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Abstract

As computer systems become larger and more complex, such as with the
advent of clouds, scientists and engineers can use software to correctly set
up and evaluate their performance. Many such software tools are available
today but have not dealt with deadline based scheduling and preemption of
jobs running concurrently. If such software was available it could lead to
more efficient use of current and future systems.
With the concurrency and distribution of computation come problems such as
nondeterminism and race conditions which can be difficult to simulate and
reproduce. In this project we present the ReGen software that uses Timed
Rebeca to run Monte Carlo simulations of Natjam which is built into the
Hadoop YARN MapReduce cluster software. It can be used to measure the
efficiency of different job dispatch and job eviction policies in the presence
of preemption. Many variables are under our control such as size of cluster,
workload, deadline computation and more.
We present results showing the performance of EDF, FIFO, MDF and Pri-
ority Queue dispatch policies, and MDF and MLF policies for job eviction.
The results suggest MDF is preferable for both dispatching and job eviction.
We conclude that software to solve the above problem can be made and like
to argue that our results can transfer to other systems that use the policies
tested in this project.
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Útdráttur

Þegar tölvukerfi verða stærri og flóknari, eins og með tilkomu tölvuskýja,
geta vísindamenn og verkfræðingar stuðst við hugbúnaðartól til að setja þau
rétt upp og meta afköst þeirra. Mörg slík eru fáanleg en hafa hingað til ekki
átt við dreifingu á verkefnum með tímafrest. Ef slíkur hugbúnaður væri til
gæti það leitt til betri nýtingar á núverandi og framtíðar kerfum.
Með samhliða og dreifðum útreikningum koma vandamál eins og óregluleiki
og kapp aðstæður sem erfitt getur verið að herma og endurskapa. Í þessu
verkefni kynnum við ReGen hugbúnaðinn sem notar Timed Rebeca til að
keyra Monte Carlo hermun af Natjam sem byggt er inn í Hadoop YARN
MapReduce hugbúnaðarpakkann. Það getur verið notað til að mæla afköst
mismunandi verkefnadreifingar- og verkefnabrottrekstrarstefna við aðstæður
þar sem verkefni geta verið tafin til að keyra önnur verkefni. Hægt er
að stjórna mörgum breytum eins og stærð tölvukerfisins, verkefnaálagi, tí-
mafrestsútreikningum og fleiru.
Við kynnum niðurstöður sem sýna afköst EDF, FIFO, MDF og Priority Queue
verkefnadreifingarstefna og MDF og MLF verkefnabrottrekstrarstefna. Þær
niðurstöður gefa til kynna að MDF sé betri valkostur bæði fyrir dreifingu og
brottrekstur verkefna.
Við drögum þá ályktun að þróun hugbúnaðar til að leysa ofantöld vandamál
sé möguleg og viljum halda því fram að niðurstöðurnar sé hægt að yfirfæra
á önnur kerfi sem nota þær stefnur sem prófaðar voru í þessu verkefni.
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Chapter 1

Introduction

Clouds are becoming increasingly prevalent in our society. They are however, large, ex-
pensive and complex systems which are hard to benchmark and study. Re-configuring
parameters for differing workload patterns on an entire cluster is both tedious and time
consuming, and not easily repeatable. A preferred way is the use of simulations to tune
systems and experiment with different setups before deployment. Current cloud simula-
tors can calculate a number of things such as cost, energy usage, performance, utiliza-
tion, response time, resource allocation, auction based mechanisms or simulate workflow
and more but do not compute deadline misses nor support preemption (Calheiros, Ran-
jan, Beloglazov, Rose, & Buyya, 2010), (Wickremasinghe, Calheiros, & Buyya, 2010),
(Kliazovich, Bouvry, & Khan, 2012), (Núñez et al., 2012), (Lim, Sharma, Nam, Kim,
& Das, n.d.), (Garg & Buyya, 2011), (Casanova, Giersch, Legrand, Quinson, & Suter,
2014), (Buyya & Murshed, 2002), (Bell et al., 2002), (Dumitrescu & Foster, 2005), (Chen
& Deelman, 2012), (Bux & Leser, 2013), (Frey & Hasselbring, 2011).
To address this problem we introduce the software ReGen (Rebeca Generator) which uses
an example of a Big Data cluster to compute deadline misses, job request success rates,
job success rates, dropped jobs, job completions, breakdown of where deadline misses
occur and the priority of those jobs. For preemption we add computation for number of
checkpoints, checkpoint overflows and deadlines remaining of completed jobs. It also
compares the efficiency of different policies for dispatching jobs (EDF, MDF, FIFO, Pri-
ority Queue), and for evicting jobs (MDF, MLF).
For engineers and scientists studying the effects of different policies on different work-
loads, we support job arrival and length patterns of nondeterministic, uniform, wave,
ascending and descending. Additionally, bursty job arrival, and exponential job length
patterns are available.
Users can set parameters such as number of workers, queue sizes, number of simulations
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and their lengths, rate of high priority jobs and their lengths, a checkpoint overhead, as
well as parameters for the workload. The software then runs a Monte Carlo simulation
which outputs charts that show how the policies selected perform comparatively as the
number of workers grows, along with the average for every size of the cluster.

1.1 Contribution

This thesis attempts to engage the problem of scheduling and deadlines in distributed
systems in presence of eviction and proposes an effective and easy method of writing
software for it.
These contributions are:

• Resource management software for measuring performance of scheduling policies
under different workloads in a distributed system

• Experimental results demonstrating the effectiveness of the software

1.2 Overview of the Thesis

The thesis is structured as follows: Chapter 2 introduces the software and methods, such
as the Actor Model, behind ReGen. Chapter 3 explains the ReGen architecture, usage,
and methods to avoid concurrency problems used in the project. Chapter 4 contains the
results of experiments run by ReGen, their setups and parameters, both for dispatch and
eviction policies. The results are ordered into categories of scenarios in favor of, and
unfavorable to each policy, both dispatch and eviction. In Chapter 5 we draw conclusions
from the results and discuss them further.
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Chapter 2

Background

Timed Rebeca is an extension of Rebeca (Reactive Objects Language) that includes tim-
ing (Aceto et al., 2014). Rebeca is an actor-based language that can be used for modeling
distributed and asynchronous systems with timing constraints. The actor model (Hewitt,
1972) is a model of concurrent computation whose universal primitives are actors. An
actor in Rebeca can make local decisions, send more messages, and determine how to
respond to the next message it receives each time it receives a message. Messages to
actors in Timed Rebeca are stored in a "bag" instead of in a separate message queue for
each actor. The messages are selected to run from the bag nondeterministically for each
time unit. Rebeca is an operational interpretation of actors with java-like syntax, model-
checking software and formal semantics. Timed Rebeca adds extensions to Rebeca for
computation time, message delivery time, message expiration, and for periods of occur-
rences of events which is convenient for analyzing the performance of scheduling policies
over time. Figure 2.1 shows the syntax for Timed Rebeca and Figure 2.2 shows an exam-
ple of a ticket service model (Khamespanah, Sabahi-Kaviani, Khosravi, Sirjani, & Izadi,
2012).

MapReduce is a programming model for generating and processing large data sets (Dean
& Ghemawat, 2004). Its associated implementation allows users to specify a map function
that processes a key/value pair into a set of intermediate key/value pairs. A user specified
reduce function then merges all the intermediate values associated with the same interme-
diate key into a final result.

Hadoop (http://hadoop.apache.org/ ) is a framework for MapReduce, and YARN (Yet
Another Resource Negotiator) is a part of Hadoop (White, 2012). YARN leaves the re-
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Figure 2.1: Abstract syntax of Timed Rebeca. Superscript * is for repetition zero or more
times and superscript + for at least once. Angle brackets 〈...〉 are used as meta parenthe-
sis and text within normal brackets [...] is optional. Identifier e denotes an (arithmetic,
boolean, or nondeterministic choice) expression, v denotes a variable, and t stands for
time.

Figure 2.2: A Timed Rebeca model of a ticket service system. There are three reactive-
classes (actors) each with their own methods (messageservers) to process messages. In
the main function in this model there is a single instance (rebec) being created of each
reactiveclass although multiple instances can be created in Rebeca.
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Figure 2.3: Overview of Hadoop’s YARN. In ReGen everything but the AppMaster and
the Resource Manager has been abstracted away. The Resource Manager in ReGen gen-
erates jobs instead of the Client and AppMasters run jobs without splitting them into tasks
which would require another actor to run Task JVMs.

sponsibilities of job scheduling and task progress monitoring (doing task bookkeeping,
keeping track of tasks, maintaining counter totals, and restarting failed or slow tasks)
to a Resource Manager (RM). An Application Master (AM) negotiates with the RM for
resources to manage the lifecycle of applications like MapReduce jobs running on the
cluster. On a cluster there is a single RM, for every job there is a single AM, and jobs can
be made up of many tasks. YARN can use different policies for dispatching jobs to AMs
based on things like deadlines, priorities and arrival times. At this time, YARN does not
support preemption. An overview diagram of YARN is shown in Figure 2.3.

A dual priority setting is common for jobs in MapReduce clusters: high priority (pro-
duction) and low priority (research) jobs (Cho et al., 2013). A popular approach is using
separate clusters for each priority which is both expensive and inefficient. Natjam at-
tempts to remedy this by using the same cluster for both priorities and preempting jobs as
needed. Natjam-R adds support for prioritized scheduling to YARN using hard deadlines.
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ReGen (Rebeca Generator) is a Java Application that uses Timed Rebeca to generate
Hadoop YARN models with different policy, job arrival pattern, and job length pattern
parameters, runs and gathers results. It was written specifically for this project to com-
pare the efficiency of different dispatch and job eviction policies in YARN clusters with
Natjam-R. ReGen does this by creating models of YARN with its Resource Manager dis-
tributing jobs to AppMasters or preempting jobs already running. ReGen then runs a
Monte Carlo simulation using the models independently of a cluster and gathers results
from traces left on the hard drive. They can demonstrate how large a cluster is needed un-
der small workloads, as well as which dispatch or eviction policies are preferred.
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Chapter 3

Methods

3.1 Example Hadoop MapReduce and ReGen Scenario

A MapReduce job runs in two phases. First, a map function maps the data into key/value
pairs. An example could be weather data and a job would be to find the highest temper-
ature of each year. In this case the map function would parse the data and organize year
and temperature into pairs where years are the keys and temperatures the values. In the
second phase the reduce function seeks out the highest temperature for each year and re-
turns new key/value pairs where the keys are again the years and the value now the highest
temperature.
The way this works in Hadoop’s YARN (Yet Another Resource Negotiator) is that a Client
JVM running on a Client Node sends a MapReduce job request to the Resource Manager
(RM) that is running on a Management Node, of which there is only one in a cluster. To
fully use the cluster, either the clients or the RM can be set to split jobs into tasks de-
pending on their sizes and the size of the containers running on the third type of nodes,
the Node Manager nodes. They run containers whose size is fixed by administrators and
is usually about 1GB of memory. In these containers AppMasters (AMs) that manage
MapReduce jobs and tasks, or Task JVMs that run the tasks can be started. If jobs are
small enough, the overhead of allocating and running them in other containers can out-
weigh running them in parallel. The AMs can instead run them sequentially in their own
containers, in which case they are referred to as "uber tasks". Administrators can set the
size of jobs to be "uberized". ReGen currently assumes all jobs to be uber tasks so tasks
are not being modeled, only jobs. The jobs are also assumed to be any kind of job so the
only difference between them is their length which does not change from the time the job
enters the incoming queue.
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So, in our weather data example, the RM would find an empty container in the cluster to
start an AM to run the job. The AM would send the RM a request for containers to run
tasks if the job is not an uber task and the RM would reply with that information. The
AM would then message the Node Managers where the free containers are and they start
the Task JVMs which run the tasks. In ReGen, negotiations like requests for resources,
entities like Client nodes and Node Managers, containers like Task JVMs have been ab-
stracted away, leaving only two actors, the RM and AM. Figure 3.12 shows the simplified
model of YARN (Figure 2.3) used by ReGen.
In ReGen when a user has selected the policies and configured the workload of a sim-
ulation through the user interface, there is a model created for each number of AMs in
the cluster being simulated, starting with one AM and up to a user-defined maximum. A
user-defined number of simulations is then run for each of the models and all of them
with the same workload. The results from the simulations will demonstrate how a clus-
ter of each size handles the workload with each policy. The way the models work is by
the RM automatically generating jobs into the incoming queue instead of a Client actor
sending jobs like in YARN. The RM explores the incoming queue every time unit for the
next job to run using a dispatch policy, finds an AM to run the job and sends it to him.
The AM then runs the job and sends the RM its result when it ends either by completion
or by missing the deadline. As all jobs are uber tasks in ReGen, jobs are completed by
simply decrementing an integer that represents the jobs length, and the same goes for the
deadline.

3.2 ReGen Architecture, Diagrams and User Interface

ReGen is a Model-View-Controller Java application that generates Timed Rebeca code
based on user-defined parameters and is about 4000 lines of code. Users have a choice
between two different policy types for the Resource Manager (RM), dispatch and eviction.
The dispatch policies are for prioritizing which job to run next from the RM’s incoming
job queue and the eviction policies are for selecting which job running at the AppMasters
(AMs) to evict when performing preemption. Currently ReGen supports Earliest Dead-
line First (EDF), First-In-First-Out (FIFO), Maximum Deadline First (MDF) and Prior-
ity Queue dispatch policies, and Maximum Deadline First (MDF) and Maximum Laxity
First (MLF) eviction policies. For any policy there are different job arrival (bursty, non-
det, wave, uniform, ascending, descending) and job length patterns (exponential, nondet,
wave, uniform, ascending, descending). Figures 3.1 to 3.7 show diagrams of the currently
implemented job arrival and length patterns. The workload of a cluster is defined as a
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combination of a job arrival pattern and a job length pattern.
The following steps are performed by ReGen using the parameters the user selects, visible
in Figure 3.8:

1. Directories for artifacts are created.

2. The code for each model is generated into a template. For each combination of
policy, job arrival and length pattern there is one model for each number of AMs
and each model is one file.

3. Batch files to run each combination of policy, job arrival and length are created.

4. All batch files are run. A batch file compiles the Rebeca code previously generated
into C++ code using the Rebeca Model Checker, compiles the C++ code with a C++
compiler (G++ was used), and runs a Monte Carlo simulation with the executable
generated from the C++ code. The traces of the simulations are saved on the hard
drive.

5. The traces are parsed, results are aggregated and written out in charts and text files.

This sequence is demonstrated in Figure 3.9, the classes used in Figure 3.10, and all
relevant components in Figure 3.11.
For a sample of code generated by ReGen, refer to Appendix B.
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3.2.1 ReGen Classes

The following are the classes used as shown in the class diagram in Figure 3.10:

• DeadlineModelView

• DeadlineModelParameters

• AbstractModelCharter

• AbstractModelGenerator

• DeadlineModelController

• DispatchModelGenerator

• DispatchModelCharter

• NatjamModelGenerator

• NatjamModelCharter

• DeadlineTracesParser

• NatjamTracesParser

The view can create multiple controllers simultaneously so users can run concurrent sim-
ulations. The parameters are passed from the view to the controller which creates the
model generator. The generator generates the models and batches which the controller
then runs. There is one batch for each policy and the batches are run concurrently. After
running them, the controller creates a charter which parses the traces using a parser and
writes charts from the results.
The abstract classes contain functionality shared between the different charters and gen-
erators.

3.3 Dispatch Policies

3.3.1 Dispatch Model Overview

A dispatch policy (Earliest Deadline First, First-In-First-Out...) controls how queued jobs
are dispatched by for processing. ReGen generates a model (Figure 3.12) for this that
has two actors, ResourceManager (RM) that uses the policy and AppMaster (AM) that
receives the jobs. There is only one RM but there can be many AMs. There is no job
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Figure 3.1: The bursty job arrival pattern selectable in ReGen. Starting at time 0, jobs
arrive continuously in fixed bursts with a fixed interval. The size and interval can be set
by the user.

Figure 3.2: The exponential job length pattern selectable in ReGen where job length
grows exponentially and is a function of time. The user can set the multiplier used to
multiply the jobs arrival time unit such that length = now ∗multiplier.
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Figure 3.3: The nondeterministic pattern selectable in ReGen where the number or length
of jobs is a nondeterministic value between a minimum and a maximum every time unit.
The user sets the minimum and maximum values.

Figure 3.4: The uniform pattern selectable in ReGen where users can set a uniform value
for both job arrivals and lengths.
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Figure 3.5: The pattern selectable in ReGen where the number of jobs arriving or their
lengths follow a wave. Users select a minimum for the wave, the difference on the wave
between each time unit, and how many time units are on a single part of the wave which
is then repeated. The figure shows a wave with four points, starting at time 0.

Figure 3.6: The ascending pattern selectable in ReGen where users input a minimum
value, an increment between time units, and how many points or time units the ascension
should last. The pattern then repeats as shown in the figure which is a four point ascension.
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Figure 3.7: The descending pattern in ReGen. For the descent users select a maximum
value to descend from, the decrement per time unit and the number of time units to de-
scend before repeating the pattern from the maximum. The figure shows a descent over
four time units.

entity modeled so the RM maintains its incoming queue as separate queues with deadlines
for jobs in one, and lengths in another. If jobs have priorities, a third queue is added.
Every time unit the RM checks the deadline queue for jobs whose deadlines have run out,
then counts them as misses and removes them. Next, the RM checks whether any AMs
are free and if so, dispatches jobs to them using the policy.
After dispatching, the RM generates new jobs automatically instead of receiving them
from a client actor using different job arrival patterns. We abstracted the client away
from the model as it does not change the overall result but will generate more states.
After deciding the number of new jobs, the RM decides their lengths using different job
length patterns. If a job has high priority, its length will be determined after the lengths
of all low priority jobs have been determined. This is in case high and low priority jobs
do not follow the same length pattern. The deadline is then computed for each job as
deadline = job length ∗ (1 + epsilon) where epsilon is user defined. Job length is
determined using the preselected job length pattern.
The RM maintains queues with AMs status and sets them as busy when jobs are sent to
them. When an AM receives a job it will be busy until either the deadline runs out or the
job finishes, whichever comes first. Once either happens, the AM sends a message to the
RM which counts whether the deadline ran out or the job is completed, and sets the AM
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Figure 3.8: The ReGen user interface. The leftmost side of the UI is where policies, job
arrival and length patterns are selected. The center shows the options available for them,
and rightmost for compiling and outputting the results.
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Figure 3.9: ReGen Sequence diagram. The view starts controllers as threads so they can
run concurrently. The controller creates the model generator that generates the models
and batch files based on the parameters selected in the view. The batches and models are
run and the controller waits for them to finish. Once that is done a charter is created that
creates a parser that parses the traces from the simulations. The charter then aggregates
the results from the parser, writes out charts and text files and terminates.

as free. Jobs are assumed to run on only one AM at a time. Figure 3.13 shows the code
template used for the dispatch models.

3.4 Natjam-R

3.4.1 Natjam-R Model Overview

Natjam is built into Hadoop’s YARN and supports priority based preemption. Natjam-R
is an extension that adds support for deadline based preemption. ReGen can generate
models of Natjam-R and currently supports two different policies, Maximum Deadline
First and Maximum Laxity First, that are used to select jobs to evict when preemptions
occur. ReGen also supports priority based preemption but the experimental results in the
next chapter are only for deadlines.
The Natjam model (Figure 3.14) has two actors, ResourceManager (RM) and AppMaster
(AM). There is only one RM but there can be many AMs. The message passing layer is the
same as for the dispatch policy model except for two additional messages: a checkpoint

message sent from the AM to the RM when preemption occurs, and the AMs run a process

message to process jobs every time unit instead of processing jobs in one run until the end.
This is so the AMs can check for new runJob messages from the RM, in which case they
need to preempt their current jobs.
So, for managing messaging the RM now maintains the following queues:
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Figure 3.10: ReGen Class diagram. The controller and parameters are instanced by the
view. The controller instances the abstract model generators and charters and all three
depend on the parameters. There are two types of models available in ReGen, the dis-
patch policy and Natjam models and this requires different model generators, charters
and parsers for each type of policy. The abstract classes contain functionality shared be-
tween the derived dispatch and Natjam classes and decide which type to instance based
on the parameters from the view.
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Figure 3.11: ReGen Component diagram. Here we see the same relationship between the
view, controller, parameters, model generator, charter and parser as in the class diagram
(Figure 3.10). In addition to that we see the artifacts relevant to the system like the models
and batch files that are generated by the model generator. The batch files then depend on
the models, the supplied Rebeca Model Checker, a C++ compiler (G++ was used), and the
ReGen executable created by the compiler from the C++ code to generate the simulation
traces. The charter then outputs the charts and text files from the results from the parser
parsing the traces.

Figure 3.12: Dispatch policy model message passing overview. The RM runs a pro-
cessQueues message every time unit that can send runJob messages to AMs which send
update messages back once jobs complete or their deadlines run out.
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Figure 3.13: The code template ReGen generates code into for creation of the models for
the dispatch policies. This is done by creating code snippets into the corresponding places
in the template using the parameters selected by the user in the UI.

Figure 3.14: Natjam-R model message passing overview. As with the dispatch policies
the RM runs a processQueues message every time unit. This can cause a runJob message
to be sent to an AM that starts a job and can preempt a running one. To support preemption
the AM now runs a process message every time unit instead of waiting until the job
completes or the deadline runs out. The AM can now send either updates or checkpoints
to the RM depending on whether jobs end or are preempted.
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• incoming job deadlines

• incoming job lengths

• incoming job priorities

• checkpoint deadlines

• checkpoint times remaining

• deadlines remaining of jobs running at the AMs

• times remaining of jobs running at the AMs

• types of jobs running at the AMs

Every time unit using these queues, the RM performs the following steps in the below
order:

1. Checks the deadlines of all jobs in its queues including the checkpoint queue. If
a deadline becomes less than or equal to zero, a deadline miss is counted and the
job removed from the queue. Different counters are used for research jobs (low
priority) and production jobs (high priority).

2. The RM maintains counters for job status on the AMs instead of receiving periodic
heartbeat messages from them to reduce the amount of messages being transmitted
and simplify the model. The RM decrements these counters during this step.

3. Sorts the incoming job queue so the earliest deadlines come first.

4. Dispatches all production (high priority) jobs to empty AMs. If there are still pro-
duction jobs in the queue and no free AMs, the RM preempts research (low priority)
jobs based on a predetermined job eviction policy. The AM whose research job was
preempted responds to the RM with a checkpoint of the preempted job and its sta-
tus. Only research jobs can be preempted.

5. If there are still free AMs after all production jobs have been dispatched, the RM
will dispatch checkpoints based on Earliest Deadline First (EDF) for Maximum
Deadline First (MDF) job eviction policy, and Least Laxity First (LLF) for Maxi-
mum Laxity First (MLF) eviction. The laxity of a job is computed as the difference
between its deadline remaining and its completion time remaining.

6. Examines the checkpoints for least laxity jobs and preempts research jobs with
higher laxity if using MLF. If using MDF, the checkpoints with low deadlines
will preempt running jobs with higher deadlines. Both checkpoints and checkpoint
queue overflows are counted.
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7. If there are still free AMs, the RM will dispatch remaining research jobs from the
incoming queue based on EDF.

8. Similar to checkpoints, if there are no free AMs the RM will examine the incoming
queue for least laxity jobs and preempt research jobs with higher laxity if using
MLF. If using MDF, the incoming jobs with low deadlines will preempt running
jobs with higher deadlines.

9. The RM maintains a mutex for each AM to prevent multiple messages being sent
to one during a timeunit. During this step, the RM unlocks all mutexes.

10. After dispatching jobs, the RM will determine how many new jobs should be added
to the queue, their deadlines and types. Both research and production jobs are kept
in the same queue. The RM counts jobs that need to be dropped in case the queue
is full.

11. Sends a processQueues message to itself which will be executed the next time unit
and repeat all the above steps.

When a job completes or a deadline runs out at an AM, it sends a message to the RM
which counts whether a miss occurred or the job completed, and updates its information
on the AMs status. The RM also computes a margin for completed jobs which is the
difference between the deadline remaining and time remaining when the job ended either
by completing or its deadline running out.
When a checkpoint is sent to the RM, the status of the AM on the RM is updated.
A change from the dispatch models is that AMs now check for completion of jobs ev-
ery time unit instead of only when the job completes. The Hadoop default interval for
checking for job completion is 5000ms (http://hadoop.apache.org/docs/r2.3.0/api/src-

html/org/apache/hadoop/mapreduce/

Job.html#line.85).
Figure 3.15 shows the code template for the Natjam-R models.

3.4.2 Avoiding Concurrency Problems

Because of the added complexity, the Natjam-R Resource Manager (RM) now needs a
mutex for each AppMaster (AM). Otherwise the RM can send multiple messages to an
AM during a timeunit. The RM can for example preempt a job running at an AM for a
checkpoint with lower laxity, and then preempt again for a job from the incoming queue
with even lower laxity. In the current implementation, checkpoints are assumed to have
higher priority than new jobs and the order of execution the RM performs every time unit
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goes from highest priority to lowest.

Secondly, only jobs that have more than 1 unit of time remaining of both deadline and
completion are considered for preemption. Otherwise a race condition will occur be-
tween the runJob and process messages at the AM. If the process message goes first and
there is only 1 unit of time left of either the deadline or completion, it will end, and an
update message sent to the RM which will set the AM as free. This will lead to an error
as the runJob message will make the AM busy and not update the AMs status on the RM
which will continue to assume the AM is free.
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Figure 3.15: The code template used by ReGen to generate the Natjam-R models. Larger
than the template for the dispatch policies but similar in structure. The Resource Manager
has an additional message server for checkpoints and the AppMaster an additional one
for the process message that processes jobs.
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Chapter 4

Experiments

4.1 Test Setup

For the experiments a Dell Inspiron N5010 was used. It was running Windows 7 Home
Premium 64-bit SP1 using an Intel Core i3 M330 CPU at 2.13GHz. It had 4GB of RAM
and a 250GB hard drive.
Each experiment on the test setup ran in a number of minutes. Compilation time for
each model is short and the traces can become large on the hard drive. The speed of the
simulations can run in minutes and could possibly be shortened and the file sizes lessened
by writing less to the hard drive. The final state of each simulation only for example,
instead of every time unit.

4.2 Dispatch Policy Results

A Monte Carlo simulation is where a simulation is run a number of times and an average
result is generated from them (Allen, 2011). In the following experiments the results
are represented as the mean number of deadline misses, job request success rate and
AppMaster (AM) job success rate.

• Deadline misses are the sum of the number of jobs that missed their deadlines while
running and while waiting in a queue.

• Job request success rate is the ratio of jobs submitted to the Resource Manager
(RM) that were completed successfully within the deadline.
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• AM job success rate is the ratio of jobs submitted from the RM to the AMs that
were completed within the deadline.

These numbers are represented by the Y-axis in graphs, and the X-axis shows the number
of AMs in the cluster (Concurrent jobs). Each model can only run one amount of available
AMs as Timed Rebeca does not support dynamic generation of rebecs. The results are
therefore also represented by tables that show an average for every number of available
AMs. It is worth noting that for every number of AMs available in the experiments, the
workload is the same, so the performance of the cluster improves as the number of AMs
increases. So, for every size of the cluster (number of AMs), there is a Monte Carlo
simulation run and the results for that size are presented on the X-axis. The number
of simulations specified is for each number of AMs in an experiment. If there are for
example one, two and three AMs in a chart, a total of 3 AMs * 100 simulations per AM =

300 simulations were run.
For each policy there are generally two types of results: a scenario in favor of and a
scenario unfavorable to it. The scenario in favor of one policy can be the one unfavorable
to another.

4.2.1 Common parameters to the dispatch policies

Experiments could take time and use both memory and hard drive space. The Monte
Carlo error which is the difference between the mean generated by the simulations and
the true mean was driven down with a high number of simulations. With the number of
simulations used, an example mean of 50 and a high standard deviation of 10, gave us a
99% chance of the true mean being between 47.64 and 52.37 which is 4.73%. This ex-
ample half width is computed as (T ∗ S)/

√
n = (2.365 ∗ 10)/

√
100 = 23.65/10 = 2.365

where T is the student’s T distribution value for 99 degrees of freedom or 100 - 1 sim-
ulations, and 99% probability, S is the standard deviation and n the number of simula-
tions. For comparison, if we run 20 simulations the half width is (2.539 ∗ 10)/

√
20 =

5.68. These 20 simulations would then give us a 99% of the true mean being between
50 − 5.68 = 44.32 and 50 + 5.68 = 55.68. Therefore 100 simulations are giving us
47.64− 44.32 = 3.32% ∗ 2 = 6.64% more accuracy than 20 in this example.
The size of the experiments, or the number of AMs and time units, was decided based
on the performance of the test setup, and attempted to be as large as possible. Incoming
jobs were kept as one per time unit to make it easier to estimate whether the results were
correct even though it was possible to use other job arrival patterns. Queue size was se-
lected so that if all AMs finished their jobs simultaneously they could all start new jobs
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immediately and still be able to queue jobs.
Similar reasoning was used for the common parameters for the Natjam-R policies. Ta-
ble 4.1 shows the common parameters used for the dispatch policies.

Table 4.1: Common parameters to the dispatch policies
Max AppMas-
ters

Queue size Simulations Timeunits Jobs per timeu-
nit

6 12 100 100 1

4.2.2 Earliest Deadline First (EDF)

The Resource Manager (RM) explored the entire incoming job queue and maintained an
integer with the lowest deadline found for a job. Once he had gone through the queue,
he would remove the job with the lowest deadline from it, find a free AppMaster (AM)
and send the job to him. The incoming queue was not kept sorted nor shifted to the front
so gaps could appear between jobs. New jobs were inserted as close to the front of the
queue as possible, and if multiple jobs had the same earliest deadline, the one nearest to
the back of the queue was dispatched.

Scenario in favor of EDF (Tables 4.2 and 4.3, Figures 4.1 to 4.3)

In this scenario the deadlines were high and job lengths nondeterministic. In that way
it was likelier that EDF was selecting a deadline that was close to but not less than job
length. If the deadlines were low they were more likely to be less than the job length when
the earliest deadline was sought at any time in the queue. This would be unfavorable to
EDF but might have been favorable to Maximum Deadline First (MDF). A jobs deadline
was computed using the formula deadline = joblength ∗ (1 + epsilon) where epsilon

was selected by the user. That is, the deadline was computed by adding epsilon many jobs
lengths to the jobs length.
FIFO performed the worst under the selected workload until there were four AMs in the
cluster. MDF selected long deadlines and missed short jobs, and FIFO selected the oldest
job from the queue and whose deadline had decreased the most. With four AMs the
job from the front of the queue had a greater deadline remaining than time remaining in
more cases than with fewer AMs. Priority Queue used EDF as tie breaker between jobs
of the same priority. It therefore performed better than EDF because fewer low priority
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Table 4.2: Parameters for scenario in favor of EDF
Parameters

Epsilon High priority
job probability

Job length Job length mini-
mum

Job length maxi-
mum

2.0 10% nondeterministic 1 6

Table 4.3: Results for scenario in favor of EDF
Results

Policy Mean deadline misses Job request success
rate

AM Job success rate

EDF 25.96 70.37% 77.20%
FIFO 31.16 64.68% 86.79%
MDF 30.55 66.52% 99.89%
PRIORITY 25.65 71.07% 81.36%

jobs whose deadlines had run out were started and high priority jobs with high deadlines
remaining were run instead.

Scenario unfavorable to EDF (Tables 4.4 and 4.5, Figures 4.4 to 4.6)

In a scenario unfavorable to EDF the earliest deadline is always less than its job length
so every job misses its deadline. To achieve this, epsilon was kept low and job length
uniform.
Note how EDF and FIFO were exactly the same in this scenario because both policies
were selecting the job from the front of the queue. MDF performed well in this scenario
because it selected the latest job which was the least probable to have had its deadline run
out. Priority Queue performed better than EDF because high priority jobs were started
sooner and their deadlines therefore less likely to run out.

Table 4.4: Parameters for a scenario unfavorable to EDF
Parameters

Epsilon High priority job prob-
ability

Job length pattern Job length

0.1 10% uniform 3
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Figure 4.1: Mean number of deadline misses for a scenario in favor of EDF. Most deadline
misses occurred when only one AppMaster (AM) was available but their number started
dropping off as soon as more jobs could be run concurrently. EDF and Priority Queue
were performing similarly because in the experiments EDF was used as a tiebreaker for
same priority jobs. With about five available AMs the cluster started handling the entire
workload of the experiment. First-In-First-Out (FIFO) can be seen outperforming Max-
imum Deadline First (MDF) with four AMs. This is because MDF was selecting higher
deadlines than FIFO under those conditions and missing short jobs.

Figure 4.2: Job request success rate for a scenario in favor of EDF. This is the ratio
of jobs received by the Resource Manager (RM) that completed successfully. EDF and
Priority Queue were performing the best while MDF got worse as more AMs became
available. MDF was selecting longer jobs because deadlines were relative to job lengths,
and they were new jobs because the cluster was close to handling the entire workload.
This increased the chances of old jobs in the queue missing their deadlines. FIFO chose
old job requests with low remaining deadlines and therefore low chance of success.
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Figure 4.3: AM job success rate for a scenario in favor of EDF. This is the ratio of jobs
that were sent from the RM to the AMs and completed successfully. MDF always selected
the job with the highest remaining deadline and therefore the one most likely to succeed.
Priority Queue scored higher than EDF because 10% of jobs were high priority jobs and
were therefore started sooner when they had more of their deadline remaining. Because
of the nondeterministic job length pattern, the oldest job in the queue was not necessarily
with a low remaining deadline so FIFO had more success than EDF.

Table 4.5: Results for a scenario unfavorable to EDF
Results

Policy Mean deadline misses Job request success
rate

AM Job success rate

EDF 38.81 59.15% 62.57%
FIFO 38.84 59.12% 62.54%
MDF 22.71 76.09% 94.84%
PRIORITY 36.73 61.34% 66.54%
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Figure 4.4: Mean number of deadline misses for a scenario unfavorable to EDF. The job
length was uniform, deadlines were short and had usually run out by the time EDF and
FIFO (overlapping in the figure) started them. This was because the oldest jobs were in
the front of the queue. Priority Queue started high priority jobs sooner and was therefore
passing more deadlines than EDF and FIFO. MDF started more new jobs and before their
deadlines ran out.

Figure 4.5: Job request success rate for a scenario unfavorable to EDF. Of all jobs sent
to the cluster (generated by the RM), EDF and FIFO are completing the least number
successfully. In this case, MDF is clearly preferable with the short deadlines and uniform
job lengths, especially when the cluster has too few AMs to handle the load. The success
of EDF, FIFO and Priority Queue grows fast from two AMs to four but linearly the entire
time with MDF.
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Figure 4.6: AM job success rate for a scenario unfavorable to EDF. MDF always selected
the job most likely to succeed when there was only one AM, which in this case was the
newest job. With two and three AMs, MDF started selecting older jobs that might have
their deadlines already run out. With four AMs every job started was completed under the
specified workload.

4.2.3 First-In-First-Out (FIFO)

The jobs were dispatched on a first-in-first-out basis. The Resource Manager kept the
incoming job queue sorted so the oldest job was in the front of the queue. Jobs arriving
were placed in the back of the queue and when a job was removed from the front, all the
jobs were shifted to the front.

Scenario in favor of FIFO (Tables 4.8 and 4.9, Figures 4.10 to 4.12)

Same as the scenario unfavorable to MDF.

Scenario unfavorable to FIFO (Tables 4.6 and 4.7, Figures 4.7 to 4.9)

In one scenario unfavorable to FIFO the job from the front of the queue has the maximum
deadline and it is less than the job length by a minimal amount. This will make FIFO miss
the deadline and the most processing power possible will have been wasted. The Resource
Manager did not check whether deadlines had already run out for jobs when dispatching
them as he might assume the jobs would later be split into tasks like in Hadoop. In these
experiments all jobs ran on one AppMaster each and were not split into tasks to run on
other nodes.
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Table 4.6: Parameters for a scenario unfavorable to FIFO
Parameters

Epsilon High priority
job probabil-
ity

Length pat-
tern

Length
increment

Length min-
imum

Length
points

0.5 10% ascending 1 1 6

Table 4.7: Results for a scenario unfavorable to FIFO
Results

Policy Mean deadline misses Job request success
rate

AM Job success rate

EDF 32.61 65.26% 70.52%
FIFO 40.76 56.60% 71.83%
MDF 30.91 67.27% 97.45%
PRIORITY 30.99 67.02% 75.82%

Job length was ascending from 1 to 6 in this scenario, 1, 2, 3, 4, 5, 6, 1..., incremented
by 1 every time unit. When FIFO selected long jobs with short deadlines (like a job of
length 6) many short jobs that arrived the next time units missed their deadlines. Addi-
tionally, the short deadlines ran out faster so there were more long jobs being left in the
queue. MDF had more success than EDF because the deadlines were short so MDF was
more likely to start jobs who were new and whose deadlines had not passed. Priority
Queue (PQ) performed better than EDF because it started the high priority jobs as soon
as possible and therefore possibly before their deadlines ran out. They also ran instead of
low priority jobs whose deadlines had already run out. PQ was still worse than MDF but
the difference in performance between PQ and MDF was less than between PQ and EDF.
The difference in performance between FIFO and EDF the second worst policy, was the
greatest.
Another scenario unfavorable to FIFO was the one unfavorable to EDF (Section 4.2.2).

4.2.4 Maximum Deadline First (MDF)

The job dispatcher selected the job with the maximum deadline first. The Resource Man-
ager in ReGen did this by iterating through the incoming job queue and keeping an integer
for the maximum deadline found. The incoming queue was not kept sorted nor shifted
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Figure 4.7: Mean number of deadline misses for a scenario unfavorable to FIFO. When
FIFO selected jobs from the peak of an ascending job length pattern, the shorter jobs
arriving immediately after could miss their deadlines. MDF was best because of the short
deadlines it selected jobs whose deadlines had not run out. EDF performed better than
FIFO because it was more likely to select short jobs because of their short deadlines and
waste less processing time on long jobs and miss short jobs. Priority Queue performed
better than EDF as usual because it was more likely to complete high priority jobs instead
of low priority jobs whose deadlines might already have run out.

Figure 4.8: Job request success rate for a scenario unfavorable to FIFO. The number of
jobs the RM received that completed successfully was low for FIFO with less than three
AMs but grew exponentially up to four. The other policies success grew more linearly.
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Figure 4.9: AM job success rate for a scenario unfavorable to FIFO. Again we see MDF
have the most success with started jobs because it is less likely to start jobs whose dead-
lines are low. As the number of AMs grew the success rate decreased because MDF
started selecting jobs with lower deadlines. The growth of the success rate of the other
policies is exponential in all cases and the order of their performance is the same as in the
other charts for this scenario.

to the front so gaps could appear between jobs in the queue. New jobs were inserted as
close to the front of the queue as possible, and if multiple jobs had the same maximum
deadline, the one nearest to the back of the queue was dispatched.

Scenario in favor of MDF (Tables 4.6 and 4.7, Figures 4.7 to 4.9)

Same as the scenario unfavorable to FIFO (Section 4.2.3). The maximum deadline was
the same as its job length and not much greater than the other deadlines. Job length was
uniform so MDF would always select the latest job.
The low epsilon worked in favor of MDF because the other policies did not select jobs as
soon as they arrived and their deadlines were therefore more likely to run out.

Scenario unfavorable to MDF (Tables 4.8 and 4.9, Figures 4.10 to 4.12)

One scenario unfavorable to MDF is where the maximum deadline is less than the jobs
length and jobs are being run uberized on a single AM. Then the jobs deadline will run out
before the job completes as the AMs can only process 1 unit of time of the job in ReGen.
The parameters chosen for this scenario would make job length grow as follows: 0, 2, 4,
8, 16... as job length was computed as current time ∗ exponential multiplier. With



36 Analyzing Different Scheduling Policies in Natjam using Timed Rebeca

Table 4.8: Parameters for a scenario unfavorable to MDF
Parameters

Epsilon High priority
job probability

Job length pattern Exponential multiplier

1.5 30% exponential 2

Table 4.9: Results for a scenario unfavorable to MDF
Results

Policy Mean deadline misses Job request success
rate

AM Job success rate

EDF 4.54 75.09% 79.45%
FIFO 4.54 75.09% 79.45%
MDF 9.50 50.91% 100.00%
PRIORITY 6.77 63.61% 84.63%

a high epsilon, MDF selected a job that had a high remaining deadline and because job
lengths grew exponentially, it was always selecting the latest job. MDF therefore missed
deadlines for smaller jobs that arrived earlier. FIFO and EDF were performing identically
because they were both selecting the oldest job from the queue. Priority Queue (PQ) did
not always select the oldest job which increased its success rate for one AM because then
the oldest jobs deadline was the most likely to have run out. With more AMs PQ would
select the highest priority job which could have any deadline and any length and therefore
cause short jobs that could have been completed to be missed. It would also select the
oldest job which with more AMs would become more and more likely to be completed
successfully and therefore should have focused on them with this type of workload. The
performance of EDF and FIFO increased faster with more AMs when compared to PQ
and MDF. The performance of all policies increased linearly.
Because job lengths grew exponentially, fewer jobs were processed in the same amount
of time units as in the other scenarios. This made the relative difference in performance
between PQ and EDF greater than in previous scenarios.
Few scenarios were found unfavorable to MDF.

4.2.5 Priority Queue

A certain probability of jobs being of high priority could be set and their lengths could be
set as uniform or to have the same job length patterns as low priority jobs. If there were
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Figure 4.10: Mean number of deadline misses for a scenario unfavorable to MDF. MDF
had the highest number of deadline misses because the job length grew exponentially and
was therefore selecting the newest job. It took the most time to complete so the shorter
jobs that came before were missed. EDF and FIFO were performing identically because
they were both selecting the oldest job from the queue. Priority Queue did not always
select the oldest job which also was the most likely to have had its deadline run out when
only one AM is available and is therefore performing better than EDF and FIFO. As the
number of AMs grew, the deadline of the oldest job became less and less likely to run
out so when a new high priority job entered the queue, it would be longer and run at the
expense of shorter jobs.

Figure 4.11: Job request success rate for a scenario unfavorable to MDF. Nearly identi-
cal pattern to the mean number of deadline misses in Figure 4.10. The result for MDF
however curved towards the X-axis suggesting relatively worse performance as the cluster
grows with this type of workload.
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Figure 4.12: AM job success rate for a scenario unfavorable to MDF. Every job sent to
the AMs was completed successfully using MDF. Job completion improved for EDF and
FIFO with more AMs and with four AMs all jobs sent were being completed within the
deadline. Priority Queue (PQ) was sending high priority jobs which were usually new
jobs with high remaining deadlines and were therefore completing successfully. The ratio
of high priority jobs was unchanged even though the number of AMs increased which
worked in favor of PQ until there were three AMs. Then PQ started sending high priority
jobs that were possibly long jobs and missing short jobs with short deadlines that could
have completed successfully. The success of PQ then grew linearly as the number of AMs
increased.
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Table 4.10: Parameters for a scenario in favor of Priority Queue
Parameters

Epsilon High prior-
ity job prob-
ability

High pri-
ority job
length

Low priority
job length

Job length
minimum

Job length
maximum

0.5 30% 1 nondeterministic 1 6

Table 4.11: Results for a scenario in favor of Priority Queue
Results

Policy Mean deadline misses Job request success
rate

AM Job success rate

EDF 37.63 59.56% 69.46%
FIFO 42.86 53.95% 72.28%
MDF 34.12 63.48% 96.74%
PRIORITY 28.21 70.10% 84.05%

multiple jobs of the same priority, EDF was used as a tiebreaker. High and low priority
jobs both used the same incoming job queue instead of separate queues for each. The
incoming job queue was not kept sorted nor was it shifted to the front so there could be
gaps between jobs in the queue. New jobs were inserted as close to the front of the queue
as possible.

Scenario in favor of a Priority Queue (Tables 4.10 and 4.11, Figures 4.13 to 4.15)

The high priority jobs were short, or 1 unit of time. Priority Queue policy outperformed
the other policies because on average the jobs dispatched had shorter job lengths. This
scenarios low priority jobs length was nondeterministic which was not favorable to FIFO
because it selected the oldest job. The scenario had short deadlines which was unfavorable
to EDF and favorable to MDF. The following results display those features, as well as the
previous scenarios in this chapter. The probability of jobs being of high priority was high
compared to the previous scenarios, or 30%.

Scenario unfavorable to Priority Queue (Tables 4.12 and 4.13, Figures 4.16 to 4.18)

The high priority jobs were long, or 9 units of time. As expected, the Priority Queue (PQ)
policy performed worse with longer high priority jobs. The parameters used besides the
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Figure 4.13: Mean number of deadline misses for a scenario in favor of Priority Queue
(PQ). Here PQ is performing the best because the high priority jobs were shorter than the
low priority jobs. The low priority jobs lengths were nondeterministic and FIFO always
selected the oldest jobs whose deadlines remaining were the lowest so it had the highest
number of deadline misses. The deadlines were short which favored MDF over EDF.
MDF’s number of deadline misses decreased more linearly than the other policies as the
number of AMs grew.

Table 4.12: Parameters for a scenario unfavorable to Priority Queue
Parameters

Epsilon High prior-
ity job prob-
ability

High pri-
ority job
length

Job length pat-
tern

Job length
minimum

Job length
maximum

0.5 30% 9 nondeterministic 1 6

high priority job length were the same as in the scenario in favor of PQ (Section 4.2.5,
Table 4.10) so the results for FIFO, EDF and MDF went nearly unchanged.

4.2.6 Summary of the Dispatch Policy Results

Table 4.14 shows the averages of the results for all the dispatch policies. MDF had the
least amount of deadline misses, second highest job request success rate and the highest
AM job success rate. EDF had the second least deadline misses, the highest job request
success rate and the lowest AM job success rate. Priority Queue (PQ) had the third highest
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Figure 4.14: Job request success rate for a scenario in favor of Priority Queue (PQ).
This pattern is a reverse of the mean number of deadline misses in Figure 4.13. PQ was
dispatching the high priority jobs that happen to be shorter than low priority jobs and
could therefore service more jobs over time as the AMs freed up faster. FIFO selected
the oldest job which also was the most likely to have a deadline miss. The lengths of jobs
were nondeterministic so EDF did not necessarily select the oldest job but the deadlines
were short so it was likely to select a job whose deadline would run out. The short
deadlines worked in favor of MDF because it would avoid selecting jobs whose deadlines
had already run out.

Figure 4.15: AM job success rate for a scenario in favor of Priority Queue (PQ). MDF
had the most success completing jobs sent to the AMs but not all of them completed
because the job lengths were nondeterministic in this scenario. That meant the maximum
deadline could be for a long job that would run out while shorter jobs were ignored. PQ
was starting high priority jobs fast and completing them quickly because they were short.
The short deadlines were not favorable to EDF and FIFO was dispatching old jobs.
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Table 4.13: Results for a scenario unfavorable to Priority Queue
Results

Policy Mean deadline misses Job request success
rate

AM Job success rate

EDF 37.51 59.72% 69.64%
FIFO 43.06 53.74% 72.09%
MDF 33.91 63.75% 96.92%
PRIORITY 52.05 42.92% 68.22%

Figure 4.16: Mean number of deadline misses for a scenario unfavorable to Priority Queue
(PQ). Nearly identical to Figure 4.13 because the same parameters were used outside of
the job length for high priority jobs. PQ is clearly performing worse than before because
of the higher job length of high priority jobs. FIFO still performed worse with fewer AMs
because it dispatched jobs that were old and therefore with low remaining deadlines. In
the meantime PQ dispatched high priority jobs while they had high remaining deadlines
and therefore more likely to complete within the timelimit. This then changed with four
AMs when FIFO started dispatching jobs before they got too old in the incoming job
queue. High priority jobs were long in this scenario so short jobs were being missed by
PQ.
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Figure 4.17: Job request success rate for a scenario unfavorable to Priority Queue (PQ).
Same pattern for EDF, FIFO and MDF as in Figure 4.14. PQ is completing fewer jobs
though because the length of high priority jobs was longer in this scenario. This caused
the AMs to process fewer jobs over time than the other policies and short jobs being
missed in favor of the longer high priority jobs.

Figure 4.18: AM job success rate for a scenario unfavorable to Priority Queue (PQ).
Same pattern for EDF, FIFO and MDF as in Figure 4.15. In the case of PQ however the
high priority jobs are now longer so more time is spent on long jobs while the deadlines
remaining for low priority jobs decrease. More jobs are therefore being sent to the AMs
with low remaining deadlines than before and PQ’s performance worse in completing
started jobs.
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Table 4.14: Summary of results for the dispatch policies
Results

Policy Mean deadline misses Job request success
rate

AM Job success rate

EDF 29.51 64.86% 71.47%
FIFO 33.54 60.53% 74.16%
MDF 26.95 64.67% 97.64%
PRIORITY 30.07 62.68% 76.77%

mean deadline misses, the third lowest job request success rate and the second highest AM
job success rate. FIFO had the most deadline misses, the least job request success rate
and the second lowest AM job success rate. Important to note is that these results were
not generated by an exhaustive search of the statespace but from scenarios in favor of
and unfavorable to each policy. Overall MDF came out best and FIFO the worst. PQ
improved its tiebreaker EDF AM job success rate but lowered the job request success
rate. The difference in deadline misses between PQ and EDF was small.

4.3 Natjam-R Job Eviction Policy Results

A job eviction policy determines which running job to evict and make checkpoint of when
preemption takes place. The results are represented in the same way as for the dispatch
policies, except for an additional mean number of checkpoints chart. They correlate with
results from (Cho et al., 2013) in that Maximum Deadline First (MDF) is preferable to
Maximum Laxity First (MLF) where laxity is the difference between the deadline remain-
ing and time remaining of a job. In the paper, traces from three MapReduce jobs running
on a Yahoo cluster were simulated in Natjam-R and those results showed the MLF jobs
running in lockstep which delayed their completion due to a checkpoint overhead.
For MDF, EDF was used to select a job in the checkpoint and incoming job queues to
preempt for. The Resource Manager would every time unit scan a queue, find the earliest
deadline job, scan the AppMasters and preempt the maximum deadline job. For MLF,
Least Laxity First (LLF) was used for dispatching instead of EDF.
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4.3.1 Common parameters between the Natjam policies (Table 4.15)

Parameters for the Natjam policies were selected in a similar manner as for the dispatch
policies (Section 4.2.1). The epsilon which determines deadlines of jobs was the same
in both scenarios. No high priority jobs were used because they were not needed for the
two particular scenarios but the ReGen software still allows for their usage for the Natjam
policies.

Table 4.15: Common parameters between the Natjam-R policies
Max AMs Queue size Simulations Timeunits Epsilon High priority

job probability
6 12 100 100 1.0 0%

4.3.2 Maximum Deadline First (MDF)

Scenario in favor of Natjam-R MDF (Tables 4.16 and 4.17, Figures 4.19 to 4.21)

In MDF the job with the maximum deadline remaining is evicted first and how much is left
of the job is not taken into consideration. In this scenario there was a context switching
overhead of 1 time unit that caused MLF to perform poorly because it did more check-
points than MDF as shown in Figure 4.22. For simplicity the entire context switching
overhead was added to the length of the job being preempted at the time of checkpointing
and not to the job being started. Restarting a job from a checkpoint also carries an over-
head in Hadoop and was included in the length added to the job while checkpointing in
ReGen. Therefore, checkpointed jobs were assumed to cost more processing time by the
cluster than their original job lengths.
The problem with MLF was that it would start lower laxity jobs and checkpoint higher
laxity ones and there could be many checkpoints made before any job was completed.
Laxity decreased faster in the queues because the job time remaining went unchanged
while the deadline remaining was decreasing over time. While a job was being processed
by an AppMaster (AM), both the deadline remaining and time remaining were decreas-
ing simultaneously so the laxity stayed the same. MLF was therefore swapping jobs and
adding overhead. Conversely, MDF would preempt a high deadline job for a lower dead-
line job and not preempt them for each other again because the deadlines decreased at the
same rate.
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Table 4.16: Parameters for a scenario in favor of Natjam-R MDF
Parameters

Job arrival pat-
tern

Jobs per timeu-
nit

Job length pat-
tern

Job length Context switch-
ing overhead

uniform 1 ascending 5, 6, 7, 5... 1

Table 4.17: Results for a scenario in favor of Natjam-R MDF
Results

Policy Mean deadline misses Job request success rate AM Job success rate
MDF 59.19 31.44% 37.01%
MLF 76.39 11.88% 12.77%

4.3.3 Maximum Laxity First (MLF)

Scenario close to being in favor of Natjam-R MLF (Tables 4.18 and 4.19, Figures 4.23
to 4.25)

One scenario close to being in favor of MLF had uniform job arrival and descending job
length. In this scenario there was no context switching overhead so no penalty was paid
for checkpoints. The job length pattern was descending, epsilon was 1.0 which meant
deadlines were twice the job length so normally the deadlines arriving were lower than
the ones that came earlier. MDF was therefore likely to preempt because it used EDF for
dispatching jobs. The laxity of jobs waiting in the incoming job queue and the checkpoint
queue decreased faster than the laxity of jobs running at the AMs. This made MLF prone
to preempt while using Least Laxity First (LLF) dispatching. Additionally, because of the
job length pattern and LLF, the laxity of a job arriving was usually less than that of the
previous job when it arrived. This increased the rate of checkpoints made by MLF even
further.
No scenarios were found where MLF outperformed MDF.

Table 4.18: Parameters for a scenario close to being in favor of Natjam-R MLF
Parameters

Job arrival pat-
tern

Jobs per timeu-
nit

Job length pat-
tern

Job length Context
switching
overhead

uniform 1 descending 6,5,4,3,2,1,6... 0
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Figure 4.19: Mean number of deadline misses for a scenario in favor of Natjam-R MDF.
The performance of the policies was similar for clusters with up to three AMs while
the workload was too much. At around four AMs the mean number of deadline misses
dropped faster for MDF than for MLF. MDF was allowing the jobs with the lowest dead-
lines to finish instead of preempting them with jobs of lower laxity and process them in
lockstep as MLF did.

Figure 4.20: Job request success rate for a scenario in favor of Natjam-R MDF. Nearly an
inverse of the mean number of deadline misses in Figure 4.22. MDF saw a jump in the
ratio of job requests completed with four AMs under the selected workload while MLF’s
increased more gradually. MLF processed jobs in lockstep while MDF allowed the lowest
deadline jobs to finish. More AMs allowed MLF to simply process more jobs in lockstep
instead of greatly improving the success of job requests.
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Figure 4.21: AM job success rate for a scenario in favor of Natjam-R MDF. Similar
pattern as the two previous figures, Figure 4.19 and Figure 4.20. The jobs sent to the
AMs had low deadlines because EDF dispatch was used for MDF eviction. This caused
MDF to complete few jobs sent to the AMs before these early deadlines ran out until more
AMs became available. Least Laxity First (LLF) dispatch was used for MLF eviction and
constantly switching between jobs in the queues and those running at the AMs wasted
processing time and created an overhead for MLF.

Table 4.19: Results for a scenario close to being in favor of Natjam-R Maximum Laxity
First (MLF)

Results
Policy Mean deadline misses Job request success rate AM Job success rate
MDF 34.72 62.63% 67.85%
MLF 37.54 59.49% 65.71%

4.3.4 Summary of the Natjam-R Eviction Policy Results

For the Natjam-R scenarios, MDF had fewer deadline misses, higher job request success
rate and higher AM job success rate (Table 4.20). In all cases the difference between the
two policies was large.
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Figure 4.22: Mean number of checkpoints for a scenario in favor of Natjam-R MDF. In
this scenario the parameters chosen caused higher deadlines to enter the incoming job
queue. As MDF used EDF as a dispatching policy few preemptions took place because
the jobs in the incoming job queue had higher deadlines than the jobs running at the AMs.
MLF on the other hand made more preemptions because it used Least Laxity First (LLF)
for dispatching. As laxity was computed as the difference between deadline remaining
and job completion time remaining it decreased faster in the incoming job queue and
checkpoint queue than for jobs running at the AMs. An integer for deadline remaining
was decreased by 1 every time unit for every job, and an integer for job completion time
remaining was decreased by 1 every time unit for every job being processed at an AM.
There were three points on the job length ascension (lengths 5, 6, and 7) so with three
AMs the lowest laxity jobs could complete before jobs in the incoming and checkpoint
queues would reach low laxity enough to preempt the ones being processed. This caused
fewer checkpoints for three AMs. With two AMs the cluster was not handling the load
well enough so more preemptions were required between the AMs, the incoming and
checkpoint queues. With four AMs there were more running jobs to choose from to
preempt.

Table 4.20: Summary of results for the Natjam-R eviction policies
Results

Policy Mean deadline misses Job request success rate AM Job success rate
MDF 46.96 47.04% 52.43%
MLF 56.97 35.69% 39.24%
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Figure 4.23: Mean number of deadline misses for a scenario close to being in favor of
Natjam-R MLF. The difference between the policies was small for any size of the clus-
ter. MDF still had fewer deadline misses even though both policies were preempting to
make room for most new jobs. The descending job length pattern caused jobs with lower
deadlines to enter the incoming job queue so the EDF dispatch policy used with MDF
eviction created a scenario unfavorable to MDF compared to other scenarios. The same
happened with MLF which used LLF for dispatching and as the jobs entering the incom-
ing job queue had lower laxities, MLF preempted for them. MLF also processed started
jobs in lockstep which caused even further deadline misses.
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Figure 4.24: Job request success rate for a scenario close to being in favor of Natjam-R
MLF. An inverse of the mean number of deadline misses in Figure 4.23. The number
of jobs sent to the RM that completed successfully increased with more AMs and MDF
performed better than MLF. The job length pattern caused the deadlines of job requests
to arrive lower with time so MDF using the EDF dispatch policy tended to preempt for
newly arrived jobs. MLF using LLF did the same as well as running jobs in lockstep
causing even less success with job requests than this unfavorable scenario for MDF.

Figure 4.25: AM job success rate for a scenario close to being in favor of Natjam-R
MLF. Similar pattern as Figure 4.25. More jobs sent to the AMs were completed within
their deadlines using MDF even though both policies suffered from the same problem of
having to preempt when new jobs arrived because of the descending job length pattern.
Both deadlines and laxities became lower for arriving jobs and EDF was used for job
dispatching for MDF, and LLF was used for MLF. This made the scenario unfavorable
to both policies but MLF processed jobs from the AMs, the incoming job queue and the
checkpoint queue in lockstep which made the difference.
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Figure 4.26: Mean number of checkpoints for a scenario close to being in favor of Natjam-
R MLF. Clear differences can be seen from the checkpoint chart in Figure 4.22. MDF had
to make more checkpoints using EDF for dispatching jobs while the job length pattern
was descending. Arriving jobs deadlines and laxities were lower across time units which
was unfavorable to both policies but MLF which used LLF for dispatching proceeded to
run jobs in lockstep. The peak with four AMs was because the workload was still too high
for a cluster of that size but more AMs were available to preempt jobs from. The workload
is relatively less with more than four AMs so there are fewer new jobs to select from to
preempt jobs running at the AMs. With six AMs there were no preemptions required as
there was always a free AM available to run any new job.
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Chapter 5

Conclusions

5.1 Conclusion and Future Work

5.1.1 Conclusion

In this thesis we presented the ReGen software that uses the actor model to analyze dif-
ferent scheduling and eviction policies in a Hadoop MapReduce system. Code templates
for Timed Rebeca models were introduced, and we produced evidence that suggests cor-
rectness of our implementation.
We examined four different scheduling policies and compared them under different work-
loads. We showed that they can outperform each other under certain circumstances, and
the results from those experiments indicate MDF performs better overall, especially with
short deadlines. EDF can on the other hand be used for long deadlines. Priority Queue’s
performance is mostly affected by its priority tiebreaker policy and other factors such as
the length of high priority jobs. FIFO is not recommended for deadline scheduling. That
is because of the obvious reason that FIFO dispatches the oldest job and the results show
it has the most deadline misses. We therefore conclude that from the examined policies
the choice is mainly between MDF and EDF depending on the length of deadlines and
other factors. In general, if deadlines are short, use MDF, if deadlines are long, use EDF
but factors such as the size of the cluster and the workload affect the risk of the clus-
ter overloading. With a high risk of cluster overloading, MDF provides fewer deadline
misses because it chooses the jobs most likely to succeed. With a low risk, EDF serves
more job requests because it chooses more short jobs.
Additionally, we compared two job eviction policies and as there were no scenarios found
in favor of MLF we conclude that MDF is preferable for preemption, at least in Natjam-R.
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Finally, we conclude it is possible to model large and complex systems using Timed Re-
beca with a code generator. This could open up new areas of research where using model
checkers might be more beneficial than using real systems or simulators.

5.1.2 Future work

Explore adding a third actor to the models that runs tasks for the AMs. This could be
used to compute things such as job completion times, utilization, cost and more. Addi-
tionally, different topology could be set up where tasks would be scheduled to run within
the same rack of a cluster to avoid moving data between racks which would be expensive.
Conversely, anti-colocation could be implemented to study load balancing and utilization,
and preemption could be used to move tasks and jobs around. One way to implement this
could be arrays within each rebec that list the distances to every other actor and therefore
the network delay which would be modeled using the after command when messages are
sent.
The actors could also be made heterogeneous in their efficiency and power consumption
amongst other things. A multiplier for each rebec could be used for example to lengthen
or shorten jobs or tasks sent to it. A value could be implemented for each rebec that is
added to a sum of total power consumption every time unit the rebec processes jobs. The
utilization (CPU, RAM, power, cost, etc.) could then be fitted into the charts or text files.
This type of implementation could be accomplished by generating many models each with
a different permutation of numbers of job and task running actors, and the results from
the models aggregated. Dynamic creation of rebecs might make the process simpler.
For curved job arrival and length patterns, like splines and sine waves, higher workloads
would be required in ReGen. This would mean more jobs arriving, more AppMasters run-
ning concurrently, and therefore larger models which would require more time, memory
and hard drive space. The implementation for the curved patterns would also need to be
added.
The code in ReGen that generates the job arrival and job length patterns could possibly be
re-used in other projects. We would also like to add more policies to the software, MLF
and LLF dispatching for example.

5.2 Discussion

As the variables we manipulated are more abstract than real world values, the question
arises how valid are the results? We argue we can draw conclusions from them because
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they are generated under the same experimental conditions however abstract. There are
no known defects and our models are assumed to capture the real world systems func-
tionality as much as is necessary for our conclusions. We also like to point out that the
conclusions drawn are not from an exhaustive search of the statespace but from scenar-
ios in favor of and unfavorable to each policy. The results can however be reproduced
and further exploration of the state space is possible so the ReGen software itself is also
an interesting result that can be developed further. If it were developed further it could
provide insights into more features of computer clusters as listed in the introduction and
conclusion of this thesis.
The performance of MLF was found to be lower than expected. Changes or optimizations
to it might be required for it to be preferable to other job eviction policies.
Clearly, real-world-scenarios provide important results but they do not allow further ex-
ploration of the state space. An obvious benefit of exploring the state space in our case is
detection of, and verification of removal of, race conditions that can negatively affect the
system.
As the models are more abstract than the real world systems, we would like to claim our
results are not specific to the YARN and Natjam-R example, but that they can apply to
other systems that dispatch or evict jobs using the above implemented policies.
Currently the Rebeca model checker writes every time unit of every simulation onto hard
drive which is good for debugging but slows the experiments down. It might speed them
up if only the last time unit of each simulation were written down, instead of all of them.
Lastly, dynamic generation of rebecs in Timed Rebeca could be an alternative to generat-
ing multiple models for each number of Application Masters in our examples. If rebecs
were dynamically generated they could possibly also be killed so rebecs running tasks
could be preempted instead of having a process messageserver run every time unit in the
case of the Natjam-R models.
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Appendix A

ReGen User Manual

A.1 Policy Options

A.1.1 Dispatch

No preemption used. If jobs are started they get to finish or their deadlines run out.

A.1.2 Natjam-R eviction

For MDF and MLF, jobs can be preempted for other jobs to run. They are checkpointed
at the RM until resources become available. They are then restarted where they left off.
A job can be preempted multiple times. If there are no checkpoints to restart, EDF is used
to dispatch new jobs.

A.1.3 Dispatch policies

Multiple policies can be selected by holding down the CTRL key and selecting with the
mouse.

EDF jobs are dispatched on an earliest deadline first basis.

FIFO jobs are dispatched on a first-in-first-out basis.

MDF jobs are dispatched on a maximum deadline first basis.
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Priority jobs have a low or high priority. High priority jobs are dispatched as soon as
resources are available. If two or more jobs have the same priority, EDF is used to
select between them.

A.1.4 Natjam-R policies

MDF jobs are evicted based on a maximum deadline first policy

MLF jobs are evicted based on a maximum laxity first policy where laxity = deadline−
jobs projected completion time.

A.1.5 Job arrival patterns

Lists the available job arrival patterns. Multiple job arrival patterns can be selected by
holding down the CTRL key.

Bursty Jobs come in bursts with a fixed interval and a separate fixed amount.

Nondet The number of jobs arriving every timeunit is nondeterministic.

Uniform The number of jobs arriving every timeunit is uniform.

Wave Job arrival follows a wave pattern and goes systematically from a fixed lowest
point to a fixed maximum point.

Ascending The number of job arrivals ascends from a lowest number to a highest number
repeatedly.

Descending The number of job arrivals descends from a highest point to a lowest point.
Number of jobs less than 0 is set as 0.

A.1.6 Job length patterns

Lists the available job length types. Multiple job length patterns can be selected by hold-
ing down the CTRL key.

Exponential Job length grows exponentially.

Nondet Job length is nondeterministic with a minimum and maximum length.

Uniform Job length is uniform.
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Wave Job length follows a wave pattern from a lowest point to a highest point and back
down again.

Ascending Job length ascends to a highest point and starts back from the lowest point.

Descending Job length descends from a highest point to a lowest point (minimum 0) and
starts back from the highest point.

A.2 Common parameters

Parameters shared between all policies, job arrival patterns and job length patterns.

A.2.1 Max AppMasters

The maximum amount of AppMasters, or concurrent jobs.

A.2.2 Queue size

The size of the incoming and checkpoint queues.

A.2.3 Simulation traces

The number of simulations to run.

A.2.4 Simulation timeunits

The amount of timeunits for each simulation.

A.2.5 Epsilon

The deadline of each job is computed as job length ∗ (1 + epsilon).
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A.3 Job arrival and length parameters

A.3.1 Burst interval

The amount of timeunits between bursts of jobs.

A.3.2 Burst size

The amount of jobs per burst.

A.3.3 Nondeterministic job arrival/job length

The number of new job arrivals and their lengths can be nondeterministic. Each element
has the same probability of selection.

Nondet minimum

The minimum amount.

Nondet maximum

The maximum amount.

A.3.4 Uniform value for job arrival/length

The number of jobs arriving each timeunit and their lengths can be uniform. There are
separate values for job arrival and job length.

A.3.5 Wave job arrival/job length

Wave jobs/length per timeunit

The increment or decrement on the wave depending on whether it’s ascending or descend-
ing.
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Wave minimum

The lowest point on the wave.

Wave points

The number of points on the wave. For example jobs/length per timeunit 2, minimum 3
and points 6 generates 3, 5, 7, 9, 7, 5 and repeats.

A.3.6 Ascending job arrival/job length

Ascending increment

Additional jobs/length for each point.

Ascending minimum

The lowest point.

Ascending points

The number of points. For example an increment of 2, minimum 3 and points 4 generates
3, 5, 7, 9 and repeats.

A.3.7 Descending job arrival/job length

Descending decrement

Jobs/length decrement each timeunit.

Descending maximum

The highest point.
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Descending points

The number of points. For example a decrement of 2, maximum 9 and points 4 generates
9, 7, 5, 3 and repeats itself. Jobs/length does not go below 0.

A.3.8 Exponential multiplier

Job length is computed as current time ∗ exponential multiplier. For example an
exponential multiplier of 2 will start at timeunit 0 and generate job lengths of 0, 2, 4, 8,
16...

A.4 High priority job options

If two or more jobs are of the same priority, EDF is used to select between them.

A.4.1 Probability %

The probability of a job being of high priority.

A.4.2 Length

The length of high priority jobs. Selecting 0 will give high priority jobs the same length
pattern as the low priority jobs.

A.5 Natjam-R options

A.5.1 Checkpoint overhead

The penalty in timeunits for each context switch. This includes both preempting the job
and restarting it. The penalty is added at the time of preemption.
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A.6 Input/Output Options

A.6.1 Output path

Output directories and artifacts will be created here.

A.6.2 Prefix

A prefix for the name of directories created.

A.6.3 Compiler path

The path to the files needed for compiling the Rebeca code. January 19, 2015, these files
are:

• rmc-2.5.0-SNAPSHOT.jar

• g++.exe

• cygiconv-2.dll

• cygintl-3.dll

• cygwin1.dll

A.6.4 Traces path

The traces from a simulation will be output here. Must be on the same hard drive as the
Output path.

A.7 Results window

Messages from threads and other components. Threads are named by their Output direc-
tory.
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A.8 Run button

Runs a test using the set parameters. Is disabled until at least one dispatch policy, one job
arrival type and one job length type is selected.
Multiple runs using different parameters can be run simultaneously if there is enough
RAM available. Change the output and traces paths to avoid overwriting other results if
doing multiple simultaneous runs.
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Appendix B

ReGen Generated Code Sample

Figure B.1: Code sample of an EDF dispatch policy model generated by ReGen, part 1.
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Figure B.2: Code sample of an EDF dispatch policy model generated by ReGen, part 2.
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Figure B.3: Code sample of an EDF dispatch policy model generated by ReGen, part 3.
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Figure B.4: Code sample of an EDF dispatch policy model generated by ReGen, part 4.
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Figure B.5: Code sample of an EDF dispatch policy model generated by ReGen, part 5.
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Figure B.6: Code sample of an EDF dispatch policy model generated by ReGen, part 6.

Figure B.7: Code sample of an EDF dispatch policy model generated by ReGen, part 7.
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