

University of Iceland

Faculty of Engineering

Department of Computer Science

Adaptive Revisiting with Heritrix
Master Thesis (30 credits/60 ECTS)

by

Kristinn Sigurðsson
May 2005

Supervisors:

Helgi Þorbergsson, PhD

Þorsteinn Hallgrímsson

 i

Útdráttur á íslensku

Veraldarvefurinn geymir sívaxandi hluta af þekkingu og menningararfi

heimsins. Þar sem Vefurinn er einnig sífellt að breytast þá er nú unnið

ötullega að því að varðveita innihald hans á hverjum tíma. Þessi vinna er

framlenging á skylduskila lögum sem hafa í síðustu aldir stuðlað að því

að varðveita prentað efni.

Fyrstu þrír kaflarnir lýsa grundvallar erfiðleikum við það að safna

Vefnum og kynnir hugbúnaðinn Heritrix, sem var smíðaður til að vinna

það verk. Fyrsti kaflinn einbeitir sér að ástæðunum og bakgrunni þessarar

vinnu en kaflar tvö og þrjú beina kastljósinu að tæknilegri þáttum.

Markmið verkefnisins var að þróa nýja tækni til að safna ákveðnum hluta

af Vefnum sem er álitinn breytast ört og vera í eðli sínu áhugaverður.

Seinni kaflar fjalla um skilgreininu á slíkri aðferðafræði og hvernig hún

var útfærð í Heritrix. Hluti þessarar umfjöllunar beinist að því hvernig

greina má breytingar í skjölum.

Að lokum er fjallað um fyrstu reynslu af nýja hugbúnaðinum og sjónum

er beint að þeim þáttum sem þarfnast frekari vinnu eða athygli. Þar sem

markmiðið með verkefninu var að leggja grunnlínur fyrir svona

aðferðafræði og útbúa einfalda og stöðuga útfærsla þá inniheldur þessi

hluti margar hugmyndir um hvað mætti gera betur.

Keywords

Web crawling, web archiving, Heritrix, Internet, World Wide Web, legal

deposit, electronic legal deposit.

 ii

Abstract

The World Wide Web contains an increasingly significant amount of the

world’s knowledge and heritage. Since the Web is also in a constant state

of change significant efforts are now underway to capture and preserve its

contents. These efforts extend the traditional legal deposit laws that have

been aimed at preserving printed material over the last centuries.

The first three chapters outline the fundamental challenges for collecting

the Web and present the software, Heritrix, which has been designed to

perform this task. The first chapter focuses on the reasons and history

behind this endeavour, with chapters two and three focusing on more

technical aspects.

The goal of this project was to develop a new way of collecting parts of

the Web that are believed to change very rapidly and are considered of

significant interest. The later chapters focus on defining such an

incremental strategy, which we call an ‘adaptive revisting strategy’ and

how it was implemented as a part of Heritrix. A part of this discussion is

how to detect change in documents.

Finally we discuss initial impressions of the new software and highlight

areas that require further work or attention. As the goal of the project was

primarily to establish the foundation for such incremental crawling and

provide a simple and sturdy implementation, this section contains many

thoughts on issues that could be improved on in the future.

 iii

Table of contents
TABLES... V

FIGURES ... V

1. BACKGROUND... 1

1.1 WEB ARCHIVING..1
1.2 LEGAL DEPOSIT ...2
1.3 ELECTRONIC LEGAL DEPOSIT LAWS ..2
1.4 COOPERATION ...3

2. CRAWLING STRATEGIES .. 5

2.1 TERMINOLOGY ..11

3. HERITRIX.. 13

3.1 CRAWLCONTROLLER ..14
3.2 TOETHREADS ..15
3.3 THE SETTINGS FRAMEWORK ...16
3.3.1 Context based settings .. 17

3.4 THE WEB USER INTERFACE ..19
3.4.1 Jobs and profiles... 20
3.4.2 Logs and reports... 22

3.5 FRONTIERS ..23
3.5.1 HostQueuesFrontier ... 27
3.5.2 BdbFrontier .. 28
3.5.3 AbstractFrontier ... 29
3.5.4 Making other Frontiers .. 30

3.6 URIS, UURIS, CANDIDATEURIS AND CRAWLURIS.................................30
3.7 THE PROCESSING CHAIN ..33
3.8 SCOPES ..36
3.9 FILTERS ...37

4. THE OBJECTIVE ... 39

4.1 LIMITING THE PROJECT..41

5 DEFINING AN ADAPTIVE REVISITING STRATEGY 43

5.1 DETECTING CHANGE ...47

6. INTEGRATION WITH HERITRIX ... 52

6.1 CHANGES TO THE CRAWLURI ..54
6.2 THE ADAPTIVEREVISITINGFRONTIER ...55
6.2.1 AdaptiveRevisitHostQueue ... 65
6.2.2 AdaptiveRevisitQueueList... 70

 iv

6.2.3 Synchronous Access.. 70
6.2.4 Recovery ... 71
6.2.4 Frontier features not implemented ... 73
6.2.5 AbstractFrontier ... 74

6.3 NEW PROCESSORS ...76
6.3.1 ChangeEvaluator.. 77
6.3.2 WaitEvaluators ... 79
6.3.3 HTTPContentDigest ... 82

6.4 USING HTTP HEADERS ...83

7. RESULTS.. 85

8. UNRESOLVED AND FUTURE ISSUES 89

9. ACKNOWLEDGEMENTS... 94

REFERENCES... 95

 v

Tables

Table 1 Reliability and usefulness of datestamps and etags 50

Figures

Figure 1 The Frontier concept in crawling ... 6
Figure 2 Different emphasis of incremental and snapshot strategies 10
Figure 3 Heritrix’s basic architecture ... 14
Figure 4 Heritrix’s web user interface .. 19
Figure 5 Heritrix’s settings ... 21
Figure 6 CandidateURI and CrawlURI lifecycles 32
Figure 7 A typical processing chain ... 35
Figure 8 AdaptiveRevisitFrontier architecture 58
Figure 9 Frontier data flow ... 61
Figure 10 AdaptiveRevisitHostQueue databases 69

Figure 11 Fitting the AR processors into the processing chain 77

Figure 12 The UI settings for three WaitEvaluators 82

Figure 13 Modules setting with the ARFrontier set 88

 1

1. Background

Since the World Wide Web's inception in the early '90s it has grown at a

phenomenal rate. The amount and diversity of content has rapidly

increased and almost from the very start, the only way to locate anything

you didn't already have a link to was to use a search engine.

It is fair to say that search engines have been critical in the development

of the World Wide Web. They continually explore the web and index the

pages they discover. Exploring the web or crawling it as it's more

commonly known, is one of the keys to creating an effective search

engine. However, if you are crawling the web, you can do a lot more than

just index the contents. Soon people began to realize that the web isn't just

growing very fast, it is also constantly changing. In order to preserve what

is on the web now, you need to archive it.

1.1 Web archiving

The first serious attempts at archiving the World Wide Web began in

1996 when Brewster Kahle founded the non-profit organization Internet

Archive (IA) in San Francisco with the goal of creating a permanent

collection of the web, freely accessible to anyone [15]. In order to achieve

this, IA negotiated with a company called Alexa Internet. Alexa

conducted large crawls for data mining purposes and IA then received the

stored content after a certain amount of time had elapsed.

The content is stored on hard disks and made accessible via a tool known

as the Wayback Machine [21]. The Wayback Machine allows users to

browse the archive using URLs, much as you would browse the real web.

They can furthermore choose amongst the many versions of each URL

stored in the collection. Full text searches, like those offered by web

search engines, are not possible.

Around the same time as IA began its collections, Sweden's national

library began a project, Kulturarw
3
, to collect all Swedish webpages,

essentially creating a snapshot of the Swedish part of the web. The goal

being to preserve them for future generations [22]. At the same time in

 2

Australia, work began on more selective archiving of hand picked web

sites [23].

Soon, many other national libraries were also either experimenting with

web archiving or actively engaged in it. The web was becoming of ever

increasing importance in daily life and increasingly held information that

was not available elsewhere.

1.2 Legal deposit

Traditional legal deposit laws require that for all books published in a

country, some number of copies be handed over to the national library, or

its equivalent, for long term preservation. This tradition traces it origins

back to the great library of Alexandria. In Iceland the earliest legal

deposit laws date back to 1662 when a royal decree was issued that two

copies of every book printed in the country’s only press should be handed

over to the king of Denmark [15].

Legal deposit laws continued to develop over the course of the next few

centuries. In 1977 they were extended to cover not only printed material,

but also pre-recorded audio. This precedence of widening the scope of

legal deposit laws was continued with the most recent legislation from

2003. They now cover not only printed material and analog and digital

recordings (compact disks) released, but also digital material on the web

[15].

Most people don't realize just how extensive the legal deposit laws are.

Almost anything printed in volume at a printing press should be handed

in. This doesn't just include books and magazines, but also pamphlets and

various material intended for mass advertising via mail.

1.3 Electronic legal deposit laws

Legal deposit of digital media is commonly referred to as electronic legal

deposit to separate it from traditional legal deposits. While solid media,

such as CDs and DVDs can be collected with traditional methods,

collection of content made available on the web can not. It is simply

infeasible to require everyone who puts information on the web to also

hand over a copy to the national library.

 3

The basic reason for this is simple; there are a lot of people creating a

great deal of content. With traditional material, the responsibility of

complying with legal deposit laws can be placed on the (relatively) few

replication companies. Whether they print books or press CDs it is clear

who is responsible. With the web, the replication has essentially been

taken out of the equation.

People put content on their websites and replication occurs as other

people access the website. One might argue that the Internet Service

Provider or hosting company should be responsible for delivering the

content for legal deposit, but that would place a considerable and unfair

burden on them.

The point is that the only way to collect web based material is to go and

get it. This is why many national libraries have been working on web

crawling and archiving.

It varies from country to country exactly what parts of the web should be

archived. In Iceland the law extends to "all web pages and other data –

that are published or made available to the public on the Icelandic part of

the World Wide Web, i.e. the national domain .is, as well as material

published on other top level domains in Icelandic or by Icelandic

parties."[19] The basic assumption here is that we can not know what

material may be of value in the future, so we try to capture all of it or at

least as much as possible. Others choose to selectively crawl parts of the

web, based on some criteria or topic.

1.4 Cooperation

In the summer of 1997, the national libraries of the five Nordic countries

began to cooperate informally in the collection and future preservation of

each country’s web. This cooperation was fomalized in 1998 and in 2000

they launched the Nordic Web Archive [24] project. Its goal was to create

an access tool for the web collections. This project continued until the end

of 2003 when the NWA software was released under an open source

license.

In July of 2003, 11 national libraries, along with the Internet Archive,

founded the International Internet Preservation Consortium (IIPC) [25].

 4

Its mission is to "acquire, preserve and make accessible knowledge and

information from the Internet for future generations everywhere,

promoting global exchange and international relations" [26].

The IIPC began work on several fronts to clarify the issues and put forth

requirements for the tools needed to achieve its goal. One of the

requirements put forward, were those for a web crawler, suitable for

harvesting and archiving the World Wide Web in a consistent manner.

The IIPC was however not able to jointly undertake the task of

developing such a tool, despite some interest. Therefore, the Internet

Archive chose to push ahead with its own web crawler project, Heritrix.

Once this became clear, the national libraries of the Nordic countries

(NNL) wanted to put their support behind the Heritrix project. NNL

ultimately decided to send two developers to work on-site with the

developers at the Internet Archive in San Francisco. The developers they

sent were John Erik Halse of the National Library of Norway and Kristinn

Sigurðsson of the National and University Library of Iceland.

The advantages of providing this form of support were many. For one, it

would bring important technical expertise back home once it was

completed. Having men on-site, rather than working remotely, would also

avoid the many troubles inherent in distributed projects, reducing the load

in project management.

The requirements document created by the IIPC for a web crawler was

used as a basis in the Memorandum of Understanding signed by the IA

and the NNL. It was clear from the start that not all of the requirements

could be met within the timeframe given and so they were prioritized

based on what the NNL felt were the most critical needs and what could

realistically be achieved in six months.

Ultimately, this cooperation went extremely well. The only significant

feature not addressed, was the ability to crawl continuously in an

incremental manner. That is the subject we intend to tackle here.

 5

2. Crawling strategies

It is important to clarify what exactly a web crawler is. In its most basic

form, it is a piece of software that starts out with a (usually small) set of

URIs1, possibly just one. It then fetches the document that that URI refers

to and extracts links to other URIs from it. Those newly discovered URIs

are then fetched and links extracted from them and the cycle continues.

Of course it’s not quite that simple in practice. First off, link extraction

can be very difficult. HTML pages can usually be processed easily

enough. Just access the href attributes on the a tags and the src attributes

on some other tags like img. This in fact works quite well, but the

problem is that not all links are encoded in these fairly simple HTML tags

and attributes. For example, JavaScript may construct links on the fly.

Links may also be embedded in other file types, such as PDFs, Word

files, Macromedia Flash etc.

Another problem is politeness. Hammering a web server with requests is

unacceptable behavior for a web crawler and would most likely cause it to

be blocked by the servers in question. Some control over the number of

requests made is therefore needed. Enforcing a minimum wait time

between requests is a good way to do that, but unless you break it down to

individual web servers, it would slow your crawl to a, well, crawl.

Therefore, you need to maintain separate queues of URIs for each web

server. That in turn can be tricky, because the same host name might be

served by several web servers or one web server might manage several

host names! Typically politeness is either enforced based on host names

or IP numbers. Neither approach is perfect, but they generally limit the

stress placed on web servers sufficiently.

There are many other considerations, such as obeying the robots.txt rules

where they are found and correctly identifying character sets, especially

in HTML documents that use multibyte encodings. Not to mention

challenges related to automatically generated content, such as calendars

that effectively lead to infinite amounts of content.

1 URIs are a superset of the more familiar URL. Our use of the term URI is discussed in chapter

2.1.

 6

More pertinent to the discussion at hand is the ever changing nature of the

web. Crawling 'the web', is almost impossible. Any reasonable attempt

will have to compromise on the scope of the crawl, either by skimming

the top of websites, or selectively crawling only those sites that meet a

certain criteria.

The web is growing very fast. Trying to keep up with it is almost

impossible. Worse, it is also changing very rapidly. This means that

content quickly goes out of date. It also means that if there is a long wait

between the extraction of a link from a document and the time when that

link is visited, the contents may well have changed from those that were

being linked to. In other words, our archive will show a link between

documents A and B even if document A had originally meant to link to

content that was very different from what we eventually got when B was

visited. This means that web resources must be visited within a reasonable

amount of time from their discovery. During huge crawls, however, this

can be extremely difficult, as the discovery 'frontier' keeps expanding.

Figure 1. A conceptual illustration of the frontier concept in crawling.

Figure 1 illustrates the basic concept of a frontier. Initially the only URIs

within it are the seeds, i.e. the initial set of URIs. During each round of

processing more URIs are discovered and added to the frontier, pushing it

out. Obviously the graphic exaggerates the sizes and simplifies the

process. We know that the frontier will expand at varying rates depending

on the number of URIs found in downloaded documents and based on the

 7

speed and politeness restrictions for different servers. Thus the frontier

may rapidly expand on one website, while making less progress on

another. It does however illustrate well how the crawling focus moves

slowly away from the seeds, moving outwards with the frontier.

If there is no limit placed on the frontier it will continue to expand

indefinitely or until hardware resources are exhausted. As we noted

above, the frontier's scope will most likely be reduced, either by limiting

its depth into each website, or limiting the number of websites. Possibly

both.

The reasons for this are simple. We need to end the crawls at some point

in order to repeat them. The Web’s ever changing nature requires that

crawls be repeated within a reasonable timeframe (typically within

months, possibly much less). We generally do not have the luxury of

crawling the same scope indefinitely. Limiting the number of documents

downloaded from a single website is a common trade-off to allow more

sites to be covered.

We are now at the topic of this chapter; crawling strategies. Depending on

the purpose behind each crawl, there are a number of different crawling

strategies. Each strategy has its own pros and cons and the choice of

which to use must take into account the purpose of the crawl. What is the

goal? To crawl the maximum number of sites within two months? To

crawl a fixed part of the web (like a country domain) as thoroughly as

possible within as short a time as possible? To crawl a small number of

websites as often as possible with the aim of capturing every detail?

The ultimate goal can vary considerably. The ones mentioned are

common types of crawls, but within each scenario there are many possible

permutations. Restrictions on the type of documents to download, time of

day when crawling can be performed, etc.

The Heritrix development team highlighted four types of crawls that they

believed Heritrix needed to be capable of [1].

• Broad crawling
Large, high-bandwidth crawls. The number of sites and pages collected

are as important as the completeness of coverage for each site. An

extreme broad crawl would be one that tried to capture the entire web.

 8

Typically broad crawls will favor limiting their coverage of individual

sites in order to be able to crawl a greater number of sites. Trading off

website completeness in favor of getting better coverage of a larger

section of the World Wide Web.

• Focused crawling
Small to medium sized crawls using a selection criterion to limit the

scope of the crawl. I.e. to restrict the frontier to a predetermined part of

the web. This can be done in a variety of ways. For example, by using a

list of allowed domains or search downloaded documents for keywords

and stop performing link extraction once they are not found. The

keywords would presumably be related to some topic and be rare

enough to actually limit the scope. Ideally the crawls should achieve

high completeness within their scopes.

• Continuous crawling
These crawls are different from the above in that URIs are not simply

'completed.' Instead, the crawler continuously revisits all URIs within

its frontier. This severely limits the speed with which the frontier can

grow as the crawler must split its time between revisiting URIs and

processing new ones. If we wish the revisits to always happen in a

timely fashion, this will eventually place a hard limit on the size of the

frontier where additional URIs can no longer be accommodated without

falling behind on revisits. Continuous crawls therefore need to be

carefully scoped.

• Experimental crawling
This category encapsulates the myriad of atypical crawls that may be

carried out to experiment with new techniques, protocols etc.

The above definitions do not exactly describe crawling strategies but

rather crawling purposes. When we examine the strategies for broad and

focused crawling we quickly note that a very similar approach can be

used. The main difference lies in how the crawl is scoped. But they both

use a basic snapshot strategy.

A snapshot strategy is what we have already described. Start with the

seeds and work outwards. Once processed a URI will not come up again.

If rediscovered it is rejected as a duplicate. Thus the crawl spreads out

from the seeds and at any given moment the only activity is at the edge of

its frontier.

 9

Revisiting using a snapshot strategy relies on repeating a crawl. That is,

once a crawl is complete, and this may take days, weeks and even months,

the crawl is started again from the seeds. The web will, of course, have

changed so the new crawl will not proceed in an identical manner, but

should roughly cover the same content as the previous one.

Each iteration of a crawl captures a single snapshot of the web at that

time, although in reality ‘that time’ varies from one document to the next.

Stacked up these snapshots can provide a coarse picture of the changes

that occur on the web over time. But unless the scope is quite limited

allowing for frequent recrawling, a lot of intermittent changes will be

missed. On the other hand if the scope is limited enough to allow, say,

daily crawls, this will lead to a huge number of duplicates, since a lot of

the documents within the scope will not have changed.

A snapshot strategy is therefore good at broad and focused crawls and can

potentially capture a very large scope. However, it is not very good at

capturing changes over time, or, in other words, performing a continuous

crawl.

For continuous crawling we need an incremental strategy. The goal of

continuous crawls is not (as such) to capture the largest possible scope or

to crawl websites as thoroughly as possible. The objective is to capture

the changes that occur on the website accurately. This means that within a

single 'crawl' each URI will be visited multiple times. This is in stark

contrast to snapshot strategies which assume that each URI will only be

visited once during each crawl and between crawls all information is lost

and new ones begin from the seeds.

Crawls using an incremental strategy will typically last longer, in fact

ideally there is just one 'crawl' that runs as long as we remain interested in

collecting the websites within its scope. It begins like a snapshot crawl

and the frontier slowly expands as new URIs are discovered. Rather than

discarding URIs that have already been crawled they are requeued. This

means that the queue of waiting URIs can never decrease in size and will

in fact, if the crawl's scope is large enough, continue to grow indefinitely.

This brings us back to the need for clearly defined scopes for incremental

crawls. Assuming that the scope is sufficiently limited, the crawl

eventually reaches a balance where it is cycling through the pool of URIs.

 10

It retains information about past visits to the URIs allowing for duplicate

detection and elimination.

However, other than that we haven't really achieved very much beyond

what repeating a snapshot crawl would give us. In order to better utilize

our resources we want to differentiate between URIs and visit them only

as often as they change. We'll discuss the difficulties inherent in this later,

but this kind of adaptation to the changes on the web allows an

incremental crawl to make maximum use of its resources.

Figure 2. The different emphasis of incremental and snapshot strategies

Figure 2 illustrates how the two crawling strategies differ in their

emphasis. Of course you can do multiple snapshot crawls to also cover

changes over time, as you could have many incremental crawls running to

cover a larger section of the web.

In practice the two strategies complement each other. For example, when

archiving a country domain, a snapshot could be taken of the entire

domain at regular intervals. Perhaps 2-4 times a year. This does a good

job of capturing the majority of the web without too many duplicates. The

myriad of websites, such as news journals etc. that change daily could

 11

then also be archived using an incremental crawl that was limited to just

those sites, and possibly just the 'top' of those sites. That is, ignoring their

largely static archives and leaving those for the periodic snapshot crawls.

With sufficient resources it is possible to create an incremental crawler

that can capture the entire web, thus removing any need for snapshot

crawls. This is however, beyond the expected abilities of IIPC members.

It is probable that large commercial outfits that crawl the web as a key

part of their business will try to do this. However little information is

available on the details of their crawls, and even if there were, it is

doubtful how it would apply to archival crawling using more limited

resources.

2.1 Terminology

Crawl. It is worth restating exactly what meaning we apply to this key

concept. A crawl captures the processing of a set of seed URIs, link

extraction, the processing of discovered URIs etc. until the scope has been

exhausted. Each crawl starts without any information about prior crawls.

Of course, experiences with prior crawl may have led to changed settings,

but the crawler has no memory of those crawls as such.

A web crawler is then a software system capable of performing a crawl.

We have specified two crawl strategies, snapshot and incremental.

Snapshot crawling is also sometimes known as periodic crawling [10].

The two crawl types, broad and focused, that Heritrix [1] offers are both

based on a snapshot strategy. Frequently snapshot crawling and broad

crawling is used interchangeably. Similarly incremental crawling and

continuous crawling is often used interchangeable and even sometimes

referred to as iterative crawling, although the last is to be discouraged.

Documents containing URIs are said to link to those documents that the

URIs represent. Sometimes resources on the web are not complete

'documents' in the traditional sense, they require the loading of additional

resources to fully render and these resources are specified by URIs.

Typically this involves loading images in HTML pages. If the URI's

placement within the document where it was discovered indicates that it is

a resource required to render the originating document, that link is

considered an embed and we say that the document embeds the resource

 12

the URI refers to. The distinction between links and embeds is important

since we will often want to treat embeds differently, in order to ensure

that we get all the parts of the logical document, e.g. an HTML page,

represents.

This text also frequently refers to URIs. Uniform Resource Identifiers are

a superset of the more familiar URLs or Universal Resource Locators and

both refer to online resources, typically web pages and other web content.

Heritrix, while only supporting URLs at the moment uses the more

generic URI both in documentation and in implementation for future

proofing.

The terms process, fetch, download and crawl a URI are largely

synonymous. Processing and crawling refer to the entire process of

downloading a URI from the web, performing link extraction, consider

preconditions etc. and are slightly large in scope. Crawling is slightly

more abstract then processing, which tends to consider the actual software

processing. Fetching and downloading generally refers to just the physical

act of downloading the resources over the internet and are used

interchangeably.

Similarly, the terms URI, document, file and resources usually refer to the

same thing. It is an internet resource identified by a URI, typically a URL

referring to a webpage or other similar resource. The URI is the address

or handle for the object and that term is generally used to abstract the type

of resource in question, as they type quite frequently irrelevant.

Document, file and resource are used interchangeably, we use those terms

typically, when referring to some action on or property of the actual

resource.

For most technical terms we prefer to use the same conventions as

Heritrix. For example, a scope is a section of the World Wide Web that is

to be crawled. This is also sometimes referred to as a segment. In the

next few chapters we'll encounter many more such terms. While the

meaning of most of them will either be clear from the context or explicitly

explained, since we strive to adhere to Heritrix's conventions, the Heritrix

user manual[8] and developer's documentation[7] are ideal sources for

further clarification if needed.

 13

3. Heritrix

Heritrix is the Internet Archive's (IA) open-source, extensible, web-scale,

archival quality web crawler project [1]. The project was aided by two

developers sent to work with IA in San Francisco by the National

Libraries of the Nordic countries. This cooperation lasted for six months

starting in late October 2003. The IIPC [25] had come up with a

document detailing the desired behavior in a web crawler suitable for the

kind of archival quality crawls that its members were interested in and

this was used as a basis for determining what features to focus on. This

included, among other things advanced configuration options allowing for

great flexibility in the software.

It is generally understood that the demands placed on a web crawler

change rapidly, just like the World Wide Web. Thus the emphasis on

making this an open-source project to allow third parties to customize

and/or contribute code and ensuring that the basic Heritrix framework is

extensible so that such additional work could be integrated easily.

In order to achieve this, the Heritrix software can be divided into two

parts; framework and pluggable modules. The framework provides

generic control over a crawl. This includes providing a user interface,

managing the running processes and an elaborate settings framework to

simplify how crawls are configured. For the implementation of a crawl, a

series of pluggable modules can be used to dictate each step. They are

divided into four groups:

• Frontiers

• Processors

• Scopes

• Filters

Heritrix provides enough solid implementations of these modules to run a

reasonably large focused crawl. Figure 3 illustrates how these components

fit into Heritrix’s overall architecture.

 14

Figure 3. Heritrix's basic architecture [1]

3.1 CrawlController

The CrawlController object is at the core of the Heritrix framework. It

essentially manages each crawl. When a crawl is being created (via the UI

or command-line options) a CrawlController object is created. It in turn

reads the settings provided to it and instantiates all the modules needed

for the crawl. It also manages the ToeThreads (see 3.2), creating them and

setting them to work on the Frontier.

All of the primary logs that Heritrix creates are also created here and

other components access them via the CrawlController. In fact, almost

every component has access to the CrawlController, either directly or via

the settings handler which is discussed later.

 15

Once the CrawlController has set everything up it waits for instructions to

start the crawl. Once started it can be instructed to effect a pause,

resumption or a termination of the crawl. This is generally only used by

the UI. To enforce these orders it issues instructions to the relevant

components.

When writing modules for Heritrix interactions with the CrawlController

are rarely of any great significance. As it implements generic services,

any new modules are likely to utilize them in a similar manner to existing

code, i.e. accessing the logs and firing off events. It is just important that

they (especially frontiers) correctly implement the methods that the

CrawlController uses to control the crawl.

3.2 ToeThreads

Heritrix is multithreaded and uses a pool of worker threads to process the

discovered URIs. These worker threads are called ToeThreads. The

Heritrix FAQ [17] explains the logic behind this unusual name. "While

the mascots of web crawlers have usually been spider-related, I'd rather

think of Heritrix as a centipede or millipede: fast and many-segmented.

Anything that 'crawls' over many things at once would presumably have a

lot of feet and toes. Heritrix will often use many hundreds of worker

threads to "crawl", but 'WorkerThread' or 'CrawlThread' seem mundane.

So instead, we have 'ToeThreads'."

ToeThreads request URIs from the Frontier. Assuming one is available,

the Frontier will issue a URI. The ToeThread then applies a series of

processors to the URI. Once all configured processors have been applied,

the URI is returned to the Frontier and the ToeThread requests another

URI to process.

It is the Frontier’s responsibility to pass the ToeThreads signals to pause,

resume and terminate crawls. Typically, this is done when a ToeThread

requests a new URI. The frontier can then either throw an

EndedException or make the ToeThread wait until the crawl can be

resumed.

 16

3.3 The Settings Framework

Heritrix boasts a very comprehensive and flexible settings framework. It

allows any module to publish a variety of configurable parameters.

Furthermore, the values of these parameters can vary based on the current

host and several other criteria.

Any module that needs to publish configurable parameters extends a basic

configuration class, ModuleType. The ModuleType implements a

javax.management.DynamicMBean [18] interface [7]. This means that the

objects can be easily queried as to what settings they use.

There are three basic 'Types' settings in Heritrix: ComlexTypes,

SimpleTypes and ListTypes.

The ComplexType may contain an array of other settings, including,

possibly, other ComplexTypes. Variations on this include the MapType

and the ModuleType which is the basic class for all pluggable classes in

Heritrix.

SimpleTypes are settings that do not contain other settings. In other words

strings, integers and such. It is capable of handling any Java type, but in

practice it is used primarily for strings, numbers and booleans. It can also

be assigned an array of legal values. The settings framework then

enforces those restrictions.

The ListType behaves somewhat like a SimpleType, in that it does not

contain other settings, but does contain a variable number of items.

Implementations for lists containing Strings, Integers and Longs are

provided.

By subclassing ModuleType, components can easily add configurable

settings by constructing the settings types they need and adding them to

their 'definition' in their constructor. A simple code example from the

Heritrix Developers Documentation [7] follows:

public final static String ATTR_MAX_OVERALL_BANDWIDTH_USAGE =
 "total-bandwidth-usage-KB-sec";
private final static Integer DEFAULT_MAX_OVERALL_BANDWIDTH_USAGE =
 new Integer(0);
...

Type t;

 17

t = addElementToDefinition(
 new SimpleType(ATTR_MAX_OVERALL_BANDWIDTH_USAGE,
 "The maximum average bandwidth the crawler is allowed to use.\n" +
 "The actual readspeed is not affected by this setting, it only " +
 "holds back new URIs from being processed when the bandwidth " +
 "usage has been to high.\n0 means no bandwidth limitation.",
 DEFAULT_MAX_OVERALL_BANDWIDTH_USAGE));
t.setOverrideable(false);

The code example illustrates the adding of an Integer setting, named

"total-bandwidth-usage-KB-sec". Two constants are created for the

settings name and default value. Declaring these as constants is

considered good practices in the Heritrix project, rather than using the

values directly in the constructor.

The constructor then invokes addElementDefinition() which is inherited

from the settings framework’s ComplexType class. The method accepts

any Type object. Once added, the setting that the Type object stands for is

a part of the component and the settings framework handles reading and

writing the information to disk. The user interfaces also accesses these

settings through the framework.

Several operations on the types allow for a good deal of further

customization. It is possible to specify if the attribute is overrideable

(more on that in Context based settings below) and if it is an expert

setting (UI hides them by default). It is also possible to set constraints on

the input, for example by using regular expressions that the input must

match.

This means that any module added to Heritrix can easily expose any of its

settings. Reading and writing it to disk is managed for it, and the user

interface automatically adds it to its configuration pages. All the modules

need to do is to extend the ModuleType object, or another object that does

so. This greatly simplifies writing pluggable modules for Heritrix.

3.3.1 Context based settings
When a module reads from a setting, it can either do so in a 'global'

context or based on a URI. Consider the following code example:

try {
 int value = ((Integer) getAttribute("setting", curi)).intValue();
} catch (AttributeNotFoundException e) {
 // Handle AttributeNotFoundException
}

 18

In the above, the value of attribute setting is retrieved. The getAttribute()

method accepts on one hand the name of the attribute and on the other

hand a context object (curi). If the context is null then this relates directly

to the base settings. However, if a URI (or rather a CrawlURI as we'll see

later) is provided then the value of the setting may vary depending on the

URI.

This is because the Heritrix settings framework uses an elaborate system

of overrides based on host names. Basically, when looking up the settings

for the URI "bok.hi.is", the settings framework first checks if it has been

specified at the narrowest level, i.e. "bok.hi.is", if nothing is found there

we recurse down to "hi.is," then "is" and finally check the global settings.

All settings have a global value, if none is found when reading the setting

from disk the default value specified for it is used. This recursive lookup

is implemented in such a way that no additional overhead is incurred.

Thus any setting or attribute that a module has, can have different values

based on the URI it is handling at the time. In fact, the settings framework

also has ‘refinements’ that work very much like the overrides. They base

their decision on whether to return a different value from the global one,

based on configurable criteria. These criteria may, or may not depend on

the URI. Available criteria include one that uses time of day, another that

uses the port on the host and a third that uses a regular expression match

against the URI.

Refinements can be made on either the global level or any level of

overrides. They are not inherited to overrides, so that if a refinement is

specified on a global level and an override is created, the override takes

precedence. Another refinement can then be made to the override.

The refinements use special criteria to decide when the refinement values

should be used instead of the default values. These criteria are fixed and

new ones can not be added in a pluggable manner. New criteria require a

change in the Heritrix framework. This effectively places them off-limits

as far as customization goes, unless the objective is to get the new criteria

accepted as a part of the Heritrix framework.

In order to take advantage of these features, modules must supply a URI

to the getAttribute() method. If the setting in question should not be

 19

overrideable, it is possible to specify that when the Type object is created.

The user interface will take note of this and not provide the option to

override or refine the setting.

Furthermore, these settings can be changed at run time (although it is

generally wise to pause the crawl when doing that). The user interface

immediately updates the settings objects and they are written to disk. If

modules wish to capture changes to the settings, and that is generally

preferred, they need to ensure that they always access them via the

getAttribute() method since using a stored class variable means that the

change would go undetected. The nature of some settings makes it

illogical for them to change at run time, such as the location of settings

files. Modules can simply ignore changes to them if this is the case.

To summarize, the settings framework allows the operator to fine tune

any exposed settings. As we see later, this is a very important property.

3.4 The Web User Interface

Figure 4. Heritrix's web user interface. Console – main screen.

While it is possible to launch crawls via Heritrix's command line, using

existing XML configurations files, the software also provides a

comprehensive user interface that is accessible via a web browser.

 20

Heritrix uses an embedded Jetty server [27] to provide this functionality

and thus the UI is closely integrated with the underlying engine.

The UI allows the operator to monitor crawls in progress, create new

crawl jobs and profiles, review logs of ongoing and past crawls and

provides access to comprehensive reports on ongoing crawls.

More importantly, the UI allows the operator to affect an ongoing crawl.

This is done by manipulating the CrawlController and/or the settings. In

addition to pausing, resuming and terminating ongoing crawls, the UI

allows the operator to change the settings used for the ongoing crawl. Not

all changes are allowed, for example, it is not possible to change what

components are used. However, the configurable parameters that are used

to set their behavior can usually be changed on the fly. For some changes

it is recommended that the crawl be paused while they are made.

3.4.1 Jobs and profiles
The concept of 'jobs' in Heritrix is tied tightly to notion of 'crawls.' A job

encapsulates a single crawl. That is to say it contains all the settings

needed to properly configure a crawl in Heritrix, plus useful state

information about the crawl. Profiles are essentially the same as jobs, in

that they contain all the settings needed to configure a crawl, but are

considered to be templates for jobs.

Typically, when creating a new crawl a profile that describes it is created.

Using that profile numerous jobs can be launched, with varying settings

and seeds if needed. Thus each crawling strategy being utilized can have

its own profile, saving considerable time when launching new crawls.

All jobs and profiles are created based on existing profiles or jobs

(Heritrix provides a simple default profile). Thus the user interface clones

the settings of the parent and allows the user to edit it. The actual settings

are stored on disk in an XML file. While it is possible to edit them

directly the user need never bother with it if using the UI. This is because

the UI enables the user to edit any part of it and also does a good deal of

error prevention.

The most important part of editing a job or profile is done on the 'Settings'

page (Figure 5). The actual settings framework arranges the modules into

a tree-like structure with an object called CrawlOrder at the root. This

 21

allows the UI to recursively make its way down the settings tree, printing

out the configurable attributes of each module. The UI creates combo

boxes where legal values have been defined or Boolean values are

expected and also handles simple lists, allowing modules to specify

almost any type of setting. When editing profiles the UI will warn if any

restrictions have been placed on the input and are not being met. It will

not allow such input in jobs.

Figure 5. Heritrix’s settings

The UI then offers two pages to edit which modules are being used. The

first, "Modules" allows the user to set which frontier implementation to

use, which scope to use and what processors should make up the

processing chain and in what order. New modules can easily be added by

putting JAR files in Heritrix's class path and ensuring the .options files are

included in them [7].

The "Submodules" page allows the user to add filters to any module that

accepts filters. All processors do this, and filters can be placed on them to

make URIs skip over them when the filter criteria are met. Scopes

 22

generally also allow filters and any module can opt to allow specialty

filters. It also enables the user to set URL canonicalization rules. These

are applied to discovered URIs to, for example, strip session IDs, etc.

Finally, the UI allows the user to specify overrides and refinements for

the settings. If an override or refinement is created, the UI offers the

option of entering new values for any overridable setting. It also allows

the addition of further filters; other modules can not be added and no

modules can be removed in an override.

It is worth pointing out that each instance of Heritrix can (and usually

does) manage several jobs at once, however only one of them can be

active, or crawling. That is only one crawl can be actively performed at

once, all other jobs wait in a simple queue. Jobs are also retained after

completion to allow access to their information and so that new jobs can

be created based on them.

3.4.2 Logs and reports
The UI also gives access to most of Heritrix's logs i.e. all the logs that are

related to one crawl. There is also a general log to capture various outputs

that are not directly related to a single crawl job. This log also captures

some output from third party modules used by Heritrix.

The most interesting of these logs are the crawl.log and progress-

statistics.log.

The crawl.log contains a single line for each URI that is processed, unless

the processing leads to a retriable error, such as missing preconditions

(DNS lookup or robots.txt information). The log contains a timestamp,

the processing result code2, size of the downloaded document, the

document URI, the URI of the document that contained the link to this

URI and a few other items. At the end of this line is an annotation field.

This section allows modules to write arbitrary data about this URIs

processing to the log.

The progress-statistics.log is compiled by a StatisticsTracker object.

Supposedly it should be pluggable, but in practice this has proven

difficult since the UI relies on this object's presence. It receives

2 The result code is the HTTP status code if one was received, otherwise an appropriate code

determined by Heritrix. See [8] for an overview of defined codes.

 23

notifications about the completion of each URI processed and at fixed

intervals prints progress statistics that include how many URIs have been

discovered, crawled, the number of document processed per second etc.

Other logs are primarily focused on capturing various errors. The UI can

also flag alerts that have been raised, so most serious errors during a crawl

should be clearly noticeable.

Using the StatisticsTracker, the UI is also able to provide a variety of

other information. Most of the information on the front, ‘Console,’ page

is from it. Each job also has a ‘Crawl report’ that contains major progress

data and details on the number of documents per HTTP status code, host

and file type.

Additionally, the UI allows access to several module specific reports that

are only accessible while a crawl is in progress. The most important is the

Frontier report, which details the status of the frontier. The exact nature of

the report varies based on the implementation of the frontier. Other such

reports include a Threads report and Processors report, the latter

interrogates all the processors for their individual reports and displays the

combined results.

Together this means that the UI provides excellent means of monitoring

the progress of any crawl. Once a crawl has ended the logs remain

available, but most other info is dumped to disk as text reports and are not

accessible directly from the UI.

3.5 Frontiers

The Frontier being used is the most essential part of each Crawl. While

the CrawlController manages generic details about the crawl, such as

access to logs, creating ToeThreads etc., the Frontier manages the state of

the crawl.

In our earlier discussion of crawling strategies we discussed the abstract

concept of a URI frontier, i.e. any URI behind it has already been

discovered, the ones at the edge of it still need to be processed and we

have yet to encounter the ones outside it. Frontiers in Heritrix are so

named because they effectively codify this concept.

 24

Each Frontier knows what URIs it has encountered. As they are

discovered (or loaded as seeds) they are scheduled with the Frontier. It

then maintains a list of what URIs remain to be crawled and in what

order. The ToeThreads request URIs from the Frontier, process them,

schedule discovered links and return the processed URI back. This means

that the Frontier object entirely controls the progress of the crawl by how

it issues, or does not issue, URIs.

The Heritrix framework does not provide one definitive Frontier. Rather,

it specifies an API for Frontiers via an interface. It then provides some

useful implementations of these, but allows for additional Frontiers being

created to replace them. Frontiers must implement this interface, but they

should also subclass the ModuleType class to gain access to Heritrix's

settings framework, discussed earlier.

Let's quickly review the most essential methods that the Frontier interface

specifies, with an eye towards understanding the requirements placed on

Frontiers.

The two key methods are next() which returns a URI for crawling, and

schedule() which accepts a URI and schedules it for later crawling.

Additionally the finished() method is used to signal that the processing of

a URI that the Frontier issued has been completed.

The entire responsibility of ordering the scheduled URIs is placed on the

Frontier. It must, for example, implement a politeness policy to prevent

Heritrix from crawling any web server too aggressively. This typically

means maintaining numerous separate queues for each politeness unit,

usually a host name or IP number so that URIs from it can be withheld for

a while after each time the web server is contacted. If separate queues

were not maintained the crawl would be unable to proceed on other web

servers during these politeness waits.

The exact implementation of how a Frontier issues scheduled URIs

dictates the crawling strategy. Any Frontier can order its URIs based on

any criteria that suits the purposes of the particular crawl in progress. Use

of some relevancy indicator to sort URIs for processing could, for

example, be used on topical crawls3. Also it is common to quickly issue

URIs discovered embedded in documents, that is pictures and similar files

3 Topical crawls are crawls focused on collection pages related to a specific topic or event.

 25

displayed within the originating document, rather than links to separate

files.

The Frontier also maintains a number of running statistics, accessible via

several methods specified by the Frontier interface.

• Discovered URIs

Total number of unique URIs that have been scheduled.

• Queued URIs

The number of URIs waiting to be issued.

• Finished URIs

Total number of URIs that have been issued and finished

processing. URIs that are returned with retriable errors don’t count

as they are reinserted into the queue (and thus the total number of

queued URIs)

• Successfully processed URIs

The total number of URIs that where processed successfully. That

is, a response was received from the web server. The response

may have been a 404 or other HTTP error codes.

• Failed to process URIs

Total number of URIs that could not be processed for some

reason. Typically the web server could not be contacted, but there

are many other possible reasons.

• Disregarded URIs

The number of URIs that have been disregarded for some reason.

Usually this is because a robots.txt rule precludes a fetch attempt.

• Total bytes written

The sum total of the byte size of all downloaded documents

A lot of this data is also maintained by the StatisticsTracker and the UI

uses it to access these values, but during the crawl, the Frontier provides

the most up-to-date information on these values.

While most of these statistics are fairly straightforward, some, the number

of queued URIs in particular, assume a snapshot based crawl strategy.

After all, with an incremental strategy, there are always (in theory) an

infinite number of URIs waiting to be processed (if we count not only the

different URIs, but also the many revisits). In practice the best approach is

to simply equate the number of queued URIs with the number of

discovered URIs. We'll discuss this in more detail later. It is brought up

 26

here simple to point out the fact that the Frontier interface was developed

at a time when only a snapshot based Frontier implementation existed and

it bears some evidence of that.

The Frontier interface specifies several methods to allow the

CrawlController to notify the Frontier of a change in the crawl state, that

is to pause, resume and terminate the crawl or pause(), unpause() and

terminate() respectively. The Frontier is then responsible for obeying the

new state by withholding URIs, resume issuing URIs or throwing an

EndedException whenever a ToeThread requests a URI.

The Frontier is responsible for firing off CrawlURIDispostionEvents

whenever a URI completes processing. This is done via a method on the

CrawlController. This allows any interested module to monitor the

progress of the crawl. Mostly used by the StatisticsTracker.

There are also a number of methods that deal with monitoring the Frontier

and manipulating it at run-time. Of the former, the report() method is the

most significant as it should return a human-readable report that is

displayed in the UI. The oneLineReport() method is a much abbreviated

version of this. There is also a complicated system for iterating over all

the URIs within the Frontier.

For manipulating the Frontier there is a way to delete URIs, either by

name or regular expression. There is also a method for loading recovery

files if the Frontier writes a transaction log that can be replayed.

While it is not enforced by the Frontier interface, the Frontier should

apply URI canonicalization rules. URIs often contain meaningless data,

such as session IDs that need to be removed. The canonicalization system

that Heritrix has applies user specified fixes to them. However, while the

canonicalizers themselves are handled by the framework, the Frontiers

must apply them to the URIs. This is typically the first thing done after

the schedule() method is invoked and before the URIs is evaluated for

existing duplicates.

This is not an exhaustive overview of all the things a Frontier handles.

Essentially, a Frontier directs the progress of the crawl and there is a lot

of things it can do. The above is most of what it has to do.

 27

3.5.1 HostQueuesFrontier
The HostQueuesFrontier was the first Frontier created for Heritrix. It has

since been deprecated, but its design greatly influences the ones that have

followed it.

As the name implies it is based around a number of host queues. That is

each host has its own named queue. As discussed earlier this is a good

way of enforcing politeness.

The HostQueuesFrontier queues were simple first-in-first-out queues that

were custom written for Heritrix, including its disk backing ability. That

is, writing parts of the queues to disk.

Each host queue was assigned a state, initially the states were:

• Ready

URIs from it can be issued.

• Snoozed

URIs from it can not be issued until the 'wake up' time is reached.

• Empty

Does not contain any URIs.

• Busy

A URI from this queue is currently being processed.

But as the crawling strategy became more complex the following were

slowly added:

• Inactive

An inactive queue, while having URIs that are ready for crawling,

is being held back. This is to improve broad crawl behavior. I.e.

focus on a limited number of queues at a time, just enough to fully

utilize the machine resources. This helps ensure that URIs from

the same host are crawled within a more reasonable timeframe

than round-robining through all the host queues.

• Frozen

In practice this isn't used. But the ability was added to mark

queues as frozen to signify that they have been put aside. That is,

the crawler will not continue with them until the operator

intervenes. This is to stop processing of hosts that exhibit some

form of bad behavior.

 28

The HostQueuesFrontier is a simple snapshot Frontier. Once a URI has

been processed, only a hash of it is stored and new URIs are compared to

the list of existing hashes. If no conflict is found, they are scheduled. If

there is a conflict, the new URI is considered to be a duplicate and is

discarded. The only exception from this is with robots.txt and DNS

lookups, they are repeated at fixed intervals. So URIs that are marked as

prerequisites are allowed to be scheduled again. This doesn't constitute a

real incremental strategy since the prerequisites are only recrawled if the

host they refer to is still being crawled. Then, once the existing

information expires on robots.txt or DNS information, this triggers the

rediscovery of the preconditions. A true incremental strategy would

revisit them as a matter of policy, not in response to this form of

rediscovery.

Despite the name, the ‘host queues’ need not be based on hosts. Queues

are keyed, or named, either by the host name of the URI, or its IP number.

To do this there are two QueueAssignmentPolicies. The

HostnameQueueAssignmentPolicy is the default one but the user can

configure the Frontier to use the IPQueueAssignmentPolicy instead. Any

newly discovered CandidateURI is fed to the configured policy and it

returns a queue key. This is stored in the CandidateURI and is accessible

via the get and set methods for class key. An interface, URIWorkQueue

defines these queues, and it accepts the class key.

One of the primary problems with this Frontier was the overhead incurred

by each queue. Each was represented by an object that required memory

and could not be backed out on disk without completely redesigning

them. This made truly broad crawls all but impossible since they would

exhaust the available memory at some point, as the number of

encountered hosts grew. This led to the development of the BdbFrontier.

3.5.2 BdbFrontier
The BdbFrontier relies on the Berkley DB Java Edition [9], for object

serialization, rather than the custom written queues of the

HostQueuesFrontier. The significant advantage inherent in this was that

the queue itself could be stored in the database, thus allowing for many

more queues. The limiting factor became disk space, which is much more

abundant than memory.

 29

By using the Berkley DB, the concerns of writing to and reading from

disk, including caching and other related issues, were effectively removed

from the Frontier and relegated to a third party tool that was written

expressly for the purpose of managing a large amount of data, further

improving performance. We will discuss the Berkley DB in more detail

later, in chapter 6.2.

Aside from the much improved handling of queues, the BdbFrontier is

very much like the HostQueuesFrontier and implements essentially the

same snapshot strategy. It does improve on several points, including the

ability to add a 'budget' for each queue. The cost of each URI is evaluated

based on the selected policy and once a queue’s budget is exhausted no

further URIs are crawled. Also, if using the 'hold queues' option, that is

focusing on a small number of queues at a time, the queues remain active

for a fixed amount of 'cost,' after which time they become inactive until it

is their turn again.

The cost/budget addition to the Frontier enhances the possibilities in

configuring broad crawls. As was discussed earlier, broad crawls typically

trade-off on the depth with which they crawl each site, in favor of

crawling more sites.

3.5.3 AbstractFrontier
The AbstractFrontier was developed alongside the BdbFrontier and is

meant to be a partial implementation of a generic Frontier. That is, it is

meant to implement those parts of the Frontier that are largely

independent of the crawling strategy being implemented. This includes, to

various degrees, management of numerous general purpose settings,

statistics, maintaining a recovery log and more. Included are numerous

useful methods to evaluate URIs etc. It also handles URI canonicalization.

The BdbFrontier subclasses the AbstractFrontier. The AbstractFrontier is

provided to simplify the creation of new Frontiers by doing all the routine

work here, allowing new Frontiers to focus on their crawling strategies,

rather than having to tackle all the mundane aspects of a Frontier.

Furthermore, this can simplify code maintenance in the future, both if a

change to the Frontier API is introduced, and also if new or improved

functionality is developed that should be applied to most or all Frontiers.

 30

3.5.4 Making other Frontiers
The BdbFrontier is the main Frontier that is provided with Heritrix. The

HostQueuesFrontier and a specialized version of it called

DomainSensitiveFrontier are considered deprecated.

Creating a Frontier need not be very complicated. In fact the Heritrix

Developers Guide [7] shows how a very simple, yet fully functional,

Frontier can look. At the most basic level, the Frontier is just a simple

FIFO queue. The example enforces global politeness, that is a pause after

each URI. This works, of course, but it isn't especially efficient. And that

is where the complication comes in; we need to create efficient Frontiers

that perform a crawl that conforms to our needs.

The BdbFrontier has focused on improving the performance of snapshot

crawls, whether they are focused or broad. In fact, it could also (and

perhaps better) be described as a snapshot Frontier. While it is certainly

possible that one might create another Frontier simply to improve on the

BdbFrontier's performance in snapshot crawling, that would, if successful,

typically make the existing Frontier obsolete.

However, we already know that snapshot crawling is not the only type of

crawling. This flexibility in Heritrix architecture that allows us to create

additional Frontiers means that we can implement new ones that are

optimized based on the demands of a different crawling strategy.

It is of course conceivable to create a Frontier that encompasses all

(known) crawling strategies. In fact the BdbFrontier already handles a

number of variations on the snapshot strategy. Doing that would however

risk trading-off performance in one type of crawl for the ability to

perform another type of crawl. In the best case scenario, while no

performance penalty is incurred, the code's complexity would increase

markedly, making the software far more difficult to maintain.

3.6 URIs, UURIs, CandidateURIs and CrawlURIs

Currently, Heritrix only supports URLs however it always uses URIs for

future proofing [7]. A URI class is provided in the Java Foundation

Classes [28] that can represents a URI in programs. This however has

some bugs and complies very strictly with RFC2396 [29] making it

unusable in practice.

 31

Instead, Heritrix uses a UURI, or "Usable URI" that subclasses the URI

class from the Apache Commons project

(org.apache.commons.httpclient.URI). The UURI class adds some

processing of the URI so that any UURI that is created successfully can

be assumed to be "useable." The URI must be legal and certain superficial

similarities are removed [7] (to improve duplicate detection).

This is only half the story. Heritrix frequently needs to attach a large

amount of meta-data to the URI. For this purpose two additional URI

classes have been introduced, they do not subclass URI or UURI, but

rather contain such an object.

The CandidateURI class is subclassed by the CrawlURI class. Roughly, a

CandidateURI object holds the data needed from the time a URI is

discovered and until it should be processed, the CrawlURI then adds the

data needed in order to complete the processing. Since many URIs are

rejected as duplicates or deemed out of scope, the use of an interim

CandidateURI is seen as a way to save memory. In practice this has been

limited. The CrawlURI originally contained a hash map that could store

any arbitrary data. This map has since been moved to the CandidateURI

and access to it limited to accessors on the object. The CandidateURI

however remains and URIs that are scheduled with the Frontier are

always wrapped in a CandidateURI.

An interface, CoreAttributeConstants, declares a number of constants that

represent keys for various data typically stored in the CandidateURI and

CrawlURI. This provides a central source for the keys and any class using

them should always refer to those constants.

Figure 6 illustrates different uses of CandidateURIs and CrawlURIs.

URIs being processed are wrapped in a CrawlURI. A UURI is created for

newly discovered URIs and that is then wrapped in a CandidateURI to

preserve such information as parent URI, path from seed, etc.

The CandidateURI is scheduled with the Frontier and it depends on the

Frontier when (if ever) the CandidateURI becomes a CrawlURI. The

Frontier may do this immediately, after determining that it is not a

duplicate or, at the latest, just as the URI is being issued for processing.

 32

Figure 6. CandidateURI and CrawlURI lifecycles

CandidateURIs and CrawlURIs have a scheduling directive associated

with them. This directive indicates that a URI must be crawled before any

other URI with a lower scheduling directive and is primarily used to

ensure that preconditions are fetched before the URI that needs them is

tried again. It is also used to give preferential treatment to embedded

URIs. Frontiers need to obey this directive or risk having the crawl dead

end since prerequisite URIs are not being fetched prior to the URIs that

require them.

The scheduling directive hierarchy is as follows, starting with the lowest:

• NORMAL
Default scheduling directive, no preferential treatment. In practice most

URIs will have this set.

• MEDIUM
Generally used for preferencing embeds.

• HIGH

• HIGHEST

 33

The last two are rarely used, although the algorithm for setting the

scheduling directive on prerequisites simply sets it one level higher than

the URI that requires the prerequisite. This means that in practice the

HIGHEST level should always be reserved for prerequisites. In fact, there

is little, if any, need for more than two levels for any other scheduling. If

more complex ordering is desired in the queuing of URIs, additional

fields should be added to support that.

3.7 The processing chain

As discussed earlier, the actual processing of URIs is handled by the

ToeThreads. They request a CrawlURI from the Frontier and then subject

it to a series of Processors.

The processors are pluggable classes in Heritrix, and technically you

could create a crawl with no processors, although it wouldn't do much

except run quickly through the seeds, returning them each with a failure

code.

The processing chain is split up into five sections based on the different

tasks that are going to be carried out:

1. Pre-fetch
This should contain any processor that needs to run before the software

attempts to contact a web server and download the relevant document.

Typically, this includes rechecking the scope of the URI (in case it has

been modified since the URIs discovery) and ensuring that all

preconditions are met.

2. Fetch
In this part, processors that fetch the document are stacked. Different

processors are configured for each protocol that is supported. They

should each pass on any URI whose protocol they do not understand.

Effectively meaning that only one fetch processor is applied to each

CrawlURI. Currently only DNS and HTTP fetchers exist, but plans

exist for an FTP fetcher as well.

3. Extractor
Here the numerous processors, that extract links from downloaded

documents, are applied. Each processor typically handles a particular

type of document. Some, more generic extractors may attempt to

extract links from multiple file types, but can avoid double work by

 34

taking note of a 'link extraction completed' flag that an earlier link

extractor raised.

This section of the processing chain is also used for other analysis

processors that should be applied after the document is downloaded and

before we store it on disk

4. Write/index
Here processors are placed that write the downloaded documents to

permanent storage.

5. Post-processing
The final section holds processors that do "clean-up" and ready the URI

for its return to the Frontier. Under certain conditions, earlier

processors, especially in the pre-fetch section, may abort the processing

of a URI if some condition isn't met. In those cases the processing

chain jumps to this section. This section also holds a processor that

turns the discovered links into CandidateURIs and feeds them to the

Frontier.

Each section can contain any number of processors. It is also relatively

easy to create additional processors. By subclassing the Processor class,

the only thing that needs to be done is create suitable Constructors to

comply with the settings framework and override the innerProcess()

method that accepts a CrawlURI. Within the method any arbitrary code

can be executed and it will have full access to the CrawlURI being

processed.

The only communication between processors and other modules are via

the CrawlURIs. Processors modify them and can also attach any arbitrary

data to them, keyed by a string value. This enables custom written

modules to pass information to each other via the CrawlURI without

requiring any customization of the CrawlURI.

 35

ToeThread
(processing chain)

Pre-fetch

Fetch

Extractor

Write/index

Post-processing

Preselector

PreconditionEnforcer

FetchDNS

FetchHTTP

ExtractorHTTP

ExtractorHTML

ExtractorCSS

ExtractorJS

ExtractorSWF

ARCWriterProcessor

CrawlStateUpdater

Postselector

CrawlURI

Figure 7. A look at a typical processing chain. Each section contains the default processors that

Heritrix typically uses. These include fetch processors for DNS and HTTP protocols, extractors for

HTTP headers and HTML, CSS, JavaScript and Macromedia Flash documents. The writer

processor outputs ARC [7] files, commonly used for archiving web resources. There are several

other processors provided with Heritrix that are not included in the default configuration. The

CrawlURI is passed through the processors, one by one in order unless one of them preempts the

processing, in which case the CrawlURI passes directly to the Post-processing chain.

 36

3.8 Scopes

The scope of a crawl is defined by a scope object in Heritrix. This is a

pluggable module and different implementations focus on different ways

of limiting the scope. From unlimited scopes for broad crawling, to

scopes limited to certain domains, hosts or other criteria.

The task of limiting a crawl’s scope is essentially unrelated to the crawl

strategy. It is true that different crawl strategies should, generally, be

scoped differently, but this does not follow those lines exactly. For

example, broad scopes typically only limit the depth of the crawl, that is

how many link hops from the seed the Frontier is allowed to progress. On

the other hand focused crawls usually limit what domains or hosts should

be included. An incremental crawl might however want to do both.

The scoping model in Heritrix is not perfect, and work continues to

improve it. It does however offer a sufficiently wide range of options to

create an appropriate scope for any crawl strategy that we have discussed

in the previous chapter.

The following types of scoping is currently available in Heritrix:

• BroadScope
As the name implies it is intended for broad crawls. Has configurable

limits on the depth of the crawl.

• DomainScope
Limits the crawl to the domains found in the seed list. That is any

domain that a seed refers to is judged to be inside the scope, others are

not.

• HostScope
Similar to DomainScope but limits the crawl further, to just the hosts

that the seeds refer to.

• PathScope
A further refinement on the HostScope, this limits the crawl to only a

specific subsection of a host, denoted by a path segment. E.g. the seed

http://my.com/thisonly/, would judge any URL beginning with

my.com/thisonly/ as being within the scope, but not other parts of the

host.

 37

• FilterScope
This is a specialty scope that is by default the same as BroadScope, but

any number of filters can be added to it.

• SurtPrefixScope
SURT (Sort-friendly URI Reordering Transform) [7] rearranges the

typical "backwards" hostnames like crawler.archive.org into

org,archive,crawler. This scope allows the operator to specify a

hostname surt-prefix and only those URIs who match it will be judged

in scope. For example the prefix org would accept the earlier example

of crawler.archive.org, but would not accept organization.com.

Additionally, all scopes allow for transitive includes, i.e. URIs that are

outside the scope, can be ruled inside if there are special circumstances.

For example, a DomainScope might want to capture embedded offsite

images. This requires a transitive include that rules URIs that are

embedded within a document, but normally out of scope, to be included.

Scopes also, optionally, use filters to fine tune their behavior and avoid

certain traps.

3.9 Filters

Like scopes, filters are still being worked on in Heritrix. Their basic

function is to accept a URI and render a true / false verdict as to whether

it matches the filter. They can be applied to scopes and processors and all

modules can also accept filters for specialized purposes if they so choose.

For example, the HttpFetcher processor uses a filter to determine if a

download should be terminated after the HTTP headers have been

downloaded. Like all processors it also has a general purpose filter that

decides if the processor should be applied to the URI at all.

The main problem with filters has been their ambiguity. The effect of a

filter rendering a true verdict depends on where the filter has been placed.

Sometimes it will mean that a URI is accepted, sometimes that it is

rejected.

Heritrix offers several general purpose filters as well as some highly

specialized ones, mostly used in the scopes. Among the more general

ones are filters that use a regular expression and compare the URI string

and the content type to it. More specialized filters include ones that check

 38

the path depth, that is count the number of slashes in the path and one that

checks for repeating path elements. Both of those are added to scopes to

prevent certain crawler traps that cause an infinite series of links.

Creating custom filters is relatively straight forward, as with creating

processors. Simply subclass Filter, add an appropriate constructor and

override the innerAccepts() method. The method accepts an object, rather

than a CrawlURI. In fact the object is almost always a CrawlURI or a

CandidateURI and the filters need to typecast the objects before

evaluating them.

 39

4. The objective

Heritrix already has an effective snapshot strategy. While work continues

to extend its capabilities, it can never offer anything more than simple

repeats of crawls for incremental crawling. While this is of some use,

many IIPC members, many of the Nordic Countries in particular, wanted

the ability to crawl continuously while discarding duplicate records.

This desire was at least partially because of familiarity with an older web

crawler, Nedlib [13] that operated along those principles. Active

development has long since stopped on Nedlib and continuing to use it

was not an option. Heritrix was clearly going to be the new standard for

web crawling, in most of the countries that had been using Nedlib,

certainly in Iceland.

The obvious solution, therefore, was to create an addition to the Heritrix

framework that would enable continuous crawling. The idea was

discussed during a Heritrix workshop held in Copenhagen, Denmark at

the Royal Library on June 9th-11th 2004. In attendance were

representatives from the Internet Archive and several National Libraries

(the author of this thesis represented the National Library of Iceland at the

proceedings). Together they identified the following four key reasons for

an iterative crawler:

1. Save storage costs
2. Crawl faster
3. Reduce user-visible redundancy
4. Politeness

On closer examination, points 1 and 3 are essentially the same. By

detecting duplicates and discarding them, significant savings can be made

in storage costs. Of course, the exact amount varies depending on the

frequency of visits compared to actual change rates. Furthermore, if

duplicates are discarded immediately the access interface will not show

numerous 'versions' that are all identical.

Point 3 could actually be achieved by implementing document

comparison in the access tool. Using it to filter out duplicates. This could

 40

however increase response times, requiring more processor power for the

access software or allowing the service to be degraded. Similarly, point 1

could by achieved via post crawl analysis that discarded duplicates, but

that would require additional computational resources to go through the

collection as well as temporary storage of extraneous material.

The most efficient method seems to be to immediately detect duplicates

during the crawl. The documents are already being processed to a

significant degree and, more importantly, duplicate detection at crawl

time allows us to tackle points 2 and 4.

Points 2 and 4, while stated as separate reasons, are actually functions of

the same constraint. For each host we can only crawl so many documents

per second. The exact values depend on variable politeness settings, but

generally no more than 10 (and often much less) documents can be

fetched from a host each second. If we wish to continuously crawl a host

as frequently as possible with the aim of capturing every change, we

would need to crawl as fast as the politeness restrictions allow us. The

total number of documents on the host would then determine how

frequently each document was visited. On very large sites, this could be

quite rarely. While most documents do not change that often, a certain

subset may change very frequently.

The objective therefore is to focus on those documents that change often,

while visiting the others less frequently. By doing this we can both crawl

faster, essentially by making each iteration smaller and at the same time

limit the stress our crawling places on the web servers.

The obvious way of performing this distinction between rapidly changing

documents and those that do not change very often is to monitor if a

change has occurred between visits. If it has, we are not crawling fast

enough. If no change has occurred, we can crawl slower.

Our objective was, therefore, to create the necessary add-on modules for

Heritrix to achieve a crawl that adapted its rate of visit to particular

documents based on observed change rates. In doing so we also hope to

clarify the concept of continuous crawling versus snapshot crawling.

 41

4.1 Limiting the project

The goal was to create an add-on to Heritrix that could handle long

running crawls. One of the most difficult aspects of Heritrix has been

scaling up the scope of the crawls.

The problem is effectively twofold. As the number of documents

increases, additional resources are required to manage them. This is

especially true as the number of hosts (or whatever base unit is used for

politeness) grows since each forms an independent queue. On the other

hand, with increasing number of documents, the wait time from discovery

to crawl increases since bandwidth and processing power is limited.

For broad crawls, the latter is largely a non-issue. Various tactics can be

employed to ensure that closely related documents are fetched within a

reasonable time of each other, for example by preferencing documents

embedded in other documents. Therefore, this has largely been an issue of

improving performance, reducing and optimizing disk access and CPU

cycles. Ideally, bandwidth would be the limiting factor. In fact, most of

these issues can be overcome by segmenting the crawl and running

Heritrix on several machines in parallel.

For this project, it was decided that the total number of hosts would be

limited to under a hundred. That is to say, that we would not require the

software to be able to handle more. In addition, a limit of URIs was

decided in the low millions. This corresponds to a full days crawling

using Heritrix's snapshot abilities running on decent hardware. This

would free us from tackling the difficult task of optimizing the queue

behavior in Heritrix and allow full focus on the adaptive revisiting

strategy.

While work has continued on improving the queuing in Heritrix's

snapshot oriented Frontier, it cannot be directly applied to an incremental

Frontier. This is because an incremental Frontier needs to maintain more

state information about queues and queue items. This includes the time

when URIs can next be issued, and where they should be placed on return

to the queue after each round of processing.

As with the snapshot crawls, incremental crawls can be segmented and

run in parallel.

 42

The project needed to tackle a variety of issues, such as how to use

information of prior changes to adjust revisiting times and how to detect

changes in documents. These are complicated and extensive fields of

research that we could not hope to cover exhaustively. Accordingly, we

limit ourselves to providing at least a basic solution to them and

suggesting possible approaches to improving on them. These solutions

entail creating the necessary Heritrix components to use them, making it

easier to 'plug in' future enhancements in their place.

Ultimately it is our objective to create a framework for continuous

crawling using Heritrix.

 43

5 Defining an adaptive revisiting strategy

We now define an incremental strategy that uses observed change rates to

adapt its revisit scheduling.

The basic goal of any incremental crawl is to capture any change in all the

documents within its scope. In reality, the only way to be sure that you

are capturing every change is to visit, or crawl, the document at very short

intervals. In practice, this is of course impossible, where we may have

hundreds of thousands of documents that need to be monitored. We

therefore need to manage our resources carefully and try to revisit

documents only as often as is likely needed. As was discussed earlier, this

does not only conserve bandwidth and possibly storage space, but also

allows us to crawl more documents on the same host.

Because of politeness restrictions the total number of requests sent to a

host over a period of time is fixed. Since we must wait a fixed minimum

amount of time between requesting documents from the same host we

may fully utilize this capacity by visiting 10 documents every second. In

other words, if we need to revisit each of them every second we can only

crawl those 10 whereas we could crawl 100 documents every 10 seconds

etc. In most cases 10 documents per second would represent an excessive

load on the web servers, only large sites running on powerful or multiple

servers would be unaffected by such an aggressive crawl. This, of course,

assumes that our hardware can do this, which is unlikely if we are trying

to crawl many sites in parallel with such frequency.

Even choosing a longer interval of one hour would not eliminate the

problem. As the wait interval becomes longer, we do gain the ability to

crawl more, but we also risk missing changes. Since we know that

documents change with varying frequency it is essential that we utilize

this knowledge to optimize our crawls. That is, make the wait interval

vary between documents and have it approach the actual interval between

changes of the document as much as possible.

In order to achieve this we must visit the same document more than once.

If the document has changed between visits, we can assume that its

probable interval between changes is less than the time that elapsed

 44

between our visits and reduce the wait time before our next visit.

Similarly we would increase the wait time if the document had not

changed.

This approach does make the assumption that document change rates

remain relatively constant. This may however not be the case. For

example, a politician’s website may see little or no change over the course

of his elected tenure, only to become extremely active a month or two

prior to elections. After the elections the website may return to its more

placid state. If we wish to crawl very aggressively, variations over the

course of the day may come into play. A news website is far more likely

to be updated during business hours than during the night. Even though

updates may come at night the majority of updates take place when

people are at work.

Despite these drawbacks, most websites and documents are believed to

have reasonably regular change rates over long periods. After all, a

website that wishes to attract regular readers needs to be consistent in the

presentation of new material. We will always risk loosing interim

versions, especially if documents are changing several times a day, but it

is extremely difficult to prevent this without visiting the documents

excessively. Also, we should consider that in most cases, the changes

introduced are additions and material is moved down or into archives, not

lost. Therefore, we can hope to capture all the content, even if we do not

capture incremental change.

Ultimately this strategy relies on a heuristic approach. Based on whether a

document has changed or not, we increase or decrease the amount of time

we wait between visits. However, we can try to add more data for the

heuristics to consider.

One such consideration would be the document's content type, that is the

nature of its content. Is it text, graphical images, audio or video files etc.

We know that the content type significantly affects the probable change

rates[2]. This is obvious to infer from a logical look at some of the

different types. HTML and other text files are quite easy to change and in

fact it is extremely common that web servers compile HTML pages on

demand based on information stored in databases. Such pages are

extremely easy to change and they are expected to change very often. In

contrast, images rarely change. There are some examples of software that

 45

creates images on-demand, such as graphs and similar material, however

this is much less common.

Content such as audio and video is quite complex to change. It is of

course possible that the document a URI refers to may be replaced by

another one, but this is unlikely in a practical sense. If it is new content,

then it would make sense to create a new link, why reuse the URI? We

can not entirely rule it out, but it is unlikely. Similarly, many other

content types represent material that seldom changes and logically if new

content should replace older content, it should do so in an obvious way,

using a different URI. For example, an updated version of a software

package might replace an older one, but normally you would want the

URI to reflect this.

We can not entirely rule out any change in any document type, but we can

assign them different initial wait times to reflect the inherently different

probable change rates. This immediately saves a great deal of resources

since it would take several iterations of the adaptive strategy outlined

above to 'discover' that an image is changing ten times less frequently

than the HTML document that links to it.

We may however wish to handle embedded files a little differently. If a

HTML page has changed, one might argue that all the images on it (and

other embedded documents) must be refreshed in order to ensure that we

have accurately captured the page. Any new embedded documents would

of course be fetched as quickly as possible, but if one of them has

changed, our collection would fail to highlight that, since the embedded

document had not been expected to change. We might choose to accept

this, or we may want to set a rule that each time a document has changed,

any document embedded in it must also be revisited, regardless of its

probable change rate. We simply move it to the head of the queue to

ensure that we get a consistent view of the HTML page in our collection.

It is worth noting here that there is some correlation between document

sizes and document types and therefore between document sizes and

probable change rates. Document types that are typically larger are less

likely to change. Text files, such as HTML are usually quite small, a few

kilobytes in size. Images range from a few kilobytes up to megabytes.

Audio and video files are typically in the megabytes etc. We note this not

because we intend to use size as a factor in determining the probable

 46

change rate (we might, but we’ll leave that for future work), but rather to

emphasize the usefulness of immediately discriminating based on file

types. Using such an approach we do not only save on visits to resources

that are very unlikely to have changed, we save on visits to the largest

resources, the bandwidth savings are likely to significantly exceed the

proportional savings in number of visits. For example, during a crawl of

the Icelandic national domain, .is, in 2004, audio and video files

accounted for less than 0.3% of the total number of files downloaded,

they however accounted for 11% of the total amount of data collected

[16].

The heuristics might also look at any number of other indicators. For

example, [4] observes that documents without the last-modified HTTP

header are about twice as likely to change as those with the header. This

type of information could be utilized to further improve on our initial wait

time. Some other possible indicators might be the length of the path,

distance from seed and, as noted earlier, the size of the document. As we

discussed before, our objective is to create a basic incremental strategy

and without greater investigation using those indicators would be nothing

more than a guessing game. There are also, undoubtedly, many other

possible factors, but covering them all is well outside the scope of this

project.

To summarize, our incremental strategy, which we are calling an Adaptive

Revisiting strategy, operates by crawling URIs normally. Each URI, after

initial crawling, is assigned a wait time, based on its content type. Once

the wait time has elapsed, they are recrawled and based on whether or not

they have changed we increase or decrease the wait time before the next

round.

To properly configure the crawl, a default initial wait time needs to be

assigned for every content type that is specified. It should be possible to

define any grouping of content types, allowing the operator to decide how

finely the content based discrimination operates. A minimum and

maximum wait times for each content types will also be needed as well as

the factors to divide or multiply with in the case of changed and

unchanged documents respectively.

 47

5.1 Detecting change

One of the key requirements for using an adaptive revisiting strategy and

of considerable importance to any incremental crawl is the ability to

accurately detect when a document has changed. In our definition of an

adaptive revisiting strategy we assume that this is possible since

otherwise it is impossible to implement an adaptive strategy. Even an

incremental crawler that did simple repeats, crawling the same URIs in

the same order on each iteration would benefit from the ability to detect if

a document has changed. Using such information it would be possible to

discard duplicates and only store changed files, saving on storage costs.

Unfortunately, detecting changes in documents is not easy. Especially

when we are both concerned with accurately detecting change and non-

change. It is clear that the adaptive algorithm will be thrown off just as

much by a failure to detect a non-change, as a failure to detect a change in

the document. However, because we want to err on the side of caution

(this meaning we'd rather download extraneous content than risk missing

something) we generally prefer to fail to detect a non-change to the

alternative. If we fail to detect a non-change, we will needlessly assume

the document has changed and visit it more often than need be. On the

other hand a failure to detect a change will cause the algorithm to visit a

page less frequently, even though the content is already changing faster

than we visit the URI.

The simplest form of change detecting is a straight bitwise comparison.

This is straightforward enough and well understood. It can be simplified

by creating strong hashes of the content and comparing the hashes. The

probability of failing to detect a change is extremely small if a good hash

function is used and can safely be ignored. Likewise, one could argue that

the probability of failing to detect a non-change is equally small.

Unfortunately, things aren't that simple.

We now come to defining what constitutes a change in a document. If we

define change as any change to the sequence of bits, we are fine and the

hash comparison is sufficient. This is however an unsatisfactory

definition. It fails to take into account the fact that most documents on the

web (HTML files in particular) are loaded with a myriad of data that is

not directly related to the content. This includes the layout, but more

importantly, HTML pages in particular often contain dynamically

generated information that changes with each visit, but should not be

 48

considered a part of the content. The classic example would be a web

page, possibly the front page of a news service that prints the date and

time on each visit. This value will change with every visit, but does not

constitute a change in the content. Documents like this could cause the

adaptive strategy to severely over-visit them, wasting bandwidth and

storage as well as placing an unnecessary strain on the web servers in

question. It would also cause additional effort later when trying to analyze

the contents of the archive, since it contained duplicates that could not be

automatically detected and would need to be manually sorted.

Unfortunately, while it is quite simple and straightforward to compare

two documents on a bit by bit level, trying to compare the 'content' is

much more complicated. It requires some understanding of what

constitutes content and what can be ignored. One option, in dealing with

HTML files, is to ignore the markup code since, typically, it only contains

layout information. Yet even this falls far short of our needs, since we

have already pointed out an example where irrelevant information would

be a part of an HTML's 'content'. Therefore the distinction drawn between

content and presentation in HTML is of no use to us.

Some alternatives do present themselves. We know that, primarily, the

problem relates to web servers inserting dynamically generated sections

unrelated to the main text of the documents. Therefore, the sections are

likely to be a relatively small part of the document. In such an instance, a

'roughly the same' or ‘close enough’ comparison might suffice. That is to

say, instead of comparing two documents and declaring them either

identical or different, we use a gradient for the difference between them.

Documents that are sufficiently similar are treated as being unchanged.

This means minor changes will be ignored, whereas changes to the

general body of a document should be detected.

A good deal of work has been done on the subject, including such

methods as shingling[6] that provide pretty good results.

Unfortunately not all minor changes are unimportant. Consider for

example the press release archive of a company, government agency or

other similar entity. Let's suppose that several months after issuing a press

release it has become clear that the policy set forth is no longer entirely

valid, might in fact show the issuing party in a bad light. The temptation

to 'tone down' the headline to lessen the impact might well be too much

 49

for some. The actual change could be very small, the inclusion, change or

deletion of one word to change an absolute statement to a conditional or

similar. There is no denying that such a change is minor in the number of

bits affected and any 'roughly the same' algorithm would deem the

document unchanged. However, this change might well be of

considerable importance in an historical context. Since the primary users

of this software are National Libraries and other parties dedicated to

preserving an accurate account of the World Wide Web, being able to

capture all important changes is critical.

Logically we must then conclude that while 'close enough' algorithms

could be used for change detection, it should not be the de facto choice.

We should always err on the side of caution. Therefore we will emphasize

strict comparisons despite the fact that they give us a lot of false positives

when it comes to change detection. It is implemented by using SHA-1

[14] hashing.

Since we know that there are numerous sites of interest that do contain

troublesome pages in terms of change detection, we have opted to include

a simple, operator configurable, addition to strip sections of documents

before the content hashes are calculated. The idea being that operators

could designate troublesome sections of documents with regular

expressions. These sections would then be overlooked or stripped out

when the hash is calculated.

While this does not in any way provide a generic solution, it does allow

operators to tackle almost any previously encountered issue. This in turn

enables them to continuously crawl any website without the adaptation

algorithm being fed bad information, assuming that the operator is willing

to invest the time needed to set up the stripping where needed.

As an alternative to examining content in order to determine if it has

changed we might want to use the HTTP header values last-modified and

etag. If they are implemented correctly a change to either of these

indicators between requests equates to a change in the document. Since

the headers can be downloaded before the document body, we can

evaluate them and then decide if the document should be downloaded,

thus avoiding downloads of unchanged documents. This goes even further

in saving bandwidth and reducing server loads than with content hashing

 50

for change detection, where we always had to download a document for

each revisit.

Unfortunately, this approach is also flawed. Numerous websites simply

fail to include this information or give false information. A Danish study

[3] of the reliability and usefulness of Etags and datestamps found that

while the reliability was quite high, the usefulness was less than 65%.

That is to say, reliability is the percentage of checks where a change is

accurately predicted. Thus, a low reliability would indicate that we are

missing changed documents, something we wish to avoid at all cost.

Usefulness is then the percentage of checks where a non-change is

accurately predicted, a low usefulness leads to unnecessary downloads.

Four different combinations of using datestamps and Etags were

evaluated. In all cases, if the indicators are missing, they assume that a

change has occurred and download the document.

1. Download when datestamp has changed
2. Download when Etag has changed
3. Download when both indicators have changed (or just one if the

other is missing)

4. Download when either indicator has changed

Table 1. Reliability and usefulness of the four schemes when missing indicators are taken into

account. This statistic is based on 16 harvests of the front pages of Danish web domains. 346,526

web servers were contacted in each harvest [3].

Scheme Reliability Usefulness

1. Datestamp only 99,70% 63,7%

2. Etag only 99,91% 52,5%

3. Datestamp and Etag 99,66% 64,1%

4. Datestamp or Etag 99,72% 53,5%

Scheme 2 achieves the highest reliability but has the lowest usefulness,

most likely indicating that Etags, while generally correct, are not that

common.

In fact none of the schemes are useful more than two thirds of the time

and while their reliability is quite high, none of them is 100%, meaning

that we run the risk of losing some changes if we use them.

 51

In other words, change indicators in HTTP headers will never suffice as

the sole content change detectors for an adaptive revisiting strategy.

While we might accept the reliability as being good enough, their

usefulness is so low that we would have a significant number of

documents (about one third if the results of [3] apply universally) that are

observed to change every time we visit them. Those documents would be

visited excessively and run the risk of monopolizing the crawlers time

while other, better-behaved, documents wait.

However, since they are quite reliably, we could use these indicators to

abort the download of documents, but make no assumptions about the

ones we do download. That is to say, if the datestamp and/or Etag predict

no change, we accept that and abort the download of the document,

saving on bandwidth. If a change is predicted, we proceed to download it,

but instead of relying on this prediction, we pass the downloaded

document into the hash comparison that we discussed earlier. This allows

us to make use of the datestamp/Etag reliability wherever possible, but

using hash comparisons elsewhere preventing the low usefulness rate

from being a problem.

This gives us the bandwidth saving and reduced server stress of the HTTP

headers approach and the improved accuracy of content hashing. It is

more likely to falsely predict a non-change since the reliability of the

HTTP headers is not 100% (unlike standard hashing), but if this is

acceptable it can be used to improve the crawlers resource utilization.

Especially since the politeness wait that follows a download of a

document from a web server until we can contact that server again, can be

reduced since fetching the HTTP headers is a much less costly operation

than downloading the entire document body.

 52

6. Integration with Heritrix

Let us consider what we would need to implement a strategy, like the one

described in the previous chapter, in Heritrix.

The most obvious difference is the need to have a Frontier that repeats

URIs rather than queuing, issuing and, essentially, forgetting them. We

need a Frontier that queues, issues and requeues the URIs. The

requeueing is needed so that they will be tried again at an appropriate

time. That is, reissuing them when the adaptive algorithm estimates that

they will have changed. We need a priority queue, using a time of next

probable change for sorting.

So, why don't we just augment the existing BdbFrontier to handle priority

queues and (optional) requeueing of URIs? The short answer is:

Simplicity.

The long answer goes something like the following. We discussed earlier

the limits we placed on this project. One of the key aspects in the current

efforts on the BdbFrontier is improving its performance, and that means

making it capable of handling more URIs and more hosts within a single

crawl. Reduce contention and ensure that the Frontier is not a bottleneck,

while at the same time managing numerous, large queues.

Conversely, we have accepted the fact that for our incremental strategy

the number of hosts and URIs will be somewhat limited. This in turn

allows us to design a Frontier with a more rigid structure. In order to

accommodate the large number of potential queues, the BdbFrontier must

ensure that each queue has very limited overhead (preferably none). As

will become clear when we go into the details of the

AdaptiveRevisitingFrontier, this would make a robust implementation of

it impossible and require a much more delicate state control.

Of course it is by no means impossible to improve the BdbFrontier to

allow for incremental crawling. It is simply a trade-off. Imposing

additional demands on it to maintain priority queues, in place of simple

first-in-first-out queues as well as handling the added constraint that each

URI contains a timestamp for when they can next be fetched is simply

 53

counterproductive to the more essential mission of improving its snapshot

performance.

While having two Frontiers can impose an added burden in maintaining

both, it allows each to be optimized for its type of crawling. Essentially,

we prefer to create specialized Frontiers rather than a jack of all trades.

There is also the fact that the BdbFrontier, as well as Heritrix in general,

has been designed primarily with snapshot crawling in mind. Before, in

our discussion of Heritrix’s architecture, we included a high-level

schematic (Figure 3) describing it. This figure was taken from an article

by the Heritrix development team [1] and the decision to include it, rather

than our own illustration of Heritrix’s architecture, was to highlight the

inherent structure in its design. Note, for example, that the Frontier

contains two objects. A stack of queues and something labeled ‘already

included URIs.’ For snapshot crawling, this is the most practical solution

and reflects the workings of the original HostQueuesFrontier and the

BdbFrontier. Newly discovered URIs are queued and a hash of them is

stored. New URIs are only compared against the existing hashes. Once a

URI has been issued, the only record of it will be the hash.

This is of course extremely efficient for snapshot crawling, but entirely

unacceptable for incremental crawling. In fact, given that we need to

implement priority queues for incremental crawling, we will be needing

random access to the queues and the very nature of an incremental crawl

requires that no URIs are ever removed, meaning that we can just as

effectively implement the duplicate detection in the queues, saving on the

additional complication of maintaining the hashes. It could be argued that

the hashes provided faster, more efficient, duplicate detection, but as we

noted earlier, our goal for this initial work on an incremental Frontier is

stability.

Fortunately, this issue is easily overcome by creating a new Frontier.

There are a number of other factors in Heritrix’s design that were not so

easily circumvented and we’ll highlight them where they arise, as we

discuss the modules created to implement the adaptive revisiting crawl

strategy.

 54

6.1 Changes to the CrawlURI

Very few changes needed to be made to the Heritrix framework to

implement the adaptive revisiting strategy. However, because our

incremental strategy reuses the CrawlURIs, unlike snapshot strategies,

some modifications were necessary. Primarily, we needed to ensure that

data that should be reset for each round of processing, was in fact reset,

and that data that needed to persist did just that.

There are actually two facets to this since the CrawlURI is composed of a

set of predetermined class variables and a number of data items stored in

it and accessible via a string key.

What we eventually wound up doing was to review all the member

variables and make those that should not be carried around between

processing attempts transient. This alone was not sufficient since many

variables need to be reset to default values and so the preexisting method

processingCleanup() was augmented to capture all of this. The Frontiers

are then responsible for invoking it if they intend to reserialize the

CrawlURI after it is returned to them.

As for the keyed items, the processingCleanup() goes through all of them

and removes any items whose key is not on a list of persistent items. Prior

to this the entire set was serialized and that could cause run time errors if

a non-serializable object had been placed in it. Methods were then added

to the CrawlURI to add and remove keys from the list of persistent data.

The responsibility for adding keys to this list then falls on the modules

that require that the data, represented by the key, be persistent. This list is

static, so modules can add the keys they need in their constructors.

It was not feasible to simply drop all the keyed items, since some vital

data could only be stored there, such as the ‘time of next processing’ for

CrawlURIs. It was necessary to be able to store both persistent and

transient data and our implementation makes transient the default, trusting

that modules will register the keys they need. Since not all Frontiers

reserialize the CrawlURI, if persistence was the default some modules

storing unsafe data (non-serializable) might fail to make them transient,

causing problems when running under other Frontiers than the one it was

originally designed for. For example, the DNS fetcher does this and

would have had to declare its data transient if it were not the default.

 55

6.2 The AdaptiveRevisitingFrontier

The AdaptiveRevisitingFrontier (ARFrontier) is, conceptually, based on

the HostQueuesFrontier. It was developed at the same time as the

BdbFrontier. When work on it began, it was obvious that the custom

written queues that the HostQueuesFrontier used would not be adequate.

For one thing, they did not allow random access reads, let alone writes.

This made it impossible to modify them to be priority queues.

Priority queues are fairly simple in theory, and can be easily

implemented, with linked lists for example. However, due to the amount

of data involved, it is essential that the queues exist primarily on disk.

This is critical for incremental crawling which must retain the

CrawlURIs, whereas snapshot based Frontiers can usually just store the

CandidateURIs and only create CrawlURIs once the URI is ready for

processing. Of course, snapshot Frontiers are also likely to have many

times the number of URIs at any one time.

The first thing that has to be solved is the issue of handling the

serialization and deserialization of a significant amount of data. Rather

than implementing a custom solution, which would probably have been

more complex than the rest of the project, we choose to find suitable third

party software to handle the task.

One idea was to utilize a generic database. Thus we would use JDBC [30]

to connect to a properly set up database that could store the data. This

would delegate the tasks of writing the data to disk, indexing it, and

setting up an in-memory cache to the database software. There was some

precedence for this, as Nedlib[13], which implemented an incremental

strategy, used a MySQL database to store its state.

The fact that Nedlib was ultimately abandoned might not be seen as the

most ringing endorsement for this strategy, but we believe that the

concept is, in general terms, sound. There are however some problems

with this approach which we can not overlook.

First, there is the issue of operational simplicity. Adding a dependency to

a third party product was not considered a good move. Even if we had

chosen a suitable open source database, such as MySQL for example, and

included it with the Heritrix distribution, it would still mean that two

separate programs needed to be installed and started for this to work.

 56

While it would, potentially, be quite powerful to allow the user to set up

and use any database application that they are already using, the fact that

Heritrix would be writing and reading a tremendous amount of

information means that in practical terms the database would have to be

located on the same machine (or accessed via a high-speed network with

little other traffic at the very least) and do nothing else. Obviously, if the

database was also handling other applications, the load from Heritrix

could seriously degrade their performance.

Then there is the issue of performance. Additional to the above is the fact

that communications would have to be via a JDBC connection, rather than

native access. This would impose a performance penalty.

There is also an issue with extensibility. The fact is that CrawlURIs

include a lot of data. This data would has to be converted for storage in a

table. Since the CrawlURIs contain a hash map of data that may contain

any number of entries, this gets complicated and would probably require

that a serialized version of an object be stored in one field for restoration,

with other fields being used only for indexing. Since object serialization

in Java is bulky (a lot of information about the class is repeated for each

object), this is far from ideal. In fact, one of the main problems with the

custom written queues used by the HostQueuesFrontier was the extremely

bulky nature of the queues which stored serialized versions of the

CandidateURIs and CrawlURIs.

Finally, relational databases simply contain a great number of features

entirely superfluous to the task at hand. A more streamlined piece of

software would be preferable.

For all the above reasons, traditional object oriented databases were

excluded as solutions to the disk storage problem.

The desired features for a data storage solution were:

• Open source with a license what would allow us to distribute it with
Heritrix.

• Implemented in Java, like Heritrix.

• Capable of being embedded in Heritrix, rather than running as a
separate program.

 57

• Capable of storing Java objects in an efficient manner.

• High performance, capable of managing large amounts of data in an
expeditious manner.

One particular solution was quickly arrived at: Berkley DB, Java Edition

[9] by Sleepycat Software. The Berkley DB, Java Edition is, as the name

would imply, a Java implementation of the highly successful Berkley DB

product. It was designed from the ground up in Java and takes full

advantage of the Java Environment. It enables the storage of objects in a

very efficient manner and, to quote Sleepycat Software’s product page,

“…supports high performance and concurrency for both read-intensive

and write-intensive workloads”

Later the product page goes on to say, “Berkeley DB JE is different from

all other Java databases available today. Berkeley DB JE is not a

relational engine built in Java. It is a Berkeley DB-style embedded store,

with an interface designed for programmers, not DBAs. Berkeley DB JE's

architecture employs a log-based, no-overwrite storage system, enabling

high concurrency and speed while providing ACID transactions and

record-level locking. Berkeley DB JE efficiently caches most commonly

used data in memory, without exceeding application-specified limits. In

this way Berkeley DB JE works with an application to use available JVM

resources while providing access to very large data sets.” [9]

Or, in other words, exactly what we need. The Berkley DB can be easily

embedded in Heritrix, and since the access interface is on a programming

level we have native access to it, allowing for the best possible speed. Its

data management is also very much in sync with our needs, allowing fast

writes and reads and offering a decent caching mechanism. It is also able

to handle very large data sets, a vital requirement, since we want to

manage millions of URIs at once.

Shortly after initial testing of the Berkley DB had gone well, parallel

work began on the BdbFrontier which also utilizes it. While both the

ARFrontier and the BdbFrontier use the Berkley DB for data storage they

do so in drastically different manners. Since the BdbFrontier is primarily

interested in limiting the per-queue overhead, it tries to ensure that the

queues themselves are largely stored in the database. The ARFrontier,

with different priorities, goes another route and still has one queue object

in memory for each actual queue.

 58

AdaptiveRevisitFrontier

AdaptiveRevisitQueueList

AdaptiveRevisit-

HostQueue

Berkley database

CrawlURI

CrawlURI

Figure 8. A high-level view of the AdaptiveRevisitFrontier architecture

Figure 8 gives a very rough view of the AdaptiveRevisitingFrontier’s

architecture. A series of queues, named AdaptiveRevisitHostQueues are

used and managed by the AdaptiveRevisitQueueList. Both the queues and

the list are covered in more detail later. Together they handle all the data

management and storage and are largely responsible for maintaining the

state of the crawl.

The ARFrontier publishes several configurable parameters, using

Heritrix’s settings framework. The settings are:

• delay-factor
Related to politeness rules. Indicates how long to wait before

contacting the same host again. The wait time will be the time it took to

process the last URI from the host, multiplied by this factor. This

adjusts the politeness to take into account heavily stressed servers that

would typically be slower to complete a transaction. It also means

increased politeness following the download of a larger file. Default

value is 5. This is the same default value used in other Heritrix

Frontiers.

 59

• min-delay-ms
A lower bound for the politeness wait between processing two URIs

from the same server. Default value is 2000, or two seconds. This is the

same default value used in other Hertrix Frontiers and is more than

adequte for ensuring good politness.

• max-delay-ms
An upper bound for the politeness wait between processing two URIs

from the same server. Default value is 5000, or five seconds. This is the

same default value used in other Hertrix Frontiers.

• max-retries
Some errors, that prevent the successful processing of URIs, are

considered retriable. That is, they are generally caused by transient

issues, such as network connectivity, remote hosts being down etc.

They are therefore tried repeatedly until the URI is crawled

successfully or the maximum number of retries, dictated by this

parameter, is exceeded. Default value is 30, same as other Heritrix

Frontiers.

• retry-delay-seconds
The amount of time to wait before retrying a URI that had a retriable

error. Default value is 900 or 15 minutes. Again, this is a typical value

for Frontiers in Heritrix.

• host-valence
Host valence dictates the number of simultaneous connections to the

same host. Normally this value should be 1, as multiple simultaneous

connections are considered to be impolite at best. However, when

crawling websites that are known to be able to handle a significant load

and/or we have the permission of the websites’ owners/operators, we

may wish to crawl them more aggressively. The default value is 1.

• preference-embed-hops
Documents, HTML pages in particular, frequently embed other

documents in addition to linking to them. When a document is

embedded in another document it is needed in order for the originating

document to be displayed properly. Typically, these embedded

documents are images. This value dictates the number of sequential

embed ‘hops,’ or links to treat in a preferential manner. That is,

schedule them so that they are fetched before anything else in that

queue. Default value is 0, which differs from the more typical value of

1 in the BdbFrontier. The reason for this is that preferencing embeds in

our adaptive revisiting strategy has the effect that the embedded

 60

documents are always fetched right after the originating documents,

regardless of their own change rate.

The naming of the settings, i.e. all lower case with dashes to separate

words and ending with the scale of the setting (min, sec etc.), follows

standard practices in Heritrix. The reasons for this are partly technical, but

mostly a legacy issue. When creating settings, modules can associate a

description, or help text, that is accessible in the user interface by clicking

a question mark next to the name of each setting.

Most of these settings are fairly standard for Frontiers. In fact, only the

host-valence is not used by the BdbFrontier. This feature was introduced

in the HostQueuesFrontier but was generally considered buggy for values

larger than 1. The feature was omitted from the BdbFrontier for those

reasons. Its implementation in the ARFrontier is due to the fact that such

focused crawling of very select sites is far more likely to require it. Also,

as we’ll see later, the design of the host queues made its implementation

much easier than would be possible in other Frontiers.

The other settings relate to some essential Frontier responsibilities.

Ensuring that the crawl behaves in a polite manner, retrying URIs that

have retriable errors, and preferencing embedded documents. All other

behavior of a crawl, such as wait times between revisiting a URI in an

incremental crawl, are configured outside the Frontier. Some parameters

are configured as a part of the CrawlOrder, but most are associated with a

particular processor, scope, or filter. These settings are used by their

respective modules and, if needed, any directions to the Frontier based on

them are passed via the CrawlURI.

Figure 9 shows, roughly, how a URI is passed around. Starting with a

request by a ToeThread for the ‘next’ URI, how a URI is selected from

the pool of pending URIs, processed and returned. The figure is

complicated somewhat by the fact that preconditions may not have been

met. This requires that processing be preempted and the required

information be gathered first. Currently DNS information and robots.txt is

needed for each host before any URIs from it can be crawled. Fortunately,

most of this is handled by the processors. The only thing the ARFrontier

has to keep track of, is to reschedule URIs that fail because of missing

preconditions after the preconditions have been met.

 61

Figure 9. Frontier data flow[7]. This illustrates how data flows between the Frontiers, the

ToeThreads and the processors. It only focuses on the most essential data contained in the

CrawlURI, that is the fetch status, which may include failure to meet preconditions, failure to

crawl, crawled successfully etc. The section marked ‘pendingURI’ represent the Frontier’s URI

queues.

Since we need to store various additional information in the CrawlURIs’

keyed list, the CoreAttributeConstants interface was extended with the

AdaptiveRevisitAttributeConstants interface which adds all the data keys

needed by the adaptive revisiting strategy.

Let us now go through the life cycle of a URI in the ARFrontier.

CandidateURIs are scheduled, either by the Postselector working its way

through discovered links, or loaded from seeds at the start of the crawl.

CandidateURIs that are scheduled via the schedule() method are queued

into a ThreadLocal queue to avoid the synchronization overhead that

would otherwise be incurred from scheduling numerous URIs

sequentially. This queue is processed when the ToeThread returns the

URI being processed, via the finished() method. As the initial loading of

seeds is done internally in the Frontier, this batching is avoided in their

handling.

The scheduling of CandidateURIs requires that they first be converted

into CrawlURIs. This simplifies the issuing of URIs, where we can now

assume that all issuing URIs are CrawlURIs, rather than having a mix of

CandidateURIs and CrawlURIs. This is in stark contrast with the snapshot

 62

Frontiers, which generally assume that anything in the queues is a

CandidateURI, since the CrawlURIs should only exist for the processing

part.

Once a CrawlURI has been created, it is assigned a ‘time of next

processing,’ which is set to the current time. Then the Frontier determines

if it should receive preferential treatment because it is an embed. If so, the

CrawlURI’s scheduling directive is raised. More on the effect of this

when we discuss the ordering of the priority queues later.

Now the ARFrontier is ready to insert the CrawlURI into its proper host

queue. The ARFrontier looks this up via the AdaptiveRevisitQueueList.

The name of the host is created using Heritrix’s HostnameQueue-

AssignmentPolicy. This name act as a key for the lookup of the queues.

In theory the key can be anything and is not restricted to hostnames. In

fact the BdbFrontier offers an alternative assignment policy based on IP

numbers, as well as allowing the user to specify the queue names, using

the override capabilities of the settings framework to specify different

queue names for different hosts. Effectively, allowing an entire domain to

be one queue, for example, rather than several queues, one for each host

under the domain.

In practice however, assignment by IP numbers is difficult since IP

numbers are not known until after the DNS lookup. Until then, the IP

assignment policy returns host names. In an incremental crawl, this means

that 3 URIs (seed, robots.txt and DNS) will remain in the host named

queue, while all subsequent URIs from that host end up in the IP named

queue. This is acceptable in snapshot crawling, where the host named

queue disappears once the seed has been crawled, but unacceptable in an

incremental crawl where it remains.

If no queue exists for the given host name, the Frontier directs the queue

list to create a new one for that key. The CrawlURI can now be added to

the queue.

The host queues take responsibility for duplicate elimination.

When the ARFrontier needs to issue a URI, it consults the queue list for

the current ‘top’ queue (more on that later). If this queue is not ready, the

 63

thread is ordered to wait until it becomes ready. Whenever the processing

of a URI is completed, all waiting threads are notified so they can check if

the top queue is now ready. Eventually a queue should become available.

The ARFrontier then requests the next URI from the queue. The amount

of time that the URI is overdue is then calculated and stored in the

CrawlURI. This value is logged later and is also optionally used by the

WaitEvaluator.

Once a URI is issued, the ARFrontier only keeps track of it by the state of

its queue, but does not otherwise concern itself with it. If a URI is never

returned back to the Frontier, via the finished() method, then the queue in

question, assuming a host valence of 1, will become permanently

snoozed, effectively blocking it from further progress. While this should

never happen, bugs in the processors or ToeThread can have this effect. If

this occurs, the operator can intervene and ‘kill’ the ToeThread, causing

the URI to be returned to the Frontier with an error code.

Eventually, the URI should be returned to the Frontier. It is here that the

ARFrontier departs from other Frontiers in its handling, although much

remains similar.

First the Frontier determines how the URI fared in the processing. There

are four possible outcomes:

1. URI was successfully processed
The web server was contacted, we may have received a HTTP error,

such as ‘404 URL not found.’ We still treat those as successes and will

revisit them.

2. URI encountered a retriable error
There are two flavors of this. Errors requiring immediate retrying, such

as missing preconditions (the preconditions are scheduled with higher

scheduling directive and should be processed ahead of any repeat

attempt) and those that should be retried after a delay. This assumes

that transient network errors caused the error and retrying the URI at a

later time may yield a different result.

3. URI was disregarded
Typically means that that robots.txt rules precluded a fetch attempt.

This state means that the URI should be regarded as being out of scope.

We will not be revisiting it.

 64

4. URI failed to crawl
This might be caused by a bug in one of the processors, but otherwise

means that the URI is not crawlable. May be an unsupported protocol

or a retriable error has exceeded its maximum number of retries. These

URIs will not be revisited.

Successfully crawled URIs have a new ‘time of next processing’

calculated, based on the current time and the wait time determined by the

WaitEvaluator. As we’ll discuss later, the queues ensure that URIs that

are not yet ready for processing are not issued.

Each of these conditions are handled separately, but in a similar manner.

Unless the URI is to be retried, an entry in the crawl.log is made at this

time. The ARFrontier adds several notes to the annotation section of the

log. That is, it adds the current wait time for the URI, how often the

document has been visited, how many versions have been encountered of

it and finally how overdue the URI was for this round of processing. This

is written in a compressed form like the following:

... wt:45s0ms,3vis,1ver,ov:3ms

These additions to the log allow the operator to track the URI as it is

visited again and again and track how the adaptive strategy is responding

to it. Whether or not the document has changed is determined elsewhere

and those modules are responsible for writing that data to the log as we’ll

see later.

The disregarded and failed URIs are stamped with a ‘time of next

processing’ that is as far into the future as possible. We use the maximum

value for a long datatype and follow the practice in Java of representing

time as the number of milliseconds since midnight, January 1, 1970 UTC.

Setting this value means that the URI will never (in practice) be crawled

again. It remains in the queue for duplicate detection and possible

reporting purposes. The queues very rarely delete URIs.

The ‘time of next processing’ for URIs that are to be retried remains

unchanged. Retry delays are enforced in the same way as politeness

delays.

Once the proper ‘time of next processing’ has been set, the CrawlURI is

returned its queue.

 65

6.2.1 AdaptiveRevisitHostQueue
As is probably clear by now, the AdaptiveRevisitHostQueue (or

ARHostQueue) class implements the majority of the adaptive revisiting

strategy. It is similar, conceptually, to the URIWorkQueue used by the

HostQueuesFrontier, but has improved its state control significantly and

uses an entirely different data structure.

Having the ARHostQueue extend the URIWorkQueue interface is wholly

unacceptable. This is primarily because the URIWorkQueue’s state is

controlled externally. It provides methods for snoozing (suspending),

waking up (resuming) etc. rather than entering and exiting those states

naturally. This creates additional complexity in the Frontier, which must

maintain the state of every queue. Instead, the ARFrontier lets the queues

themselves handle all this and never affects their state directly. The

ARHostQueue’s state is only affected by the Frontier as a result of its use

of the queue. These actions include getting URIs, which can potentially

make the queue busy, ‘returning the URI’, which can potentially make the

queue snooze etc.

This is important, not only because it greatly simplifies the

implementation of the Frontier, but also because the state is now much

more complex since the queue may need to be snoozed, not just for

politeness and error retry waits, but also because the ‘next’ URI is not yet

ready.

In addition the ARHostQueues do not require several of the methods and

facilities provided in the URIWorkQueue interface. For example, only the

following states are needed for the ARHostQueues:

• Empty
Initial state. Once the first URI has been added, this state will likely

never reoccur since URIs are almost never deleted. Since queues are

only created on demand, this state is extremely transient, and, aside

from the add() method, nothing can be done with it while in this state.

• Ready
The ‘next’ URI’s time of next processing is in the past and any wait for

politeness or error retry is over.

• Busy
The queue has issued as many URIs as its valence allows without any

 66

of them being returned. It will remain busy until one of the issued URIs

is returned.

• Snoozed
Either the queue is respecting politeness or error retry wait, or the next

URI’s time of next processing is in the future. In either case, the exact

time when it will wake up can be accessed. As the state is calculated on

demand, the queue will automatically move to a ready state once this

time is reached. There is no need to explicitly ‘wake up’ the queue.

As we discussed in our overview of Heritrix, these are the essential states

for host queues. The more advanced states, such as inactive, are not used

since the progress of an incremental crawl should be primarily dictated by

the time of next processing. Focusing on a fixed subset of hosts, as the

active/inactive state is meant to achieve, is counter productive.

Incremental crawls must be scoped so that the entire scope can be

collected within a reasonable timeframe. Otherwise the URIs will be

issued chronically late.

Despite the name, the ARHostQueues do not provide traditional queuing

methods, enqueue and dequeue, since the URIs are never actually

dequeued. When the queue issues them, the URIs are marked as being

processed, but remain in the ARHostQueue, held aside, and the queue is

simply waiting for the Frontier to update them.

Therefore the primary methods of the ARHostQueue are add(), next() and

update(). The next() method operates much like a dequeue, in that it

returns the top URI in the queue, or rather, the next URI to be processed

from the queue. The naming reflects this quality and corresponds to the

Frontier’s next() method invoked by the ToeThreads to get the next URI

for processing.

The add() and update() methods create the distinction between initial

enqueuing of a URI to the queue and requeueing it after a round of

processing. The terms adding and updating are much clearer than enqueue

and requeue. The distinction is necessary, because when adding a URI, it

may already exist, and we do not wish to modify the existing one or

replace it. When updating, the URI certainly exists, and is being held

aside. The act of updating it will return it into the queue and will also,

possibly, affect the state of the queue, depending on whether it was busy

or not.

 67

Other methods that the ARHostQueue provides to the ARFrontier are

peek(), which returns the current top URI, regardless of whether it is safe

to start processing it or not. As the name indicates, this method is only

used to examine the queue.

Finally, there are methods for getting the state and the time when the

queue will next be ready. The latter only returns useful data if the current

state is snoozed. If the current state is ready, it should return some time in

the past and if the state is busy, it should return some time in the far future

(maximum value of long).

Using these methods, it is relatively straightforward for the ARFrontier to

manage the crawl, leaving the details of the queuing strategy to the

ARHostQueue. Deciding which queue to use each time is handled by the

AdaptiveRevisitQueueList.

Let’s now examine how the ARHostQueue is implemented.

The essential part is the embedded Berkley DB that stores the actual

queue. The Berkley database stores objects, keyed by other objects. That

is, each database entry is composed of two elements, a key element and a

data element, as noted, both of which can be any Java objects. The

database is then indexed by the key element.

Berkley DB offers significant support for object serialization. This

includes storing the class ‘template,’ that is all the serialization data that

relates to the actual class, rather than the instance specific data, only once

in a separate database, called a class catalog. This drastically reduces the

amount of space each serialized object requires.

Since the BdbFrontier was introduced, support for Berkley DBs has been

integrated into Heritrix’s framework and this includes a common class

catalog that the Frontier can access through the CrawlController. This is

then passed to the ARHostQueues at construction time. The same applies

to the Bdb environment that specifies the location on disk where the

database should be stored etc. The queues therefore only need to

implement their own databases.

 68

We need to have the CrawlURIs not only sorted by the time when they

should be processed next, but also by their URI (as a string). This means

that we need to have two indexes for the database. While each Berkley

database can only have one key/value pair and is indexed by the key, it is

possible to create, what is called, a secondary database that is linked to a

primary one. This secondary database simply indexes the data in the

primary database with another key. Entries are made into the secondary

database automatically when they are entered into the primary, once the

association between the databases has been made. The database can then

be accessed normally, either by looking up a value by its key or iterating

through the keys.

We decided to use the URI as the key in the primary database and create a

secondary database to act as the de facto priority queue. Because the

scheduling directive also influences this the secondary key needs to be a

composite of it and the time of next processing.

Fortunately, the Berkley DB API makes this relatively easy. The

secondary database is fed a custom written key creator. This key creator

receives the data being stored (the CrawlURI) and uses it to construct any

key it wishes, using information obtained from it. By basing the key

creator on the TupleSerialKeyCreator provided with Bdb, it is relatively

straight forward to access the scheduling directive and the time of next

processing and add each to the serial (or composite) key.

In addition to these primary and secondary databases, the ARHostQueue

also has a database to store URIs that are currently being processed. If

host valence higher than 1 were not allowed, this would not be needed,

since the queue would become busy and the issued URI can simply

remain at the front of the queue until the processing is completed, at

which time it would be assigned a new time of next processing. However,

with the possibility that multiple URIs are issued at the same time, this

becomes much more complicated. Moving the URIs temporarily to a

separate database was considered the simplest solution to this.

Alternatively the URIs could have been marked as being processed and

remained at the front of the queue, but this would have complicated the

issuing of URIs and the calculation of the time when the queue will next

be ready (which is based partly on the time when the ‘next’ URI will be

ready for processing. The database of in URIs being processed is indexed

by URI strings.

 69

Figure 10. AdaptiveRevisitHostQueue databases. The secondary database is slightly simplified, in

actuality, the scheduling directive is also taken into account, not just the time of next processing.

When adding to a queue, the Frontier specifies whether the time set on it

should overwrite the time on any possible duplicates. The earliest time

will however always be used. That means that a URIs time will never be

‘moved back.’ Also, if the scheduling directive is higher, both it and the

time of next processing will be automatically updated.

Adding a URI can potentially change the state of a queue, but only if it

was either empty, or snoozed because the next URI was not yet ready and

the newly added URI can be processed immediately.

The queue becomes busy when the number of URIs being processed

concurrently reaches the host valence setting. Once a URI is returned, the

queue’s state may change to ready or snoozed, depending on whether or

not the queue should wait before issuing its next URI, either for politeness

reasons or error retry wait.

The wait time is enforced separately for each concurrent connection

allowed. That is, if host valence is 2, and one URI is returned, the queue

will snooze for the time specified for it, 1 second for example. If the

second URI is returned half way through this wait, the queue’s state

remains unchanged, as does the time when it will next be ready to issue a

URI. Once the second has elapsed, a URI can be issued and once it has

been the queue will go back to being snoozed until the wait time for the

second URI has elapsed.

 70

These wait times are implemented using a simple long array, with each

number representing the time when that ‘processing slot’ can next be

used. A time in the past means that the slot is free. A value of -1 is

entered to signify that a URI is being processed.

This means that the queue’s state changes automatically from snoozed to

ready as time passes.

6.2.2 AdaptiveRevisitQueueList
The AdaptiveRevisitQueueList class manages the ARHostQueues. The

list not only allows the Frontier to look them up by host name, but also

orders them so that the ‘next’ queue is always the one that has been ready

to issue a URI for the longest period of time. The list is ordered by the

queues’ ‘next ready time’ which in turn reflects the time when the front

URI will be ready for crawling or when an enforced wait time has passed.

This ordering of queues ensures that no queue is starved, while also

favoring those that are ‘most overdue.’

The ARQueueList is fairly simple. It has its own database that contains

the names of all its queues. As we’ll discuss later, this is done purely for

recovery purposes. It then contains a HashMap of the queues, keyed by

their names and a TreeSet of queues sorted by the queues’ next ready

time.

When creating queues, the list will register itself as their owner, allowing

the queues to notify it when they need to be reordered. It then adds them

to the above data structures. Access to them is then relatively straight

forward.

The list also provides some utility methods, such as compiling a report of

all the queue’s states, getting the number of queues and total number of

URIs in all the queues.

6.2.3 Synchronous Access
All access to the ARFrontier is synchronized except the schedule()

method which, as discussed above, queues up scheduled items in a

TreadLocal queue, only to be flushed when the finished() method, access

to which is synchronized, is invoked.

 71

The reason for this high level synchronization is one of simplicity. While

it might be perfectly feasible to handle synchronization at a lower level,

possibly reducing contention on the Frontier somewhat, it would require

considerable work to analyze and implement. Furthermore, this has

typically not been done in other Frontiers, and the potential gain is

unknown. Access to the ARQueueList for example would make it

impossible for threads working on different queues to avoid overlapping.

6.2.4 Recovery
The BdbFrontier (and other existing Heritrix Frontiers) utilize an

inefficient and somewhat complicated recovery journal or log for crash

recovery. The way this works is rather simple in theory, but a bit more

complicated in execution. Basically each ‘transaction’ in the Frontier is

recorded to a compressed log (it is compressed because otherwise its size

quickly becomes an issue). The transactions include scheduling of URIs,

their issue, and the completion of their processing.

When a crawl has crashed, for whatever reason, the log can be ‘replayed,’

bringing the Frontier back to the state it was in when the crash occurred.

In practice, when dealing with larger, multi million URI crawls, this takes

an excessive amount of time.

Improved recovery abilities remain an untackled subject in Heritrix, partly

because snapshot crawls can quite frequently get away with not having

such an option. The reason for this lies in the fundamental nature of the

snapshot crawl. It is started, it works its way through the webspace, and

then it terminates. A crash in a very large crawl can have serious

implications and may require the crawl to be restarted, but since the

crawls always take a finite amount of time (usually on the scale of months

at most) it is possible to execute it in one continuous run.

No proper checkpointing facility currently exists, whereby an accurate

representation of the crawl state is stored on disk for later retrieval.

Improvements on this are planned for the 1.6.0 release of Heritrix.

No such luck for incremental crawls that by their very nature have to run

for an indeterminate amount of time. In theory, possibly forever. So it is

absolutely vital that an incremental crawl can be stopped and started with

an acceptable overhead.

 72

Using the recovery log method is clearly impossible since the amount of

time required is a factor of the number of URIs that have passed through

the Frontier. In a snapshot crawl this is roughly equal to the number of

discovered URIs, but in an incremental crawl, where each URI is

processed repeatedly, this value can be many times the number of URIs.

After running for a year, for example, a crawl with 100,000 URIs that are

on average visited once a day, will have processed over 36 million URIs.

Replaying the recovery log is not feasible.

Therefore, we needed an alternative way to recover from crashes and also

to allow the operator to suspend and resume crawls if, for example, the

computer needs to be upgraded.

Fortunately, the Berkley DB has good crash recovery abilities that we can

take advantage off. Basically it can be assumed that anything that was

written to a database is safe. Thus we only need to ensure that enough

data is stored in the databases to allow the crawl to be reconstructed from

them.

The databases are each named. When the ARFrontier is created, it gets a

path to the ‘state’ directory, i.e. the directory where the crawls state

should be written, from the configurations. The state directory is a

standard configuration parameter that all Frontiers should use. The

ARFrontier then, via the ARQueueList, tries to open a specified database,

named ‘hostNames’ in that directory. If unsuccessful, a new one is

created and we can then safely assume that this is a new crawl. If

successful, the state directory refers to an existent crawl and the database

containing the names of all the host queues has just been opened.

The ARQueueList now runs through all the entries in this list and creates

a host queue for it. As each host queue’s database is named using the

hostname, the existing databases for each one should be opened. The only

problem with this is that the valence for each queue will be the default

value and no overrides are respected. This is due to the fact that a URI of

some sort is required when accessing the settings for the overrides to be

compared to. The valence could probably be stored in the hostNames

database but implementing that is a subject for the future.

 73

The ARHostQueue constructor will realize that existing databases are

being opened and will move any URIs in the processing database over to

the queue. It will also count the number of URIs in the queue. This is

somewhat inefficient as it requires a loop through all the elements in the

database, but is quite manageable for 10-100 thousand items. In the future

the count should probably be stored in some database.

6.2.4 Frontier features not implemented
The Frontier interface specifies some methods for iterating through all the

URIs in the Frontier and for deleting items, either by name or regular

expression. Neither is currently supported in the ARFrontier. This is

primarily because we placed greater emphasis on the core functionality

and were unable to tackle this as well.

Adding the ability to iterate through the URIs in the ARFrontier, requires

a good deal of additional work, primarily in designing a ‘marker’ for the

current location.

Deletion of items is also not implemented. Currently, the only time a URI

is deleted is when the Frontier decides to ‘forget’ a URI. I.e. a URI is

deemed out of scope late (when being processed rather than when it is

discovered, usually the result of the operator changing the scope) but we

know that it may be discovered via some other path where it should be

included. This is because crawls are frequently limited to certain domains

or hosts but are still allowed to fetch ‘offsite’ documents if they are

embedded, rather than linked to. There is also the possibility that the

number of link hops was exceeded but the document might be

rediscovered at a lower ‘depth.’

For all these reasons it is necessary to be able to forget a URI and the

update method has a parameter to indicate this. If set, the URI is dropped

from the queue it is as if it was never encountered. This is, however, the

only instance of a URI being deleted and is done for purely practical

reasons. Typically we do not wish to ever delete any URI, that might have

failed to crawl, for example, because we may very well encounter them

again and we do not wish to requeue them if that happens.

For these reasons, the host queues offer no delete functionality, but this

could be added. It remains to be seen, however, how useful that would be.

One might speculate that the deletion should be implemented by setting

 74

the time of next processing to the extreme future (maximum value of a

long) as is done for URIs that have failed to crawl or should be

disregarded. This effectively deletes them from the crawl but keeps them

in the queues and prevents them from begin rediscovered. This is also

more in keeping with what the other Frontiers do, since they implement

the delete by removing the URI from the queues only, but the hash of the

URI used for duplicate detection remains unaffected.

The ARFrontier also does not apply the URI canonicalization. This

feature was added after development of the ARFrontier began and since

the Frontier interface does not enforce its implementation it was

overlooked until after the ARFrontier was integrated into Heritrix’s

primary code base. This oversight will likely be addressed in the near

future.

6.2.5 AbstractFrontier
When work began on the ARFrontier, the AbstractFrontier was fairly

unstable as work on it had only recently begun. Since the

AbstractFrontier, especially at that time, was geared towards the

BdbFrontier it was decided not to base the ARFrontier on it. The reason

for this was that while the concept was sound, it would be extremely

difficult to develop a new type of Frontier while having to constantly

compromise in terms of what the AbstractFrontier was doing and would

allow.

Once the ARFrontier was ready for integration into Heritrix’s primary

code base, this subject was revisited. While the AbstractFrontier had by

then improved considerably, several issues were quickly discovered

which made it difficult to rewrite the ARFrontier to subclass the

AbstractFrontier.

First there is the fact that the AbstractFrontier supports either hostname or

IP based politeness. As discussed above, IP based politeness poses

additional complications for incremental based Frontiers. While this could

probably be overcome by renaming queues (for example) it would require

considerable effort to implement.

The AbstractFrontier also implements bandwidth limiters, both for total

bandwidth usage and per politeness unit (hostname or IP). This feature is

not in the ARFrontier and it is uncertain how it would affect it. Likely, it

 75

would require the addition in the ARFrontier of calculating wait times for

when bandwidth usage has exceeded the allowed amount. Overall

bandwidth limitations are implemented in the AbstractFrontier.

While the ARFrontier allows the preferencing of embeds, it defaults this

value to 0, unlike the AbstractFrontier which defaults it to 1. The reasons

for this were discussed earlier. As there is no way, currently, for

subclasses to override the default settings of their parents, subclassing

AbstractFrontier would change the default value of this for the

ARFrontier. Some of the feedback we have received from others testing

the software indicates that the Frontier’s behavior when preferencing

embeds can be confusing, so we would prefer to continue defaulting it to

zero.

The AbstractFrontier implements the recovery journal. This is an

unwanted and unnecessary feature for the ARFrontier. As discussed

earlier, the ARFrontier implements a much more robust recovery scheme

that is completely incompatible with the recovery journal system.

There are also some issues with how the ARFrontier and AbstractFrontier

keep track of some statistics. For example, the total number of queued

URIs is calculated in the ARFrontier by adding up the size of the queues

whereas the AbstractFrontier retains a central value for this. The

difference in maintaining statistics could probably be overcome by either

overriding or ignoring the AbstractFrontier’s data. However, it adds

another level of complexity to any attempt at basing the ARFrontier on

the AbstractFrontier.

Finally, there is some (fairly minimal) assumption in the AbstractFrontier

that BdbWorkQueues are being used. Notably in the method

noteAboutToEmit() which is primarily used for the recovery journal

implementation. This would need to be addressed in the AbstractFrontier

itself before the ARFrontier could be modified to subclass it. Clearly any

truly abstract Frontier must be free of such implementation specific

objects.

The above summation may not be an exhaustive summary of the

difficulties in using the AbstractFrontier, it merely relates the most

obvious difficulties that were discovered by reviewing the code of the

AbstractFrontier. Other, more serious design incompatibilities may be

 76

discovered if and when an attempt is made to base the ARFrontier on the

AbstractFrontier.

In the long run, the ARFrontier will almost certainly be modified to

subclass the AbstractFrontier. The benefits in terms of simplified code

maintenance are considerable and ultimately well worth the initial

investment. However, it was clear that this will not only require changes

to the ARFrontier, but also significant streamlining of the

AbstractFrontier to make it more agnostic towards different crawl

strategies. Doing this, however, falls outside the scope of this project.

6.3 New Processors

While the ARFrontier implements most of the incremental strategy, it

needs be told how long to wait before URIs can be revisited. For this

purpose three processors were created, HTTPContentDigest,

ChangeEvaluator, and WaitEvaluator. In order to do a crawl with the

ARFrontier these need to be inserted into the processing chain (see Figure

11) at the appropriate locations.

That is not to say that these processors in particular are needed in order to

use the ARFrontier, but rather, some processors that perform the same

functions are needed. This corresponds to the general use of processors in

Heritrix, the ones provided are solid implementations of common

functionality. They can however easily be replaced by custom written

modules if we wish to modify their behavior.

There was no need to modify or replace any of the existing processors for

the adaptive revisiting strategy, since the processing of URIs remain

largely the same. We only needed to add some additional processing.

 77

ToeThread
(processing chain)

Pre-fetch

Fetch

Extractor

Write/index

Post-processing

Preselector

PreconditionEnforcer

FetchDNS

FetchHTTP

ExtractorHTTP

ExtractorHTML

ExtractorCSS

ExtractorJS

ExtractorSWF

ARCWriterProcessor

CrawlStateUpdater

Postselector

CrawlURI

HTTPContentDigest

ChangeEvaluator

WaitEvaluator

Figure 11. Illustrates how the processors for the adaptive revisiting strategy fit into a typical

processing chain. The HTTPContentDigest processor is optional, but the ChangeEvaluator and the

WaitEvaluator are required.

6.3.1 ChangeEvaluator
The ChangeEvaluator compares a downloaded documents hash to the

hash from a previous visit to determine if the document has changed. It

assumes that this hash has been calculated and stored in the CrawlURI

(accessed via the CrawlURI.getContentDigest() method.) This is

 78

generally the case since the FetchHTTP processor automatically

calculates the hash when it downloads documents.

The ChangeEvaluator does not care about the type of hash, since it just

compares two instances of it and rules that they are either identical or not,

but typically these are SHA-1 [14] hashes, since that is what the

FetchHTTP processor uses. However, changing the hashes will have no

impact on the ChangeEvaluator so long as they a very low probability of a

collision where two dissimilar documents compute as having the same

hash.

The ChangeEvaluator stores the content state in the CrawlURI’s keyed

list. Initially the idea was to add content state to the CrawlURI object

itself, defaulting it to unknown. However, this was not accepted when

merging the AR code into Heritrix’s main code base, mostly because it

was unclear if any other modules might ever be interested in it. This may

be revisited again at a later date. Instead, the content state is recorded in

the keyed list, which is perfectly satisfactory. The only potential down

side is that other modules, processors in particular, are less likely to take

advantage of it.

If no content hash is provided the ChangeEvaluator does not make any

ruling, leaving the content state as unknown. Currently this applies only

to DNS lookups.

Currently, the ChangeEvaluator will preempt the processing chain if the

document is discovered to be unchanged. This moves the URI straight to

the post processing section, bypassing the link extractors and write/index

processors. This is quite satisfactory at the moment, but in the future there

may be write/index processors that are interested in recording that an

unchanged document was visited at a given point in time. To achieve this,

the CrawlURI’s processing should not be interfered with, but all

processors running after the fetchers should check the content state and

decide based on it whether they should run or not. Some would always

run, such as the Postselector, but extractors would only run on changed

documents and those whose state is unknown.

In fact, the ChangeEvaluator already behaves in this manner. If the

content state is already set on a CrawlURI, it will only update the counters

 79

of how many visits have been made to the URI and how many versions

encountered in those visits. It will not reevaluate if a change has occurred.

In practice, this happens when the download of a document is skipped

because HTTP header information indicates that no change has occurred.

If the ChangeEvaluator decides to preempt the processing chain, having

discovered an unchanged document, this is noted in the crawl.log by

writing unchanged to its annotations field.

6.3.2 WaitEvaluators
The WaitEvaluator implements the actual adaptive logic. Basically the

WaitEvaluator checks if the document has changed or not, and based on

that it multiplies or divides the wait interval by a certain factor. For

documents whose content state is unknown a default, unchanging, wait

interval is set. Essentially, if you wanted a non-adaptive incremental

crawl you could simply omit the ChangeEvaluator and then the crawl

would repeat at intervals dictated by this default value.

The initial wait interval, default wait interval, and the factors for changed

and unchanged documents are all configurable settings. Additionally, the

WaitEvaluator allows the operator to specify maximum and minimum

wait intervals. This can be used, for example, to prevent constantly

changing pages from ‘clogging’ the system. It also ensures that all

documents are revisited at some point. Without a maximum wait interval

the wait interval of a document that was never observed to have changed

would grow exponentially over time, eventually we’d stop visiting it.

While this fits in with the adaptive concept, in practice we usually want to

at least get one complete copy every year.

Finally, the WaitEvaluator has a toggle that allows the overdue time to be

used when a new wait interval is calculated. If this option is selected (off

by default) then the amount of time the URI was overdue for processing

will be added to its wait interval before the factor is applied to it. This

feature was added because in practice a lot of URIs, especially on larger

crawls, will be overdue since there are too many URIs that need

processing. This problem is especially noticable during the early part of a

crawl when the adaptive algorithm is still learning what documents rarely

change and is slowly increasing their wait time. This feature can

significantly speed that up. However, the feature can have the paradoxical

 80

effect of increasing the wait time of changed documents if they were

significantly overdue. On the other hand, it could also be said that the

feature allows the crawl to adapt to the resources that are available.

All this affords the operator full control over the adaptive behavior.

Furthermore, the settings can all be overridden for any host using

Heritrix’s overriding schemes. Thus the adaptive behavior can easily be

tailored for each domain and host.

The above is enough to implement all the aspects of the adaptive

algorithm discussed in the last chapter, except one. It does not allow the

operator to discriminate in the settings based on the content type.

The initial idea to tackle that subject was to use Heritrix’s refinements

framework. A new criteria could be added that compared a regular

expression to the documents content type and if it matched the values in

the refinment would override the default.

Only, this approach had two problems.

One, the refinement criteria were only being passed UURIs and not

CandidateURIs or CrawlURIs. This meant that the content type was not

available to them. A solution for this was found, but it required some

changes to numerous classes, both in the settings part of Heritrix and in

the canonicalization. While this approach was initially pursued, the extent

of the changes needed did not become apparent until it was time to

integrate it into the main codebase. Therefore, despite the fact that this

had been successfully implemented, this approach was abandoned.

Largely because of fears that introducing such a large change to the code

could be problematic, especially when a release was on the horizon, but

also because of the other drawback of this approach.

While the refinement approach is an exceptionally economical solution,

taking advantage of existing capabilities, it can make it difficult to

determine exactly what rules apply to what URIs at any given time. This

is largely a result of the obfuscated nature of the interaction between

overrides and refinements. Basically, refinements are not inherited into

overrides. Therefore setting up a refinement to specify different wait

times for images would be lost when we created an override to specify

different wait times for a specific host. This is how the system was

 81

intended to work, but it can be confusing with a large number of overrides

and refinements.

A better approach was therefore needed. Using a similar approach as the

extractors, where a number of processors exist to do the same thing, only

on different files, we created some new, specialized, WaitEvaluators.

First the generic WaitEvaluator was subclassed to create the

ContentBasedWaitEvaluator. It adds a regular expression, like the

refinement criteria would have, that is compared against the documents

content type and only if it matches is the evaluation carried through.

Based on this, TextWaitEvaluator and ImageWaitEvaluator were created

with the regular expression configured to match text and image files

respectively. The regular expressions though can still be changed if the

operator wishes. The default values for the initial wait have also been

modified for these.

The WaitEvaluator was then modified to set a flag in the CrawlURI once

it had been run and to pass on objects that had this flag. This ensures that

once one WaitEvaluator has been run, others will ignore the object.

With all of this in place, it is simply a matter of ‘stacking up’ the

WaitEvaluators, starting with the specialized ones and ending with the

generic WaitEvaluator which will process anything not handled by the

others.

While only two specialized evaluators are included, they can be modified

to fit other criteria, and the ContentBasedWaitEvaluator can also be used.

If more than three specialized evaluators are needed, it is a simple matter

to create additional ones by subclassing ContentBasedWaitEvaluator.

Doing that will also allow for new default values, more applicable to the

task at hand.

Figure 12 illustrates how these evaluators might be configured.

 82

Figure 12. The UI settings for three WaitEvaluators. Two specialized ones, text and images, and

one general purpose evaluator for everything else. The values for initial wait times and minimum

wait time are extremely small and would likely be much higher in a crawl of any magnitude.

The WaitEvaluators need to be in the post processing section of the chain,

since they should be run on both changed and unchanged documents.

6.3.3 HTTPContentDigest
As discussed in the previous chapter, when we are trying to detect if a

change has occurred, we may wish to ignore certain sections of the

document. The HTTPContentDigest processor adds that ability to

Heritrix.

The FetchHTTP processor automatically creates a hash based on the

contents of the document. Normally, this is all we need, but if there is a

known section in certain documents that contains problematic content, the

HTTPContentDigest can be set (via overrides and/or refinements) to

 83

recalculate the hash for those documents. Prior to doing the recalculation,

the processor will apply a regular expression to the document and replace

any section that matches the regular expression with a single blank

character. This replacement is actually done on a copy of the document

and the downloaded version remains intact for other processors.

Effectively, the hash is thus calculated based on a document with the

problematic sections erased.

Using this processor is expensive, both in terms of processor power and

memory so obviously it should be configured so that it is only applied to

exactly those documents that may require it. Careful use of overrides,

refinements and filters is essential here. Both to ensure that it is only

applied to documents requiring it and also in order to be able to vary the

regular expression since different sections will need to be dealt with in

different documents. For example, using it on non-text documents will

likely be meaningless. As with all processors, filters can be placed on it to

limit what URIs it handles and thus the ContentTypeRegExpFilter could

be used to ensure that the processor is only applied to text documents.

The processor has a setting that allows the operator to specify a maximum

size for the documents that it processes. This reduces the change that

abnormally large documents cause the crawl to slow down when this

processor suddenly needs to handle them. This setting defaults to one

megabyte.

The HTTPContentDigest processor must be applied after a document is

downloaded and prior to the ChangeEvaluator.

6.4 Using HTTP headers

As discussed briefly earlier, the FetchHTTP allows the operator to specify

filters that are applied after the HTTP headers have been downloaded but

before the content body. This makes it possible to write filters that reject

downloading a document based on its HTTP header.

This is exactly what was suggested in the last chapter. By using the Etag

and datestamp information, a prediction can be made as to whether or not

a document has changed.

 84

That is what the cumbersomely named HTTPMidFetchUnchangedFilter

does. Basically, it implements scheme 4 [3], where if both values are

present they must agree on predicting no change, otherwise a change is

predicted. This scheme was chosen since it had the highest reliability of

any approach that considered both values. In the future the option of

choosing any of the four proposed schemes should be added.

The filter stores the values of the headers in the CrawlURI’s keyed list so

that old values can be compared to newer ones. Any disparities in the

stored and current values are interpreted as indicating a change. This

means that even if the datestamp becomes ‘older,’ we’ll regard that as a

change.

By returning false, which it does if no change is predicted based on the

HTTP headers, the filter will cause the FetchHTTP processor to abort the

downloading of the document. A note to this effect midFetchAbort will be

made in the log.

The filter will also set the content state to unchanged if this occurs, but it

does not change the state if it predicts a change since the rate of false

positives on that is extremely high. The ChangeEvaluator continues to

handle those.

 85

7. Results

Initial test crawls have gone very well, with the software exhibiting good

stability running over the course of several days. Depending on the initial

and minimum wait settings, as well as politeness restrictions, it is

necessary to limit the size of the scope for each host [20] otherwise, as

expected, the adaptive algorithm is unable to work effectively since there

are always more URIs that need to be crawled, then time available for

crawling. Also, if the number of hosts is excessive, local machine

resources may become a limiting factor.

Unfortunately, no suitable metric exists to measure the performance of

such crawls. We can say that it behaved exactly as expected when running

against a website that we controlled, so the adaptive algorithm is sound.

The progress rate of the test crawls was always limited by politeness

factors, rather than machine resources, so we also know that the

ARFrontier can crawl with a modest number of hosts at a respectable

pace.

As discussed earlier, this was to be expected and is a direct consequence

of politeness restrictions and limited local resources. Effectively, there is

a maximum number of documents that can be downloaded from any one

host in a given amount of time. Therefore, there are only two ways to

increase the size of the scope on each host. Either you reduce politeness

restrictions or increase the wait times between revisits.

It helps to configure the crawl as accurately as possible in terms of

expected wait times, declaring images and such with higher wait times.

However, there is clearly a link between the size of the scope and a

requirement for a minimum wait time. As the scope grows, so also must

the minimum wait time, or rather the average wait time of all documents

belonging to the host.

Future work will undoubtedly focus on trying to establish good values to

balance expected wait times and the size of scopes. Our initial crawls,

while supporting our assumptions on the overall crawl behavior are far

from extensive enough to be able to provide significant insight into

further optimization.

 86

The fact that the ARFrontier supports a host valence higher than 1 allows

for very aggressive crawling. While this is generally to be avoided, there

may be scenarios where we have permission to crawl more aggressively.

This feature allows us to double or triple (or more) the number of

documents belonging to the host that can be visited.

The maximum number of hosts depends greatly on the hardware

available. Since politeness restrictions do not reach across hosts, they only

affect each others scheduling when too many hosts need to process URIs

at once. Due to politeness restrictions, each host is unlikely to crawl more

than 2-3 URIs per second (although this can vary). Heritrix has shown an

ability to crawl upwards of 50-60 documents per second on decent

hardware. This would seem to limit the number of hosts to about 20-30.

However, in practice most hosts are unlikely to require the fetching of 2-3

URIs per second, especially not over longer periods. The initial discovery

phase will probably generate a significant backlog as URIs are discovered

much faster than they can be processed, much like in snapshot crawl.

However, assuming that the initial wait times are moderate, the backlog

should be mostly completed before the first round of repeat visits.

The total number of hosts then depends on the kind of load each host is

likely to place on the system. Their politeness settings and the number of

URIs for each host dictates the maximum number of documents that they

may need to crawl per second. The wait times are likely to further

decrease this unless the site is changing very often and minimum wait

times are low.

While not tested extensively, it seems perfectly plausible to have at least a

hundred hosts running in parallel. The size of each host depends on how

often the documents need to be revisited. If the wait time is generous in

terms of the size of the host then this will free up additional resources to

crawl other hosts.

Finding an appropriate balance for these factors is still a work in progress.

No practical crawling has been performed yet but it is planned as we

discuss below. These will likely evolve over time as experience is

gathered. It is also quite likely that the adaptive heuristics will be

improved to look at more than just the last version.

 87

During test crawls, some interesting behavior has been observed. As

expected, pages with constantly changing sections have been discovered.

For example, a news site with a stock ‘ticker’ that changed constantly

during trading hours. There was also a page that only displayed the ticker.

One might argue that their content is changing with each visit, but it’s

doubtful if we want to record it that closely. The stock ticker probably

isn’t an issue if the minimum wait time is measured in hours, since the

news site itself changes quite rapidly. However, if the minimum wait time

is very low, a minute for example, then this becomes an issue.

On another site pages were observed with content that changed randomly

with each visit. The site offered a form of ‘yellow pages’ index service of

businesses. The pages in question were category front pages which

displayed several randomly chosen entries from their categories. A crawl

of this website would have to be configured either to disregard the entire

body of the document when creating comparison hashes or, more likely,

to visit these pages only at fixed, infrequent intervals.

Test crawling was conducted with very limited scopes for each host.

Basically, it only allowed two to three link hops (varied between crawls)

into each host and disallowed crawling of any offsite embedded

documents. Even with this shallow scope, many sites turned up thousands

of documents, indicating that the websites have a fairly broad structure.

This is in line with what we had expected.

The decision to disallow offsite documents was largely a matter of

practicality. An offsite document that has been crawled once would

continue to be revisited again and again, long after the reference to it has

been removed from one of the sites we are targeting. Unfortunately,

Heritrix does not provide information about how URIs were judged to be

in scope, so we can not differentiate between these and regular URIs.

This project was developed in a separate branch of the Heritrix project

and was initially made available to the public in December 2004. At the

time the software contained many bugs, but nevertheless drew some

attention from third parties interested in testing. By March 2005 the

software was considered essentially stable and towards the end of that

month work began to integrate it into Heritrix’s main code base. This was

done in preparation for the release of version 1.4.0 of Heritrix in late

April. The ARFrontier is currently labeled as being experimental, much as

 88

the BdbFrontier was in 1.2.0, since it has not yet received widespread

testing and use.

Figure 13. The UI page for configuring crawl modules. The AdaptiveRevisitFrontier has been

selected as the Frontier.

With its integration into Heritrix completed we believe that it will form

the basis for future incremental crawling amongst those parties that are

currently using Heritrix. In particular, the National and University Library

of Iceland will be utilizing it to augment its regular crawls of the .is

country domain [16]. These crawls will consist of approximately 30 hand

picked sites. The selection criteria is still being considered, but the sites

chosen for this are likely to be ones containing news, political discussions

and other similar content of obvious interest.

 89

8. Unresolved and future issues

A considerable amount of work remains to determine what settings yield

the best result. Volatile change rates, in particular, are likely to make this

hard. Some papers [10] have suggested that (in general) document

changes follow a Poisson process and that this could be used to create a

better change prediction algorithm. This remains to be seen, but it is clear

that there are web sites out there whose change rates vary significantly

over the course of time [20].

The subject of improving the adaptive heuristics is in its infancy. The

strategy developed here has tried to (potentially) capture all changes, with

the minimum wait times possibly dropping as low as one second. This is,

of course, left to operator discretion, but considering the frequent changes

of some sites, may be needed.

However, as the wait time drops, volatile change rates over the course of

a single day become a factor. The change rate may be heavily dependant

on the time of day [4]. It might therefore be best to use information from

(at least) the past 24 hours when estimating wait times. In fact, it is

probable that some advantage could be gained from viewing an even

larger sample. Knowledge of time of day, weekdays versus weekends,

public holidays etc. could all be incorporated, in theory, to improve the

wait time heuristics.

The possibilities for analyzing such data and even cross-referencing it

with data from other, similar, documents are almost endless. Such cross-

referencing could both be useful to take into account site specific trends,

by comparison to other documents from the same site, and trends related

to the document type, by comparing to documents of similar nature on

other sites.

This is likely to be quite expensive in terms of processing power, not to

mention requiring a significant amount of work to determine appropriate

linkages to utilize. Furthermore, Heritrix’s current architecture does not

allow processors to access meta-data on URIs, other than the one they are

currently working on. Incorporating such advanced features would require

some augmentation on its part.

 90

Change detection also remains a significant problem. We have provided a

simple strict hash approach, with the option of selectively ignoring

sections in documents known to be troublesome. This works quite well

most of the time, but has definate drawbacks, especially when crawling a

relatively large number of hosts and URIs where the operator is less able

to manually notice and address all problems.

During a meeting held by the National and University Library of Iceland

with several large content providers, they expressed an interest in

facilitating change detection by declaring the sections in their web pages

with tags that remain to be decided. The idea was that these tags would

denote any troublesome sections and our incremental crawls would be

configured to have the hashes overlook them. The content providers’

benefits would be reduced load on their servers without compromising the

quality of their content in the library’s archives. This approach, while

workable on a small scale, would clearly be of little practical use for

larger crawls, spanning hundreds, if not thousands of sites.

Improved change detection is a very large and complex issue. A

comprehensive overview is well beyond the scope of this project. We can

however state that the better we are able to detect changes in content and

separate those changes from changes in layout the more effective any

adaptive revisit algorithm will be. However, that still won’t address the

problem where some content in a document is of trivial importance. For

example, when archived stories at a news site contain a section that tells

the reader about the current ‘front page’ story. The current front page

story changes with great frequency, but it is captured when we crawl the

actual front page and its inclusion in archive pages is essentially trivial.

As previously discussed, it has been suggested that ‘close enough’

comparison algorithms [6] may overcome this to some extent. They

operate by overlooking minor changes in the documents, for example, by

splitting them up into a certain number of overlapping sections, or

shingles, and checking if there is sufficient number of identical sections.

If there are then the document is considered to be ‘close enough’ and is

regarded as unchanged.

While the ‘close enough’ approach seems attractive, it does have a

notable drawback; it assumes that small changes are never of

 91

consequence. In practice, however, it is easy to think of significant issues

where a small change is of considerable interest.

Using ‘close enough’ detection may however be a suitable compromise

for larger crawls. The alternative is to overcrawl, possibly do so quite

heavily. Also, if a ‘close enough’ hashing is added to Heritrix, it is fairly

simple to configure different sites to use it or the strict hash. This way

sites known to be well behaved could continue to use the strict hash,

while other sites, possibly of lesser interest, would use ‘close enough’

comparisons.

Unfortunately, HTTP header information does little to improve this

situation. In practice, dynamically generated content is the most likely one

to be missing good header information on content change for practical

reasons. Dynamically generated content is also more easily modified and

thus more likely to change. Studies indicate that while HTTP headers are

usually reliable in predicting change, their usefulness in accurately

predicting non-change is much lower [3]. Barring a dramatic

improvement in the use of HTTP headers by websites, it is unlikely that

they will be of greater use than what is provided in the current

implementation.

For this project, we considered keeping track of the prediction made by

the HTTP headers and compare them with the hash comparison. The idea

was to use this to build up a 'trust level.' Once a certain threshold is

reached we would start using the header information to avoid downloads,

but still do occasional samples, reducing the number of samples with

rising trust levels. Ultimately this was not done since it seems quite rare

that they predict no change, when a change has in fact occurred, but

adding this functionality would almost eliminate the chance of us failing

to download a changed document because of faulty HTTP header

information.

We have primarily focused on predicting change rates based on a

document’s history of change. However, there may be other factors that

significantly affect this. As mentioned earlier, a documents location

within a site can be significant. “Front pages” usually change much more

often than archives. This probably varies somewhat from site to site, but

adding some discrimination, perhaps based on the distance from seed or

the length of the URI string, might improve the initial wait time.

 92

Alternatively (or additionally) a ranking system could be devised that

takes diverse factors such as number of links to and from a document,

presence of keywords, etc. into account. Developing such a ranking

system would require considerable effort and implementing it is also

likely to require additional changes to Heritrix. Again, this may vary from

one website to another, and also on the purpose of the crawl. The ranking

could be biased to favor pages that we deem important on some basis,

such as the presence of keywords.

Looking even further ahead, when crawling sites offering RSS feeds [11]

or other similar services, we could use them as triggers for revisiting

certain sections of the webs, as well as the (presumably) new stories being

advertised via the feeds. Obviously not all sites offer such feeds, nor are

all changes reported by them, but they would allow us to capture all major

changes accurately, assuming that the feed is well handled.

On a more practical note, Heritrix’s statistics remain heavily snapshot

oriented. Especially those provided by the web user interface. We took

advantage of options provided by the crawl.log to record important

additional material and this works quite well. We also implemented a

Frontier report that is accessible via the user interface that contains

various useful data on the state of the crawl.

Heritrix however provides a considerable amount of ‘progress’ data.

Much of this fits only marginally with incremental crawling since the data

doesn’t really account for multiple visits of the same URI. For example,

the main Console page offers a progress bar that shows the percentage of

completed URIs against the number already completed and those that

remain queued. Clearly an incremental crawl will never be completed so

this progress bar is of little actual value.

None of the above issues are acute problems, but it means that monitoring

an incremental crawl requires some additional interpretation of the data

being provided. In the future, Heritrix may offer the possibility for

modules to provide customized web pages for control and display of data.

This is not on the immediate work schedule, but once implemented,

statistics reporting on incremental crawls can be significantly improved

and customized to fit its needs.

 93

None of these problems should affect later day analysis of a crawl. The

progress data only complicates the monitoring of a crawl. Analysis work

is done based on the logs, and, as noted earlier, they reflect the actual

progress quite well.

 94

9. Acknowledgements

I would first like to thank my supervisors, Helgi Þorbergsson for his

guidance and support and Þorsteinn Hallgrímsson for his tireless support

of this and related projects and making it possible for me to undertake this

task. Also I’d like to give special thanks to Gordon Mohr and Michael

Stack of the Internet Archive for their assistance during the development

phase. Finally I’d like to thank the IIPC for their generous support.

 95

References

1. Gordon Mohr et al.: Introduction to Heritrix. Accessed May 2005.

http://www.iwaw.net/04/proceedings.php?f=Mohr

2. Andy Boyko: Characterizing Change in Web Archiving. Internal IIPC

document, unpublished.

3. Lars R. Clausen: Concerning Etags and Datestamps. Accessed May

2005. http://www.iwaw.net/04/proceedings.php?f=Clausen

4. Brian E. Brewington and George Cybenko: How dynamic is the Web?

WWW9 / Computer Networks, 33(16): 257-276, 2000

5. Marc Najork and Allan Heydon: High-Performance Web Crawling.

Accessed May 2005.

ftp://gatekeeper.research.compaq.com/pub/DEC/SRC/research-

reports/SRC-173.pdf

6. Andrei Z. Broder: On the Resemblance and Containment of

Documents. IEEE SEQUENCES '97, pages 21-29, 1998.

7. John Erik Halse et al.: Heritrix developer documentation. Accessed

May 2005. http://crawler.archive.org/articles/developer_manual.html

8. Kristinn Sigurðsson et al.: Heritrix user manual. Accessed May 2005.

http://crawler.archive.org/articles/user_manual.html

9. Berkeley DB Java Edition. Accessed May 2005.

http://www.sleepycat.com/products/je.shtml

10. J. Cho and H. Garcia-Molina: The evolution of the web and

implications for an incremental crawler. In Proc. of 26th Int. Conf.

on Very Large Data Bases, pages 117-128, 2000.

11. Mark Pilgrim: What is RSS? Accessed May 2005.

http://www.xml.com/pub/a/2002/12/18/dive-into-xml.html

12. Internet Archive. Accessed May 2005. http://www.archive.org

13. Nedlib Factsheet. Accessed February 2005. http://www.kb.nl/nedlib/

14. FIPS 180-1 – Secure Hash Standard. Accessed May 2005.

http://www.itl.nist.gov/fipspubs/fip180-1.htm

15. Þorsteinn Hallgrímsson: Varðveisla íslenskra vefsíðna. Bókasafnið,

26. árgangur 2004, p. 16-22

16. Kristinn Sigurðsson: Söfnun vefsíðna og Heritrix. Unpublished

17. Heritrix FAQ. Accessed April 2005.

http://crawler.archive.org/faq.html

18. Java Management Extensions. Accessed April 2005

http://java.sun.com/products/JavaManagement/

 96

19. Reglugerð 982/2003. Reglugerð um skylduskil til safna. Accessed

April 2005. www.reglugerd.is

20. Kristinn Sigurðsson, Incremental crawling with Heritrix. Unpublished

21. Internet Archive: Wayback Machine. Accessed May 2005

http://www.archive.org/web/web.php

22. Kulturarw
3
. Accessed May 2005. http://www.kb.se/kw3/Default.aspx

23. Pandora Archive. Accessed May 2005. http://pandora.nla.gov.au/

24. Nordic Web Archive. Accessed May 2005. http://nwa.nb.no/

25. International Internet Preservation Consortium. Accessed May 2005.

http://netpreserve.org

26. International Internet Preservation Consortium: Mission. Accessed

May 2005. http://netpreserve.org/about/mission.php

27. Jetty Java HTTP Servlet Server. Accessed May 2005.

http://jetty.mortbay.org/jetty/

28. Java Foundation Classes. Accessed May 2005.

http://java.sun.com/products/jfc/index.jsp

29. T. Berners-Lee et al: Uniform Resource Identifiers (URI): Generic

Syntax. Accessed May 2005. http://www.ietf.org/rfc/rfc2396.txt

30. JDBC Technology. Accessed May 2005.

http://java.sun.com/products/jdbc/

