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Abstract

With a growing population and ongoing industrialization, energy demand is
rising on a global scale. Satisfying this demand in a sustainable way, while
minimizing mankind’s impact on climate change, is a significant challenge
for our and future generations. One of the options that is apt to make a dif-
ference, is the use of low emission energy sources for heating purposes. One
of these sources is Earth’s ubiquitous geothermal potential. Understanding
this potential and its limitations is of utmost importance. Despite having a
large impact on optimization and management of geothermal resources, the
influence of uncertainty has not been studied extensively. Consequently, this
thesis discusses the role of uncertainty in detail. Using net present value
maximization as the objective function, the sources of uncertainty are identi-
fied by creating a customized net present value model, which splits costs and
benefits into different variables. These variables are analyzed for their ten-
dency towards uncertainty. One of the influencing variables is the reservoir’s
physical reaction to production, as it allows forecasting of realistic exploita-
tion values. In order to test how much information is needed to produce
good forecasting results, an initial lumped parameter model fit is obtained to
identify the complexity of the best fit for four low temperature reservoirs in
Iceland. In order to simulate decreasing uncertainty, the operational data is
cut into smaller portions. By gradually extending the data range and iterative
fitting, a development of the coefficient of determination is analyzed, finding
that after ten seasonal cycles of data input, the model fit reaches a signifi-
cant level of certainty. This time horizon can act as a stabilizing factor in the
economic optimization and improve the accuracy of economic forecasting.
Furthermore, the best fits do not show differences in model complexity for
different levels of uncertainty.

Keywords: geothermal energy, lumped parameter modeling, optimization,
net present value, uncertainty



Hlutverk óvissu í Lumped parameter líkönum og bestun á lághita
jarðvarmasvæðum

Sven Scholtysik

Janúar 2015

Útdráttur

Á sama tíma og fólksfjöldi jarðar vex, eykst orkuþörf jarðarbúa gífurlega.
Ein stærsta ógn mannkynsins er að svara þessari orkuþörf á sjálfbæran máta
og með endurnýjanlegum orkugjöfum sem lágmarka vistspor til framtíðar.
Einn af stærstu möguleikunum þegar kemur að því að minnka útblástur gróður-
húsa lofttegunda snertir upphitun híbýla. Í stað þess að nota jarðefnaeld-
sneyti til húshitunar er nauðsynlegt að nýta þá orku sem til er í iðrum jarðar.
Til að unnt sé að nýta þá orku á bestan hátt er nauðsynlegt að skilja eðli
ysta hluta jarðar,gera sér grein fyrir þeim ferlum sem þar eiga sér stað og
skilja möguleika, takmörk og óvissuþætti sem snúa að nýtingu auðlindarin-
nar. Þrátt fyrir að vera mjög mikilvæg breyta í nýtingu jarðvarmans er óvissa
í nýtingu frekar lítið rannsakaður hluti fræðisviðsins. Þessi ritgerð snertir
á óvissu í vinnslu jarðvarma, áhrif hennar á fjármögnun og framtíðaráhorf.
Notast var við líkön sem hámarka núvirði jarðvarmavinnslu og kennsl borin
á helstu óvissuþætti vinnslunnar. Nýtt líkan var smíðað sem gerir greinar-
mun á vinnslukostnaði og tekjum og þeir þættir síðan greindir með tilliti til
óvissuþátta í jarðvarmavinnslu. Ein stærsta breytan þegar kemur að rekstri
jarðhitasvæða er svörun jarðhitageymisins við aukinni framleiðslu. Góður
skilningur á jarðhitageyminum eykur langtímanotkun og minnkar óvissu þe-
gar kemur að langlífi framleiðslu. Til að greina hversu miklar upplýsingar
eru nauðsynlegar til að geta spáð fyrir um óvissuþætti var notast við „lumped
parameter“ líkan var notað til að greina fjögur lág-hitasvæði á Íslandi. Notast
var við framleiðslugögn til að meta breytingu á jarðhitageyminum og áhrif
þeirra á óvissu metin. Framleiðslugögnum var bætt við líkanið þangað til
fastinn, „coefficient of determination“, fór að verða greinilegur. Gögnum var
bætt við líkanið unns 10 hringrásum var lokið, en þá var óvissan orðin mjög
lág. Tímaskalinn virkar því sem stöðugleikaþáttur í jarðhitavinnslu og eykur
fjárhagslegt jafnvægi og getur haft umtalsverð áhrif á fjárhagsspár.

Lykilorð: jarðvarmaorka, lumped parameter líkön, bestun, núvirði, óvissa
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S Conductivity matrix [N x N]

SSres Residual sum of squares

SStot Total sum of squares

t Tax rate

XW Exergy [J]

yi Observed value in period i

ym Number of pumps
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Chapter 1

Introduction

Energy is needed worldwide, around the clock and every day of the year. The demand
for it is increasing rapidly along with a growing world population and industrialization
of development countries [13] [14]. During the last years, minimizing mankind’s impact
on climate change through reducing carbon dioxide emissions by promoting the use of
alternative energy sources could be found on political agendas all around the world [15]
[16] [17]. Despite these international efforts to promote the use of sustainable energy
as a supply source to satisfy the energy demand, burning fossil fuels still acts as the
primary energy source of the world in the 21st century [14]. Fossil fuels have to be
categorized as non-renewable on a human scale, since its redevelopment takes a lot of
time. Additionally combustion of fossil fuels produces a rather high level of greenhouse
gas (GHG) emissions. Forecasts for fossil fuel usage are showing steady growth within
the next decades because of their comparatively low costs [18].

Geothermal energy, which is exploited by mining thermal energy from the earth’s crust, is
one of the most promising alternatives to fossil fuels. Pursuing the use of geothermal en-
ergy could help satisfy some of the energy demand and reduce greenhouse gas emissions
on a global level. Having a long history of human usage, geothermal energy profits from
existing, dependable technology and a naturally inherited ubiquity. These factors lead
to moderate costs and enormous development potential. Furthermore geothermal energy
can be regarded as sustainable on a human time scale as long as the extraction amount of
geothermal fluid does not exceed the level of possible recharge in the reservoir. This leads
to a reservoir specific sustainable production limit, which is restricted by the geological
set up (e.g. rock porosity, aquifer characteristics, etc.)[19] [20] [21].
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1.1 Context

Local characteristics and economic circumstances determine the exploitation strategy and
influence the optimization of a geothermal project substantially. In the beginning of ev-
ery project, which deals with the development of geothermal resources, the specific local
characteristics of the reservoir are usually not known. Therefore, geological, geophysical
and geochemical measurements are used to gain information through surface and subsur-
face exploration. Additional information is generated as exploratory drilling is pursued
[22]. In the operational stage of a project, information about how the reservoir reacts to
production is generated continuously. The obtained data can be used as an input for reser-
voir modeling. The data sets are fitted to a reservoir model, which distillates the taken
measurements into valuable information, which then can be used for optimizing exploita-
tion strategies and maintaining production in an economical and sustainable equilibrium
[23].

1.2 Research focus

The research for this thesis focuses on the role of uncertainty for the optimization and
lumped parameter modeling of low temperature geothermal resources. It is analyzed,
what the main sources of uncertainty for economic optimization are. Furthermore, the
research focuses on how the decrease of uncertainty, respectively the increase of available
operational data changes the outcome of lumped parameter modeling. Throughout the
research, a theoretical detailed cash flow model for the Net Present Value (NPV) calcu-
lation is introduced. Its maximization is used as the standard objective function for the
optimization. The research is tackled with an interdisciplinary approach in order to paint
a holistic picture.

1.3 Objective of the thesis

The research pursued for this thesis tries to find answers to the following questions:

• What is the role of uncertainty in lumped parameter modeling for low temperature
geothermal resources?

• What are the main sources of uncertainty for the economic optimization of low
temperature geothermal resources?
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• Can the outcome of lumped parameter modeling act as a stabilizing factor in the
economic optimization of low temperature geothermal resources?

• Are there practical time horizons for decreasing uncertainty?

1.4 Structure of the thesis

This thesis starts off with background information on geothermal energy. Geothermal
systems are classified and the main characteristics and challenges of natural hydrother-
mal, geopressured, enhanced and magmatic geothermal systems are analyzed. This is
followed by a discussion about the different ways of using geothermal energy. The work
presented in this thesis focuses on low temperature geothermal resources with only the
liquid phase being present in the system. The chapter continues with background infor-
mation on reservoir modeling. The basic idea of modeling is described and the four main
reservoir model types: conceptual, simple analytic, detailed numerical and lumped pa-
rameter models are introduced. The focus is laid upon lumped parameter modeling and
its distinct differences to numerical modeling. It is stated that, for the research within this
thesis, a lumped parameter modeling approach is used. Furthermore a short introduction
to optimization is given.

Chapter three shifts the focus to the methods, which were used to pursue the research of
the thesis. The sources of data and theoretical information are discussed and the software
used is described. Information about the geothermal fields, from which measured data is
taken, is presented and the lumped parameter modeling approach is explained. Its math-
ematical foundation is presented by using a three tank model example. The theoretical
background of testing the fit of the model is discussed. The maximization of the Net
Present Value is introduced as the standard objective function. Special focus is given to
the construction of a suitable Cash Flow (CF) for low temperature geothermal exploita-
tion. Additionally the influence of the discount rate is analyzed and the concept of the
Weighted Average Cost of Capital (WACC) with the usage of the Capital Asset Pricing
Model (CAPM) is suggested. Furthermore, the constraints of the optimization problem
are introduced and explained. The chapter also gives an overview of how the operational
data was gained and processed in order to use it as an input for the lumped parameter
modeling.

Chapter four focuses on the results of the lumped parameter modeling and the optimiza-
tion. The NPV model from chapter three is used and the main sources of uncertainty in
the model are identified. For the lumped parameter part, the operational data is checked
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for consistency, and an initial model fit for all available data sets was performed in order
to identify the model complexity of the best fit. The results of this initial fit are discussed
and displayed numerically as well as graphically. The data is split into several parts and
fits with decreasing uncertainty are simulated and compared to control model results. Ad-
ditionally drawdown forecasting is undertaken for two examples.

Chapter five leads to the discussion of the results. It is explained how the optimization
is prone to uncertainty and which difficulties may arise when quantification is expected.
It is displayed how uncertainty sources, which were identified in chapter four, comprise
themselves of a subset of variables, which are prone to indistinct behavior over time. Fur-
thermore, the main outcomes of the analysis of the behavior of the lumped parameter
model fit with decreasing uncertainty are discussed. The implications these findings have
on economic optimization are pointed out and the question if NPV maximization is most
suitable objective function, when minimizing uncertainty is the goal, is discussed. Addi-
tionally, chapter five provides a conclusion of the research, identifies areas to improve the
work and suggests future research opportunities.
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1.5 Graphical overview of the work

Figure 1: Graphic overview of the thesis’ structure - part 1
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Figure 2: Graphic overview of the thesis’ structure - part 2
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Chapter 2

Background and literature review

This chapter introduces the main principles and ideas of geothermal energy, reservoir
modeling, optimization and uncertainty.

2.1 Geothermal Energy

This section introduces a classification scheme for geothermal systems and gives an overview
of different characteristics of high and low temperature geothermal fields. The chapter
concludes with different applications of geothermal energy.

2.1.1 Geothermal Energy Basics

Geothermal energy derives from the exploitation of thermal energy which is stored in
the earth’s crust [24]. Since conductive and convective heat transfer is ubiquitous in the
earth’s mantle, thermal energy is distributed all around the globe [25]. Nevertheless, the
distribution pattern is not uniform and geothermal gradients differ according to geological
settings [26]. The geothermal gradient is measured as an increase of temperature per unit
of depth. An overview of areas with a steep geothermal gradient, displayed on a world
map, can be found in Figure 3 [1]. It is remarkable how closely these areas approximate
the plate boundaries.

The heat flow rate through the crust differs between terrestrial and oceanic crust. The
terrestrial flow rate averages 0.65 W/m2 and the flow rate under oceanic crust averages
0.10 W/m2 [27]. The average temperature gradient ranges from 25 ◦C to 30 ◦C per kilo-
meter, which mainly results from the decay of potassium, uranium and thorium isotopes.



8 The role of uncertainty for LPM and optimization of low temperature geothermal resources

Figure 3: Worldwide distribution of geothermal hot spots. Areas with exceptionally steep
temperature gradients are marked in red and follow tectonic plate boundaries closely.[1]

However, the gradient can be influenced locally by intrusions of molten rock (lava)[27].
The gradient is the steepest at tectonic plate boundaries, where temperature usually rises
quickly while gaining depth [28]. People who inhabited these areas were historically
among the first to explore the use of geothermal energy. Proof of early use of geother-
mal energy is present in areas where geothermal fluid reaches the surface of the earth
and creates hot springs [29] [30] [31]. This manifestation of geothermal energy was used
for bathing and washing clothes for more than 7000 years [32], where industrial use of
geothermal energy, either directly or for power production, didn’t begin until the early
twentieth century. One of the first industrially used geothermal fields was Lardarello in
Italy, where electricity was produced from geothermal steam in 1902 [33].

Industrial use requires accessibility of the resource. Accessibility is achieved anywhere
through drilling production wells to a certain depth until the desired temperature is reached.
As drilling for geothermal fluid is one of the major cost factors in geothermal develop-
ment and is generally more expensive than drilling for oil and gas, economic accessibility
is a requirement as well [34] [35] [36]. Development is therefore limited to areas where
where drilling costs are manageable due to steep geothermal gradients and a favorable
geological setting.

2.1.2 Classification of Geothermal Systems

This chapter focuses on the classification of geothermal systems and gives an overview of
the characteristics of four different system types.
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2.1.2.1 Natural Hydrothermal Systems

Natural hydrothermal systems produce geothermal fluid without any added technological
help. This type of system requires a natural heat source, and rocks with enough perme-
ability to allow a convection dominated system. Usually they are found at tectonic plate
boundaries, which not only are generally areas with steep geothermal gradients, but also
feature local high permeability formations [27] [37]. Water in hydrothermal systems is
often of meteoric origin. Water falls as precipitation and percolates through permeable
layers until it reaches the heat source (e.g. magmatic intrusion), heats up and travels up-
ward towards the surface [22]. There are exceptions to this, like the Reykjanes field in
Southwestern Iceland, where the geothermal fluid contains seawater as well [38] [39].
In general, natural hydrothermal systems are further divided into two categories: vapor
dominated systems and liquid dominated systems [27] [22] .

A vapor dominated system is formed if the pressure of the reservoir allows the geothermal
fluid to boil and eventually vaporize. These systems are relatively easy to exploit and
occur seldom. If they occur, they might be suitable for base load electricity production.
Examples include Geysers in the USA and Larderello in Italy [40] [41] [42] [43].

A liquid dominated system is formed if the pressure of the reservoir does not allow the
geothermal fluid to boil. These systems are more common than vapor dominated systems,
but they are generally more difficult to exploit, as the concentration of total dissolved
solids (TDS) in the fluid might pose as a booster for scaling. Scaling can be a big problem
at the transition passage between a two phase flow and a one phase flow. This transition
is made when the fluid is flashed [27] [40] [43] [44].

2.1.2.2 Geopressured Systems

Geopressured geothermal systems consist of reservoirs filled with sedimentary rock and
water which is excluded from exchange with surrounding rocks [45] [46]. Due to a rapid
filling with sediments, the pressure in the reservoir is commonly higher than the hydro-
static pressure [40]. The geothermal fluid might be exposed to a pressure up to 600 bar
while reaching a temperature of about 180◦C [27]. Generally, geopressured systems are
assumed to be saturated with methane and have around 100,000 ppm TDS. Geopressured
systems were first found in the Gulf of Mexico region, where research was carried out
during the 1970s and 80s. US research found additional reservoirs in Alaska, California
and the Rocky Mountain region [47] [48]. These types of systems have been found to be
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profitable only under very special circumstances. However, technological development
might change this in the future [40] [49] .

2.1.2.3 Hot Dry Rock

Many locations on Earth have a relatively steep geothermal gradient but have insufficient
fluid content or permeability. These systems are called hot dry rock (HDR) formations
or enhanced geothermal systems (EGS)[27] [22] [40]. Given a sufficient borehole depth,
such systems are available everywhere - creating a very large resource base. However, ac-
cess is restricted heavily by economic factors such as drilling and infrastructure cost [35]
[50] [51]. Nevertheless, the ubiquitious nature of EGS is a promising feature. Currently
this technology is still in its development phase and attracts investors like the Google
Foundation [52]. The technology behind it is hydraulic fracturing, a technology well
known from the oil and gas industry, where it is used to access shale oil and gas reser-
voirs. A partially horizontal injection well is drilled and a mixture of water and chemicals
is pumped into the ground with great pressure. Given the high pressure, the rock forma-
tions fracture and consequently create a fairly large surface area for heat exchange. As an
application for the geothermal industry, the water is heated up in the hot rock formation
and is pumped up through a production well where it can be flashed and its vapor phase
can be used for electricity production [53]. A good overview of this still new technology
can be found in Armstead and Tester’s "Heat Mining" [54] and in Brown’s "Mining the
Earth’s Heat" [55].

2.1.2.4 Magma

In contrast to using a cooling magmatic intrusion as the heat source, as natural hydrother-
mal systems do, magma systems use a heat source which comes from molten rock. Due
to the high temperatures of magma, this type of heat source is theoretically desirable for
electricity production, however, the high temperature poses as a considerable danger to
equipment durability. As research and first experiments in Iceland show, drilling to a
depth of 2100m and a temperature of about 900◦C is possible but is accompanied by op-
erational difficulties [56]. The Iceland Deep Drilling Project (IDDP) had the goal to drill
4.5km into the supercritical zone that was suspected in the Krafla geothermal area, lo-
cated under the Krafla volcano in northern Iceland. The drilling process had to be stopped
at 2100m when magma with a temperature of 900◦C flowed into the borehole [57]. In
contrast to the first occurrence of a magmatic disturbance in Hawaii [40], the project team
continued to examine the borehole. They were able to achieve production at a well head
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temperature of 450◦C and a superheated dry steam with a pressure of between 40 and
140 bar. This production test had to be stopped after two years due to mechanical failure.
[58]

The project aims to continue testing the possibilities of using magma as a heat source.
Currently a discussion is ongoing whether the Reykjanes geothermal zone in southwestern
Iceland might pose as a possible location for IDDP 2 [59].

2.1.3 Use of Geothermal Energy

The varying characteristics of different geothermal systems account for different uses.
This subchapter focuses on the different applications of geothermal energy. For a general
overview of different uses, the work of Lindal in 1973 is suggested [60].

2.1.3.1 Power Production

One of the most common uses of high temperature geothermal resources is electricity pro-
duction. Commonly one of the following three power plant types is used [27] [22]:

• Dry steam power plants

• Flashing power plants

• Binary power plants

Dry steam power plants are the simplest form of geothermal power plants and can only be
operated in vapor dominated high temperature geothermal fields, within which the vapor
contains almost no liquid. In ideal conditions the dry steam can be extracted easily and
used directly in electricity generation [22] [27].

Flashing power plants are generally quoted as the most common form of geothermal
power plants. The geothermal fluid is brought to the surface under pressurized condi-
tions. The pressure is released gradually in a so-called flash tank, which leads to partial
vaporization of the fluid. The vapor phase is then used to run a turbine and generate elec-
tricity, while the liquid phase might be used for reinjection or further industrial uses. Even
after multiple flashing stages, a liquid phase usually still exists [22] [27].

Binary power plants are commonly used when the reservoir temperature is not high
enough to produce a vapor phase in the geothermal fluid. The fluid is pumped to the
surface and flows through a heat exchanger that transfers the heat to a closed working
fluid cycle. The working fluid used has usually a lower boiling point than the geothermal
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fluid and is consequently vaporized. The vapor is used to run a turbine. The working fluid
then condenses and is used again for the next vaporization cycle [22] [27].

There is an ongoing discussion whether producing electricity from geothermal resources
should be considered sustainable or not. The majority of scientists believes, that if the
local resource is exploited below or at the recharge rate, sustainability can be achieved
[19] [61] [21] [62] [20].

Worldwide, geothermal energy is still a rather small sector of the energy industry, al-
though electricity generation from geothermal power plants is constantly rising. This de-
velopment is displayed in Figure 4 [2]. Furthermore, new technologies ensure a positive
outlook for the geothermal industry internationally.
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Figure 4: Worldwide annual electricity generation from geothermal resources in billions
of kWh from 1980 to 2010 [2].

2.1.3.2 Space Heating

Space heating is one the most popular industrial uses for geothermal fluid that comes
from low temperature geothermal resources [60] [27]. As the supply temperature for
space heating should roughly be between 60 and 90◦C, brine from geothermal power
plants might be used as well. This business model is apt to be feasible and is already
applied for example in Reykjavik [63], where the space heating system uses brine from the
high temperature power plant at Nesjavellir and other different low temperature reservoirs
which are situated in the city’s vicinity [64] [10]. After the space heating process, the
geothermal fluid usually has a temperature of about 25 to 40 ◦C. If this temperature range
is met, the fluid can for example be used further for snow melting in public areas. This
again is demonstrated in Reykjavik, Iceland [65].
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2.1.3.3 Further Industrial Uses

Geothermal energy has many more applications. Historically it has been used for bathing
and washing purposes, but technology development continues to open doors for more
diversified applications like [60] [27]:

• Food drying

• Heating for distillation

• Chemical extraction

• Greenhouses

• Aquaculture

• Sterilization

• Refrigeration

Generally, uses beside space heating and electricity generation are of smaller scale, but
can be of importance for the local communities surrounding the geothermal resource. In
colder climates like Iceland, the application as a heating source for greenhouses is of
importance, as it enhances the possibilities of growing fruits and vegetables locally [66].
Additionally, food drying is a co-existing industry which can offer substantial benefits to
the business owners. For further information, reading Árni Ragnarsson’s article upon this
topic is recommended [67]. Overall, geothermal resources offer a variety of industrial
uses, which can be exploited in a sustainable and socially acceptable way, while offering
profitable business opportunities.
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2.2 Reservoir Modeling and Optimization

This chapter gives an overview of reservoir modeling and optimization. Starting with
the objectives and basic ideas of modeling, the chapter explores different model types and
their fit for geothermal reservoirs. The optimization part of this chapter will give a general
overview of the topic.

2.2.1 Modeling

This subchapter focuses on the objectives and basic ideas of modeling, as well as it gives
an overview of the main model types.

2.2.1.1 Basic Idea of Modeling

The basic idea of modeling is to create a theoretical framework that simplifies real pro-
cesses to a point where they can be described mathematically or graphically. Furthermore,
a model should hold the all the information necessary to make it possible for the user to
understand the modeled process [68]. Stachowiak discusses that a model is characterized
by three attributes:

1. Visualization - a model is always a visualization of a real or artificial original.

2. Shortening - generally a model does not capture all attributes of the original. It
rather displays information that seems useful to the creator.

3. Pragmatism - the model is not assigned to its original. It functions as a substitute for
specific subjects, during a specific time interval, at specific theoretical and practical
operations [68].

This characterization is rather philosophical but gives a good overview of the basic idea
of modeling. In the following chapter different model types are introduced.

2.2.1.2 Model Types

In the academic field of reservoir engineering, geothermal models are usually divided
into four categories. These categories are according to the work of Grant and Bixley
[23]:

• Conceptual models
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• Simple analytic models

• Lumped parameter models

• Detailed numerical models

In the following, each category is characterized in more detail.

2.2.1.2.1 Conceptual Models Conceptual models are usually the first step in model-
ing geothermal systems. This is the case, as they are the quickest and easiest to produce
since they only give a general graphic overview of the system. A common way to visu-
alize a conceptual model is a cross section of the according field, showing the main geo-
logical structures and processes of the reservoir and its surrounding areas. A conceptual
model integrates data from different scientific disciplines (e.g. geology, geochemistry,
etc.) into one big picture and aims to help interpret the data[69] [70]. Grant and Bixley
mention certain qualities a sound conceptual model for geothermal systems should have
[23]:

• Simplicity - it should be as simple as possible.

• Completeness - it should provide all the information needed to get a holistic picture.

• Neutrality - all data should be of the same quality.

• Originality - it should use observed rather than interpreted data, since interpreted
data might already be minorly altered due to the interpretation process.

A model featuring the above mentioned characteristics can be visualized in many different
ways. Figure 5 and Figure 6 show two very different conceptual models of a high and a
low temperature geothermal system.

Acting as a descriptive, qualitative model, a conceptual model can ideally give infor-
mation on the reservoir size, the location of the heat source, the location of upflow and
recharge zones, the flow patterns of the fluid and potentially existent subsystems. This
list should not be understood as complete and not all information is always available at
every stage of the development of a conceptual model. Nevertheless, the model should
be designed in a way that helps to concentrate and visualize the available information and
act as a supporting tool for all scientists involved in the management of the geothermal
system.

2.2.1.2.2 Simple Analytic Models Another approach to modeling is taken by the sim-
ple analytic model. It usually simplifies the characteristics of the system to a great extent
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Figure 5: Conceptual model of the Mita geothermal system, Guatemala (McDowell and
White, 2011 [3]).

Figure 6: Conceptual model of the Miravalles high-temperature geothermal system in
Costa Rica, shown in a N-S cross-section (Vallejos, 1996 [4]).
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and assumes constant properties. Simulations of either temperature, pressure or chemistry
are the norm. As this approach is manageable in a reasonable amount of time, this mod-
eling approach can be considered to be time and cost saving in comparison to the more
complex models.

2.2.1.2.3 Detailed Numerical Models A detailed numerical model divides a geother-
mal system into multiple interconnected blocks, which then get assigned individual physi-
cal properties. Creating and managing these blocks requires a lot of time since the number
of blocks easily reaches thousands. The blocks on the surface are connected to a two di-
mensional grid, which determines the block distribution throughout the system. [71].
Figure 7 shows an example of a surface structure grid and Figure 8 shows the grid in the
ground, with varying height of the blocks according to depth.

Figure 7: Surface grid of a detailed numerical model, covering the Hengill area in Iceland
[5].

Computing requires dedicated programs and a considerable amount of processing power.
The outcome is a very detailed model, which allows the user to find answers to complex
questions, such as the the ideal location for drilling injection wells. For further reading
"Mathematical modeling of fluid flow and heat transfer in geothermal systems" by Karsten
Pruess is recommended [72].
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Figure 8: Block distribution within a detailed numerical model with varying depth [6].

2.2.1.2.4 Lumped Parameter Models As described before, detailed numerical mod-
eling of geothermal systems is a time and capital consuming process that sometimes is not
necessary for the management of the the according system. Another approach which has
proven itself as a time and money saving alternative is the lumped parameter modeling
approach. It has been proven to successfully simulate various low temperature systems in
Iceland [73] [74] [75]. In general LPMs might be used if

• data availability for the reservoir in question is limited and therefore detailed nu-
merical modeling is futile,

• modeling funds are limited,

• modeling time is limited,

• a pre-stage for numerical modeling is desired,

• validity of other model results need to be checked [76].

Usually lumped parameter models can be considered a simpler version of the more ad-
vanced numerical models and are created to match historical production and physical
properties. Once the model matches reality sufficiently, the model could be used to fore-
cast future changes of the system.
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The theoretical foundation of lumped parameter modeling is the concept of dividing the
geothermal system into two or more individual data tanks. This contrasts the hundreds
or even thousands of modeling blocks of detailed numerical models. Typically one block
represents the production zone of the system, while the other blocks represent recharge
zones. The according equations can often be reduced to differential equations. The model
can either be regarded as open or closed. It is open when geothermal fluid can be ex-
changed with the surroundings. This is usually represented by a resistor/connector which
is connected to an outside reservoir of infinite dimensions and constant pressure. Within
each block the properties are uniform, hence no internal differences exist. Withdrawal
from the production tank will influence all connected tanks, according to the set proper-
ties for individual tanks and connectors [75]. Although having uniform tanks might seem
to be disadvantageous, LPMs actually provide a good result for modeling low tempera-
ture geothermal reservoirs. No major drawbacks are seen from the uniformity because
low temperature geothermal reservoirs are considered nearly isothermal and have almost
uniform fluid chemistry. [77].

Figure 18 displays a visualization of a three tank model, where the first tank represents the
central part of the reservoir and the other tanks represent the outer parts of the reservoir.
The tanks are connected and geothermal fluid can flow between the tanks.

Figure 9: Conceptual graphic of the functionality of a three tank Lumped Parameter
Model [7]

More details about the model displayed in Figure 9 are given in chapter 3.4, as it is the
model that is used for the practical part of the thesis.

2.2.2 Optimization

Maximizing or minimizing an objective function is the basic goal of an optimization
model. For the main part of this thesis, the objective function is the maximization of the
net present value (NPV). In this section the NPV concept and the associated calculations
are explained.
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The NPV method uses a conceptual and complex approach to calculate the value of a
certain project. The two basic principles of this discounted cash flow method can be
described as follows:

• The time value of money – according to the theory of time preference, it is more
desirable to obtain a certain amount of money today than tomorrow.

• The risk premium - the risk of not getting a certain amount of money depreciates
its worth [78].

The mathematical foundation of the NPV method is the summed up estimations of future
Cash Flows, which are discounted with a distinct discount rate [79]. This is displayed in
the following equation.

NPV =
I∑
i=1

CFi
(1 + r)i

(1)

where

• CFi = cash flow in period i

• r = discount rate

The sum of all discounted positive future Cash Flows is the Present Value (PV). By sub-
tracting the investment costs at the point of time i = 1, the so called Net Present Value is
created [80].

The discount rate should be chosen in a way that reflects the risk of the Cash Flow. Deter-
mining the appropriate discount rate r is therefore one of the most important challenges
with this method, as it has a high potential to influence the calculated value [81].

The Weighted Average Cost of Capital (WACC) is widely used as a discount factor within
the industry. It is a calculative parameter that reflects the average rate that a company has
to pay to all its security holders and weighs each category of capital appropriately [82]
[83]. The WACC is calculated in the following way :

WACC =

[
EC
EV
· rE
]

+

[
DC

EV
· rD · (1− T )

]
(2)

where

• EC = equity capital

• rE= cost of equity

• EV = book value
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• T = tax rate

• DC = debt capital

• rD = cost of debt

The costs of debt are determined by averaging the existing debt positions of a company. In
contrast to this, the costs of equity are commonly calculated by the Capital Asset Pricing
Model (CAPM) [84] [85]. This is a theoretical framework that calculates the costs of
equity in accordance to the individual risk of the company. The CAPM calculates the
costs of equity in the following way:

rE = rF + β · (rM − rF ) (3)

where

• rF = risk free interest rate (= return on a 10 year government bond at evaluation
date)

• β = correlation degree of the value development of the evaluated share with the
value development of the market portfolio (beta = 1). Is available through market
information services for listed companies. Otherwise, a peer group analysis is used.

• rM = stock index yield

Combining all the equations, the NPV of a project can be expressed as:

NPV =
I∑
i=1

CFi

(1 + [EC

EV
· (rF + β · (rM − rF ))] + [DC

EV
· rD · (1− T )])i

(4)

where the variables are the same as those used in prior equations.
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2.3 The Role of Uncertainty in Geothermal Optimiza-
tion

This chapter focuses on uncertainty. It gives a definition of the term and states sources of
uncertainty in economical and geophysical models, while giving relevant examples.

2.3.1 Definition and Influence of Uncertainty

Uncertainty is a term widely used in academic life. At the same time, a precise defini-
tion is not easy to come by, as every scientific discipline uses the term to mean slightly
different things. Its very basic meaning, which is applicable throughout all academic dis-
ciplines, is given by the Merriam-Webster dictionary as "lack of sureness about someone
or something. Uncertainty may range from a falling short of certainty to an almost com-
plete lack of conviction or knowledge, especially an outcome or result." Uncertainty may
influence all stages of a project and is therefore to be categorized as relatively ubiquitous.
Two aspects influenced by uncertainty are the outcomes of economical and geophysical
models. These models are integral parts of any geothermal project and therefore of utmost
importance for its successful execution.

2.3.2 Sources of Uncertainty in Economical Models

One of the main sources of uncertainty in economical models are the variables of net
present value (NPV) calculations. The calculation is mainly comprised of two parame-
ters: the cash flow and a discount rate. These two parameters are the two main drivers
of uncertainty for the calculation outcome. In reality, the cash flow is an aggregation of
different financially positive and negative effects. Each of the components has an influ-
ence on the outcome and is therefore a contributor to uncertainty. This is explained and
analyzed in more detail in chapters three, four and five. The discount rate on the other
hand is often only a single parameter and has the power to influence the results of the
calculation dramatically. Figure 10 shows the difference in outcome for a constant cash
flow of $100,000 over 20 time periods while being discounted at 5% and 15%.

Additional examples for uncertainty in economic models are easily found through the
study of published forecasts. A prime example for the extent of unforeseen development
are oil price forecasts. Oil being one of the most discussed commodities on this planet,
many people have an interest in forecasting the price of a barrel (bbl) of oil correctly.
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Figure 10: Net Present Value development over 20 time periods with varying discount
rates. A discount rate of 5% is shown by the red line. A discount rate of 15% is shown by
the dashed red line.

The U.S. Energy Information Administration (EIA) publishes an Annual Energy Outlook
(AEO) which includes an oil price forecast per barrel [86]. Figure 11 contrasts the fore-
casted prices (red) from selected AEO issues with the actual price (blue) in 2006 U.S.
Dollars [8].

It is clearly visible that the forecasted price hardly matches the actual development. This
example displays the high level of uncertainty and the difficulties for experts to incor-
porate it into their forecast accordingly. For details about the difficulties and uncertain-
ties in oil price forecasting, the work of James D. Hamilton is recommended [87] [88]
[89].

Another important forecast for economists is the forecast of currency exchange rates.
Being discussed in literature for decades[90] [91] [92] [93], these forecasts have great in-
fluence on international projects and companies that conduct business in different regions
of the world. As currency rates are very sensitive to economic and political influences,
forecasting becomes delicate [94] [95].

2.3.3 Sources of Uncertainty in Geophysical Models

In addition to its influence on economical models, uncertainty can also influence the out-
come of geophysical models. Being an integral part of any geothermal operation, geo-
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Figure 11: Comparison of the Annual Energy Outlook oil price forecast of 1982, 1985,
1991, 1995, 2000 and 2004 with the observed oil price development[8]. The AEO fore-
casts are marked by the dashed red lines, whereas the observed price is shown by the blue
line.

physical models build the foundation for exploratory and economic success. This chapter
explores various examples of sources of uncertainty in geophysical models.

2.3.3.1 Lack of Data

One of the main contributors to uncertainty in geophysical models for the development
of geothermal resources is often the lack of data. When the first estimates of specific re-
source properties are made, information about the system is usually scarce. This scarcity
stems from insufficient exploration. Exploratory budgets make up a large percentage of
the cost of geothermal exploitation [96] [97]. Financing this initial project phase can
be problematic as investors hesitate regularly when confronted with the overall high ex-
ploratory success risks [98] [99]. The information that is available ususally stems from
geological surveying and geophysical and -chemical surface measurements. Detailed in-
formation from subsurface exploration analyses is often not available until later project
phases as funding cannot be guaranteed [100]. The lack of data encourages uncertainty in
the outcome of reservoir models.
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2.3.3.2 Evolving Systems

Geothermal resources are living and evolving systems in many ways. The aforemen-
tioned geological, -physical, and -chemical analyses give a good picture during the initial
developing and exploitation stages of the project. However, many of the characteristic
features of the resource may react to the actual production from the reservoir. For exam-
ple, resistivity measurements of given rock formations within the reservoir often react to
physical changes (e.g. exploitation, earthquakes, etc) of the reservoir [101] [102] [103].
This means that the resistivity measurements used for the inital modeling can become
inaccurate and therefore need to be updated to ensure data integrity. There is evidence
that not only resistivity, but also permeability of rocks and the chemical composition
of the geothermal fluid may change with time and consequently might vary during the
production period.[104] [105]. The alterations of physical and chemical properties lead
inevitably to uncertainty. Additionally, the water level is highly responsive to production.
In order to optimize the management of the geothermal resource, detailed information on
the dependency of the water table to the production rate need to be provided.

2.3.3.3 Model Simplicity

Another source of uncertainty is determined by the nature of the model itself. As dis-
cussed in chapter 2.2.1.1, one of the main ideas of modeling is simplification or as Sta-
chowiak calls it - shortening of reality [68]. A model does not contain all information
available. Only information which is considered as important by the model creator is
included in the final product. Consequently, certain parts of reality are not incorporated.
This is a cause of uncertainty, as this unincorporated information could lead to slightly
different outcomes of the model.

2.3.4 Technological Development

Technological development might be a potential source of uncertainty, since it is hard to
include technology’s rate of development into a forecast model. Once again, an applica-
ble example can be found in the oil and gas industry, where technological development
made the exploitation of shale oil and gas possible. This changed the level of proved
resources dramatically, as can be seen in the published EIA data [9], which is compiled
graphically in Figures 12 and 13. The overall level and its ongoing development differed
tremendously from the development in the past and defied predictability as technological
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development and economic factors made shale oil and gas an economically exploitable
option.
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Figure 12: Proved crude oil reserves in the United States in million bbl from 2001 to 2012
[9]
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Figure 13: Proved wet natural gas reserves in the United States in million bbl from 2001
to 2012 [9]
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Chapter 3

Methods

This chapter provides the reader with all information that is needed to understand the prac-
tical work that was pursued to answer the question of how uncertainty influences the fit
of lumped parameter models and which parameters influence the economic optimization
when NPV maximization is the set goal. Information about the techniques and methods
which were used, is displayed. The chapter starts with general information of how the lit-
erature review was performed. This is followed by a description of the software that was
used and information on the geothermal fields from which the operational data was taken.
Additionally, the lumped parameter model is discussed and the optimization problem is
laid out. The chapter concludes with information about the operational data and how it
was processed.

3.1 Gathering of Information

The research for this paper was mainly pursued by collecting data from textbooks, sci-
entific peer reviewed journals and official organizations like the International Energy
Agency, the U.S. Energy Information Administration, OECD, et cetera. The author col-
lected the information and reviewed them critically. By comparing quantitative informa-
tion from different issuers about the same subject, quantitative differences prevail. Rea-
sons for these differences are subject to further investigation. Nevertheless, the qualitative
statements do not differ within the consulted resources.
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3.2 Software

For the lumped parameter modeling PyLumpfit was used. It was programmed by and
obtained from Iceland Geosurvey (ISOR). PyLumpfit represents the latest version of the
widely used software Lumpfit which was written in Fortran77. The software was used
with full permission. PyLumpfit fits the observed and measured operational data to a
model by using a non-linear iterative least-squares method. Processing of the operational
raw data was done by using the algorithms provided by Tiffany Roche. The algorithms
were run in MatLab. General calculations for processing data were mainly performed by
using Microsoft Excel. Graphs included in this thesis were created by using Microsoft
Excel and LaTeX. Overview flow charts were created in Microsoft PowerPoint.

3.3 Geothermal Fields

The geothermal fields which are used as data providers for the research of this thesis
are Laugarnes, Ellidaar, Reykir and Reykjahlid. All fields are used for district heating
purposes in Reykjavik, although only Laugarnes and Ellidaar lie within the city limits. A
map of the location of the fields was published by Gunnlaugsson [10] and is displayed as
Figure 14. There is disagreement among the literature if Reykir and Reykjahlid should
be considered one field since they are geographically close and geologically related [10]
[106] [107]. In line with Sigurdardottir [7], Reykir and Reykjhlid are regarded as one field
for this research but are also analyzed separately. Table 1 gives an overview of the main
characteristics of the fields. The data was provided from Orkuveita Reykjavikur.

Table 1: Selected data for Ellidaar, Laugarnes, Reykir and Reykjahlid

Field Avg. Temper-
ature (◦C)

Number of
production
well in 2010

Average pro-
duction in
2010 (kg/s)

Production
for Reykjavik
(%)

Ellidaar 87 8 61 3
Laugarnes 128 10 129 7
Reykir 82 22 344 18
Reykjahlid 93 12 410 21
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Figure 14: Location of low and high temperature geothermal fields used for district heat-
ing in Reykajvik [10]

3.3.1 Laugarnes

The field Laugarnes, which is located in downtown Reykjavik, represents the field with
the highest average temperature, whereat the average production rate is to be found in the
range of roughly 120kg/s. The water table data which is used within this thesis comes
from reference wells RV-34 and RV-7. It covers the time span from January 1967 to
November 2010 in the case of RV-7 and from February 1985 to November 2010 in the
case of RV-34. Both data sets have a monthly resolution. For Laugarnes, the production
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data was taken from wells RV-5, RV-9, RV-10, RV-11, RV-15, RV-17, RV-19, RV-20,
RV-35 and RV-38.

The location of the boreholes, as well as the reference well, can be found in figure
15.

Figure 15: Map of the well location at the geothermal field Laugarnes. Reference wells
are marked with a red circle [11].

3.3.2 Ellidaar

Out of the three fields, Ellidaar has the lowest production rate and the lowest average
temperature. The water table is taken from reference well RV-27 and covers the time
span from October 1969 to November 2010 with monthly resolution. For Ellidaar, the
production data was taken from wells RV-23, RV-26, RV-29, RV-30, RV-31, RV-36, RV-
37 and RV-39. The location of the boreholes, as well as the reference well, can be found
in figure 16.

3.3.3 Reykir and Reykjahlid

Reykir lies not within Reykjavik’s city limits but 20 km northeast in the municipality of
Mosfellsbaer. The water table data used for this thesis was measured at reference wells
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Figure 16: Map of the well locations at the geothermal field Ellidaar. Reference wells are
marked with a red circle. [11]

MG-1 and SR-32. For borehole MG-1, data collection started in May 1976, whereat
collection of data at SR-32 started in March of 1980. Both data sets are available with
monthly resolution.

Being Reykir’s neighboring field, Reykjahlid’s data resembles the geographical and geo-
logical characteristics. The water table data that is used within this thesis was collected
at reference well MG-28 and covers the time span from March 1985 to November 2010
with monthly resolution.

For Reykir the production data was taken from wells MG-3, MG-4, MG-6, MG-8, MG-
9, MG-11, MG-12, MG-13, MG-14, MG-15, MG-16, MG-17, MG-18, MG-20, MG-22,
MG-23, MG-24, MG-25, MG-26, MG-27, MG-30 and MG-31.

For Reykjahlid the production data was taken from wells MG-5, MG-19, MG-21, MG-29,
MG-32, MG-33, MG-34, MG-35, MG-36, MG-37, MG-38 and MG-39..

The location of the boreholes, as well as the reference well, can be found in figure
17.
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Figure 17: Map of the well locations at the geothermal fields Reykir and Reykjahlid.
Reference wells are marked with a red circle. [11]

3.4 Modeling Approach

The modeling approach for this research is based on the dissertation of Silja Rán Sig-
urdardóttir [7]. The following chapter gives an overview of how the models are con-
structed.

3.4.1 Lumped Parameter Model

The model represents a liquid phase hydrothermal reservoir. The modeling is carried out
with a lumped parameter approach. As described in chapter 2.2.1.2.4, a three tank model
is used for explanation. This is in accordance to Sarak [77] and Axelsson [75] who also
preferred a three tank approach.

The tanks are interconnected via flow resistors that simulate the local permeability and
therefore geothermal fluid is able to flow through them. The first tank represents the
reservoir center, which can be regarded as the production part of the reservoir. Tank two
and three pose as the outer parts of the reservoir.
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Figure 18: Conceptual graphic of the functionality of a three tank Lumped Parameter
Model [7].

The state of the tanks is characterized by a drawdown hj where j is the tank number
∀j ∈ ε := {1...N}. In the model used for explanatory purposes N = 3.

The nomenclature for the flow resistors/connectors between the tanks is as follows. Con-
nector σj,k runs between tank j and k. Allowing fluid to travel into and out of the system,
the last connector σN connects tank N to a constant pressure source, which can be re-
garded as the recharge supplier. If σN = 0 the system is to be characterized as closed,if
σN 6= 0 the system is open.

The production of the system is displayed as ṁi ∀ṁ ∈ R+, ∀i ∈ ι := {1...I}.

Trans-tank flow is determined by differences in drawdown in the different tanks and is
defined as:

K1
dh1
dt

= σ12(h2 − h1) +
ṁ

ρg
(5)

K2
dh2
dt

= σ12(h1 − h2) + σ23(h3 − h2) (6)

K3
dh3
dt

= σ23(h2 − h3) + σ3(h0 − h3) (7)

where K represents a storage coffecient. For a system with N tanks it can be defined
as:

K
∂

∂t
h = S · h + u (8)

whereas
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K=
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−σ12 σ12 0 . . . 0

σ12 −(σ12 + σ23) σ23
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0
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3.4.2 Testing The Model Fit

As described in chapter 3.2, the software that is used for fitting the data to a lumped
parameter model is PyLumpfit. The main output which PyLumpfit gives to the user is the
so-called coefficient of determination, or R2. This coefficient, ranging from 0 to 1, gives
an indication of how well the model fits the data. Even though the scientific community is
in discussion about it, a value closer to 1 is generally preferred. R2 is usually calculated
as

R2 = 1− SSres

SStot

(9)
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where yi is the observed value at time i, ȳ is the average of the observed values and fi is
the modeled value at time i [108].

SSres =
∑
i

(yi − fi)2 (10)

is the residual sum of squares.

SStot =
∑
i

(yi − ȳ)2 (11)

is the total sum of squares.

ȳ =
1

I

I∑
i=1

yi (12)

is the mean of the observed data.

The coefficient of determination is partly used within this thesis as it is the Icelandic in-
dustry standard, to measure a model fit for geothermal lumped parameter modeling. The-
oretically a more appropriate measurement would be the R̄2, which corrects the value for
unwanted effects related to a changing amount of observed data points and is calculated
as:

R̄2 = 1− (n− 1) · (1−R2)

n− p− 1
(13)

where n is the sample size and p is the number of model parameters [109]. The results
chapter includes results as R2 and R̄2.

3.4.3 Optimization

For the optimization part, the NPV concept that was introduced in chapter two is used
as the objective function. This chapter describes some changes and specifications to the
concept.
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3.4.3.1 Adjustments of the NPV Model

The NPV WACC model described before, poses as the theoretical framework for mea-
suring the value of a project. In order to use the model properly for low temperature
geothermal projects, some amendments and clarifications have to be made.

In order to calculate the cash flow which is generated from the project, the earnings before
interest, depreciation and amortization (EBITDA or Ei) have to be calculated. Therefore
costs and benefits need to be defined clearly.

The costs include the investment and the running cost. The investment cost can be calcu-
lated as

CI = CEq + CLi + CC + CO + CLa, CI ∈ R (14)

where

• CI = investment cost

• CEq = equipment cost (for example pumps)

• CLi = labor cost during the investment phase

• CC = construction cost

• CO = other costs

• CLa = cost for land purchase

The running costs can be defined as

CRi = CMi + CEi + CLri + CSti + CAi, CRi ∈ R ∀i ∈ ι (15)

where

• CR = running costs

• CM = maintenance cost

• CE = electricity cost

• CLr = labor cost during the operation period

• CSt = storage and transportation cost

• CA = annuity cost



Sven Scholtysik 37

The electricity cost can be calculated as

CE =
I∑
i=1

Cel · g · ṁi · h1,i
ηi

(16)

where

• Cel = electricity price

• g = gravitational acceleration

• ηi = efficiency factor

The annuity cost are to be considered if the investment is partly financed by loans. The
annuities are considered fixed and can be calculated as

CA = CI · (1−
EC
EV

) · (1 + r)p · r
(1 + r)pb − 1

(17)

where

• Ci = investment cost

• EC = equity capital share

• r = interest rate

• pb = payback period

All components of the running and the investment cost can occur in reality but don’t need
to occur.

The benefits are calculated as

Bi =
ṁi · CW ·∆t

ρ
, CB ∈ R ∀i ∈ ι (18)

where CW is a fixed achievable price per cubic meter of hot water and ρ represents the
density of water.

Therefore the earnings are calculated as

Ei = Bi − CI − CRi, Ei ∈ R ∀i ∈ ι (19)
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The cash flow has to be corrected by the tax rate and depreciation. Hence the cash flow is
calculated as

CFi = (Ei −Di) · (1− Ti), CFi ∈ R ∀i ∈ ι (20)

where

• Di = depreciation in period i

• ti = corporate tax rate in period i

3.4.3.2 Constraint 1

Drawdown is a function of demand. A discrete integration through the modified Euler
method [110] [7] gives:

hi+1 = (K − ∆t

2
S)−1((K +

∆t

2
S)hi +

∆t

2
(ui+1 + ui)), ∀i ∈ ι (21)

where

u =



ṁ
pg

0
...
0

σNH0


, ∀i ∈ ι

3.4.3.3 Constraint 2

In the model, production ṁ cannot exceed demand ṁe,i.

ṁ ≤ ṁe,i, ∀i ∈ ι (22)

3.4.3.4 Constraint 3

Extracting water from a given well requires a certain amount of power, calculated as

Pwell = ṁ · g · h (23)
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where h is the height which the water has to be pumped.

Additionally, water contains a specific exergy XW . The total exergy of the water pumped
can be calculated as

XW = ṁ · ex (24)

where ex is the specific exergy of the fluid.

For the sustainability constraint, it is assumed that the amount of energy that is needed to
pump up water has to be equal or less than a given fraction of the according exergy.

PW ≤ δ ·XW (25)

The maximum drawdown is calculated as

hmax1 =
ex · δ
g

(26)

The drawdown of the reservoir is not allowed to exceed the maximum drawdown.

hl,i ≤ hmax1 (27)

3.4.3.5 Constraint 4

Equation 27 calculates the power that is needed per well to pump water to the surface.
The total power that is used for pumping at time i can be calculated as

Ppower,i ≤ Ppump ·
i∑
i=1

ymi (28)

where

• Ppump = power rating of one pump

• ymi = number of pumps at time i
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3.4.3.6 Optimization Problem

Considering the information given in previous chapters, the optimization model can be
defined as [7]:

maximize NPV =
I∑
i=1

CFi
(1 +WACC)i

(29)

subject to

hj,i+1 = (K − ∆t

2
S)−1((K +

∆t

2
S)hj,i +

∆t

2
(uu+1 + ui))

Ppower,i ≤ Ppump ·
i∑

m=1

ym

0 ≤ ṁi ≤ ṁe.i

0 ≤ h1,i ≤ hmax1

yi ≥ 0

initial values: hj,1 = h0, ṁ1 = m0, y1 ≥ 1

yi ∈ Z+ and hj,i, ṁi ∈ R∀i ∈ ι and ∀j ∈ ε

3.5 Operational Data

The operational data comprises data sets for all four low temperature geothermal fields.
The raw drawdown/production data was supplied by Orkuveita Reykjavikur and covers
different time sets for each field. The data was processed by the author, who used the
Matlab code written by Tiffany Roche who is a graduate student from Polytech in France
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and worked at Reykjavik University as a summer researcher with Ágúst Valfells. Tiffany
was in charge of creating algorithms for cleaning the data, converting it into the right
format and interpolating missing data via Neville’s Algorithm. Neville’s algorithm inter-
polates the data and estimates a data trend, taking the existing data and the slope of the
production/drawdown curve into account. Mathematically this can be expressed as:

pi,i(x) = yi, 0 ≤ i ≤ n, (30)

ps,a(x) =
(xa − x)ps,a−1(x) + (x− xs)ps+1,a(x)

xa − xs
, 0 ≤ s < a ≤ n. (31)

where ps,a is a polynomial of the degree a-s which incorporeates the points xk and yk
∀ k = [s, s+ 1, ..., a] and s, a ∈ Z∗+ [111].

Neville’s algorithm can produce feasible results as long as the missing data is not missing
on a part of the polynomial which is characterized by alternating monotonic increase and
decrease and is additionally limited by an external limitation.

To visualize this issue, Figure 19 shows a seasonal production curve in red which is lim-
ited by a seasonal maximum or production capacity limit at y=4. Data is missing for a
part of periods 11 and 12. Applying Neville’s algorithm in this case leads to exaggerated
estimation for the missing data as the slope leading to the maximum production is very
steep. This is schematically shown by the black dashed production estimation for periods
11 and 12. The graph shows that the production is estimated too high, when considering
the local maxima before and after the estimated data.
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Figure 19: Schematic estimation of seasonal production by using Neville’s algorithm.
The estimation is marked by the dashed black line, where measured production data is
marked red.

In order to avoid overestimating the missing data, a seasonal maximum ṁsmax is deter-
mined and all estimations ṁsest above the maximum are lowered by ṁsest−ṁsmax.

The outcome of Tiffany Roche’s algorithms is provided in a csv file in the format of "DD-
MMM-YYYY, Production, Drawdown 1, Drawdown 2". In order to use the data as an
input for PyLumpfit, it needs to be processed further. After splitting the CSV values into
separate columns, the months are consecutively numbered and the data is rearranged to
"Month number, Drawdown, Production" and saved as an input CSV file for Py Lump-
fit.

The operational data is fitted, using PyLumpfit, via the non-linear iterative least-squares
method, which tries to create a model function y(x) = f(x;α1, . . . , αm) from a set of
observed values yi(i = 1, . . . , n). The best solution is considered to be the one which
minimizes the sum of squared differences between the model function and the observed
values:

min
~α
‖~f − ~y‖22 (32)

where

n∑
i=1

(f(xi, ~α)− yi)2 = ‖~f − ~y‖22. (33)
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while m ≥ n.
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Chapter 4

Results

This chapter focuses on the results of the research. It displays the sources of uncertainty
for NPV maximization, the workflow of the LPM part and portrays its outcomes.

4.1 Optimization and Uncertainty

With NPV maximization as the objective function of the theoretical optimization, uncer-
tainty comes into action for different variables. As stated in chapter three, the cost model
consists of different input variables. As equation 1 shows, the two influential variables for
NPV calculations are the cash flow and the discount factor.

The influence of the discount factor was already discussed partly in chapter 2.3.2 and dis-
played in Figure 10. A rather practical and manageable way to try to limit the uncertainty
connected to the discount factor was proposed in chapter 2 - the WACC was implemented
and acts as a rather stable discount factor as long as the underlying capital structure of the
project is not changed.

Equally interesting is the influence of uncertainty on the variables that make up the Cash
Flow. Equations 13 - 19 offer an overview of the main actuating variables.

4.1.1 Investment Cost and Uncertainty

Depending on the point in time when the optimization is run, the investment cost can be
subject to uncertainty. If the optimization is run after the investment phase is over, the
investment costs are not subject to uncertainty as they are fixed. However, the assump-
tion of fixed investment cost is usually not appropriate for geothermal projects since a
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modular framework for development of the resource is often used and existing production
equipment is extended or new equipment is purchased. In fact, optimization results are
often used as input for informed decisions on adjusting the production volume and there-
fore variable investment cost should be considered. Equation 13 shows the variables that
make up the investment cost in the model.

Equipment cost is subject to price fluctuations which are hard to forecast since many
influential factors come into play. This is the case if the piece of equipment is the outcome
of a project and/or company itself. Following are some of the input variables for the
equipment cost:

• The rate of technological development can change the development cost of the
equipment.

• Labor cost for producing the equipment may change, as regional, national or indus-
try specific wage levels alternate.

• Transportation cost comes into play when the equipment is delivered to the con-
struction/project site. These cost can vary widely according to fuel cost, which are
linked to commodity prices and refining margins.

• Feedstock prices may change and can influence the equipment cost in both ways.
Fluctuations in the feedstock price may stem from potentially changing production
cost, labor cost and shipping of the feedstock to the equipment manufacturer.

Another variable that is apt to influence the level of the investment cost is labor cost during
the investment period. As for the labor cost of producing new equipment, the labor cost
during the construction period are subject to change in line with regional, national or
industry specific wage levels.

Furthermore, construction cost may change over time due to feedstock price variations
and labor cost changes.

Lastly, land purchase cost are subject to uncertainty as the land valuation might change
due to infrastructural changes to the surrounding land, population migration to or from
the area, and the occurrence of natural hazards.

4.1.2 Running Cost and Uncertainty

The second big part of the proposed cost model are the periodically occurring running
costs. The running costs are subject to uncertainty as many influencing parameters might
change over time. Equation 14 calculates the running costs as the sum of maintenance
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cost, electricity cost, labor cost during the operation period, storage and transportation
cost and annuity cost. As it is the case for the variables that constitute the investment
cost, the variables of the running cost are prone to uncertainty too.

Maintenance cost is subject to change as the price for products that are needed to main-
tain the operating equipment might vary. Influencing variables are the same as for the
equipment cost: feedstock prices, technological development and labor cost.

Labor cost during the operation period underlie the same influences as labor cost during
the construction period.

Storage and transportation cost might arise and is subject to uncertainty as labor cost
of maintaining pipelines may vary and the prize of the land used for storage and trans-
portation is again prone to effects due to infrastructural changes to the surrounding land,
population migration and natural hazards.

Furthermore, the cost for financing, the so-called annuity cost, can change over time due
to macroeconomic changes which might be apt to influence the interest rate.

Electricity cost for the extraction of geothermal fluid may vary over time, due to changes
in the price for electricity per kWh, which itself is determined by a complex set of vari-
ables. The commonly used concept of levelized cost of electricity (LCOE) calculates the
price according to the levels of investment costs (CI), operation and maintenance costs
(CM ), fuel costs (CF ), and electricity generation (E) per year. LCOE uses the same dis-
counting profile as NPV, and discounts the separate variables with a discount factor r over
the span of I periods. LCOE can be calculated as [112]:

LCOE =

∑I
i=1

CI+CM+CF

(1+r)i∑I
i=1

Ei

(1+r)i

(34)

Each individual variable of the electricity price itself is again prone to uncertainty and
indistinct development over time due to effects partly discussed in this chapter. Addition-
ally the electricity cost are subject to change as the production rate and the drawdown of
a reservoir can change substantially.

4.1.3 Benefit and Uncertainty

Not only the cost side of the optimization underlies uncertainty. As equation 18 shows, the
calculation of benefits for low temperature geothermal projects include two variables that
are subject to change: price and demand. Both variables are interdependent. Constraint
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2 of the optimization problem states that the production for period i cannot exceed the
demand for the period i. Assuming a decline in demand, the production cannot hold its
level and must be adapted. The probability of demand changes is difficult to predict as
many influencing factors need to be taken into account.

One of the most influencing factors of demand for hot water is the annual temperature
profile. If the seasonal temperature amplitude gets smaller, demand changes will occur.
Additionally and more fundamentally, if the annual temperature will rise or fall, impacts
on the demand for hot water are implicated. To answer the question of how regional
and global temperature profiles change, hundreds of scientists work in interdisciplinary
cooperation. One of leading research groups regarding climate change is the Intergovern-
mental Panel on Climate Change (IPCC). In its latest assessment report, the global and
regional temperature development is analyzed and discussed in great depth. Neverthe-
less, it is difficult to forecast an exact change, as assumptions are manifold. Figure 20
shows the projected global mean surface temperature for different scenarios which where
calculated by the IPCC.

Figure 20: Time series of global annual change in mean surface temperature for the 1900
to 2300 period from the fifth assessment report of the IPCC [12]

The breadth of forecast results pose a difficult for exact future predictions, especially
when long-term forecasting is intended.

Furthermore, demand can be changed by customer migration. If the geothermal low tem-
perature project serves a certain area, its demand is dependent on the population of the
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area. Population changes, e.g rural depopulation, are very common and need to be taken
into account. Although forecasting of population migration can be fairly exact on a macro-
scopic scale [113], human behavior is challenging to forecast in general [114].

Another factor, one which interlocks price and demand, has to be included: the potential
of competition. If a competitor produces the same product at a lower price, demand
will drop for the project. This is based on Mankiw’s assumption that rational people
think at the margin [115]. The probability of new competitors is highly dependant on the
barriers to entry [116] [117]. In his 1979 article, Michael E. Porter explains six distinct
influential variables that determine the level of the barrier: Economies of scale, product
differentiation, capital requirements, cost disadvantages independent of size, access to
distribution channels and government policy. Although analyzing which of these variables
apply to the exploitation of low temperature geothermal resources goes beyond the scope
of this thesis, it is of interest for future research. Nevertheless, the uncertainty involved in
the forecasting of competition can be regarded as high.

In line with Porter’s five forces analysis, another source of uncertainty has to be analyzed:
the threat of substitution. If, for example, different, cheaper sources for residential heat-
ing are provided to the community that is the main customer of the geothermal project,
demand will be reduced accordingly.

Another factor which shows the interdependence of price and demand is the price elastic-
ity of demand. As heat is a basic human need, the price elasticity is usually categorized
as rather inelastic [118]. Nevertheless, research has shown that regional differences exist
[119]. Furthermore, the amount of heating source options seems to have an influence on
the elasticity [120].

In addition to the price elasticity of demand, the income elasticity of demand is of interest.
Typically regarded as relatively inelastic [118], the income elasticity does not seem to
have a large influence on the demand for heating. However, increasing income can cause
demand increase for space heating if the income increase leads to the purchase of more
energy intensive housing (e.g. bigger floor area).
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4.2 Lumped Parameter Modeling and Uncertainty

In addition to identifying potential sources of uncertainty for the economic optimization,
the influence of decreasing uncertainty on LPM is analyzed.

Figures 21 to 24 show the measured production and drawdown data for all four fields
separately from 2007 to 2009. The graphs showing the complete set of measured data
can be found in Appendix A and are excluded from the main part of the thesis in order to
improve readability. The sets of measured data were used for the validation of the model
results. A seasonal variation of production and drawdown with a significantly higher
production mass flow during the winter months is shown. Furthermore drawdown minima
and maxima follow production minima and maxima in with a slight deviation.
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Figure 21: Production and drawdown data from Ellidaar 2007 - 2009; production is dis-
played by the red line; drawdown data from reference well RV-27 is displayed by the blue
line

After processing the operational data according to the routine described in chapter 3.5,
PyLumpfit was used to fit an LPM to the five data sets of Ellidaar, Laugarnes, Reykir,
Reykjahlid, and Reykir and Reykjahlid combined.

For Ellidaar, the production data was taken from wells RV-23, RV-26, RV-29, RV-30, RV-
31, RV-36, RV-37 and RV-39. As only one reference well - RV-27 - is located in this field,
the measured data from this borehole was used accordingly.

For Laugarnes, the production data was taken from wells RV-5, RV-9, RV-10, RV-11, RV-
15, RV-17, RV-19, RV-20, RV-35 and RV-38. Laugarnes features two reference wells -
RV-7 and RV-34. For fitting the data both reference data sets were used.
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Figure 22: Production and drawdown data from Laugarnes 2007 - 2009; production is
displayed by the red line; drawdown data from reference well RV-7 is displayed by the
blue line; RV-34 by the dashed blue line
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Figure 23: Production and drawdown data from Reykir 2007 - 2009; production is dis-
played by the red line; drawdown data from reference well MG-1 is displayed by the blue
line; SR-32 by the dashed blue line

For Reykir, the production data was taken from wells MG-3, MG-4, MG-6, MG-8, MG-
9, MG-11, MG-12, MG-13, MG-14, MG-15, MG-16, MG-17, MG-18, MG-20, MG-22,
MG-23, MG-24, MG-25, MG-26, MG-27, MG-30 and MG-31. Two reference wells are
located within the fields premises - MG-1 and SR-32.
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Figure 24: Production and drawdown data from Reykjahlid 2007 - 2009; production is
displayed by the red line; drawdown data from reference well MG-28 is displayed by the
blue line

For Reykjahlid, the production data was taken from wells MG-5, MG-19, MG-21, MG-
29, MG-32, MG-33, MG-34, MG-35, MG-36, MG-37, MG-38 and MG-39. Coming from
the only reference well - data from MG-28 was used for fitting the data to the model.

Generally the drawdown data from reference wells should cover a large time span of
production. For some of the fields, this could not be followed, since the quality of the
model fit was better for the reference well, which provided data for a shorter period of
time.

4.2.1 Initial Fit

The field data was gradually used as input. During the first step, production and drawdown
data from the whole available period was selected and the model was run. This was done
for an open and closed one tank model, an open and closed two tank model and an open
and closed three tank model. Drawdown was defined positive in the downward direction.
Production was defined as growing positively. The initial water level was set to be 0. The
data had to be converted into the SI units that are used by PyLumpfit. The production data
was provided by OR in cubic meters per month. The conversion into kg/s was made with a
multiplication factor which resembles the density of the fluid at the measured temperature.
Table 2 shows the different average densities assumed for the three fields:

Generally, the coefficient of determination was higher for model fits of higher complexity.
The best results are explained in the following chapters.
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Table 2: Density conversion factors

Field Assumed Temp. (C) Density (kg/m3) Conversion Factor

Ellidaar 90 965 0.965
Laugarnes 130 935 0.935

Reykir and Reykjahlid 85 968 0.968

4.2.1.1 Ellidaar

For the Ellidaar geothermal field, a good fit was obtained with a one tank open model.
The coefficients of determination remained on a medium high level of 0.67 for all models
with increased complexity. The intial fit is displayed in Appendix B Figure 38 a-f.

4.2.1.2 Laugarnes

PyLumpfit produced valuable results for the geothermal area of Laugarnes when fitting
the data to reference well RV-34. A good fit was obtained with a one tank, two tank and
three tank open approach. The coefficient of determination measured 0.71 for the one
tank open approach and did not increase with increasing complexity and hence, the one
tank open model was chosen as the best fit for RV-34. Fitting the data to RV-7 did produce
valuable results as well, although the coefficient of determination stayed at a comparably
low level of 0.67 for models of higher complexity. The reason for that is subject to further
research as it is not clear from the data why the fitting has a poorer quality than the fitting
of RV-34, especially when comparing the data of RV-7 to the fairly similar data of RV-34.
The initial fits for the Laugarnes geothermal field, using RV-7 and RV-34 as the reference
wells, is displayed in Appendix B Figure 40 a-f.

4.2.1.3 Reykir and Reykjahlid

Despite the geographical and geological closeness of the two fields, the author found it to
be of interest to fit a model to the individual data sets, as the reference wells are relatively
far apart from each other.

Fitting the operational data of the geothermal field Reykir while using well SR-32 for
the drawdown measurements, produced valuable results. The coefficient of determination
reached a level of 0.67 with a one tank open model. For a two tank closed model, the
level increased to 0.68 and for a two tank open model the coefficient leveled off at 0.72.
Further increases in complexity did not lead to higher levels. Therefore the two tank open
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approach was used as the best fit. Using data from reference well MG-1 did lead to a
slightly lower quality fit, as the maximum level for the coefficient of determination was
0.69 .

The results of Reykir’s initial fit, using data from reference wells SR-32 and MG-1, are
displayed in Appendix B Figure 42 a-f.

Fitting Reykjahlid’s data, using reference well MG-28 did not produce valuable results as
the level of the coefficient of determination did not exceed 0.15. The initial fits for the
Reykjahlid geothermal field, using MG-28 as the reference well is displayed in Appendix
B Figure 43 a-f.

When using Reykir and Reykjahlid operational data together the results were contradic-
tory to the stand alone results. Fitting with data from Reykir’s reference wells MG-1 and
SR-32 did not produce valuable results. However, Reykjahlid’s reference well MG-28
now produced a fit with a coefficient of determination of 0.71 while using a one tank open
model.

4.2.1.4 Complete Overview

Table 3 gives an overview of all initial fits, displaying the R2 for different model com-
plexities.

Table 3: Initial R2 values with increasing model complexity

1 closed 1 open 2 closed 2 open 3 closed 3 open

Ellidaar RV-27 0.00 0.67 0.67 0.67 0.67 0.67
Laugarnes RV-7 0.00 0.67 0.67 0.67 0.67 0.67

Laugarnes RV-34 0.00 0.71 0.00 0.71 0.66 0.71
Reykjahlid MG-28 0.00 0.15 0.00 0.15 0.15 0.15

Reykir MG-1 0.00 0.62 0.64 0.69 0.69 0.66
Reykir SR-32 0.00 0.67 0.68 0.72 0.72 0.72

R and R MG-1 0.00 0.58 0.00 0.58 0.48 0.48
R and R SR-32 0.00 0.44 0.00 0.44 0.42 0.42

R and R MG-28 0.00 0.71 0.00 0.71 0.70 0.70

Table 4 gives an overview of all inital fits, displayed as the R̄2 for different model com-
plexities.
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Table 4: Initial R̄2 values with increasing model complexity

1 closed 1 open 2 closed 2 open 3 closed 3 open

Ellidaar RV-27 0.00 0.67 0.67 0.67 0.67 0.67
Laugarnes RV-7 0.00 0.48 0.46 0.46 0.46 0.46

Laugarnes RV-34 0.00 0.71 -0.01 0.71 0.65 0.70
Reykjahlid MG-28 0.00 0.14 -0.01 0.14 0.14 0.13

Reykir MG-1 0.00 0.62 0.64 0.69 0.69 0.65
Reykir SR-32 0.00 0.67 0.68 0.72 0.72 0.72

R and R MG-1 0.00 0.58 -0.01 0.57 0.47 0.47
R and R SR-32 0.00 0.44 -0.01 0.43 0.41 0.41

R and R MG-28 0.00 0.71 -0.01 0.71 0.70 0.69

4.2.2 Uncertainty and LPM

As the second step, the data time range was reduced to 60 months and a fit was tried to be
achieved. This was done for all supported model complexities. All further iterations were
run with the same additional amount of data, e.g. the second run incorporated 120 months
of operational data, the third run 240 and so forth. By doing this, the uncertainty about
how the water table of the reservoir behaves with ongoing production was constantly
decreased as the model gained access to operational data gradually. This was done for
each reference well individually. Appendix C shows a table with the results.

It was determined that when reducing the amount of input data, the model complexity of
the best fit does not change.

Reykjahlid alone showed no satisfactory results, as was to be expected because of the
weak initial fit. Ellidaar showed no satisfactory results either. In this case, the devel-
opment of the coefficient of determination is especially interesting, as its initial fit only
reached a high level for the coefficient of determination when using a lot of data points.
PyLumpfit was not able to create a reasonable fit for Ellidaar when the model used up
to the first 300 months as input. Figure 25 shows the development of the coefficient of
determination and the yearly production volume. Good fits are obtained when the annual
production values plummet towards 0. The quality of the fit gets better the longer the
production stays on minimal levels.

In order to increase the amount of information that the development of the coefficients
of determination provides, a control profile with made up operational data was created.
The production data was created in a way that follows seasonal patterns with an annu-
ally repetitive sine curve. This behavior was chosen as it can be found in the measured
operational data as well (compare Figures 21 - 24).
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Figure 25: Development of annual production data (red) and R2 (blue, solid), R̄2 (blue,
dashed) for the geothermal field of Ellidaar 1970 - 2004

The production of time period i is calculated as:

ṁi = [sin(i · 1

6
π +

1

6
π) + 2] · 100, 000 (35)

The drawdown data depends on the production data and is slightly shifted in time, in order
to produce a data set that simulates the real physical behavior of geothermal reservoirs.
The calculation of the drawdown response is related to equations 5-7 and represents a
one tank open system. More details can be found in Appendix E. The drawdown of time
period i is calculated as:

hi = hi−1 +
ṁi−2 − ṁi−3

7500
(36)

where h1 = 562
3
. The initial level of the drawdown data was chosen randomly.

Theoretically this model should obtain a good fit with a one tank open model. As ex-
pected, the best fit was obtained with an one tank open model. Figure 26 shows the
initial behavior of the coefficient of determination with increasing data input of up to 300
data points. Increasing quality was measured with even more data points, but the limited
time frame from which real operational data is available, limited the practicality of using
information from such a development.

For comparison of results, the coefficients of determination are normalized on a scale of
0 to 1 by using the following equations:
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Figure 26: Development of the control model’s R2 (red, solid) and R̄2 (red, dashed) value
with increasing data input

R2
Ni =

R2
i

R2
max

(37)

R̄2
Ni =

R̄2
i

R̄2
max

(38)

where R2 is the coefficient of determination, i the time period and R2
max the maximum

coefficient of determination which was reached within the first 300 months. By doing this,
a comparison of normalized coefficients of determination is possible. A steep increase of
the coefficient of determination occurs when few data points are available. Therefore the
resolution of the data input increase was chosen to be higher in the beginning. A base
increase of 10 data points was used until the level of 60 was reached. This was chosen as
a compromise between computational time and accuracy. Figure 27 shows the results for
Laugarnes RV-7, Laugarnes RV-34, Reykir MG-1, Reykir SR-32 and Reykir/Reykjahlid
MG-28. The according data is displayed in Table 5 and Table 6. Ellidaar and Reykjahlid
stand-alone were not considered for this step as their initial fits were not on a satisfactory
level. The model complexity was chosen to be in line with the initial best fit.

The development of R2 and R̄2 behaves only partially similarly for the separate cases.
With an increased amount of data, the coefficients of determination generally acquire a
higher value. Nevertheless, for some cases, this development is interjected with a contrary
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Figure 27: R2
Ni values with decreasing uncertainty
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Figure 28: R̄2
Ni values with decreasing uncertainty
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Table 5: Development of the normalized R2 values with decreasing uncertainty

Normalized Coefficient of Determination R2

data input L RV-7 L RV-34 R MG-1 R SR-32 RR MG-28 Control Model
15 0.16 0.63 0.00 0.45 0.27 0.64
20 0.49 0.67 0.00 0.67 0.60 0.27
30 0.55 0.64 0.16 0.81 0.69 0.47
40 0.78 0.43 0.57 0.92 0.83 0.56
50 / 0.50 0.51 0.89 0.91 0.61
60 0.91 0.59 0.47 0.88 0.95 0.69
120 0.96 0.83 0.99 1.00 0.97 0.86
180 1.00 0.97 0.96 0.99 0.95 0.93
240 0.99 1.00 1.00 1.00 0.97 0.98
300 0.96 1.00 1.00 0.99 1.00 1.00

Table 6: Development of the normalized R̄2 values with decreasing uncertainty

Normalized Coefficient of Determination R̄2

data input L RV-7 L RV-34 R MG-1 R SR-32 RR MG-28 Control Model
10 -0.42 0.40 -1.13 -0.28 -0.04 0.40
20 0.01 0.58 -0.38 0.49 0.51 0.57
30 0.42 0.59 -0.05 0.72 0.65 0.57
40 0.50 0.38 0.47 0.87 0.80 0.36
50 / 0.46 0.43 0.85 0.89 0.45
60 -0.05 0.56 0.40 0.85 0.94 0.55
120 0.91 0.82 0.96 0.99 0.97 0.82
180 0.95 0.97 0.94 0.98 0.94 0.97
240 1.00 1.00 1.00 1.00 0.97 1.00
300 0.99 1.00 0.99 0.99 1.00 1.00
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movement. For example, L RV-34 shows a decrease between 30 and 40 data points. When
comparing the drawdown data of L RV-34 to other reference wells, the values behave
in a non conform way. The reason for this behavior cannot be explained with varying
production, as L RV-7, which responds to the same production values, shows continuously
growing coefficients of determination. Further research might be able to find the reason
for L RV-34’s behavior. The same behavior can be found when analyzing R MG-1, where
the coefficient of determination declines between 40 and 60 data points, whereas R SR-32
does not show this inconsistency. Further analysis with higher resolution showed that the
decline takes place between 40 and 70, without being connected to abnormal drawdown or
production behavior. The control model shows a monotonic increase from 30 data points
on, but behaves oppositely when very few data points are used as input for PyLumpfit.
This might be due to the strong seasonality of the control model. Further research might
prove that in order to achieve a stronger fit, a whole seasonal cycle must be present. At
the moment, the data suggest that this is the case, but the statement has to be regarded as
speculative.

The level of allR2
Ni and R̄2

Ni values reaches satisfactory levels of 80% and more when ten
years of monthly data were used as input. For L RV-7, R SR-32 and RR MG-28 this level
was reached with data input from 30 to 60 months. Nevertheless, ten seasonal cycles were
considered to be the appropriate amount of data to bring the coefficients of determination
to the system specific maximum values.

For comparison of the results with different control models, three additional models were
created. Control model two is a one tank open model which features a yearly increase in
production and drawdown of one percent. Control model three is a one tank open model
which faces an one percent decline of production and drawdown per annum. Control
model four is a two tank open model with an annual production decrease of five percent
while the drawdown reacts slower with only two percent decrease. Figure 29 shows the
development of the normalized coefficients for control model one to four. All control
models behave in a very similar way.

4.2.3 Drawdown Forecasting

In addition to the analysis of the development of the coefficients of determination with
increasing operational data, a drawdown forecast for selected wells was made. For this
analysis Reykir SR-32 and Laugarnes RV-34 were chosen, as both showed good initial
fits and satisfactory development of the model fit with increased data input.



Sven Scholtysik 61

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320
0.2

0.4

0.6

0.8

1

data input

R
2 N
i

Figure 29: R2
Ni values with decreasing uncertainty - control model one in red, two in

brown, three in blue and four in black

For Reykir SR-32 a two tank open model was used as a base and the production was fore-
casted on the premise that it alternates within the range of the main 80% of the according
data input. To calculate the main 80%, the top and bottom 10% are cut off. The maximum
value was set to occur during the months of December to February, as then the demand
for heating in Iceland is the biggest. The minimum value was set to be used from June to
August, the period with the least demand for hot water. Starting point of the operational
data was chosen to be March 1980, as this date marks the start of data collection from
reference well SR-32. The yearly production was assumed to be stable.

For Laugarnes RV-34 a one tank open model was used. The same process was applied as
in the case of Reykir. The starting point was chosen to be the first of February 1985.

Table 7 shows the data range used for the forecasting.

For Reykir the water level showed a decreasing trend for the forecasts with data input of
60, 120 and 180 months. 240 and 300 months data input stabilized the water level trend
to a level development. When using the main 80% of the production data of the first 60
months throughout the forecasting process, the decreasing trend continued to be visible
until 240 months data input. The according graphs can be found in Appendix D. For
Laugarnes a level development of the drawdown was visible throughout all iterations. The
forecasted water level showed the same trend over all iterations: it followed production
closely and gave a fairly good indication if production was actually held at a stable level.
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Table 7: Production range used for forecasting - main 80% of the monthly production
values for Laugarnes and Reykir - values in m3

Laugarnes Reykir

months min max min max
60 292620 725460 1044050 1663220

120 234909 674673 1043545 1874540
180 204709 659525 766373 1796883
240 207120 652385 586048 1729802
300 220151 644037 586454 1719307

Overall, the water level seemed to have had a slightly negative trend, despite the model
being open.

Figure 30 shows the drawdown forecast for Laugarnes and Figure 31 shows the forecast
for Reykir.
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(a) Forecast with 60 months data input (b) Forecast with 120 months data input

(c) Forecast with 180 months data input (d) Forecast with 240 months data input

(e) Forecast with 300 months data input (f) Initial fit

Figure 30: Drawdown forecast for Laugarnes
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(a) Forecast with 60 months data input (b) Forecast with 120 months data input

(c) Forecast with 180 months data input (d) Forecast with 240 months data input

(e) Forecast with 300 months data input (f) Initial fit

Figure 31: Drawdown forecast for Reykir
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Chapter 5

Conclusion

This chapter discusses the results and summarizes the research and points out possible
future research opportunities.

5.1 Summary

After introducing the scientific background of the origin and usage possibilities of geother-
mal energy, the concept of reservoir modeling has been explained and different types of
reservoir modeling techniques were analyzed. The cost and time saving lumped parameter
modeling approach was chosen to be the main focus of the thesis.

Operational data was obtained from Orkuveita Reykjavikur and covered 300+ months
of drawdown and production history of the fields Ellidaar, Laugarnes, Reykir and Reyk-
jahlid.

After processing and cleaning the raw data, an initial model fit was attempted by minimiz-
ing the sum of squared differences between the model function and the observed values.
An appropriate model fit was determined with the R2 and R̄2 values. The operational
data was divided into data input packs of 60 data points and a fit was tried to be achieved.
Additionally, control models with imaginary data were created, in order to compare the
results to stable, seasonal data. The results showed that a higher resolution of data input
points was needed in the beginning, as the model iterations with 60 data points already
showed a significantly high coefficient of determination. Hence models were fitted with
15, 20, 30, 40, 50, 60, 120, 180, 240 and 300 data points. This showed some interest-
ing behavior of the coefficient of determination, as its development was analyzed for the
Ellidaar geothermal area. The goodness of fit did develop its maxima when production
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dropped to its minimum levels. Overall, best fits did not show differences in model com-
plexity with decreasing uncertainty. Both models from real data and models from control
data showed the same development with decreasing uncertainty. After 10 seasonal cycles
the R2 and R̄2 values reached at least 80% of the reservoir/reference well maxima.

For the economical optimization part of the thesis, net present value maximization was
chosen to be the objective function, as this represents the industry standard. The concept
of net present value calculations was explained and the influence of the discount rate was
pointed out. In order to calculate a stable discount rate, the weighted average cost of
capital model was used, which allows a rather stable discounting as long as the underly-
ing capital structure of the project does not change. Furthermore, the cash flow of a low
temperature geothermal project was discussed and a modular approach with different in-
fluential variables within the cost and benefit model was proposed. These variables might
show indistinct behavior over time and were therefore identified as potential sources of
uncertainty.

5.2 Discussion

The results of analyzing the different variables, which are subject to change during an eco-
nomical optimization with the goal to maximize the NPV of a low temperature geothermal
project, are discussed in chapter 4. Almost all variables that influence the outcome of the
optimization are subject to an extensive amount of uncertainty. While analyzing the pos-
sible changes a variable can undergo, it became obvious that each variable has a subset
of influencing variables itself. In many cases, these sub-variables themselves are prone to
indistinct behavior as they are influenced again by other variables. One example to show
this behavior is equipment cost in the investment period. Figure 32 gives an overview of
the influencing factors of some of the variables and sub-variables.

This example was chosen to show the multiple points of attack for uncertainty. In Figure
32 only the influencing sub-variables for one variable per level are shown. In reality, not
only the feedstock price for the equipment cost has further sub-variables that are prone
to uncertainty. Labor cost has different influencing factors as well. Some parts of the
cost model, which is used for optimization, are much more exposed to uncertainty than
one would think at first. In many optimization analyses for geothermal low temperature
projects, equipment cost are given as a constant or are sometimes even just limited to cost
for pumps. This behavior excludes all other physical equipment that is needed to run a



Sven Scholtysik 67

Figure 32: Sources of uncertainty for equipment cost during the investment period

geothermal exploitation project and rejects the reality of variables with indistinct behavior
over time.

In chapter 2.2.1.1 one of the basic ideas of modeling is stated as the shortening of re-
ality. A model therefore, by definition, reduces the amount of information that reality
provides. It is unrealistic to assume all sources of uncertainty can be included in an opti-
mization problem. The question is rather, which variables should be allowed to fluctuate
and how the outcome of optimization can be made more realistic. The answer to this
question is dependent on the background of the model user: an economist might choose
different variables than an engineer. These choices might alter the model outcome but
are necessary in order to create an optimization model that is manageable and does not
complicate the usability or reduce the usefulness. For research purposes, the complete set
of sources of uncertainty is regarded as interesting and significant. In an industrial setting,
the model might face a decreased amount of sources of uncertainty in order to improve
practicality.

Chapter 4 analyzed one of the options through which optimization results can be made
more realistic: lumped parameter modeling.
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The forecast of how physical properties of the reservoir react to production is one the
questions that needs to be answered in order to maximize the quality of an optimization
outcome. Chapter 3 stated that one option that is commonly used for modeling these
physical reactions is lumped parameter modeling. The main outcomes of the question
how uncertainty influences the outcome of lumped parameter modeling are the follow-
ing.

1. Increasing availability of operational data/decreasing uncertainty has no influence
on the complexity of the best fitting model. All iterations showed this result. This
can save computational time and resources, as not all different levels of complexity
need to be simulated once the best fit is determined.

2. The development of the coefficient of determination with decreasing uncertainty
can be regarded as important. The example of Ellidaar showed clearly that a good
initial fit can be misleading. Further analysis of the coefficient’s development
showed distinct deficiencies when reducing the amount of available data for input.

3. For all tested reservoirs, using ten seasonal cycles of data allows the model to reach
80% or more of the maximum coefficient of determination. This outcome can be of
high practical value, as it implicates very good forecasting possibilities are available
after the indicated time span.

4. Drawdown forecasting is apt to produce valuable results if the model fit has an
appropriate coefficient of determination. Predictions if the simulated production is
within the sustainable production limit are possible.

In general, decreasing uncertainty seems to have positive effects for the outcome of
lumped parameter modeling. Nevertheless, the results are only improved up to a cer-
tain point which can be reached at different levels of uncertainty. It would be of interest
for future research to analyze where the economical optimum for uncertainty decrease is
located.

A better model fit generally means more accurate knowledge on how the reservoir would
react to production changes. Consequently, qualitatively better drawdown forecasting
possibilities are generated. Using these forecasting possibilities is an important step
for maximizing the quality of the optimization output, as realistic production limits are
needed in order to improve the accuracy of the optimization model.

As already stated, the research shows that a well-specific maximum of the model fit is
reached after ten seasonal cycles. At this point the degree of uncertainty is comparably
low and the model can be used as a tool to produce valuable output for the economical op-
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Figure 33: Maximized surplus at equilibrium; shaded area represents surplus

timization. Furthermore, the model is apt to show the reservoir’s current sustainable pro-
duction limit and if the reservoir’s production is within the sustainable production range
or not. This information is of utmost importance when the nature of NPV calculations is
considered.

Maximizing the NPV of a project is considered the standard objective function for a lot
of economic optimization problems. This stems from the fact that a maximized NPV is
regarded as desirable by most companies, since it maximizes the value a company can
get from a project if the time value of money is considered. A high discount rate might
devalue future earnings severely and consequently short-term production over the sustain-
able production limit might be considered optimal as the estimated value for production
decreases rapidly over time. A simple example of the influence of the discount rate is
displayed in Figure 10. Without knowing how the reservoir would react to excessive
production, it is not possible to find realistic economical production values.

One alternative to NPV maximization is minimizing the deviation between supply and
demand. Considering economic theory, a minimized supply demand deviation should
stabilize untaxed prices for consumers and create the maximized social welfare, since
consumer and producer surplus are maximized as a whole, while deadweight losses are
minimized and theoretically non-existent if supply equals demand. This is displayed con-
ceptually in Figure 33, where the gray shaded area represents the maximized surplus at
an economic equilibrium.

In reality, temporary surplus production or deficit cannot be outruled. When not max-
imizing the NPV but minimizing the supply demand deviation, the level of uncertainty
is shifted to the price independent variables that determine demand. Taking the results
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of chapter 4.2.3 into account, demand would still react to climate change and popula-
tion migration. Other variables that are subject to uncertainty and are influencing the
optimization of NPV results, for example different cost structures etc., would become
obsolete. It is of academic interest to investigate this further, but it is speculative if min-
imizing supply demand deviation has the potential of broad scale application in private
run industries.

5.3 Future Research Opportunities

The purpose of this thesis was to focus on the development of the LPM fit under decreas-
ing uncertainty. Consequently, some of the parameters that are incorporated in the LPM
result have been outside of the focal area and were not part of the analysis. Two of those
parameters, are the storage coefficients (K) and the resistance levels (σ). It might be of
interest for future research to analyze the development of these parameters and compare
the outcome to the development of the model fit with decreasing uncertainty.

The analysis has been undertaken with operational data from four different fields in Ice-
land. In order to prove the reliability of the results, a larger, international sample group
would be interesting to analyze. More samples would most likely lead to more best fits
of higher model complexity. If this is the case, the application of the Akaike Information
Criterion as one of the parameters that provides information about the model fit could be
of interest, as it penalizes higher model complexity [121]. Furthermore, the development
of the model fit after 300 months of data input is of scientific interest. As the operational
data available only spans a certain time frame, it was not possible to analyze the develop-
ment of the goodness of fit for very long term data series. It would be interesting to use
operational data from reservoirs where data has been collected for 50 or more years.

The thesis proposed several different sources of uncertainty for economical optimization
when using NPV maximization as the goal. The quantification of the effects arising due
to these sources of uncertainty is apt to be the major part of future theses’ topics. Addi-
tionally, the NPV model could be extended by a terminal value calculation which takes
the long-term development into account. Due to the high uncertainty that arises when
long-term effects are analyzed, a quantification of the terminal value and its uncertainty
might be interesting.

To conclude, the research for this thesis discusses the main sources of uncertainty for eco-
nomic optimization of low temperature geothermal resources. Furthermore, it analyzed
and explained the role of decreasing uncertainty for model fits by lumped parameter mod-
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eling and proposed 10 seasonal cycles as a threshold for stabilizing the model fit. This
time horizon can act as a stabilizing factor in the economic optimization and improve the
accuracy of economic forecasting. Nevertheless, it would be of interest to extend the re-
search focus and answer some of the questions that were beyond the scope of this thesis.
Additionally, further practical analyses would be beneficial for proving the consistency in
the coherence of the research results.
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Appendix A

Production and Drawdown Data

The following two pages show the measured production data of the low temperature
geothermal fields Ellidaar, Laugarnes, Reykir and Reykjahlid.
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Figure 34: Production and drawdown data from Ellidaar; production is displayed by the
red line; drawdown data from reference well RV-27 is displayed by the blue line
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Figure 35: Production and drawdown data from Laugarnes; production is displayed by the
red line; drawdown data from reference well RV-7 is displayed by the blue line; RV-34 by
the dashed blue line



Sven Scholtysik 85

50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5
·106

months

pr
od
u
ct
io
n
in
m

3

20

40

60

80

100
d
ra
w
d
ow
n
in
m

Figure 36: Production and drawdown data from Reykir; production is displayed by the
red line; drawdown data from reference well MG-1 is displayed by the blue line; SR-32
by the dashed blue line
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Figure 37: Production and drawdown data from Reykjahlid; production is displayed by
the red line; drawdown data from reference well MG-28 is displayed by the blue line
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Appendix B

Initial Model Fits

The following pages show the initial LPM fit for Ellidaar, Laugarnes, Reykir and Reyk-
jahlid. The graphs show the production throughout the data collection period, as well as
the measured and the calculated water level. The fit for six different model complexities
is shown.
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(a) One tank closed system (b) One tank open system

(c) Two tank closed system (d) Two tank open system

(e) Three tank closed system (f) Three tank open system

Figure 38: Ellidaar’s initial fit
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(a) One tank closed system (b) One tank open system

(c) Two tank closed system (d) Two tank open system

(e) Three tank closed system (f) Three tank open system

Figure 39: Laugarnes’ initial fit - RV-7
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(a) One tank closed system (b) One tank open system

(c) Two tank closed system (d) Two tank open system

(e) Three tank closed system (f) Three tank open system

Figure 40: Laugarnes’ initial fit - RV-34



Sven Scholtysik 91

(a) One tank closed system (b) One tank open system

(c) Two tank closed system (d) Two tank open system

(e) Three tank closed system (f) Three tank open system

Figure 41: Reykir’s initial fit - MG-1
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(a) One tank closed system (b) One tank open system

(c) Two tank closed system (d) Two tank open system

(e) Three tank closed system (f) Three tank open system

Figure 42: Reykir’s initial fit - SR-32
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(a) One tank closed system (b) One tank open system

(c) Two tank closed system (d) Two tank open system

(e) Three tank closed system (f) Three tank open system

Figure 43: Reykjahlid’s initial fit
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Appendix C

Coefficient of Determination Tables

The following two tables show the R2 and R̄2 values with increasing complexity and
decreasing uncertainty.
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Table 8: R2 values for the individual field/reference well with decreasing uncertainty

data input 1 closed 1 open 2 closed 2 open 3 closed 3 open

Ellidaar RV-27 60 0.00 0.24 0.24 0.24 0.24 0.24
Ellidaar RV-27 120 0.00 0.11 0.10 0.11 0.11 0.11
Ellidaar RV-27 180 0.00 0.04 0.04 0.04 0.04 0.04
Ellidaar RV-27 240 0.00 0.01 0.00 0.00 0.00 0.00
Ellidaar RV-27 300 0.00 0.27 0.27 0.27 0.27 0.27

Laugarnes RV-7 60 0.00 0.63 0.63 0.63 0.63 0.63
Laugarnes RV-7 120 0.00 0.66 0.65 0.66 0.66 0.66
Laugarnes RV-7 180 0.00 0.69 0.00 0.69 0.69 0.69
Laugarnes RV-7 240 0.00 0.68 0.00 0.68 0.67 0.67
Laugarnes RV-7 300 0.00 0.66 0.00 0.66 0.66 0.66

Laugarnes RV-34 60 0.00 0.41 0.41 0.41 0.41 0.41
Laugarnes RV-34 120 0.00 0.58 0.58 0.58 0.58 0.58
Laugarnes RV-34 180 0.00 0.68 0.66 0.68 0.68 0.68
Laugarnes RV-34 240 0.00 0.70 0.00 0.70 0.69 0.69
Laugarnes RV-34 300 0.00 0.70 0.00 0.70 0.68 0.70

Reykjahlid MG-28 60 0.00 0.39 0.39 0.39 0.39 0.39
Reykjahlid MG-28 120 0.00 0.03 0.03 0.03 0.03 0.03
Reykjahlid MG-28 180 0.00 0.00 0.00 0.00 0.00 0.00
Reykjahlid MG-28 240 0.00 0.00 0.00 0.00 0.00 0.00
Reykjahlid MG-28 300 0.00 0.13 0.07 0.13 0.13 0.13

Reykir MG-1 60 0.00 0.21 0.32 0.33 0.33 0.33
Reykir MG-1 120 0.00 0.50 0.69 0.69 0.69 0.69
Reykir MG-1 180 0.00 0.56 0.65 0.67 0.67 0.67
Reykir MG-1 240 0.00 0.57 0.67 0.71 0.71 0.71
Reykir MG-1 300 0.00 0.60 0.65 0.70 0.70 0.70

Reykir SR-32 60 0.00 0.52 0.61 0.64 0.64 0.64
Reykir SR-32 120 0.00 0.59 0.73 0.73 0.73 0.73
Reykir SR-32 180 0.00 0.63 0.68 0.72 0.71 0.71
Reykir SR-32 240 0.00 0.66 0.70 0.73 0.73 0.73
Reykir SR-32 300 0.00 0.66 0.68 0.72 0.72 0.72
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Table 9: R̄2 values for the individual field/reference well with decreasing uncertainty

1 closed 1 open 2 closed 2 open 3 closed 3 open

Ellidaar RV-27 -0.02 0.21 0.20 0.18 0.17 0.15
Ellidaar RV-27 -0.01 0.09 0.08 0.08 0.07 0.06
Ellidaar RV-27 -0.01 0.03 0.02 0.02 0.01 0.01
Ellidaar RV-27 0.00 0.00 -0.01 -0.02 -0.02 -0.03
Ellidaar RV-27 0.00 0.27 0.26 0.26 0.26 0.26

Laugarnes RV-7 -0.02 0.62 0.61 0.60 0.60 0.59
Laugarnes RV-7 -0.01 0.65 0.64 0.65 0.65 0.64
Laugarnes RV-7 -0.01 0.69 -0.02 0.68 0.68 0.68
Laugarnes RV-7 0.00 0.68 -0.01 0.67 0.66 0.66
Laugarnes RV-7 0.00 0.66 -0.01 0.66 0.65 0.65

Laugarnes RV-34 -0.02 0.39 0.38 0.37 0.36 0.34
Laugarnes RV-34 -0.01 0.57 0.57 0.57 0.56 0.56
Laugarnes RV-34 -0.01 0.68 0.65 0.67 0.67 0.67
Laugarnes RV-34 0.00 0.70 -0.01 0.69 0.68 0.68
Laugarnes RV-34 0.00 0.70 -0.01 0.70 0.67 0.69

Reykjahlid MG-28 -0.02 0.37 0.36 0.35 0.33 0.32
Reykjahlid MG-28 -0.01 0.01 0.00 0.00 -0.01 -0.02
Reykjahlid MG-28 -0.01 -0.01 -0.02 -0.02 -0.03 -0.03
Reykjahlid MG-28 0.00 -0.01 -0.01 -0.02 -0.02 -0.03
Reykjahlid MG-28 0.00 0.12 0.06 0.12 0.12 0.11

Reykir MG-1 -0.02 0.18 0.28 0.28 0.27 0.25
Reykir MG-1 -0.01 0.49 0.68 0.68 0.68 0.67
Reykir MG-1 -0.01 0.56 0.64 0.66 0.66 0.66
Reykir MG-1 0.00 0.57 0.67 0.71 0.70 0.70
Reykir MG-1 0.00 0.60 0.65 0.70 0.69 0.69

Reykir SR-32 -0.02 0.50 0.59 0.61 0.61 0.60
Reykir SR-32 -0.01 0.58 0.72 0.72 0.72 0.72
Reykir SR-32 -0.01 0.63 0.67 0.71 0.70 0.70
Reykir SR-32 0.00 0.66 0.70 0.73 0.72 0.72
Reykir SR-32 0.00 0.66 0.68 0.72 0.72 0.71
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Appendix D

Drawdown Forecasting Figures

The next page shows the drawdown forecast for Reykir’s SR-32 reference well. Fore-
casted with the seasonal variation of the main 80% of the production data, taken from the
first 60 months.
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(a) Forecast with 60 months data input (b) Forecast with 120 months data input

(c) Forecast with 180 months data input (d) Forecast with 240 months data input

(e) Forecast with 300 months data input (f) Initial fit

Figure 44: Drawdown forecast for Reykir, input main 80% of the production data from
months 1 - 60
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Appendix E

Drawdown Response of Control
Model

For a one tank open model h2 = h∞, therefore:

K1
hi − hi−1

∆t
= σ12(h∞ − h1) +

ṁ

ρg
(39)

By averaging the production one gets:

K1
hi − hi−1

∆t
= σ12(h∞ − hi−1) +

ṁi−1+ṁi

2

ρg
(40)

This leads to:

hi =
∆tσ12
K1

(h∞ − hi−1) + hi−1 +
∆t

K12ρg
(ṁi−1 + ṁi) (41)

hi =
∆tσ12
K1

h∞ +

(
∆tσ12
K1

− 1

)
hi−1 +

∆t

K12ρg
(ṁi−1 + ṁi) (42)
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