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Abstract

Low temperature geothermal resources provide hot water that is commonly
used for space heating and various applications. A geothermal resource is
considered to be a renewable energy source that can be utilized by current
and future generations if sustainability considerations are respected. The
goal of this work is to determine if utilization of a geothermal reservoir can
be optimized under sustainable operation. One way to carry out this kind
of optimization is to connect reservoir and operational optimization models
directly. The underlying reservoir model used here is a lumped parameter
model (LPM). A LPM model can be used to simulate pressure (drawdown)
changes in a low temperature reservoir with respect to harvesting levels. One
scenario is to maximize the present value of profit where important param-
eters include production rate, water level (drawdown) and production ca-
pacity from which the profit can be calculated. Optimization over a time
period subject to underlying developing constraints is often referred to as dy-
namic optimization. This problem is essentially a mixed integer non-linear
dynamic optimization problem, often referred to as mixed integer dynamic
optimization (MIDO). Three solution methods for the optimization problem
are discussed, tested and compared. The parameters of the LPM are ob-
tained by non-linear least square estimation where the LPM is essentially
a simplified approach to characterize a spatially distributed reservoir. Data
from four different geothermal fields are calibrated to the LPM, validated
with split validation and the best calibrations chosen for the optimization ap-
plication. Profit is first maximized assuming long-term production based on
demand from historical data. Different performance indices for the geother-
mal utilization are then optimized and various scenarios are considered and
compared under annually increased demand.



Ákvarðanataka fyrir sjálfbæra nýtingu lághitajarðvarmakerfa
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Útdráttur

Lághitajarðvarmasvæði eru auðlindir sem gera það kleift að heitt vatn sé nýtt
til húshitunar fyrir heimili eða margskonar atvinnustarfsemi. Jarðvarmi er
talin vera endurnýjanleg auðlind sem komandi kynslóðir munu geta nýtt sér
að því tilskildu að sjálfbær nýting sé höfð að leiðarljósi. Markmiðið með
þessu verkefni er að komast að því hvort hægt sé að besta sjálfbæra nýtingu á
slíkri auðlind. Ein leið til að útfæra slíka bestun er að tengja forðafræðilíkan
beint við rekstrar-bestunar líkan (e. operational optimization). Slíkt líkan er
hægt að nota til að herma þrýstingsbreytingar (breytingar í niðurdrætti) í lág-
varma jarðhitageymi (e. low temperature reservoir) með tilliti til framleiðs-
lugetu. Taka má fyrir tilfelli þar sem hagnaður er bestaður þar sem mikilvæ-
gar breytur sem nota má til að reikna hagnað eru meðal annars, framleiðs-
lustig, vatnshæð (niðurdráttur) og framleiðslugeta. Þegar bestað er yfir tíma-
bil með undirliggjandi breytilegri skorðu er oft talað um hreyfina bestun (e.
dynamic optimization). Þetta vandamál er í eðli sínu blendin ólínuleg hreyfin
bestun (e. mixed integer non-linear dynamic optmization) oft kallað blendin
hreyfin bestun (e. mixed integer dynamic optimization). Þrjár lausnaraðfer-
ðir eru ræddar, prófaðar og bornar saman. Kennistærðir forðafræðilíkansins
eru fengnar með ólínulegri aðferð minnstu kvaðrata, en forðafræðilíkanið
sýnir í eðli sínu fram á mikla einföldun á flóknu jarðvarmakerfi þar sem rúm-
fræðilegir eiginleikar kerfisins eru ekki teknir með inn í myndina. Gögn
frá fjórum mismunandi jarðvarmasvæðum eru aðlöguð að forðafræðilíkan-
inu. Þessi aðlögun er staðfest og bestu niðurstöðurnar notaðar í bestuninni.
Hagnaður er fyrst hámarkaður fyrir langvarandi vinnslu og m.v. að söguleg
eftirspurn haldist óbreytt. Að lokum er mismunandi markföllum beitt til að
besta nýtingu jarðvarmakerfa og margs konar tilvik eru skoðuð miðað við að
eftirspurn sem byggð er á sögulegum gögnum aukist á árs grundvelli.
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Chapter 1

Introduction

1.1 Geothermal energy and sustainability

Geothermal energy can be harnessed by extracting heat from the Earth’s crust. It is
a promising source for heat and power as it is considered to be a renewable resource
that may be utilized in a sustainable manner. Geothermal energy is now widely utilized
all around the world, either directly or for power generation. Using renewable energy
sources is one way of reducing dependency on fossil fuels. Renewable energy technolo-
gies with sustainability considerations have been evaluated by several authors [Hepbasli,
2008; Lund, 2007; Evans et al., 2008; Varun et al., 2009; Axelsson, 2010].

Geothermal systems can be classified according to their temperature and the presence
of fluid. Systems with temperature less than 150 �C are usually refereed to as low tem-
perature or low enthalphy systems. They are typically hydrothermal permeable systems
that have geothermal fluid naturally present and thus ideal for direct usage. High tem-
perature systems with temperature ranging from 150 �C to 300+ �C, are usually used for
conversion to power. Such system are quite different as they usually contain fluid in two
phases and phase changes are more likely to occur. Direct use of geothermal energy is
considered to be the oldest and most common form of renewable energy utilization and
has alone almost doubled in the past 10 years [Lund et al., 2011]. Power generation
from geothermal energy sources is expected to increase rapidly as well, around 73% in
the next 5 years [Bertani, 2010]. Worldwide potential of geothermal energy utilization is
considerable as well and can provide a partial contribution to the sustainable energy use
in the world [Axelsson, 2010]. To meet increased demand, governments and businesses
(in countries where geothermal energy is available) need to decide whether or not to es-
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tablish a geothermal energy utilization scheme, as well as to design operational strategies
for those systems to meet demand in a profitable way without compromising the future
potential of the resource. Although most geothermal systems are considered renewable,
the economic horizon of large-scale investments such as power plants may be greater
than the characteristic time for regeneration of the reservoir for a given system. It is thus
important to take into account the effects of long-term utilization on such fields and an
operation strategy that aims for sustainable production. For a profitable utilization of a
geothermal resource, it is very important to gather general knowledge of the relative field,
by e.g. drilling exploratory wells and gather production history. Thorough exploration
is however costly and it is unlikely that uncertainty can be eliminated completely. The
size and dynamic characteristics of geothermal reservoirs are thus in some cases poorly
understood when capital investments begin.

The term sustainability has become somewhat fashionable in some areas, such as pol-
itics and the broadcast media. It is thus important to understand what it means in the
geothermal context and to make a clear distinction between renewability and sustainabil-
ity. Renewability is a property of a resource where the energy extracted from the system
is always replaced by additional energy. This replacement of energy is required to take
place at a similar time scale as the extraction. Fossil fuels can thus be considered re-
newable on a geological time scale, but are considered finite energy sources on a human
time scale [Stefansson, 2000]. Sustainability on the other hand refers to the endurance
capacity of the exploitation where production levels can be maintained over a long period
of time [Rybach and Mongillo, 2006]. A renewable system can thus be exploited in a
sustainable or a non-sustainable manner.

Low temperature geothermal systems are most commonly used for space heating and
provision of hot water and in some cases generation of electrical power [Xin et al., 2012].
In particular, the vast geothermal resources in Iceland have been utilized to a consider-
able extent, mainly for space heating. A low temperature geothermal field is harnessed
by drilling a number of wells in to the field. This fluid is used as a heat source, and once
heat has been extracted from the fluid it may or may not be re-injected into the field. The
production from the field is determined simply by the flow rate and temperature of the ex-
tracted fluid. Historical experience indicates that geothermal fields respond to production
by declining pressure (or drawdown1) and sometimes declining temperature [Axelsson,
1991; de Paly et al., 2012]. This could imply that limiting production might become a

1 In this work drawdown represents the distance from average height to the surface of the water in the
wells (water level)
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necessity after an extended period of operation. From a financial point of view, due to
the time value of money, excessive production can be beneficial since the annual rev-
enue in the early years has the greatest effect upon the present value of the operation.
Lovekin [2000] concluded that a particular aggressive exploitation scenario resulted in a
discounted return of investment and present worth almost three times higher than a con-
servative use of the resource, despite higher costs of make-up wells at later stages in the
operation. A good example could be the 300 MW Hellisheidi power plant in Iceland,
but that remains to be seen. It was built up in three big units in 3 years, which could
suggest an excessive production from the beginning. The main drawback of excessive
production is that in the long-term sense, it can lead to resource deterioration or even de-
pletion. It was for example shown in [Eugster and Rybach, 2000] that the time required for
thermal recovery in a specific geothermal system was roughly equal to production time.
The increased use of geothermal resources has raised questions regarding their sustain-
able production and how the resource is harnessed in an optimal manner. Currently it is
unclear how to design optimal operation strategies of power plants or district heating utili-
ties that satisfy the customer and ensure both profitable and sustainable power production.

There are many ways to evaluate sustainability. In Axelsson [2010] sustainability is
evaluated from the operational experience of a geothermal reservoir. Axelsson [2010]
considers three main sustainable production modes for a long term utilization (more than
100 years) of a geothermal system: Constant production below an evaluated sustainabil-
ity limit, step-wise increase in production until the sustainability limit has been assessed,
excessive cycle production with long breaks and excessive production for 30 to 50 years
followed by a reduced production for 150 to 170 years. Duan et al. [2011] discuss a cri-
teria with five main categories of sustainability: resource, technological, environmental,
economical and social attributes where sustainability is evaluated by a fuzzy synthetic
evaluation, by ranking the categories but excluding social and economic attributes. In this
work, and for a more tangible insight of the term, sustainability will be mostly considered
in terms of the exergy of the fluid and utilization efficiency. With that methodology it is
possible to simply calculate the maximum drawdown for a giving system and use it as
a sustainability constraint in an optimization model. For further reading on exergy and
sustainability see [Hepbasli, 2008; Lund, 2007; Dincer, 2002].
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1.2 Geothermal reservoir modeling

In designing an operational strategy of utilizing geothermal energy it is of considerable
interest to be able to predict the dynamic response of the geothermal reservoir from the
production. By doing so it may be possible to manage production in such a way that
revenue or profit is maximized while ensuring long-term production capability. A plan
for capital investments such as purchasing and installing borehole pumps can also be con-
structed. To do so it is highly useful to construct a representative model of the underlying
reservoir showing the responds to fluid being pumped from it.

Several methods exist for reservoir modeling in geothermal systems. Common ones
are e.g. volumetric methods, detailed mathematical modeling and lumped parameter mod-
eling (LPM). Volumetric methods involve conceptual modeling and are based on estima-
tion of the total heat stored in a volume of rock but do not take into account the dynamic
response of the system [Axelsson, 2008]. Detailed numerical models involve high resolu-
tion in three dimensions and are eminently suitable for a number of tasks such as selecting
borehole locations etc. Such detailed modeling depend on various parameters and data.
Lack of such data makes it difficult to construct detailed numerical models. The compu-
tational cost of these models can as well become prohibitive when they are to be used for
optimization applications.

Lumped parameter modeling (LPM) approach has been applied by several authors [Grant,
1983; Pruess et al., 1986; Gudmundsson and Olsen, 1987; Axelsson, 1989; Martinovic,
1990; Satman et al., 2005] and represents the dynamics of the system without information
about detailed spatial variation. The lumped parameter models are practical in predicting
the production capacity of geothermal fields if fast computation is needed and are not de-
pendent on various parameters like detailed numerical models. A representative lumped
model is very likely to serve as a useful tool in the decision making process with regards
to the exploitation rate, investment cost and sustainability considerations. The main con-
cern of this work is to look at how to exploit a resource in a sustainable manner in light
of reservoir dynamics and increased market demand. In order to do this it is necessary to
include both the dynamics of the reservoir and the markets.

The Reykjavik metropolitan area utilizes six geothermal systems. Four of them are
liquid-phase low temperature geothermal systems; Laugarnes field, Ellidaar field, Reykir
field and Reykjahlid field. The other two, Nesjavellir and Hellisheidi are high temperature
geothermal systems that have been exploited for a short period of time compared to the
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other four. The focus here is only on the four liquid-phase low temperature geothermal
systems, where geothermal fluid is naturally present and no phase change occurs. In the
LPM the systems are assumed to be isothermal [Axelsson, 1989] and re-injection does not
occur. Data records for production and water level from those four fields will be examined
and calibrated to the LPM for a potential use where an operational optimization model is
connected to the LPM. In order to estimate how reliable such calibration is, they are vali-
dated by a split sample validation [Picard and Berk, 1990]. That result is used to simulate
the behaviour of the geothermal fields. The simulation serves as an underlying constantly
developing constraint in the optimization model which is the topic of next section.

1.3 Optimization

Optimization algorithms have served as suitable tools for solving complex mathematical
problems in several fields of technology. Those problems include complex design, deci-
sion analysis and optimal control. Optimization methods have been increasingly applied
in the renewable energy sector in recent years [Banos et al., 2010]. Optimization often
deals with decision analysis of problems where a certain objective function or perfor-
mance index is either maximized or minimized. The objective function holds one or more
unknown variables, usually refereed to as decision variables as well as it usually needs
to satisfy a set of constraints2. An objective function can be optimized for one instant
time only (static optimization) or over a certain time period (dynamic optimization). It
can also bee seen as solving one-period problem versus solving a multi-period problem.
In a dynamic optimization, decisions today depend upon decisions yesterday etc.

In this work, the objective function is both a function of time and an underlying system
of differential equations. This is thus a dynamic optimization problem. For a more intu-
itive understanding of the operational model, imagine a firm holder of a district heating
utility. He strives for both profitable business and satisfied customers as well as to utilize
the resource in a sustainable way for future generations. How can he do that? As ex-
plained in section 1.2, the resource under consideration in this work is a low-temperature
geothermal field with a certain number of wells. In order to get to the water, it usually
needs to be pumped from the wells. The number of pumps needed depends on their power
capacity and the drawdown. The dynamics of the system, i.e. how drawdown responds to
production can be evaluated with the LPM. Demand for energy is assumed to be known.
Decision variables in the optimization therefore include production and number of pumps

2 Not all optimization problems are constrained, cf. unconstrained optimization
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needed. Other decisions include the time point at which pumps should be bought and
installed and when a defined sustainability limit is reached. The drawdown is a function
of production and is thus a state variable in the model. Possible performance indices in-
clude maximization of profit or minimization of demand that can not be met. Constraints
include a sustainability limit and pumping capacity (it is very unlikely to be profitable to
buy an infinite number of pumps). The lumped parameter model is (in this work) applied
in such a way that one field is considered as one reservoir and spatial variations of the
system are ignored. This means for example that for a certain period of time, it can be
optimized exactly how many pumps are needed for the whole field and exactly when they
are needed, but not where they should be located. The pumps are represented by a time
dependent integer and the functions representing pump capacity and profit are non-linear.
This is thus inherently a mixed integer non-linear optimization of a process that can be
described by an underlying system of differential equations, the LPM.

In a general form this sort of problem can be written as:

maximize
x,u,y

J (u,x,y, tn) :=

Z t
n

t
0

l(t,x(t),u(t),y(t))�tdt,

subject to

ẋ(t) = f(t,x(t),u(t)), x(t
0

) = x
0

u(t
0

) = u
0

g(t,x(t),u(t),y(t))  0

u

L(t)  u(t)  u

U(t)

x

L(t)  x(t)  x

U(t)

(1.1)

The goal is to find the control trajectory u 2 R, where [t
0

, tn] is the time interval of
interest in order to maximize the cost function or performance index l : [t

0

, tn] 2 R.
Now, x : [t

0

, tn] 2 R is a state vector and f is a vector set of equality constraints.
y : [t

0

, tn] 2 Z+ is an integer decision vector, g : [t
0

, tn] 2 R is a vector of inequal-
ity constraints, x

0

and u
0

are the initial conditions and u

L and u

U represent lower and
upper bound of the control trajectory and x

L and x

U of the state variable. � is a discount
factor 0  �  1.

There are several names for such problems in the literature, but they are usually ref-
ereed to as mixed-integer dynamic optimization (MIDO) or mixed-integer optimal con-
trol (MIOC). These sorts of problems (MIDO or MIOC) can be seen as members of the
class of mixed-integer optimization problems just like mixed-integer linear programming
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(MILP) and mixed-integer nonlinear programming (MINLP). Another point of view is to
see MIDO and MIOC as a special kind of dynamic optimization or optimal control prob-
lems [Sager, 2006].

The terms optimal control, dynamic optimization and trajectory optimization refer to a
problem where it is desired to determine the inputs to a dynamical system that optimizes a
specified objective function while satisfying any constraints on the motion of the system.
These terms are often interchanged in the literature. If the inputs to the system are static
parameters and the desired result is to find the value of these parameters and the trajectory
vector that optimizes a given objective function, the term dynamic optimization or trajec-
tory optimization is often used. The term optimal control is often used for an optimization
where the input to the system are control functions [Rao, 2009]. Other publications imply
that optimal control is a subclass of dynamic optimization. The term dynamic optimiza-
tion might however also refer to parameter estimation or is easily confused with dynamic
programming. With that in mind and since the input to the system here are not functions
but static parameters, the problem here will be referred to as dynamic optimization.

It is very important to state at this point that this sort of problems are in general ex-
tremely challenging to solve. No general algorithms exist that yield acceptable results for
all problem instances [Sager, 2012]. Many different approaches have been proposed over
the years to solve such problems as they relate to many different mathematical disciplines.
The so-called indirect methods and direct methods are often compared in the literature in
this relation [Betts, 2001; Diehl, 2011; Binder et al., 2001]. Binder et al. [2001] discusses
three general approaches to solve dynamic optimization problems:

Firstly, solution of the Hamilton-Jacobi-Bellman (HJB) equation and Dynamic pro-
gramming (DP) in the discrete setting. Dynamic programming suffers from the Bellman’s
"curse of dimensionality" as computational complexity of the DP algorithm increases ex-
ponentially with dimensionality of the state. This makes DP an impractical method in
large-scale applications. It was however not thoroughly investigated whether DP could be
successfully applied to this problem.

Secondly, indirect methods, i.e. calculus of variations which is an extension of cal-
culus to infinite dimensional space that was developed into the maximum principle. The
maximum principle is often considered as a dynamic generalization of the method of
Lagrange multiplier [Chow, 1997]. The indirect methods iterate on necessary optimal-
ity conditions to find a solution, so the method finds the optimal "indirectly". Indirect
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methods involve differentiation that is not possible with an integer function and appear
to be too mathematically expensive for such a problem like the one considered here. It
is however not excluded that a relaxation to NLP with an indirect method would give a
promising result which is attempted in this work.

Thirdly, direct methods. This work will focus more on direct methods since they have
been considered more promising in the literature for the past two decades, especially in
dealing with real live large scale dynamic optimization problems [Sager, 2012]. Other ap-
proaches will not be discussed here in detail, for further reading see e.g., [Bryson, 1999;
Bellman, 1957; Dadebo and McAuley, 1995; Luus, 2000].

With direct methods, non-linear dynamic optimization problem can be transcribed into
a NLP problem with discretization, or in this work a MINLP of the form:

maximize
z,y

l(z, y),

subject to

f(z, y) = 0,

g(z, y)  0,

z 2 Z,

y 2 Y

(1.2)

where Z ⇢ Rn
z and Y ⇢ Zn

y

+

are the sets of real numbers and positive integer vari-
ables respectively. nz is the number of continuous variables and ny the number of integer
variable. The functions l : Rn

z

+n
y ! R, g : Rn

z

+n
y ! Rm and f : Rn

z

+n
y ! Rm

are usually required to be twice continuously differentiable functions. The differential
equations from the optimization problem represented by equation 1.1 can now be seen
as the equality constraints of the MINLP problem and the decision variable z represents
the control and state variables. Minimization (instead of maximization) can readily be
included along with upper and lower bound of the decision variables like in a dynamic
optimization problem.

One of the most important advantages of direct methods compared to indirect methods
is that they can easily treat inequality constraints, like the inequality path constraints, g
in the optimization problem represented by equation 1.2 here above. When a non-linear
dynamic optimization problem is converted into NLP, the optimization can be treated with
well developed NLP methods [Diehl et al., 2005].
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Direct methods are based on a finite dimensional parameterization of the control trajec-
tory, but differ in the way the state trajectory is handled (x in equation 1.1). Discretization
is usually constructed via shooting, multiple shooting, or collocation [von Stryk, 1993;
Bock and Plitt, 1984]. In this work direct collocation will be applied, i.e. the differential
equation is discretized by a numerical procedure, defining a grid of n points that cover the
time interval [t

0

, tn], t
0

= t
1

< . . . < tn = tn.

Mixed-integer nonlinear program (MINLP) optimization problems (like equation 1.2
above) combine the combinatorial difficulty of optimizing over discrete variable sets with
the challenges of handling nonlinear functions. It is thus not surprising that MINLPs are
in general NP-hard (not solvable in polynomial time). It has even been shown that very
special subclasses of MINLP are NP-hard. One particular subclass of the problem rep-
resented by equation 1.2 is a static, pure integer optimization problem that consist of a
convex quadratic function and linear constraints. Such problems and therefore the gen-
eral class of MINLPs have been proven to be NP-hard [Garey and Johnson, 1979; Sager,
2006].

It is also very useful to make a distinction between the so called convex3 and non-
convex MINLPs. If the functions, l 2 R, f 2 Rm and g 2 Rm are all convex, the MINLP
is called convex; otherwise non-convex. Convex and non-convex MINLP are both NP-
hard in general, but it is much easier to solve convex ones in theory and practice.

Direct methods are also about adapting algorithms originally developed for MINLPs
to optimization problems embedding underlying dynamic systems. That includes relax-
ing the problem to a form that is solvable in polynomial time. Most MINLP are solved
by applying a form of a so called tree-search. The tree methods include for example
nonlinear branch-and-bound [Gupta and Ravindran, 1985] and branch-and-bound with
cutting planes [Stubbs and Mehrotra, 1999] methods. Methods applied along with the
tree-search to account for the NP-hardness of the MINLP include; relaxation to MILP
with a linearization, under-and over-estimators or outer approximation, convexification,
relaxation of the integer to NLP, extended cutting plane etc, see [Grossman, 2002] for a
good overview.

Here, the problem is first solved by relaxing it to MILP where non-linear functions
3 For a maximization it is theoretically concave instead of convex. But the literature usually talks in

terms of minimization and thus convex and non-convex optimization.
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are approximated with Taylor approximation. The MILP is solved with an optimization
algorithm using branch-and-bound with cutting planes. In certain cases an updating algo-
rithm is needed for a good linear approximation. The problem is also solved by defining
under-and over-estimators of the non-linear functions which is another kind of relaxation
to MILP. Finally the problem is solved by relaxing it to NLP. The three relaxation meth-
ods are compared and discussed. One relaxation method is then chosen to carry out an
optimization for different operational scenarios.

1.4 Objective and Contribution

This thesis is an interdisciplinary work of operations research and geothermal reservoir
modeling. Operational research or optimization (introduced in the section 1.3) is in itself
interdisciplinary mathematical science that focuses on the effective use of a specific tech-
nology, such as geothermal energy.

The main objective of this thesis is to develop an efficient optimization algorithm that
can be used to find an optimal production scheme for utilizing a geothermal resource in a
sustainable way. Sustainability implies long term utilization in terms of production capac-
ity and development of water level in a reservoir. In this way, decision support is provided
in terms of looking at the "big picture" in utilizing a geothermal resource.

Important factors that need to be accounted for are:

• A geothermal system needs to be described mathematically and simulated with an
acceptable model.

• An optimization model with the capacity to describe the possible operational sce-
narios needs to be established. This optimization model needs to be solvable within
an acceptable time frame. If a relaxation is required it needs to be significant.

• The two factors above must be connected together allowing the construction of a
sustainable optimal production scheme for a geothermal reservoir. Different opti-
mization scenarios in terms of different objective functions and constraints can then
be compared.

Another concern of this work, and perhaps more philosophical one relates to different
objective functions (cf. the last factor here above). I.e., what is an optimal or the correct
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objective function? Is the present value of profit the only legitimate objective function?
Are there other objectives in the system that if optimized would give value to the opera-
tion? It is e.g. very important to meet demand. A demand/production objective function
can be used to minimize the deviation between production and demand. Another point
of view is to consider whether the interest rate (present value of money) is necessary in
terms of sustainability considerations. The main idea of sustainability is to value next
generations and their needs as much as the current generation. Using an interest rate and
maximizing profit skews the results substantially in the favor of the current generations.
It is thus interesting to maximize profit without using an interest rate.

The main contribution of this work is that a methodology has been developed and
tested to optimize the production scheme for a geothermal resource. This model can be
used with any sufficient data set for a low temperature geothermal reservoir and give in-
formation on what would be a good production scheme for the long term utilization. This
methodology can be applied to short term utilization as well, but the main objective is not
to generate exact monthly overview but rather to have a good long term overview.

1.5 Structure of the thesis

The remainder of the thesis is organized as follows:

• Chapter 2 explains the modelling approach. First the LPM, it’s structure and how
it can be integrated. The constraints of the optimization model are outlined along
with the optimization model itself.

• Chapter 3 goes deeper into theory related to optimization and outlines theoretically
solution methods for the optimization problem.

• Chapter 4 presents the results. First a parameter fit for the LPM is conducted where
different types of LPM models are compared and data for four geothermal fields
are tested. Secondly the optimization methods introduced in chapter 3 are tested.
Finally an optimization method is chosen to apply for a long term utilization for
two geothermal fields, chosen from two of the best parameter fits.

• Chapters ?? and ?? summarize the results and suggests open problems and possible
further research.
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Chapter 2

Modeling approach

This chapter explains the modeling approach, the lumped parameter model (LPM) and
how it is numerically integrated. The optimization model is explained by accounting for
the objective function and each constraint respectively. Through that explanation it should
be clear how the optimization model is constructed and how it is directly connected to a
reservoir model, i.e. the LPM.

2.1 Lumped parameter model (LPM)

The reservoir modeling in this study is based on a lumped parameter description of a
liquid phase hydrothermal reservoir. As in Satman et al. [2005] and Axelsson [1989] a
geothermal system consisting of generally three parts is considered. The first part can be
visualized as the central part of the reservoir, the second as the outer part and the third as
the recharge source. This kind of system can also be considered as a series of connected
storage tanks (capacitors) that represent the neighborhood of a geothermal well (see fig-
ure 2.1). These storage tanks are connected together so that fluid can flow between them.
Fluid can also flow from the smallest tank to the surface, representing the production.
The states of these tanks are generally represented by pressure head and the pressure
difference between tanks along with connection conductances that determine the actual
flow between them. Drawdown will be used to describe the states here instead of pressure.
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Figure 2.1: N-Tank LPM system. The system can be closed (�
N

= 0) or open

The tanks have storage coefficients1  and drawdown (pressure) ht
i

,j, 8j 2 E :=

{1 . . . N} at a discrete time step ti = i, 8i 2 I := {1 . . . n}.

The tanks are connected by upto N(N � 1)/2 resistors where �jk connects tank j

to tank k. The network is open if the last tank N is connected through a resistor �N to an
external tank with a fixed drawdown H

0

, which allows fluid to flow either in or out of the
system. The network is closed when �N = 0. The mass flow from the system at time step
i is represented by ṁi. The initial state of the system at time i = 1 is assumed to be equal
to a fixed drawdown (pressure) and a fixed mass flow.

The flow between the tanks is related to the difference in drawdown in connected
tanks. For N = 3, this relation can be written as three coupled differential equations,
one for each storage tank. This results in


1

dh
1

dt
= �

12

(h
2

� h
1

) +
ṁ

⇢g
(2.1)


2

dh
2

dt
= �

12

(h
1

� h
2

) + �
23

(h
3

� h
2

) (2.2)


3

dh
3

dt
= �

23

(h
2

� h
3

) + �
3

(h
0

� h
3

) (2.3)

For an N dimensional system the basic system equation matrix form can be written
as:

K

@

@t
h = Sh+ u (2.4)

1 Storage coefficients indicate free-surface storage



Silja Rán Sigurðardóttir 15

where

K =

2

666664


1

0 . . . 0

0
. . . . . . ...

... . . . N�1

0

0 . . . 0 N

3

777775
h =

2

664

h
1

...
hN

3

775 u =

2

66666664

ṁ/⇢g

0
...
0

�NH0

3

77777775

S =

2

66666664

��
12

�
12

0 . . . 0

�
12

�(�
12

+ �
23

) �
23

. . . ...

0
. . . . . . . . . 0

... . . . . . . . . . �
(N�1)N

0 . . . 0 �
(N�1)N �(�

(N�1)N + �N)

3

77777775

There are various ways to integrate the system above, either analytically in continuous
time or with numerical methods in discrete time. As explained in 1.3 the optimization
model will be solved by converting the inherently non-linear mixed integer dynamic op-
timization model to MINLP with discretization. In this work, direct collocation will be
applied which means the system above (the state variables) are discretized as well as the
decision variables. The system is thus integrated numerically which is the topic of next
section.

2.1.1 Integration of the lumped parameter model

The lumped parameter model system of differential equations is solved by numerical
integration. A solution needs to be approximated for the following system:

K

@

@t
h = Sh+ u, where hi=1

= h

1

(2.5)

Three different methods will be considered.
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The forward Euler method

The Euler method can solve ordinary differential equations numerically for a given initial
value. The derivative of h can by approximated as:

@

@t
h ⇡ hi+1

� hi

�t
(2.6)

where �t is the size of the discrete time step, �t = ti+1

� ti. Combining equations 2.5
and 2.6 and solving for hi+1

gives:

hi+1

= hi + (K)�1�t(Shi + ui) (2.7)

Methods for numerical integration are often classified into implicit and explicit meth-
ods. The forward Euler method is an explicit method as the future time step hi+1

is
defined in terms of past time step only, i.e. hi and ui Explicit methods are usually easier
to implement but can have stability issues if the time step is not sufficiently small, i.e.
they have a bounded stability domain.

The backward Euler method

Implicit methods can be used to replace explicit methods in case of strictly bounded sta-
bility domain. The backward Euler method is an implicit method. If hi denotes the future
time step at time step i and hi�1

denotes the current state the derivative of h can also be
found as:

@

@t
h ⇡ hi � hi�1

�t
(2.8)

Combining equations 2.5 and 2.8 and solving for hi+1

gives:

hi+1

= (K��tS)�1(Khi +�tui+1

) (2.9)

The modified Euler method

A relatively simple, implicit and accurate method to integrate the lumped equations is a
central finite difference approximation of the time derivative, often referred to as Tustin’s
method or the modified Euler method. Here, the function is considered at both the be-
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ginning and at the end of each time step, taking the average of the two. This is also an
implicit method that requires a value of ui+1

, or a future time step. Here the numerical
approximation of equation 2.5 becomes:

K

hi � hi�1

�t
= S

hi + hi�1

2
+

ui + ui�1

2
(2.10)

Solving for hi and writing in terms of hi+1

gives

hi+1

=

✓
K� �t

2
S

◆�1

✓
(K+

�t

2
S)hi +

�t

2
(ui+1

+ ui)

◆
(2.11)

In this work, the time step �t is based on the resolution of the measured data which is
in months, i.e. a relatively big time step. The modified Euler method is chosen since it is
not bounded by stability domain and proves to be more accurate than the backward Euler
method (see figure 2.2).

Figure 2.2: Graphical comparison of three different numerical methods to integrate a bivariate function.
The Euler method, the backward Eulor method and the modified Euler method. h

i

represent drawdown at
time t

i



18 Optimization for sustainable utilization of low temperature geothermal systems

2.2 Optimization model

The objective here is to maximize or minimize an objective function over a period of
time by determining the decision and state variables2 of the dynamic system explained
in last section. In this section the objective function will be the present value of profit.
Other performance indices will be discussed in results. The lumped parameter model is a
dynamic N -dimensional system, depending on the number of tanks. The decision variable
is the mass flow/production ṁi and the state variables the drawdown in each of the tanks
hi,j at a discrete time step i, 8i 2 I. An integer decision variable (vector) yi, that is not
a part of the underlying dynamic system, is added to the model to decide in which time
steps production capacity should be increased (a new pump should be installed).

2.2.1 Objective function

The present value of profit is calculated as the difference between income from selling the
water, production cost and cost by installing an additional pump times a discount factor
based on an interest rate.

The discount factor is defined as � and represents the factor by which a future cash
flow must be multiplied in each time step, in order to obtain the present value:

�i =
1

(1 + r)i
(2.12)

Discrete time steps i and an annually-compounded fixed interest rate r are assumed
here. The present value of income is thus calculated as:

PV
Income

=
nX

i=1

�t · ṁi · CWater

⇢(1 + r)i
, ṁi 2 R

+

8i 2 I (2.13)

The water for district heating is assumed to be sold at a fixed price per cubic meter
C

Water

, �t represents the size of time step and the parameters ⇢ (here above) and g (in
equation 2.14) represent the density of the water and the gravitational acceleration.

2 Can also be referred to as control and state trajectories
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The present value of the production cost is calculated as:

PV
Production

=
nX

i=1

�t · C
Electric

· g · ṁi · h1,i

(1 + r)i
, ṁi, h1,i 2 R

+

8i 2 I (2.14)

The electricity needed to pump the water from the well is assumed to be bought at
fixed price C

Electric

, [$/J]. This equation contains a product of a decision variable and a
state variable and is thus non-linear. One way to solve the optimization problem is to deal
with this equation specially. That will be covered in chapter 3.

New pumps are installed at a price C
Pump

where y is a decision vector representing
how many pumps are installed at time i. The present value of installing an additional
pump is calculated as:

PV
Pump

=
nX

i=1

yi · CPump

(1 + r)i
, yi 2 Z

+

8i 2 I (2.15)

The profit is finally calculated as:

PV
Profit

= PV
Income

� PV
Production

� PV
Pump

(2.16)

2.2.2 Constraint 1: Mass balance equations on matrix form

Drawdown is a function of demand. Constraint 1 contains this relationship with a discrete
approximation of the Lumped Parameter Model. See also section 2.1.1.

hi+1

=
�
K� �t

2

S

��1

�
(K+ �t

2

S)hi +
�t
2

(ui+1

+ ui)
�
, 8i 2 I (2.17)

where

u =

2

66666664

ṁ/⇢g

0
...
0

�NH0

3

77777775

, 8i 2 I (2.18)
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2.2.3 Constraint 2: Demand

The demand constraint states that production ṁi can not exceed demand ṁe,i. The de-
mand can theoretically be any function of time.

ṁi  ṁe,i, 8i 2 I (2.19)

2.2.4 Constraint 3: Sustainability

For each geothermal system, and for each mode of production, there is certain power
required to extract the water from the well, P

Well

and certain exergy contained in the
water X

Water

P
Well

= ṁgh (2.20)

X
Water

= ṁe
x

(2.21)

Exergy is a measure of how much work can be done by a system during ideal process
that brings the system into equilibrium with its surroundings. For the geothermal liquid
under consideration this is taken to be the work that could be done via Carnot cycle
between an incompressible liquid and a heat sink at a given temperature as the liquid
cools down. Thus the specific exergy of the fluid is approximated as:

e
x

= c
✓
(T

h

� T
0

)� T
0

ln
T

h

T
0

◆
(2.22)

where c is the heat capacity of water in J · kg�1K�1, T
h

is the temperature of the fluid
and T

0

is the temperature of the heat sink in Kelvin. The equation above is derived us-
ing the assumption that c is a constant in the temperature range T

0

to T
h

, which is valid
for a an incompressible fluid at a small temperature range, such as considered in this work.

One possible sustainability criterion is to require that the energy needed to pump a
given amount of water from the well must be less or equal to a given fraction of the
exergy of that water:

P
Well

 �X
Water

(2.23)

where � is the exergy efficiency of a typical power production system at the well fluid
temperature. For � = 1 the system is irreversible under Carnot efficiency. The efficiency
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of a space heating system such as the one in this work is of course considerably lower.
The cost of the investment should also be taken into account for the sustainability limit.
In this case efficiency is assumed to be 10% of the Carnot efficiency which means that
there is at least 10 times more exergy available in the geothermal fluid than can be utilized
for power production under reversible condition.

Maximum drawdown can now be determined by the following equation:

hmax

1

=
ex�

g
(2.24)

The drawdown in the reservoir (tank 1, figure 2.1) is not allowed to exceed a certain
maximum drawdown due to the sustainability criterion defined in equation 2.23.

h
1,i  hmax

1

, 8i 2 I (2.25)

2.2.5 Constraint 4: Production Capacity

As described in the section above and by equation (2.20) there is a certain power required
to extract the water from the well. The power needed for pumping at time i, P

Power,i is
calculated as:

P
Power,i = g · h

1,i · ṁi  P
Pump

·
iX

m=1

ym 8i 2 I, and m  i  n (2.26)

where P
Pump

represents the power rating of one pump and yi is an integer representing
how many pumps need to be installed at time i.

There are various options for choosing a pump for a reservoir and each case needs
to be carefully considered, e.g. in regards of chemical properties, pressure of the water,
etc. In other words, each reservoir needs to be examined individually. Those considera-
tions are outside the scope of this work. It will be assumed that the power rating of each
pump is 250 kW [Gunnarsson, 2012].

Since h
1,i and ṁi from equation 2.26 are both unknown decision/state variables this is

a nonlinear constraint. This can be dealt with in exactly the same way as for production
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part of the objective function.

Now yi represents the number of pumps installed at time i, where y is a vector of
non-negative integers. One pump is assumed to be present in the beginning so y at time
i = 1 is always at least 1.

P
Power,i = g · h

1,i · ṁi (2.27)

 250 · 103
iX

m=1

ym

Here it is important to point out that this is a simplified version of the reality. One well
can usually not produce more than 50 kg/s.
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2.2.6 The optimization problem

The optimization model now becomes:

maximize
h
j,i

,·m
i

,y
i

PV
Profit

= PV
Income

� PV
Production

� PV
Pump

,

subject to

hj,i+1

=

✓
K� �t

2
S

◆�1

✓
(K+

�t

2
S)hj,i +

�t

2
(ui+1

+ ui)

◆

P
Power,i  250 · 103

iX

m=1

ym

0  ṁi  ṁe,i Upper-and lower bounds

0  h
1,i  hmax

1

yi � 0

hj,1 = h

0

, ṁ
1

= m
0

y
1

� 1 Initial values

where yi 2 Z
+

, and hj,i, ṁi 2 R 8i 2 I and 8j 2 E

(2.28)

As seen in the optimization model here above, the state variable h
1,i is restricted to be

greater than zero. Practically in geothermal fields this is not entirely true, since wells can
experience overpressure, but if h

1,i is a negative number it skews the production part of
the objective function, equation 2.14. Therefore, the pump actually behaves like a turbine,
which means that instead of paying for production, extra money is "earned" for each time
step that h

1,i is less than zero which is not a realistic scenario. h
2,i and h

3,1 can however
be less than zero since they do not effect the objective function directly. This could be
sorted out by including only positive values of h

1,i in the production function (equation
2.14). This is however not straightforward since h

1,i is a state variable in the optimization
model, but could possible be solved with a an extra integer mechanism. Since overpres-
sure did not occur in the smallest tank represented by h

1,i for the data in this work, this
was not investigated further here.

This sort of optimization model can be seen as a mixed-integer dynamic optimiza-
tion model (MIDO) that can be converted into mixed-integer non-linear optimization
(MINLP) model. That model is then solved by relaxing it to mixed-integer linear pro-
gramming (MILP) by a linear approximation or under-and over-estimators or by relaxing
it to a non-linear programming (NLP). Explaining those solution applications is the sub-
ject of Chapter 3.
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Chapter 3

Solution approach

This chapter suggests three solution methods to solve a MIDO problem like the one rep-
resented by equation 2.28 in last section. The model will first be contextualized with the
more general form of MIDO and MINLP, i.e. the optimization problems represented by
equations 1.1 and 1.2 in chapter 1. If the optimization model can be seen as a MINLP,
it can also be relaxed to either MILP or NLP. Feasibility, optimiality and convexity will
be briefly addressed. Then, two different ways of relaxing the MINLP to MILP will be
explained along with further mathematical arrangements needed for an acceptable solu-
tion. Finally the model will be relaxed to NLP and discussed what such solution means
in context with MILP relaxation.

3.1 Conversion to MINLP

As discussed in section 1.3 the optimization problem will be solved by looking at it as
MINLP. For a simplified overview of the optimization problem (equation 2.28), intro-
duced in last chapter, a function J is defined as the objective function:

J PV(ṁi, hj,i, yi, n) = J
1

+ J
2

+ J
3

:= PV
Profit

, (3.1)

where J PV

1

= PV
Income

, J PV

2

= PV
Production

and J PV

3

= PV
Pump

(see equations 2.13 -
2.15 in chapter 2).

If the discount factor to calculate present value is defined as � = 1/(1 + r), where
r is a constant, and U and L represent upper and lower bound, then the optimization
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problem can be written as:

maximize
ṁ

i

,h
j,i

,y
i

J PV(ṁi, hj,i, yi, n) =
nX

i=1

(C
1

· ṁi � C
2

· ṁih1,i � C
3

· yi)�i,

subject to

f(ṁi, hj,i, hj,i+1

) = 0

g(ṁi, h1,i, yj)  0

ṁL
i  ṁi  ṁU

i

hL
j,i  hj,i  hU

j,i

yLi  yi  yUi

(3.2)

where ṁi 2 R, hj,i 2 R and yi 2 Z
+

, 8i 2 I and j 2 E . The functions f 2 RN⇥n and
g 2 Rm⇥n represent the equality and inequality constraints respectively where N repre-
sents the dimension of the dynamic system and m the number of inequality constraints.
C

1

, C
2

and C
3

are constants (bigger than zero) where C
1

= �t
⇢
C

Water

, C
2

= �t·C
Electric

·g
and C

3

= C
Pump

(see equations 2.13 - 2.15).

If z := (m,h) 2 RN⇥n, the optimization problem (equation 3.2) her above is al-
most identical to the optimization problem represented by equation 1.2, and can thus be
solved as MINLP.

In the next sections the objective function will be referred to as J instead of J PV.
The PV notation simply means the present value. It is important to distinguish between
present value of the profit and the value of the profit with an interest rate of r = 0, espe-
cially when linear relaxation has been conducted.

3.1.1 Feasibility and optimality

A proper way of solving an optimization problem involves consideration of feasibility and
optimality. All points mi, hj,i and yi that satisfy both the constraints f and g in problem
3.2 are said to be feasible.
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Definition 3.1. (Feasibility)
A set F of all points fulfilling these constraints can be defined as

F := {ṁi 2 R, hj,i 2 R, yi 2 Z
+

: f(mi, hj,i, yi) = 0,g(mi, hj,i, yi)  0, 8i 2 I, j 2 E}
(3.3)

and is referred to as the feasible set. If the feasible set F is empty, the problem has no
solution and is said to be infeasible.

Solving an optimization problem thus implies finding among the feasible set, a point
or set of points which maximizes (or minimizes) the objective function J . Those par-
ticular points are denoted by (ṁ0

i, h
0
j,i, y

0
i), 8i 2 I, j 2 E , and are known as the optimal

solution and the value of the objective function J at this point is the optimal value. When
a function is maximized the optimal value is refereed to as maximum and minimum when
a function is minimized.

Now a global maximum1 (ṁ0
i, h

0
j,i, y

0
i) for the optimization problem represented by

equation 3.2 is a point in the feasible set which produces the maximum value for the
objective function over F . I.e. (ṁ0

i, h
0
j,i, y

0
i) satisfies;

J (ṁ
0

i, h
0

j,i, y
0

i) � J (ṁi, hj,i, yi)

8ṁi, hj,i, yi 2 F

8i 2 I, j 2 E

(3.4)

In general it can be mathematically expensive to obtain the global maximum since
this implies exploring the whole feasible space. Another type of maximum, called local
maximum can also be considered, see figure 3.1 for a graphical display of global and local
optimum for a univariate function. A local maximum is a feasible point (ṁ⇤

i , h
⇤
j,i, y

⇤
i ) for

which there exists a neighborhood N (ṁ⇤
i , h

⇤
j,i, y

⇤
i ) around (ṁ⇤

i , h
⇤
j,i, y

⇤
i ), such that:

J (ṁ⇤
i , h

⇤
j,i, y

⇤
i ) � J (ṁi, hj,i, yi)

8ṁi, hj,i, yi 2 F \N (ṁ⇤
i , h

⇤
j,i, y

⇤
i )

8i 2 I, j 2 E

(3.5)

1 Maximization will be considered here. The relationship between minimization and maximization is
the following: maxJ (x) = �min (�J (x)).
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Figure 3.1: Graphical display of a univariate function that has both global and local maxima.

3.1.2 Convexity

Many researchers have focused on a special case of problems like equation 3.2, i.e. when
J and g are convex and f is affine. Then the optimization problem is said to be convex.

Definition 3.2. If v := (ṁ,h,y). The function J (v) is said to be convex if the following
inequality hold for any two points v

1

and v

2

:

J (↵v
1

+ (1� ↵)v
2

)  ↵J (v
1

) + (1� ↵)J (v
2

) 8↵ 2 [0, 1]

The function J (v) is concave if �J (v) is convex (see figure 3.2), i.e.:

J (↵v
1

+ (1� ↵)v
2

) � ↵J (v
1

) + (1� ↵)J (v
2

) 8↵ 2 [0, 1]

Figure 3.2: Graphical display of a univariate convex, concave and linear functions for comparison.
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For a convex optimization problem, it holds that:

Theorem 3.1. Let v⇤ be a local optimal of a convex/concave problem. Then v

⇤ is also a
global optimal.

Proof. [Nash and Sofer, 1996]

A discrete problem is said to be convex/concave if it’s continuous relaxation is con-
vex/concave. As for the problem in this work and most of engineering optimization prob-
lems, this is not the case. Neither the objective function J nor the inequality constraint g
are strictly convex/concave. This will now be shown.

Theorem 3.2. Supposing J (v) has continuous second-order partial derivatives. Then J
is said to be convex if the Hessian matrix, HJ is positive semidefinite and concave if it is
negative semidefinite.

Proof. [Bazaraa et al., 2013]

Definition 3.3. If J is twice differentiable at v = (ṁ,h,y), then the Hessian matrix of
J is given by

HJ =

2

64

�2J
�ṁ2

�2J
�ṁh

�2J
�ṁy

�2J
�hṁ

�2J
�h2

�2J
�hy

�2J
�yṁ

�2J
�yh

�2J
�y2

3

75 (3.6)

Matrix HJ is positive semidefinite if all its eigenvalues are nonnegative. Matrix HJ

is negative semidefinite if all its eigenvalues are non-positive and matrix H is indefinite
(non-convex/non-concave) if it has at least one positive eigenvalue and at least one nega-
tive eigenvalue.

To show that the optimization problem represented by equation 3.2 is non-convex,
the Hession of J is calculated:

HJ =

2

64
0 �C

2

0

�C
2

0 0

0 0 0

3

75 (3.7)

Now the eigenvalues of the Hessian are �
1

= 0, �
2

= C
2

and �
3

= �C
2

which means
that matrix H is indefinite and thus that J is non-convex.
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The production capacity constraint, constraint 4, equation 2.26 is also non-linear, since
it is a multiple of the decision variable ṁi and the state variable h

1,i. Even thought such bi-
linear functions2 are non-convex (non-concave), they are known for being quasi-concave
[Greenberg and Pierskalla, 1970] for ṁi and hj,i 2 R

+

, 8i 2 I and j 2 E .

Many non-convex/concave problems are known to be very hard to solve. It has been
shown that if the objective function is quasi-convex (quasi-concave), the optimization
problem is more likely to be solved efficiently, though slower than convex optimiza-
tion problems. That means that the algorithm might still be very computationally ex-
pensive [Kiwiel, 2001].

The objective function J is a separable function [Burer and Letchford, 2012], a sum
of two linear functions and a quasi-concave bilinear function (see equation 3.2). That and
the fact that it is very likely to be easier to solve a quasi-convex optimization problem than
a non-convex one, brings out the question weather the objective function here is quasi-
convex. Any convex function is also quasi-convex, but the sum of quasi-convex functions
is not necessarily quasi-convex. It can however be shown that J is quasi-convex for big
values of h

1,i, but unfortunately those values are not in the feasible set F . The objective
function is thus neither convex nor quasi-convex. This is thus a non-convex optimization.

This means that a global optimal solution for MINLP (and even NLP) can not be guar-
anteed with heuristic algorithms. Bussieck and Vigerske [2012] give a good overview of
MINLP solvers that all guarantee global optimal solutions, but for convex MINLP only.
There do however exist methods for non-convex MINLP that have proved to work very
well in practice [Bussieck and Vigerske, 2012]. The reality is however that it is very hard
to find global optimal solution for non-convex problems and proving the optimality is
even harder. One of the problems of actually finding a global optimal is that, in theory,
any relaxation weather it is to MILP or NLP can cut of the feasible space. Hence, for
these kind of problems it is even challenging finding a local optimum. This work will
thus attempt to find local optimum for the optimization problem represented by equation
3.2 and refer to that as the optimal solution. The local optimal can however be a global
optimal, but it is not guaranteed.

2 A function of two variables is bilinear if it is linear with respect to each of its variables.



Silja Rán Sigurðardóttir 31

3.1.3 Modeling languages for MINLP

The most popular modeling languages for MINLP include AIMMS [Bisschop and En-
triken, 1993], AMPL [Fourer et al., 1993], GAMS [Brooke et al., 1993], MOSEL [Colom-
bani and Heipcke, 2002] and TOMLAB [Holmstrom, 1999]. The systems mentioned here,
except TOMLAB that is built on top of MATLAB [MATLAB, 2012], are domain-specific
languages. A syntax for specifying optimization problems is defined and parsed by the
respective system to provide information to the solver through a back-end [Belotti et al.,
2012].

The modeling language applied in this work is MATLAB via the TOMLAB Opti-
mization Environment [Holmstrom, 1999] using the GUROBI [Gurobi, 2012] solver for
the MILP relaxation and the SNOPT [Gill et al., 2005] for the NLP relaxation. The
key method of the GUROBI solver utilizes the Branch & bound method with cutting
planes for solving MILP. The SNOPT solver utilizes the Sequential quadratic program-
ming (SQP) algorithm. Those methods will be briefly accounted for in sections 3.2 and
3.3 respectively. Both the GUROBI solver and the SNOPT solver have other properties
not mentioned above. Those will not be accounted for in this work.

3.2 Relaxation to MILP

In this section the optimization model represented by equation 3.2 in section 3.1 will
be relaxed in such a way that it holds linear functions only. The objective function and
constraint 4, equation 2.26, need thus to be reformulated. There is more than one way to
do that and two different approached will introduced. A piecwise linear approximation
and a piecewise upper-and-lower bound method. An updating algorithm is necessary for
both methods for an increasing demand function, where the optimization model is solved
in each iteration step. The GUROBI solver [Gurobi, 2012] is used to employ the Branch-
and-bound method with cutting planes to solve the MILP relaxation.

3.2.1 Branch & bound with cutting planes

Branch-and-bound with cutting planes, often referred to as branch-and-cut is an algo-
rithm usually applied to solve MILP problems. It is essentially a branch & bound al-
gorithm that relaxes the MILP to linear programming (LP). It applies tree search to ac-
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count for the integer, and then uses the so called cutting planes to tighten the LP relax-
ation.

Branch-and-bounds

The branch-and-and bound algorithm for LP-based integer programming was first devel-
oped by Land and Doig [1960] and Dakin [1965]. The idea is to form a tree in the space
of a binary integer (yi 2 [0, 1]) that has LP relaxation respectively on each node. The root
of the tree holds the original problem with the binary relaxed such that 0  yi  1. That
LP can easily be solved. The relaxed binary integer is then imposed to either 0 or 1 which
gives two new MILP sub-problems to solve (see figure 3.3).

Figure 3.3: The branch-and-bound tree. The blue nodes are fathomed, they are either non-feasible solu-
tions or optimal relaxation solutions, with an objective value smaller than that of the current optimum (for
maximization) in the tree. The red node is the optimal solution

If both of those MILP produce a feasible MILP solution, the better of the two is ob-
viously the optimal. In this way the original problem has been replaced by a two more
restricted MILP problems or sub-MILP problems. The same idea is then applied to each
of the sub-MILP, selecting branching variables (yi = 0 or yi = 1). Sometimes the solu-
tion happens to satisfy the integrality restrictions3 without them being imposed, so it is not
always necessary to select branching variables. The MILP problems generated by branch-
ing are called nodes. A node is not branched if it is either an optimal, optimal relaxation
solution with an objective value smaller than that of the current optimal (for maximiza-
tion) in the tree, or an unfeasible solution. Such nodes or often referred to as fathomed.

3 When the solution involves integer values without them being restricted to 0 or 1
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When a point is reached where the search tree has fathomed nodes only, the original MILP
has been solved. In other words, once an optimal solution has been obtained (at any point
in the tree), the objective value for that solution (assuming maximization) is a valid lower
bound for the optimal solution of the original MILP. Then it is known that a value lower
than that value will not be accepted as an optimum. There exist also a valid upper bound
at any time during the tree search, often referred to as the best bound. That bound is the
maximum of all objected values of all the current fathomed nodes. The difference be-
tween this lower and upper bound is known as gap. Optimality is reached when the gap
is zero.

Cutting planes

The branch-and-bound introduced above was presented with binary variables only, fixed
on each node of the search tree. This restriction can be seen in terms of inequality con-
straints added respectively to the LP relaxation:

yi � 0 (3.8)

or
yi  1 (3.9)

where 0  yi  1. For the general integer programs where yi 2 Z those inequality
equations become:

yi � byic (3.10)

or
yi  dyie (3.11)

where byic means rounding down and dyie means rounding up to the next integer value.
Such inequalities thus cut off a part of the feasible set of the problem relaxation. The
concept of cutting planes can be extended to more general inequalities that are globally
valid. The main idea of cutting planes is that they tighten the formulation by cutting of
particular relaxation solutions, see figure 3.4. The optimal solution of the LP lies on a
vertex of the feasible region. The algorithm aims at adding more and more cuts until
the feasible set of the LP is imposed to almost only integer solutions (figure 3.5). This is
done during the solution process and unlike branching this is done without simultaneously
creating additional sub-problems.
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Figure 3.4: Cutting planes example. Undesirable fractional solutions are removed from the feasible set.

Figure 3.5: Cutting planes example. After undesirable solutions have been removed

Branch-and-bound with cutting planes is a very well developed method for solving
MILP. Theoretically it should be possible to transform the method to the non-linear case,
i.e. simply relax the MINLP to a NLP and solve a NLP-branch-and-bound with cutting
planes. This is an ongoing work in the literature, see [Belotti et al., 2012; Bussieck and
Vigerske, 2012] for an overview. The SBB solver does e.g. ensure global optimal solu-
tions for convex MINLP [GAMS, 2002]. Such methods were however not considered in
this work since the NLP sub-problems are likely to have a considerably longer solution
time.
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3.2.2 A piecewise linear approximation

Non-linear objective function

The objective function is a nonlinear equation since it holds a product of the variables ṁi

and h
1,i, see equation 2.14 or the objective function J in equation 3.2. The non-linear part

of the objective function, J is approximated with a 2-dimensional Taylor approximation.
For any non-linear 2-dimensional function f(x, y), x, y 2 R, the Taylor approximation
is:

f(x, y) ⇡ f(x
0

, y
0

) + fx(x0

, y
0

)(x� x
0

) + fy(x0

, y
0

)(y � y
0

) (3.12)

where x
0

and y
0

are the reference points that the function is linearly approximated around.
The Taylor approximation for J

2

becomes

J
2

(ṁ, h
1,i) = C

2

ṁi ·h1,i ⇡ C
2

(hz,i ·ṁz,i+hz,i(ṁi�ṁz,i)+ṁz,i(h1,i�hz,i)) := J
2,MILPr1

(3.13)

where hz,i and ṁz,i represent the reference points for the linear approximation at time
step i. I.e. the reference points change with each time step. This is thus a piecewise linear
approximation, see figure 3.6 for a graphical display of a univariate function F(x).

Figure 3.6: Graphical display of a univariate piecewise linear approximation for six time steps.

Equation 3.13 now replaces J
2

= ṁi · h1,i in the objective function. The objective
function from equation 3.2 now becomes:
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J (ṁi, hj,i, yi, n) ⇡ J PV

MILPr1

where

J PV

MILPr1

:=
nX

i=1

(C
1

· ṁi�C
2

(·hz,i · ṁz,i+hz,i(ṁi� ṁz,i)+ ṁz,i(h1,i�hz,i))�C
3

· yi)�i

(3.14)

If no interest rate is included � = 1 and equation 3.14 is denoted with J
MILPr1

.

Non-linear constraint

In Constraint 4, equation 2.26 is also non-linear, and is approximated in the same way as
the objective function. Constraint 4 thus becomes:

P
Power,i ⇡ g · (·hz,i · ṁz,i + hz,i(ṁi � ṁz,i) + ṁz,i(h1,i � hz,i)) (3.15)

 P
Pump

·
iX

m=1

ym (3.16)

8i 2 I and m  i  n (3.17)

3.2.3 Lower bound constraint for the piecewise linear approxima-
tion

The first problem that arises in running the MILP relaxation with the piecewise linear ap-
proximation (equations 3.14 and 3.15) is the tendency of the model to push the decision
variable ṁi (and the state variable h

1,i) to unrealistic values, such that ṁi << mz,i and
h(1, i) << hz,i.

This only happens under substantially increased annual demand and long term uti-
lization where demand can no longer be met. In other words, when the upper-bound
of constraint 2, equation 2.19 become inactive, since the production ṁi is substantially
smaller than the demand me,i.

Very small values of ṁi and h
1,i result in a very small value of the production function

(the linear approximation of equation 2.14, equation 3.14), even down to values smaller
than zero, which results in a higher value of the objective function, or higher value of the
linear approximation of the objective function. As a result the error between linear and
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nonlinear production becomes unacceptable and the optimal solution is simply incorrect
since production can not be less than zero.

To prevent this from happening, i.e. to stop the objective function from pushing the de-
cision variables to unreasonable values, a constraint is included on how far production and
drawdown may deviate from the fixed points of the linearization, see equation 3.18.

Constraint 5

hz,i · ṁz,i + hz,i(ṁi � ṁz,i) + ṁz,i(h1,i � hz,i) �
hz,i · ṁz,i

2
(3.18)

The constraint ensures that the linearization of ṁih1,i has to be greater than a certain
proportion of the multiple of the reference points, see equation 3.18. This is best ex-
plained graphically. Figure 3.7 displays how such a constraint would affect the Taylor
approximation for a simple univariate function like F (x) = x2 around x

0

= 1 for one
time step. The linear function becomes F (x) ⇡ 2x � 1 and the comparable constraint
to equation 3.18 becomes: G(x) � 1/2. The constraint prevents the decision variable
from traveling unreasonably far (down) from the nonlinear function. This can be looked
at as lower bound of the linear approximation. The upper bounds, i.e. constraint 2 (equa-
tion 2.19) prevent the decision variable from traveling too far from the nonlinear function
in the other direction. This constraint thus serves as a necessary narrower lower bound

0 0.5 1 1.5 2
�1

0

1

2

3

x

F
(x
)

F (x) = x2 8x 2 R+

Constraint: G(x) = 1/2

x
0

= 1 so F (x) ⇡ 2x� 1

Figure 3.7: If F (x) = x

2 is approximated around x

0

= 1 with first degree Taylor approximation, the linear
function becomes F (x) ⇡ 2x � 1 and the comparable constraint to equation 3.18 becomes: G(x) � 1/2.
The constraint prevents the decision variable from traveling unreasonably far (down) from the nonlinear
function.

to prevent the decision variable to take unreasonable values. Now, dividing the multiple
of the reference points by 3 in equation 3.18 (cf. G(X) � 1/3) would result in a lower
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bound less narrow, and thus higher error between linear and nonlinear production in the
optimization. Using the multiple itself (cf. G(X) � 1) would result in a very narrow
lower bound, and thus smaller error, but it actually resulted in an unfeasible solution.

Here it is necessary to keep in mind that constraints like this one reduce the feasi-
ble set and can thus in theory exclude a potential local optimal solution of the problem.
Since this constraint works as a lower bound and this is a maximization problem it is
however very unlikely to be the case. Another very important point is that the purpose
of this constraint is not to find the correct solution, but to steer the solution in the right
direction. A solution with constraint 5 (equation 3.18) active is not the correct solution
as constraint 5 is not a part of the problem itself. It is thus necessary to apply an itera-
tive optimization process at this point where the reference points ans thus constraint 5 are
updated in each iteration. How constraint 5 effects the optimization itself is numerically
tested and discussed in the result chapter.

3.2.4 Updating algorithm for piecewise linear approximation

As discussed in last section an updating algorithm with k iterations is needed in order to
obtain a good linear approximation. An algorithm that considers a linear approximation
of the objective function and moves towards an optimal solution with an updating process
is often called Frank Wolfe algorithm [Frank and Wolfe, 1956; Jaggi, 2013]. It has also
been referred to as the the conditional gradient method and is in principle a classical first
order direction method.

Firstly it needs to be explained where the reference points that will be updated come
from. Now me,i represents the demand and ṁi is a decision variable and represents pos-
sible production. Constraint 2 states that production can not exceed demand and serves
thus as the upper value ṁU

i of the decision variable ṁi. That upper value relates directly
to the state variable in the objective function h

1,i since hi is a function of ṁi. The initial
values for the reference points that relate to production (m(k=1)

z,i ) are chosen first and the
reference points relating to drawdown (h(k=1)

z,i ) are thus calculated according to m1

z,i using
equation 2.11. Theoretically, any demand function can be chosen such that me,i := m

(k=1)

z,i

or me,i := �m
(k=1)

z,i where � 2 [0, 1] and is chosen such that m(k=1)

z,i 2 F , where F is the
feasible set of the optimization problem. The demand function can be calculated from
average demand with e.g. a yearly or monthly trend. Historical data trends can also be
repeated periodically (like in this work) or the demand can be simulated stochastically.
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In developing an updating algorithm for the piecewise linear approximation, the refer-
ence points (mz,i and hz,i) were first replaced with the optimal solution in each iteration
k until an acceptable stopping criteria is reached.

Before continuing it is necessary to introduce the stopping criteria used. For an updat-
ing process, the optimization is updated until the error between the linear and non-linear
part of the objective function (the production, function J ) is acceptable.

This error is calculated by comparing the percentage difference between non-linear
and linear production from the optimal output for the decision and state variable:

J
2,Error :=

100|J
2,MILPr1

� J
2,MINLPr1

|
J

2,MINLPr1

 ✏ (3.19)

J
2,MINLPr1

represent the non-linear function that can be calculated from the decision and
state variables after the optimization has been performed. Interest rate is not included in
calculating the error as a stopping criteria for the updating algorithm. This is due to the
fact that an interest rate can reduce the accuracy of such calculation substantially, since it
has great effect in the end of the time period and very small effect in the beginning of the
time period being optimized. J PV

2,Error that calculates the error between the present value
of linear and non-linear production is however calculated in section 4.2 for comparison
purposes.

In the first algorithm (algorithm 1) pursued, the piecewise linear approximation intro-
duced in section 3.2.2 is applied on the non-linear part of the objective function and two
constraint, constraint 4 and constraint 5 (equations 2.27 and 3.18). The reference points
are updated by replacing them by the new solution in each iteration (see red framed in
algorithm 1).
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Algorithm 1
A Frank Wolfe type updating algorithm 1
Initial values for the reference points ṁ(k=1)

z,i

and h

(k=1)

z,i

, 8i 2 I are chosen such that ṁ(k=1)

z,i

:= �ṁ

e,i

and
since h

i

is a function of ṁ
i

(see equation 2.11), h(k=1)

z,i

is calculated from ṁ

(k=1)

z,i

. � is chosen 0  �  1

such that h(k=1)

z,i

(ṁ
(k=1)

z,i

) 2 F where F is the feasible set. ṁ(k=1)

z,i

is in other words scaled down so that
when h

(k=1)

z,i

is calculated, it never reaches the sustainability constraint, see equation 2.24.

k := 1 {Starting Point}
limit:= J

2,Error

(k)  ✏ {Equation 3.19}
while (NOT limit) and k  k

max

do
Define demand function for m

i,e

m
(k=1)

z,i

:= �m
i,e

such that h(k=1)

z,i

(ṁ
(k=1)

z,i

) 2 F
Solve Optimization Problem: {Problem 3.2}
J PV,⇤
MILPr1

(ṁ⇤
i

,h⇤
i

, y⇤
i

) = argmaxF J PV

MILPr1

(ṁ
i

,h
i

, y
i

)

Calculate: limit:= J
2,Error

(k)

if limit==TRUE then
Break;
=> A solution has been found.

else
if k == k

max

then
Break;
=> A sufficient solution has not been found.

end if
else

Define optimal solution as solution k;
ṁ⇤

i

:= ṁ
(k)

i

h⇤
1,i

:= h
(k)

1,i

Update reference points such that:

ṁ
(k+1)

z,i

= ṁ
(k)

i

{Replace the the next reference point with the current solution}

h
(k+1)

z,i

= h
(k)

1,i

8i 2 I
k := k + 1 {Next iterate}

end if
Calculate: limit= J

2,Error

(k)

end while

Algorithm 1 certainly improves the solution but does not converge very well, see sec-
tion 4.2 example 4.4.

Now, in an attempt for a better solution, the reference points are now replaced by a
weighted mean of the solution at k and the reference point at k (instead of the solution
only), such that ṁ(k+1)

z,i = (1�↵)ṁ(k)
z,i +↵ṁ

(k)
i , where ↵ 2 [0.1]. In this way the reference

points and the solution are directed towards each other and the solution converges to an
optimal with a sufficiently small error. How fast it converges is however dependent on the
size of ↵. A value of ↵ less than 0.5 usually gives good results. I.e. the algorithm con-
verges more slowly for smaller ↵ but is more likely to find an accurate solution. Defining
↵ = 2/(2 + k) [Jaggi, 2013] gave a very good result for the optimization model in this
work. In that way ↵ decreases in every iteration, which means e.g. that the first update is
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closer to ṁ
(k)
i than ṁ

(k)
z,i until the update is almost only dependent on the last value of the

reference point. That prevents the reference points from oscillating around the solution
and thus slowing the convergence process as happens in algorithm 1.

Algorithm 2
A Frank Wolfe type updating algorithm 2
Initial values for the reference points are chosen like in algorithm 1. Now it is updated in such a way that
the new value for the reference point updated at k + 1 is a mix of the optimal solution and reference point
at iteration k, such that ṁ(k+1)

z,i

= (1� ↵)ṁ
(k)

z,i

+ ↵ṁ

(k)

i

.

k := 1 {Starting Point}
limit:= J

2,Error

(k)  ✏ {Equation 3.19}
while (NOT limit) and k  k

max

do
Define demand function for m

i,e

m
(k=1)

z,i

:= �m
i,e

such that h(k=1)

z,i

(ṁ
(k=1)

z,i

) 2 F4

Solve Optimization Problem: {Problem 3.2}
J PV,⇤
MILPr1

(ṁ⇤
i

,h⇤
i

, y⇤
i

) = argmaxF J PV

MILPr1

(ṁ
i

,h
i

, y
i

)

Calculate: found:= J
2,Error

(k)

if limit==TRUE then
Break;
=> A solution has been found.

else
if k == k

max

then
Break;
=> A sufficient solution has not been found.

end if
else

Define optimal solution as solution k;
ṁ⇤

i

:= ṁ
(k)

i

h⇤
1,i

:= h
(k)

1,i

↵ :=Step length, ↵ := 2/(2 + k) {↵ is 0  ↵  1}
Update reference points such that:

ṁ
(k+1)

z,i

= (1� ↵)ṁ
(k)

z,i

+ ↵ṁ
(k)

i

{Replace the the next reference point with the current solution}

h
(k+1)

z,i

= (1� ↵)h
(k)

z,i

+ ↵h
(k)

1,i

8i 2 I
k := k + 1 {Next iterate}

end if
Calculate: limit= J

2,Error

(k)

end while

3.2.5 Piecewise under-and over-estimators

As mentioned before there is more than one way of relaxing the MINLP to a form that
can be solved in an acceptable time frame. One way is to replace each non-concave func-
tion5 J (ṁi, hj,i, yi) or g(ṁi, hj,i, yi) from equation 3.2 with a concave over-estimating
function Ĵ (ṁi, hj,i, yi) or ĝ(ṁi, hj,i, yi) such that Ĵ (ṁi, hj,i, yi) � J (ṁi, hj,i, yi) and

5 Convex for a minimization.
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ĝ(ṁi, hj,i, yi) � g(ṁi, hj,i, yi), 8i 2 I and j 2 E . See figure 3.8 for a univariate
case.

(a) (b)

Figure 3.8: The figure on the left displays a univarite case for a concave over-estimater. The figure on the
right displays a secant line that can serve as an over-estimator for a the convex univariate function g(x).

For an even more comprehensible example, a univariate convex separable function
g(x) (see figure 3.8 on the right) can be over-estimated by a secant line which matches
the concave function at the upper and lower bound such that [Falk and Soland, 1969;
Grossmann and Biegler, 2004]:

ĝ = g(xL) +

✓
g(xU)� g(xL)

(xU � xL)

◆
(x� xL) (3.20)

xL  x  xU

An important class of non-convex/concave optimization problems correspond to non-
linear programming problems with bilinear or linear fractional terms as they commonly
arise in engineering design problems like this one. The non-linear part here is namely a
bilinear term. The bilinear term of the non-linear part of the objective function is the same
as the non-linear constraint, a multiple of the state and the decision variable, ṁih1,i.

In order to add both under-and over-estimators a variable zi := ṁih1,i can simply
act as a place holder for the non-linear part of J (ṁi, hj,i, yi) or g(ṁi, hj,i, yi). Then a
constraint is added which will force zi to be approximately equal to the non-linear part of
the objective function (J

2

) and the non-linear constraint (equation 2.26). Looking at it in
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terms of the objective function only, a constraint of the form Ĵ
2

(ṁi, hj,i) that serves as a
concave over-estimator is added to the optimization model, such that zi � Ĵ

2

(ṁi, hj,i).
Another constraint of the form zi  J

2

(ṁi, hj,i) is then added where J
2

is a convex under-
estimating function [Grossmann and Biegler, 2004; Burer and Letchford, 2012]. In order
to generate a MILP relaxation of the MINLP problem, one must use linear under-and
over-estimators. Since the non-linear constraint is a bilinear function and the objective
function has a bilinear term this can easily be obtained.

(a) (b)

Figure 3.9: Under-and over-estimators (envelopes) for univariate functions. The piecewise case is shown
on the right.

Like in Hart et al. [1976], the bivariate function zi = ṁih1,i is considered over the
rectangular domain such that ṁunder

i  ṁi  ṁover
i and hunder

1,i  h
1,i  hover

1,i . The under
and over estimators change in each time step i for all i 2 I like in the linear approximation
in section 3.2.2. See figure 3.9 for a graphical display of a univariate function. Now since
zi denotes the place holder variable, the valid under-and over-estimators (convex/concave
envelopes) are as follows:

zi � ṁunder
i h

1,i + hunder
1,i ṁi + ṁunder

i hunder
1,i (3.21)

zi � ṁover
i h

1,i + hover
1,i ṁi + ṁover

i hover
1,i (3.22)

zi  ṁunder
i h

1,i + hover
1,i ṁi + ṁunder

i hover
1,i (3.23)

zi  ṁover
i h

1,i + hunder
1,i ṁi + ṁover

i hunder
1,i (3.24)
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Equations 3.21-3.24 are now added as constraints to the optimization model where the
under-estimator are simply zero and the over-estimator for production is ṁover

i = �me,i

and hover
1,i is calculated from ṁover

i .

The objective function from problem 3.2 now becomes:

J (ṁi, hj,i, yi, n) ⇡ J PV

MILPr2

where

J PV

MILPr2

:=
nX

i=1

(C
1

· ṁi � C
2

zi � C
3

· yi)�i (3.25)

If no interest rate is assumed (� = 1) and equation 3.25 is denoted with J
MILPr2

, con-
straint 4 becomes:

P
Power,i ⇡ g · zi (3.26)

 P
Pump

·
iX

m=1

ym (3.27)

8i 2 I and m  i  n (3.28)

Constraint 5, defined by equation 3.18 is not needed here since there are already under-
estimators present.

3.2.6 Updating algorithm for under-and over-estimators

An updating algorithm with k iterations is also needed for the method with under- and
over-estimators. The function optimized in each iteration is equation 3.25, where zi is
constrained by equations 3.21-3.24.

The updating process from algorithm 2 is applied and initial values chosen like in
algorithm 1 and 2. Where ṁover

i := m
(k)
z,i and hover

1,i := h
(k)
z,i and hunder

1,i and ṁunder
i are set

equal to zero.

The stopping criteria is based on the error calculated by comparing the percentage
difference between zi and ṁih1,i from the optimal output for the decision and state vari-
able:

J
2,Error :=

100|J
2,MILPr2

� J
2,MINLPr2

|
J

2,MINLPr2

 ✏ (3.29)
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3.3 Relaxation to NLP

Problem 3.2 is now relaxed to NLP such that yi 2 R
+

, 8i 2 I. The solution from relaxing
to NLP yields an upper bound for the MINLP6 since an integer solution gives a poorer
or equal solution in optimization. Such solution can however fail to give realistic values
for y as it is now in R and can take very small values that can theoretically be scattered
around the feasible set.

The method applied here for solving the NLP is Sequential Quadratic Programming
(SQP) using the SNOPT solver. The SQP is one of the most successful methods for the
numerical solution of constrained non-linear optimization problems and has been proven
to give a local optimal solution [Gill et al., 2005]. It is very valuable to have a secure local
optimal for the problem even thought it is in the form of an upper bound. The SQP will
now be briefly explained and a numerical solution can be seen in section 4.2.3.

3.3.1 Sequential quadratic programming (SQP)

The SQP algorithm was first proposed by [Wilson, 1963]. It is essentially a generalization
of Newton’s method for unconstrained optimization. The objective function is replaced
by a quadratic approximation and the constraint are linearized. The SQP methods then
solves a sequence of these sub-problems.

For such an optimization, necessary and sufficient optimality conditions need to be
stated. In order to do that the concepts of the Lagrangian, the active set and the linear in-
dependence constraint qualification (LICQ) need to be introduced. Following definitions
and theorems are put forward here for readers not familiar with optimization and can be
all be found in standard textbooks on non-linear optimization, e.g. [Nocedal and Wright,
2006; Bertsekas, 2003; Fletcher, 1987].

If the integer variable from the optimization problem represented by equation 3.2 has
6 or lower bound for minimization
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been relaxed from Z to R it can be written as

maximize
v2R

J (v)

subject to

f(v) = 0

g(v)  0

v

L  v  v

U

(3.30)

where v = (ṁ,h,y), 8, ṁ 2 Rn
ṁ ,y 2 Rn

y and h 2 Rn
h

Definition 3.4. (Lagrangian) The Lagrangian L of a constraint non-linear optimization
problem represented by equation 3.30 above is defined by

L(v,�,µ) = J (v)� �>
f(v) + µ>

g(v) (3.31)

where � 2 Rn
f and µ 2 Rn

g represent the Lagrangian multipliers of the system. L is
called Lagrangian (function) of problem 3.30.

Definition 3.5. (Active constraint and active set) If ṽ 2 F , it is said to be a feasible
point of problem 3.30. The inequality constraint gi, i 2 {1 . . .m} is said to be active if
gi(ṽ) = 0. The set of indices of all active constraints can thus be defined as

A(ṽ) := {i : gi(ṽ) = 0, 1  i  m} (3.32)

the active set associated with ṽ. Active constraints are often required to be linearly inde-
pendent.

Definition 3.6. (Linear dependent constraint qualification)
If the gradient of the constraints rfi(ṽ), i 2 {1 . . . nf} and rgi(ṽ), i 2 A(ṽ) at ṽ are
linearly independent, it can be said that the linear independence constraint qualification
(LICQ) holds.

The first order necessary condition for optimality are given by the following theorem
of Karush, Kuhn and Tucker [Karush, 1939; Kuhn and Tucker, 1951].

Theorem 3.3. (The Karush-Kuhn-Tucker (KKT) conditions)
If v⇤ is defined as a local optimal of problem 3.30 and for which LICQ holds. Then there
exist Langrange multipliers �⇤ 2 Rn

f and µ⇤ 2 Rn
g such that the following conditions
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are satisfied:

0 = rL(v⇤,�⇤,µ⇤) (3.33a)

0 = f(v⇤) (3.33b)

0 � g(v⇤) (3.33c)

0  µ⇤ (3.33d)

0 = µ⇤>
g(v⇤) (3.33e)

0 = µ⇤>
g(v⇤) (3.33f)

If condition 3.33a-3.33f hold, (v⇤,�⇤,µ⇤) is referred to as the Karush-Kuhn-Tucker
(KKT) point.

Proof. Fletcher [1987] and Nocedal and Wright [2006]

The second order necessary condition is given by:

Theorem 3.4. (Second order necessary conditions of optimality)
Let v⇤ 2 Rn

v be local optimal point of problem 3.30, where LICQ holds in v

⇤. Let
� 2 Rn

f and µ 2 Rn
g be the unique Lagrange multipliers such that the KKT conditions

are satisfied. If small variations �v from the local optimal are considered such that for
every vector �v 2 Rn

v with

fi(v
⇤ +�v)� fi(v

⇤) ⇡ rfi(v
⇤)�v = 0, i 2 {1 . . . nf} (3.34a)

gi(v
⇤ +�v)� gi(v

⇤) ⇡ rgi(v
⇤)�v = 0, i 2 A(v⇤) (3.34b)

it holds that
�v

>r2L(v⇤,�⇤,µ⇤)�v � 0 (3.35)

Proof. Fletcher [1987] and Nocedal and Wright [2006]

The sufficient second order conditions are given by

Theorem 3.5. (Second order sufficient condition of optimality)
Let v⇤ 2 Rn

v be local optimal point of problem 3.30, where LICQ holds in v

⇤. Let
� 2 Rn

f and µ 2 Rn
g be the unique Lagrange multipliers such that the KKT conditions

are satisfied. If small variations �v from the local optimal are considered such that for
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every vector �v 2 Rn
v with

rfi(v
⇤)�v = 0, i 2 {1 . . . nf} (3.36a)

rgi(v
⇤)�v = 0, i 2 A(v⇤) and µi > 0 (3.36b)

rgi(v
⇤)�v � 0, i 2 A(v⇤) and µi = 0 (3.36c)

it holds that
�v

>r2L(v⇤,�⇤,µ⇤)�v > 0 (3.37)

Proof. Nocedal and Wright [2006]

Algorithm 3 is a general form of a SQP algorithm. H
(k)
J is the Hessian of the La-

grangian H
(k)
J := r2L(vk,�(k),µ(k)). It can be the exact Hessian or a numerical approx-

imation. The stopping criteria is either a KKT condition inside a certain tolerance or a
small increment of the Lagrangian in the search direction such that ||rL�v|| ✏.
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Algorithm 3
A basic SQP algorithm

k := 1 {Starting Point}
Guess the values for the initial iteration, v(k=1) and the Lagrangian multipliers �(k=1) and µ(k=1)

found:=Stopping criteria {KKT condition inside a certain tolerance or ||rL�v|| ✏}
while (NOT found) and k  k

max

do
Evaluate J (v

(k)

), f(�(k)

) and g(µ(k)

)

Evaluate rJ (v

(k)

), rf(�(k)

) and rg(µ(k)

)

Evaluate H
(k)

J
Compute �v and the Lagrange multipliers ˜� and ˜µ by a solution of the quadratic program

maximize
�v2R

rJ (v

(k)

)

>�v +

1

2

�v

>H
(k)

J �v

subject to

f(v

(k)

) +rf(v

(k)

)

>�v = 0

g(v

(k)

) +rg(v

(k)

)

>�v  0

(3.38)

Determine the step length ↵(k)

Perform the following updating steps with a step length ↵(k)

v

(k+1)

= v

(k)

+ ↵(k)�v (3.39a)

�(k+1)

= �(k)

+ ↵(k)

(

˜�� �(k)

) (3.39b)

µ(k+1)

= µ(k)

+ ↵(k)

(

˜µ� µ(k)

) (3.39c)

Calculate found
if found==TRUE then

Break;
=> A solution has been found.

else
if k == k

max

then
Break;
=> A sufficient solution has not been found.

end if
else

k := k + 1 {Next iterate}
end if

end while



50



51

Chapter 4

Results

This chapter accounts for the results of this research. That includes the parameter fit for
the LPM by comparing four different geothermal fields in the Reykjavik area and choos-
ing the best parameter fit to use in an optimization; numerical testing for the optimization
methods and algorithms explained in chapter 3; and optimization of long term utilization
with and without annual increase in demand.

4.1 Parameter estimation and validation of the LPM

In this section four geothermal fields will first be briefly introduced in terms of production
history, number of wells and location. The data was made available by [Ivarsson, 2011]
and [Reykjavik Energy, 2011]. Four fields will be fitted to different kinds of lumped
parameter models. The results of the data fit are validated and compared.

4.1.1 Field data

The Laugarnes and Ellidaar geothermal fields lie within the city limit of Reykjavik and
Reykir and Reykjahlid lie around 20 km northeast of the city. Reykir and Reykjahlid are
only separated by a hill and are often refereed to as one field divided into the two sub-areas
Reykir and Reykjahlid. Figure 4.1 shows the location of the geothermal fields utilized for
district heating in Reykjavik [Gunnlaugsson et al., 2000]. Table 4.1 shows a comparison
of a few properties of those fields such as temperature and average production.
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Figure 4.1: Location of geothermal fields in Reykjavik. From: Gunnlaugsson et al. [2000].

Geothermal Average Number of Average Average Average Proportion of
field temperature (�C) production wells elevation above production production production

in 2010 sea level (m) 2010 (Gl) 2010 (kg/s) for Reykjavik (%)
in 2010

Laugarnes Field 127.7 10 22.8 4.34 129 6.9
Ellidar Field 86.7 8 36.7 1.99 61.0 3.2
Reykir Field 81.7 22 64.3 11.2 344 17.8
Reykjahlid Field 93.0 12 64.3 13.4 410 21.3

Table 4.1: Some of the main properties of the geothermal fields utilized for Reykjavik such as average
temperature, number of production wells, average production in Gl and kg/s and proportion of production
from each field in 2010. From Ivarsson [2011].
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Laugarnes field

The Laugarnes field production data has been recorded from 1962 with monthly time res-
olution. Now there are 10 production wells used in the field (figure 4.2), two of which
started production a bit later or around 1980. The production has decreased slightly since
Nesjavellir started production in 1990. Two reference wells (reference wells are usu-
ally selected to collect data on water level and temperature and don’t serve as production
wells) are in the field, RV-7 and RV-34 with data for pressure (drawdown) recorded since
1967 and 1985 respectively. Combined production from those ten production wells was
calibrated to the model using the data from reference well RV-34. Figure 4.2 shows the
location of the wells in Laugarnes where the reference wells are marked with a red circle.
When choosing between two reference wells it would in general be more appropriate to
chose the one with data recorded for a longer period of time. The quality metrics for
calibrating to RV-7 did however give a poorer result. The initial state for the drawdown is
assumed to be the average meters above sea level (a.m.s.l) in those eleven wells. In Sig-
urdardottir et al. [2012] the a.m.s.l benchmark was considered from RV-34 only.

Figure 4.2: Location of production wells and reference wells in Laugarnes field. Reference wells are marked
with a red circle. From Ivarsson [2011].

Reykir field

Reykir field operates 22 wells (left side on figure 4.3) with recorded data starting from
1971 - 1976 with monthly resolution. The combined production was fitted to the model
in terms of reference well MG-1 with data from 1976 to 2010 and a.m.s.l was used as
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a benchmark for drawdown for the 23 wells. There are two reference wells in Reykir
field, SR-1 and MG-1. There exist a longer period of recorded data for MG-1 as well
as the quality metrics for calibrating SR-1 to the production data gave a slightly poorer
result.

Reykjahlid field

Reykjahlid field operates 12 wells (right side on figure 4.3) with recorded data starting
from 1974 - 1979. All records have a monthly resolution. The combined production was
fitted to the model in terms of the only reference well in the area, MG-28, with recorded
data for water level from 1985.

Figure 4.3: Location of production wells and reference wells in Reykir and Reykjahlid fields. Reference
wells are marked with a red circle. Reykjahlid field is the right side and Reykir field on the left side.
From Ivarsson [2011].
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Reykir and Reykjahlid as one field

Gunnlaugsson et al. [2000] describes Reykir as one field and Reykir and Reykjahlid as
sub-areas as they lie close together (see figure 4.3) and the data suggest that their water
levels are correlated. The Laugarnes and Ellidaar fields also lie close together. Their data
do however not suggest any correlation between them and Gunnlaugsson et al. [2000]
suggest they must be separated by hydrological barriers since chemistry, isotopic com-
positions and temperature of the water differ between these areas. Reference well MG-1
was chosen as it has longer period of water level data and gave a better result than the
other reference wells.

Ellidaar field

Eight wells are operated in the Ellidaar field (figure 4.4) with recorded data starting from
1969 - 1985. All records have monthly resolution. The combined production was fitted
to the only reference well in the area, RV-27 with recorded data for water level from
1969.

Figure 4.4: Location of production wells and the reference well in Ellidaar field. Reference well is marked
with a red circle. From Ivarsson [2011].

4.1.2 Parameter estimation and validation

A lumped parameter model (LPM) was fitted to each of five data sets respectively, Lau-
garnes, Reykir, Reykjahlid, Ellidaar and Reykir-Reykjahlid (as one field). The model
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parameters are estimated by minimizing the sum squares of the difference between pre-
dicted drawdown and measured data, such that:

min
1

2
khe � h(hi,1,K,S, t)k2

2

= min
1

2

X

i

(he,i � h(hi,1,K,S, ti))
2 (4.1)

where he,i is a measured observation at time step i and h(hi,1,K,S, ti) is the predicted
drawdown at the same time step. This returns the vectors of the values for the initial
drawdown in each tank, h the storage coefficients,  and the conductance values � which
are the characteristic parameters for the particular geothermal system in question. This
is solved by using a least squares minimizer in MATLAB [MATLAB, 2012] that uses an
interior-reflective Newton Method for large scale problems.

In modeling pressure response (change in drawdown) for Laugarnes field, 207 of 311
data points were fitted to the lumped parameter model (LPM), or two third of the data. The
fit was validated using the rest of the data. This was done for a single-tank model, closed
and open, two-tank model, closed and open and three-tank model closed and open. The
LPM model was explained in section 2.1 in terms of N-tanks. For Laugarnes a two-tank
open model and three tank-open model gave the best result which are shown in figure 4.5a
(three-tank open model) and in tables 4.2 and 4.3.

For Reykir 277 of 415 data points were fitted to the model and the fit validated for
the rest of the data. As for Laugarnes the data was calibrated to six different lumped
parameter models. Two-tank open model and three tank-open model gave the best result
and can be viewed in figure 4.5b (two-tank open model) and tables 4.2 and 4.3.

For Reykjhlid, 207 of 310 data point were fitted to the model and the fit validated
with the rest of the data. Result for two-tank open model and three tank-open model can
be viewed in table 4.2 and 4.3 as they gave the best result of the six different lumped pa-
rameter models, see results in figure 4.6b (three-tank open model) and tables 4.2 and 4.3.

For Ellidaar, 329 of 494 data points were fitted to the model and the fit validated for
the rest of the data. Result for two-tank open model and three tank-open model can be
viewed in figure 4.6a (two-tank open model) and tables 4.2 and 4.3.

The result for the calibration by combining the production for Reykir and Reykjahlid
for two tank open model and three tank closed model can be viewed in table 4.4 and fig-
ure 4.7.
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Each of the tables display the results for the parameters for the initial state, storage
coefficients,  and resistors, � in the first half, and the quality metrics of the fit in the
second half. The quality metrics include: the root mean square (RMS) error, R2, which
measures how successful the fit is explaining the variation of the data, the maximum error
and the average error between historical and predicted data. The initial state represents
the drawdown at time i = 1 in the tanks hj,1 . . . hN,1. The number of parameters depend
on the size of the LPM model, i.e. number of tanks.

Two - tank open

Laugarnes Reykir Reykjahlid Ellidaar
Parameters 2/3 of data Validation 2/3 of data Validation 2/3 of data Validation 2/3 of data Validation Units


1

61.58 - 7851 - 59656 - 398.7 - m · s2

2

1776 - 3.45 ·106 - 6.10 ·105 - 3.29·107 - m · s2
�
12

0.026 - 0.00094 - 0.026 - 0.00018 - m · s
�
23

0.0024 - 0.030 - 0.0024 - 0.021 - m · s
h
1,i=1

88.80 - 40.66 - 87.22 - 0.25 - m
h
2,i=1

86.94 - -20.62 - 87.30 - -11.91 - m
H

0

-17.76 - 20.04 - 52.67 - -50.00 - m
RMS 5.33 8.37 5.69 5.61 13.34 12.32 11.96 5.96 m
R2 89.38 48.99 84.53 70.37 9.94 less than zero 76.37 less than zero %
Max Error 20.32 15.42 27.11 14.86 36.88 27.57 42.70 23.17 m
Ave. Error 4.00 7.71 4.32 4.39 10.55 10.22 9.03 4.66 m

Table 4.2: Results from fit for two-tank open model for the four geothermal fields.The first of two columns
for each field represents results for the parameter fit performed by MATLAB [MATLAB, 2012]. The
second column represents the quality metrics of the fit. Bold values represent fitted parameters chosen for
the optimization.

As well as evaluating future response of the reservoir the storage coefficients () from
the LPM can be used to evaluate it’s size. Two types of storage mechanisms can be con-
sidered. First, the storage coefficients are controlled by liquid-formation compressibility
from which the volume (m3) can be calculated from the porosity and compressibility of
the water and the rock. Secondly the storage coefficient can be used to calculate the sur-
face area of the modeled portion of the reservoir. Spatial constraints of the LPM need
to be considered carefully though, as volume values for the reservoir calculated from 

might be unrealistic. Surface area values should be comparable with e.g., values from
conceptual modeling. This is explained in more detail in [Garcia et al., 2011; Axelsson,
1989]. Looking at the data for  and � in tables 4.2 and 4.3 it is for example quite notice-
able from 

1

that the central part of Reykir field is substantially bigger than the central
part of Laugarnes field. The �

12

for Laugarnes is however substantially bigger than �
12

for Reykir which suggest that water from outer parts of Laugernes field flows more easily
to the central part of the reservoir than for Reykir
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(a) Laugarnes field. Results from calibrating data to a three - tank open LPM model.
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(b) Reykir field. Results from calibrating data to a two - tank open LPM model.

Figure 4.5: Fit for Laugarnes and Reykir. The figure above displays graphically the fit for Laugarnes field
presented in table 4.3 for a three - tank open model. The figure below displays graphically the fit for Reykir
field presented in table 4.2 for two - tank open model. The vertical axis shows drawdown from average
meters above sea level for each geothermal field respectively.

The data was fitted to the LPM model with a one-tank closed model and the LPM was
then expanded to a three-tank open model or until an acceptable accuracy of the fit was
obtained. This methodology was also used in Axelsson and Arason [1992]. The LPM
is expanded step by step in order to find an interval for a good guess for the initial state
and the parameters by starting with few parameters and increasing them. It is important
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to point out here that randomly choosing initial values and working with only one type of
LPM is also an option here. The author wanted however to get a feeling for different sizes
of LPM and their response to the data.

When the data was calibrated to one-tank model it gave higher RMS value than the
results here display, that is the deviation between the model and measured water level was
greater. The RMS value decreases as the complexity of the lumped parameter model in-
creases and the two-tank and three-tank models yield very similar result, the result in Sat-
man et al. [2005] was similar.

Three - tank open

Laugarnes Reykir Reykjahlid Ellidaar
Parameters 2/3 of data Validation 2/3 of data Validation 2/3 of data Validation 2/3 of data Validation Units


1

64.9 - 7688 - 102.2 - 394.6 - m · s2

2

1663 - 3.44 ·106 - 24860 - 3.88·105 - m · s2

3

43.7 ·106 - 4.90 ·107 - 2.10 ·105 - 1.92·108 - m · s2
�
12

0.059 - 0.00094 - 0.027 - 0.00018 - m · s
�
23

0.00026 - 0.026 - 0.0019 - 0.029 - m · s
�
3

0.063 - 0.0014 - 0.00079 - 0.032 - m · s
h
i=1,1 85.41 - 40.65 - 85.54 - 0.74 - m

h
i=1,2 84.38 - -20.40 - 83.07 - -13.68 - m

h
i=1,3 -0.55 - 24.25 - 59.33 - -12.67 - m

H
0

-2.33 - -150.0 - -22.46 - -149.8 - m
RMS 4.90 4.50 5.69 6.04 12.02 8.55 11.76 24.14 m
R2 91.06 85.26 84.56 65.71 26.88 23.32 78.54 less than zero %
Max Error 20.30 11.01 27.23 14.01 30.34 20.41 40.90 42.46 m
Ave. Error 3.58 3.72 4.31 4.83 9.70 7.11 8.55 23.14 m

Table 4.3: Results from fit for two-tank open model for the four geothermal fields. The first of two columns
for each field represents results for the parameter fit performed by MATLAB [MATLAB, 2012]. The
second column represents the quality metrics of the fit. Bold values represent fitted parameters chosen for
the optimization.

It is very important not to overestimate the LPM, i.e. how many tanks are needed. A
two-tank model can be better than a three-tank model. The best results were for a two-tank
open model and a three-tank open model except for Reykir and Reykjahlid when modeled
as one field, a three-tank closed model clearly gave a better result than three-tank open
model.

Validating the data fits helps choose between two-and three-tank model. As for Lau-
garnes the three - tank model is a straightforward choice. For the two-tank modeling the
RMS increases from 5.33 to 8.37 as it is validated and the R2 decreases from 89.38% to
48% (table 4.2), as for three-tank model the RMS decreases and the R2 decreases slightly
(table 4.3). For Reykir, both fits with validation are quite good although the fit for two-
tank model is slightly better.

Reykjahlid and Ellidaar fields do not give an acceptable fit as the validations result
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(a) Ellidaar field. Results from calibrating data to a two - tank open LPM model.
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(b) Reykjahlid field. Results from calibrating data to a three - tank open LPM model.

Figure 4.6: Fit for Ellidaar and Reykjahlid. The figure above displays graphically the fit for Ellidar field
presented in table 4.2 for a two - tank open model. The figure below displays graphically the fit for Reyk-
jahlid presented in table 4.3 for three - tank open model. The vertical axis shows drawdown from average
meters above sea level for each geothermal field respectively.

in an unacceptable value of R2. The production in Ellidaar field decreased substantially
after 1995 (see development of drawdown in figure 4.6a) and it is therefore difficult to
validate such data set. In Reykjahlid, where the quality of data seams to be satisfactory,
the high RMS and the low R2 could only be explained by the spatial constraints of the
LPM model. This emphasizes the importance of validating the fit for such modeling and
restates that the LPM needs be used carefully in evaluating future response of a geother-



Silja Rán Sigurðardóttir 61

mal system as such systems are comprehensively more complicated than the LPM model
assumes.

Reykir + Reykjahlid

Two - tank open Three - tank closed
Parameters 2/3 of data Validation 2/3 of data Validation Units


1

7514 - 7734 - m · s2

2

18072 - 16334 - m · s2

3

- - 3.14 ·107 - m · s2
�
12

0.0052 - 0.0051 - m · s
�
23

0.0012 - 0.0012 - m · s
�
3

- - - - m · s
h
1,i=1

40.32 - 40.70 - m
h
2,i=1

25.81 - 26.13 - m
h
3,i=1

- -34.08 - m
h
0

-34.69 - - m
RMS 5.53 5.78 5.69 5.18 m
R2 85.41 68.65 84.29 74.70 %
Max Error 26.60 14.10 27.28 12.51 m
Ave. Error 4.32 4.66 4.44 4.14 m

Table 4.4: Results from Reykir and Reykjahlid as one field Combined production is calibrated to one rever-
ence well MG-1. The first of two columns for each field represents results for the parameter fit performed
by MATLAB [MATLAB, 2012]. The second column represents the quality metrics of the fit.

As for Reykir and Reykjahlid both of the fits are considered acceptable although three
- tank closed model gave a slightly better result. Interestingly it could imply that Reykir
geothermal field alone can be considered as a two-tank open system, but when it is mod-
eled with Reykjahlid the whole system can be considered a closed three-tank system.

The fit for a three-tank open model for Laugarnes, a two-tank open model and three-
tank open model for Reykir and two-tank open model and three-tank closed model for
Reykir and Reykjahlid are all considered to be suitable fits to use as representative mod-
els. Only Laugarnes and Reykir field are however chosen as a suitable examples for the
optimization which follows, the three-tank open model for Laugarnes is used since it has
the smallest RMS value and the highest R2 value, and a two-tank model for Reykir, since
it is a suitable fit and it saves some computational cost in the optimization. It is relative
to ask at this point why a closed LPM wasn’t chosen for the optimization. Since the only
significant result for calibrating the data to a closed model gave a rather large value for

3

(see table 4.4 here above) it is not very likely to give a very different result from a
three - tank open model and was therefore not chosen for the optimization. It is however
very interesting to perform an optimization with a closed LPM where the last tank has a
smaller value.
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(a) Reykir plus Reykjahlid. Two - Tank open
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(b) Reykir plus Reykjahlid Three - Tank closed

Figure 4.7: A fit for Reykir and Reykjahlid combined as one reservoir. The vertical axis shows drawdown
from average meters above sea level for each geothermal field respectively.

4.2 Testing of algorithms for the optimization model

In this section three different solution methods introduced for solving the problem rep-
resented by equation 3.2 in chapter 3 will be tested. The objective function J repre-
sents profit and will be maximized. Two different MILP relaxations will be applied. The
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objective function will be approximated with a piecewise linear Taylor series and piece-
wise under-and over-estimators will be applied. Finally the optimization problem will be
solved with a NLP relaxation.

The demand function or the upper-bound of the decision variable, ṁU
i = ṁe,i 8i 2 I

(see section 2.2.3) is a very important parameter in the model. ṁ will follow ṁe exactly
until other constraints of the model are active. For that reason, ṁe implicitly affects the
behavior of the state variable h

1,i since it is a function ṁ. Other state variables h
2,i and

h
3,i (for a 3-tank model) are not affected as much by ṁ (implicitly ṁe) since their dynam-

ical response is not as strong1.

In testing the algorithms for the above mentioned methods, ṁe,i is represented by a
simple linear function. However, the behavior of ṁe,i in practice is very dynamic as
shown in sections 4.3 and 4.4.

The results include the optimized present value of profit compared to the profit cal-
culated with no interest rate after the optimization has been performed. Comparing linear
and non-linear present value of the profit can skew the error evaluation substantially since
values at the end of the time period are greatly affected by interest rate compared to values
in the beginning of the time period. The error is evaluated from the non-linear part of the
function only, or the part that represents production, J

2

, see equations 3.1 and 3.2. This
was also explained in section 3.2.4.

4.2.1 Piecewise linear approximation

To obtain a good first degree Taylor approximation (see section 3.2.2) proper values of
the reference points are essential. The closer they are to the optimal solution the better.
Initial values for the reference points for production ṁz,i are set as the expected demand
or the upper bound of the decision variable ṁU

i . The reference points for the drawdown
are calculated from expected demand. With small disruption in demand, or when the
control trajectory can follow the upper bound rather accurately, no updating algorithm is
needed.

1 This depends on the parameter fit of the LPM model, the dynamical response (change in drawdown)
to production of the state variable is dependent upon how big the tanks are and how fast the fluid can flow
between them.
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Example 4.1. Consider the following demand function:

me(i) = m̄e +mIti (4.2)

where m̄e is the average available historical demand and mI is the monthly increase in
demand. With a 25 kg/s increase in demand per year (mI = 25/12) the model can be
optimized successfully without the lower bound constraint shown in section 3.2.3 and an
updating algorithm, see numerical results in table 4.5

J PV

2,Error J
2,Error J PV

MILPr1

J PV

MINLP

J
MILPr1

J
MINLP

0.00031 % 0.0021 % 32,942,116 $ 32,942,013 $ 69,723,560 $ 69,723,151 $

Table 4.5: Results from optimization with demand function: m
e,i

= m̄

e

+m

I

t

i

, m
I

= 25/12. Optimized
for t

n

= 311 months. Starting time t

1

= 1.

As seen in figure 4.8, production can not meet demand at the very end of the period (cf.
constraint 2, see section 2.2.3). This is not due to the sustainability constraint introduced
in section 2.2.4, but it is highly dependent on the temperature of the system. In this
example, the sustainability constraint limit is located at a depth of 751 m. The reason that
production can not meet demand after 300 months in this case has more to do with the
economic factors of the model since it is very likely that it doesn’t pay off to pump deeper.
Those consideration will be further accounted for in sections 4.3 and 4.4.

Example 4.2. An example that has the same demand function is now considered where
mI = 4mI = 100/12. With such a big disruption in demand, it is more likely that the
sustainability limit is reached, which means that production can not follow demand. It is
desirable to see how that would affect the optimization for a longer period of time. That
sort of behavior will very likely reduce the accuracy of the linearization since the decision
variable can no longer follow the upper bounds nor the reference points (which are the
upper bound here) for bigger part of the time period. For further reference see sections
3.2.3 and 3.2.4 where the linearization is explained.

J PV

2,Error J
2,Error J PV

MILPr1

J PV

MINLP

J
MILPr1

J
MINLP

67.5 % 981 % 78,357,586 $ 25,442,062 $ 184,450,350 $ 36,437,802 $

Table 4.6: Results from optimization with demand function: m

e

(i) = m̄

e

+ m

I

t

i

, m
I

= 100/12. Opti-
mized for t

n

= 311 months and starting time is t
1

= 1.

There are two important things to notice in table 4.6. First of all, the error between lin-
ear and non-linear production ( J PV

2,Error and J
2,Error) is absolutely unacceptable. Secondly
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Figure 4.8: Graphical results from a simple linear demand function. m
e,i

= m̄

e

+m

I

t

i

where m
I

= 25/12.
Demand is assumed to be linear and increase 25 kg/s a year.

there is a big difference between the error calculated from present value of the production
(J PV

2,Error) and the error from production assuming no interest rate J
2,Error. It is thus neces-

sary to calculate the error between linear and non-linear production assuming no interest
rate. J

2,Error is thus considered as the main benchmark in evaluating the error between
linear and non-linear.
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(b) Drawdown

Figure 4.9: Graphical results from a simple linear demand function, example 4.2. Demand is on the upper
figure and drawdown on the lower figure. The linear demand function is: m

e,i

= m̄

e

+ m

I

t

i

where
m

I

= 25/12. Demand is assumed to be linear and increase 100 kg/s a year.

Constraint 5

Figure 4.9 shows when the decision variable can not follow the upper bounds anymore,
the optimization pushes the decision variables ṁi << mz,i and thus the state variables
(h

1,i << hz,i) to a very small value. This was more thoroughly explained in section
3.2.3.
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Example 4.3. The same function as in 4.2 is now optimized with the constraint 5 added
to the model (equation 3.18).

J PV

Error

J
Error

J PV

MILPr1

J PV

MINLP

J
MILPr1

J
MINLP

5.71% 8.08% 52,480,518 $ 49,486,439 $ 106,916,778 $ 98,775,490 $

Table 4.7: Results from optimization with demand function: m
e,i

= m̄

e

+m

I

t

i

, m
I

= 100/12. Optimized
for t

n

= 311 months. Starting time t

1

= 1.

Looking at table 4.7 it is obvious that adding constraint 5 to the model decreases the
error between linear and non-linear. The non-linear profit (J

MINLP

calculated afterwards)
increases, which means that it also is a better solution. The error is however still quite
large when compared to the best case in this work. Figure 4.10 displays the result for
production and drawdown for this example and figure 4.11 displays the non-linear part of
the objective function (ṁih1,i) versus the linearized part versus constraint 5 (see equation
3.18). The upper figure shows the result from optimizing without constraint 5 and the
lower figure with constraint 5. As figure 4.11 shows, constraint 5 is active as soon as
production can not meet demand (ṁi < me,i)

Updating algorithm

Since the error from last example is still quite large a simple updating process was tested.
The reference points were simply replaced by the solution found by the MILP relaxation
procedure. Then the optimization was performed again to see if that kind of an updating
algorithm converges to an error value that can be considered acceptable.

Example 4.4. Optimization conducted using algorithm 1 from section 3.2.4.

Iteration J PV

2,Error J
2,Error J PV

MILPr1

J PV

MINLP

J
MILPr1

J
MINLP

1 6.05 % 8.08 % 52,480,518 $ 49,486,439 $ 106,916,778 $ 98,775,490 $
2 2.89 % 5.94 % 52,170,437 $ 50,706,760 $ 106,949,712 $ 102,586,632 $
3 10.45 % 9.80 % 51,954,979 $ 47,037,247 $ 106,673,261 $ 93,169,082 $
4 5.46 % 8.74 % 53,339,924 $ 50,575,969 $ 109,741,893 $ 102,310,287 $
5 2.13 % 4.87 % 51,355,826 $ 50,283,227 $ 104,241,385 $ 101,145,816 $
6 15.5 % 14.59 % 53,961,973 $ 46,727,177 $ 112,866,705 $ 92,079,219 $
7 5.65 % 8.81 % 53,370,046 $ 50,516,034 $ 109,809,863 $ 102,088,752 $
8 2.28 % 5.32 % 51,524,201 $ 50,374,156 $ 104,771,071 $ 101,398,625 $

Table 4.8: Results from optimization with demand function: m
e

(i) = m̄

e

+ m

I

t

i

, m
I

= 100/12 adding
constraint represented by equation 3.18 and an updating process where m(k+1)

z,i+1

= ṁ

(k)

i

and h

(k+1)

z,i+1

= h

(k)

1,i

,
algorithm 1. Optimized for t

n

= 311 months. Starting time t

1

= 1.
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Figure 4.10: Example 4.3. Graphical results from adding constraint 5 (equation 3.18) to the model. The
upper bound for the decision variables ṁ

i

is a simple linear demand function. m
e,i

= m̄

e

+ m

I

t

i

where
m

I

= 100/12. Demand is assumed to be linear and increase 100 kg/s a year.

After 8 iterations as seen in table 4.8 the error is still rather large (though smaller than
in previous example) and the algorithm does not show a convergent behavior. Figure 4.12
displays graphically the development of updating process using algorithm 1.

The solution of the optimization ṁk
i seems to oscillate around the reference point

mk
z,i+1

= mk
1,i but never gets close enough for smaller error. It is clear that an updat-

ing algorithm helps, but an updating process needs to be applied that can direct the so-
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Figure 4.11: Constraint 5 decreases the error between linear and non-linear substantially and gives a more
realistic solution and is active from the point where production can no longer follow demand, i.e., ṁ

i

<

m

e,i

lution in the right direction. That is exactly what algorithm 2 introduced in section 3.2.4
does.
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Figure 4.12: Example 4.4. Graphical results for the updating development of the decision variable ṁ

i

and
the reference point m

z,i

. The updating algorithm replaces the reference point for iteration k + 1 with the
solution from iteration k.
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Example 4.5. Reference points are updated with algorithm 2 represented in section 3.2.4.

Iteration J PV

2,Error J
2,Error J PV

MILPr1

J PV

MINLP

J
MILPr1

J
MINLP

1 6.06 % 8.11 % 52,543,956 $ 49,542,512 $ 106,990,970 $ 98,835,993 $
2 2.50 % 5.49 % 51,973,183 $ 50,705,504 $ 106,312,057 $ 102,420,934 $
3 1.82 % 4.50 % 51,374,145 $ 50,454,887 $ 104,376,538 $ 101,558,820 $
4 1.72 % 2.39 % 51,119,506 $ 50,257,446 $ 103,803,288 $ 101,592,375 $
...

...
...

...
...

...
...

9 0.29 % 0.39 % 50,977,496 $ 50,828,605 $ 103,344,631 $ 103,001,247 $
10 0.19 % 0.37 % 50,968,736 $ 50,872,574 $ 103,053,819 $ 102,788,095 $
11 0.09 % 0.13 % 50,958,140 $ 50,910,325 $ 103,234,420 $ 103,130,078 $
12 0.05 % 0.10 % 50,953,862 $ 50,927,085 $ 103,075,184 $ 103,001,550 $

Table 4.9: Results from optimization with demand function: m
e,i

= m̄

e

+m

I

t

i

, where m
I

= 100/12 using
algorithm 2 and constraint 5, equation 3.18. Optimized for t

n

= 311 months with starting time t

1

= 1.

The stopping criteria for this example was J
2,Error  0.1%. As seen in table 4.9

the algorithm converges to that value in 12 iterations. Figure 4.13 displays graphically
iterations 1-4 and 9-12. As seen in the figure ṁk

i and mk
z,i+1

= mk
1,i gradually get closer

until they have almost the same value.
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Figure 4.13: Example 4.5. Graphical results for the updating development of the decision variable ṁ
i

and the reference point
m

z,i

. The updating algorithm replaces the reference points for iteration k + 1 with a mix from the solution from iteration k and the
reference point from iteration k in such way that if the reference point is below the solution it moves up for the next iteration and if it
is above the solution it moves down for the next iteration, see algorithm 2.
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Figure 4.14: Example 4.5. Graphical results from a simple linear demand function using updating algorithm
2.

Figure 4.14 displays the result for production and drawdown for this example and
figure 4.15 displays the non-linear part of the model versus the linearized part versus con-
straint 5. The upper figure displays iteration 12 and the lower figure iteration 3. Constraint
5 is still active at iteration 3, but no longer at the last iteration. It is very important that
constraint 5 is not active for the final solution as it cuts of the feasible set. Constraint 5
thus serves it’s purpose which is only to steer the solution in the right direction.
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(b) Iteration 3

Figure 4.15: Example 4.5. The non-linear part of the objective function (non-linear and linearized) and the
left side of constraint 5. The figure below displays iteration 3 where constraint 5 is still active and the figure
above displays the last iteration, iteration 12 where constraint 5 is no longer active.

Since this is a sufficient solution it needs to be considered whether it is really an opti-
mal solution to the problem. One way is to relax the stopping criteria to an even smaller
value and see whether the solution changes. Figure 4.16 displays 30 iterations for the ob-
jective function, comparing the objective function linearized and calculated non-linearly
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afterwards and the development of the error, both with and without interest rate2. As seen
in the figures the difference between linear and non-linear stops to change as they become
equal in around 9 iterations. From this information it considered that a stopping criteria
of 1% error seems to be enough, especially when it is being optimized for a longer period
of time as conducted in sections 4.3 and 4.4.
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Figure 4.16: Example 4.5. The figure above displays profit (with and without interest rate) as a function of
30 iterations, development of present value profit calculated with the MILP relaxation and than calculated
non-linearly afterward. The figure below displays the same calculation but assumes no interest rate. The
solution does not change after around 9 iterations.

2 The objective function is the present value of profit, the profit is calculated without interest rate for
comparison purpose only
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4.2.2 Piecewise under- and over-estimators

It has been shown above that solving a MILP relaxation of the problem is not easy.
Another way to solve such problems is to use the methodology described in section
3.2.5. The non-linear (and non-convex) part of the objective function J

2

(h
1,i, ṁi, i) =

h
1,iṁi, 8 2 I is replaced with a linear variable zi, 8 2 I that has convex and concave

under-and over-estimators. Like in example 4.5, an updating process is also needed here
where the under and over estimators are updated according to algorithm 2, see also section
3.2.6.

Example 4.6. Piecewise under- and over-estimators with an updating process where me,i =

m̄e +mIti, mI = 100/12.

Iteration J PV

2,Error J
2,Error J PV

MILPr2

J PV

MINLP

J
MILPr2

J
MINLP

1 27.31% 248.45% 62,129,352.29 $ 48,802,720.89 $ 135,257,324.41 $ 98,261,841.99 $
2 6.70% 29.31% 51,356,835.39 $ 48,134,067.63 $ 105,236,763.74 $ 94,806,749.63 $
3 0.05% 0.13% 49,841,374.12 $ 49,815,051.81 $ 100,258,531.38$ 100,184,420.29 $
4 0.02 % 0.051% 49,819,547.04 $ 49,809,124.21 $ 100,195,794.98$ 100,166,241.61 $

Table 4.10: Results from optimization with demand function: m

e,i

= m̄

e

+ m

I

t

i

, m
I

= 100/12. For
MILP relaxation, J

2

(h
1,i

, ṁ

i

, i) = h

1,i

ṁ

i

is replaced by z

i

and an updating process is used, see section
3.2.6). Optimized for t

n

= 311 months and starting time t

1

= 1.

As seen in table 4.10 the algorithm here converges considerable faster than in example
4.5. The stopping criteria is J

2,Error < 0.1%. The value of the objective function does
however return a 3% smaller optimal than in example 4.5. This suggests this is either not
a local optimal or it could be another local optimal. Figure 4.17 displays the iteration for
ṁi graphically and figure 4.18 displays the results for production and drawdown.
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Figure 4.17: Graphical results for the updating development of the decision variable ṁ

i

and the upper-
bound ṁ

over

i

. The updating algorithm replaces the upper-bound for iteration k + 1 with a mix from the
solution from iteration k and the upper-bound from iteration k in such way that if the upper-bound is below
the solution it moves up for the next iteration and if it is above the solution it moves down for the next
iteration, see algorithm 2, see also section 3.2.6
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Figure 4.18: Graphical results from a simple linear demand function using piecewise under-and over-
estimators and updating algortithm see section 3.2.6

If the stopping criteria is relaxed to very small value the solutions does not change after
the 4. iteration. See figure 4.19.
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Figure 4.19: The figure above displays profit (with and without interest rate) as a function of 30 iterations,
development of present value profit calculated with the MILP relaxation and than calculated non-linearly
afterward. The figure below displays the same calculation but assumes no interest rate. The solution does
not change after 4 iterations.

Since there is approximately 3% error between the objective value, applying linear
piecewise approximation versus applying under-and over-estimators it is interesting to
see if that is also the case with a slightly different demand function. E.g. like the one in
example 4.1 that has a smaller increase in demand.



80 Optimization for sustainable utilization of low temperature geothermal systems

Example 4.7. The optimization is now performed with me,i = m̄e + mIti where mI =

25/12.

J PV

2,Error J
2,Error J PV

MILPr2

J PV

MINLP

J
MILPr1

J
MINLP

0.00031 % 0.0021 % 32,941,756 $ 32,941,653 $ 69,724,598$ 69,724,189 $

Table 4.11: Results from optimization with demand function: m
e,i

= m̄

e

+m

I

t

i

, m
I

= 25/12. Optimized
for t

n

= 311 months. Starting time t

1

= 1.

Only one iteration is needed for an acceptable error. As can be seen in table 4.11 the
solution identical to the solution from example 4.1. This suggests that both methods work
very well if Constraint 2 from section 2.2.3 stays active for the most of the time period. If
the demand function is however substantially increasing the relaxation with a piecewise
linear function gives a better result.

4.2.3 Relaxation to NLP

The same problem is now solved with a NLP relaxation. That means that y is no longer
an integer but a real number. It is known that J

MINLP

 J
NLP

, i.e. the same non-linear
problem always gives an higher optimal solution if the integer is relaxed to a real number.
The solution here is thus an upper-bound for the MILP relaxations.

Example 4.8. The same demand function is used where me,i = m̄e+mIti, mI = 100/12.
Table 4.12 displays the present value of the profit and the profit without interest rate.

J PV

NLPr3

J
NLPr3

50,943,249$ 103,115,496$

Table 4.12: Results from NLP optimization where the integer variable is relaxed to a real value with demand
function: m

e,i

= m̄

e

+m

I

t

i

, m
I

= 100/12.

As can be seen in table 4.12 the optimal solution is almost identical to the solution for
the MILP relaxation with a piecewise linear approximation (table 4.9, the difference is
around 0.1%, see example 4.5. The solution from example 4.6 (table 4.10) is not as good
or around 3% below the optimal here.

Figure 4.20 displays the NLP relaxation as an upper-bound to the MILP relaxations from
example 4.5 and 4.6. This suggest very strongly that piecewise linear approximation does
indeed give a local optimal solution to this problem.
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Figure 4.20: Graphical result where the NLP solution is displayed as an upper bound for the MILP relax-
ations. Both for the present value that is optimized and assuming no interest rate.

Now in considering what is a suitable method, the NLP relaxation yields the solution
relatively faster than the piecewise linear approximation, but can not give a realistic timing
and number of pumps. The NLP relaxation adds pumps to the system as value of yi less
than 0.5 at time step i, which means flooring and ceiling function can not be used to guess
appropriate number and timing of pumps. The NLP relaxation can however be very useful
if one only wants to know how many pumps are needed for certain time period without
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worrying about when they should be added. This relaxation also worked for a period of
1800 months (around 150 years). But optimizing, e.g. 300 years of utilization did not give
a result in 24 hours. The piecewise linear approximation is chosen to solve the problem
using a more realistic demand function. That is the subject of the next two sections.

4.3 Optimization of long term utilization of a geothermal
field under unchanged periodic demand

In this section the profit for long term utilization for Laugarnes field and Reykir field
will be optimized using optimization model 2.28. The piecewise linear approximation,
MILPr1, introduced in section 3.2.2 and numerically tested in section 4.2.1 will be ap-
plied here to account for the non-linearity in the model. The parameters from section
4.1.2 are used in the optimization for the underlying reservoir. The data resolution of the
optimization is in months but often displayed graphically as an moving average in years
for a better overview.

The demand function here, me,i, is simply repeated data records from each of the
fields respectively. For Laugarnes field the known data record is repeated six times for
155 years of production and for Reykir field it is repeated four times for 138 years of
production, see figure 4.21. No yearly trend will be considered.
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Figure 4.21: The demand is historical production repeated periodically. Six times for Laugarnes field a)
and four times for Reykir field b). Resolution of data is in months.

The scenario in this section, i.e. where profit is maximized and the demand is repeated
historical records will be referred to as Scenario 1 for Laugarnes field and Scenario 2 for
Reykir field. Other scenarios will appear in next section.

There are however other necessary parameters that need to be considered such as price
of water and electricity and how much it costs to add a pump to the system. They will be
introduced in the first subsection. Then an optimization and sensitivity analysis will be
performed for the two fields respectively.
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4.3.1 Necessary parameters for the optimization

Parameters for the optimization model are shown in table 4.13.

Parameter Value Units

ṁi=1

239 kg/s
C

Water

0.8695 $/m3

C
Electric

0.0805/3.6 ·106 $/J
C

Pump

150,000 $
r 5.5 % yearly rate

Table 4.13: Other parameters for the optimization model.

The initial demand, ṁi=1

is the first significant value from the Laugarnes field data.
The values for C

Water

, and C
Electric

, are taken from price listings from Reykjavik En-
ergy [Reykjavik Energy, 2011]. The quoted retail price for electricity is used unchanged
in the modeling since in the scenario of selling hot water for district heating, one would
have to pay full retail price for electricity like any other customer. In selling the wa-
ter however it is very likely that a district heating firm buys the water at relatively low
(wholesale) price and sells it to the customer for a higher (retail) price.

Statistic Iceland [Statistics Iceland, 2012] provides numbers for retail price versus
wholesale price for electricity from 1980 to 2004, for the following companies: Rarik
(both wholesale price and retail price), Landsvirkjun (wholesale price) and Orkuveita
Reykjavikur (retail price).

Assuming that the ratio between retail and wholesale price is somewhat similar for
water, those numbers can be used to get an idea of what the appropriate water price might
be. Those proportions range between 16% and 50% with an average around 40%, see
figure 4.22.
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Figure 4.22: Wholesale price as a proportion of retail price, Rarik und Landsvirkjun, from [Statistics Ice-
land, 2012].

In addition, transportation and distribution of the water needs to be considered. Statis-
tic Iceland [Statistics Iceland, 2012] also keeps track of information from 1983 - 2006
regarding production and primary energy versus losses in transport and distribution. As-
suming that something similar applies to transporting and distribution of water plus oper-
ational cost, it is assumed here that the wholesale water price is not more than 25% of the
retail price (C

Water

), see table 4.13.

The value for C
Pump

is the cost for adding a new pump. Those prices are of course
dependent upon properties of the pumps, e.g, how much power they can handle and in
what sort of condition they operate. Here, the price for one pump is assumed to be
$150,000 [Gunnarsson, 2012].

The interest rate is taken from a listing presented by the Central Bank of Iceland in
November 2011. Interest rate here is considered to be a yearly based constant.

4.3.2 Laugarnes field

As mentioned before, demand for hot water from the Laugarnes field is generated by re-
peating the period for historical production data, six times for a period of 155 year (see
figure 4.21a and 4.23a). The initial values for the reference points are the historical values
representing demand, me,i, and the reference points for drawdown are calculated from the
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demand with the LPM model. The optimization is executed for a period of 155.5 years.

The parameters used here can be viewed in table 4.14 and numerical results in ta-
ble 4.15. For this scenario, production was able to follow demand quite accurately for
the whole period, that resulted in a good linearization in the first iteration so the updating
algorithm (Algorithm 2) was not needed here.

Parameters Scenario 1: Values Units

C
Water

0.25 · 0.8695 $/m3

C
Pump

150, 000 $

C
Elect

0.0805/3600000 $/J

r 5.5%

Efficiency � 10%, (Maximum drawdown is 751 m)
Exergy, ex 73, 612 (T

0

= 288K, T
i

= 400.7K) J/kg
Number of years, n 155.5 years or 1866 months
Trend in demand 0%

Table 4.14: Parameters for Scenario 1.

Figure 4.23a displays the demand, ṁe,i, for the next 155.5 years and the optimized
production ṁi. One pump is added in the beginning. According to the optimization result
it doesn’t pay off to add another pump. For that reason production follows demand exactly
except in six different months where the production is 97 � 99% of the demand because
of insufficient pumping capacity. This implies that production is in general not limited
by financial or physical constraint for this scenario. The resolution of the data is on a
monthly basis and for a better overview of the data, the demand and production are also
represented as a moving average with a resolution in years, figure 4.23a.

Results Scenario 1 Units

Profit, PV
Profit

20, 113, 517 $

Income, PV
Income

21, 683, 862 $

Production, PV
Production�linear

2, 017, 029 $

Production, PV
Production�nonlinear

2, 017, 029 $

Pump Cost, PV
Pump

149, 332 $

Number of pumps, y 1

Pump added In month 1

Maxium Drawdown 98.2 m
Iterations 1
Error, Equation 3.19 0.0000472 % %

Table 4.15: Results for Scenario 1.

Figure 4.23b displays the development of drawdown in the tanks. Tank 1 (h
1,i) and

tank 2 (h
2,i) fluctuate identically, and thus it is unnecessary to show tank 2 graphically
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in figure 4.23b. It is however necessary to model the reservoir in terms of three tanks to
obtain a good fit to the data. The drawdown fluctuates between approximately 35 m draw-
down and 100 m drawdown and the trend in the drawdown is seemingly slightly upwards
(less drawdown with time). For this period of data examined, there is a slight decline in
the historical production data. That can be explained by the fact that after 1990 a new heat
source, Nesjavellir, started production which resulted in reduced demand from Laugarnes
area. Adding other geothermal sources is however beyond the scope here. The main
concerns are decisions regarding production and installation of pumps, and the timing of
these decisions in the next 100 to 200 years for a profitable and sustainable production.

Assuming demand for the next 155 year (like in this scenario) the system will remain
in equilibrium and operation remains profitable and sustainable. One pump is installed
in the beginning, the maximum drawdown is 98.2 m, see table 4.15 and figure 4.23b.
Production plus pump cost account for only 8% of the profit, see figure 4.24a.
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Figure 4.23: Scenario 1. Production and drawdown. Resolution is in months. MA stands for moving
average a year. Figure 4.23a displays production and demand for the next 155.5 years. Figure 4.23b
displays the development of drawdown in two of the three tanks (this is a three tank model, see description
of the LPM model in chapter 2.1).

The present value is substantially greater for the first 40 to 60 years (see figure 4.24b)
where it then becomes almost zero in approximately 110 years. In terms optimizing the
present value of profit, it might be practical to optimize a shorter period of time. The
objective of this work is however to look at long term utilization. This will be considered
in next section.
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Figure 4.24: Scenario 1. Figure 4.24a graphical display of the cost components. Figure 4.24b displays
development of Present Value (PV) of profit for 155.5 years, resolution in years.

4.3.3 Sensitivity analysis for Laugarnes field

It is of interest to see how much a small change in the parameters discussed in chapter 4.1
affect the profit.

Figure 4.25 shows the sensitivity of the profit with regards to variation of the lumped
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model parameters , � (see table 4.3 for the three-tank open model for Laugarnes) and
the economical parameters from table 4.13. The values of the parameters are varied by
10% and the result from the optimization of each variation (the present value of profit)
compared.

A 10% change in the LPM parameters affects the profit by less than 1%. That could
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Figure 4.25: Scenario 1. Sensitivity analysis. Figure 4.25a displays proportional change in profit consid-
ering 10 % increase/decrease in the parameters from the Lumped Parameter Model (LPM). Figure 4.25b
displays proportional change in Profit considering 10 % increase/decrease in the economical parameters.
Please note the different scales on the two figures above.



Silja Rán Sigurðardóttir 91

suggest that the data fit does not need to be extremely accurate, or like according to Sat-
man et al. [2005], a 3-tank open model is not suitable here since the confidence interval
range of the parameters is too high. That could indicate that working with a different type
of lumped parameter model, e.g. a model with only 2-tanks as in Satman et al. [2005]
is more suitable. It does however not change the fact that the best match to the data was
obtained for a 3-tank open model.

The profit is most sensitive to the price received for water and interest rate. Those
parameters are considered to be constants here, which they are of course not in reality.
Those results indicate the need to model this problem with stochastic interest rate and
price.

4.3.4 Reykir field

Demand for hot water in Reykir field was generated by repeating the period for historical
production data, four times for a period of 138 year (see figure 4.21b and 4.26a). The ini-
tial values for the reference points are the demand, and the reference points for drawdown
are calculated from the demand with the LPM model. The optimization is executed for
138 years.

Parameters Scenario 2: Values Units

C
Water

0.25 · 0.8695 $/m3

C
Pump

150, 000 $

C
Elect

0.0805/3600000 $/J

r 5.5%

Efficiency � 10%, (Maximum drawdown is 286 m)
Exergy, ex 28, 069 (T

0

= 288K, T
i

= 354.7K) J/kg
Number of years, n 138 years or 1660 months
Trend in demand 0%

Table 4.16: Parameters for Scenario 2.

The parameters used here can be viewed in table 4.16 and numerical results in ta-
ble 4.17. Like for Laugarnes field, the production was able to follow demand very accu-
rately for the whole period, that results in a very good linearization in the first iteration so
the updating algorithm (Algorithm 2) was also not needed here.
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Figure 4.26a displays the demand, ṁe,i, for the next 138 years and optimized pro-
duction ṁi. Three pumps are needed, two added in the first year and one in year 10.
Production follows demand exactly for the whole period and for that reason is the error
between linear and non-linear zero. Reykir field produces a substantially bigger amount
of water than Laugarnes field. It is thus not surprising that more pumps are added in
Reykir field.

Results Scenario 2 Units

Profit, PV
Profit

53, 287, 276 $

Income, PV
Income

57, 287, 228 $

Production, PV
Production�linear

3, 621, 250 $

Production, PV
Production�nonlinear

3, 621, 250 $

Pump Cost, PV
Pump

378, 702 $

Number of pumps, y 1

Pump added In month 1, 7 and 130 (year 10)
Maxium Drawdown 92.2 m
Iterations 1
Error, Equation 3.19 0 % %

Table 4.17: Results for Scenario 2.

Like for Scenaro 1, for a better overview of the data, the demand and production are
also represented as a moving average with a resolution in years, figure 4.26a.
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Figure 4.26: Scenario 2. Production and drawdown. Figure 4.26a displays production and demand for the
next 138 years. Demand is periodic and based on historical production data, repeated four times. Production
can not exceed demand. In this scenario the production follows the demand exactly. Figure 4.26b displays
the development of drawdown in the two tanks (this is a two tank model see chapter 2.1).

The maximum drawdown is 92.4 m, see table 4.17 and figure 4.26b. Production plus
pump cost are around 7.5% of the profit (figure 4.27a) which is slightly less than for
Laugarnes field.



94 Optimization for sustainable utilization of low temperature geothermal systems

PV Profit PV Income PV Production PV Pump
0

5

10

15

20

25

30

35

40

45

50

55

M
ill

io
n
 D

o
lla

rs
 [
m

$
]

Cost components.

(a)

2011 2030 2050 2070 2090 2110 2130
0

0.5

1

1.5

2

2.5

3

Time − Year

M
ill

io
n
 D

o
lla

rs
 [
m

$
]

Development of prestent value of profit with resolution in years

(b)

Figure 4.27: Scenario 2. Figure 4.27a graphical display of the cost components. Figure 4.27b displays
development of Present Value (PV) of profit for 155.5 years, resolution in years.

Here the drawdown fluctuates between approximately 45 m drawdown and down to
around 90 m drawdown and the trend in the drawdown is actually very slightly down-
wards. It can be seen from the fact that the maximum drawdown occurs around year 117
for Reykir field but in year 5 for Laugarnes field. For a longer period of production this
does not effect the drawdown in Reykir field all that much. An optimization was also
conducted for 280 years of production (with the same demand scheme) for Reykir field
and the maximum drawdown moved from 92.2 m to 94.2 m. It can thus be assumed that
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with this sort of demand scheme, the system will remain in equilibrium (for an open LPM
model) and operation remains profitable and sustainable.

Like for Laugarnes field the present value is substantially greater for the first 40 to
60 years (see figure 4.27b ) where it then becomes almost zero in approximately 110
years. So when the profit value of profit is maximized it is important to take this behavior
into account. It might be practical to choose a shorter period of time or simple another
objective function which is the subject of next section 4.4. First a sensitivity analysis will
be conducted for Scenario 2.

4.3.5 Sensitivity analysis for Reykir field

Small change in the LPM parameters did not effect the profit for Scenario 2 at all. This
does not support that a 2-tank model is more suitable than a three-tank model. This rather
supports the idea that the parameter fit might not need to be very accurate.
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Figure 4.28: Scenario 2. Sensitivity analysis. Proportional change in profit considering 10 % in-
crease/decrease in the economical parameters.

Like for Laugar field the profit is most sensitive to the price received for water and
interest rate, which indicates that stochastic methods might be appropriate where price
for water and interest rate are stochastic parameters. Such modeling is out the scope but
is already being considered as future work.
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4.4 Optimization of long term utilization under annually
increased demand

In this section three harvesting strategies will be examined for the two fields Laugarnes
and Reykir. Here, the optimization will be performed by considering an annual increase
in demand. As in the last section, the piecewise linear approximation (sections 3.2.2 and
4.2.1) will be applied and the parameters from section 4.1.2 are used for the underlying
reservoir. For further understanding of the behavior of the model and improvement sug-
gestion for the harvesting strategies, three different objective functions and in some cases
slightly different constraints will be considered and altogether 14 scenarios are compared,
see summary in table 4.18.

Scenarios

Field Scenario Objective Constraint Constraint
added to model removed from model

Laugarnes Scenario 1 max PV
Profit

Reykir Scenario 2 max PV
Profit

Laugarnes

Scenario 3 max PV
Profit

Scenario 4 max Profit|r=0

Scenario 5 min
Pn

i=1

(ṁe,i � ṁi) Profit � 0

Scenario 6 min
Pn

i=1

(ṁe,i � ṁi) Profit � 0 h
1,i  hmax

1

Scenario 7 min
Pn

i=1

(ṁe,i � ṁi) Profit � 0

yi  5

Reykir

Scenario 8 max PV
Profit

Scenario 9 max Profit|r=0

Scenario 10 min
Pn

i=1

(ṁe,i � ṁi) Profit � 0

Scenario 11 max PV
Profit

h
1,i  hmax

1

Scenario 12 max Profit|r=0

h
1,i  hmax

1

Scenario 13 min
Pn

i=1

(ṁe,i � ṁi) Profit � 0 h
1,i  hmax

1

Scenario 14 min
Pn

i=1

(ṁe,i � ṁi) Profit � 0

yi  5

Table 4.18: Summary of the 14 operation scenarios compared in this work. Scenarios 1 and 2 have to do
with Laugarnes and Reykir fields, not assuming annually increases demand. Scenario 3-7 have to do with
Laugarnes under annually increased demand and different objective functions and/or constraints and sce-
narios 8-14 have to do with Reykir field under annually increased demand and different objective functions
and/or constraints.
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Scenarios 1 and 2 were thoroughly introduced in last section. In scenarios 3 (Laugarnes)
and 8 (Reykir) the present value of profit is maximized exactly according to equation 2.28
in chapter 2. The only thing that differs from scenarios 1 and 2 is the demand as annual
increase is assumed here.

The objective function for Scenario 1,2,3 and 8 is:

PV
Profit

= J PV

MILPr1

(4.3)

The present value of profit has been introduced as the objective function in this work.
The result is however biased in terms of when financial decisions are taken as they are
more important today than 30 years from now, see e.g. figures 4.24 and 4.24. It is thus
interesting to exclude the interest rate factor and maximize the profit without an interest
rate. It is interesting to see if optimizing without an interest rate is more beneficial for the
customer for long term production.

In scenarios 4 (Laugernes) and 9 (Reykir) profit is maximized again, according to
equation 2.28 but the interest rate is set to zero (r = 0).

The objective function for scenario 4 and 9 is:

Profit|r=0

= J
MILPr1

(4.4)

The third objective function focuses on the consumers point of view only. It is unac-
ceptable for the consumer when demand for energy can not be fulfilled. It is however
not always economical to meet demand and focusing on meeting substantially increased
demand can increase the risk of unsustainable production and financial loss.

The objective proposed minimizes the sum of deviation between demand and pro-
duction and adds the constraint that profit can not go below zero. Thus, in scenarios
5 (Laugarnes) and 10 (Reykir) the sum of the deviation between demand and production
is minimized (resolution is in months).

The objective function is thus:

J DEV =
nX

i=1

(ṁe,i � ṁi) (4.5)
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Constraint added:
Profit|r=0

� 0 (4.6)

In scenarios 10 and 11, that both account for Reykir field, the present value of profit
and the profit with r = 0 are maximized respectively by taking out the sustainability con-
straint, constraint 3 (equation 2.25).

In scenarios 6 (Laugarnes) and 12 (Reykir) the sum of deviation (equation 4.5) be-
tween demand and production is minimized without a sustainability constraint.

In scenarios 7 (Laugarnes) and 14 (Reykir) the sum of deviation is minimized again.
Now a constraint is added to restrict how fast production capacity can be increased. I.e.,
a maximum of 5 pumps are allowed to be added in one month.

Constraint added:
yi  5 (4.7)

Demand function

According to the National Energy Authority of Iceland [National Energy Authority of
Iceland, 2012] annual demand from low temperature fluid increased 1.78% per year from
1990 - 2010. All of the scenarios here are assumed to have an operational disruption
accounting for 2% annual increase in demand as they are optimized over considerable
long time periods. The demand is generated by repeating the historical data (and adding
a yearly trend) six times for Laugarnes (155 years) and four times for Reykir (138 years)
like in last section, see figure 4.29. In reality such an increase in production will very
likely require a higher numbers of new wells, although it is no way of knowing what the
technology in 100 years can bring.
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Figure 4.29: The demand is historical production repeated periodically with a yearly trend of 2%. Resolu-
tion of data is in months.

Results from scenarios

Results from the scenarios can be viewed in tables 4.19 and 4.20. The tables display the
main conclusions from the optimization for comparison. The objective functions com-
pared include: present value of profit, PV

Profit

(equation 2.16), profit (equation 2.16 with
r = 0) and the sum of deviation between demand and production (equation 4.5). Short-
fall in production is calculated to get a better overview of how well the demand can be
fulfilled. Shortfall in production is one minus the sum of production divided by sum of
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demand
Shortfall in production = 1�

Pn
i=1

miPn
i=1

me,i

(4.8)

Regarding the sustainability consideration the maximum drawdown and the sustain-
ability constraint are compared. Maximum drawdown is simply maximal value of h

1,i

calculated after the optimization has been performed. This is to account for cases where
either sustainability is not reached or the sustainability constraint has been removed from
the model. The sustainability constraint was introduced in section 2.2.4.

The tables also display the timing and frequency of adding pumps, number of itera-
tion for the optimization and the error (equation 3.19) between the non-linear part of the
model and the linear approximation to account for the performance of the algorithm used
for the optimization. Objectives and added/removed constraint are in bold script in the
tables for each scenario. Graphical display of the results can be viewed in figures 4.30
to 4.39.

4.4.1 Laugarnes field

Laugarnes

(Scenario 1) Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7
Max PV

Profit

Max Profit|r=0

Min Deviation Min Deviation Min Deviation
without sustainabiltiy with max 5 pumps
constraint in one month

PV
Profit

(20.11 m$) 28.92 m$ 24.26 m$ 8.61 m$ 0.63 m$ 28.37 m$

Profit|r=0

(164.63 m$) 510.6 m$ 512.36 m $ 471.4 m$ 298.4 m$ 478 m$

Sum of deviation (24 kg/s) 592363 kg/s 499177 kg/s 295839 kg/s 0 295828 kg/s
Shortfall in production (0.00008) 0.31 0.27 0.15 0 0.15
Maximum drawdown (98.2 m) 510 m 617 m 751 m 1658 m 751 m
Sustainability constraint (751 m) 751 m 751 m 751 m - 751 m
Number of Pumps (1) 24 34 145 292 111
Frequence of pumps added (1) 16 times 2 times 2 times 3 times 23 times
Max no. of pumps in one month (1) 3 33 144 199 5
Iterations (1) 6 10 5 1 4
Error (0.00005%) 0.38 % 1.22 % 0.45 % 0 0.82 %

Table 4.19: Numerical results from optimization. The objective functions compared are present value of
profit, profit (with r = 0) and sum of deviation between demand and production (equation 4.5). Shortfall is
calculated by equation 4.8. Maximum drawdown is maximal value of h

1,i

calculated after the optimization
has been performed. The table also displays timing and frequency of adding pumps, number of iteration
for the optimization and the error (see equation 3.19) between the linear and non-linear objective and or
constraint. Objectives and added/removed constraint are in bold script in the tables for each scenario.

For Laugarnes field 6 scenarios were compared. The approximation algorithm (algorithm
2) is considered to have an acceptable performance for all of the scenarios, 1 to 10 it-
erations and an error between 0 and 1.22%. Scenario 1 was covered in section 4.3 but
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is presented parenthesis in table 4.19 for comparison purposes. Figure 4.30 display the
results from scenario 3 where there is an economically implicit sustainability constraint
(maximum drawdown) in the system that lies above the sustainability constraint itself
(hmax

1

=751 m) as it is apparently not optimal to pump deeper than 510 m for this scenario
(see figure 4.30a). This also means that after around 100 years of production demand can
not be met anymore, see 4.30b. The model is originally calculated in month resolution,
but results are displayed in yearly (moving average) resolution as well.
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Figure 4.30: Scenario 3. Drawdown and production for Laugarnes. Profit Maximized (PV). Figure 4.30a
displays the maximum drawdown, average yearly drawdown, and drawdown in month resolution. Fig-
ure 4.30b displays average production a year, average demand a year and frequency of adding a pump.

Scenario 4 where the profit (assuming no interest rate) was maximized implies that
demand can be fulfilled slightly better than in Scenario 3 as the sum of deviation is smaller
and the maximum drawdown bigger. The solution is unrealistic in terms of when the
pumps are added. All the 33 pumps are installed in the first year. This occurs since
an interest rate is not included in the objective function so it does not matter when the
pumps are installed (just that they are installed). Here maximum drawdown is at 617 m



Silja Rán Sigurðardóttir 103

that is also above the calculated sustainability limit. See results for scenario 4 in figure
4.31.
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Figure 4.31: Scenario 4. Drawdown and production for Laugarnes. Profit Maximized (assuming no interest
rate). Figure 4.31a displays the maximum drawdown, average yearly drawdown, and drawdown in month
resolution. Figure 4.31b displays average production a year, average demand a year and frequency of adding
a pump.

Scenario 5 minimizes the sum of deviation between demand and production. Demand
is fulfilled longer and the sustainability constraint for Laugarnes is active at the end of the
period, see figure 4.32a. The operation returns profit, even though it was not maximized.



104 Optimization for sustainable utilization of low temperature geothermal systems

It is noticeable (table 4.19) that the difference (scenario 3 and 4 versus scenario 5) between
the present value of profit is bigger than the difference between the profit without an
interest rate.
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Figure 4.32: Scenario 5. Drawdown and production for Laugarnes. Deviation minimized.
Figure 4.32a displays the maximum drawdown, average yearly drawdown, and drawdown in month reso-
lution. Figure 4.32b displays average production a year, average demand a year and frequency of adding a
pump.

For scenario 6, the sum of deviation is minimized but without a sustainability constraint
to see whether there is a point were the profit goes to zero. In this case the demand is
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fulfilled completely, but at the cost that drawdown goes down to 1658 m and the profit has
increased but is not zero. The cash flow of the profit (with no interest rate) for this scenario
is displayed in figure 4.33b and shows that after approximately 130 years the profit will
starts to become negative. If a longer time period were to be optimized, production would
need to be slowed down eventually to sustain a profitable production.
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Figure 4.33: Scenario 6. Drawdown and cash flow of profit without an interest rate for Laugarnes. Devia-
tion was minimized (no sustainability constraint).
Figure 4.33a displays the maximum drawdown, average yearly drawdown, and drawdown in month resolu-
tion. Figure 4.33b displays the cash flow of the profit. Without a sustainabilty limit the cash flow start to
become negative in about 130 years of production.
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Scenario 7 attempts to mix scenarios 3 and 5 together as scenario 3 has a more accept-
able present value and scenario 3 more acceptable shortage of production. The deviation
is minimized but the number of pumps that can be added in one time step is constrained to
5 (yi  5). In scenario 3, the maximum number of new pumps in one time step is 3. This
scenario could be considered as sustainable production from the consumer’s point of view,
with a step-wise increase in production capacity. By doing this the present value of the
profit becomes almost the same as when it was maximized where the demand is fulfilled
for a considerably longer period of time, see and compare figures 4.34b and 4.30b.
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Figure 4.34: Scenario 7. Drawdown and production for Laugarnes. Deviation minimized (y(i)  5, only
5 pumps can be added in each month). Figure 4.34a displays the maximum drawdown, average yearly
drawdown, and drawdown in month resolution. Figure 4.34b displays average production a year, average
demand a year and frequency of adding a pump.
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4.4.2 Reykir field

Reykir

(Scenario 2) Scenario 8 Scenario 9 Scenario 10 Scenario 11 Scenario 12 Scenario 13 Scenario 14
Max PV

Profit

Max Profit|r=0

Min Deviation Min PV
Profit

Max Profit Min Deviation Min Deviation
without sustainabiltiy without sustainability without sustainabiltiy with max 5 pumps
constraint constraint constraint in one month

PV
Profit

(53.29 m$) 77.31 m$ 73.14 m$ 64.97 m$ 77.41 m$ 63.07 m$ 31.67 m$ 76.98 m$

Profit|r=0

(374.31 m$) 1137.7 m$ 1137.9 m$ 1127.7 m$ 1250.2 m$ 1258.6 m$ 1208.2 m$ 1132.8 m$

Sum of deviation (0) 1003012 kg/s 1000920 kg/s 999102 kg/s 247457 kg/s 259978 kg/s 0 kg/s 999102 kg/s
Shortfall in production 0 0.28 0.29 0.28 0.07 0.07 0 0.28
Maximum drawdown (92.2 m) 286 m 286 m 286 m 527 m 556 m 876 m 286 m
Sustainability constraint (286 m) 286 m 286 m 286 m - - - 286 m
Number of Pumps 3 30 30 106 91 102 324 72
Frequence of pumps added 3 times 20 times 2 times 4 times 34 times 2 times 3 times 16 times
Max no. of pumps in one month 1 4 32 80 23 101 309 117
Iterations 1 4 4 4 3 3 1 5
Error 0 % 0.54 % 0.55 % 0.56 % 0.67 % 0.98 % 0% 0.55%

Table 4.20: Numerical results from optimization. The objective functions compared are present value of
profit, profit (with r = 0) and sum of deviation between demand and production (equation 4.5). Shortfall is
calculated by equation 4.8. Maximum drawdown is maximal value of h

1,i

calculated after the optimization
has been performed. The table also displays timing and frequency of adding pumps, number of iteration
for the optimization and the error (see equation 3.19) between the linear and non-linear objective and or
constraint. Objectives and added/removed constraint are in bold script in the tables for each scenario.

For Reykir field 8 scenarios were compared. The approximation algorithm has an ac-
ceptable performance for all of the scenarios, 1 to 4 iterations and an error between 0
and 0.98%. For scenarios 8 to 10 the sustainability constraint becomes active after about
80 years of production, that also results in a similar number for shortage in production.
The graphical results are thus very similar and only displayed for Scenario 8, see fig-
ure 4.35.
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Figure 4.35: Scenario 8. Drawdown and production for Reykir. Present value of profit maximized. The
result is very similar result for scenario 9 and 10. Figure 4.35a displays the maximum drawdown, average
yearly drawdown, and drawdown in month resolution. Figure 4.35b displays average production a year,
average demand a year and frequency of adding a pump.

To find out if the Reykir field also has what can be called an economical implicit sus-
tainability constraint scenarios 8, 9 and 10 are repeated without a sustainability constraint.
In maximizing the present value of profit without a sustainability constraint (Scenario 11)
there is an economically implicit sustainability constraint (maximum drawdown) at 527 m
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(figure 4.36a), which is essentially consistent with the result in Scenario 3 for Laugarnes
field. The sum of deviation is substantially smaller which is obvious since the sustain-
ability is ignored. What is interesting though is that from a profit point of view it doesn’t
matter if maximum drawdown is at 286 m or 527 m.
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Figure 4.36: Scenario 11. Drawdown and production for Reykir. Present value of profit maximized (no
sustainability constraint). Figure 4.36a displays the maximum drawdown, average yearly drawdown, and
drawdown in month resolution. Figure 4.36b displays average production a year, average demand a year
and frequency of adding a pump.
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Scenario 12 maximizes non present value of profit without sustainability constraint.
Like in scenario 4 the maximum drawdown lies deeper, but for this case the sum of devi-
ation is still slightly bigger. Pumps are all added in the first year.
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Figure 4.37: Scenario 12. Drawdown and production for Reykir. Profit maximized (no sustainability
constraint). Figure 4.35a displays the maximum drawdown, average yearly drawdown, and drawdown in
month resolution. Figure 4.35b displays average production a year, average demand a year and frequency
of adding a pump.
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Scenario 13 minimizes the sum of deviation without a sustainability constraint. Like
for scenario 6 for Laugarnes field the demand is completely fulfilled. The maximum
drawdown is 876 m versus 1658 m for Laugarnes field, see figure 4.38.
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Figure 4.38: Scenario 13. Drawdown and cash flow of non-present value for Reykir field. Deviation
minimized (no sustainability constraint). Figure 4.38a displays the maximum drawdown, average yearly
drawdown, and drawdown in month resolution. Figure 4.38b displays the cash flow of the non present
value.

As in scenario 7, the sum of deviation is minimized in scenario 14, and a constraint
added to ensure that no more than 5 pumps can be added in one time step. This is con-
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sistent with the result in scenario 7. As the profit is almost as high as if it were max-
imized. The difference is greater in comparison of those scenarios for Laugarnes field,
since the the production is severely constrained by the sustainability constraint, see figure
4.39a.
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Figure 4.39: Scenario 14. Drawdown and production for Reykir. Deviation minimized (constraint added:
y

i

 5, only 5 pumps can be added in each month). Figure 4.34a displays the maximum drawdown,
average yearly drawdown, and drawdown in month resolution. Figure 4.34b displays average production a
year, average demand a year and frequency of adding a pump.
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Chapter 5

Conclusion

5.1 Discussion

Optimization methods

In the attempt to solve a non-convex MINLP problem, three optimization methods where
essentially compared. Two linear relaxations (MILPs) and one relaxation from an integer
to a real number (NLP relaxation). The MILP relaxation for the piecewise under-and
over-estimators gave a poorer optimal than the piecewise linear approximation. It has not
been mathematically proved (as far as the author knows) that those methods give a local
optimal for problems in a relaxed form of non-convex MINLPs. The relaxation to NLP is
therefore very important. It applies the SQP algorithm to solve non-convex NLP and has
been proved to give a local optimal. The solution of the NLP relaxation is therefore an
upper bound for the local optimal. The solution from the linear approximation matches
the solution from the NLP relaxation so it must be a local optimal. The reason why
the under- and over- estimator method did not give a better solution is unknown. The
under- and over-estimator method was however conducted at the end of this work as a
comparison to the other MILP relaxation and thus not thoroughly investigated whether a
better solution could be obtained. Selection of the upper bound and lower bound could
have been more sophisticated as the algorithm for updating the bounds. The upper bound
are chosen from data and the lower bound zero. The updating process behaves in such
manner that it updates the upper bound only. It would be interesting to vary the lower
bound to see if a better solution or a direction to a better solution can be found.
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Parameter estimation

In estimating the reliability of using lumped parameter modeling (LPM) for predicting
changes in a low-temperature reservoir it is very important to have a satisfactory data set
as well as it is important to validate such calibration. Due to the simplicity of the LPM, it
can not always simulate a reservoir. This has now been done, and as seen from the results
in section 4.1 a sufficient validated fit can not always be acquired.

The data fit for Ellidaar and Reykjahlid could for example not be validated and thus not
be optimized in the manner described in this thesis. On the other hand, it could be argued
that the fit for Ellidaar field was actually rather good, the data was simply unfortunate
for the validation applied in this work since the production decreased substantially for the
period validated.

The reason the fit for Reykir and Reykjahlid as one field was not chosen for the op-
timization is that even though it was a closed model (which would give an interesting
comparison) the last tank (

3

, see table 4.4) was so big that the it would have taken a
longer period of time and more increase in production, in other words, a more unrealistic
scenario to see the difference between the three thank open and closed system. It was
thus considered more appropriate to choose Reykir with a two tank open model and hope
for a slightly smaller calculation time in the optimization, which then turned out to be
negligible.

The sensitivity analysis showed that the accuracy of the LPM parameters is maybe
not that important if the present value of profit is optimized as 10% change did not effect
the profit much. It could be interesting to see how other parameters change, e.g., how the
maximum drawdown changes in terms of change in the LPM parameters by applying sen-
sitivity analysis for annual increase in demand and without the sustainability constraint
and also by minimizing the deviation.

Optimization of long term utilization

The benefit from applying optimization instead of calculating drawdown directly from
production is that it gives the opportunity to consider different operational scenarios and
identify results that otherwise would be overlooked, for example the economically im-
plied sustainability constraint.
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Two geothermal fields were chosen for the optimization and different objectives and
constraint functions compared. The piecewise linear approximation returns acceptable
solutions for all of the scenarios. This suggest that the approximation algorithm is a good
solution method for such problems.

In comparing the results from the optimization for Reykir field and Laugarnes field
it is immediately noticeable that the sustainability constraint for Reykir lies at 286 m ver-
sus 751 m for Laugarnes field. The average temperature at Reykir field is lower than at
Laugarnes field (table 4.1) resulting in a shallower sustainability constraint as it is tem-
perature dependent, see also section 2.2.4. For this reason Scenarios 9, 10 and 11 show a
very similar result. Whether it is maximizing profit or minimizing deviation between de-
mand and production the production is severely constrained by the shallow sustainability
constraint. Scenario 11, 12 and 13 are thus essentially more comparable with scenarios 3,
4, 5.

The main difference between optimizing present value of profit and profit with no
interest rate lies in which time steps the pumps are added. The optimal for profit with no
interest rate is rather unrealistic as all of the pumps are bought in the first year. From the
other end it is of course theoretically financially beneficial for a future energy firm holder
if all of the pumps have already been bought.

The economically implied sustainability constraint lies in the range from 510 m to
617 m (see tables 4.19 and 4.20) for both of the fields when the profit is optimized. This
is mostly due to the fixed prices used in the model, C

water

and C
Elect

, see values in
nomenclature. In Sigurdardottir et al. [2012] it was showed that the economically implied
sustainability constraint lies deeper for a lower value of C

water

.

In minimizing deviation between demand and production it is noticeable in all cases
(with or without sustainability constraint) that the difference between present value of
profit (compared to when profit is maximized) is bigger than the difference between profit
without interest rate. That is due to the fact that the price doesn’t matter in this scenario,
as long as it stays above zero. All the pumps are added in the first year creating poorer
present value and a rather unrealistic result.

When minimizing deviation without a sustainability constraint the maximum draw-
down for Laugarnes becomes almost double the maximum drawdown for Reykir. That
can easily be explained by the fact that the central part of the reservoir, 

1

from the fit in
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section 4.1.2, is substantially bigger for Reykir than for Laugarnes. Minimized deviation
without sustainability constraint for Reykir does not suggest a negative cash flow in the
end of the period as was the case with Laugarnes, see figures 4.33b and 4.38b, hence
the different sizes of the reservoirs. The Laugarnes reservoir empties faster but should
recover faster as well do to a relatively high resistor value �

12

, see table 4.3.

By adding a constraint that ensures that only 5 pumps can be added in one time step as
deviation is minimized the most promising solution is obtained. In this way the needs of
the customer and the firm holder today are met since those scenarios (scenarios 5 and 12)
have the highest present value of profit and the lowest (sustainable) production shortage
at the same time. This suggests that step-wise increased production capacity is the best
strategy.

Reservoir and operational optimization models connected directly

The LPM is a quite effective, but a simplified approach to simulate a geothermal reservoir.
For such a long term production it would have been practical to assume cooling effect and
re-injection. Re-injection is relatively simple to integrate, for example by adding an extra
inflow tank to the system. Cooling effect could be modeled by a non-isothermal LPM
[Onur et al., 2008].

Connection the LPM to an operational optimization model is important since it can
give information otherwise not obtained and multiple different operational scenarios can
be tested. This model is however a very simplified version of the reality since various cost
are neglected (e.g. drilling, maintenance and transportation). It is also debatable whether
it is realistic to maximize profit for such a long term utilization since the present value of
profit eventually converges to zero, and whether it is practical in reality to have a draw-
down over 300 m in the wells. If profit would not have been maximized this economically
implied sustainability constraint would not have appeared. It is also impossible to know
what technology will bring in terms of realistic drawdown after more than 100 year. Us-
ing a fixed increase in demand is also unrealistic since it is not a fixed number and it is
rather unlikely that it will keep increasing so much for more than the next 100 years. The
number used (2% increase a year) is however an average of the increase in demand in the
last 20 years in Iceland, and it is a known fact that industries will be depending more an
more on geothermal energy in the future.
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5.2 Perspectives and future work

The optimization of utilizing a geothermal reservoir in a sustainable manner where reser-
voir and operational optimization models are connected directly, is as far as the author
knows a relatively unexplored field. This is essentially a mixed integer non-linear dy-
namic optimization problem that is converted into a mixed-integer non-linear optimiza-
tion (MINLP) problem.

In order to solve an MINLP within an acceptable time frame a relaxation of the prob-
lem is needed. Three methods where introduced tested and compared. The one proposed
here is an iteration algorithm for a piecewise linear approximation. A successful, rela-
tively fast iteration algorithm for this case has been developed and the problem success-
fully solved.

The algorithm has been generalized by applying it to more than one data set (e.g.
Laugarnes field and Reykir field) and comparing various operational scenarios. The op-
timization results show consistency between the data sets. For a long term sustainable
utilization, the best strategy seems to be to minimize the deviation between expected de-
mand and production capacity by adding pumps and/or wells and increase production
capacity in relatively small steps.

The model was most sensitive to change in interest rate and price of water. Price
of electricity also plays a role, and in reality those parameters are not a constants, but
rather time dependent variables that follow a certain trend and have a stochastic behavior.
Such considerations could also be included in the modeling.

Since for this model, it is relatively easy to implement various scenarios, it can in
practice be used to fit the specific needs of anyone who wants to implied it, e.g. energy
companies and/or contractors. For such a practical usage it would also be important to ap-
ply adaptive optimization where the parameter estimation and the optimization is always
updated as new data arises.

It would also be interesting to apply this model on more geothermal fields (using e.g.
closed LPM models) and even optimizing a network of geothermal fields with subsys-
tems. E.g., modeling Reykjavik as a network of the geothermal fields considered in this
work.
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Other future studies could include using statistical data for the interest rate, price of
water and electricity since they are essentially stochastic variables. It would be interesting
to try to solve the problem with Monte Carlo simulations or other stochastic optimization
methods. Another variation already briefly discussed is not to consider installing a pump
but rather a well with a pump and consider maintenance costs. Adding a well would cost
more but increase the total production capacity more.

Finally it would be interesting to apply such modeling on high-temperature systems.
The optimization is very likely to be applicable but the lumped parameter model is strictly
developed for single phase conditions. It would thus be interesting to integrate this sort of
optimization application to a another geological model that could simulate the behavior
of a high-temperature reservoir.
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ABSTRACT  
The goal of this work is to conduct a decision-making tool 
that optimizes present value of profit when utilizing low 
temperature geothermal resources.  The profit is measured as 
the difference between operating cost and price of energy. 
The usual approach in these studies, regarding the behaviour 
of the resource, is the lumped parameter model (LPM) 
which models pressure change in a geothermal reservoir 
with respect to given production history and drawdown. 
Here, a mixed integer linear programming (MILP) approach 
on the LPM will be used. The constraints are sustainability, 
demand and price of energy. A methodology for a 
quantitative definition of sustainability is established and 
coupled into the model. Demand and price of energy is 
simulated stochastically to account for uncertainty in future 
propagation using historical data. Results will include model 
comparison along with profit and lifetime under various 
conditions for different wells and values of parameters. 

1. INTRODUCTION  
The vast geothermal resources in Iceland have been utilized 
to a considerable extent and are primarily used for space 
heating, various industries, swimming pools and snow 
melting. Electricity generation using geothermal energy has 
also increased significantly in recent years and now accounts 
for over 20% of the total electricity generation in Iceland 
(Eggertsson, 2008). 

Geothermal energy has generally been classified as a 
renewable energy source since it is believed to recharge at a 
similar rate as a normal production rate from the resource. 
This classification has occasionally been challenged, saying 
that the thermal depletion of geothermal systems requires 
such a long recovery time that strictly speaking it is not 
renewable on a human timescale. It has been found 
(Stefansson, 2000) that renewability of geothermal systems 
is ultimately determined by the transportation process of 
heat within the crust. All porous and hydrous geothermal 
systems can therefore be classified as renewable, with some 
reservations, while hot dry rock systems can hardly be 
classified as such (Stefansson, 2000).  

It is important to make a clear distinction between 
renewability and sustainability. Renewability is a property of 
a resource where energy is continuously replaced at a similar 
rate as the extraction of energy.. Sustainability on the other 
hand refers to the exploitation of a resource where the 
production system applied is able to maintain production 
levels over long periods of time (Rybach & Mongillo,2006). 
Although many geothermal energy systems are renewable, 
the regeneration time of a geothermal reservoir may be quite 
long and it is unclear how to plan the operation strategy of 
power plants  to ensure profitable and sustainable power 
production.  The size and dynamic characteristics of 

geothermal reservoirs is often poorly understood when 
capital investments begin, since thorough exploration is 
quite costly.  The economic horizon of large-scale 
investments such as power plants may be greater than the 
characteristic time for regeneration of the reservoir for a 
given system.  Thus it is important to take into account the 
effects of long-term utilization of such fields, but they are 
generally not very well known. The demand for the 
geothermal resource may also vary, whether it is for pure 
generation of electricity or cogeneration of heat and power.  
A main concern of this work is to look at how to develop the 
resource in a sustainable manner in light of different 
constraints and uncertainty of production capacity, reservoir 
dynamics and market demand. 

Several methods exist for reservoir assessment in geothermal 
systems. The most commonly used are volumetric methods 
involving conceptual modeling, detailed mathematical 
modeling and lumped parameter modeling. Volumetric 
methods are based on estimation of the total heat stored in a 
volume of rock but do not take into account the dynamic 
response of the system (Axelsson, 2008). Detailed 
mathematical and numerical modeling is the most powerful 
modeling method available for geothermal reservoirs 
(Lippmann, O´Sullivan & Pruess, 2001), which can simulate 
the structure, conditions and response of a geothermal 
system with reasonable accuracy. Numerical modeling can 
despite its advantages be very time consuming which makes 
it an unsuitable method in statistical analysis such as that 
which will be applied in this study.  

In this work lumped parameter modeling (LPM) with a 
mixed integer linear programming (MILP) approach will be 
applied for resource assessment. It requires few and 
commonly available parameters for the physical modeling, 
but does not require much processing power and has an 
acceptable accuracy in modeling pressure change for 
isothermal low-temperature systems (Satman, Sarak & Onur, 
2005). Those advantages do come at some cost since lumped 
parameter models usually do not take into account well 
spacing or well injection locations, nor do they consider 
fluid flow within the reservoir. They are also unable to 
match average enthalpy and the non-condensable gas content 
of the produced fluid and cannot simulate phase changes or 
thermal fronts (Pruess, Bodvarsson & Lippmann, 1986). 

2. PREVIOUS WORK  
Lumped parameter modeling has been successfully applied 
to geothermal fields around the world, including Iceland 
(Axelsson,1989, Bjornsson, Axelsson & Quijano, 2005, 
Axelsson, 1991, Axelsson, Hjartarson and Hauksdóttir , 
2002), P.R. of China (Youshi, 2002), Turkey (Satman, Sarak 
& Onur, 2005), Central America (Bjornsson, Axelsson and 
Quijano, 2005) and at various other locations. In order to 
successfully model a geothermal field using lumped 
parameter modeling some production history must be 
available. The accuracy of the final model depends on the 
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time span and resolution of available data, since the data is 
used to estimate model parameters.  

Despite the inherent simplicity of lumped parameter 
modeling it has been shown to predict pressure changes in 
reservoirs with good accuracy, given sufficient data quality. 
The ultimate goal of such modeling is to predict the 
production capacity of the geothermal field. The model then 
serves as a useful tool in the decision making process with 
regards to exploitation rate, investment cost and 
sustainability considerations. 

From an economical point of view, excessive production is 
beneficial, mainly due to the time value of money, where the 
annual revenue in the early years has the greatest effect upon 
the present value of the operation. It has been concluded 
(Lovekin, 2000) that a particular aggressive exploitation 
scenario resulted in a discounted return of investment and 
present worth almost three times more than a conservative 
use of the resource, despite higher costs of make-up wells at 
later stages in the operation. The main drawback of 
excessive production is that it can lead to resource 
deterioration or even depletion. In (Eugster, Ryback, 2000) it 
was for example shown that the time required for a thermal 
recovery in a heat pump-coupled well heat exchanger system 
was roughly equal to production time.  

The increased use of geothermal resources has raised 
questions regarding their renewability and how the resource 
is harnessed in an optimal manner. It is currently unclear 
how to design optimal operation strategies of power plants 
that ensure profitable and sustainable power production. 
This is a complex problem which requires advanced 
modelling techniques to be combined with specific expertise 
in the problem domain.  A model of the geothermal reservoir 
is required in a combination with a model of the operational 
and market environment including all constraints and 
objectives. To our knowledge integrated models of 
geothermal systems including market constraints for 
operation have not been implemented.  

 There is a dearth of research on the optimal 
utilisation of geothermal resources. Stefansson (2000) is one 
of few who have proposed this issue. Among other things he 
proposed a strategy where power plants are built in small 
phases (20-30 MW) and use the first wells to gain 
understanding of the geothermal system at the same time as 
generating heat and power. In that way companies can make 
some profit from geothermal resources at the same time as 
studying their characteristics and make better judged 
decisions about further investments (Stefansson, 2002).  
Prior to this work, wells had been drilled for experiments 
without using them also for generating heat and power.  

Recently there has been an increasing interest and discussion 
on the sustainable harnessing of geothermal resources 
(Lovekin, 2000; Stefánsson, 2000; Flovenz, Axelsson & 
Armannsson, 2001; Rybach, 2006).  These studies conclude 
that despite geothermal resources being generally considered 
as renewable they can be harnessed in an excessive manner 
which can lead to depletion or even deterioration if the 
removal rate of energy is greater than the rate of 
regeneration.  Lovekin (Lovekin, 2000) investigated a 
certain case where the price of electricity is fixed, demand is 
unlimited and the production capacity of the geothermal 
resource is known. He concludes that the optimal harnessing 

strategy is to build as large a power plant as possible and 
exploit the resource in an excessive manner due to the time 
value of money, where the annual revenue in the early years 
has the greatest effect upon the net present value (NPV) of 
the operation. Gudni Axelson, Valgardur Stefansson, Grimur 
Bjornsson and Jiurong Liu (Bjornsson, Axelsson, Stefansson 
& Liu, 2005) have studied sustainable harnessing which they 
define as the possible continuous harnessing of the resource 
over an extended period (100-300 years).  Among others 
they study the Nesjavellir area and their research indicates 
that it is currently not being harnessed in a sustainable 
manner and it will not be possible to maintain current 
removal rate for an extended period. The production will 
need to be reduced and probably shutdown in an attempt to 
let the geothermal resource regenerate. 

The primary objective of this work is to develop new 
methods for creating strategies for harnessing geothermal 
resources that can ensure sustainable long-term utilization. 
The research is focused on optimal utilization of geothermal 
resources such that social and economic development 
objectives are fulfilled, in an environmentally benign way.  
In the following we use an innovative mathematical 
programming model to optimize the harnessing of 
geothermal resources and show how rules and regulations 
can be implemented with constraints in a simple manner.  

3. METHODS AND MATERIALS 
3.1 Model of a geothermal reservoir 
The behavior of the geothermal reservoir plays a major part 
in any analysis of future cost and operational optimization of 
the system at hand.  Therefore it is necessary to use a 
sufficiently accurate model to simulate this behavior, but it 
is also beneficial that the model is simple and can be run 
efficiently on a computer.  The modeling in this study is 
based on a lumped parameter description of a water 
dominated geothermal reservoir, which is discretized in time 
for convenience in an operational optimization procedure. 

3.1.1 Lumped parameter model  
The lumped parameter model is based on three storage 
tanks, which represent the near neighbourhood of a 
geothermal well, a volume in some distance from the well 
and finally a large volume which covers the area of 
influence from the well utilization.  These storage tanks are 
connected together so that fluid can flow between them and 
fluid can also flow from the tank nearest to the well to the 
surface.  The state of the tanks is represented by pressure 
and the pressure difference along with connection 
resistances controls the actual flow between tanks.  Figure 1 
shows the connection between storage tanks. 

 

Figure 1: Storage tanks with connections. 

In the description above, κ denotes the tank mass capacities, 
σ denotes resistance, p0 is the external pressure of the 
environment and d is the flow through the well. 

As mentioned before, the flow between the tanks is related 
to the actual pressure state in the tank.  This relation can be 
written as three differential equations, one for each storage 
tank.  This results in 
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which can be written in a more convenient matrix form (or 
state space form) as 

 

where  

     

 

 

There are various ways to solve the system above, either 
analytically with integration or with numerical methods, 
which is the topic of next section. 

3.1.2 Discrete approximation of the lumped parameter model 
One way of solving the differential equations for the lumped 
parameter model is to use numerical integration in time.  
Generally, such methods are classified into implicit methods 
and explicit methods, where the explicit ones are easier to 
implement but have stability issues and criteria. 

A relatively simple and accurate method to integrate the 
lumped equations is to use central finite difference 
approximation of the time derivative.  If xk denotes the 
current state at time step k and  xk+1  denotes a new update at 
a future time step, the numerical approximation of the 
update is 

 

which can be solved for  xk+1 , resulting in 

 

Or fully implicit method where 

 

 

so 

 

where Δt is the length of the time step used.  The implicit 
approach results in a very accurate and stable method, but 
requires some simple matrix operations in each time step. 

Another approach is to use an explicit method where the 
update to a new time step is based on the current time step 
only.  The resulting equation is 

 

and the solution for the state update is 

 

Note that A is a diagonal matrix and therefore easily 
invertible.  The explicit method requires that the time step Δt 
is chosen sufficiently small in order to ensure stability, but it 
is assumed that the reservoir conditions change slowly, so a 
time step of one month should be sufficiently small. 

 
3.2 Sustainability criteria 
For each geothermal system, and for each mode of 
production, there exists a certain level of maximum energy 
production, E0, below which it will be possible to maintain a 
constant energy production for a very long time (100–300 
years). If the production rate is greater than E0 it cannot be 
maintained for this length of time. Geothermal energy 
production below or equal to E0, is termed sustainable 
production while production greater than E0 is termed 
excessive production. 

Sustainability can then be determined by the ratio between 
the power required to extract the water from the well and the 
specific exergy contained in the water times the demand: 

 

If c (J kg-1K-1) is the heat capacity of water (at 25° C), Th (K) 
is the temperature of the heat source and T0 (K) is the 
temperature of the heat sink the following approximation of 
the exergy per unit production can be made 

 

3.3 Operational optimisation model 
To model the operation environment of the geothermal 
power plants mixed integer linear programming (MILP is a 
special type of mathematical programming techniques) as it 
is widely accepted that mathematical programming 
techniques offer appropriate methods to model and solve the 
complex constrained problems which arise in the planning 
and scheduling of complex production environments (Shah 
et al., 1999; Applequist et al.,1997; Engel et al.,2001). With 
the model we optimize the operation strategy of the 
geothermal power plant. Geothermal energy is classified as a 
renewable resource in the sense that water and heat flows 
into areas from which it has been removed.  However, if 
water or heat is removed from the geothermal reservoir at 
greater rate than it is replenished, the time will come that 
plant operations are no longer profitable and the reservoir 
must be allowed to rest while the system heats up and / or 
fluid re-enters.  The optimized operations strategy will 
determine initial investment, the rate of extraction and 
whether production should be continuous or intermittent. 

To be able to provide decision support for creating 
sustainable harnessing strategies it is necessary to develop a 
model that mimics the feedback of the geothermal reservoir 
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to harnessing. Due to the extensive calculations needed for 
optimising the operation strategies it is important that the 
reservoir model is efficient but at the same time it needs to 
be accurate enough.  The lumped parameter model contains 
differential equations that make it more difficult to solve the 
MILP model.  To make the model easily solvable we use a 
implicit discrete time scale and replace the differential 
equations with discrete constraints that take care of mass 
balance in the tanks.  

 

3. RESULTS 
3.1 Parameter estimation  
In order to estimate the accuracy of discrete lumped 
parameter models the model is fitted against data from 
Lauganes reservoir in SW-Iceland. Figure 3 shows the 
production history and the historical drawdown can be seen 
in figure4.  The model parameters are estimated by 
minimizing the squares of the difference between theoretical 
drawdown and empirical observation such as 

 

where is an empirical observation at time step j and 

 is the theoretical drawdown at the same time 

step. This returns the vectors of the values for the initial 
drawdown in each tank,  the storage coefficients,  (from 
K) and the conductance values  (from S) which are the 
characteristic parameters for the particular geothermal 
system in question. This is solved by using lsqnonlin 
MATLAB function. 

 

 

Figure 3: Production history in kg/s over 17 years. 

 

Figure 4: The drawdown data used to estimate model 
parameters versus the drawdown from the fitted model.  

The discrete lumped parameter model follows the data quite 
accurately compared to the discrete approximation that has 
been done or root mean square (RMS) of 12.58 and standard 
deviation of 12.57. More accurate parameter estimation is 
obtained by solving the differential equation (see section 
3.1.1) directly or RMS of 6.65 and standard deviation 6.74. 

 

3.2 Behaviour of the discrete reservoir model 

After the parameters have been estimated optimization is 
tested. We use CVX, a Matlab-based modeling system for 
convex optimization. CVX turns Matlab into a modeling 
language, allowing constraints and objectives to be specified 
using standard Matlab expression syntax (CVX, 2009).  

We compare the behaviour of the discrete reservoir 
optimization model to data from Lauganes reservoir. We use 
one reservoir and assume decision variable Q can not exceed 
historical production. We run the optimization for 3 years 
(150 weeks). 

 

Figure 5: Results from optimization showing drawdown 
in tanks 1, 2 and 3.  

From figure 5 we see that h1 has the highest fluctuation of 
the 3 tanks and shows greatest response to variation in 
production rates; h2 shows a slightly decreasing drawdown 
and h3 slightly increasing drawdown. From figure 6 we see 
that the drawdown in tank one follows the data to some 
extent. 
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Figure 6: Historical drawdown compared with calculated 
drawdown from the simple model 

We observe the relative error from this optimization. The 
relative error increases in year two and decreases again in 
year 3 where the optimized drawdown goes below historical 
drawdown. 

 

Figure 7: Relative error from optimization 

Let’s now assume that Q can exceed historical production by 
20% and not go lower than 80% of the historical production 
and drawdown can not exceed 200 m. We run the 
optimization for 1 year (50 weeks) and obtain the results 
shown in figures 8 and 9. 

 

Figure 8: Result from optimization with more slack in 
production. Here the historical drawdown is compared 
with outcome of optimization model. 

 

Figure 9: Result from optimization with increased slack 
in production. Here the historical production is 
compared with outcome of the optimization model. 

The production is profitable with the data used for the 
Lauganes reservoir and we see that with increased slack in 
production the production increases to its maximum allowed 
limits and as a result the drawdown increases.  

 

 

 
4. CONCLUSIONS AND FUTURE WORK 
According to the parameter estimation implicit discrete 
approximation gives a relatively good estimate. 

The optimization model indicates that such a model can be 
implied but relative error is still too large in our model.  

Drawdown increases with more slack in the production 
constraint which is sensible since our revenue increases with 
more production. The interaction between the three tanks is 
also logical.  

CVX in Matlab can only handle 3 years of optimization. 
With a stronger solver this could be applied for a longer 
period which would give better opportunities for validating 
the model behaviour and exploring the usability of the 
model.   

Future work will focus on reducing the error of the model 
and solving it for extended time horizon and multiple 
reservoirs.  
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APPENDIX 
A1 Nomenclature 
A1.1 Indexes 
t Index for time periods,  t Є [1,2,....,T] 

w Index for wells, w Є [1,2,....,W] 

A1.2 Variables 
Decision variables 

Qt,w Extraction from tank 1, well w in time period t 

[kg/s] 

Yt,w Binary variable. Yt,w=1 if we buy well/pump w in 
time period t, otherwise Yt,w =0 

   

State variables 

h1t,w Height in tank 1 of well w  in time period t 

h2t,w Height in tank 2 of well w in time period t 

h3t,w Height in tank 3 of well w in time period t 

Parameters 

σ1,2 The conductivity between tanks 1 and 2  

σ2,3 The conductivity between tanks 2 and 3  

σ3 The conductivity between tanks 3 and the external 
environment of the system 

S  

H0 The external drawdown 

h11,w Drawdown in tank 1 of well w  

h21,w Drawdown in tank 2 of well w  

h31,w Drawdown in tank 3 of well w  

H1max  Maximum drawdown of tank 1 for sustainability 
constraint  

QWmax Maximum production capacity for each well 

κ1 Storage coefficient of tank 1  
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κ2 Storage coefficient of tank 2 

κ3 Storage coefficient of tank 3 

K  

g Gravity 

dt Length of each time period (in seconds)  

ρ Density of water at 25°C. 

Celect Price of electricity [$/kWh]!!!!!!!

Cwater Price of water  [$/m3] 

Cstart Pricing of adding a new well/pump[$] 

 

 

Figure 1: The three tank system. 

 

 

 

 

Figure 2: Explanation of the discrete time axis and 
examples of variables used in the model. 

 

 

A1.3 Constraints 
Mass balance equations on matrix form 

 

Production capacity constraint for each well: 

   

   

Sustainability constraint: 

   

Setup-cost constraint 

   

Demand constraint: 

 

  

A1.4 Objective Function 

Total Revenue = 
 

Production Cos t=  

Well Start Cost =  

Total Cost = Production Cost + Well Start Cost 

Max (Total Revenue – Total Cost) 

 

 

 

 

1  2              3                                        T 
       Q1,w          Q2,w         Q3,w                    QT-1,w 
        h11,w             h12,w             h13,w     

 

 

                v12,w                       v13,w                       v14,w 

   dt 
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1. Introduction

Utilization of renewable and environmentally friendly energy has gained
increased attention in recent years. Geothermal energy is a promising source
for heat and power that may be harnessed in a sustainable manner by ex-
tracting the heat from the earth.
Geothermal systems can be classified according to their temperature and the
presence of fluid. Hydrothermal systems are permeable and have geothermal
fluid naturally present. This study examines low temperature hydrothermal
systems, where geothermal fluid is naturally present and no phase change
occurs.
Although many geothermal systems are considered renewable, the regenera-
tion time of a geothermal reservoir may be quite long and it is unclear how to
plan the operation strategy to ensure profitable and sustainable production.
The size and dynamic characteristics of geothermal reservoirs are often poor-
ly understood when capital investments begin, since thorough exploration is
costly and will never completely eliminate uncertainty. Thus, it is important
to make a clear distinction between renewability and sustainability. Renewa-
bility is a property of a resource where the energy is naturally replaced at a
similar time scale as the extraction (Axelsson et al., 2001). Sustainability on
the other hand refers to the exploitation of a resource where the production
system applied is able to maintain production levels over long periods of ti-
me (Rybach and Mongillo, 2006).
Low temperature geothermal systems are most commonly used for space
heating and provision of hot water and in some cases used for generation of
electrical power. In particular, the vast geothermal resources in Iceland have
been utilized to a considerable extent, mainly for space heating.
A low temperature geothermal field is harnessed by drilling a number of bo-
reholes in the field and pumping geothermal fluid from them. This fluid is
used as a heat source, and once heat has been extracted from the fluid it
may or may not be re-injected into the field (without su�cient overpressu-
re). The production from the field is determined simply by the flow rate and
temperature of the fluid extracted. The production capacity of a geothermal
field can thus be a↵ected by a drop in the temperature of the fluid or by
a decrease in the flow rate. Historical experience indicate that low tempe-
rature geothermal fields respond to production by declining pressure (here
referred to as drawdown) and sometimes declining temperature (Axelsson,
1991; de Paly et al., 2012). This could imply that limiting production might
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become a necessity after an extended period of operation.
From a financial point of view, due to the time value of money, excessi-
ve production is beneficial since the annual revenue in the early years has
the greatest e↵ect upon the present value of the operation. Lovekin (2000)
concluded that a particular aggressive exploitation scenario resulted in a di-
scounted return of investment and present worth almost three times higher
than a conservative use of the resource, despite higher costs of make-up wells
at later stages in the operation. However, the main drawback of excessive
production is that it can lead to resource deterioration or even depletion. It
was for example shown in (Eugster and Rybach, 2000) that the time requi-
red for thermal recovery in a specific geothermal system was roughly equal
to production time. The increased use of geothermal resources has raised
questions regarding their renewability and how the resource is harnessed in
an optimal manner. Currently it is unclear how to design optimal opera-
tion strategies of power plants that ensure profitable and sustainable power
production. It is then of considerable interest to be able to predict the dy-
namic response of the geothermal reservoir to production from it. By doing
so it may be possible to manage production so as to maximize revenue, en-
sure long-term production capability and plan for capital investments such
as purchasing and installing borehole pumps and drilling new boreholes. To
do so it is necessary to construct a representative model of the underlying
reservoir and how it responds to fluid being pumped from it.
Several methods exist for reservoir assessment in geothermal systems. Com-
mon ones are e.g. volumetric methods, detailed mathematical modeling and
lumped parameter modeling (LPM). Volumetric methods involve concep-
tional modeling and are based on estimation of the total heat stored in a
volume of rock but do not take into account the dynamic response of the
system (Axelsson, 2008). Detailed numerical models include high resolution
in three dimension and are eminently suitable for a number of tasks such
as selecting borehole locations etc. The computational cost of these models
can however become prohibitive when they are to be used for optimization
applications. Also lack of historical data can make it di�cult to support such
a detailed modeling.
The lumped parameter modeling approach represents the dynamics of the sy-
stem without information about detailed spatial variation and is thus useful
in predicting the production capacity of geothermal fields. A representative
lumped model could serve as a useful tool in the decision making process
with regards to the exploitation rate, investment cost and sustainability con-
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siderations.
A main concern of this work is to look at how to develop a resource in a
sustainable manner in light of di↵erent constraints and uncertainty of pro-
duction capacity, reservoir dynamics and market demand. In order to do this
it is necessary to include both the dynamics of the reservoir and the markets.
This sort of modeling was slightly tested in (Sigurdardottir et al., 2010), i.e.
for 3 years of production, and synthetic sustainability constraint. The goal in
this work is to optimize over 150 years with a validated parameter estimation
and a sustainability constraint that can be estimated from the exergy and
the temperature in the reservoir
Like in (Sigurdardottir et al., 2010), the focus is on low temperature geo-
thermal fields with constant temperature. Historical production data (1985
till end of year 2010) from ten boreholes and drawdown data from one bo-
rehole from the Laugarnes geothermal system in South-West Iceland will be
used here. The modeling approach will be carried out by first explaining
the reservoir model (LPM) and then explaining the operational model, the
optimization and the constraints. Results include parameter estimation and
validation along with assessment of di↵erent operational scenarios.

2. Modeling approach

A lumped parameter modeling (LPM) combined with a mixed integer li-
near programming (MILP) approach is applied here. These two components
are seamlessly integrated into a single mathematical model. The LPM is
known for acceptable accuracy in modeling pressure change for isothermal
low-temperature systems and requires relatively few commonly available pa-
rameters for the physical modeling (Satman et al., 2005). Those advantages
do however come at some cost since lumped parameter models usually do
not take into account well spacing or well injection locations. They are al-
so unable to match average enthalpy and cannot simulate phase changes or
thermal fronts in present state (Pruess et al., 1986).
Lumped parameter modelling has been successfully applied to geothermal
fields around the world, including Iceland (Axelsson, 1989; Axelsson et al.,
1989; Axelsson, 1991; Hjartarson et al., 2002), P.R. of China (Youshi, 2002),
Turkey (Satman et al., 2005), Central America (Axelsson et al., 1989) and
at various other locations. In order to successfully model a geothermal field
using LPM, some production history must be available. The accuracy of the
final model depends on the time span and resolution of available data, since
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the data is used to estimate model parameters.
Historical data is used to fit the unknown parameters of the LPM model.
The MILP model is used to find the optimal decisions regarding the future
operation of the energy/water production facility and the lumped parameter
component simultaneously simulates the behaviour of the geothermal system
as an integrated part of the optimization. This is a decision making process
in time, and in this case the time is divided into discrete steps or periods.
During each period, an optimization variable decides the production from
the well, which is then kept constant during that period. The objective is
to maximise the profit of utilizing a single reservoir for a district heating
system with the following in mind: Production can not exceed demand and
installed capacity of the pumps must exceed the power needed to pump the
fluid. A sustainability constraint is introduced, stating how much drawdown
is allowed. The problem is inherently non-linear, so for a linear optimization
a linear approximation needs to be performed. That includes finding suitable
reference points for the approximation a threshold that prevents the linear
solution of the objective function from jumping too far from the nonlinear
solution, see equation 12 in chapter 2.2.
This chapter establishes the lumped parameter modeling, the discrete inte-
gration for the LPM and parameter fit, the objective function and the con-
straints of the model along with the linear approximation and the approach
for finding suitable reference points to the approximation.

2.1. Lumped Parameter Reservoir Model (LPM)

The reservoir modeling in this study is based on a lumped parameter
description of a liquid phase hydrothermal reservoir. Three storage tanks
represent the neighbourhood of a geothermal well. These storage tanks are
connected together so that fluid can flow between them and fluid can also flow
from the smallest tank, representing the vicinity of the production wells to
the surface. The state of these tanks is generally represented by pressure head
and the pressure di↵erence between tanks along with connection conductance
that determine the actual flow between the tanks (see Figure 1). In this work,
drawdown will be used to describe the states instead of pressure.
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Descriptio 1: An N-tank system, a three-tank system will be considered in this work where
m

i

:= ṁ(i) h
i,j

:= h(i, j) 8j 2 {1, 2, 3} (tank) and t(i) = i 2 {1, .., n} (time step)

The mass flow (production) from the actual reservoir is represented as
ṁ(i) and h

1

(i), h
2

(i) and h
3

(i) represent the drawdown in the three tanks at
time step t(i) = i, see figure 1. The tank mass capacities are denoted by ,
� denotes conductance and h

0

is the drawdown of the external environment
which is assumed to be constant. As mentioned before, the flow between
the tanks is related to the di↵erence in drawdown in connected tanks. This
relation can be written as three coupled di↵erential equations, one for each
storage tank. This results in


1

dh
1

dt
= �

12

(h
2

� h
1

) + ṁ/⇢g (1)


2

dh
2

dt
= �

12

(h
1

� h
2

) + �
23

(h
3

� h
2

) (2)


3

dh
3

dt
= �

23

(h
2

� h
3

) + �
3

(h
0

� h
3

) (3)

which can be written in a more convenient matrix form (or state space form)
as

K

@

@t
h = Sh+ u (4)

where

K =

2

4

1

0 0
0 
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0
0 0 
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5
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2

4
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ṁ/⇢g
0

�
3

h
0

3

5

S =

2

4
��

12

�
12

0
�
12

��
12

� �
23

�
23

0 �
23

��
23

� �
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There are various ways to integrate the system above, either analytically or
with numerical methods, which is the topic of next section.

Integration of the Lumped Parameter Model

In the current study, the time step is partly based on availability of mea-
sured data, so an integration method that works without a limit on the time
step is chosen. The Central Finite Di↵erence Approximation or Modified
Euler method is a stable and accurate computation scheme where the func-
tion is considered at both the beginning and end of the time step, taking the
average of the two, consequently, (4) becomes.

K

h(i+ 1)� h(i)

�t
= S

h(i+ 1) + h(i)

2
+

u(i+ 1) + u(i)

2
(5)

Solving for h(i+ 1) gives

h(i+ 1) =

✓
K� �t

2
S

◆�1

✓
(K+

�t

2
S)h(i) +

�t

2
(u(i+ 1) + u(i))

◆
(6)

Parameter Fit

Now, the model parameters are estimated by minimising the sum squares
of the di↵erence between predicted drawdown and measured data:

min
1

2
khe � h(h(i, 1),K,S, t)k2

2

= min
1

2

X

i

(he(i)� h(h(i, 1),K,S, t(i)))2

(7)
where he(i) is a measured observation at time step i and h(h(i, 1),K,S, t(i))
is the predicted drawdown at the same time step. This returns the vectors of
the values for the initial drawdown in each tank, h the storage coe�cients, 
(from K) and the conductance values � (from S) which are the characteristic
parameters for the particular geothermal system in question. This is solved
by using a least squares minimiser that uses an interior-reflective Newton
Method for large scale problems. See results in chapter 3.1.

2.2. Optimization Model

Objective Function

Water for district heating is assumed to be sold at a fixed price C
Water

[$/kg]. The electricity needed to pump the water from the well is assumed to
be bought at fixed price C

Electric

, [$/J] and new pumps are added at a price
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C
Pump

. Profit is then calculated as the di↵erence between the income from
selling the water, production cost and cost by adding an additional pump.
The model has four state vectors, drawdown in the three tanks, h(i, j),8j 2
{1, 2, 3} and i 2 {1, 2, ...., n} and two decision vectors, production, ṁ(i),8i 2
{1, 2, ...., n}, and an integer decision vector, that decides whether a pump
should be added, y(i), 8i 2 {1, 2, ...., n}. Here, �t represents the time step
and r the interest rate for calculating present value. The parameters ⇢ and
g represent density of water and gravitational acceleration.
The present value of income is calculated as:

PV
Income

=
NX

i=1

�t · ṁ(i) · C
Water

⇢(1 + r)i
(8)

The present value of the cost of adding an additional pump is calculated as

PV
Pump

=
NX

i=1

y(i) · C
Pump

(1 + r)i
(9)

The present value of the production cost is calculated as:

PV
Production�nonlinear

=
NX

i=1

�t · C
Electric

· g · ṁ(i) · h(i, 1)
(1 + r)i

(10)

Equation (10) is a nonlinear equation since it holds a product of the va-
riables ṁ(i) and h(i, 1). Therefore, a linear approximation is applied at
this point. For any non-linear 2-dimensional function f(x, y), x, y 2 R, the
Taylor approximation is:

f(x, y) ⇡ f(x
0

, y
0

) + fx(x0

, y
0

)(x� x
0

) + fy(x0

, y
0

)(y � y
0

) (11)

Linearization of (10) thus yields:

PV
Production�linear

⇡
PN

i=1

(h
z

(i)·ṁ
z

(i)+h
z

(i)(ṁ(i)�ṁ
z

(i))+ṁ
z

(i)(h(i,1)�h
z

(i)))�t·C
Elect

·⇢·g
(1+r)i

(12)

Where hz(i) and ṁz(i) represent the reference points for the linear approxi-
mation. Equation 12 is used in the objective function.
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Updating Process

In order to obtain a good linear approximation an updating process with
k iterations is necessary. The initial values for the reference points that relate
to production (mz(i, k = 1)) are chosen first and the reference points relating
to drawdown (hz(i, k = 1)) are calculated according to mz(i, 1) using equa-
tion 6, see also figure 2. The optimization is now updated until the error (in
equation 13) between linear and nonlinear production is less than ✏ = 1%.
The error is calculated by comparing the percentage di↵erence between non-
linear and linear production from the optimal output from the objective
function, ignoring present value (r = 0), see equations 10 and 12.

Err := 100|
P

N

i=1

NonPV

i,Production�nonlinear

�
P

N

i=1

NonPV

i,Production�linear

|
P

N

i=1

NonPV

i,Production�nonlinear

(13)

Constraints

The following constraints are applied in the optimization model.

Constraint 1: Mass balance equations on matrix form

Drawdown is a function of demand. Constraint 1 carries out this rela-
tionship with a discrete approximation of the Lumped Parameter Model. See
also section 2.1.

h(i+ 1) =
�
K� �t

2

S

��1

�
(K+ �t

2

S)h(i) + �t
2

(u(i+ 1) + u(i))
�

8i 2 {1, 2, ...., n} (14)

where

u(i) =

2

4
ṁ(i+ 1)/g⇢

0
�
3

h
0

3

5 8i 2 {1, 2, ...., n} (15)

Constraint 2: Demand

A demand constraint states that production ṁ(i) can not exceed demand
ṁe(i). The optimization is carried out in periods according to the data, see
chapter 3.2.

ṁ(i)  ṁe(i) 8i 2 {1, 2, ...., n} (16)
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Start

Perform data fit
(see results in table 1 and
figure 4)

Define the following:
k := 1
limit := Err(k)  ✏

Solve optimization proplem
(Equation 26)
using ṁz(i, k) and hz(i, k)
as reference points

Calculate Err(k)
(Equation 13)

limit==TRUE?
Optimal solution has
been found

Stop

k==kmax?
A su�cient solution
can NOT been found.

↵ := step length
(0  ↵  1)
k := k + 1
(for next iterate)

Update reference points such that:
ṁz(i, k + 1) = ṁz(i, k) + ↵(m(i, k)� ṁz(i, k))
hz(i, k + 1) = hz(i, k) + ↵(h(i, 1, k)� hz(i, k))
8i 2 1, 2, ...., N

YES

NO

YES

NO

Descriptio 2: The iteration algorithm to find suitable reference points for the linear ap-
proximation is represented as a flowchart. The initial values for the reference points are
chosen as ṁ

z

(i, 1) and h

z

(i, 1), 8i 2 1, 2, ...., n such that ṁ

z

(i, 1) := �ṁ

e

(i) and since
h is a function of ṁ (see equation 6), h

z

(i, 1) is calculated from ṁ

z

(i, 1). � is chosen
0  �  1 such that h

z

(ṁ
z

(i, 1)) 2 F where F is the feasible region of the problem.
ṁ

z

(i, 1) is in other words scaled down so that when h

z

(i, 1) is calculated, it never reaches
the sustainability constraint, see equation 21.
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Constraint 3: Sustainability

For each geothermal system, and for each mode of production, there is a
certain power required to extract the water from the well, P

Well

and a certain
exergy contained in the water X

Water

P
Well

= ṁgh (17)

X
Water

= ṁe
x

(18)

Exergy is a measure of how much work can be done by a system during a
process that brings the system into equilibrium with its surroundings. For
the geothermal liquid under consideration this is taken to be the work that
could be done via Carnot cycle between the liquid and a heat sink at a given
temperature as the liquid cools down. Thus the specific exergy of the fluid
is approximated as:

e
x

= c

✓
(T

h

� T
0

)� T
0

ln
T

h

T
0

◆
(19)

where c is the heat capacity of water in J · kg�1K�1, T
h

is the temperature
of the fluid and T

0

is the temperature of the heat sink in Kelvin. The
equation above is derived using the assumption that c is a constant in the
temperature range T

0

to T
h

, which is valid for a single phase fluid such as is
being considered in this paper.
One possible sustainability criterion is to require that the energy needed to
pump a given amount of water from the well must be less or equal to a given
fraction of the exergy of that water:

P
Well

 �X
Water

(20)

where � is the exergy e�ciency of a typical power production system at the
well fluid temperature. For � = 1 the system is self-sustainable under Carnot
condition. The e�ciency of a space heating system such as the one in this
work is of course considerably lower. The cost of the investment should also
be taken into account for the sustainability limit. In this case e�ciency is
assumed to be 10% of the Carnot e�ciency which means that there is at least
10 times more energy available in the geothermal fluid than can be utilized
for power production under reversible condition.
Maximum drawdown can now be determined by the following equation:

hmax

1

=
ex�

g
(21)
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Thus the drawdown in the reservoir (tank 1, figure 1) is not allowed to exceed
a certain maximum drawdown due to sustainability.

h(i, 1)  hmax

1

8i 2 {1, 2, ...., n} (22)

Constraint 4: Production Capacity

As described in the section above and by equation (17) there is a certain
power required to extract the water from the well. The power needed for
pumping at time i, P

Power

(i) is then calculated as:

P
Power

(i) = g · h(i, 1) · ṁ(i)  P
Pump

·
Pi

l=1

y(l) 8i 2 {1, 2, ...., n} and l  i  n (23)

Where P
Pump

represents the power rating of one pump and y(i) is an integer
representing how many pumps need to be added at time i.
There are various options for choosing a pump for a reservoir and each case
needs to be carefully considered, e.g. in regards of chemical properties of each
reservoir, overpressure of the water, etc. In other words, each reservoir needs
to be examined individually. Those considerations are outside the scope of
this paper. It will be assumed that the power rating of the pumps is 250
kW.
Since h(1, i) and ṁ(i) from equation 23 are both unknown decision/state
variables this is a nonlinear constraint and a linear approximation needs
to be applied again. That is done in exactly the way it was done for the
production part of the objective function (see equations 10 and 12). Now
y(i) represents the number of pumps added at time i, where y is a vector of
non-negative integers. One pump needs to be present in the beginning so y
at time i = 1 is always at least 1.

P
Power

(i) = g(h
z

(i) · ṁ
z

(i) + h

z

(i)(ṁ(i)� ṁ

z

(i)) + ṁ

z

(i)(h(i, 1)� h

z

(i))) (24)

 250 · 103
iX

l=1

y(l)

Constraint 5: Approximation
When production can not meet demand the optimization has a tendency

to find solutions where ṁ(i) << mz(i) and h(1, i) << hz(i) which leads to
an unacceptable error in the linearisation of equation 12. To prevent this
a constraint is put upon how far production and drawdown may deviate
from the fixed points of the linearisation. This is described in the following
equation

h

z

(i) · ṁ
z

(i) + h

z

(i)(ṁ(i)� ṁ

z

(i)) + ṁ

z

(i)(h(1, i)� h

z

(i)) � h

z

(i) · ṁ
z

(i)

2
(25)
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The Optimization Model
The optimization model now becomes:

Max
h(i),ṁ(i),y(i)

PV
Profit

= PV
Income

� PV
Production

� PV
Pump

subject to

h(j, i+ 1) =

✓
K� �t

2
S

◆�1

✓
(K+

�t

2
S)h(j, i) +

�t

2
(u(i+ 1) + u(i))

◆
(26)

ṁ(i)  ṁ

e

(i)

h(1, i)  h

max

1

P
Power

(i)  250 · 103
iX

l=n

y(n)

h

z

(i) · ṁ
z

(i) + h

z

(i)(ṁ(i)� ṁ

z

(i)) + ṁ

z

(i)(h(i, 1)� h

z

(i)) � h

z

(i) · ṁ
z

(i)

2

3. Results

3.1. Measured field data, parameters and validation

Production data from 10 wells (see figure 3) in Laugarnes SW-Iceland ha-
ve been combined and used to fit against drawdown of the system as reflected
by the RV-34 well (also located in Laugarnes) a non-production well that is
used to record changes in water level. The 10 production wells have all been
in operation since 01.12.1982 (Ivarsson, 2011). Longer empirical records are
available, but only for 8 of the production wells. In this work data from
the period from 1982 until 2010 is used for estimating the parameters of the
model.
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Descriptio 3: Total production in Laugarnes, Reykjavik, Iceland during the years 1982 -
2010

Parameter Estimation and Validation

Although production from the 10 wells in Laugarnes field has been recor-
ded since 1982 (at least), the water level in RV-34 has only been recorded
since 1985. Parameter estimation is thus performed for 25.9 years (1985 till
2010) with a nonlinear iterative least square fit, according to equation 7. One
way to carry out the modeling process is to start with a simplified version of
the 3-tank open model described in section 2.1, i.e. 1-tank closed model. Fit
the parameters, expand the model and use the output as input (guess) for
the next step, 1-tank open model to 2-tank closed model etc. (Axelsson and
Arason, 1992). This method is not perfect but helps finding a neighborhood
for the solution. It is also possible to to start with a 3-tank open model and
apply randomized guessing until a su�cient solution is reached. That was
not tested in this work.
In this work the least-squares fit was implemented in Matlab (MATLAB,
2012). Finding the initial guess for the fit was quite tricky, thus the me-
thodology described above, starting with a very simple model was used to
construct a good initial guess for the parameters. That resulted in a rather
good fit, presented in table 1 where h(i = 1, j) represents the initial draw-
down in all the tanks and h

0

is the environmental drawdown.
In order to validate the data fit, half of the data was fitted from the same
initial guess as before. Those parameters were then used to calculate the re-
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sponse for the second half of the data. See table 1 and graphically in figure 4.
As said before, the discrete lumped parameter model follows the data quite
accurately compared to the discrete approximation that has been done, with
a root mean square (RMS) of 4.64 and maximum error of 20.76 m. In terms
of the data validation the RMS goes slightly up but still remains su�ciently
low. It is important to point out here that the third tank is very big so the
solution is not sensitive to h(3, i = 1) which is the drawdown in the third
tank and h

0

which is the environmental drawdown. For this reason it does
not a↵ect the result of the fit that those value di↵er in comparison of fitting
half of the data set and the whole data set. Results are shown in table 1 and
figure 4.

Parameters Parameter values Parameter values Other 1

2

Units
(whole data set fitted) (1

2

of the data set fitted) of the data set


1

50 50 ms2


2

1712 1698 ms2


3

10,426,317 11,515,673 ms2

�
12

0.093 0.089 ms
�
23

0.00026 0.00028 ms
�
3

0.0098 0.012 ms
h(1, i = 1) 131.99 128.10 m
h(2, i = 1) 130.63 127.05 m
h(3, i = 1) 39.57 130.63 m
h
0

6.35 45.30 m
RMS 4.64 5.05 5.40

RMS
misfit

0.27 0.29 0.32

R2

92.51% 91.59% 89.80%
Max Error 20.76 20.08 20.01 m
Mean Error 3.46 3.61 4.18 m

Tabula 1: Fitted parameters for the LPM model in Laugarnes for the period
01.12.1982 until 31.12.2010
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Descriptio 4: Result for data validation, half of the data fitted, other half calculated from
that fit

Other Parameters

Other parameters for the optimization model can be seen in table 2. The
initial demand, ṁ(i = 1) is the first significant value from the Laugarnes
field data. The values for C

Water

, and C
Electric

, are taken from price listings
from Reykjavik Energy (Reykjavik Energy, 2011).
The quoted retail price for electricity is used unchanged in the modeling sin-
ce in the scenario of selling hot water for district heating, one would have
to pay full retail price for electricity like any other customer. In selling the
water however it is very likely that a district heating firm buys the water
at relatively low (wholesale) price and sells it to the customer for a higher
(retail) price.
Statistic Iceland (Statistics Iceland, 2012) holds numbers for retail price ver-
sus wholesale price for electricity from 1980 to 2004, for the following compa-
nies: Rarik (both wholesale price and retail price), Landsvirkjun (wholesale
price) and Orkuveita Reykjavkur (retail price).
Assuming that the ratio between retail and wholesale price is somewhat si-
milar for water, those numbers can be used to get an idea of what the correct
water price might be. Those proportions range between 16% and 50% wi-
th an average around 40%. In addition, transportation and distribution of
the water needs to be considered. Statistic Iceland (Statistics Iceland, 2012)
also holds numbers (from 1983 - 2006) over production and primary energy
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versus losses in transport and distribution. Assuming that something similar
applies to transporting and distribution of water plus operational cost, it is
assumed here that the wholesale water price is not more than 25% of the
retail price (C

Water

) see table 2.
The value for C

Pump

is the cost for adding another pump. Those prices are of
course dependent upon properties of the pumps, e.g, how much power they
can handle and in what sort of condition they operate. Here, the price for
one pump is assumed to be $150,000.
The interest rate is taken from listing presented by the Central Bank of Ice-
land in November 2011. Interest rate here is considered to be a yearly based
constant.

3.2. Behaviour of the Discrete Reservoir Model and Sensitivity Analysis

Two di↵erent operational scenarios A and B will be examined.

Scenario A

Demand for hot water is generated by repeating the period for historical
production data, six times for a period longer than 155 year (see figure 5a).
The initial values for the reference points are the demand (with damping
factor � = 1), and the reference points for drawdown which are calculated
from the demand with the LPM model. The optimization is then executed
for 155.5 years.
The parameters used here can be viewed in table 2 and numerical results
in table 3. For this scenario production was able to follow demand very
accurately for the whole period, that resulted in a good linearisation in the
first iteration so the updating algorithm (see figure 2) was not needed here.

Parameters Scenario A: Values Units

ṁ(i = 1) 239 kg/s
C

Water

0.25 · 0.8695 $/m3

C
Pump

150, 000 $
C

Elect

0.0805/3600000 $/J
r 5.5% yearly rate
E�ciency � 10%, (Maximum drawdown is 751 m)
Exergy, ex 73, 612 (T

0

= 288K, T
i

= 400.7K) J/kg
Number of years, n 155.5 years or 1866 months
Trend in production 0%

Tabula 2: Parameters for Scenario A.
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Figure 5a a) displays the demand, ṁe(i), for the next 155.5 years versus
optimized production ṁ(i). For this scenario production follows demand
exactly except in month two where production is 95% of the demand because
of insu�cient pumping capacity. A new pump is not added until in month
10. No more pumps are needed after that. This implies that production is
in general not limited by financial or physical constraint for this scenario.
The resolution of the data is on a monthly basis and for a better overview
of the data, the demand and production are also represented as a moving
average with a resolution in years, figure 5 a).

Results Scenario A Units

Profit, PV
Profit

19, 373, 936 $
Income, PV

Income

21, 683, 752 $
Production, PV

Production�linear

2, 017, 029 $
Production, PV

Production�nonlinear

2, 017, 033 $
Pump Cost, PV

Pump

292, 787 $
Number of pumps, y 2
Pump added In month 1 and 10
Maxium Drawdown 135 m
Iterations 1
Error, Err 0.0000293% %

Tabula 3: Results for Scenario A.

Figure 5 b) displays the development of drawdown in the tanks. Tank 1
and tank 2 fluctuate identically, and thus it is unnecessary to show tank 2
graphically. It is however necessary to model the reservoir in terms of three
tanks to require optimal fit to the data.
By examining the drawdown it can be seen that after between 70 and 80 years
the drawdown fluctuates between approximately 50 m drawdown and down to
around 110 m drawdown and the trend in the drawdown is seemingly slightly
upwards (less drawdown with time). For this period of data examined, there
is a slight decline in the historical production data. That can be explained
by the fact that after 1990 a new heat source, Nesjavellir, started production
which resulted in reduced demand from Laugarnes area.
Adding other geothermal sources is however beyond the scope here. The
main concerns are decisions regarding production and installation of pumps,
and the timing of these decisions in the next 100 to 200 years for a profitable
and sustainable production.
Assuming demand for the next 155 year (like in this scenario) the system
will remain in equilibrium and operation remains profitable and sustainable.
Two pumps need to be bought in the beginning, the maximum drawdown is
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135 m, see table 3 and figure 5 b). Production plus pump cost are around
12% of the profit, see figure 6 a).
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Descriptio 5: Scenario A. Production and drawdown. Figure a) displays production versus
demand for the next 155.5 years. Demand is periodic and based on historical production
data, repeated six times. Production can not exceed demand. In this scenario the pro-
duction follows the demand exactly. Figure b) displays Development of drawdown in two
of the three tanks (description of the LPM model in chapter 2.1). Tank 1 and tank 2
fluctuate identically which is why only tank 1 is represented graphically. There is a slight
upwards trend in the drawdown due to the the reservoir having been in a depleted state
initially.

The present value is substantially greater for the first 40 to 60 years (see
figure 6 b) ) where it then becomes almost zero in approximately 110 years.
In terms of value of money from today it should be enough to look at 100
years at most.
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Descriptio 6: Scenario A. Figure a) displays graphical display of the cost components.
Figure b) displays development of Present Value (PV) of profit for 155.5 years, resolution
in years.

Sensitivity Analysis - Scenario A

It is of interest to see how much a small change in the parameters discussed
in chapter 3.1 a↵ect the profit.
Figure 7 a) and b) show the sensitivity of the profit with regards to variation
of the Lumped Model Parameters , � (see table 1) and the economical
parameters from table 2. The values of the parameters are varied by 10%
and the result from the optimization (the profit) compared.
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Descriptio 7: Scenario A. Sensitivity analysis. Figure a) displays proportional change in
profit considering 10 % increase/decrease in the parameters from the Lumped Parameter
Model (LPM). Figure b) displays proportional change in Profit considering 10 % increa-
se/decrease in the economical parameters. Please note di↵erent scales on the two figures
above.
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A 10% change in the Lumped Model Parameters a↵ects the profit by less
than 1%. That could suggest that the data fit does not need to be extremely
accurate, or like according to Satman et al. (2005), a 3-tank open model might
not be suitable since if the confidence interval range of the parameters is to
high. The confidence interval of the parameters was not thoroughly tested
here and there could still be parameters that have quite small confidence
intervals that e↵ect the pressure behavior significantly, even though they
don’t a↵ect the profit for 155 years of production. Working with a di↵erent
types of lumped parameter model, e.g. a model with only 2-tanks Satman
et al. (2005) might however be helpful. Comparing di↵erent types of lumped
parameter models is out of the scope here but will be considered in the future.
The profit is most sensitive to the price received for water and interest rate.
Those parameters are considered to be constants here, which they are of
course not in reality. Those results indicates the need to model this problem
with stochastic interest rate and price.

Scenario B

According to the National Energy Authority of Iceland, the annual in-
crease in demand for low temperature geothermal fluid over the period 1990
to 2009 was 1.78% (National Energy Authority of Iceland, 2012). Looking
more closely at the data, the trend seems to have increased more from 2000
till 2010, than from 1990 till 2000. Nevertheless, a scenario with a yearly
trend of 2% will be executed. Parameters and change from Scenario A can
be viewed in table 4 and numerical results in table 7.

Parameters Scenario B: Values Units Change from Scenario A

ṁ(i = 1) 239 kg/s
C

Water

0.25 · 0.8695 $/m3

C
Pump

150, 000 $
C

Elect

0.0805/3600000 $/J
r 5.5% yearly rate
E�ciency � 10%, (Maximum drawdown is 738 m)
Exergy, ex 73, 612 (T

0

= 288K,T
i

= 400.7K) J/kg
Number of years, n 155.5 years or 1866 months
Trend in production 2% a year X

Tabula 4: Parameters for Scenario B.

For a production with 2% a trend the calculations from the LPM model
show that the drawdown will reach the sustainability constraint of approxi-
mately 751 m in exactly 104 years. Since the initial values for the reference
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points are set with regard to production data of six periods but with 2%
trend a year, a large deviation in the linearisation is created. As a result,
updating the optimization becomes necessary (see figure 2). The initial re-
ference point guess is based on the assumed production data, ṁe, but ṁz is
scaled down from year 104 with a scaling factor � = 0.4 so that the reference
points for hz, calculated from ṁz are in the feasible region (hz  751) and
thus not too far from the an optimal solution.
By choosing the step length ↵ = 0.4, the algorithm converges with Err < 1%
(equation 13) after 4 iterations. Smaller ↵ requires more iterations, e.g.
↵ = 0.2 requires 6 iterations. A bigger ↵ also gives a result after 4 itera-
tions, ↵ = 1 does converge, but not to an error less than 1%. See results for
iterations in table 5 for ↵ = 0.4 and table 6 for ↵ = 0.2.

Iteration Err Profit-linear Profit-nonlinear PV
Profit�linear

PV
Profit�nonlinear

1 19.4% 570, 505, 060$ 479, 441, 807$ 28, 159, 633$ 28, 008, 369$
2 6.09% 514, 983, 732$ 491, 786, 817$ 28, 059, 936$ 28, 016, 446$
3 1.75% 504, 026, 571$ 498, 817, 881$ 28, 040, 524$ 28, 032, 867$
4 0.26% 502, 141, 486$ 501, 269, 858$ 28, 036, 628$ 28, 035, 019$

Tabula 5: Results from the iteration algorithm see figure 2 for Scenario B. Step length:
↵ = 0.4

Iteration Err Profit-linear Profit-nonlinear PV
Profit�linear

PV
Profit�nonlinear

1 19.4% 570, 505, 060$ 479, 441, 807$ 28, 159, 633$ 28, 008, 369$
2 12.07% 537, 665, 042$ 483, 677, 252$ 28, 102, 089$ 28, 008, 786$
3 7.45% 518, 612, 637$ 487, 785, 677$ 28, 067, 111$ 28, 010, 909$
4 3.24% 507, 760, 563$ 496, 966, 729$ 28, 047, 447$ 28, 024, 893$
5 1.38% 503, 905, 723$ 499, 551, 034$ 28, 040, 986$ 28, 033, 649$
6 0.47% 502, 726, 777$ 501, 124, 900$ 28, 038, 465$ 28, 034, 649$

Tabula 6: Results from the iteration algorithm, see figure 2 for Scenario B. Step length:
↵ = 0.2

Results for ↵ = 0.4 will be used here. The profit has increased 44% from
Scenario A and production and pump cost are 20% of the profit. The number
of pumps needed is 27 and the maximum drawdown is only 550 m.
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Results Scenario B Units

Profit, PV
Profit

28, 036, 628 $
Income, PV

Income

33, 552, 366 $
Production, PV

Production�linear

5, 059, 195 $
Production, PV

Production�nonlinear

5, 060, 803 $
Pump Cost, PV

Pump

456, 543 $
Number of pumps, y 27
Pump added In month 1 till year 100 (see figure 9)
Maxium Drawdown 550 m
Iterations 4
Error, Err 0.26 %

Tabula 7: Results for Scenario B.

Figures 8 and 9 show results for production and drawdown. Produc-
tion follows the demand quite accurately until in year 80, where it starts to
decrease, but not substantially until after year 100.
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Descriptio 8: Scenario B. Development of drawdown for two of the three tanks. Tank 1
and tank 2 fluctuate identically. The drawdown does not hit the sustainability constraint,
it rather seems like an implicit sustainability constraint is at 550 m drawdown.

The drawdown here (figure 8) in tank 1 and tank 2 has a relatively high
fluctuations in years 110 till 120. That is due to the fact that tank 1 and tank
2 are rather small (see table 1 and discussion on the lumped parameter model
in chapter 2.1). The tanks recover quite quickly when production slows down.
The time constant that describes recharging of tank 1 is 

1

�
12

⇡9 minutes, and
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that of tank 2 is 
2

�
23

⇡ 2.5 months. The time step of the optimization is
one month. This is also the reason why tank 1 and tank 2 seem to fluctuate
identically, the time resolution is to big to see the di↵erence. With a time
resolution of one minute it would be easy to see how tank 1 is more dynamic
than tank 2.
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Descriptio 9: Scenario B. Installed pumping power in kW versus production and demand.
The black dots represent when a new pump needs to be added. More than one pump can
be added at a one time. For this case, 3 pumps were added in one month at the most.
Looking at the production versus demand for the next 155.5 years, where the demand is
based on historical production, production can not exceed demand. The production in this
scenario follows the demand with 2% trend quite accurately until the year 100, where the
di↵erence between production and demand starts to increase substantially. The pumping
capacity constraint and the price for the water are both slowing down the production.
Note that the vertical axis on the right side represents pumping power (MW) and the
vertical axis on the left side represents production/demand (kg/s)

It is immediately noticeable from figure 8 that the drawdown levels out
before reaching the limit set by the sustainability constraint described in
equation 22. The reason for this is simply that it is not optimal with regards
to return on investment, to keep on producing hot water when the drawdown
has reached this level, even though it is favorable from an energy standpoint.
Three factors come into play here, the price of increasing installed pumping
power, the price of hot water and the price of electricity. In this work there
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are the least information about the price for hot water from the wells. It
was assumed to be 25% of the retail price. By increasing the wholesale
price to 37, 5% of the retail price the sustainability limit is reached after
approximately 118 years as can be seen in figure 10 b).
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Descriptio 10: Production and drawdown with 50% price increase in C
Water

. Production
versus demand for the next 155.5 years. Demand is periodic and based on historical
production data, repeated six times with a trend of 2% a year. Production can not exceed
demand. Figure a) shows that the di↵erence between production and demand starts to
increase substantially after more than 120 years, or about 20 years later than before, see
figure 9. Figure b) displays development of drawdown in two of the three tanks with an
increase in water price C

Water

. The drawdown first hits the sustainability at end of year
106 and from year 118 the sustainability constraint holds back the production.

Results Scenario B Units

Profit, PV
Profit

44, 870, 773 $
Income, PV

Income

50, 607, 133 $
Production, PV

Production�linear

5, 250, 471 $
Production, PV

Production�nonlinear

5, 257, 079 $
Pump Cost, PV

Pump

485, 889 $
Number of pumps, y 53
Pump added In month 1 till year 106 (see figure 10a)
Maxium Drawdown 751 m
Iterations 4
Error, Err 0.83 %

Tabula 8: Results for Scenario B with 50$ increase in C
Water

.

4. Conclusions and Future Work

The rigorous optimization of harvesting a geothermal reservoir in a su-
stainable manner where reservoir and operational optimization models are
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connected directly is a relatively unexplored field. The optimization model
is essentially seen as a Mixed Integer Nonlinear Programming (MINLP) wi-
th nonlinear and time dependent constraints. In order to solve this with
an acceptable solution time the nonlinear parts of the model need to be li-
nearized and for a robust linearization an iteration algorithm is proposed. A
successful, relatively fast iteration algorithm for this case has been developed
and the problem successfully solved. The benefit from optimizing where the
production is a decision variable gives the opportunity to detect for exam-
ple the economically implicit sustainability constraint that never would have
appeared if the drawdown would have been calculated in terms of a given
production.

An important next step is to see how this algorithm performs under va-
rious scenarios and how well it can be generalized, for example by applying
it to another data set. It is of course possible to perform nonlinear optimiza-
tion. However, for such a big data set that could take an enormous amount
of time. The objective function could be written in a quadratic matrix form
where Taylor approximation is still used for the single nonlinear constraint.
Two dimensional piecewise functions have been considered as well, along wi-
th applying dynamic programming, although dynamic programming could
be very hard due to the three dimensions in state variables. Future work
includes not optimizing the profit but rather creating harvesting strategies
from the consumers point of view and minimize deviation from demand. This
deviation is not interest rate dependent and therefore does not value the next
ten years more then say the last 10 years of 155 year period.

The model was most sensitive to change in interest rate and price for water.
Price for electricity also plays a role, and in reality those parameters are not
a constant scalar, but rather a time dependent variable that follows a cer-
tain trend and has a stochastic behavior. Such considerations could also be
included in the modeling.
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Nomenclature

Indices

t(i) Discrete time, t(1)  t(i)  t

n

, for all i 2 {1, 2, ...., n}, [s]
i Discrete time index

Decision Variables

ṁ(i) Extraction from tank 1 at time i, [kg/s]
y(i) Number of pumps needed at time i

State Variables

h(i, j) Drawdown at time i in tank j, for all j 2 {1, 2, 3} and i 2 {1, 2, ...., n}, [m]

Parameters

�

12

The conductivity between tanks 1 and 2, [m · s]
�

23

The conductivity between tanks 2 and 3, [m · s]
�

3

The conductivity between tanks 3 and the external environment of the system, [m · s]

S Conductivity matrix

h

0

The external drawdown, [m]
h(1, j) Drawdown in tank j at time i = 1 for all j 2 {1, 2, 3}, [m]
hmax

1

(i) Maximum drawdown of tank 1, sustainability constraint, [m]
h

e

(i) Historical value of drawdown, at time i, [m]
ṁ

e

(i) Historical value of demand at time i, [kg/s]
h

z

(i) Appropriate zero point for Taylor approximation, [m]
ṁ

z

(i) Appropriate zero point for Taylor approximation, [kg/s]


1

Storage coe�cient of tank 1, [m · s2]


2

Storage coe�cient of tank 2, [m · s2]


3

Storage coe�cient of tank 3, [m · s2]

K Storage coe�cient matrix

g Gravitational acceleration [m/s

2]
�t Timestep, �t = t(i+ 1)� t(i), [s]
⇢ Density of water at 25�C, [kg/m3]
C

Elect

Price of electricity, [$/J]
C

Water

Price of water, [$/m3]
C

Pump

Price of adding another pump, [$]
P
Power

(i) Maximum pump power, [W]
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