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Abstract 

Background: Instrumental variable analysis has been used in health economics, e.g. to 

find causal effects of health on labor-market outcomes. With advanced knowledge in 

genetics there has been a growing interest of using genetic information as instruments. 

The aim of this paper is to examine the quality of molecular genetic variants as 

instruments for body mass index (BMI). 

Data and Methods: The data used is from the Icelandic Heart Association, the 

Reykjavik Study (RS) established in 1967 and the Age, Gene/Environment Susceptibility–

Reykjavik Study (AGES-RS) initiated in 2002. Participants are men and women born 

1907-1935 in Reykjavík. Genetic variants or single nucleotide polymorphisms (SNPs) 

found to be robustly associated with BMI in a Genome Wide Association Study (GWAS) 

was used as instruments in the analysis. We made regressions where the SNPs were 

both used as a set of instruments and as a weighted genetic risk score (GRS).  

Results: First stage regressions show the instruments to be too weak to serve as 

instruments for BMI. The F-statistics result in a value of around 2, far below the 

minnimum of 10 that is often used as a threshold.  

Conclusion: This paper supports and further reinforces the literature in that far 

stronger genetic instruments are needed for BMI than are available to date. Therefore, 

results with such instruments need to be cautiously interpreted. 
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1  Introduction 

Obesity1 has risen dramatically in the last decades (WHO, 2000) with the OECD average 

of 18 percent among adults (OECD, 2014). Obesity is a risk factor for various diseases. 

For example, myocardial infarction, stroke, type 2 diabetes, hypertension, osteoarthritis 

and depression (Dixon, 2010). There are other economic effects of obesity as well. 

Health-care costs, for example have been estimated to be 41.5 percent higher for the 

obese, than for normal-weight individuals (Finkelstein, Trogdon, Cohen and Dietz, 2009) 

or even up to twice the amount when using instrumental-variables (IV) estimations 

(Cawley and Meyerhoefer, 2012).  

The consequences of this change in body weight also include potential labor-market 

effects. Several previous studies have found, among females especially, a negative 

correlation between body weight and wages, but the findings among men are less 

apparent (Asgeirsdottir, 2011; Averett and Korenman, 1996; Baum and Ford, 2004; 

Cawley, 2000; Cawley, 2004; Johansson, Böckerman, Kiiskinen and Heliövaara, 2009 and 

Pagan and Davila, 1997). However, the causal direction of this relationship, let alone the 

specific reasons are still not fully worked out.  

There are various pathways through which the observed relationship between 

weight and labor-market outcomes could work. Cawley (2000; 2004) identified three 

reasons for this correlation. First, obesity may affect the labor market, for example by 

lowering productivity due to health constraints or because of discrimination. The 

second explanation is that labor-market outcomes affect weight, for example, due to 

depression effects of unemployment or poor labor-market standing that could lead to 

weight gain. The third category of explanations is that weight and labor-market 

outcomes may be correlated with unobserved variables. One example of such a variable 

                                                      

1
  The body mass index (BMI) adjusts body weight for height and is calculated as weight in kilograms 

divided by height in meters squared. Weight categories are defined in the following way; BMI for normal 

weight individuals is equal to 18.5 and ranges up to 25.0, those with BMI equal to 25.0 and up to 30.0 are 

considered overweight, BMI equal to and above 30.0 is in the obese range and underweight individuals 

are those with BMI below 18.5 (NIH, 1998). 
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is the individual rate of time discounting. Those who have a higher marginal rate of time 

preference may invest little in their human capital, for example training and thus have 

low wages. At the same time they may be less concerned about long-term effects on 

health and be more prone to weight-gaining consumption. Some scientists believe that 

because of this obese workers might have a flatter earnings profile over time (Baum and 

Ford, 2004 and Lindeboom, Lundborg and van der Klaauw, 2010). 

Due to the ethical and practical constraints of conducting experiments when 

examining the effects of obesity, this literature has been plagued with methodological 

challenges and previous findings may well be partly due to the endogeneity of weight. 

To combat this scientists have applied different methods to estimate the causal effect 

of obesity and labor-market outcomes. Some have made use of the fact that prior 

research in behavioral genetics suggest that roughly half of the variation in BMI is 

genetic in origin (Comuzzie and Allison, 1998) and there are even studies that find up to 

72 percent of the variation in obesity to be due to genetic factors (Cutler and Glaeser, 

2005).  

Following this general approach, some have used differences to another individual 

with highly correlated genes, like a parent, same sex sibling or a twin (for an example 

see: Averett and Korenman (1996), Baum and Ford (2004) and Cawley (2004)). This is 

done in order to difference away unobserved heterogeneity assuming that it is constant 

among the two family members. Others have corrected for endogeneity by directly or 

indirectly applying IV models. Some researchers have used BMI of a closely related 

individual as an instrument (for an example see: Cawley (2000; 2004), Cawley and 

Meyerhoefer (2012) Gregory and Ruhm (2009) and Lindeboom et al. (2010)) while 

others have used molecular genetic variation as instruments. 

IV analysis is a statistical method that is used substantially in various fields of health 

economics (Cawley, Han and Norton, 2011 and Wehby, Ohsfeldt and Murray, 2008). 

Instruments (Z) are variables that are known to be related to the endogenous variable 

(X) but are assumed to have no direct or undirect connection to the outcome (Y), 

besides through X (Conley, 2009 and Wehby et al., 2008). The technique became known 

within epidemiology as ´Mendelian randomization‘ because of the random assignment 

of alleles parents pass on to their children (Wehby et al., 2008). Wehby et al. (2008) 
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suggested that instead of the term ´Mendelian randomization‘ researchers use the term 

´instrumental-variable analysis with a genetic variant´ to avoid communication barriers 

across fields. We thus use the term instrumental variables here, the idea being that 

using single nucleotide polymorphism (SNP) as IVs serves as a natural experiment to 

find the causal impact of weight on labor-market outcomes since some participants 

have obesity markers while others don´t .  

The term genoeconomics was introduced in 2007 in a paper by Benjamin et al. 

(2007). Ding, Lehrer, Rosenquist and Audrain-McGovern (2006) were the first to use 

molecular genetic instruments in economic analysis to study how health affects 

education. Subsequently many thought extending genetic data to economics in order to 

identify causal pathways to be promising (Beauchamp et al., 2011; Benjamin et al., 

2007; Benjamin et al., 2012a; Cawley et al., 2011 and Ding et al., 2006) and believed 

that the use of genes as IVs would become widespread (Cawley et al., 2011). At the 

same time other believe that most research has reached false positive genetic 

associations or overestimates of true effect sizes (Benjamin et al., 2012a; Chabris et al., 

2012 and Chabris et al., 2013). As an example Beauchamp et al. (2011) failed to 

replicate results from a Genome Wide Association Study (GWAS) of educational 

attainment. Similarly Benjamin et al. (2012a) failed to replicate associations between a 

particular genetic variant and educational attainment as well as cognitive function in 

three samples. In an attempt to replicate published associations of 12 genotypes of 

general intelligence, only one variant replicated in one out of three samples (Chabris et 

al., 2012) and in a study of economic and political preferences no significant 

associations with any set of traits were found (Benjamin et al., 2012b). The results are 

similar for self-employment where van der Loos et al. (2013) failed to replicate reported 

associations.  

For socioeconomic traits the causal chain from genetic to phenotypic variation is 

thought to be long, explaining the terms distal and proximal phenotypes. Distal 

phenotypes are most likely affected by many genotypes, each one with a very small 

influence. Another problem is that only a small fraction of the variation in the 

phenotypes can be explained by the genetic markers that have been found. With 

instrumental-variable analysis, associations of such tiny effect sizes raise the concern of 



 

11 

weak instruments and therefore underpowered research (Beauchamp et al., 2011; 

Benjamin et al., 2012a and Burgess and Thompson, 2011). The mentioned concerns are 

among those that have led some scientists to believe that it is unlikely that genetic 

variants of interest to economists exist or will ever be found (Beauchamp et al., 2011; 

Chabris et al., 2013 and Conley, 2009). 

The aim of this paper is to examine the quality of molecular genetic information as 

instruments for BMI. The first locus found to affect BMI was the fat mass and obesity 

associated (FTO) genotype, also explaining the biggest part of the known variance in 

BMI (Frayling et al., 2007; Li et al., 2010 and Speliotes et al., 2010). Doubt has already 

been cast on the FTO locus as a genetic instrument for BMI because of violation of 

assumption for the IV approach, that the instrument should only affect the outcome 

variable (mental disorder) through BMI. The association of the FTO alleles and obesity 

were strong and significant for men but not for women (Kivimaki et al., 2011). Results 

differed in a Swedish cohort study of men born 1920-1924 where the FTO variant was 

not associated with BMI (Jacobsson et al., 2009). For a physical trait like BMI there are 

also influential behavioral factors such as what a person likes to eat. There is some 

evidence that a genetic variant in the FTO gene affects appetite or preference for 

energy dense foods (Cecil, Tavendale, Watt, Hetherington and Palmer, 2008).  

Other loci have been uncovered in GWAS and found to be robustly associated with 

BMI. The large GWAS meta-analysis by Speliotes et al. (2010) with 32 BMI-related SNPs 

is a leading paper. Together the SNPs have been found to account for 1.45% of the 

variance in BMI (Speliotes et al., 2010), which may be considered small, but genetic 

effects on phenotypes like BMI are most often small (Chabris et al., 2013 and Li et al., 

2010). 

In a GWAS of Chabris et al. (2013) the wrong-signed SNPs were the most statistically 

significant, but out of 17 known BMI loci included in their data 11 had estimated effect 

sizes of the correct sign. A genetic risk score (GRS) of 32 SNPs was a statistically 

significant predictor of BMI among whites, with R2 equal to 0.13 (Belsky et al., 2013). 

The GRS was constructed from published GWAS through 2010, including the one of 

Speliotes et al. (2010), a paper which was also used for the effect-size weighting for the 

score. The GRS from Belsky et al. (2013) was at least as predictive as a GRS generated 
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from a GWAS meta-analysis on BMI of Speliotes et al. (2010) and it indicates that the 

GRS performed similarly among men and women (Belsky et al., 2013). Another study 

using the previously mentioned meta-analysis by Speliotes et al. (2010), among other 

GWAS, managed to replicate association of 12 SNPs and BMI with a large dataset. The 

same meta-analysis was used for effect size weighting of a score that could explain 0.97 

percent of the variation in BMI (Vimaleswaran et al., 2013). Yet another study using 

effect sizes from Speliotes et al. (2010) research for a score of three SNPs affecting BMI 

proved to be statically significant (Nordestgaard et al., 2012). Similarly Peterson et al. 

(2014) found 7 of the 32 SNPs to be associated with BMI in their data and they found a 

GRS to account for 3.1% of the variance in BMI (the sum score but the weighted score 

resulted in 0.6-0.9% of the variance accounted for).  

This paper thus reveals that it´s not the same molecular genetic variants that prove 

to be significantly associated with BMI across the studies. As expected from the GWAS 

of Speliotes et al. (2010) the variants don´t explain a big part of the variance in BMI and 

thus it is likely to result in weak instruments when applied as instrument in IV analysis. 

Weather genetic variation is a good instrument for body weight, thus remains an open 

hypothesis.  

Before substantial research is carried out using this methodology and policy action 

taken on its basis, it may be worth a while to give the foundation on which this 

literature is based some thought, as is done in the current paper. In our study with 

Icelandic data we tested if SNPs robustly associated with BMI from the GWAS of 

Speliotes et al. (2010) hold up against the criteria needed to serve as good (strong and 

valid) instruments for BMI. The results show it to be too weakly associated with BMI to 

meet the standard of a good IV. 
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2 Data and Methods 

The Icelandic Heart Association started the Reykjavik study (RS) in 1967. It is a 

population-based cohort of 30,795 men and women born in 1907-1935 and living in 

Reykjavik. Participants were surveyed between 1967 and 1991. The Age, 

Gene/Environment Susceptibility–Reykjavik Study (AGES-RS) is a sample of surviving 

participants from the RS, initiated in 2002. Genetic information was gathered from 

3,200 people in the AGES-RS while BMI measures are from RS and collected as close to 

participants middle age as possible. Figure 1 shows the number of participants with 

respect to datasets and variables. The number of participants narrows down when 

variables are added to the analysis. Numbers are for the full sample and the figure 

shows number of participants with necessary data for single stage and two stage 

regressions. The data is thoroughly described in Harris et al. (2007). 

 

 

Figure 1. Number of participants with respect to datasets and variables. 
 

The measure of body composition is body max index. Despite its shortcomings, BMI 

is widely used in social science research for classification, as it is inexpensive to measure 

in large samples with self-reports. Although it is always a shortcoming of this measure, 

that it doesn´t distinguish between fat and other tissue, it is still favorable that the 

measurements from RS are not based on self-reported height and weight as is often the 

case, but was measured by professionals. In this paper BMI is used as a continuous 

variable.  
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The focus in the current examination is on the quality of molecular genetic variation 

as instruments, rather than the effects of the endogenous variable BMI on the outcome. 

The appropriate quality measures are obtained using traditional two-stage IV methods 

but only through the effect of the genetic variants chosen. In the first stage regression 

we regress the phenotype BMI on the SNPs and in the second stage we regress an 

outcome variable on the fitted values of BMI from the first stage (Burgess and 

Thompson, 2011 and Lawlor, Harbord, Sterne, Timpson and Smith, 2008).  

Although the focus is on the first stage regressions, we employ two second-stage 

labor-market outcomes as cases in point. Specifically those are hours worked and 

occupation. The former outcome variable, hours worked per week is based on two 

questions from the RS cohort. In those questions, the participants chose one of four 

possible categories, indicating how many hours per week they work on average in a 

main job and, if applicable, an extra job. As the distribution of hours worked is positively 

skewed we take its logarithm and assume a linear association of log hours and BMI. 

The latter outcome variable is people’s occupation coded into a binary variable, 

taking the value one for managers and professionals, and zero for all other occupations. 

The data comes from the AGES-RS where people defined their career after retirement. 

We apply logistic regression models to examine odds ratios (OR) of the set of 

instruments and GRS for BMI. The categories of occupation are based on International 

Standard Classification of Occupation (ILO, 1990). Since labor-market behavior and the 

accumulation and distribution of fat on the body differ considerably by gender, all 

estimations are performed for females and males separately, although also reported for 

the full sample in the first stage regressions. The only control variable used in the 

regressions is age but the Icelandic population is unusually homogenous, thus not 

calling for the use of other controls, such as race. Summary statistics on those main 

variables are reported in table 1. We control for heteroskedasticity and report robust 

standard errors for the OLS models and 2SLS models with the outcome variable. 
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Table 1. Summary statistics. 

 
MEAN/FREQUENCY 

VARIABLE Female Male 

AGE (N= 1856; 1333) 52.0 (6.6) 49.7 (5.9) 

BMI ( N= 1856; 1351) 24.9 (3.8) 25.6 (3.1) 

DEPENDENT VARIABLES   

LOG HOURS 

(N=1821;1333) 
3.9 (0.2) 4.1 (0.3) 

HOURS WORKED 

(N=1821;1333) 
62.2 (14.2) 51.4 (9.2) 

OCCUPATION  

(N=1820; 1345) 
  

SECTOR 1 13.7% 25.4% 

SECTOR 0 86.3% 74.6% 

Standard deviations are in parenthesis. 

 

We used genetic variants as instruments for BMI, more specifically different genetic 

variants of SNPs called alleles. In a GWAS by Speliotes et al. (2010), a total of 249,769 

individuals of European ancestry, which the Icelandic data was part of, 32 SNPs were 

found to be robustly associated with BMI. To guarantee a positive relation of BMI and 

the SNPs, a linear regression was performed for each SNP in order to turn around the 

variants which showed a negative relation to BMI. The SNPs were both used as a set of 

instruments, where all 32 SNPs were combined in a single regression and as a weighted 

GRS. A GRS is a single variable with cumulative effects of the SNPs weighted with BMI 

effect sizes from the GWAS mentioned earlier (Belsky et al., 2013 and Speliotes et al., 

2010). The research by Belsky et al. (2013) supported a linear association between the 

GRS and BMI. 

There are two requirements for an instrument, it must be powerful and valid 

(Baiocchi, Cheng and Small, 2014 and Cawley and Meyerhoefer, 2012). We follow 

Bound, Jaeger and Baker (1995) suggestion and report both the F-statistic from the first 

stage regressions and R2 to estimate the instruments strength. For an instrument to be 

powerful it must explain the variation in the phenotype. If the correlation of the 

instruments and the endogenous variable is weak, then only a weak correlation 
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between the IVs and the error in the main equation can result in largely biased IV 

estimates, even larger than in the OLS estimate (Bound et al., 1995). For evaluation we 

used F-statistics from the first-stage regression, with values greater than 10 taken as 

evidence against weak instruments (Staiger and Stock, 1997 and Stock and Yogo, 2002). 

The F-statistic depends on the sample size, therefore increasing the sample size can 

reduce bias (Bound et al., 1995 and Burgess and Thompson, 2011). 

For instrumental variables to be valid the following assumption must hold. In context 

with our model it means that: (1) the SNPs (the genotype) and the BMI (the phenotype) 

must be consistently associated, (2) for the exclusion restriction to hold, the SNPs can 

affect the outcome only through BMI and (3) the SNPs have to be independent of 

unmeasured confounders affecting the outcome (Angrist, Imbens and Rubin, 1996; 

Baiocchi et al., 2014; Didelez and Sheehan, 2007; Lawlor et al., 2008; Taylor et al., 2014 

and Wehby et al., 2008). The first assumption, the association of BMI and the SNPs can 

be easily evaluated (Glymour, Tchetgen and Robins, 2012) but it is not a requirement 

that the instrument is causally related to the phenotype (Didelez and Sheehan, 2007 

and Lawlor et al., 2008). The second and third assumptions are harder to prove 

(Glymour et al., 2012 and Lawlor et al., 2008) and isn´t done in this paper. 

Statistical procedures are carried out using Stata 12. Participants in both RS and 

AGES-RS signed informed consent before they enrolled in the study. The AGES-RS study 

was approved by the National Bioethics committee and the Data Protection Authority 

(VSN AGES 00-063 and PV AGES  2002050228  MS/-- resepectively). 
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3 Results 

First stage regression results (from an instrumental variable regression on log(hours)) 

are presented in table 2, with coefficients for SNPs. Some SNPs have statistically 

significant OLS coefficients, more for females than males and most often for the full 

sample. However, only one SNP, rs2815752 near NEGR1 is significant at the 5% level for 

both genders and the full sample. Coefficients have both positive and negative signs, 

despite having been coded in such a way that if estimated in accordance with the 

previous literature, they were all expected to be positive. Having said that, the 

statistically significant SNPs are all positive. The same analysis was conducted with a 

genetic risk score (GRS) as an instrument, resulting in non-significant coefficients for the 

GRS as seen in table 3. 
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Table 2. Coefficients from first stage regressions with log(hours) as the outcome variable and 32 SNPs 
as set of instruments. 

VARIABLE NEAREST 

GENE 

FULL SAMPLE FEMALES MALES 

  dy/dx dy/dx dy/dx 

MALE  0.921 (0.12)   

AGE  0.064   0.01 0.085 (0.01)*** 0.027 (0.01)* 

RS4929949 RPL27A 0.023 (0.08) -0.009 (0.12) 0.044 (0.12) 

RS10767664 BDNF 0.207 (0.10)** 0.193 (0.14) 0.215 (0.15) 

RS4771122 MTIF3 0.008 (0.10) -0.119 (0.14) 0.234 (0.15) 

RS2241423 MAP2K5 0.112 (0.10) 0.267 (0.14)* 0.234 (0.15) 

RS12444979 GPRC5B 0.214 (0.14) 0.363 (0.19)* 0.039 (0.21) 

RS571312 MC4R 0.274 (0.10)** 0.193 (0.14) 0.351 (0.14)* 

RS2287019 QPCTL 0.118 (0.11) 0.153 (0.15) 0.044 (0.14) 

RS543874 SEC16 0.092 (0.11) 0.016 (0.16) 0.172 (0.15) 

RS1514175 TNN13K 0.031 (0.09) 0.116 (0.12) -0.074 (0.12) 

RS1555543 PTBP2 0.041 (0.09) -0.068 (0.13) 0.162 (0.12) 

RS2867125 TMEM18 0.197 (0.11)* 0.353 (0.16)** -0.012 (0.16) 

RS713586 RBJ 0.101 (0.09) 0.087 (0.13) 0.101 (0.12) 

RS887912 FANCL 0.105 (0.10) 0.041 (0.14) 0.182 (0.14) 

RS9816226 ETV5 0.216 (0.10)** 0.319 (0.15)** 0.079 (0.15) 

RS2112347 FLJ35779 0.151 (0.09) 0.151 (0.13) 0.148 (0.13) 

RS4836133 ZNF608 0.232 (0.09)** 0.323 (0.13)** 0.130 (0.13) 

RS10968576 LRRN6C -0.030 (0.09) -0.060 (0.13) 0.004 (0.13) 

RS1558902 FTO 0.249 (0.10)*** 0.309 (0.14)** 0.135 (0.13) 

RS10938397 GNPDA2 0.163 (0.09)* 0.218 (0.13) 0.128 (0.13) 

RS2815752 NEGR1 0.404 (0.09)*** 0.278 (0.13)** 0.573 (0.12)*** 

RS7359397 SH2B1 0.189 (0.09)** 0.219 (0.13)* 0.210 (0.12)* 

RS3817334 MTCH2 -0.025 (0.09) -0.011 (0.12) -0.003 (0.12) 

RS987237 TFAP2B 0.129 (0.12) 0.0435 (0.16) 0.228 (0.17) 

RS7138803 FAIM2 0.224 (0.09)** 0.281 (0.14)** 0.156 (0.13) 

RS11847697 PRKD1 0.200 (0.23) 0.241 (0.33) 0.162 (0.34) 

RS13107325 SLC39A8 0.102  (0.35) -0.181 (0.43) 0.718 (0.62) 

RS3810291 TMEM160 0.219 (0.11)** 0.203 (0.16) 0.282 (0.14)** 

RS13078807 CADM2 0.135 (0.11) 0.198 (0.16) 0.075 (0.14) 

RS2890652 LRP1B 0.083 (0.11) -0.117 (0.16) 0.296 (0.16)* 

RS206936 NUDT3 0.151 (0.11) 0.203 (0.17) 0.064 (0.15) 

RS10150332 NRXN3 0.105 (0.11) 0.198 (0.15) -0.010 (0.16) 

RS29941 KCTD15 -0.174 (0.09)* -0.258 (0.13)** -0.036 (0.12) 

CONS  17.29  (0.79) 15.54 (1.10)*** 20.82(1.07)*** 

  N = 3154 N = 1821 N = 1333 

  R
2
 = 0.051 R

2
 = 0.057 R

2
 = 0.045 

  F = 2.927 F = 2.126 F = 2.053 

Robust standard errors are in parentheses. 
R

2
 and F are first stage summary statistics. 

*Significant at 10% level, **significant at 5% level, ***significant at 1% level. 
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Table 3. Coefficients from first stage regression with log hours as the outcome variable and GRS as an 
instrument. 

VARIABLE FULL SAMPLE FEMALES MALES 

 dy/dx dy/dx dy/dx 

AGE 0.066(0.01)*** 0.088 (0.01)*** 0.028 (0.01)** 

GRS -0.067 (0.12) -0.044 (0.17) -0.111 (0.16) 

CONS. 21.55(0.55)*** 20.34 (0.738305)*** 24.41 (0.76)*** 

 N =3154 N = 1821 N = 1333 

 R
2
 = 0.025 R

2
 = 0.023 R

2
 = 0.003 

 F =0.314 F =0.069 F = 0.471 

 Robust standard errors are in parentheses. 
R

2
 and F are first stage summary statistics. 

*Significant at 10% level, **significant at 5% level, ***significant at 1% level. 

The F-statistics, reported in table 2, relating to the hypothesis that the first-stage 

coefficients of the instruments are jointly equal to zero were 2.126 for females, 2.053 

for males and 2.927 for the full sample. None of the F-values for either the set of 

instruments or GRS, in table 3 exceed the minimum of 10 as suggested by Staiger and 

Stock (1997) and should thus be declared as weak (Staiger and Stock, 1997 and Stock 

and Yogo, 2002). The R2 are likewise very low. 

To give examples we performed regressions with two outcome variables, log(hours) 

and occupation. Results from those estimations can be found in table 4. For both 

outcome variables we checked non-linear specifications of BMI but they all proved to be 

weakly associated with the outcome variables, resulting in opposite the sign from what 

was expected or no correlation at all. Other adiposity indicators where tested, such as 

clinical classifications of BMI, but they did not show any correlation with the outcome 

variables. BMI coefficients from regression of log(hours) on BMI are reported in table 3; 

both OLS estimates from single-stage regressions and 2SLS estimates from IV-

regressions, with SNPs as a set of instruments and the GRS. Coefficients from the single 

stage are small but statistically significant at the 5% level for both genders, showing the 

opposite sign from what was expected based on the previous literature, i.e. those who 

work more tend to have higher BMI in this sample. The BMI coefficients are not 

statistically significant for either type of instruments.  

The latter example with occupation as a binary variable is also regressed on BMI, 

both in a single stage and in a two-stage estimation with the instruments. No odds 
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ratios, presented in table 4, were statistically significant. There was furthermore no 

association detectable between occupation and BMI. 

Table 4. Marginal effects of BMI on log hours and occupation. 

VARIABLE  SINGLE STAGE TWO STAGE 

IV- GRS 

TWO STAGE 

IV-SNP 

  
Log hours† 

 OLS dy/dx dy/dx dy/dx 

FEMALES 

 

 0.003 (0.002)** 

N= 3221 

R
2
=0.065 

0.218 (0.88) 

N= 1821 

R
2
=0.023 

-0.005 (0.01) 

N= 1821 

R
2
 = 0.057 

MALES 

 

 0.003 (0.001)** 

N=2380 

R
2
=0.041 

0.007 (0.09) 

N=1333 

R
2
=0.003 

0.002 (0.01) 

N=1333 

R
2
=0.045 

  
Occupation†† 

 LOGISTIC REGRESSION OR OR OR 

FEMALES 

95% CI 

 0.990 (0.01) 

(0.962 1.019) 

N=2966  

0.156 (0.38) 

(0.001 18.78) 

N=1810  

1.038 (0.10) 

(0.858 1.256) 

N=1810 

MALES 

95% CI 

 1.003 (0.02) 

(0.097 1.03) 

N=2262 

1.480 (1.92) 

(0.117 18.73) 

N=1344 

1.088 (0.11) 

(0.893 1.326) 

N=1344 

Robust standard errors are in parentheses for log hours. 
Standard errors are in parentheses for occupation. 
†Logarithm of hours worked. 
†† Occupation is coded into two sectors from the international standard classification of occupation, 
1 for managers and professionals and 0 for others.  
*Significant at 10% level, **significant at 5% level, ***significant at 1% level. 
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4 Discussion 

In this study we tested the legitimacy of genetic variation as an instrument for BMI. We 

failed to replicate the robust associations found by Speliotes et al. (2010), but recently 

scientists have also failed to replicate associations of molecular genetic variants and 

economic traits (Beauchamp et al., 2011; Benjamin et al., 2012a; Benjamin et al., 2012b; 

Chabris et al., 2012 and van der Loos et al., 2013). The reason may be that while genetic 

factors science has uncovered are many, they collectively explain only a small fraction of 

the total variance in the phenotype, as is the case for BMI. Thus weak instruments with 

corresponding biases are a concern in genoeconomics.  

Results from different data sets of the association of BMI and genetic markers are 

not conclusive, which raises the concern if other researchers find the association to be 

significant, just by a coincidence. Publication biases, where estimations in which genetic 

instruments don´t hold up, don´t find their way to journal pages, may exacerbate the 

problem. Most likely there are researchers who have embarked on projects to estimate 

BMI effects with data similar to what is used in this study, who have bias aborted the 

projects when they found their instruments not to hold up. 

The time of the current BMI data collection was earlier than what has been seen by 

others who found the relationship to be statistically significant (see for example: Belsky 

et al. (2013) and Nordestgaard et al. (2012)). This may be taken as an example of 

suspicious patterns. If the genetic instruments really affect BMI directly through 

biological mechanisms they should not be confounded by social, cultural or institutional 

factors. Valid instruments of this kind should hold up against changes in context, such as 

for different generational cohorts regardless of the prevalence of obesity. However, it 

could be that the genetic variation measured affects other variables that have become 

increasingly related to BMI over the years.  

Many socioeconomic studies are troubled with endogeneity. IV analysis is supposed 

to correct this, but the use of genetic information for instrumentation needs a closer 

attention. Finding a good instrumental variable is desirable although difficult, since 

strong instruments are not the only requirement, they also need to be valid. Our 
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instruments didn´t proof to be powerful, but even if it’s possible to come around the 

weak instrument bias there are problems one needs to be aware of when genetic 

information is applied. For instruments to be valid they also need to fulfill the core 

assumptions as previously described. Although the SNPs we used as instruments are 

detected in genome-wide meta-analysis for BMI, we don´t know the mechanism 

through which they work. That is, we do not know how the genotypes affect the 

phenotype BMI. It is important to keep in mind the possibility that there are many ways 

that genotypes can directly affect phenotypes for both physical- and behavioral traits 

(Chabris et al., 2013 and Glymour et al., 2012). The SNPs might be in linkage 

disequilibrium (LD) with the causal variant affecting BMI, i.e. it is physically close allele 

and is co-inherited with the SNP used in the study (Lawlor et al., 2008). Despite LD, the 

chosen variants might fulfill the assumptions to be valid instruments if there are no 

other pathways from the genetic variant in LD with the instrumental variable to the 

outcome variable (Glymour et al., 2012 and Lawlor et al., 2008). If the genetic 

instrument is in LD with another genetic variant that directly or indirectly affects the 

outcome variable it violates the exclusion restriction (Didelez and Sheehan, 2007 and 

VanderWeele, Tchetgen Tchetgen, Cornelis and Kraft, 2014), as well as the third 

assumption that the instrument has to be independent of any confounders affecting the 

outcome variable (Didelez and Sheehan, 2007). We are not aware of any research that 

can erase the concern of LD problem with the outcome variables used as an example in 

this paper.  

Another problem that may arise is population stratification, possibly violating the 

exclusion restriction (VanderWeele et al., 2014) and the third assumption (Didelez and 

Sheehan, 2007 and Lawlor et al., 2008). The concept refers to populations subgroups 

that experience different distribution of BMI and different frequencies of the genetic 

variants (Didelez and Sheehan, 2007 and Lawlor et al., 2008). In a paper by Harris et al. 

(2007) on the Icelandic Heart association data this problem is thought to be improbable, 

but Benjamin et al. (2012a) try to deal with population stratification in the same data 

since they believe that even in Iceland there may be ethnic stratification. 

Yet another concern is that most genetic variants have multiple functions, called 

pleiotrophy in the genetic literature. This will not violate any of the core assumptions if 



 

23 

the genetic variant is associated with pleiotrophic effects that do not affect the 

outcome. If the variant affects an unmeasured phenotype that also affects the outcome 

variable it results in invalidation of the IV approach, both the ER and the third 

assumption (Glymour et al., 2012 and Lawlor et al., 2008). This is very likely one of our 

problems. However, despite our awareness of it, we cannot verify if that is the case. 

This paper is in line with findings from Chabris et al. (2013) suggesting that far 

stronger genetic instruments are needed for IV analysis with BMI as a phenotype than 

have been available to date. As the discussion reveals, we don´t know the function of 

the genetic variants in this study rather than many others who apply genetic markers as 

instruments with different phenotypes. We aren´t optimistic that analysis with 

molecular genetic instruments will benefit economists or other science in the near 

future or until genetic knowledge has advanced. In the early days of genetic 

instrumentation in economics Conley (2009) was one of those who were pessimistic of 

ever finding a good instrument of interest to economists. A recent paper with 

consideration on the method suggest that it might be more reliable when applied to 

provide evidence that a variable doesn´t affect an outcome instead that it does 

(VanderWeele et al., 2014). Baiocchi et al. (2014) didn´t express it so forcefully, but 

indicated that even if there is no such thing as a perfectly valid IV the analysis may still 

provide useful information about the treatment effect or phenotype. Anyhow, there are 

obstacles in the way scientists need to get passed before genetic data will be promising 

as instruments. Whatever the case, it is important to be careful when results with 

genetic instruments are interpreted. 
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