses, it is
clear that the cutoff value lies close to 100 as nearly all misses fall above that distance.
We also see in Figure 9.3(a) that there are plenty of matches below this value, indicating
that a cutoff at 100 will still provide a robust match to an object.

Of course, some of the matches are not actual matches, but rather misses where the nearest
neighbor happens to come from a descriptor that belongs to the query object. If we assume
that the distribution of those misses is similar to the ones in Figure 9.3(b), we will also
have eliminated these by choosing this value for the cutoff.

Note that this cutoff value is consistent with the observations of (Lejsek et al., 2009).
They showed that in a large scale collection, descriptor distance impacts the likelihood
of being found. Descriptors with distance less than 25 were consistently found, while
descriptors with distance greater than 150 were rarely found. Descriptors with a distance

50 Using Range Information to Reduce Local Descriptor Computations

of 100 had a 50% chance of being found, which indicates that 100 is indeed a good cutoff
value.

9.4 Metrics

The primary performance metric that we use is the throughput of the pipeline, measured
in frames-per-second (FPS). The frame rate was measured for all the modules in the
pipeline but for the purposes of our experiments, we concentrate on the Sifter module
as our methods are focused on improving the performance of descriptor generation. Mea-
surements also allowed us to make two observations: 1) That the throughput of the Sifter
and Searcher modules were very close, which means that the effort spent on searching for
descriptors does not affect the throughput of the pipeline in our experiments. 2) That the
overhead of performing image segmentation is very small (typically about 0.002%).

Any improvement in performance must be weighed against a potential loss in the quality
of the results. We indicate this quality by measuring the ratio of descriptors that match
the correct object to the total number of descriptors generated for the query, using the
definition of matching descriptors from Section 9.3 above.

51

Chapter 10

Results

In this chapter, we report on our evaluation of the the two methods that we propose for uti-
lizing range information to speed up local descriptor generation, namely image segment-
ing and segment rescaling. We compare these two methods to a baseline measurement
and provide insight into the results.

The results presented here are extracted from a single experimental run where all the
recordings were run through the pipeline with multiple configurations. Each recording
was run until the Searcher module had received 10 frames. In total, we ran 384 recordings
through the pipeline (6 objects, 4 query object distances, 4 database distances, 2 query
types, multi-octave (mo) and single-octave (so), and 2 database types, also multi-octave
and single-octave). Unless otherwise specified, results for a specified configuration are
aggregated for the 6 objects. In the following, we report representative results that clearly
demonstrate the tradeoffs between performance and quality.

10.1 Performance

The first thing we wish to understand is whether using our proposed methods result in in-
creased performance of the overall computer vision pipeline. To evaluate the performance
impact of our methods, we compare runs where the distance to the query object varies
while the distance to the objects in the database is fixed. For the case where we scale the
query segments, we consider both the case where a segment size is increased (up-scaled)
to match the database distance, as well as when it is decreased (down-scaled).

Figure 10.1 shows the case where objects in the reference database are located 2 me-
ters away from the camera while the distance to the query object is varied between 2,

52 Using Range Information to Reduce Local Descriptor Computations

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

mo­mo so­mo so­so

F
ra

m
e

s
 P

e
r

S
e

c
o

n
d

 (
F

P
S

)

Configuration (query­db)

original
segmented

rescaled

(a) Query distance: 2m

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

mo­mo so­mo so­so

Configuration (query­db)

(b) Query distance: 3m

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

mo­mo so­mo so­so

Configuration (query­db)

(c) Query distance: 4m

Figure 10.1: Performance (FPS) of Sifter with database distance fixed at 4 meters.

3, and 4 meters (Figures 10.1(a), 10.1(b), and 10.1(c) respectively). The three clusters
of bars in each of the histograms represent different configurations of the types of query
and database being used. The first cluster is a multi-octave query and database (mo-mo),
then, a single-octave query but a multi-octave database (so-mo) and the third cluster is
where both query and database are single-octave (so-so). Within each cluster, there are
three bars. The first one (original) shows the throughput of the original method, that is,
where the Controller sends all received frames directly to the Sifter without performing
any modifications or processing. The second (segmented), shows the throughput where
segmentation is performed by the Controller. The last bar (rescaled), shows the through-
put where the Controller performs both segmentation and rescaling.

When considering Figure 10.1, we immediately notice that the throughput of the origi-
nal method stays relatively constant regardless of the query distance. This to be expected
since the whole frame is sent through the pipeline in all cases, so the amount of processing
stays about the same. There is a very slight increase in the original method throughput
as the query object is positioned farther away. We attribute this to the fact that the back-
ground in our setup is a very plain, white wall. The number of generated descriptors,
therefore, depends primarily on the size of the object in the image, and as it is placed far-
ther away, it appears smaller and therefore produces fewer descriptors. We also notice a
38-55% increase in the throughput for the original method if single-octave query descrip-
tors are being generated. This is because the number of descriptors that are generated
decreases by about half when descriptors are only generated for a single octave. These
properties of the original method remain consistent throughout all configurations.

With the segmented method, we see a significant increase in throughput compared to the
original method. The gain is least pronounced in Figure 10.1(a), but increases steadily as
the query distance grows. This is because at a query distance of 2 meters the object fills
a very significant portion of the image. As the query distance increases, the size of the
object decreases, and along with it the size of the segment sent to the Sifter for processing.

Stefán Freyr Stefánsson 53

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

mo­mo so­mo so­so

F
ra

m
e

s
 P

e
r

S
e

c
o

n
d

 (
F

P
S

)

Configuration (query­db)

original
segmented

rescaled

(a) Query distance: 2m

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

mo­mo so­mo so­so

Configuration (query­db)

(b) Query distance: 3m

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

mo­mo so­mo so­so

Configuration (query­db)

(c) Query distance: 4m

Figure 10.2: Performance (FPS) of Sifter with database distance fixed at 2 meters.

Again, we see a similar proportional gain in generating single-octave query descriptors as
we did with the original method. This applies throughout all query distances.

The last method we examine in Figure 10.1 is the rescaled method, where the segment
is resized to match the size of objects in the database before being sent for processing
by the Sifter. The key observation here is that the throughput increase is immediate even
though the query distance is small. As the segment is down-scaled to the size of images in
the database (in this case, at a distance of 4 meters), much less processing is performed.
The throughput of the rescaled method remains constant over all query distances as the
Controller always sends the same size of segments for processing. This also indicates that
the cost of the resizing operation is negligible.

We now turn our attention to Figure 10.2 which shows throughput measurements with a
database distance of 2 meters and query distance varied over 2, 3 and 4 meters as before.
In this case, the segments are up-scaled and increase in size.

First of all, we notice that both the original and segmented methods behave very similarly
as before. This is not surprising as there is no difference in the queries being made. On the
other hand, we see that the throughput of the rescaled method has decreased significantly
compared to Figure 10.1. The reason for this is simply that the rescale method resizes the
query image to match the size of the images in the database. In this case, the database
distance is 2 meters, which means that large segments are being sent to the Sifter for
processing.

10.2 Quality

The second thing we have to establish is how the use of our two proposed methods impacts
the quality of object recognition in our computer vision pipeline. We measure the quality
of query runs using the ratio of the number of descriptors that contributed to a correct

54 Using Range Information to Reduce Local Descriptor Computations

 0

 10

 20

 30

 40

 50

mo­mo so­mo so­so

D
e

s
c
ri
p

to
r

M
a

tc
h

 R
a

ti
o

 (
%

)

Configuration (query­db)

original
segmented

rescaled

(a) Query distance: 2m

 0

 10

 20

 30

 40

 50

mo­mo so­mo so­so

Configuration (query­db)

(b) Query distance: 3m

 0

 10

 20

 30

 40

 50

mo­mo so­mo so­so

Configuration (query­db)

(c) Query distance: 4m

Figure 10.3: Quality of Searcher with database distance fixed at 4 meters.

match to the total number of descriptors generated for that query. As with the performance
measurements, we run a set of queries for different configurations over a database at a
fixed distance while varying the query distance. We also consider both up-scaling and
down-scaling of the query image.

Figure 10.3 shows the same configuration combinations as before. Objects in the database
are at a fixed distance of 4 meters while query distances are 2, 3, and 4 meters for Fig-
ures 10.3(a), 10.3(b), and 10.3(c) respectively. In these figures, the y-axis shows the
percentage of descriptors that are contributing to a correct object match.

We first note that as the query distance is closer to the database distance, the results im-
prove. This is consistent for all configurations and methods. Next, we see that for the
multi-octave query and multi-octave database (mo-mo), there is only a slight difference
in quality between the original and segmented method, in favor of the segmented method.
This is because, in actuality, the query being sent to the Searcher is quite similar between
these two methods. The majority of descriptors in the original method are being gener-
ated in the same region as the segment that is sent in the segmented method. The only
difference is that in the original method, a very small number of descriptors is generated
on the plain background. These background descriptors explain the slightly lower quality
of the original method. Of course, if the background was more complex, this difference
would be more pronounced.

Looking at figures 10.3(a) and 10.3(b), we notice that both the original and segmented
methods display very low quality for single-octave query configurations as the query dis-
tance is not the same as the database distance. A closer look at the data reveals that out
of an average of 530 descriptors that are generated per query, an average of only 0.5 de-
scriptors fall below our cutoff distance of 100 and are, therefore, used to contribute to a
match. Figure 10.4(a) shows how the nearest neighbor descriptors found in the database
are shifted due to the difference in distances between the query and database descriptors

Stefán Freyr Stefánsson 55

1

10

100

1000

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

D
e

s
c
ri
p

to
r

D
is

ta
n

c
e

Scale Difference

cutoff

(a) segmented

1

10

100

1000

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

D
e

s
c
ri
p

to
r

D
is

ta
n

c
e

Scale Difference

cutoff

(b) rescaled

Figure 10.4: Comparison of descriptor distance and scale difference (query: 3m; DB:
4m).

(note that the figure shows accumulated results for all 60 frames of the run). It also shows
that only a small percentage of the descriptors fall within the cutoff value.

In contrast, Figure 10.4(b) shows how the rescaled method seems to be producing much
better results for the single-octave query configurations, albeit not quite as good as the
baseline original method in multi-octave query configuration. Looking again at the data
behind the rescaled method quality, we see that out of an average of 460 descriptors being
generated per query, roughly 28 of them now fall within our cutoff range and nearly all of
those are matching the correct object.

Although the rescaled method displays slightly worse result quality in all configurations
where both query and database distance is 4 meters (Figure 10.3(c)), the match quality
index is still at around 30% which is much higher than, for instance, the multi-octave
baseline method when the query and database distances differ. We therefore do not con-
sider this to be a problem. The reason for this decrease in quality is that although no
rescaling should be done (since the query distance is the same as the database distance),
minor measurement errors are resulting in a small rescaling which affects the result qual-
ity.

Finally, we look at Figure 10.5 where the database distance is fixed at 2 meters while
query distance is varied as usual. We immediately notice the same trend as in Figure 10.3
that the original method, using multi-octave queries and multi-octave database, gives re-
sult quality that is directly related to the difference of distances between the two. A
noticeable difference here is that for any single-octave configuration, where the query
distance is greater than the database distance, the rescaling method produces very bad
results. This means that enlarging the query image does not produce similar descriptors
as were generated from the original image stored in the database.

56 Using Range Information to Reduce Local Descriptor Computations

 0

 10

 20

 30

 40

 50

mo­mo so­mo so­so

D
e

s
c
ri
p

to
r

M
a

tc
h

 R
a

ti
o

 (
%

)

Configuration (query­db)

(a) Query distance: 2m

 0

 10

 20

 30

 40

 50

mo­mo so­mo so­so

Configuration (query­db)

(b) Query distance: 3m

 0

 10

 20

 30

 40

 50

mo­mo so­mo so­so

Configuration (query­db)

original
segmented

rescaled

(c) Query distance: 4m

Figure 10.5: Quality of Searcher with database distance fixed at 2 meters.

10.3 Conclusion and Summary

In this chapter, we have demonstrated the performance and quality characteristics of our
proposed techniques. We draw three main conclusions.

First, we found that generating only a single octave for the SIFT query descriptors results
in a significant performance gain. However, using single-octave descriptors in the object
database does not improve performance and can have a negative impact on the result
quality. Assuming that a scalable search technique is employed, we suggest using the
single-octave query, multi-octave database configuration.

Second, when querying for an object located closer than the object database reference dis-
tance, we gain significant speed improvements from rescaling the query image segment.
Also, rescaling improves the quality of lookups performed with single-octave query de-
scriptors. However, if the query object is located farther away than the reference database
distance, we observe a drop in both quality and performance. We therefore suggest that
segments only be down-scaled as needed before being processed.

Third, the distance of a reference database must be decided by weighing a few factors.
One is the expected detail of the objects we want to recognize, as smaller objects require
shorter distance. Another factor is the quality of the color camera being used. The third
factor is perhaps the most subjective, as there is a clear tradeoff between performance and
quality when choosing the database distance.

We conclude that by dynamically deciding whether to downscale a segment, based on the
known facts and measured observations, the proposed techniques can provide a significant
performance increase and, in some cases, also improve quality of results.

57

Chapter 11

Conclusions

In the first part of this thesis we described our efforts towards a flexible computer vi-
sion infrastructure based on the YARP toolkit. We found that YARP greatly simplifies
making the infrastructure flexible towards sensors, hardware, processing, and communi-
cation requirements, compared to starting from scratch. We found YARP easy to use, and
our experiments showed that the overhead is a reasonable tradeoff for the convenience
gained.

In the second part we explored the impact of using range information to improve the
performance of SIFT descriptor generation. We proposed two techniques to do this. First,
by segmenting the image based on the range data, thereby isolating objects protruding
from their surrounding, and sending only the region of the image that contain foreground
objects for SIFT processing. Second, by utilizing the range information to decrease the
need for scale-invariance in SIFT. Two options were explored to obtain this goal, the first
was using the range information to rescale the image to match the size of objects in the
reference database, while the second was reducing the number of descriptors generated
by limiting the scale-space to a single octave. We found that using a single-octave query
configuration improves the performance by a significant factor. Also, while up-scaling
the image segments results in both worse performance and quality, down-scaling when
needed results in a significant speed improvement and can in some cases provide better
result quality. Finally, we observed that carefully selecting the reference distance for
the object database is important and must be considered by weighing a tradeoff between
performance and quality.

We have demonstrated that the concept of using range information to increase perfor-
mance of object recognition appears viable. Of course, further experimentation is re-
quired in order to fully understand the properties of using our methods in a more realistic

58 Using Range Information to Reduce Local Descriptor Computations

scenario; we have only skimmed the surface of possibilities. One aspect that could im-
prove this work is using more advanced techniques for aligning the color and range image
streams either by using specialized hardware (Hahne and Alexa, 2008; Zhu et al., 2008)
or advanced algorithms and camera calibrations (Lindner and Kolb, 2007; Reulke, 2006;
Santrac et al., 2006). Doing this would then lead to using more advanced segmentation
algorithms resulting in better object isolation. Another interesting aspect to investigate is
to use a faster method for interest point detection than the difference-of-Gaussian method
used by SIFT, such as the Harris corner detection (Harris and Stephens, 1988), that do not
necessarily show as much scale invariance.

59

Bibliography

Bay, H., Tuytelaars, T., and Gool, L. J. V. (2006). SURF: Speeded up robust features.
In Proceedings of the 9th European Conference on Computer Vision (ECCV), New
York, NY, USA.

Fitzpatrick, P., Metta, G., and Natale, L. (2008). Towards long-lived robot genes. Robotics

and Autonomous Systems, 56(1):29–45.

Hahne, U. and Alexa, M. (2008). Combining time-of-flight depth and stereo images
without accurate extrinsic calibration. International Journal of Intelligent Systems

Technologies and Applications (IJISTA), 5(3/4):325–333.

Harris, C. and Stephens, M. (1988). A combined corner and edge detection. In Proceed-

ings of The Fourth Alvey Vision Conference (AVC), Manchester, UK.

Hess, R. (2010). An open-source SIFT library. In Proceedings of the 18th ACM Interna-

tional Conference on Multimedia (ACMMM), Firenze, Italy.

Ke, Y. and Sukthankar, R. (2004). PCA-SIFT: A more distinctive representation for local
image descriptors. In Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR), Washington, DC, USA.

Lazebnik, S., Schmid, C., and Ponce, J. (2004). Semi-local affine parts for object recog-
nition. In Proceedings of the British Machine Vision Conference (BMVC), Kingston,
UK.

Lejsek, H., Ásmundsson, F. H., Jónsson, B. Þ., and Amsaleg, L. (2006). Scalability of
local image descriptors: A comparative study. In Proceedings of the 14th ACM

International Conference on Multimedia (ACMMM), Santa Barbara, CA, USA.

Lejsek, H., Ásmundsson, F. H., Jónsson, B. Þ., and Amsaleg, L. (2009). NV-Tree: An effi-
cient disk-based index for approximate search in very large high-dimensional collec-
tions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(5):869–
883.

60 Using Range Information to Reduce Local Descriptor Computations

Lindner, M. and Kolb, A. (2007). Data-fusion of PMD-based distance-information and
high-resolution RGB-images. In Proceedings of the International IEEE Symposium

on Signals, Circuits & Systems (ISSCS), Iasi, Romania.

Lindner, M., Lambers, M., and Kolb, A. (2008). Sub-pixel data fusion and edge-enhanced
distance refinement for 2D/3D images. International Journal of Intelligent Systems

Technologies and Applications (IJISTA), 5(3/4):344–354.

List, T., Bins, J., Fisher, R. B., Tweed, D., and Thórisson, K. R. (2005). Two approaches
to a plug-and-play vision architecture - CAVIAR and Psyclone. In Workshop on

Modular Construction of Human-Like Intelligence, Pittsburgh, PA, USA.

Lowe, D. G. (1999). Object recognition from local scale-invariant features. In Proceed-

ings of the International Conference on Computer Vision (ICCV), Washington, DC,
USA.

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. Interna-

tional Journal of Computer Vision, 60(2):91–110.

Metta, G., Fitzpatrick, P., and Natale, L. (2006). YARP: Yet another robot platform.
International Journal Of Advanced Robotic Systems, 3(1):43–48.

Mikolajczyk, K. and Schmid, C. (2005). A performance evaluation of local descrip-
tors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10):1615–
1630.

Ng-Thow-Hing, V., List, T., Thórisson, K. R., Lim, J., and Wormer, J. (2007). Design
and evaluation of communication middleware in a distributed humanoid robot ar-
chitecture. In Workshop on Measures and Procedures for the Evaluation of Robot

Architectures and Middleware, San Diego, CA, USA.

Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., Wheeler, R., and Ng,
A. Y. (2009). ROS: an open-source robot operating system. In International Con-

ference on Robotics and Automation (ICRA) Workshop on Open Source Software,
Kobe, Japan.

Reulke, R. (2006). Combination of distance data with high resolution images. In Inter-

national Society for Photogrammetry and Remote Sensing (ISPRS) Commission V

Symposium, Dresden, Germany.

Samet, H. (2006). Foundations of Multidimensional And Metric Data Structures. Morgan
Kaufmann.

Stefán Freyr Stefánsson 61

Santrac, N., Friedl, G., and Rojas, R. (2006). High resolution segmentation with a time-
of-flight 3D-camera using the example of a lecture scene. Technical Report B-06-09,
Freie Universität.

Stefánsson, S. F., Jónsson, B. Þ., and Thórisson, K. R. (2008). Evaluation of a YARP-
based architectural framework for robotic vision applications. Technical Report
RUTR-CS08004, Reykjavik University School of Computer Science.

Stefánsson, S. F., Jónsson, B. Þ., and Thórisson, K. R. (2009). A YARP-based archi-
tectural framework for robotic vision applications. In Proceedings of the Fourth

International Conference on Computer Vision Theory and Applications (VISAPP),
Lisboa, Portugal.

Thórisson, K. R., List, T., Pennock, C. C., and DiPirro, J. (2005). Whiteboards: Schedul-
ing blackboards for semantic routing of messages & streams. In Workshop on Mod-

ular Construction of Human-Like Intelligence, Pittsburgh, PA, USA.

Thórisson, K. R., List, T., Pennock, C. C., and DiPirro, J. (2007). OpenAIR 1.0 specifica-
tion. Technical Report RUTR-CS07005, Reykjavik University School of Computer
Science.

Tweed, D., Fang, W., Fisher, R., Bins, J., and List, T. (2005). Exploring techniques for
behaviour recognition via the CAVIAR modular vision framework. In Workshop on

Human Activity Recognition and Modelling (HAREM), Oxford, UK.

Witkin, A. P. (1983). Scale-space filtering. In 8th International Joint Conference on

Artificial Intelligence, Karlsruhe, West Germany.

Zhu, J., Wang, L., Yang, R., and Davis, J. (2008). Fusion of time-of-flight depth and stereo
for high accuracy depth maps. In IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR), Anchorage, Alaska, USA.

62

School of Computer Science
Reykjavík University
Menntavegi 1
101 Reykjavík, Iceland
Tel. +354 599 6200
Fax +354 599 6201
www.reykjavikuniversity.is
ISSN 1670-8539

