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 i 

Útdráttur á íslensku 

Veraldarvefurinn geymir sívaxandi hluta af þekkingu og menningararfi 

heimsins. Þar sem Vefurinn er einnig sífellt að breytast þá er nú unnið 

ötullega að því að varðveita innihald hans á hverjum tíma. Þessi vinna er 

framlenging á skylduskila lögum sem hafa í síðustu aldir stuðlað að því 

að varðveita prentað efni. 

 

Fyrstu þrír kaflarnir lýsa grundvallar erfiðleikum við það að safna 

Vefnum og kynnir hugbúnaðinn Heritrix, sem var smíðaður til að vinna 

það verk. Fyrsti kaflinn einbeitir sér að ástæðunum og bakgrunni þessarar 

vinnu en kaflar tvö og þrjú beina kastljósinu að tæknilegri þáttum. 

 

Markmið verkefnisins var að þróa nýja tækni til að safna ákveðnum hluta 

af Vefnum sem er álitinn breytast ört og vera í eðli sínu áhugaverður. 

Seinni kaflar fjalla um skilgreininu á slíkri aðferðafræði og hvernig hún 

var útfærð í Heritrix. Hluti þessarar umfjöllunar beinist að því hvernig 

greina má breytingar í skjölum. 

 

Að lokum er fjallað um fyrstu reynslu af nýja hugbúnaðinum og sjónum 

er beint að þeim þáttum sem þarfnast frekari vinnu eða athygli. Þar sem 

markmiðið með verkefninu var að leggja grunnlínur fyrir svona 

aðferðafræði og útbúa einfalda og stöðuga útfærsla þá inniheldur þessi 

hluti margar hugmyndir um hvað mætti gera betur. 
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Abstract 

The World Wide Web contains an increasingly significant amount of the 

world’s knowledge and heritage. Since the Web is also in a constant state 

of change significant efforts are now underway to capture and preserve its 

contents. These efforts extend the traditional legal deposit laws that have 

been aimed at preserving printed material over the last centuries. 

 

The first three chapters outline the fundamental challenges for collecting 

the Web and present the software, Heritrix, which has been designed to 

perform this task. The first chapter focuses on the reasons and history 

behind this endeavour, with chapters two and three focusing on more 

technical aspects. 

 

The goal of this project was to develop a new way of collecting parts of 

the Web that are believed to change very rapidly and are considered of 

significant interest. The later chapters focus on defining such an 

incremental strategy, which we call an ‘adaptive revisting strategy’ and 

how it was implemented as a part of Heritrix. A part of this discussion is 

how to detect change in documents. 

 

Finally we discuss initial impressions of the new software and highlight 

areas that require further work or attention. As the goal of the project was 

primarily to establish the foundation for such incremental crawling and 

provide a simple and sturdy implementation, this section contains many 

thoughts on issues that could be improved on in the future.
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1.   Background 

Since the World Wide Web's inception in the early '90s it has grown at a 

phenomenal rate. The amount and diversity of content has rapidly 

increased and almost from the very start, the only way to locate anything 

you didn't already have a link to was to use a search engine. 

 

It is fair to say that search engines have been critical in the development 

of the World Wide Web. They continually explore the web and index the 

pages they discover. Exploring the web or crawling it as it's more 

commonly known, is one of the keys to creating an effective search 

engine. However, if you are crawling the web, you can do a lot more than 

just index the contents. Soon people began to realize that the web isn't just 

growing very fast, it is also constantly changing. In order to preserve what 

is on the web now, you need to archive it. 

1.1   Web archiving 

The first serious attempts at archiving the World Wide Web began in 

1996 when Brewster Kahle founded the non-profit organization Internet 

Archive (IA) in San Francisco with the goal of creating a permanent 

collection of the web, freely accessible to anyone [15]. In order to achieve 

this, IA negotiated with a company called Alexa Internet. Alexa 

conducted large crawls for data mining purposes and IA then received the 

stored content after a certain amount of time had elapsed. 

 

The content is stored on hard disks and made accessible via a tool known 

as the Wayback Machine [21]. The Wayback Machine allows users to 

browse the archive using URLs, much as you would browse the real web. 

They can furthermore choose amongst the many versions of each URL 

stored in the collection. Full text searches, like those offered by web 

search engines, are not possible. 

 

Around the same time as IA began its collections, Sweden's national 

library began a project, Kulturarw
3
, to collect all Swedish webpages, 

essentially creating a snapshot of the Swedish part of the web. The goal 

being to preserve them for future generations [22]. At the same time in 
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Australia, work began on more selective archiving of hand picked web 

sites [23]. 

 

Soon, many other national libraries were also either experimenting with 

web archiving or actively engaged in it. The web was becoming of ever 

increasing importance in daily life and increasingly held information that 

was not available elsewhere. 

1.2   Legal deposit 

Traditional legal deposit laws require that for all books published in a 

country, some number of copies be handed over to the national library, or 

its equivalent, for long term preservation. This tradition traces it origins 

back to the great library of Alexandria. In Iceland the earliest legal 

deposit laws date back to 1662 when a royal decree was issued that two 

copies of every book printed in the country’s only press should be handed 

over to the king of Denmark [15]. 

 

Legal deposit laws continued to develop over the course of the next few 

centuries. In 1977 they were extended to cover not only printed material, 

but also pre-recorded audio. This precedence of widening the scope of 

legal deposit laws was continued with the most recent legislation from 

2003. They now cover not only printed material and analog and digital 

recordings (compact disks) released, but also digital material on the web 

[15]. 

 

Most people don't realize just how extensive the legal deposit laws are. 

Almost anything printed in volume at a printing press should be handed 

in. This doesn't just include books and magazines, but also pamphlets and 

various material intended for mass advertising via mail. 

1.3   Electronic legal deposit laws 

Legal deposit of digital media is commonly referred to as electronic legal 

deposit to separate it from traditional legal deposits. While solid media, 

such as CDs and DVDs can be collected with traditional methods, 

collection of content made available on the web can not. It is simply 

infeasible to require everyone who puts information on the web to also 

hand over a copy to the national library. 
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The basic reason for this is simple; there are a lot of people creating a 

great deal of content. With traditional material, the responsibility of 

complying with legal deposit laws can be placed on the (relatively) few 

replication companies. Whether they print books or press CDs it is clear 

who is responsible. With the web, the replication has essentially been 

taken out of the equation.  

 

People put content on their websites and replication occurs as other 

people access the website. One might argue that the Internet Service 

Provider or hosting company should be responsible for delivering the 

content for legal deposit, but that would place a considerable and unfair 

burden on them. 

 

The point is that the only way to collect web based material is to go and 

get it. This is why many national libraries have been working on web 

crawling and archiving.  

 

It varies from country to country exactly what parts of the web should be 

archived. In Iceland the law extends to "all web pages and other data – 

that are published or made available to the public on the Icelandic part of 

the World Wide Web, i.e. the national domain .is, as well as material 

published on other top level domains in Icelandic or by Icelandic 

parties."[19] The basic assumption here is that we can not know what 

material may be of value in the future, so we try to capture all of it or at 

least as much as possible. Others choose to selectively crawl parts of the 

web, based on some criteria or topic. 

1.4   Cooperation 

In the summer of 1997, the national libraries of the five Nordic countries 

began to cooperate informally in the collection and future preservation of 

each country’s web. This cooperation was fomalized in 1998 and in 2000 

they launched the Nordic Web Archive [24] project. Its goal was to create 

an access tool for the web collections. This project continued until the end 

of 2003 when the NWA software was released under an open source 

license. 

 

In July of 2003, 11 national libraries, along with the Internet Archive, 

founded the International Internet Preservation Consortium (IIPC) [25]. 
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Its mission is to "acquire, preserve and make accessible knowledge and 

information from the Internet for future generations everywhere, 

promoting global exchange and international relations" [26]. 

 

The IIPC began work on several fronts to clarify the issues and put forth 

requirements for the tools needed to achieve its goal. One of the 

requirements put forward, were those for a web crawler, suitable for 

harvesting and archiving the World Wide Web in a consistent manner. 

 

The IIPC was however not able to jointly undertake the task of 

developing such a tool, despite some interest. Therefore, the Internet 

Archive chose to push ahead with its own web crawler project, Heritrix. 

Once this became clear, the national libraries of the Nordic countries 

(NNL) wanted to put their support behind the Heritrix project. NNL 

ultimately decided to send two developers to work on-site with the 

developers at the Internet Archive in San Francisco. The developers they 

sent were John Erik Halse of the National Library of Norway and Kristinn 

Sigurðsson of the National and University Library of Iceland. 

 

The advantages of providing this form of support were many. For one, it 

would bring important technical expertise back home once it was 

completed. Having men on-site, rather than working remotely, would also 

avoid the many troubles inherent in distributed projects, reducing the load 

in project management. 

 

The requirements document created by the IIPC for a web crawler was 

used as a basis in the Memorandum of Understanding signed by the IA 

and the NNL. It was clear from the start that not all of the requirements 

could be met within the timeframe given and so they were prioritized 

based on what the NNL felt were the most critical needs and what could 

realistically be achieved in six months. 

 

Ultimately, this cooperation went extremely well. The only significant 

feature not addressed, was the ability to crawl continuously in an 

incremental manner. That is the subject we intend to tackle here. 
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2.   Crawling strategies 

It is important to clarify what exactly a web crawler is. In its most basic 

form, it is a piece of software that starts out with a (usually small) set of 

URIs1, possibly just one. It then fetches the document that that URI refers 

to and extracts links to other URIs from it. Those newly discovered URIs 

are then fetched and links extracted from them and the cycle continues. 

 

Of course it’s not quite that simple in practice. First off, link extraction 

can be very difficult. HTML pages can usually be processed easily 

enough. Just access the href attributes on the a tags and the src attributes 

on some other tags like img. This in fact works quite well, but the 

problem is that not all links are encoded in these fairly simple HTML tags 

and attributes. For example, JavaScript may construct links on the fly. 

Links may also be embedded in other file types, such as PDFs, Word 

files, Macromedia Flash etc. 

 

Another problem is politeness. Hammering a web server with requests is 

unacceptable behavior for a web crawler and would most likely cause it to 

be blocked by the servers in question. Some control over the number of 

requests made is therefore needed. Enforcing a minimum wait time 

between requests is a good way to do that, but unless you break it down to 

individual web servers, it would slow your crawl to a, well, crawl. 

Therefore, you need to maintain separate queues of URIs for each web 

server. That in turn can be tricky, because the same host name might be 

served by several web servers or one web server might manage several 

host names! Typically politeness is either enforced based on host names 

or IP numbers. Neither approach is perfect, but they generally limit the 

stress placed on web servers sufficiently. 

 

There are many other considerations, such as obeying the robots.txt rules 

where they are found and correctly identifying character sets, especially 

in HTML documents that use multibyte encodings. Not to mention 

challenges related to automatically generated content, such as calendars 

that effectively lead to infinite amounts of content. 

 

                                                 
1 URIs are a superset of the more familiar URL. Our use of the term URI is discussed in chapter 

2.1. 
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More pertinent to the discussion at hand is the ever changing nature of the 

web. Crawling 'the web', is almost impossible. Any reasonable attempt 

will have to compromise on the scope of the crawl, either by skimming 

the top of websites, or selectively crawling only those sites that meet a 

certain criteria.  

 

The web is growing very fast. Trying to keep up with it is almost 

impossible. Worse, it is also changing very rapidly. This means that 

content quickly goes out of date. It also means that if there is a long wait 

between the extraction of a link from a document and the time when that 

link is visited, the contents may well have changed from those that were 

being linked to. In other words, our archive will show a link between 

documents A and B even if document A had originally meant to link to 

content that was very different from what we eventually got when B was 

visited. This means that web resources must be visited within a reasonable 

amount of time from their discovery. During huge crawls, however, this 

can be extremely difficult, as the discovery 'frontier' keeps expanding.  

 

 

Figure 1. A conceptual illustration of the frontier concept in crawling.  

Figure 1 illustrates the basic concept of a frontier. Initially the only URIs 

within it are the seeds, i.e. the initial set of URIs. During each round of 

processing more URIs are discovered and added to the frontier, pushing it 

out. Obviously the graphic exaggerates the sizes and simplifies the 

process. We know that the frontier will expand at varying rates depending 

on the number of URIs found in downloaded documents and based on the 
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speed and politeness restrictions for different servers. Thus the frontier 

may rapidly expand on one website, while making less progress on 

another. It does however illustrate well how the crawling focus moves 

slowly away from the seeds, moving outwards with the frontier. 

 

If there is no limit placed on the frontier it will continue to expand 

indefinitely or until hardware resources are exhausted. As we noted 

above, the frontier's scope will most likely be reduced, either by limiting 

its depth into each website, or limiting the number of websites. Possibly 

both.  

 

The reasons for this are simple. We need to end the crawls at some point 

in order to repeat them. The Web’s ever changing nature requires that 

crawls be repeated within a reasonable timeframe (typically within 

months, possibly much less). We generally do not have the luxury of 

crawling the same scope indefinitely. Limiting the number of documents 

downloaded from a single website is a common trade-off to allow more 

sites to be covered. 

 

We are now at the topic of this chapter; crawling strategies. Depending on 

the purpose behind each crawl, there are a number of different crawling 

strategies. Each strategy has its own pros and cons and the choice of 

which to use must take into account the purpose of the crawl. What is the 

goal? To crawl the maximum number of sites within two months? To 

crawl a fixed part of the web (like a country domain) as thoroughly as 

possible within as short a time as possible? To crawl a small number of 

websites as often as possible with the aim of capturing every detail? 

 

The ultimate goal can vary considerably. The ones mentioned are 

common types of crawls, but within each scenario there are many possible 

permutations. Restrictions on the type of documents to download, time of 

day when crawling can be performed, etc. 

 

The Heritrix development team highlighted four types of crawls that they 

believed Heritrix needed to be capable of [1]. 

 

• Broad crawling 
Large, high-bandwidth crawls. The number of sites and pages collected 

are as important as the completeness of coverage for each site. An 

extreme broad crawl would be one that tried to capture the entire web. 
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Typically broad crawls will favor limiting their coverage of individual 

sites in order to be able to crawl a greater number of sites. Trading off 

website completeness in favor of getting better coverage of a larger 

section of the World Wide Web. 

• Focused crawling 
Small to medium sized crawls using a selection criterion to limit the 

scope of the crawl. I.e. to restrict the frontier to a predetermined part of 

the web. This can be done in a variety of ways. For example, by using a 

list of allowed domains or search downloaded documents for keywords 

and stop performing link extraction once they are not found. The 

keywords would presumably be related to some topic and be rare 

enough to actually limit the scope. Ideally the crawls should achieve 

high completeness within their scopes. 

• Continuous crawling 
These crawls are different from the above in that URIs are not simply 

'completed.' Instead, the crawler continuously revisits all URIs within 

its frontier. This severely limits the speed with which the frontier can 

grow as the crawler must split its time between revisiting URIs and 

processing new ones. If we wish the revisits to always happen in a 

timely fashion, this will eventually place a hard limit on the size of the 

frontier where additional URIs can no longer be accommodated without 

falling behind on revisits. Continuous crawls therefore need to be 

carefully scoped. 

• Experimental crawling 
This category encapsulates the myriad of atypical crawls that may be 

carried out to experiment with new techniques, protocols etc. 

 

The above definitions do not exactly describe crawling strategies but 

rather crawling purposes. When we examine the strategies for broad and 

focused crawling we quickly note that a very similar approach can be 

used. The main difference lies in how the crawl is scoped. But they both 

use a basic snapshot strategy.  

 

A snapshot strategy is what we have already described. Start with the 

seeds and work outwards. Once processed a URI will not come up again. 

If rediscovered it is rejected as a duplicate. Thus the crawl spreads out 

from the seeds and at any given moment the only activity is at the edge of 

its frontier. 
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Revisiting using a snapshot strategy relies on repeating a crawl. That is, 

once a crawl is complete, and this may take days, weeks and even months, 

the crawl is started again from the seeds. The web will, of course, have 

changed so the new crawl will not proceed in an identical manner, but 

should roughly cover the same content as the previous one.  

 

Each iteration of a crawl captures a single snapshot of the web at that 

time, although in reality ‘that time’ varies from one document to the next. 

Stacked up these snapshots can provide a coarse picture of the changes 

that occur on the web over time. But unless the scope is quite limited 

allowing for frequent recrawling, a lot of intermittent changes will be 

missed. On the other hand if the scope is limited enough to allow, say, 

daily crawls, this will lead to a huge number of duplicates, since a lot of 

the documents within the scope will not have changed. 

 

A snapshot strategy is therefore good at broad and focused crawls and can 

potentially capture a very large scope. However, it is not very good at 

capturing changes over time, or, in other words, performing a continuous 

crawl. 

 

For continuous crawling we need an incremental strategy. The goal of 

continuous crawls is not (as such) to capture the largest possible scope or 

to crawl websites as thoroughly as possible. The objective is to capture 

the changes that occur on the website accurately. This means that within a 

single 'crawl' each URI will be visited multiple times. This is in stark 

contrast to snapshot strategies which assume that each URI will only be 

visited once during each crawl and between crawls all information is lost 

and new ones begin from the seeds.  

 

Crawls using an incremental strategy will typically last longer, in fact 

ideally there is just one 'crawl' that runs as long as we remain interested in 

collecting the websites within its scope. It begins like a snapshot crawl 

and the frontier slowly expands as new URIs are discovered. Rather than 

discarding URIs that have already been crawled they are requeued. This 

means that the queue of waiting URIs can never decrease in size and will 

in fact, if the crawl's scope is large enough, continue to grow indefinitely. 

 

This brings us back to the need for clearly defined scopes for incremental 

crawls. Assuming that the scope is sufficiently limited, the crawl 

eventually reaches a balance where it is cycling through the pool of URIs. 
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It retains information about past visits to the URIs allowing for duplicate 

detection and elimination. 

 

However, other than that we haven't really achieved very much beyond 

what repeating a snapshot crawl would give us. In order to better utilize 

our resources we want to differentiate between URIs and visit them only 

as often as they change. We'll discuss the difficulties inherent in this later, 

but this kind of adaptation to the changes on the web allows an 

incremental crawl to make maximum use of its resources. 

 

 

 

Figure 2. The different emphasis of incremental and snapshot strategies 

Figure 2 illustrates how the two crawling strategies differ in their 

emphasis. Of course you can do multiple snapshot crawls to also cover 

changes over time, as you could have many incremental crawls running to 

cover a larger section of the web. 

 

In practice the two strategies complement each other. For example, when 

archiving a country domain, a snapshot could be taken of the entire 

domain at regular intervals. Perhaps 2-4 times a year. This does a good 

job of capturing the majority of the web without too many duplicates. The 

myriad of websites, such as news journals etc. that change daily could 
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then also be archived using an incremental crawl that was limited to just 

those sites, and possibly just the 'top' of those sites. That is, ignoring their 

largely static archives and leaving those for the periodic snapshot crawls. 

 

With sufficient resources it is possible to create an incremental crawler 

that can capture the entire web, thus removing any need for snapshot 

crawls. This is however, beyond the expected abilities of IIPC members. 

It is probable that large commercial outfits that crawl the web as a key 

part of their business will try to do this. However little information is 

available on the details of their crawls, and even if there were, it is 

doubtful how it would apply to archival crawling using more limited 

resources. 

2.1   Terminology 

Crawl. It is worth restating exactly what meaning we apply to this key 

concept. A crawl captures the processing of a set of seed URIs, link 

extraction, the processing of discovered URIs etc. until the scope has been 

exhausted. Each crawl starts without any information about prior crawls. 

Of course, experiences with prior crawl may have led to changed settings, 

but the crawler has no memory of those crawls as such. 

 

A web crawler is then a software system capable of performing a crawl. 

 

We have specified two crawl strategies, snapshot and incremental. 

Snapshot crawling is also sometimes known as periodic crawling [10]. 

The two crawl types, broad and focused, that Heritrix [1] offers are both 

based on a snapshot strategy. Frequently snapshot crawling and broad 

crawling is used interchangeably. Similarly incremental crawling and 

continuous crawling is often used interchangeable and even sometimes 

referred to as iterative crawling, although the last is to be discouraged. 

 

Documents containing URIs are said to link to those documents that the 

URIs represent. Sometimes resources on the web are not complete 

'documents' in the traditional sense, they require the loading of additional 

resources to fully render and these resources are specified by URIs. 

Typically this involves loading images in HTML pages.  If the URI's 

placement within the document where it was discovered indicates that it is 

a resource required to render the originating document, that link is 

considered an embed and we say that the document embeds the resource 
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the URI refers to. The distinction between links and embeds is important 

since we will often want to treat embeds differently, in order to ensure 

that we get all the parts of the logical document, e.g. an HTML page, 

represents. 

 

This text also frequently refers to URIs. Uniform Resource Identifiers are 

a superset of the more familiar URLs or Universal Resource Locators and 

both refer to online resources, typically web pages and other web content. 

Heritrix, while only supporting URLs at the moment uses the more 

generic URI both in documentation and in implementation for future 

proofing. 

 

The terms process, fetch, download and crawl a URI are largely 

synonymous. Processing and crawling refer to the entire process of 

downloading a URI from the web, performing link extraction, consider 

preconditions etc. and are slightly large in scope. Crawling is slightly 

more abstract then processing, which tends to consider the actual software 

processing. Fetching and downloading generally refers to just the physical 

act of downloading the resources over the internet and are used 

interchangeably. 

 

Similarly, the terms URI, document, file and resources usually refer to the 

same thing. It is an internet resource identified by a URI, typically a URL 

referring to a webpage or other similar resource. The URI is the address 

or handle for the object and that term is generally used to abstract the type 

of resource in question, as they type quite frequently irrelevant. 

Document, file and resource are used interchangeably, we use those terms 

typically, when referring to some action on or property of the actual 

resource. 

 

For most technical terms we prefer to use the same conventions as 

Heritrix. For example, a scope is a section of the World Wide Web that is 

to be crawled. This is also sometimes referred to as a segment.  In the 

next few chapters we'll encounter many more such terms. While the 

meaning of most of them will either be clear from the context or explicitly 

explained, since we strive to adhere to Heritrix's conventions, the Heritrix 

user manual[8] and developer's documentation[7] are ideal sources for 

further clarification if needed. 
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3.   Heritrix 

Heritrix is the Internet Archive's (IA) open-source, extensible, web-scale, 

archival quality web crawler project [1]. The project was aided by two 

developers sent to work with IA in San Francisco by the National 

Libraries of the Nordic countries. This cooperation lasted for six months 

starting in late October 2003. The IIPC [25] had come up with a 

document detailing the desired behavior in a web crawler suitable for the 

kind of archival quality crawls that its members were interested in and 

this was used as a basis for determining what features to focus on. This 

included, among other things advanced configuration options allowing for 

great flexibility in the software. 

 

It is generally understood that the demands placed on a web crawler 

change rapidly, just like the World Wide Web. Thus the emphasis on 

making this an open-source project to allow third parties to customize 

and/or contribute code and ensuring that the basic Heritrix framework is 

extensible so that such additional work could be integrated easily. 

 

In order to achieve this, the Heritrix software can be divided into two 

parts; framework and pluggable modules. The framework provides 

generic control over a crawl. This includes providing a user interface, 

managing the running processes and an elaborate settings framework to 

simplify how crawls are configured. For the implementation of a crawl, a 

series of pluggable modules can be used to dictate each step. They are 

divided into four groups: 

 

• Frontiers 

• Processors 

• Scopes 

• Filters 
 

Heritrix provides enough solid implementations of these modules to run a 

reasonably large focused crawl. Figure 3 illustrates how these components 

fit into Heritrix’s overall architecture. 
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Figure  3. Heritrix's basic architecture [1] 

3.1   CrawlController 

The CrawlController object is at the core of the Heritrix framework. It 

essentially manages each crawl. When a crawl is being created (via the UI 

or command-line options) a CrawlController object is created. It in turn 

reads the settings provided to it and instantiates all the modules needed 

for the crawl. It also manages the ToeThreads (see 3.2), creating them and 

setting them to work on the Frontier. 

 

All of the primary logs that Heritrix creates are also created here and 

other components access them via the CrawlController. In fact, almost 

every component has access to the CrawlController, either directly or via 

the settings handler which is discussed later.  
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Once the CrawlController has set everything up it waits for instructions to 

start the crawl. Once started it can be instructed to effect a pause, 

resumption or a termination of the crawl. This is generally only used by 

the UI. To enforce these orders it issues instructions to the relevant 

components. 

 

When writing modules for Heritrix interactions with the CrawlController 

are rarely of any great significance. As it implements generic services, 

any new modules are likely to utilize them in a similar manner to existing 

code, i.e. accessing the logs and firing off events. It is just important that 

they (especially frontiers) correctly implement the methods that the 

CrawlController uses to control the crawl. 

3.2   ToeThreads 

Heritrix is multithreaded and uses a pool of worker threads to process the 

discovered URIs. These worker threads are called ToeThreads. The 

Heritrix FAQ [17] explains the logic behind this unusual name. "While 

the mascots of web crawlers have usually been spider-related, I'd rather 

think of Heritrix as a centipede or millipede: fast and many-segmented. 

Anything that 'crawls' over many things at once would presumably have a 

lot of feet and toes. Heritrix will often use many hundreds of worker 

threads to "crawl", but 'WorkerThread' or 'CrawlThread' seem mundane. 

So instead, we have 'ToeThreads'." 

 

ToeThreads request URIs from the Frontier. Assuming one is available, 

the Frontier will issue a URI. The ToeThread then applies a series of 

processors to the URI. Once all configured processors have been applied, 

the URI is returned to the Frontier and the ToeThread requests another 

URI to process. 

 

It is the Frontier’s responsibility to pass the ToeThreads signals to pause, 

resume and terminate crawls. Typically, this is done when a ToeThread 

requests a new URI. The frontier can then either throw an 

EndedException or make the ToeThread wait until the crawl can be 

resumed. 
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3.3   The Settings Framework 

Heritrix boasts a very comprehensive and flexible settings framework. It 

allows any module to publish a variety of configurable parameters. 

Furthermore, the values of these parameters can vary based on the current 

host and several other criteria. 

 

Any module that needs to publish configurable parameters extends a basic 

configuration class, ModuleType. The ModuleType implements a 

javax.management.DynamicMBean [18] interface [7]. This means that the 

objects can be easily queried as to what settings they use. 

 

There are three basic 'Types' settings in Heritrix: ComlexTypes, 

SimpleTypes and ListTypes. 

 

The ComplexType may contain an array of other settings, including, 

possibly, other ComplexTypes. Variations on this include the MapType 

and the ModuleType which is the basic class for all pluggable classes in 

Heritrix. 

 

SimpleTypes are settings that do not contain other settings. In other words 

strings, integers and such. It is capable of handling any Java type, but in 

practice it is used primarily for strings, numbers and booleans. It can also 

be assigned an array of legal values. The settings framework then 

enforces those restrictions. 

 

The  ListType behaves somewhat like a SimpleType, in that it does not 

contain other settings, but does contain a variable number of items. 

Implementations for lists containing Strings, Integers and Longs are 

provided. 

 

By subclassing ModuleType, components can easily add configurable 

settings by constructing the settings types they need and adding them to 

their 'definition' in their constructor. A simple code example from the 

Heritrix Developers Documentation [7] follows: 

 
public final static String ATTR_MAX_OVERALL_BANDWIDTH_USAGE = 
        "total-bandwidth-usage-KB-sec"; 
private final static Integer DEFAULT_MAX_OVERALL_BANDWIDTH_USAGE = 
        new Integer(0); 
... 
 
Type t; 
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t = addElementToDefinition( 
    new SimpleType(ATTR_MAX_OVERALL_BANDWIDTH_USAGE, 
    "The maximum average bandwidth the crawler is allowed to use.\n" + 
    "The actual readspeed is not affected by this setting, it only " + 
    "holds back new URIs from being processed when the bandwidth " + 
    "usage has been to high.\n0 means no bandwidth limitation.", 
    DEFAULT_MAX_OVERALL_BANDWIDTH_USAGE)); 
t.setOverrideable(false); 

 

The code example illustrates the adding of an Integer setting, named 

"total-bandwidth-usage-KB-sec". Two constants are created for the 

settings name and default value. Declaring these as constants is 

considered good practices in the Heritrix project, rather than using the 

values directly in the constructor. 

 

The constructor then invokes addElementDefinition() which is inherited 

from the settings framework’s ComplexType class. The method accepts 

any Type object. Once added, the setting that the Type object stands for is 

a part of the component and the settings framework handles reading and 

writing the information to disk. The user interfaces also accesses these 

settings through the framework. 

 

Several operations on the types allow for a good deal of further 

customization. It is possible to specify if the attribute is overrideable 

(more on that in Context based settings below) and if it is an expert 

setting (UI hides them by default). It is also possible to set constraints on 

the input, for example by using regular expressions that the input must 

match. 

 

This means that any module added to Heritrix can easily expose any of its 

settings. Reading and writing it to disk is managed for it, and the user 

interface automatically adds it to its configuration pages. All the modules 

need to do is to extend the ModuleType object, or another object that does 

so. This greatly simplifies writing pluggable modules for Heritrix. 

3.3.1   Context based settings 
When a module reads from a setting, it can either do so in a 'global' 

context or based on a URI. Consider the following code example: 

 
try { 
   int value = ((Integer) getAttribute("setting", curi)).intValue(); 
} catch (AttributeNotFoundException e) { 
   // Handle AttributeNotFoundException 
} 
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In the above, the value of attribute setting is retrieved. The getAttribute() 

method accepts on one hand the name of the attribute and on the other 

hand a context object (curi). If the context is null then this relates directly 

to the base settings. However, if a URI (or rather a CrawlURI as we'll see 

later) is provided then the value of the setting may vary depending on the 

URI. 

 

This is because the Heritrix settings framework uses an elaborate system 

of overrides based on host names. Basically, when looking up the settings 

for the URI "bok.hi.is", the settings framework first checks if it has been 

specified at the narrowest level, i.e. "bok.hi.is", if nothing is found there 

we recurse down to "hi.is," then "is" and finally check the global settings. 

 

All settings have a global value, if none is found when reading the setting 

from disk the default value specified for it is used. This recursive lookup 

is implemented in such a way that no additional overhead is incurred. 

 

Thus any setting or attribute that a module has, can have different values 

based on the URI it is handling at the time. In fact, the settings framework 

also has ‘refinements’ that work very much like the overrides. They base 

their decision on whether to return a different value from the global one, 

based on configurable criteria. These criteria may, or may not depend on 

the URI. Available criteria include one that uses time of day, another that 

uses the port on the host and a third that uses a regular expression match 

against the URI. 

 

Refinements can be made on either the global level or any level of 

overrides. They are not inherited to overrides, so that if a refinement is 

specified on a global level and an override is created, the override takes 

precedence. Another refinement can then be made to the override. 

 

The refinements use special criteria to decide when the refinement values 

should be used instead of the default values. These criteria are fixed and 

new ones can not be added in a pluggable manner. New criteria require a 

change in the Heritrix framework. This effectively places them off-limits 

as far as customization goes, unless the objective is to get the new criteria 

accepted as a part of the Heritrix framework. 

 

In order to take advantage of these features, modules must supply a URI 

to the getAttribute() method. If the setting in question should not be 
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overrideable, it is possible to specify that when the Type object is created. 

The user interface will take note of this and not provide the option to 

override or refine the setting. 

 

Furthermore, these settings can be changed at run time (although it is 

generally wise to pause the crawl when doing that). The user interface 

immediately updates the settings objects and they are written to disk. If 

modules wish to capture changes to the settings, and that is generally 

preferred, they need to ensure that they always access them via the 

getAttribute() method since using a stored class variable means that the 

change would go undetected. The nature of some settings makes it 

illogical for them to change at run time, such as the location of settings 

files. Modules can simply ignore changes to them if this is the case. 

 

To summarize, the settings framework allows the operator to fine tune 

any exposed settings. As we see later, this is a very important property. 

3.4   The Web User Interface 

 
 

Figure 4. Heritrix's web user interface. Console – main screen. 

While it is possible to launch crawls via Heritrix's command line, using 

existing XML configurations files, the software also provides a 

comprehensive user interface that is accessible via a web browser. 



 

 20 

Heritrix uses an embedded Jetty server [27] to provide this functionality 

and thus the UI is closely integrated with the underlying engine. 

 

The UI allows the operator to monitor crawls in progress, create new 

crawl jobs and profiles, review logs of ongoing and past crawls and 

provides access to comprehensive reports on ongoing crawls. 

 

More importantly, the UI allows the operator to affect an ongoing crawl. 

This is done by manipulating the CrawlController and/or the settings. In 

addition to pausing, resuming and terminating ongoing crawls, the UI 

allows the operator to change the settings used for the ongoing crawl. Not 

all changes are allowed, for example, it is not possible to change what 

components are used. However, the configurable parameters that are used 

to set their behavior can usually be changed on the fly. For some changes 

it is recommended that the crawl be paused while they are made. 

3.4.1   Jobs and profiles 
The concept of 'jobs' in Heritrix is tied tightly to notion of 'crawls.' A job 

encapsulates a single crawl. That is to say it contains all the settings 

needed to properly configure a crawl in Heritrix, plus useful state 

information about the crawl. Profiles are essentially the same as jobs, in 

that they contain all the settings needed to configure a crawl, but are 

considered to be templates for jobs.  

 

Typically, when creating a new crawl a profile that describes it is created. 

Using that profile numerous jobs can be launched, with varying settings 

and seeds if needed. Thus each crawling strategy being utilized can have 

its own profile, saving considerable time when launching new crawls. 

 

All jobs and profiles are created based on existing profiles or jobs 

(Heritrix provides a simple default profile). Thus the user interface clones 

the settings of the parent and allows the user to edit it. The actual settings 

are stored on disk in an XML file. While it is possible to edit them 

directly the user need never bother with it if using the UI. This is because 

the UI enables the user to edit any part of it and also does a good deal of 

error prevention. 

 

The most important part of editing a job or profile is done on the 'Settings' 

page (Figure 5). The actual settings framework arranges the modules into 

a tree-like structure with an object called CrawlOrder at the root. This 
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allows the UI to recursively make its way down the settings tree, printing 

out the configurable attributes of each module. The UI creates combo 

boxes where legal values have been defined or Boolean values are 

expected and also handles simple lists, allowing modules to specify 

almost any type of setting. When editing profiles the UI will warn if any 

restrictions have been placed on the input and are not being met. It will 

not allow such input in jobs. 

 

 

Figure 5.  Heritrix’s settings 

The UI then offers two pages to edit which modules are being used. The 

first, "Modules" allows the user to set which frontier implementation to 

use, which scope to use and what processors should make up the 

processing chain and in what order. New modules can easily be added by 

putting JAR files in Heritrix's class path and ensuring the .options files are 

included in them [7]. 

 

The "Submodules" page allows the user to add filters to any module that 

accepts filters. All processors do this, and filters can be placed on them to 

make URIs skip over them when the filter criteria are met. Scopes 
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generally also allow filters and any module can opt to allow specialty 

filters. It also enables the user to set URL canonicalization rules. These 

are applied to discovered URIs to, for example, strip session IDs, etc.  

 

Finally, the UI allows the user to specify overrides and refinements for 

the settings. If an override or refinement is created, the UI offers the 

option of entering new values for any overridable setting. It also allows 

the addition of further filters; other modules can not be added and no 

modules can be removed in an override.  

 

It is worth pointing out that each instance of Heritrix can (and usually 

does) manage several jobs at once, however only one of them can be 

active, or crawling. That is only one crawl can be actively performed at 

once, all other jobs wait in a simple queue. Jobs are also retained after 

completion to allow access to their information and so that new jobs can 

be created based on them. 

3.4.2   Logs and reports 
The UI also gives access to most of Heritrix's logs i.e. all the logs that are 

related to one crawl. There is also a general log to capture various outputs 

that are not directly related to a single crawl job. This log also captures 

some output from third party modules used by Heritrix. 

 

The most interesting of these logs are the crawl.log and progress-

statistics.log. 

 

The crawl.log contains a single line for each URI that is processed, unless 

the processing leads to a retriable error, such as missing preconditions 

(DNS lookup or robots.txt information). The log contains a timestamp, 

the processing result code2, size of the downloaded document, the 

document URI, the URI of the document that contained the link to this 

URI and a few other items. At the end of this line is an annotation field. 

This section allows modules to write arbitrary data about this URIs 

processing to the log.  

 

The progress-statistics.log is compiled by a StatisticsTracker object. 

Supposedly it should be pluggable, but in practice this has proven 

difficult since the UI relies on this object's presence. It receives 

                                                 
2 The result code is the HTTP status code if one was received, otherwise an appropriate code 

determined by Heritrix. See [8] for an overview of defined codes. 
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notifications about the completion of each URI processed and at fixed 

intervals prints progress statistics that include how many URIs have been 

discovered, crawled, the number of document processed per second etc. 

 

Other logs are primarily focused on capturing various errors. The UI can 

also flag alerts that have been raised, so most serious errors during a crawl 

should be clearly noticeable. 

 

Using the StatisticsTracker, the UI is also able to provide a variety of 

other information. Most of the information on the front, ‘Console,’ page 

is from it. Each job also has a ‘Crawl report’ that contains major progress 

data and details on the number of documents per HTTP status code, host 

and file type. 

 

Additionally, the UI allows access to several module specific reports that 

are only accessible while a crawl is in progress. The most important is the 

Frontier report, which details the status of the frontier. The exact nature of 

the report varies based on the implementation of the frontier. Other such 

reports include a Threads report and Processors report, the latter 

interrogates all the processors for their individual reports and displays the 

combined results. 

 

Together this means that the UI provides excellent means of monitoring 

the progress of any crawl. Once a crawl has ended the logs remain 

available, but most other info is dumped to disk as text reports and are not 

accessible directly from the UI. 

3.5   Frontiers 

The Frontier being used is the most essential part of each Crawl. While 

the CrawlController manages generic details about the crawl, such as 

access to logs, creating ToeThreads etc., the Frontier manages the state of 

the crawl. 

 

In our earlier discussion of crawling strategies we discussed the abstract 

concept of a URI frontier, i.e. any URI behind it has already been 

discovered, the ones at the edge of it still need to be processed and we 

have yet to encounter the ones outside it. Frontiers in Heritrix are so 

named because they effectively codify this concept. 
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Each Frontier knows what URIs it has encountered. As they are 

discovered (or loaded as seeds) they are scheduled with the Frontier. It 

then maintains a list of what URIs remain to be crawled and in what 

order. The ToeThreads request URIs from the Frontier, process them, 

schedule discovered links and return the processed URI back. This means 

that the Frontier object entirely controls the progress of the crawl by how 

it issues, or does not issue, URIs.  

 

The Heritrix framework does not provide one definitive Frontier. Rather, 

it specifies an API for Frontiers via an interface. It then provides some 

useful implementations of these, but allows for additional Frontiers being 

created to replace them. Frontiers must implement this interface, but they 

should also subclass the ModuleType class to gain access to Heritrix's 

settings framework, discussed earlier. 

 

Let's quickly review the most essential methods that the Frontier interface 

specifies, with an eye towards understanding the requirements placed on 

Frontiers. 

 

The two key methods are next() which returns a URI for crawling, and 

schedule() which accepts a URI and schedules it for later crawling. 

Additionally the finished() method is used to signal that the processing of 

a URI that the Frontier issued has been completed.  

 

The entire responsibility of ordering the scheduled URIs is placed on the 

Frontier. It must, for example, implement a politeness policy to prevent 

Heritrix from crawling any web server too aggressively. This typically 

means maintaining numerous separate queues for each politeness unit, 

usually a host name or IP number so that URIs from it can be withheld for 

a while after each time the web server is contacted. If separate queues 

were not maintained the crawl would be unable to proceed on other web 

servers during these politeness waits. 

 

The exact implementation of how a Frontier issues scheduled URIs 

dictates the crawling strategy. Any Frontier can order its URIs based on 

any criteria that suits the purposes of the particular crawl in progress. Use 

of some relevancy indicator to sort URIs for processing could, for 

example, be used on topical crawls3. Also it is common to quickly issue 

URIs discovered embedded in documents, that is pictures and similar files 

                                                 
3 Topical crawls are crawls focused on collection pages related to a specific topic or event. 
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displayed within the originating document, rather than links to separate 

files.  

 

The Frontier also maintains a number of running statistics, accessible via 

several methods specified by the Frontier interface. 

 

• Discovered URIs 

Total number of unique URIs that have been scheduled. 

• Queued URIs 

The number of URIs waiting to be issued. 

• Finished URIs 

Total number of URIs that have been issued and finished 

processing. URIs that are returned with retriable errors don’t count 

as they are reinserted into the queue (and thus the total number of 

queued URIs) 

• Successfully processed URIs 

The total number of URIs that where processed successfully. That 

is, a response was received from the web server. The response 

may have been a 404 or other HTTP error codes. 

• Failed to process URIs 

Total number of URIs that could not be processed for some 

reason. Typically the web server could not be contacted, but there 

are many other possible reasons. 

• Disregarded URIs 

The number of URIs that have been disregarded for some reason. 

Usually this is because a robots.txt rule precludes a fetch attempt. 

• Total bytes written 

The sum total of the byte size of all downloaded documents 

 

A lot of this data is also maintained by the StatisticsTracker and the UI 

uses it to access these values, but during the crawl, the Frontier provides 

the most up-to-date information on these values. 

 

While most of these statistics are fairly straightforward, some, the number 

of queued URIs in particular, assume a snapshot based crawl strategy. 

After all, with an incremental strategy, there are always (in theory) an 

infinite number of URIs waiting to be processed (if we count not only the 

different URIs, but also the many revisits). In practice the best approach is 

to simply equate the number of queued URIs with the number of 

discovered URIs. We'll discuss this in more detail later. It is brought up 
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here simple to point out the fact that the Frontier interface was developed 

at a time when only a snapshot based Frontier implementation existed and 

it bears some evidence of that. 

 

The Frontier interface specifies several methods to allow the 

CrawlController to notify the Frontier of a change in the crawl state, that 

is to pause, resume and terminate the crawl or pause(), unpause() and 

terminate() respectively. The Frontier is then responsible for obeying the 

new state by withholding URIs, resume issuing URIs or throwing an 

EndedException whenever a ToeThread requests a URI.  

 

The Frontier is responsible for firing off CrawlURIDispostionEvents 

whenever a URI completes processing. This is done via a method on the 

CrawlController. This allows any interested module to monitor the 

progress of the crawl. Mostly used by the StatisticsTracker. 

 

There are also a number of methods that deal with monitoring the Frontier 

and manipulating it at run-time.  Of the former, the report() method is the 

most significant as it should return a human-readable report that is 

displayed in the UI. The oneLineReport() method is a much abbreviated 

version of this. There is also a complicated system for iterating over all 

the URIs within the Frontier. 

 

For manipulating the Frontier there is a way to delete URIs, either by 

name or regular expression. There is also a method for loading recovery 

files if the Frontier writes a transaction log that can be replayed. 

 

While it is not enforced by the Frontier interface, the Frontier should 

apply URI canonicalization rules. URIs often contain meaningless data, 

such as session IDs that need to be removed. The canonicalization system 

that Heritrix has applies user specified fixes to them. However, while the 

canonicalizers themselves are handled by the framework, the Frontiers 

must apply them to the URIs. This is typically the first thing done after 

the schedule() method is invoked and before the URIs is evaluated for 

existing duplicates. 

 

This is not an exhaustive overview of all the things a Frontier handles. 

Essentially, a Frontier directs the progress of the crawl and there is a lot 

of things it can do. The above is most of what it has to do. 
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3.5.1   HostQueuesFrontier 
The HostQueuesFrontier was the first Frontier created for Heritrix. It has 

since been deprecated, but its design greatly influences the ones that have 

followed it. 

 

As the name implies it is based around a number of host queues. That is 

each host has its own named queue. As discussed earlier this is a good 

way of enforcing politeness.  

 

The HostQueuesFrontier queues were simple first-in-first-out queues that 

were custom written for Heritrix, including its disk backing ability. That 

is, writing parts of the queues to disk. 

 

Each host queue was assigned a state, initially the states were: 

 

• Ready 

URIs from it can be issued. 

• Snoozed 

URIs from it can not be issued until the 'wake up' time is reached. 

• Empty 

Does not contain any URIs. 

• Busy 

A URI from this queue is currently being processed. 

 

But as the crawling strategy became more complex the following were 

slowly added: 

 

• Inactive 

An inactive queue, while having URIs that are ready for crawling, 

is being held back. This is to improve broad crawl behavior. I.e. 

focus on a limited number of queues at a time, just enough to fully 

utilize the machine resources. This helps ensure that URIs from 

the same host are crawled within a more reasonable timeframe 

than round-robining through all the host queues. 

• Frozen 

In practice this isn't used. But the ability was added to mark 

queues as frozen to signify that they have been put aside. That is, 

the crawler will not continue with them until the operator 

intervenes. This is to stop processing of hosts that exhibit some 

form of bad behavior. 
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The HostQueuesFrontier is a simple snapshot Frontier. Once a URI has 

been processed, only a hash of it is stored and new URIs are compared to 

the list of existing hashes. If no conflict is found, they are scheduled. If 

there is a conflict, the new URI is considered to be a duplicate and is 

discarded. The only exception from this is with robots.txt and DNS 

lookups, they are repeated at fixed intervals. So URIs that are marked as 

prerequisites are allowed to be scheduled again. This doesn't constitute a 

real incremental strategy since the prerequisites are only recrawled if the 

host they refer to is still being crawled. Then, once the existing 

information expires on robots.txt or DNS information, this triggers the 

rediscovery of the preconditions. A true incremental strategy would 

revisit them as a matter of policy, not in response to this form of 

rediscovery. 

 

Despite the name, the ‘host queues’ need not be based on hosts. Queues 

are keyed, or named, either by the host name of the URI, or its IP number. 

To do this there are two QueueAssignmentPolicies. The 

HostnameQueueAssignmentPolicy is the default one but the user can 

configure the Frontier to use the IPQueueAssignmentPolicy instead. Any 

newly discovered CandidateURI is fed to the configured policy and it 

returns a queue key. This is stored in the CandidateURI and is accessible 

via the get and set methods for class key. An interface, URIWorkQueue 

defines these queues, and it accepts the class key. 

 

One of the primary problems with this Frontier was the overhead incurred 

by each queue. Each was represented by an object that required memory 

and could not be backed out on disk without completely redesigning 

them. This made truly broad crawls all but impossible since they would 

exhaust the available memory at some point, as the number of 

encountered hosts grew. This led to the development of the BdbFrontier. 

3.5.2   BdbFrontier 
The BdbFrontier relies on the Berkley DB Java Edition [9], for object 

serialization, rather than the custom written queues of the 

HostQueuesFrontier. The significant advantage inherent in this was that 

the queue itself could be stored in the database, thus allowing for many 

more queues. The limiting factor became disk space, which is much more 

abundant than memory. 
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By using the Berkley DB, the concerns of writing to and reading from 

disk, including caching and other related issues, were effectively removed 

from the Frontier and relegated to a third party tool that was written 

expressly for the purpose of managing a large amount of data, further 

improving performance. We will discuss the Berkley DB in more detail 

later, in chapter 6.2. 

 

Aside from the much improved handling of queues, the BdbFrontier is 

very much like the HostQueuesFrontier and implements essentially the 

same snapshot strategy. It does improve on several points, including the 

ability to add a 'budget' for each queue. The cost of each URI is evaluated 

based on the selected policy and once a queue’s budget is exhausted no 

further URIs are crawled. Also, if using the 'hold queues' option, that is 

focusing on a small number of queues at a time, the queues remain active 

for a fixed amount of 'cost,' after which time they become inactive until it 

is their turn again. 

 

The cost/budget addition to the Frontier enhances the possibilities in 

configuring broad crawls. As was discussed earlier, broad crawls typically 

trade-off on the depth with which they crawl each site, in favor of 

crawling more sites. 

3.5.3   AbstractFrontier 
The AbstractFrontier was developed alongside the BdbFrontier and is 

meant to be a partial implementation of a generic Frontier. That is, it is 

meant to implement those parts of the Frontier that are largely 

independent of the crawling strategy being implemented. This includes, to 

various degrees, management of numerous general purpose settings, 

statistics, maintaining a recovery log and more. Included are numerous 

useful methods to evaluate URIs etc. It also handles URI canonicalization. 

 

The BdbFrontier subclasses the AbstractFrontier. The AbstractFrontier is 

provided to simplify the creation of new Frontiers by doing all the routine 

work here, allowing new Frontiers to focus on their crawling strategies, 

rather than having to tackle all the mundane aspects of a Frontier. 

Furthermore, this can simplify code maintenance in the future, both if a 

change to the Frontier API is introduced, and also if new or improved 

functionality is developed that should be applied to most or all Frontiers. 
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3.5.4   Making other Frontiers 
The BdbFrontier is the main Frontier that is provided with Heritrix. The 

HostQueuesFrontier and a specialized version of it called 

DomainSensitiveFrontier are considered deprecated. 

 

Creating a Frontier need not be very complicated. In fact the Heritrix 

Developers Guide [7] shows how a very simple, yet fully functional, 

Frontier can look. At the most basic level, the Frontier is just a simple 

FIFO queue. The example enforces global politeness, that is a pause after 

each URI. This works, of course, but it isn't especially efficient. And that 

is where the complication comes in; we need to create efficient Frontiers 

that perform a crawl that conforms to our needs. 

 

The BdbFrontier has focused on improving the performance of snapshot 

crawls, whether they are focused or broad. In fact, it could also (and 

perhaps better) be described as a snapshot Frontier. While it is certainly 

possible that one might create another Frontier simply to improve on the 

BdbFrontier's performance in snapshot crawling, that would, if successful, 

typically make the existing Frontier obsolete. 

 

However, we already know that snapshot crawling is not the only type of 

crawling. This flexibility in Heritrix architecture that allows us to create 

additional Frontiers means that we can implement new ones that are 

optimized based on the demands of a different crawling strategy. 

 

It is of course conceivable to create a Frontier that encompasses all 

(known) crawling strategies. In fact the BdbFrontier already handles a 

number of variations on the snapshot strategy. Doing that would however 

risk trading-off performance in one type of crawl for the ability to 

perform another type of crawl. In the best case scenario, while no 

performance penalty is incurred, the code's complexity would increase 

markedly, making the software far more difficult to maintain. 

3.6 URIs, UURIs, CandidateURIs and CrawlURIs 

Currently, Heritrix only supports URLs however it always uses URIs for 

future proofing [7]. A URI class is provided in the Java Foundation 

Classes [28] that can represents a URI in programs. This however has 

some bugs and complies very strictly with RFC2396 [29] making it 

unusable in practice.  
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Instead, Heritrix uses a UURI, or "Usable URI" that subclasses the URI 

class from the Apache Commons project 

(org.apache.commons.httpclient.URI).  The UURI class adds some 

processing of the URI so that any UURI that is created successfully can 

be assumed to be "useable." The URI must be legal and certain superficial 

similarities are removed [7] (to improve duplicate detection). 

 

This is only half the story. Heritrix frequently needs to attach a large 

amount of meta-data to the URI. For this purpose two additional URI 

classes have been introduced, they do not subclass URI or UURI, but 

rather contain such an object.  

 

The CandidateURI class is subclassed by the CrawlURI class. Roughly, a 

CandidateURI object holds the data needed from the time a URI is 

discovered and until it should be processed, the CrawlURI then adds the 

data needed in order to complete the processing. Since many URIs are 

rejected as duplicates or deemed out of scope, the use of an interim 

CandidateURI is seen as a way to save memory. In practice this has been 

limited. The CrawlURI originally contained a hash map that could store 

any arbitrary data. This map has since been moved to the CandidateURI 

and access to it limited to accessors on the object. The CandidateURI 

however remains and URIs that are scheduled with the Frontier are 

always wrapped in a CandidateURI. 

 

An interface, CoreAttributeConstants, declares a number of constants that 

represent keys for various data typically stored in the CandidateURI and 

CrawlURI. This provides a central source for the keys and any class using 

them should always refer to those constants. 

 

Figure 6 illustrates different uses of CandidateURIs and CrawlURIs. 

URIs being processed are wrapped in a CrawlURI. A UURI is created for 

newly discovered URIs and that is then wrapped in a CandidateURI to 

preserve such information as parent URI, path from seed, etc. 

 

The CandidateURI is scheduled with the Frontier and it depends on the 

Frontier when (if ever) the CandidateURI becomes a CrawlURI. The 

Frontier may do this immediately, after determining that it is not a 

duplicate or, at the latest, just as the URI is being issued for processing. 
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Figure 6. CandidateURI and CrawlURI lifecycles 

CandidateURIs and CrawlURIs have a scheduling directive associated 

with them. This directive indicates that a URI must be crawled before any 

other URI with a lower scheduling directive and is primarily used to 

ensure that preconditions are fetched before the URI that needs them is 

tried again. It is also used to give preferential treatment to embedded 

URIs. Frontiers need to obey this directive or risk having the crawl dead 

end since prerequisite URIs are not being fetched prior to the URIs that 

require them. 

 

The scheduling directive hierarchy is as follows, starting with the lowest: 

 

• NORMAL 
Default scheduling directive, no preferential treatment. In practice most 

URIs will have this set. 

• MEDIUM 
Generally used for preferencing embeds. 

• HIGH 

• HIGHEST 
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The last two are rarely used, although the algorithm for setting the 

scheduling directive on prerequisites simply sets it one level higher than 

the URI that requires the prerequisite. This means that in practice the 

HIGHEST level should always be reserved for prerequisites. In fact, there 

is little, if any, need for more than two levels for any other scheduling. If 

more complex ordering is desired in the queuing of URIs, additional 

fields should be added to support that. 

3.7   The processing chain 

As discussed earlier, the actual processing of URIs is handled by the 

ToeThreads. They request a CrawlURI from the Frontier and then subject 

it to a series of Processors. 

 

The processors are pluggable classes in Heritrix, and technically you 

could create a crawl with no processors, although it wouldn't do much 

except run quickly through the seeds, returning them each with a failure 

code. 

 

The processing chain is split up into five sections based on the different 

tasks that are going to be carried out: 

 

1. Pre-fetch 
This should contain any processor that needs to run before the software 

attempts to contact a web server and download the relevant document. 

Typically, this includes rechecking the scope of the URI (in case it has 

been modified since the URIs discovery) and ensuring that all 

preconditions are met. 

2. Fetch 
In this part, processors that fetch the document are stacked. Different 

processors are configured for each protocol that is supported. They 

should each pass on any URI whose protocol they do not understand. 

Effectively meaning that only one fetch processor is applied to each 

CrawlURI. Currently only DNS and HTTP fetchers exist, but plans 

exist for an FTP fetcher as well. 

3. Extractor 
Here the numerous processors, that extract links from downloaded 

documents, are applied. Each processor typically handles a particular 

type of document. Some, more generic extractors may attempt to 

extract links from multiple file types, but can avoid double work by 
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taking note of a 'link extraction completed' flag that an earlier link 

extractor raised. 

This section of the processing chain is also used for other analysis 

processors that should be applied after the document is downloaded and 

before we store it on disk 

4. Write/index 
Here processors are placed that write the downloaded documents to 

permanent storage. 

5. Post-processing 
The final section holds processors that do "clean-up" and ready the URI 

for its return to the Frontier. Under certain conditions, earlier 

processors, especially in the pre-fetch section, may abort the processing 

of a URI if some condition isn't met. In those cases the processing 

chain jumps to this section. This section also holds a processor that 

turns the discovered links into CandidateURIs and feeds them to the 

Frontier. 

 

Each section can contain any number of processors. It is also relatively 

easy to create additional processors. By subclassing the Processor class, 

the only thing that needs to be done is create suitable Constructors to 

comply with the settings framework and override the innerProcess() 

method that accepts a CrawlURI. Within the method any arbitrary code 

can be executed and it will have full access to the CrawlURI being 

processed.  

 

The only communication between processors and other modules are via 

the CrawlURIs. Processors modify them and can also attach any arbitrary 

data to them, keyed by a string value. This enables custom written 

modules to pass information to each other via the CrawlURI without 

requiring any customization of the CrawlURI. 
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ToeThread 
(processing chain)

Pre-fetch

Fetch

Extractor

Write/index

Post-processing

Preselector

PreconditionEnforcer

FetchDNS

FetchHTTP

ExtractorHTTP

ExtractorHTML

ExtractorCSS

ExtractorJS

ExtractorSWF

ARCWriterProcessor

CrawlStateUpdater

Postselector

CrawlURI

 

Figure 7. A look at a typical processing chain. Each section contains the default processors that 

Heritrix typically uses. These include fetch processors for DNS and HTTP protocols, extractors for 

HTTP headers and HTML, CSS, JavaScript and Macromedia Flash documents. The writer 

processor outputs ARC [7] files, commonly used for archiving web resources. There are several 

other processors provided with Heritrix that are not included in the default configuration. The 

CrawlURI is passed through the processors, one by one in order unless one of them preempts the 

processing, in which case the CrawlURI passes directly to the Post-processing chain.  
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3.8   Scopes 

The scope of a crawl is defined by a scope object in Heritrix. This is a 

pluggable module and different implementations focus on different ways 

of limiting the scope. From unlimited scopes for broad crawling, to 

scopes limited to certain domains, hosts or other criteria. 

 

The task of limiting a crawl’s scope is essentially unrelated to the crawl 

strategy. It is true that different crawl strategies should, generally, be 

scoped differently, but this does not follow those lines exactly. For 

example, broad scopes typically only limit the depth of the crawl, that is 

how many link hops from the seed the Frontier is allowed to progress. On 

the other hand focused crawls usually limit what domains or hosts should 

be included. An incremental crawl might however want to do both. 

 

The scoping model in Heritrix is not perfect, and work continues to 

improve it. It does however offer a sufficiently wide range of options to 

create an appropriate scope for any crawl strategy that we have discussed 

in the previous chapter. 

 

The following types of scoping is currently available in Heritrix: 

 

• BroadScope 
As the name implies it is intended for broad crawls. Has configurable 

limits on the depth of the crawl. 

• DomainScope 
Limits the crawl to the domains found in the seed list. That is any 

domain that a seed refers to is judged to be inside the scope, others are 

not. 

• HostScope 
Similar to DomainScope but limits the crawl further, to just the hosts 

that the seeds refer to. 

• PathScope 
A further refinement on the HostScope, this limits the crawl to only a 

specific subsection of a host, denoted by a path segment. E.g. the seed 

http://my.com/thisonly/, would judge any URL beginning with 

my.com/thisonly/ as being within the scope, but not other parts of the 

host. 
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• FilterScope 
This is a specialty scope that is by default the same as BroadScope, but 

any number of filters can be added to it. 

• SurtPrefixScope 
SURT (Sort-friendly URI Reordering Transform) [7] rearranges the 

typical "backwards" hostnames like crawler.archive.org into 

org,archive,crawler. This scope allows the operator to specify a 

hostname surt-prefix and only those URIs who match it will be judged 

in scope. For example the prefix org would accept the earlier example 

of crawler.archive.org, but would not accept organization.com. 

 

Additionally, all scopes allow for transitive includes, i.e. URIs that are 

outside the scope, can be ruled inside if there are special circumstances. 

For example, a DomainScope might want to capture embedded offsite 

images. This requires a transitive include that rules URIs that are 

embedded within a document, but normally out of scope, to be included. 

 

Scopes also, optionally, use filters to fine tune their behavior and avoid 

certain traps. 

3.9   Filters 

Like scopes, filters are still being worked on in Heritrix. Their basic 

function is to accept a URI and render a true / false verdict as to whether 

it matches the filter. They can be applied to scopes and processors and all 

modules can also accept filters for specialized purposes if they so choose. 

For example, the HttpFetcher processor uses a filter to determine if a 

download should be terminated after the HTTP headers have been 

downloaded. Like all processors it also has a general purpose filter that 

decides if the processor should be applied to the URI at all. 

 

The main problem with filters has been their ambiguity. The effect of a 

filter rendering a true verdict depends on where the filter has been placed. 

Sometimes it will mean that a URI is accepted, sometimes that it is 

rejected. 

 

Heritrix offers several general purpose filters as well as some highly 

specialized ones, mostly used in the scopes. Among the more general 

ones are filters that use a regular expression and compare the URI string 

and the content type to it. More specialized filters include ones that check 
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the path depth, that is count the number of slashes in the path and one that 

checks for repeating path elements. Both of those are added to scopes to 

prevent certain crawler traps that cause an infinite series of links. 

 

Creating custom filters is relatively straight forward, as with creating 

processors. Simply subclass Filter,  add an appropriate constructor and 

override the innerAccepts() method. The method accepts an object, rather 

than a CrawlURI. In fact the object is almost always a CrawlURI or a 

CandidateURI and the filters need to typecast the objects before 

evaluating them. 
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4.   The objective 

Heritrix already has an effective snapshot strategy. While work continues 

to extend its capabilities, it can never offer anything more than simple 

repeats of crawls for incremental crawling. While this is of some use, 

many IIPC members, many of the Nordic Countries in particular, wanted 

the ability to crawl continuously while discarding duplicate records. 

 

This desire was at least partially because of familiarity with an older web 

crawler, Nedlib [13] that operated along those principles. Active 

development has long since stopped on Nedlib and continuing to use it 

was not an option. Heritrix was clearly going to be the new standard for 

web crawling, in most of the countries that had been using Nedlib, 

certainly in Iceland.  

 

The obvious solution, therefore, was to create an addition to the Heritrix 

framework that would enable continuous crawling. The idea was 

discussed during a Heritrix workshop held in Copenhagen, Denmark at 

the Royal Library on June 9th-11th 2004. In attendance were 

representatives from the Internet Archive and several National Libraries 

(the author of this thesis represented the National Library of Iceland at the 

proceedings). Together they identified the following four key reasons for 

an iterative crawler: 

 

1. Save storage costs 
2. Crawl faster 
3. Reduce user-visible redundancy 
4. Politeness 
 

On closer examination, points 1 and 3 are essentially the same. By 

detecting duplicates and discarding them, significant savings can be made 

in storage costs. Of course, the exact amount varies depending on the 

frequency of visits compared to actual change rates. Furthermore, if 

duplicates are discarded immediately the access interface will not show 

numerous 'versions' that are all identical.  

 

Point 3 could actually be achieved by implementing document 

comparison in the access tool. Using it to filter out duplicates. This could 
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however increase response times, requiring more processor power for the 

access software or allowing the service to be degraded. Similarly, point 1 

could by achieved via post crawl analysis that discarded duplicates, but 

that would require additional computational resources to go through the 

collection as well as temporary storage of extraneous material. 

 

The most efficient method seems to be to immediately detect duplicates 

during the crawl. The documents are already being processed to a 

significant degree and, more importantly, duplicate detection at crawl 

time allows us to tackle points 2 and 4. 

 

Points 2 and 4, while stated as separate reasons, are actually functions of 

the same constraint. For each host we can only crawl so many documents 

per second. The exact values depend on variable politeness settings, but 

generally no more than 10 (and often much less) documents can be 

fetched from a host each second. If we wish to continuously crawl a host 

as frequently as possible with the aim of capturing every change, we 

would need to crawl as fast as the politeness restrictions allow us. The 

total number of documents on the host would then determine how 

frequently each document was visited. On very large sites, this could be 

quite rarely.  While most documents do not change that often, a certain 

subset may change very frequently. 

 

The objective therefore is to focus on those documents that change often, 

while visiting the others less frequently. By doing this we can both crawl 

faster, essentially by making each iteration smaller and at the same time 

limit the stress our crawling places on the web servers. 

 

The obvious way of performing this distinction between rapidly changing 

documents and those that do not change very often is to monitor if a 

change has occurred between visits. If it has, we are not crawling fast 

enough. If no change has occurred, we can crawl slower. 

 

Our objective was, therefore, to create the necessary add-on modules for 

Heritrix to achieve a crawl that adapted its rate of visit to particular 

documents based on observed change rates. In doing so we also hope to 

clarify the concept of continuous crawling versus snapshot crawling. 



 

 41 

4.1   Limiting the project 

The goal was to create an add-on to Heritrix that could handle long 

running crawls. One of the most difficult aspects of Heritrix has been 

scaling up the scope of the crawls. 

 

The problem is effectively twofold. As the number of documents 

increases, additional resources are required to manage them. This is 

especially true as the number of hosts (or whatever base unit is used for 

politeness) grows since each forms an independent queue. On the other 

hand, with increasing number of documents, the wait time from discovery 

to crawl increases since bandwidth and processing power is limited. 

 

For broad crawls, the latter is largely a non-issue. Various tactics can be 

employed to ensure that closely related documents are fetched within a 

reasonable time of each other, for example by preferencing documents 

embedded in other documents. Therefore, this has largely been an issue of 

improving performance, reducing and optimizing disk access and CPU 

cycles. Ideally, bandwidth would be the limiting factor. In fact, most of 

these issues can be overcome by segmenting the crawl and running 

Heritrix on several machines in parallel. 

 

For this project, it was decided that the total number of hosts would be 

limited to under a hundred. That is to say, that we would not require the 

software to be able to handle more. In addition, a limit of URIs was 

decided in the low millions. This corresponds to a full days crawling 

using Heritrix's snapshot abilities running on decent hardware. This 

would free us from tackling the difficult task of optimizing the queue 

behavior in Heritrix and allow full focus on the adaptive revisiting 

strategy. 

 

While work has continued on improving the queuing in Heritrix's 

snapshot oriented Frontier, it cannot be directly applied to an incremental 

Frontier. This is because an incremental Frontier needs to maintain more 

state information about queues and queue items. This includes the time 

when URIs can next be issued, and where they should be placed on return 

to the queue after each round of processing. 

 

As with the snapshot crawls, incremental crawls can be segmented and 

run in parallel.  
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The project needed to tackle a variety of issues, such as how to use 

information of prior changes to adjust revisiting times and how to detect 

changes in documents. These are complicated and extensive fields of 

research that we could not hope to cover exhaustively. Accordingly, we 

limit ourselves to providing at least a basic solution to them and 

suggesting possible approaches to improving on them. These solutions 

entail creating the necessary Heritrix components to use them, making it 

easier to 'plug in' future enhancements in their place. 

 

Ultimately it is our objective to create a framework for continuous 

crawling using Heritrix. 
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5   Defining an adaptive revisiting strategy 

We now define an incremental strategy that uses observed change rates to 

adapt its revisit scheduling.  

 

The basic goal of any incremental crawl is to capture any change in all the 

documents within its scope.  In reality, the only way to be sure that you 

are capturing every change is to visit, or crawl, the document at very short 

intervals. In practice, this is of course impossible, where we may have 

hundreds of thousands of documents that need to be monitored. We 

therefore need to manage our resources carefully and try to revisit 

documents only as often as is likely needed. As was discussed earlier, this 

does not only conserve bandwidth and possibly storage space, but also 

allows us to crawl more documents on the same host.  

 

Because of politeness restrictions the total number of requests sent to a 

host over a period of time is fixed. Since we must wait a fixed minimum 

amount of time between requesting documents from the same host we 

may fully utilize this capacity by visiting 10 documents every second. In 

other words, if we need to revisit each of them every second we can only 

crawl those 10 whereas we could crawl 100 documents every 10 seconds 

etc. In most cases 10 documents per second would represent an excessive 

load on the web servers, only large sites running on powerful or multiple 

servers would be unaffected by such an aggressive crawl. This, of course, 

assumes that our hardware can do this, which is unlikely if we are trying 

to crawl many sites in parallel with such frequency. 

 

Even choosing a longer interval of one hour would not eliminate the 

problem. As the wait interval becomes longer, we do gain the ability to 

crawl more, but we also risk missing changes. Since we know that 

documents change with varying frequency it is essential that we utilize 

this knowledge to optimize our crawls. That is, make the wait interval 

vary between documents and have it approach the actual interval between 

changes of the document as much as possible. 

 

In order to achieve this we must visit the same document more than once. 

If the document has changed between visits, we can assume that its 

probable interval between changes is less than the time that elapsed 
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between our visits and reduce the wait time before our next visit. 

Similarly we would increase the wait time if the document had not 

changed. 

 

This approach does make the assumption that document change rates 

remain relatively constant. This may however not be the case. For 

example, a politician’s website may see little or no change over the course 

of his elected tenure, only to become extremely active a month or two 

prior to elections. After the elections the website may return to its more 

placid state. If we wish to crawl very aggressively, variations over the 

course of the day may come into play. A news website is far more likely 

to be updated during business hours than during the night. Even though 

updates may come at night the majority of updates take place when 

people are at work.  

 

Despite these drawbacks, most websites and documents are believed to 

have reasonably regular change rates over long periods. After all, a 

website that wishes to attract regular readers needs to be consistent in the 

presentation of new material. We will always risk loosing interim 

versions, especially if documents are changing several times a day, but it 

is extremely difficult to prevent this without visiting the documents 

excessively. Also, we should consider that in most cases, the changes 

introduced are additions and material is moved down or into archives, not 

lost. Therefore, we can hope to capture all the content, even if we do not 

capture incremental change. 

 

Ultimately this strategy relies on a heuristic approach. Based on whether a 

document has changed or not, we increase or decrease the amount of time 

we wait between visits. However, we can try to add more data for the 

heuristics to consider.  

 

One such consideration would be the document's content type, that is the 

nature of its content. Is it text, graphical images, audio or video files etc. 

We know that the content type significantly affects the probable change 

rates[2]. This is obvious to infer from a logical look at some of the 

different types. HTML and other text files are quite easy to change and in 

fact it is extremely common that web servers compile HTML pages on 

demand based on information stored in databases. Such pages are 

extremely easy to change and they are expected to change very often. In 

contrast, images rarely change. There are some examples of software that 
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creates images on-demand, such as graphs and similar material, however 

this is much less common. 

 

Content such as audio and video is quite complex to change. It is of 

course possible that the document a URI refers to may be replaced by 

another one, but this is unlikely in a practical sense. If it is new content, 

then it would make sense to create a new link, why reuse the URI? We 

can not entirely rule it out, but it is unlikely. Similarly, many other 

content types represent material that seldom changes and logically if new 

content should replace older content, it should do so in an obvious way, 

using a different URI. For example, an updated version of a software 

package might replace an older one, but normally you would want the 

URI to reflect this. 

 

We can not entirely rule out any change in any document type, but we can 

assign them different initial wait times to reflect the inherently different 

probable change rates. This immediately saves a great deal of resources 

since it would take several iterations of the adaptive strategy outlined 

above to 'discover' that an image is changing ten times less frequently 

than the HTML document that links to it. 

 

We may however wish to handle embedded files a little differently. If a 

HTML page has changed, one might argue that all the images on it (and 

other embedded documents) must be refreshed in order to ensure that we 

have accurately captured the page. Any new embedded documents would 

of course be fetched as quickly as possible, but if one of them has 

changed, our collection would fail to highlight that, since the embedded 

document had not been expected to change. We might choose to accept 

this, or we may want to set a rule that each time a document has changed, 

any document embedded in it must also be revisited, regardless of its 

probable change rate. We simply move it to the head of the queue to 

ensure that we get a consistent view of the HTML page in our collection.  

 

It is worth noting here that there is some correlation between document 

sizes and document types and therefore between document sizes and 

probable change rates. Document types that are typically larger are less 

likely to change. Text files, such as HTML are usually quite small, a few 

kilobytes in size. Images range from a few kilobytes up to megabytes. 

Audio and video files are typically in the megabytes etc. We note this not 

because we intend to use size as a factor in determining the probable 
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change rate (we might, but we’ll leave that for future work), but rather to 

emphasize the usefulness of immediately discriminating based on file 

types. Using such an approach we do not only save on visits to resources 

that are very unlikely to have changed, we save on visits to the largest 

resources, the bandwidth savings are likely to significantly exceed the 

proportional savings in number of visits. For example, during a crawl of 

the Icelandic national domain, .is, in 2004, audio and video files 

accounted for less than 0.3% of the total number of files downloaded, 

they however accounted for 11% of the total amount of data collected 

[16]. 

 

The heuristics might also look at any number of other indicators. For 

example, [4] observes that documents without the last-modified HTTP 

header are about twice as likely to change as those with the header. This 

type of information could be utilized to further improve on our initial wait 

time. Some other possible indicators might be the length of the path, 

distance from seed and, as noted earlier, the size of the document. As we 

discussed before, our objective is to create a basic incremental strategy 

and without greater investigation using those indicators would be nothing 

more than a guessing game. There are also, undoubtedly, many other 

possible factors, but covering them all is well outside the scope of this 

project. 

 

To summarize, our incremental strategy, which we are calling an Adaptive 

Revisiting strategy, operates by crawling URIs normally. Each URI, after 

initial crawling, is assigned a wait time, based on its content type. Once 

the wait time has elapsed, they are recrawled and based on whether or not 

they have changed we increase or decrease the wait time before the next 

round. 

 

To properly configure the crawl, a default initial wait time needs to be 

assigned for every content type that is specified. It should be possible to 

define any grouping of content types, allowing the operator to decide how 

finely the content based discrimination operates. A minimum and 

maximum wait times for each content types will also be needed as well as 

the factors to divide or multiply with in the case of changed and 

unchanged documents respectively.  
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5.1   Detecting change 

One of the key requirements for using an adaptive revisiting strategy and 

of considerable importance to any incremental crawl is the ability to 

accurately detect when a document has changed. In our definition of an 

adaptive revisiting strategy we assume that this is possible since 

otherwise it is impossible to implement an adaptive strategy. Even an 

incremental crawler that did simple repeats, crawling the same URIs in 

the same order on each iteration would benefit from the ability to detect if 

a document has changed. Using such information it would be possible to 

discard duplicates and only store changed files, saving on storage costs. 

 

Unfortunately, detecting changes in documents is not easy. Especially 

when we are both concerned with accurately detecting change and non-

change. It is clear that the adaptive algorithm will be thrown off just as 

much by a failure to detect a non-change, as a failure to detect a change in 

the document. However, because we want to err on the side of caution 

(this meaning we'd rather download extraneous content than risk missing 

something) we generally prefer to fail to detect a non-change to the 

alternative. If we fail to detect a non-change, we will needlessly assume 

the document has changed and visit it more often than need be. On the 

other hand a failure to detect a change will cause the algorithm to visit a 

page less frequently, even though the content is already changing faster 

than we visit the URI. 

 

The simplest form of change detecting is a straight bitwise comparison. 

This is straightforward enough and well understood. It can be simplified 

by creating strong hashes of the content and comparing the hashes. The 

probability of failing to detect a change is extremely small if a good hash 

function is used and can safely be ignored. Likewise, one could argue that 

the probability of failing to detect a non-change is equally small. 

Unfortunately, things aren't that simple. 

 

We now come to defining what constitutes a change in a document. If we 

define change as any change to the sequence of bits, we are fine and the 

hash comparison is sufficient. This is however an unsatisfactory 

definition. It fails to take into account the fact that most documents on the 

web (HTML files in particular) are loaded with a myriad of data that is 

not directly related to the content. This includes the layout, but more 

importantly, HTML pages in particular often contain dynamically 

generated information that changes with each visit, but should not be 
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considered a part of the content. The classic example would be a web 

page, possibly the front page of a news service that prints the date and 

time on each visit.  This value will change with every visit, but does not 

constitute a change in the content. Documents like this could cause the 

adaptive strategy to severely over-visit them, wasting bandwidth and 

storage as well as placing an unnecessary strain on the web servers in 

question. It would also cause additional effort later when trying to analyze 

the contents of the archive, since it contained duplicates that could not be 

automatically detected and would need to be manually sorted. 

 

Unfortunately, while it is quite simple and straightforward to compare 

two documents on a bit by bit level, trying to compare the 'content' is 

much more complicated. It requires some understanding of what 

constitutes content and what can be ignored. One option, in dealing with 

HTML files, is to ignore the markup code since, typically, it only contains 

layout information. Yet even this falls far short of our needs, since we 

have already pointed out an example where irrelevant information would 

be a part of an HTML's 'content'. Therefore the distinction drawn between 

content and presentation in HTML is of no use to us. 

 

Some alternatives do present themselves. We know that, primarily, the 

problem relates to web servers inserting dynamically generated sections 

unrelated to the main text of the documents.  Therefore, the sections are 

likely to be a relatively small part of the document. In such an instance, a 

'roughly the same' or ‘close enough’ comparison might suffice. That is to 

say, instead of comparing two documents and declaring them either 

identical or different, we use a gradient for the difference between them. 

Documents that are sufficiently similar are treated as being unchanged. 

This means minor changes will be ignored, whereas changes to the 

general body of a document should be detected. 

 

A good deal of work has been done on the subject, including such 

methods as shingling[6] that provide pretty good results. 

 

Unfortunately not all minor changes are unimportant. Consider for 

example the press release archive of a company, government agency or 

other similar entity. Let's suppose that several months after issuing a press 

release it has become clear that the policy set forth is no longer entirely 

valid, might in fact show the issuing party in a bad light. The temptation 

to 'tone down' the headline to lessen the impact might well be too much 
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for some. The actual change could be very small, the inclusion, change or 

deletion of one word to change an absolute statement to a conditional or 

similar. There is no denying that such a change is minor in the number of 

bits affected and any 'roughly the same' algorithm would deem the 

document unchanged. However, this change might well be of 

considerable importance in an historical context. Since the primary users 

of this software are National Libraries and other parties dedicated to 

preserving an accurate account of the World Wide Web, being able to 

capture all important changes is critical.  

 

Logically we must then conclude that while 'close enough' algorithms 

could be used for change detection, it should not be the de facto choice. 

We should always err on the side of caution. Therefore we will emphasize 

strict comparisons despite the fact that they give us a lot of false positives 

when it comes to change detection. It is implemented by using SHA-1 

[14] hashing. 

 

Since we know that there are numerous sites of interest that do contain 

troublesome pages in terms of change detection, we have opted to include 

a simple, operator configurable, addition to strip sections of documents 

before the content hashes are calculated. The idea being that operators 

could designate troublesome sections of documents with regular 

expressions. These sections would then be overlooked or stripped out 

when the hash is calculated. 

 

While this does not in any way provide a generic solution, it does allow 

operators to tackle almost any previously encountered issue. This in turn 

enables them to continuously crawl any website without the adaptation 

algorithm being fed bad information, assuming that the operator is willing 

to invest the time needed to set up the stripping where needed. 

 

As an alternative to examining content in order to determine if it has 

changed we might want to use the HTTP header values last-modified and 

etag. If they are implemented correctly a change to either of these 

indicators between requests equates to a change in the document. Since 

the headers can be downloaded before the document body, we can 

evaluate them and then decide if the document should be downloaded, 

thus avoiding downloads of unchanged documents. This goes even further 

in saving bandwidth and reducing server loads than with content hashing 
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for change detection, where we always had to download a document for 

each revisit. 

 

Unfortunately, this approach is also flawed. Numerous websites simply 

fail to include this information or give false information. A Danish study 

[3] of the reliability and usefulness of Etags and datestamps found that 

while the reliability was quite high, the usefulness was less than 65%. 

That is to say, reliability is the percentage of checks where a change is 

accurately predicted. Thus, a low reliability would indicate that we are 

missing changed documents, something we wish to avoid at all cost. 

Usefulness is then the percentage of checks where a non-change is 

accurately predicted, a low usefulness leads to unnecessary downloads. 

 

Four different combinations of using datestamps and Etags were 

evaluated. In all cases, if the indicators are missing, they assume that a 

change has occurred and download the document. 

 

1. Download when datestamp has changed 
2. Download when Etag has changed  
3. Download when both indicators have changed (or just one if the 

other is missing) 

4. Download when either indicator has changed  
 

Table 1. Reliability and usefulness of the four schemes when missing indicators are taken into 

account. This statistic is based on 16 harvests of the front pages of Danish web domains. 346,526 

web servers were contacted in each harvest [3]. 

Scheme Reliability Usefulness 

1. Datestamp only 99,70% 63,7% 

2. Etag only 99,91% 52,5% 

3. Datestamp and Etag 99,66% 64,1% 

4. Datestamp or Etag 99,72% 53,5% 

 

Scheme 2 achieves the highest reliability but has the lowest usefulness, 

most likely indicating that Etags, while generally correct, are not that 

common.  

 

In fact none of the schemes are useful more than two thirds of the time 

and while their reliability is quite high, none of them is 100%, meaning 

that we run the risk of losing some changes if we use them.  
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In other words, change indicators in HTTP headers will never suffice as 

the sole content change detectors for an adaptive revisiting strategy. 

While we might accept the reliability as being good enough, their 

usefulness is so low that we would have a significant number of 

documents (about one third if the results of [3] apply universally) that are 

observed to change every time we visit them. Those documents would be 

visited excessively and run the risk of monopolizing the crawlers time 

while other, better-behaved, documents wait.  

 

However, since they are quite reliably, we could use these indicators to 

abort the download of documents, but make no assumptions about the 

ones we do download. That is to say, if the datestamp and/or Etag predict 

no change, we accept that and abort the download of the document, 

saving on bandwidth. If a change is predicted, we proceed to download it, 

but instead of relying on this prediction, we pass the downloaded 

document into the hash comparison that we discussed earlier. This allows 

us to make use of the datestamp/Etag reliability wherever possible, but 

using hash comparisons elsewhere preventing the low usefulness rate 

from being a problem. 

 

This gives us the bandwidth saving and reduced server stress of the HTTP 

headers approach and the improved accuracy of content hashing. It is 

more likely to falsely predict a non-change since the reliability of the 

HTTP headers is not 100% (unlike standard hashing), but if this is 

acceptable it can be used to improve the crawlers resource utilization. 

Especially since the politeness wait that follows a download of a 

document from a web server until we can contact that server again, can be 

reduced since fetching the HTTP headers is a much less costly operation 

than downloading the entire document body. 
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6.   Integration with Heritrix 

Let us consider what we would need to implement a strategy, like the one 

described in the previous chapter, in Heritrix. 

 

The most obvious difference is the need to have a Frontier that repeats 

URIs rather than queuing, issuing and, essentially, forgetting them. We 

need a Frontier that queues, issues and requeues the URIs. The 

requeueing is needed so that they will be tried again at an appropriate 

time. That is, reissuing them when the adaptive algorithm estimates that 

they will have changed. We need a priority queue, using a time of next 

probable change for sorting. 

 

So, why don't we just augment the existing BdbFrontier to handle priority 

queues and (optional) requeueing of URIs? The short answer is: 

Simplicity. 

 

The long answer goes something like the following. We discussed earlier 

the limits we placed on this project. One of the key aspects in the current 

efforts on the BdbFrontier is improving its performance, and that means 

making it capable of handling more URIs and more hosts within a single 

crawl. Reduce contention and ensure that the Frontier is not a bottleneck, 

while at the same time managing numerous, large queues.  

 

Conversely, we have accepted the fact that for our incremental strategy 

the number of hosts and URIs will be somewhat limited. This in turn 

allows us to design a Frontier with a more rigid structure. In order to 

accommodate the large number of potential queues, the BdbFrontier must 

ensure that each queue has very limited overhead (preferably none). As 

will become clear when we go into the details of the 

AdaptiveRevisitingFrontier, this would make a robust implementation of 

it impossible and require a much more delicate state control. 

 

Of course it is by no means impossible to improve the BdbFrontier to 

allow for incremental crawling. It is simply a trade-off. Imposing 

additional demands on it to maintain priority queues, in place of simple 

first-in-first-out queues as well as handling the added constraint that each 

URI contains a timestamp for when they can next be fetched is simply 



 

 53 

counterproductive to the more essential mission of improving its snapshot 

performance.  

 

While having two Frontiers can impose an added burden in maintaining 

both, it allows each to be optimized for its type of crawling. Essentially, 

we prefer to create specialized Frontiers rather than a jack of all trades. 

 

There is also the fact that the BdbFrontier, as well as Heritrix in general, 

has been designed primarily with snapshot crawling in mind. Before, in 

our discussion of Heritrix’s architecture, we included a high-level 

schematic (Figure 3) describing it. This figure was taken from an article 

by the Heritrix development team [1] and the decision to include it, rather 

than our own illustration of Heritrix’s architecture, was to highlight the 

inherent structure in its design. Note, for example, that the Frontier 

contains two objects. A stack of queues and something labeled ‘already 

included URIs.’ For snapshot crawling, this is the most practical solution 

and reflects the workings of the original HostQueuesFrontier and the 

BdbFrontier. Newly discovered URIs are queued and a hash of them is 

stored. New URIs are only compared against the existing hashes. Once a 

URI has been issued, the only record of it will be the hash. 

 

This is of course extremely efficient for snapshot crawling, but entirely 

unacceptable for incremental crawling. In fact, given that we need to 

implement priority queues for incremental crawling, we will be needing 

random access to the queues and the very nature of an incremental crawl 

requires that no URIs are ever removed, meaning that we can just as 

effectively implement the duplicate detection in the queues, saving on the 

additional complication of maintaining the hashes. It could be argued that 

the hashes provided faster, more efficient, duplicate detection, but as we 

noted earlier, our goal for this initial work on an incremental Frontier is 

stability. 

 

Fortunately, this issue is easily overcome by creating a new Frontier. 

There are a number of other factors in Heritrix’s design that were not so 

easily circumvented and we’ll highlight them where they arise, as we 

discuss the modules created to implement the adaptive revisiting crawl 

strategy. 
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6.1 Changes to the CrawlURI 

Very few changes needed to be made to the Heritrix framework to 

implement the adaptive revisiting strategy. However, because our 

incremental strategy reuses the CrawlURIs, unlike snapshot strategies, 

some modifications were necessary. Primarily, we needed to ensure that 

data that should be reset for each round of processing, was in fact reset, 

and that data that needed to persist did just that. 

 

There are actually two facets to this since the CrawlURI is composed of a 

set of predetermined class variables and a number of data items stored in 

it and accessible via a string key. 

 

What we eventually wound up doing was to review all the member 

variables and make those that should not be carried around between 

processing attempts transient. This alone was not sufficient since many 

variables need to be reset to default values and so the preexisting method 

processingCleanup() was augmented to capture all of this. The Frontiers 

are then responsible for invoking it if they intend to reserialize the 

CrawlURI after it is returned to them. 

 

As for the keyed items, the processingCleanup() goes through all of them 

and removes any items whose key is not on a list of persistent items. Prior 

to this the entire set was serialized and that could cause run time errors if 

a non-serializable object had been placed in it.  Methods were then added 

to the CrawlURI to add and remove keys from the list of persistent data. 

The responsibility for adding keys to this list then falls on the modules 

that require that the data, represented by the key, be persistent. This list is 

static, so modules can add the keys they need in their constructors. 

 

It was not feasible to simply drop all the keyed items, since some vital 

data could only be stored there, such as the ‘time of next processing’ for 

CrawlURIs. It was necessary to be able to store both persistent and 

transient data and our implementation makes transient the default, trusting 

that modules will register the keys they need. Since not all Frontiers 

reserialize the CrawlURI, if persistence was the default some modules 

storing unsafe data (non-serializable) might fail to make them transient, 

causing problems when running under other Frontiers than the one it was 

originally designed for. For example, the DNS fetcher does this and 

would have had to declare its data transient if it were not the default. 
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6.2   The AdaptiveRevisitingFrontier 

The AdaptiveRevisitingFrontier (ARFrontier) is, conceptually, based on 

the HostQueuesFrontier. It was developed at the same time as the 

BdbFrontier. When work on it began, it was obvious that the custom 

written queues that the HostQueuesFrontier used would not be adequate. 

For one thing, they did not allow random access reads, let alone writes. 

This made it impossible to modify them to be priority queues. 

 

Priority queues are fairly simple in theory, and can be easily 

implemented, with linked lists for example. However, due to the amount 

of data involved, it is essential that the queues exist primarily on disk. 

This is critical for incremental crawling which must retain the 

CrawlURIs, whereas snapshot based Frontiers can usually just store the 

CandidateURIs and only create CrawlURIs once the URI is ready for 

processing. Of course, snapshot Frontiers are also likely to have many 

times the number of URIs at any one time.  

 

The first thing that has to be solved is the issue of handling the 

serialization and deserialization of a significant amount of data. Rather 

than implementing a custom solution, which would probably have been 

more complex than the rest of the project, we choose to find suitable third 

party software to handle the task. 

 

One idea was to utilize a generic database. Thus we would use JDBC [30] 

to connect to a properly set up database that could store the data. This 

would delegate the tasks of writing the data to disk, indexing it, and 

setting up an in-memory cache to the database software. There was some 

precedence for this, as Nedlib[13], which implemented an incremental 

strategy, used a MySQL database to store its state. 

 

The fact that Nedlib was ultimately abandoned might not be seen as the 

most ringing endorsement for this strategy, but we believe that the 

concept is, in general terms, sound. There are however some problems 

with this approach which we can not overlook. 

 

First, there is the issue of operational simplicity. Adding a dependency to 

a third party product was not considered a good move. Even if we had 

chosen a suitable open source database, such as MySQL for example, and 

included it with the Heritrix distribution, it would still mean that two 

separate programs needed to be installed and started for this to work.  
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While it would, potentially, be quite powerful to allow the user to set up 

and use any database application that they are already using, the fact that 

Heritrix would be writing and reading a tremendous amount of 

information means that in practical terms the database would have to be 

located on the same machine (or accessed via a high-speed network with 

little other traffic at the very least) and do nothing else. Obviously, if the 

database was also handling other applications, the load from Heritrix 

could seriously degrade their performance. 

 

Then there is the issue of performance. Additional to the above is the fact 

that communications would have to be via a JDBC connection, rather than 

native access. This would impose a performance penalty. 

 

There is also an issue with extensibility. The fact is that CrawlURIs 

include a lot of data. This data would has to be converted for storage in a 

table. Since the CrawlURIs contain a hash map of data that may contain 

any number of entries, this gets complicated and would probably require 

that a serialized version of an object be stored in one field for restoration, 

with other fields being used only for indexing. Since object serialization 

in Java is bulky (a lot of information about the class is repeated for each 

object), this is far from ideal. In fact, one of the main problems with the 

custom written queues used by the HostQueuesFrontier was the extremely 

bulky nature of the queues which stored serialized versions of the 

CandidateURIs and CrawlURIs. 

 

Finally, relational databases simply contain a great number of features 

entirely superfluous to the task at hand. A more streamlined piece of 

software would be preferable. 

 

For all the above reasons, traditional object oriented databases were 

excluded as solutions to the disk storage problem. 

 

The desired features for a data storage solution were: 

 

• Open source with a license what would allow us to distribute it with 
Heritrix. 

• Implemented in Java, like Heritrix. 

• Capable of being embedded in Heritrix, rather than running as a 
separate program. 
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• Capable of storing Java objects in an efficient manner. 

• High performance, capable of managing large amounts of data in an 
expeditious manner. 

 

One particular solution was quickly arrived at: Berkley DB, Java Edition 

[9] by Sleepycat Software. The Berkley DB, Java Edition is, as the name 

would imply, a Java implementation of the highly successful Berkley DB 

product. It was designed from the ground up in Java and takes full 

advantage of the Java Environment. It enables the storage of objects in a 

very efficient manner and, to quote Sleepycat Software’s product page, 

“…supports high performance and concurrency for both read-intensive 

and write-intensive workloads”  

 

Later the product page goes on to say, “Berkeley DB JE is different from 

all other Java databases available today. Berkeley DB JE is not a 

relational engine built in Java. It is a Berkeley DB-style embedded store, 

with an interface designed for programmers, not DBAs. Berkeley DB JE's 

architecture employs a log-based, no-overwrite storage system, enabling 

high concurrency and speed while providing ACID transactions and 

record-level locking. Berkeley DB JE efficiently caches most commonly 

used data in memory, without exceeding application-specified limits. In 

this way Berkeley DB JE works with an application to use available JVM 

resources while providing access to very large data sets.” [9] 

 

Or, in other words, exactly what we need.  The Berkley DB can be easily 

embedded in Heritrix, and since the access interface is on a programming 

level we have native access to it, allowing for the best possible speed. Its 

data management is also very much in sync with our needs, allowing fast 

writes and reads and offering a decent caching mechanism. It is also able 

to handle very large data sets, a vital requirement, since we want to 

manage millions of URIs at once. 

 

Shortly after initial testing of the Berkley DB had gone well, parallel 

work began on the BdbFrontier which also utilizes it. While both the 

ARFrontier and the BdbFrontier use the Berkley DB for data storage they 

do so in drastically different manners. Since the BdbFrontier is primarily 

interested in limiting the per-queue overhead, it tries to ensure that the 

queues themselves are largely stored in the database. The ARFrontier, 

with different priorities, goes another route and still has one queue object 

in memory for each actual queue. 
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Figure 8. A high-level view of the AdaptiveRevisitFrontier architecture 

Figure 8 gives a very rough view of the AdaptiveRevisitingFrontier’s 

architecture. A series of queues, named AdaptiveRevisitHostQueues are 

used and managed by the AdaptiveRevisitQueueList. Both the queues and 

the list are covered in more detail later. Together they handle all the data 

management and storage and are largely responsible for maintaining the 

state of the crawl. 

 

The ARFrontier publishes several configurable parameters, using 

Heritrix’s settings framework. The settings are: 

 

• delay-factor 
Related to politeness rules. Indicates how long to wait before 

contacting the same host again. The wait time will be the time it took to 

process the last URI from the host, multiplied by this factor. This 

adjusts the politeness to take into account heavily stressed servers that 

would typically be slower to complete a transaction. It also means 

increased politeness following the download of a larger file. Default 

value is 5. This is the same default value used in other Heritrix 

Frontiers. 
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• min-delay-ms 
A lower bound for the politeness wait between processing two URIs 

from the same server. Default value is 2000, or two seconds. This is the 

same default value used in other Hertrix Frontiers and is more than 

adequte for ensuring good politness. 

• max-delay-ms 
An upper bound for the politeness wait between processing two URIs 

from the same server. Default value is 5000, or five seconds. This is the 

same default value used in other Hertrix Frontiers. 

• max-retries 
Some errors, that prevent the successful processing of URIs, are 

considered retriable. That is, they are generally caused by transient 

issues, such as network connectivity, remote hosts being down etc. 

They are therefore tried repeatedly until the URI is crawled 

successfully or the maximum number of retries, dictated by this 

parameter, is exceeded. Default value is 30, same as other Heritrix 

Frontiers. 

• retry-delay-seconds 
The amount of time to wait before retrying a URI that had a retriable 

error. Default value is 900 or 15 minutes. Again, this is a typical value 

for Frontiers in Heritrix.  

• host-valence 
Host valence dictates the number of simultaneous connections to the 

same host. Normally this value should be 1, as multiple simultaneous 

connections are considered to be impolite at best. However, when 

crawling websites that are known to be able to handle a significant load 

and/or we have the permission of the websites’ owners/operators, we 

may wish to crawl them more aggressively. The default value is 1.  

• preference-embed-hops 
Documents, HTML pages in particular, frequently embed other 

documents in addition to linking to them. When a document is 

embedded in another document it is needed in order for the originating 

document to be displayed properly. Typically, these embedded 

documents are images. This value dictates the number of sequential 

embed ‘hops,’ or links to treat in a preferential manner. That is, 

schedule them so that they are fetched before anything else in that 

queue. Default value is 0, which differs from the more typical value of 

1 in the BdbFrontier. The reason for this is that preferencing embeds in 

our adaptive revisiting strategy has the effect that the embedded 
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documents are always fetched right after the originating documents, 

regardless of their own change rate. 

 

The naming of the settings, i.e. all lower case with dashes to separate 

words and ending with the scale of the setting (min, sec etc.), follows 

standard practices in Heritrix. The reasons for this are partly technical, but 

mostly a legacy issue. When creating settings, modules can associate a 

description, or help text, that is accessible in the user interface by clicking 

a question mark next to the name of each setting. 

 

Most of these settings are fairly standard for Frontiers. In fact, only the 

host-valence is not used by the BdbFrontier. This feature was introduced 

in the HostQueuesFrontier but was generally considered buggy for values 

larger than 1. The feature was omitted from the BdbFrontier for those 

reasons. Its implementation in the ARFrontier is due to the fact that such 

focused crawling of very select sites is far more likely to require it. Also, 

as we’ll see later, the design of the host queues made its implementation 

much easier than would be possible in other Frontiers. 

 

The other settings relate to some essential Frontier responsibilities. 

Ensuring that the crawl behaves in a polite manner, retrying URIs that 

have retriable errors, and preferencing embedded documents. All other 

behavior of a crawl, such as wait times between revisiting a URI in an 

incremental crawl, are configured outside the Frontier. Some parameters 

are configured as a part of the CrawlOrder, but most are associated with a 

particular processor, scope, or filter. These settings are used by their 

respective modules and, if needed, any directions to the Frontier based on 

them are passed via the CrawlURI. 

 

Figure 9 shows, roughly, how a URI is passed around. Starting with a 

request by a ToeThread for the ‘next’ URI, how a URI is selected from 

the pool of pending URIs, processed and returned. The figure is 

complicated somewhat by the fact that preconditions may not have been 

met. This requires that processing be preempted and the required 

information be gathered first. Currently DNS information and robots.txt is 

needed for each host before any URIs from it can be crawled. Fortunately, 

most of this is handled by the processors. The only thing the ARFrontier 

has to keep track of, is to reschedule URIs that fail because of missing 

preconditions after the preconditions have been met. 
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Figure 9. Frontier data flow[7]. This illustrates how data flows between the Frontiers, the 

ToeThreads and the processors. It only focuses on the most essential data contained in the 

CrawlURI, that is the fetch status, which may include failure to meet preconditions, failure to 

crawl, crawled successfully etc. The section marked ‘pendingURI’ represent the Frontier’s URI 

queues. 

Since we need to store various additional information in the CrawlURIs’ 

keyed list, the CoreAttributeConstants interface was extended with the 

AdaptiveRevisitAttributeConstants interface which adds all the data keys 

needed by the adaptive revisiting strategy. 

 

Let us now go through the life cycle of a URI in the ARFrontier. 

 

CandidateURIs are scheduled, either by the Postselector working its way 

through discovered links, or loaded from seeds at the start of the crawl. 

CandidateURIs that are scheduled via the schedule() method are queued 

into a ThreadLocal queue to avoid the synchronization overhead that 

would otherwise be incurred from scheduling numerous URIs 

sequentially. This queue is processed when the ToeThread returns the 

URI being processed, via the finished() method. As the initial loading of 

seeds is done internally in the Frontier, this batching is avoided in their 

handling. 

 

The scheduling of CandidateURIs requires that they first be converted 

into CrawlURIs. This simplifies the issuing of URIs, where we can now 

assume that all issuing URIs are CrawlURIs, rather than having a mix of 

CandidateURIs and CrawlURIs. This is in stark contrast with the snapshot 
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Frontiers, which generally assume that anything in the queues is a 

CandidateURI, since the CrawlURIs should only exist for the processing 

part. 

 

Once a CrawlURI has been created, it is assigned a ‘time of next 

processing,’ which is set to the current time. Then the Frontier determines 

if it should receive preferential treatment because it is an embed. If so, the 

CrawlURI’s scheduling directive is raised. More on the effect of this 

when we discuss the ordering of the priority queues later. 

 

Now the ARFrontier is ready to insert the CrawlURI into its proper host 

queue. The ARFrontier looks this up via the AdaptiveRevisitQueueList. 

The name of the host is created using Heritrix’s HostnameQueue-

AssignmentPolicy. This name act as a key for the lookup of the queues.  

 

In theory the key can be anything and is not restricted to hostnames. In 

fact the BdbFrontier offers an alternative assignment policy based on IP 

numbers, as well as allowing the user to specify the queue names, using 

the override capabilities of the settings framework to specify different 

queue names for different hosts. Effectively, allowing an entire domain to 

be one queue, for example, rather than several queues, one for each host 

under the domain. 

 

In practice however, assignment by IP numbers is difficult since IP 

numbers are not known until after the DNS lookup. Until then, the IP 

assignment policy returns host names. In an incremental crawl, this means 

that 3 URIs (seed, robots.txt and DNS) will remain in the host named 

queue, while all subsequent URIs from that host end up in the IP named 

queue. This is acceptable in snapshot crawling, where the host named 

queue disappears once the seed has been crawled, but unacceptable in an 

incremental crawl where it remains. 

 

If no queue exists for the given host name, the Frontier directs the queue 

list to create a new one for that key. The CrawlURI can now be added to 

the queue. 

 

The host queues take responsibility for duplicate elimination. 

 

When the ARFrontier needs to issue a URI, it consults the queue list for 

the current ‘top’ queue (more on that later). If this queue is not ready, the 
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thread is ordered to wait until it becomes ready. Whenever the processing 

of a URI is completed, all waiting threads are notified so they can check if 

the top queue is now ready. Eventually a queue should become available. 

 

The ARFrontier then requests the next URI from the queue. The amount 

of time that the URI is overdue is then calculated and stored in the 

CrawlURI. This value is logged later and is also optionally used by the 

WaitEvaluator. 

 

Once a URI is issued, the ARFrontier only keeps track of it by the state of 

its queue, but does not otherwise concern itself with it. If a URI is never 

returned back to the Frontier, via the finished() method, then the queue in 

question, assuming a host valence of 1, will become permanently 

snoozed, effectively blocking it from further progress. While this should 

never happen, bugs in the processors or ToeThread can have this effect. If 

this occurs, the operator can intervene and ‘kill’ the ToeThread, causing 

the URI to be returned to the Frontier with an error code. 

 

Eventually, the URI should be returned to the Frontier. It is here that the 

ARFrontier departs from other Frontiers in its handling, although much 

remains similar. 

 

First the Frontier determines how the URI fared in the processing. There 

are four possible outcomes: 

 

1. URI was successfully processed 
The web server was contacted, we may have received a HTTP error, 

such as ‘404 URL not found.’ We still treat those as successes and will 

revisit them. 

2. URI encountered a retriable error 
There are two flavors of this. Errors requiring immediate retrying, such 

as missing preconditions (the preconditions are scheduled with higher 

scheduling directive and should be processed ahead of any repeat 

attempt) and those that should be retried after a delay. This assumes 

that transient network errors caused the error and retrying the URI at a 

later time may yield a different result. 

3. URI was disregarded 
Typically means that that robots.txt rules precluded a fetch attempt. 

This state means that the URI should be regarded as being out of scope. 

We will not be revisiting it. 
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4. URI failed to crawl 
This might be caused by a bug in one of the processors, but otherwise 

means that the URI is not crawlable. May be an unsupported protocol 

or a retriable error has exceeded its maximum number of retries. These 

URIs will not be revisited. 

 

Successfully crawled URIs have a new ‘time of next processing’ 

calculated, based on the current time and the wait time determined by the 

WaitEvaluator. As we’ll discuss later, the queues ensure that URIs that 

are not yet ready for processing are not issued. 

 

Each of these conditions are handled separately, but in a similar manner. 

Unless the URI is to be retried, an entry in the crawl.log is made at this 

time. The ARFrontier adds several notes to the annotation section of the 

log. That is, it adds the current wait time for the URI, how often the 

document has been visited, how many versions have been encountered of 

it and finally how overdue the URI was for this round of processing. This 

is written in a compressed form like the following: 

 
... wt:45s0ms,3vis,1ver,ov:3ms 

 

These additions to the log allow the operator to track the URI as it is 

visited again and again and track how the adaptive strategy is responding 

to it. Whether or not the document has changed is determined elsewhere 

and those modules are responsible for writing that data to the log as we’ll 

see later. 

 

The disregarded and failed URIs are stamped with a ‘time of next 

processing’ that is as far into the future as possible. We use the maximum 

value for a long datatype and follow the practice in Java of representing 

time as the number of milliseconds since midnight, January 1, 1970 UTC. 

Setting this value means that the URI will never (in practice) be crawled 

again. It remains in the queue for duplicate detection and possible 

reporting purposes. The queues very rarely delete URIs. 

 

The ‘time of next processing’ for URIs that are to be retried remains 

unchanged. Retry delays are enforced in the same way as politeness 

delays. 

 

Once the proper ‘time of next processing’ has been set, the CrawlURI is 

returned its queue. 
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6.2.1   AdaptiveRevisitHostQueue 
As is probably clear by now, the AdaptiveRevisitHostQueue (or 

ARHostQueue) class implements the majority of the adaptive revisiting 

strategy. It is similar, conceptually, to the URIWorkQueue used by the 

HostQueuesFrontier, but has improved its state control significantly and 

uses an entirely different data structure.  

 

Having the ARHostQueue extend the URIWorkQueue interface is wholly 

unacceptable. This is primarily because the URIWorkQueue’s state is 

controlled externally. It provides methods for snoozing (suspending), 

waking up (resuming) etc. rather than entering and exiting those states 

naturally. This creates additional complexity in the Frontier, which must 

maintain the state of every queue. Instead, the ARFrontier lets the queues 

themselves handle all this and never affects their state directly. The 

ARHostQueue’s state is only affected by the Frontier as a result of its use 

of the queue. These actions include getting URIs, which can potentially 

make the queue busy, ‘returning the URI’, which can potentially make the 

queue snooze etc. 

 

This is important, not only because it greatly simplifies the 

implementation of the Frontier, but also because the state is now much 

more complex since the queue may need to be snoozed, not just for 

politeness and error retry waits, but also because the ‘next’ URI is not yet 

ready. 

 

In addition the ARHostQueues do not require several of the methods and 

facilities provided in the URIWorkQueue interface. For example, only the 

following states are needed for the ARHostQueues:  

 

• Empty 
Initial state. Once the first URI has been added, this state will likely 

never reoccur since URIs are almost never deleted. Since queues are 

only created on demand, this state is extremely transient, and, aside 

from the add() method, nothing can be done with it while in this state. 

• Ready 
The ‘next’ URI’s time of next processing is in the past and any wait for 

politeness or error retry is over. 

• Busy 
The queue has issued as many URIs as its valence allows without any 



 

 66 

of them being returned. It will remain busy until one of the issued URIs 

is returned. 

• Snoozed 
Either the queue is respecting politeness or error retry wait, or the next 

URI’s time of next processing is in the future. In either case, the exact 

time when it will wake up can be accessed. As the state is calculated on 

demand, the queue will automatically move to a ready state once this 

time is reached. There is no need to explicitly ‘wake up’ the queue. 

 

As we discussed in our overview of Heritrix, these are the essential states 

for host queues. The more advanced states, such as inactive, are not used 

since the progress of an incremental crawl should be primarily dictated by 

the time of next processing. Focusing on a fixed subset of hosts, as the 

active/inactive state is meant to achieve, is counter productive. 

Incremental crawls must be scoped so that the entire scope can be 

collected within a reasonable timeframe. Otherwise the URIs will be 

issued chronically late. 

 

Despite the name, the ARHostQueues do not provide traditional queuing 

methods, enqueue and dequeue, since the URIs are never actually 

dequeued. When the queue issues them, the URIs are marked as being 

processed, but remain in the ARHostQueue, held aside, and the queue is 

simply waiting for the Frontier to update them. 

 

Therefore the primary methods of the ARHostQueue are add(), next() and 

update(). The next() method operates much like a dequeue, in that it 

returns the top URI in the queue, or rather, the next URI to be processed 

from the queue. The naming reflects this quality and corresponds to the 

Frontier’s next() method invoked by the ToeThreads to get the next URI 

for processing. 

 

The add() and update() methods create the distinction between initial 

enqueuing of a URI to the queue and requeueing it after a round of 

processing. The terms adding and updating are much clearer than enqueue 

and requeue. The distinction is necessary, because when adding a URI, it 

may already exist, and we do not wish to modify the existing one or 

replace it. When updating, the URI certainly exists, and is being held 

aside. The act of updating it will return it into the queue and will also, 

possibly, affect the state of the queue, depending on whether it was busy 

or not. 
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Other methods that the ARHostQueue provides to the ARFrontier are 

peek(), which returns the current top URI, regardless of whether it is safe 

to start processing it or not. As the name indicates, this method is only 

used to examine the queue. 

 

Finally, there are methods for getting the state and the time when the 

queue will next be ready. The latter only returns useful data if the current 

state is snoozed. If the current state is ready, it should return some time in 

the past and if the state is busy, it should return some time in the far future 

(maximum value of long). 

 

Using these methods, it is relatively straightforward for the ARFrontier to 

manage the crawl, leaving the details of the queuing strategy to the 

ARHostQueue. Deciding which queue to use each time is handled by the 

AdaptiveRevisitQueueList. 

 

Let’s now examine how the ARHostQueue is implemented. 

 

The essential part is the embedded Berkley DB that stores the actual 

queue. The Berkley database stores objects, keyed by other objects. That 

is, each database entry is composed of two elements, a key element and a 

data element, as noted, both of which can be any Java objects. The 

database is then indexed by the key element. 

 

Berkley DB offers significant support for object serialization. This 

includes storing the class ‘template,’ that is all the serialization data that 

relates to the actual class, rather than the instance specific data, only once 

in a separate database, called a class catalog. This drastically reduces the 

amount of space each serialized object requires. 

 

Since the BdbFrontier was introduced, support for Berkley DBs has been 

integrated into Heritrix’s framework and this includes a common class 

catalog that the Frontier can access through the CrawlController. This is 

then passed to the ARHostQueues at construction time. The same applies 

to the Bdb environment that specifies the location on disk where the 

database should be stored etc. The queues therefore only need to 

implement their own databases. 
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We need to have the CrawlURIs not only sorted by the time when they 

should be processed next, but also by their URI (as a string). This means 

that we need to have two indexes for the database. While each Berkley 

database can only have one key/value pair and is indexed by the key, it is 

possible to create, what is called, a secondary database that is linked to a 

primary one. This secondary database simply indexes the data in the 

primary database with another key. Entries are made into the secondary 

database automatically when they are entered into the primary, once the  

association between the databases has been made. The database can then 

be accessed normally, either by looking up a value by its key or iterating 

through the keys. 

 

We decided to use the URI as the key in the primary database and create a 

secondary database to act as the de facto priority queue. Because the 

scheduling directive also influences this the secondary key needs to be a 

composite of it and the time of next processing.  

 

Fortunately, the Berkley DB API makes this relatively easy. The 

secondary database is fed a custom written key creator. This key creator 

receives the data being stored (the CrawlURI) and uses it to construct any 

key it wishes, using information obtained from it. By basing the key 

creator on the TupleSerialKeyCreator provided with Bdb, it is relatively 

straight forward to access the scheduling directive and the time of next 

processing and add each to the serial (or composite) key. 

 

In addition to these primary and secondary databases, the ARHostQueue 

also has a database to store URIs that are currently being processed. If 

host valence higher than 1 were not allowed, this would not be needed, 

since the queue would become busy and the issued URI can simply 

remain at the front of the queue until the processing is completed, at 

which time it would be assigned a new time of next processing. However, 

with the possibility that multiple URIs are issued at the same time, this 

becomes much more complicated. Moving the URIs temporarily to a 

separate database was considered the simplest solution to this. 

Alternatively the URIs could have been marked as being processed and 

remained at the front of the queue, but this would have complicated the 

issuing of URIs and the calculation of the time when the queue will next 

be ready (which is based partly on the time when the ‘next’ URI will be 

ready for processing. The database of in URIs being processed is indexed 

by URI strings. 
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Figure 10. AdaptiveRevisitHostQueue databases. The secondary database is slightly simplified, in 

actuality, the scheduling directive is also taken into account, not just the time of next processing. 

When adding to a queue, the Frontier specifies whether the time set on it 

should overwrite the time on any possible duplicates. The earliest time 

will however always be used. That means that a URIs time will never be 

‘moved back.’ Also, if the scheduling directive is higher, both it and the 

time of next processing will be automatically updated. 

 

Adding a URI can potentially change the state of a queue, but only if it 

was either empty, or snoozed because the next URI was not yet ready and 

the newly added URI can be processed immediately. 

 

The queue becomes busy when the number of URIs being processed 

concurrently reaches the host valence setting. Once a URI is returned, the 

queue’s state may change to ready or snoozed, depending on whether or 

not the queue should wait before issuing its next URI, either for politeness 

reasons or error retry wait. 

 

The wait time is enforced separately for each concurrent connection 

allowed. That is, if host valence is 2, and one URI is returned, the queue 

will snooze for the time specified for it, 1 second for example. If the 

second URI is returned half way through this wait, the queue’s state 

remains unchanged, as does the time when it will next be ready to issue a 

URI. Once the second has elapsed, a URI can be issued and once it has 

been the queue will go back to being snoozed until the wait time for the 

second URI has elapsed. 
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These wait times are implemented using a simple long array, with each 

number representing the time when that ‘processing slot’ can next be 

used. A time in the past means that the slot is free. A value of -1 is 

entered to signify that a URI is being processed.  

 

This means that the queue’s state changes automatically from snoozed to 

ready as time passes.  

6.2.2   AdaptiveRevisitQueueList 
The AdaptiveRevisitQueueList class manages the ARHostQueues. The 

list not only allows the Frontier to look them up by host name, but also 

orders them so that the ‘next’ queue is always the one that has been ready 

to issue a URI for the longest period of time. The list is ordered by the 

queues’ ‘next ready time’ which in turn reflects the time when the front 

URI will be ready for crawling or when an enforced wait time has passed.  

 

This ordering of queues ensures that no queue is starved, while also 

favoring those that are ‘most overdue.’ 

 

The ARQueueList is fairly simple. It has its own database that contains 

the names of all its queues. As we’ll discuss later, this is done purely for 

recovery purposes. It then contains a HashMap of the queues, keyed by 

their names and a TreeSet of queues sorted by the queues’ next ready 

time. 

 

When creating queues, the list will register itself as their owner, allowing 

the queues to notify it when they need to be reordered. It then adds them 

to the above data structures. Access to them is then relatively straight 

forward. 

 

The list also provides some utility methods, such as compiling a report of 

all the queue’s states, getting the number of queues and total number of 

URIs in all the queues. 

6.2.3   Synchronous Access 
All access to the ARFrontier is synchronized except the schedule() 

method which, as discussed above, queues up scheduled items in a 

TreadLocal queue, only to be flushed when the finished() method, access 

to which is synchronized, is invoked. 
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The reason for this high level synchronization is one of simplicity. While 

it might be perfectly feasible to handle synchronization at a lower level, 

possibly reducing contention on the Frontier somewhat, it would require 

considerable work to analyze and implement. Furthermore, this has 

typically not been done in other Frontiers, and the potential gain is 

unknown. Access to the ARQueueList for example would make it 

impossible for threads working on different queues to avoid overlapping. 

6.2.4   Recovery 
The BdbFrontier (and other existing Heritrix Frontiers) utilize an 

inefficient and somewhat complicated recovery journal or log for crash 

recovery. The way this works is rather simple in theory, but a bit more 

complicated in execution. Basically each ‘transaction’ in the Frontier is 

recorded to a compressed log (it is compressed because otherwise its size 

quickly becomes an issue). The transactions include scheduling of URIs, 

their issue, and the completion of their processing. 

 

When a crawl has crashed, for whatever reason, the log can be ‘replayed,’ 

bringing the Frontier back to the state it was in when the crash occurred. 

In practice, when dealing with larger, multi million URI crawls, this takes 

an excessive amount of time. 

 

Improved recovery abilities remain an untackled subject in Heritrix, partly 

because snapshot crawls can quite frequently get away with not having 

such an option. The reason for this lies in the fundamental nature of the 

snapshot crawl. It is started, it works its way through the webspace, and 

then it terminates. A crash in a very large crawl can have serious 

implications and may require the crawl to be restarted, but since the 

crawls always take a finite amount of time (usually on the scale of months 

at most) it is possible to execute it in one continuous run. 

 

No proper checkpointing facility currently exists, whereby an accurate 

representation of the crawl state is stored on disk for later retrieval. 

Improvements on this are planned for the 1.6.0 release of Heritrix. 

 

No such luck for incremental crawls that by their very nature have to run 

for an indeterminate amount of time. In theory, possibly forever. So it is 

absolutely vital that an incremental crawl can be stopped and started with 

an acceptable overhead. 
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Using the recovery log method is clearly impossible since the amount of 

time required is a factor of the number of URIs that have passed through 

the Frontier. In a snapshot crawl this is roughly equal to the number of 

discovered URIs, but in an incremental crawl, where each URI is 

processed repeatedly, this value can be many times the number of URIs. 

After running for a year, for example, a crawl with 100,000 URIs that are 

on average visited once a day, will have processed over 36 million URIs. 

Replaying the recovery log is not feasible. 

 

Therefore, we needed an alternative way to recover from crashes and also 

to allow the operator to suspend and resume crawls if, for example, the 

computer needs to be upgraded.  

 

Fortunately, the Berkley DB has good crash recovery abilities that we can 

take advantage off. Basically it can be assumed that anything that was 

written to a database is safe. Thus we only need to ensure that enough 

data is stored in the databases to allow the crawl to be reconstructed from 

them. 

 

The databases are each named. When the ARFrontier is created, it gets a 

path to the ‘state’ directory, i.e. the directory where the crawls state 

should be written, from the configurations. The state directory is a 

standard configuration parameter that all Frontiers should use. The 

ARFrontier then, via the ARQueueList, tries to open a specified database, 

named ‘hostNames’ in that directory. If unsuccessful, a new one is 

created and we can then safely assume that this is a new crawl. If 

successful, the state directory refers to an existent crawl and the database 

containing the names of all the host queues has just been opened. 

 

The ARQueueList now runs through all the entries in this list and creates 

a host queue for it. As each host queue’s database is named using the 

hostname, the existing databases for each one should be opened. The only 

problem with this is that the valence for each queue will be the default 

value and no overrides are respected. This is due to the fact that a URI of 

some sort is required when accessing the settings for the overrides to be 

compared to. The valence could probably be stored in the hostNames 

database but implementing that is a subject for the future. 
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The ARHostQueue constructor will realize that existing databases are 

being opened and will move any URIs in the processing database over to 

the queue. It will also count the number of URIs in the queue. This is 

somewhat inefficient as it requires a loop through all the elements in the 

database, but is quite manageable for 10-100 thousand items. In the future 

the count should probably be stored in some database.  

6.2.4   Frontier features not implemented 
The Frontier interface specifies some methods for iterating through all the 

URIs in the Frontier and for deleting items, either by name or regular 

expression. Neither is currently supported in the ARFrontier. This is 

primarily because we placed greater emphasis on the core functionality 

and were unable to tackle this as well.  

 

Adding the ability to iterate through the URIs in the ARFrontier, requires 

a good deal of additional work, primarily in designing a ‘marker’ for the 

current location. 

 

Deletion of items is also not implemented. Currently, the only time a URI 

is deleted is when the Frontier decides to ‘forget’ a URI. I.e. a URI is 

deemed out of scope late (when being processed rather than when it is 

discovered, usually the result of the operator changing the scope) but we 

know that it may be discovered via some other path where it should be 

included. This is because crawls are frequently limited to certain domains 

or hosts but are still allowed to fetch ‘offsite’ documents if they are 

embedded, rather than linked to. There is also the possibility that the 

number of link hops was exceeded but the document might be 

rediscovered at a lower ‘depth.’ 

 

For all these reasons it is necessary to be able to forget a URI and the 

update method has a parameter to indicate this. If set, the URI is dropped 

from the queue it is as if it was never encountered. This is, however, the 

only instance of a URI being deleted and is done for purely practical 

reasons. Typically we do not wish to ever delete any URI, that might have 

failed to crawl, for example, because we may very well encounter them 

again and we do not wish to requeue them if that happens. 

 

For these reasons, the host queues offer no delete functionality, but this 

could be added. It remains to be seen, however, how useful that would be. 

One might speculate that the deletion should be implemented by setting 
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the time of next processing to the extreme future (maximum value of a 

long) as is done for URIs that have failed to crawl or should be 

disregarded. This effectively deletes them from the crawl but keeps them 

in the queues and prevents them from begin rediscovered. This is also 

more in keeping with what the other Frontiers do, since they implement 

the delete by removing the URI from the queues only, but the hash of the 

URI used for duplicate detection remains unaffected. 

 

The ARFrontier also does not apply the URI canonicalization. This 

feature was added after development of the ARFrontier began and since 

the Frontier interface does not enforce its implementation it was 

overlooked until after the ARFrontier was integrated into Heritrix’s 

primary code base. This oversight will likely be addressed in the near 

future.  

6.2.5   AbstractFrontier 
When work began on the ARFrontier, the AbstractFrontier was fairly 

unstable as work on it had only recently begun. Since the 

AbstractFrontier, especially at that time, was geared towards the 

BdbFrontier it was decided not to base the ARFrontier on it. The reason 

for this was that while the concept was sound, it would be extremely 

difficult to develop a new type of Frontier while having to constantly 

compromise in terms of what the AbstractFrontier was doing and would 

allow. 

 

Once the ARFrontier was ready for integration into Heritrix’s primary 

code base, this subject was revisited. While the AbstractFrontier had by 

then improved considerably, several issues were quickly discovered 

which made it difficult to rewrite the ARFrontier to subclass the 

AbstractFrontier. 

 

First there is the fact that the AbstractFrontier supports either hostname or 

IP based politeness. As discussed above, IP based politeness poses 

additional complications for incremental based Frontiers. While this could 

probably be overcome by renaming queues (for example) it would require 

considerable effort to implement. 

 

The AbstractFrontier also implements bandwidth limiters, both for total 

bandwidth usage and per politeness unit (hostname or IP). This feature is 

not in the ARFrontier and it is uncertain how it would affect it. Likely, it 
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would require the addition in the ARFrontier of calculating wait times for 

when bandwidth usage has exceeded the allowed amount. Overall 

bandwidth limitations are implemented in the AbstractFrontier. 

 

While the ARFrontier allows the preferencing of embeds, it defaults this 

value to 0, unlike the AbstractFrontier which defaults it to 1. The reasons 

for this were discussed earlier. As there is no way, currently, for 

subclasses to override the default settings of their parents, subclassing 

AbstractFrontier would change the default value of this for the 

ARFrontier. Some of the feedback we have received from others testing 

the software indicates that the Frontier’s behavior when preferencing 

embeds can be confusing, so we would prefer to continue defaulting it to 

zero. 

 

The AbstractFrontier implements the recovery journal. This is an 

unwanted and unnecessary feature for the ARFrontier. As discussed 

earlier, the ARFrontier implements a much more robust recovery scheme 

that is completely incompatible with the recovery journal system. 

 

There are also some issues with how the ARFrontier and AbstractFrontier 

keep track of some statistics. For example, the total number of queued 

URIs is calculated in the ARFrontier by adding up the size of the queues 

whereas the AbstractFrontier retains a central value for this. The 

difference in maintaining statistics could probably be overcome by either 

overriding or ignoring the AbstractFrontier’s data. However, it adds 

another level of complexity to any attempt at basing the ARFrontier on 

the AbstractFrontier. 

 

Finally, there is some (fairly minimal) assumption in the AbstractFrontier 

that BdbWorkQueues are being used. Notably in the method 

noteAboutToEmit() which is primarily used for the recovery journal 

implementation. This would need to be addressed in the AbstractFrontier 

itself before the ARFrontier could be modified to subclass it. Clearly any 

truly abstract Frontier must be free of such implementation specific 

objects. 

 

The above summation may not be an exhaustive summary of the 

difficulties in using the AbstractFrontier, it merely relates the most 

obvious difficulties that were discovered by reviewing the code of the 

AbstractFrontier. Other, more serious design incompatibilities may be 
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discovered if and when an attempt is made to base the ARFrontier on the 

AbstractFrontier. 

 

In the long run, the ARFrontier will almost certainly be modified to 

subclass the AbstractFrontier. The benefits in terms of simplified code 

maintenance are considerable and ultimately well worth the initial 

investment. However, it was clear that this will not only require changes 

to the ARFrontier, but also significant streamlining of the 

AbstractFrontier to make it more agnostic towards different crawl 

strategies. Doing this, however, falls outside the scope of this project. 

6.3   New Processors 

While the ARFrontier implements most of the incremental strategy, it 

needs be told how long to wait before URIs can be revisited. For this 

purpose three processors were created, HTTPContentDigest, 

ChangeEvaluator, and WaitEvaluator. In order to do a crawl with the 

ARFrontier these need to be inserted into the processing chain (see Figure 

11) at the appropriate locations. 

 

That is not to say that these processors in particular are needed in order to 

use the ARFrontier, but rather, some processors that perform the same 

functions are needed. This corresponds to the general use of processors in 

Heritrix, the ones provided are solid implementations of common 

functionality. They can however easily be replaced by custom written 

modules if we wish to modify their behavior. 

 

There was no need to modify or replace any of the existing processors for 

the adaptive revisiting strategy, since the processing of URIs remain 

largely the same. We only needed to add some additional processing. 
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Figure 11. Illustrates how the processors for the adaptive revisiting strategy fit into a typical 

processing chain. The HTTPContentDigest processor is optional, but the ChangeEvaluator and the 

WaitEvaluator are required. 

6.3.1   ChangeEvaluator 
The ChangeEvaluator compares a downloaded documents hash to the 

hash from a previous visit to determine if the document has changed. It 

assumes that this hash has been calculated and stored in the CrawlURI 

(accessed via the CrawlURI.getContentDigest() method.) This is 
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generally the case since the FetchHTTP processor automatically 

calculates the hash when it downloads documents. 

 

The ChangeEvaluator does not care about the type of hash, since it just 

compares two instances of it and rules that they are either identical or not, 

but typically these are SHA-1 [14] hashes, since that is what the 

FetchHTTP processor uses. However, changing the hashes will have no 

impact on the ChangeEvaluator so long as they a very low probability of a 

collision where two dissimilar documents compute as having the same 

hash. 

 

The ChangeEvaluator stores the content state in the CrawlURI’s keyed 

list. Initially the idea was to add content state to the CrawlURI object 

itself, defaulting it to unknown. However, this was not accepted when 

merging the AR code into Heritrix’s main code base, mostly because it 

was unclear if any other modules might ever be interested in it. This may 

be revisited again at a later date. Instead, the content state is recorded in 

the keyed list, which is perfectly satisfactory. The only potential down 

side is that other modules, processors in particular, are less likely to take 

advantage of it. 

 

If no content hash is provided the ChangeEvaluator does not make any 

ruling, leaving the content state as unknown. Currently this applies only 

to DNS lookups. 

 

Currently, the ChangeEvaluator will preempt the processing chain if the 

document is discovered to be unchanged. This moves the URI straight to 

the post processing section, bypassing the link extractors and write/index 

processors. This is quite satisfactory at the moment, but in the future there 

may be write/index processors that are interested in recording that an 

unchanged document was visited at a given point in time. To achieve this, 

the CrawlURI’s processing should not be interfered with, but all 

processors running after the fetchers should check the content state and 

decide based on it whether they should run or not. Some would always 

run, such as the Postselector, but extractors would only run on changed 

documents and those whose state is unknown. 

 

In fact, the ChangeEvaluator already behaves in this manner. If the 

content state is already set on a CrawlURI, it will only update the counters 
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of how many visits have been made to the URI and how many versions 

encountered in those visits. It will not reevaluate if a change has occurred. 

 

In practice, this happens when the download of a document is skipped 

because HTTP header information indicates that no change has occurred. 

 

If the ChangeEvaluator decides to preempt the processing chain, having 

discovered an unchanged document, this is noted in the crawl.log by 

writing unchanged to its annotations field. 

6.3.2   WaitEvaluators 
The WaitEvaluator implements the actual adaptive logic. Basically the 

WaitEvaluator checks if the document has changed or not, and based on 

that it multiplies or divides the wait interval by a certain factor. For 

documents whose content state is unknown a default, unchanging, wait 

interval is set. Essentially, if you wanted a non-adaptive incremental 

crawl you could simply omit the ChangeEvaluator and then the crawl 

would repeat at intervals dictated by this default value. 

 

The initial wait interval, default wait interval, and the factors for changed 

and unchanged documents are all configurable settings. Additionally, the 

WaitEvaluator allows the operator to specify maximum and minimum 

wait intervals. This can be used, for example, to prevent constantly 

changing pages from ‘clogging’ the system. It also ensures that all 

documents are revisited at some point. Without a maximum wait interval 

the wait interval of a document that was never observed to have changed 

would grow exponentially over time, eventually we’d stop visiting it. 

While this fits in with the adaptive concept, in practice we usually want to 

at least get one complete copy every year. 

 

Finally, the WaitEvaluator has a toggle that allows the overdue time to be 

used when a new wait interval is calculated. If this option is selected (off 

by default) then the amount of time the URI was overdue for processing 

will be added to its wait interval before the factor is applied to it. This 

feature was added because in practice a lot of URIs, especially on larger 

crawls, will be overdue since there are too many URIs that need 

processing. This problem is especially noticable during the early part of a 

crawl when the adaptive algorithm is still learning what documents rarely 

change and is slowly increasing their wait time. This feature can 

significantly speed that up. However, the feature can have the paradoxical 
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effect of increasing the wait time of changed documents if they were 

significantly overdue. On the other hand, it could also be said that the 

feature allows the crawl to adapt to the resources that are available. 

 

All this affords the operator full control over the adaptive behavior. 

Furthermore, the settings can all be overridden for any host using 

Heritrix’s overriding schemes. Thus the adaptive behavior can easily be 

tailored for each domain and host. 

 

The above is enough to implement all the aspects of the adaptive 

algorithm discussed in the last chapter, except one. It does not allow the 

operator to discriminate in the settings based on the content type. 

 

The initial idea to tackle that subject was to use Heritrix’s refinements 

framework. A new criteria could be added that compared a regular 

expression to the documents content type and if it matched the values in 

the refinment would override the default. 

 

Only, this approach had two problems.  

 

One, the refinement criteria were only being passed UURIs and not 

CandidateURIs or CrawlURIs. This meant that the content type was not 

available to them. A solution for this was found, but it required some 

changes to numerous classes, both in the settings part of Heritrix and in 

the canonicalization. While this approach was initially pursued, the extent 

of the changes needed did not become apparent until it was time to 

integrate it into the main codebase. Therefore, despite the fact that this 

had been successfully implemented, this approach was abandoned. 

Largely because of fears that introducing such a large change to the code 

could be problematic, especially when a release was on the horizon, but 

also because of the other drawback of this approach. 

 

While the refinement approach is an exceptionally economical solution, 

taking advantage of existing capabilities, it can make it difficult to 

determine exactly what rules apply to what URIs at any given time. This 

is largely a result of the obfuscated nature of the interaction between 

overrides and refinements. Basically, refinements are not inherited into 

overrides. Therefore setting up a refinement to specify different wait 

times for images would be lost when we created an override to specify 

different wait times for a specific host. This is how the system was 
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intended to work, but it can be confusing with a large number of overrides 

and refinements. 

 

A better approach was therefore needed. Using a similar approach as the 

extractors, where a number of processors exist to do the same thing, only 

on different files, we created some new, specialized, WaitEvaluators. 

 

First the generic WaitEvaluator was subclassed to create the 

ContentBasedWaitEvaluator. It adds a regular expression, like the 

refinement criteria would have, that is compared against the documents 

content type and only if it matches is the evaluation carried through.  

 

Based on this, TextWaitEvaluator and ImageWaitEvaluator were created 

with the regular expression configured to match text and image files 

respectively. The regular expressions though can still be changed if the 

operator wishes. The default values for the initial wait have also been 

modified for these. 

 

The WaitEvaluator was then modified to set a flag in the CrawlURI once 

it had been run and to pass on objects that had this flag. This ensures that 

once one WaitEvaluator has been run, others will ignore the object. 

 

With all of this in place, it is simply a matter of ‘stacking up’ the 

WaitEvaluators, starting with the specialized ones and ending with the 

generic WaitEvaluator which will process anything not handled by the 

others. 

 

While only two specialized evaluators are included, they can be modified 

to fit other criteria, and the ContentBasedWaitEvaluator can also be used. 

If more than three specialized evaluators are needed, it is a simple matter 

to create additional ones by subclassing ContentBasedWaitEvaluator. 

Doing that will also allow for new default values, more applicable to the 

task at hand. 

 

Figure 12 illustrates how these evaluators might be configured. 
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Figure 12. The UI settings for three WaitEvaluators. Two specialized ones, text and images, and 

one general purpose evaluator for everything else. The values for initial wait times and minimum 

wait time are extremely small and would likely be much higher in a crawl of any magnitude. 

The WaitEvaluators need to be in the post processing section of the chain, 

since they should be run on both changed and unchanged documents. 

6.3.3   HTTPContentDigest 
As discussed in the previous chapter, when we are trying to detect if a 

change has occurred, we may wish to ignore certain sections of the 

document. The HTTPContentDigest processor adds that ability to 

Heritrix.  

 

The FetchHTTP processor automatically creates a hash based on the 

contents of the document. Normally, this is all we need, but if there is a 

known section in certain documents that contains problematic content, the 

HTTPContentDigest can be set (via overrides and/or refinements) to 
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recalculate the hash for those documents. Prior to doing the recalculation, 

the processor will apply a regular expression to the document and replace 

any section that matches the regular expression with a single blank 

character. This replacement is actually done on a copy of the document 

and the downloaded version remains intact for other processors. 

Effectively, the hash is thus calculated based on a document with the 

problematic sections erased. 

 

Using this processor is expensive, both in terms of processor power and 

memory so obviously it should be configured so that it is only applied to 

exactly those documents that may require it. Careful use of overrides, 

refinements and filters is essential here. Both to ensure that it is only 

applied to documents requiring it and also in order to be able to vary the 

regular expression since different sections will need to be dealt with in 

different documents. For example, using it on non-text documents will 

likely be meaningless. As with all processors, filters can be placed on it to 

limit what URIs it handles and thus the ContentTypeRegExpFilter could 

be used to ensure that the processor is only applied to text documents.  

 

The processor has a setting that allows the operator to specify a maximum 

size for the documents that it processes. This reduces the change that 

abnormally large documents cause the crawl to slow down when this 

processor suddenly needs to handle them. This setting defaults to one 

megabyte. 

 

The HTTPContentDigest processor must be applied after a document is 

downloaded and prior to the ChangeEvaluator. 

6.4   Using HTTP headers 

As discussed briefly earlier, the FetchHTTP allows the operator to specify 

filters that are applied after the HTTP headers have been downloaded but 

before the content body. This makes it possible to write filters that reject 

downloading a document based on its HTTP header. 

 

This is exactly what was suggested in the last chapter. By using the Etag 

and datestamp information, a prediction can be made as to whether or not 

a document has changed. 
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That is what the cumbersomely named HTTPMidFetchUnchangedFilter 

does. Basically, it implements scheme 4 [3], where if both values are 

present they must agree on predicting no change, otherwise a change is 

predicted. This scheme was chosen since it had the highest reliability of 

any approach that considered both values. In the future the option of 

choosing any of the four proposed schemes should be added. 

 

The filter stores the values of the headers in the CrawlURI’s keyed list so 

that old values can be compared to newer ones. Any disparities in the 

stored and current values are interpreted as indicating a change. This 

means that even if the datestamp becomes ‘older,’ we’ll regard that as a 

change. 

 

By returning false, which it does if no change is predicted based on the 

HTTP headers, the filter will cause the FetchHTTP processor to abort the 

downloading of the document. A note to this effect midFetchAbort will be 

made in the log.  

 

The filter will also set the content state to unchanged if this occurs, but it 

does not change the state if it predicts a change since the rate of false 

positives on that is extremely high. The ChangeEvaluator continues to 

handle those. 
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7.   Results 

Initial test crawls have gone very well, with the software exhibiting good 

stability running over the course of several days. Depending on the initial 

and minimum wait settings, as well as politeness restrictions, it is 

necessary to limit the size of the scope for each host [20] otherwise, as 

expected, the adaptive algorithm is unable to work effectively since there 

are always more URIs that need to be crawled, then time available for 

crawling. Also, if the number of hosts is excessive, local machine 

resources may become a limiting factor. 

 

Unfortunately, no suitable metric exists to measure the performance of 

such crawls. We can say that it behaved exactly as expected when running 

against a website that we controlled, so the adaptive algorithm is sound. 

The progress rate of the test crawls was always limited by politeness 

factors, rather than machine resources, so we also know that the 

ARFrontier can crawl with a modest number of hosts at a respectable 

pace. 

 

As discussed earlier, this was to be expected and is a direct consequence 

of politeness restrictions and limited local resources. Effectively, there is 

a maximum number of documents that can be downloaded from any one 

host in a given amount of time. Therefore, there are only two ways to 

increase the size of the scope on each host. Either you reduce politeness 

restrictions or increase the wait times between revisits.  

 

It helps to configure the crawl as accurately as possible in terms of 

expected wait times, declaring images and such with higher wait times. 

However, there is clearly a link between the size of the scope and a 

requirement for a minimum wait time. As the scope grows, so also must 

the minimum wait time, or rather the average wait time of all documents 

belonging to the host. 

 

Future work will undoubtedly focus on trying to establish good values to 

balance expected wait times and the size of scopes. Our initial crawls, 

while supporting our assumptions on the overall crawl behavior are far 

from extensive enough to be able to provide significant insight into 

further optimization. 
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The fact that the ARFrontier supports a host valence higher than 1 allows 

for very aggressive crawling. While this is generally to be avoided, there 

may be scenarios where we have permission to crawl more aggressively. 

This feature allows us to double or triple (or more) the number of 

documents belonging to the host that can be visited. 

 

The maximum number of hosts depends greatly on the hardware 

available. Since politeness restrictions do not reach across hosts, they only 

affect each others scheduling when too many hosts need to process URIs 

at once. Due to politeness restrictions, each host is unlikely to crawl more 

than 2-3 URIs per second (although this can vary). Heritrix has shown an 

ability to crawl upwards of 50-60 documents per second on decent 

hardware. This would seem to limit the number of hosts to about 20-30. 

However, in practice most hosts are unlikely to require the fetching of 2-3 

URIs per second, especially not over longer periods. The initial discovery 

phase will probably generate a significant backlog as URIs are discovered 

much faster than they can be processed, much like in snapshot crawl. 

However, assuming that the initial wait times are moderate, the backlog 

should be mostly completed before the first round of repeat visits.  

 

The total number of hosts then depends on the kind of load each host is 

likely to place on the system. Their politeness settings and the number of 

URIs for each host dictates the maximum number of documents that they 

may need to crawl per second. The wait times are likely to further 

decrease this unless the site is changing very often and minimum wait 

times are low.  

 

While not tested extensively, it seems perfectly plausible to have at least a 

hundred hosts running in parallel. The size of each host depends on how 

often the documents need to be revisited. If the wait time is generous in 

terms of the size of the host then this will free up additional resources to 

crawl other hosts. 

 

Finding an appropriate balance for these factors is still a work in progress. 

No practical crawling has been performed yet but it is planned as we 

discuss below. These will likely evolve over time as experience is 

gathered. It is also quite likely that the adaptive heuristics will be 

improved to look at more than just the last version.  
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During test crawls, some interesting behavior has been observed. As 

expected, pages with constantly changing sections have been discovered. 

For example, a news site with a stock ‘ticker’ that changed constantly 

during trading hours. There was also a page that only displayed the ticker. 

One might argue that their content is changing with each visit, but it’s 

doubtful if we want to record it that closely. The stock ticker probably 

isn’t an issue if the minimum wait time is measured in hours, since the 

news site itself changes quite rapidly. However, if the minimum wait time 

is very low, a minute for example, then this becomes an issue. 

 

On another site pages were observed with content that changed randomly 

with each visit. The site offered a form of ‘yellow pages’ index service of 

businesses. The pages in question were category front pages which 

displayed several randomly chosen entries from their categories. A crawl 

of this website would have to be configured either to disregard the entire 

body of the document when creating comparison hashes or, more likely, 

to visit these pages only at fixed, infrequent intervals. 

 

Test crawling was conducted with very limited scopes for each host. 

Basically, it only allowed two to three link hops (varied between crawls) 

into each host and disallowed crawling of any offsite embedded 

documents. Even with this shallow scope, many sites turned up thousands 

of documents, indicating that the websites have a fairly broad structure. 

This is in line with what we had expected. 

 

The decision to disallow offsite documents was largely a matter of 

practicality. An offsite document that has been crawled once would 

continue to be revisited again and again, long after the reference to it has 

been removed from one of the sites we are targeting. Unfortunately, 

Heritrix does not provide information about how URIs were judged to be 

in scope, so we can not differentiate between these and regular URIs. 

 

This project was developed in a separate branch of the Heritrix project 

and was initially made available to the public in December 2004. At the 

time the software contained many bugs, but nevertheless drew some 

attention from third parties interested in testing. By March 2005 the 

software was considered essentially stable and towards the end of that 

month work began to integrate it into Heritrix’s main code base. This was 

done in preparation for the release of version 1.4.0 of Heritrix in late 

April. The ARFrontier is currently labeled as being experimental, much as 
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the BdbFrontier was in 1.2.0, since it has not yet received widespread 

testing and use. 

 

 

Figure 13. The UI page for configuring crawl modules. The AdaptiveRevisitFrontier has been 

selected as the Frontier. 

With its integration into Heritrix completed we believe that it will form 

the basis for future incremental crawling amongst those parties that are 

currently using Heritrix. In particular, the National and University Library 

of Iceland will be utilizing it to augment its regular crawls of the .is 

country domain [16]. These crawls will consist of approximately 30 hand 

picked sites. The selection criteria is still being considered, but the sites 

chosen for this are likely to be ones containing news, political discussions 

and other similar content of obvious interest. 
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8.   Unresolved and future issues 

A considerable amount of work remains to determine what settings yield 

the best result. Volatile change rates, in particular, are likely to make this 

hard. Some papers [10] have suggested that (in general) document 

changes follow a Poisson process and that this could be used to create a 

better change prediction algorithm. This remains to be seen, but it is clear 

that there are web sites out there whose change rates vary significantly 

over the course of time [20].  

 

The subject of improving the adaptive heuristics is in its infancy. The 

strategy developed here has tried to (potentially) capture all changes, with 

the minimum wait times possibly dropping as low as one second. This is, 

of course, left to operator discretion, but considering the frequent changes 

of some sites, may be needed. 

 

However, as the wait time drops, volatile change rates over the course of 

a single day become a factor. The change rate may be heavily dependant 

on the time of day [4]. It might therefore be best to use information from 

(at least) the past 24 hours when estimating wait times. In fact, it is 

probable that some advantage could be gained from viewing an even 

larger sample. Knowledge of time of day, weekdays versus weekends, 

public holidays etc. could all be incorporated, in theory, to improve the 

wait time heuristics. 

 

The possibilities for analyzing such data and even cross-referencing it 

with data from other, similar, documents are almost endless. Such cross-

referencing could both be useful to take into account site specific trends, 

by comparison to other documents from the same site, and trends related 

to the document type, by comparing to documents of similar nature on 

other sites. 

 

This is likely to be quite expensive in terms of processing power, not to 

mention requiring a significant amount of work to determine appropriate 

linkages to utilize. Furthermore, Heritrix’s current architecture does not 

allow processors to access meta-data on URIs, other than the one they are 

currently working on. Incorporating such advanced features would require 

some augmentation on its part. 
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Change detection also remains a significant problem. We have provided a 

simple strict hash approach, with the option of selectively ignoring 

sections in documents known to be troublesome. This works quite well 

most of the time, but has definate drawbacks, especially when crawling a 

relatively large number of hosts and URIs where the operator is less able 

to manually notice and address all problems. 

 

During a meeting held by the National and University Library of Iceland 

with several large content providers, they expressed an interest in 

facilitating change detection by declaring the sections in their web pages 

with tags that remain to be decided. The idea was that these tags would 

denote any troublesome sections and our incremental crawls would be 

configured to have the hashes overlook them. The content providers’ 

benefits would be reduced load on their servers without compromising the 

quality of their content in the library’s archives. This approach, while 

workable on a small scale, would clearly be of little practical use for 

larger crawls, spanning hundreds, if not thousands of sites. 

 

Improved change detection is a very large and complex issue. A 

comprehensive overview is well beyond the scope of this project. We can 

however state that the better we are able to detect changes in content and 

separate those changes from changes in layout the more effective any 

adaptive revisit algorithm will be. However, that still won’t address the 

problem where some content in a document is of trivial importance. For 

example, when archived stories at a news site contain a section that tells 

the reader about the current ‘front page’ story. The current front page 

story changes with great frequency, but it is captured when we crawl the 

actual front page and its inclusion in archive pages is essentially trivial. 

 

As previously discussed, it has been suggested that ‘close enough’ 

comparison algorithms [6] may overcome this to some extent. They 

operate by overlooking minor changes in the documents, for example, by 

splitting them up into a certain number of overlapping sections, or 

shingles, and checking if there is sufficient number of identical sections. 

If there are then the document is considered to be ‘close enough’ and is 

regarded as unchanged. 

 

While the ‘close enough’ approach seems attractive, it does have a 

notable drawback; it assumes that small changes are never of 
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consequence. In practice, however, it is easy to think of significant issues 

where a small change is of considerable interest.  

 

Using ‘close enough’ detection may however be a suitable compromise 

for larger crawls. The alternative is to overcrawl, possibly do so quite 

heavily. Also, if a ‘close enough’ hashing is added to Heritrix, it is fairly 

simple to configure different sites to use it or the strict hash. This way 

sites known to be well behaved could continue to use the strict hash, 

while other sites, possibly of lesser interest, would use ‘close enough’ 

comparisons. 

 

Unfortunately, HTTP header information does little to improve this 

situation. In practice, dynamically generated content is the most likely one 

to be missing good header information on content change for practical 

reasons. Dynamically generated content is also more easily modified and 

thus more likely to change. Studies indicate that while HTTP headers are 

usually reliable in predicting change, their usefulness in accurately 

predicting non-change is much lower [3]. Barring a dramatic 

improvement in the use of HTTP headers by websites, it is unlikely that 

they will be of greater use than what is provided in the current 

implementation. 

 

For this project, we considered keeping track of the prediction made by 

the HTTP headers and compare them with the hash comparison. The idea 

was to use this to build up a 'trust level.' Once a certain threshold is 

reached we would start using the header information to avoid downloads, 

but still do occasional samples, reducing the number of samples with 

rising trust levels. Ultimately this was not done since it seems quite rare 

that they predict no change, when a change has in fact occurred, but 

adding this functionality would almost eliminate the chance of us failing 

to download a changed document because of faulty HTTP header 

information. 

 

We have primarily focused on predicting change rates based on a 

document’s history of change. However, there may be other factors that 

significantly affect this. As mentioned earlier, a documents location 

within a site can be significant. “Front pages” usually change much more 

often than archives. This probably varies somewhat from site to site, but 

adding some discrimination, perhaps based on the distance from seed or 

the length of the URI string, might improve the initial wait time. 
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Alternatively (or additionally) a ranking system could be devised that 

takes diverse factors such as number of links to and from a document, 

presence of keywords, etc. into account. Developing such a ranking 

system would require considerable effort and implementing it is also 

likely to require additional changes to Heritrix. Again, this may vary from 

one website to another, and also on the purpose of the crawl. The ranking 

could be biased to favor pages that we deem important on some basis, 

such as the presence of keywords. 

 

Looking even further ahead, when crawling sites offering RSS feeds [11] 

or other similar services, we could use them as triggers for revisiting 

certain sections of the webs, as well as the (presumably) new stories being 

advertised via the feeds. Obviously not all sites offer such feeds, nor are 

all changes reported by them, but they would allow us to capture all major 

changes accurately, assuming that the feed is well handled. 

 

On a more practical note, Heritrix’s statistics remain heavily snapshot 

oriented. Especially those provided by the web user interface. We took 

advantage of options provided by the crawl.log to record important 

additional material and this works quite well. We also implemented a 

Frontier report that is accessible via the user interface that contains 

various useful data on the state of the crawl. 

 

Heritrix however provides a considerable amount of ‘progress’ data. 

Much of this fits only marginally with incremental crawling since the data 

doesn’t really account for multiple visits of the same URI. For example, 

the main Console page offers a progress bar that shows the percentage of 

completed URIs against the number already completed and those that 

remain queued. Clearly an incremental crawl will never be completed so 

this progress bar is of little actual value. 

 

None of the above issues are acute problems, but it means that monitoring 

an incremental crawl requires some additional interpretation of the data 

being provided. In the future, Heritrix may offer the possibility for 

modules to provide customized web pages for control and display of data. 

This is not on the immediate work schedule, but once implemented, 

statistics reporting on incremental crawls can be significantly improved 

and customized to fit its needs. 
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None of these problems should affect later day analysis of a crawl. The 

progress data only complicates the monitoring of a crawl. Analysis work 

is done based on the logs, and, as noted earlier, they reflect the actual 

progress quite well. 
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