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Abstract

The overall objective of this study was to develop statistical methods to detect
trends with applications to two ecological monitoring programs, a) monitoring
of contaminants in the marine environment around Iceland and b) monitoring
of the population of the rock ptarmigan in Iceland. Polynomial models were
used to account for trends with no consistent direction, mixed models were used
to analyze data from multiple sites simultaneously and to describe correlations
between observations. A changepoint (CP) model was investigated and a new
method proposed which takes autocorrelation into account when detecting a CP
in short time-series. A population reconstruction model was developed for the
ptarmigan population in NE-Iceland which allows for the possibility of including
a CP. The statistical analyses revealed that the concentration of the persistent
organic pollutants have been decreasing both in mussel and cod over the recent
years. However, there were signs of local pollution that could be traced back to
a whaling station, aquaculture and waste incinerator. There was no consistent
trend for the trace elements. A population reconstruction model was developed
for the population of the rock ptarmigan in Iceland. It estimates the abundance,
natural survival and hunting mortality for two age groups. This model allows
for the possibility of modeling the natural survival as a function of density and
the hunting mortality as functions of either density or hunting effort with a
CP. A CP was included in the function for hunting mortality in 2003 when the
hunting regulations were changed. The model indicates that changes in the
hunting regulation did indeed have an effect in reducing the hunting mortality
and also changing the harvest strategies of hunters. Still, management goal of
reducing the total annual mortality to 37% has not been achieved and a further
change in regulation may be needed.
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Ágrip

Markmið verkefnisins var að þróa tölfræðiaðferðir til að finna breytingar í tímaröð-
um frá tveimur vöktunarverkefnum, a) vöktun á mengun í lífríki sjávar við Ísland
og b) vöktun íslenska rjúpnastofnsins. Margliðulíkön voru notuð til að greina
breytingar, blönduð líkön voru notuð til að greina gögn frá mörgum vöktun-
arstöðum samtímis og til að taka tillit til fylgni á milli mælinga. Aðferð til
að greina breytipunkta í stuttum tímaröðum með sjálffylgni var þróuð. Stofn-
líkan fyrir rjúpuna sem leyfir breytipunkta var aðlagað fyrir rjúpnastofninn á
NA-landi. Tölfræðigreiningarnar leiddu í ljós að styrkur þrávirkra lífrænna efna
sem mældur er í kræklingi og þorski hefur farið minnkandi síðastliðin ár. Þó
sáust merki um staðbundna mengun sem hægt var að rekja til hvalveiða, fisk-
eldis og sorpbrennslu. Breytingar í styrk snefilefna voru mjög mismunandi eftir
efnum. Stofnlíkan var þróað fyrir íslenka rjúpnastofninn og metur það fjölda
ungfugla og fullorðinna fugla, náttúrulega lifun og veiðiafföll. Hægt er að líkja
eftir lifun með falli af þéttleika og veiðiafföllum með föllum af annað hvort þétt-
leika eða fjölda veiðimanna, einnig er hægt að setja breytipunkt inn í föllin og
var það gert þegar veiðireglum var breytt árið 2003. Líkanið sýndi fram á að
breyting á veiðireglum hafði áhrif með því að minnka veiðaföll. Þó hefur mark-
miðum um að ná heildaraföllum niður í 37% ekki náðst og frekari breytingar á
reglum gæti verið nauðsynleg.
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Thesis





1
Introduction

1.1 Monitoring of ecosystems

Ecosystems are complex and dynamic systems of plants, animals, microorganism
and the abiotic environment. They provide various services for people, such as
food and fibers, they control the soil formation, photosynthesis and nutrient
cycles. The ecosystems have influences on climate, floods, diseases, wastes and
water quality and they also provide recreational and spiritual benefits. People
are dependent on these services and changes in them can affect human well-
being (Millennium Ecosystem Assessment, 2003).

Ecosystem degradation has become a world wide problem (Millennium Ecosys-
tem Assessment, 2005). Increasing consumption and increasing human popula-
tion has led to a change in land use and land cover to achieve greater production
of food, fiber and timber. Wetlands and forests have been converted to agri-
cultural lands which has led to a loss in biodiversity and ecosystem services
(Lambrechts et al., 2009; Russi et al., 2013). Problems associated with contam-
inants and waste have been increasing with negative effects on the health of
humans and wildlife (AMAP, 2009). Natural resources are being overexploited,
including harvesting of wildlife that are already vulnerable because of habitat
loss and pollution (Venter et al., 2006). These changes in the earth’s ecosystems
can be both of natural and anthropogenic origin and detection of changes are
important to counteract further degradation.

Ecological monitoring is the long term act of measuring variables in the
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1 Introduction

ecosystems which provides data that can be used to determine if the ecosystems
are changing, how they are changing and how fast. It has been used to assess the
quality of the environment and to acquire knowledge about ecosystem processes.
Monitoring is essential for sustainable management of resources and efficient
conservation (Nichols and Williams, 2006).

An important part of monitoring programs is statistical analysis of the data
they provide. Statistical analysis can help to answer questions by testing hy-
pothesis, such as: has there been an increase in contaminant concentration over
the last two decades? Has the biodiversity decreased? Is the forest cover chang-
ing? These changes are often called trends and a common practice in monitoring
programs is to detect trends in time-series.

1.2 Definition of a trend

There is no consensus in the literature on what a trend is (Franzke, 2012; Wu
et al., 2007) but the general definition of a trend is a long term change in the
mean value over some period of time (Chandler and Scott, 2011). Trend has
been defined in various ways: it has been defined as a linear change, monotone
decreasing or increasing (Wu et al., 2007), cyclic and seasonal trend (Cryer and
Chan, 2008) or as a change with no consistent direction. Some have distin-
guished a change with no consistent direction from a trend and called it fluctu-
ations (Robson, 2002). A trend in the mean value of a time-series Y1, Y2, ..., YT
could be defined as E[Yt] = µt as done in Diggle (1990) where µt is the mean at
time t. If there is no trend in the time-series all of the µt are equal but if there
is a trend they are not all equal. In this thesis the definition of a trend is taken
as in Diggle (1990), therefore the trend can be monotone decreasing or increas-
ing or with no consistent direction, which is often referred to as fluctuations or
pattern of change.

1.3 Analyzing trends

Many statistical methods exist to detect trends in time-series from monitoring
programs (Bignert, 2003; Thomas, 1996). What method to use depends on the
aim of the study, questions asked and the nature of the time-series (Chandler
and Scott, 2011). In some cases it may be adequate to use simple methods
like linear regression or a Mann-Kendall test, but often more advanced methods
are necessary to fully extract information from the available data. In complex
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ecological studies a model of the ecosystem may be required before it is possible
to analyze trends for certain factors in the system. Therefore, methods used for
trend detection vary between monitoring programs and it is often necessary to
make adjustments for each monitoring study.

1.4 Ecological monitoring programs

In this study, statistical analyses of trends were carried out for two different
monitoring programs, monitoring of contaminants in the marine environment
around Iceland and monitoring of the rock ptarmigan population in Iceland.

1.4.1 Monitoring of contaminants in the marine environment
around Iceland

Contaminants are found all around the biosphere and can be of natural or
anthropogenic origin but their output from anthropogenic sources increased
during the 20th century (Järup, 2003). They can have negative effects on health,
reproduction and survival of wildlife and humans (Fisk et al., 2005; Smith and
Gangolli, 2002). In order to mitigate the emission of contaminants, international
agreements, such as the Oslo/Paris convention (OSPAR) and the Stockholm
conventions have been implemented.

National monitoring program for contaminants in the sea around Iceland
has been running since 1989 (Jörundsdóttir et al., 2012). The program is under
the auspices of the Environmental Agency of Iceland on behalf of Ministry for
the Environment. The execution of the program is coordinated by Matís ltd. in
cooperation with the Marine Research Institute and the Department of Phar-
macology and Toxicology at the University of Iceland. The program is a part
of the fulfillment of Iceland’s obligations to the Stockholm Convention, OSPAR
commission and the Arctic Monitoring and Assessment program (AMAP).

Contaminants have been measured in blue mussels (Mytilus edulis), sam-
pled at 11 locations around the Icelandic coastline, and in cod (Gadus morhua),
sampled NW and NE of Iceland (Figure 1.1). The persistent organic pol-
lutants (POPs) p,p’-dichlorodiphenyl dichloroethene (p,p’-DDE), hexachloro-
benzene (HCB), polychlorinated biphenyl (PCB), chlordanes (CHL) and hexa-
chlorocyclohexane (HCH) have been analyzed both in the mussels and the cod
livers, further, toxaphenes (Tox) were analyzed in the cod livers. The trace el-
ements As, Cd, Cu, Hg, Se and Zn were analyzed in the mussels and cod livers
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except Hg which was analyzed in the cod muscles (see Paper I Section 6.2 and
Paper II Section 7.2 for details on sampling and chemical analysis).

Figure 1.1: Sampling sites for mussel and cod in the monitoring of contaminants in
Icelandic waters.

1.4.2 Monitoring of the rock ptarmigan in NE-Iceland

Monitoring of the population of rock ptarmigan (Lagopus muta) in Iceland has
been carried out since 1963 and organized by the Icelandic Institute of Natural
History (Nielsen, 1999). The population has cyclic fluctuations in numbers
with a periodicity of 10-12 years (Gudmundsson, 1960; Nielsen and Petursson,
1995). It is a popular game bird in Iceland and market hunting was allowed
before 2003 but that year a hunting ban was enforced after a long-term decline
of the population (Brynjarsdóttir et al., 2003). The hunting ban lasted for two
years and in 2005 hunting started again but with a shorter hunting season and
a ban on market hunting.

The management goal for the ptarmigan population in Iceland has been
to keep the total annual mortality at a level that will allow the population
to exhibit natural fluctuations. This sustainable mortality rate has been esti-
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mated to be 37% for adults (Magnússon et al., 2005; Nielsen, 2006). Hunting
restrictions have been used in an attempt to reach this goal but without suc-
cess. Knowledge of abundance, recruitment rate, survival and harvest mortality
help wildlife managers to determine how hunting restrictions and regulations af-
fect the population and to estimate whether the management goals have been
achieved.

Ptarmigans have been counted on six census plots in NE-Iceland (Figure 1.2)
and the sum of all cocks observed on these six plots is taken as a population
index. Age ratios of juveniles and adults have been determined in spring and
during the hunting season in autumn. The number of ptarmigans harvested and
the number of hunters are also monitored, as hunters are obligated to turn in
hunting reports to the Environmental Agency of Iceland (see Paper IV Section
9.2.1 for details).

Figure 1.2: The study area for the monitoring of rock ptarmigan in NE-Iceland and
the 6 census plots.
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2
Objectives

The overall objective of this study was to develop statistical methods to detect
trends in two ecological monitoring programs, a) monitoring of contaminants in
the marine environment around Iceland and b) monitoring of the population of
the rock ptarmigan in Iceland. The objectives for the individual papers, pre-
sented in part II of this thesis, were the following:

Paper I: The aim of the study presented in Paper I was to use the contam-
inant measurements from mussels sampled around the Icelandic coastline to
answer the following questions: 1) Has there been a change in concentration of
contaminants around the Icelandic coastline for the last two decades? 2) Are
concentrations and changes, if present, consistent between locations?

Paper II: The aim of the study presented in Paper II was to determine temporal
trends of POPs and trace elements measured in cod over the last two decades
at two different locations in the Arctic Ocean north of Iceland. The relation-
ship between the contaminant concentrations and biological covariates was also
determined.

Paper III: The aim of the study presented in Paper III was to investigate a
changepoint model which can detect either a mean shift and/or a trend change
when accounting for autocorrelation in short time-series. A new method was
proposed and applications of this new method were given using data from mon-
itoring studies.
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Paper IV: The aim of the study presented in Paper IV was to build a pop-
ulation reconstruction model for the rock ptarmigan in Iceland, to estimate the
population size, natural survival and hunting mortality.
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3
Statistical analysis

Statistical methods to detect trends in time-series from monitoring programs
were developed in Papers I-IV. Time-series of different origin need different
statistical methods to detect trends. For example, different methods need to be
used to investigate possible trends in time-series of contaminant concentration
and in the cyclic population of rock ptarmigan. The choice of method also
depends on what kind of trends are being investigated. If there is an interest
in testing for an increasing trend, then simple linear regression might be an
appropriate test. However, if there is an interest in testing whether there has
been any change in the time-series, fluctuations, then simple linear regression
is not the appropriate method, instead polynomial regression would be more
suitable to detect these kind of changes. In this chapter a summary is given of
the statistical methods used and developed to detect trends in this study.

3.1 Polynomial regression

Trends in contaminant concentrations in the environment may not be linear, e.g.
there can be increasing trend in contaminant concentration because of emission
from sources but this trend can change to a decreasing trend if production of
the contaminant stops. This process could also be in reverse, where stable or
decreasing concentrations could start to increase because of global warming,
e.g. contaminants that have accumulated in ice might be released again to the
environment (Macdonald et al., 2005).

Polynomial regression can be used to model these trends and was used to
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detect trends in contaminant concentrations in mussel and cod in the marine
environment around Iceland (Papers I-II). Polynomial regression is actually a
special case of multiple linear regression, used to fit a nonlinear relationship
between two variables.

The order of the polynomial can be increased to make the functional form of
the relationship more flexible. A linear trend can be modeled with a first-order
polynomial (Equation 3.1).

yi = β0 + β1xi + εi (3.1)

A trend that shows e.g. increasing and then decreasing concentrations can be
modeled with a second-order polynomial (Equation 3.2).

yi = β0 + β1xi + β2x
2
i + εi (3.2)

More complex fluctuations can be modeled with higher order polynomials (Equa-
tion 3.3).

yi = β0 + β1xi + β2x
2
i + ...+ βpx

p
i + εi (3.3)

The form of the trend is determined by the order of the polynomial, which
can be chosen with a significance test or other model selection criteria such as
the Akaike information criterion (AIC). The highest order is fitted first, order
four was chosen in the analysis of trends in the time-series of contaminant
concentrations. One can then test whether the coefficient for the variable of the
highest order is significant. If it is not significant a model with one lower order
is similarly evaluated, and the process continuous. Using this method could
result in a linear model (Equation 3.1) or no trend at all (Equation 3.4).

yi = β0 + εi (3.4)

There are some disadvantages of using polynomial regression. For example
polynomial models of higher order than three should only be fitted with caution
as they can pose problems in both interpolation and extrapolation (Kutner
et al., 2005), especially at the end points, where the polynomial function can
become nonsensical and this gets worse for high order polynomials (Fornberg
and Zuev, 2007). Also, a local change in the dependent variable can have a
global effect on the form of the polynomial where this is also worse with high
order polynomials (Magee, 1998).
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The advantages of using polynomial regression may outweigh the disadvan-
tages but they have to be kept in mind. The main advantage is that it is
simple to use as it is just a special case of multiple linear regression and can be
performed with most statistical softwares. Another advantage is that covariates
can easily be included in the models and they can be extended to mixed models.

3.2 Mixed models

3.2.1 Monitoring at multiple sites

The method of mixed models can be useful when there is an interest in ana-
lyzing results from multiple sites simultaneously as was done in the analysis of
contaminant concentrations in mussels (Paper I). A random coefficient model
(RCM) is a special case of mixed models (Littell et al., 2006), which consists of
a fixed component that describes the average trend over all sites and a random
component that models how the trend at different sites varies from the average
trend. A simple RCM with only an intercept and a slope can be written in the
following way:

Yit = (β0 + b0i) + (β1 + b1i)t+ εit

b ∼ N(0,G)

ε ∼ N(0, σ2I)

where

Yit is the observation at site i and time t.

β0 and β1 are the fixed effects for intercept and slope.

b0i and b1i are the random coefficients in b, which model how much the
intercept and the slope for the ith site deviate from the mean of all sites.

Unknown parameters of the G matrix are estimated using pre-specified
covariance structure (e.g. a diagonal matrix where the random coefficients
are assumed independent).

Using this method, it is possible to test the average trend in contaminant
concentration over all sites and to test whether the trend and concentration are
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different between sites. Verbeke and Molenberghs (2000) recommend starting
with a saturated model, both fixed and random effects. Random effects are
tested first using the restricted likelihood ratio test, which is known to be con-
servative (Pinheiro and Bates, 2000). Subsequently the fixed effects are tested
using likelihood ratio tests. If fixed effects can be dropped the random effects
are tested again. The modeling procedure can be carried out using the nlme
package (Pinheiro et al., 2012) in the statistical software R (R Development
Core Team, 2012).

If none of the random coefficients are significant then there is not a significant
difference in concentration and trend between sites. If only the intercept b0i is
significant then there is no significant difference in the trend between sites but
there is a significant difference in average concentration. If both b0i and b1i

are significant then there is a significant difference in concentration and trend
between sites. The expected values of the bs are zero so the fixed effects can be
interpreted as the average concentration and trend of all sites. The best linear
unbiased predictions (BLUPs) of random effects can be used to determine the
trend at the individual sites.

In the case of the contaminants measured in mussels, which were sampled
at 11 sites, an RCM was used to analyze the data from all sites simultaneously.
The RCM can easily be extended by including additional polynomial terms
and covariates. A polynomial model of order four was taken as a saturated
model. The percentage of fat in the mussels was also included in the model as
a covariate with a quadratic term, to reduce variability (see Section 3.5.4). The
concentrations were log-transformed prior to analysis to meet assumptions of
normality and homoscedasticity. The full model (3.5) was thus:

Yit = β0 + β1t+ β2t
2 + β3t

3 + β4t
4 + β5fit + β6f

2
it (3.5)

+b0i + b1it+ b2it
2 + b3it

3 + b4it
4 + b5ifit + b6if

2
it + εit

b ∼ N(0,G)

ε ∼ N(0, σ2I)

where Yit is the log-concentration of a contaminant at site i and year t. The βs
are fixed effect coefficients, the bs are coefficients describing random effects and
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fit is the percentage of fat in the sample at site i and year t. The G matrix was
fitted as a diagonal matrix, i.e. the random effects were assumed independent
but to have different variances.

3.2.2 Intra-class correlation

Mixed models can be used when it is necessary to include correlation between
some of the observations as was done when analyzing trends in the contaminant
concentrations in cod (Paper II). It is well established that biological attributes
of marine animals caught in close vicinity of each other tend to be more similar
than attributes of animals caught at very different locations. In the context
of general random effects models this is the intra-class correlation which, for
marine surveys is termed the intra-haul correlation (Pennington and Volstad,
1994) and is typically taken into account by using the sampling location as a
random effect.

In the case of contaminant concentrations in cod, one or two samples were
taken annually from the NW location and one from the NE location (Figure
1.1). Each sample contained 25 individuals. Contaminants were determined
in the livers except Hg which was determined in the muscles. The 25 muscles
from each sample were homogenized and pooled together before the chemical
analysis was performed while the 25 livers were divided into four to six sub-
samples according to the weight of the livers (see Paper II Section 7.2.1 for
details). Therefore, there were more than one observation from each location,
each year that can be assumed to be more similar than observation from other
years and locations.

To test whether the concentration of contaminants in cod had changed over
time, a mixed model was fitted (Pinheiro and Bates, 2000), where the concen-
tration over time was modeled as a polynomial. Monitoring of cod only took
place at two locations and interactions were included in the model, instead of
random coefficients as was done in the mussel example, to account for a possible
difference between the locations. Interactions between location and the fixed
effects were added to the model to test whether the change in concentration
was different between the locations and to test whether the relationships be-
tween the concentrations and the covariates were different at the two locations.
A random year-location interaction was included in the model to account for
correlations between observations from the same year at each location.

The saturated model of the change in concentration of the contaminants in
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cod was as follows:

Yijt =β0j + β1jt+ β2jt
2 + β3jt

3 + β4jt
4

+ β5jaijt + β6j leijt + β7jfijt + β8j lwijt + γjt + εijt

where Yijt is the log-concentration of a contaminant in sub-sample i at location
j in year t. The average age (aijt), length (leijt), liver fat content (fijt) and liver
weight (lwijt) of the sub-samples were used as covariates to adjust for biological
variation. The γjt is the random effect for the intra-haul correlation and the G
matrix was fitted as a diagonal matrix, i.e. the random effects were assumed in-
dependent. The model was fitted with restricted maximum likelihood (REML)
using the nlme package (Pinheiro et al., 2013) in the statistical software R (R
Development Core Team, 2012). Fixed effects were tested using the conditional
t-test which is an approximate test (Pinheiro and Bates, 2000).

3.3 Changepoint model

As seen above, polynomial models can be used when there is an interest in
modeling fluctuating trends. Sometimes there is an interest in knowing at what
point in time a change in the trend took place, either a step change and/or
a trend change. In this case a changepoint (CP) model can be applied. Such
changes can occur e.g. in time-series of concentration of contaminants or in a
time-series of wildlife population; a change in the analytical method can result
in a step change in the contaminants and a change in the source of contaminants
can result in a change in trend. Similarly, a change in time-series of a wildlife
population can occur after a change in wildlife management practices. In Paper
III a method was developed to detect an unknown CP, either step and/or trend
change, while accounting for autocorrelation.

The CP model (3.6) allows for a CP in a time-series yt, i.e. the intercept
(α1 6= α2) and/or the slope (β1 6= β2) are different before and after the CP.

yt =

 α1 + β1t+ εt 1 ≤ t ≤ c

α2 + β2t+ εt c < t ≤ N
(3.6)

The errors εt are assumed to be autocorrelated with an autoregressive structure
of order one (AR(1)) with an autocorrelation parameter ρ, i.e. εt = ρεt−1 + ut

and ut is assumed to follow a normal distribution with mean 0 and variance σ2
u.
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The time c is the unknown CP, assumed to lie in an interval [n0, N −n0] where
n0 is the first possible CP and N is the length of the time-series. A reduced
model with no CP would be a straight line (Equation 3.7).

yt = α+ βt+ εt (3.7)

To test the null hypothesis of no CP against an alternative hypothesis of un-
known CP a likelihood ratio test is applied and the likelihood ratio statistic Dc

is calculated for each c (Equation 3.8).

Dc =

{
− 2 ln

(
likelihood for model (3.7)
likelihood for model (3.6)

)}
(3.8)

The most likely CP is the point in time where these Ds are at a maximum
(Equation 3.9), this is the test statistic (Dmax) for the CP test.

Dmax = max
c
Dc (3.9)

Unlike many likelihood ratios, the Dmax statistic does not follow a χ2 dis-
tribution and critical values need to be extracted from simulated distribution
which depends on the length of the time-series and the unknown autocorrelation
structure. A simulation study was carried out in Paper III where it was observed
that ignoring autocorrelation inflates the type I error. It was not possible to
test if there was an autocorrelation in short time-series and the estimate of the
autocorrelation parameter was biased. Therefore, the estimate of the autocor-
relation parameter cannot be used when the distribution of Dmax is simulated.
Instead, it was recommended to use a critical value for a fixed autocorrelation
parameter ρ = 0.2 when positive autocorrelation is assumed to be present in
the time-series. If critical values are chosen at the 5% nominal error rate then
this method will keep the true error rate of the CP test below 10% when the
autocorrelation does not exceed ρ = 0.6.

3.4 Population reconstruction model

Population reconstruction models can be used to estimate the population size,
recruitment rate, natural survival and harvest mortality simultaneously. These
models use harvest data, i.e. the number of harvested animals, age ratios from
the harvest and the hunting effort. The precision of the models can be improved
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by adding auxiliary data, e.g. data from radio telemetry studies or index data
from count studies. The approach taken by Broms et al. (2010) was taken as a
basis to develop a new population model for the rock ptarmigan in Iceland (see
details in Paper IV Section 9.3). The model estimates demographic parameters
for each age group but the age of the rock ptarmigan can only be determined
as either juvenile (< 1 year) or adult (>1 year).

The model consists of four likelihoods (see Model 3.10). The likelihood Lcatch

provides an estimate of the probability of catching a bird using the harvest
data (hi = number of harvested ptarmigans, fi = number of hunters), and
LAAH provides an estimate of the probability that a harvested bird is juvenile
using the age ratios from the harvest (ahi,j). LAAS provides an estimate of the
probability that a bird is juvenile at spring using the age ratios from spring
(asi,j), and Lindex includes the relationship between the index (I) and total
abundance (N). Maximizing the product of the likelihoods gives the maximum
likelihood estimates for the demographic parameters of the model.
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Ljoint = Lcatch · LAAH · LAAS · Lindex

Lcatch =

c−1∏
i=1

(
Ni
hi

)(
Hb,i(Ni,1 +Ni,2)

Ni,1 +Ni,2

)hi

(
1− Hb,i(Ni,1 +Ni,2)

Ni,1 +Ni,2

)Ni−hi

T∏
i=c

(
Ni
hi

)(
Ha,i(Ni,1 +Ni,2)

Ni,1 +Ni,2

)hi

(
1− Ha,i(Ni,1 +Ni,2)

Ni,1 +Ni,2

)Ni−hi

LAAH =

T∏
i=1

(
ahi,1 + ahi,2

ahi,1

)(
Ni,1

Ni,1 +Ni,2

)ahi,1
(

1− Ni,1
Ni,1 +Ni,2

)ahi,2
LAAS =

T∏
i=1

(
asi+1,1 + asi+1,2

asi+1,1

)(
Ni,1

Ni,1 +Ni,2 · Sx,i

)asi+1,1

(
1− Ni,1

Ni,1 +Ni,2 · Sx,i

)asi+1,2

Lindex =

T∏
i=1

1√
2πσ

exp

[
−(Ii − αNi)2

2σ2

]

(3.10)

The abundance of adult ptarmigans was calculated with Equation 3.11.

Ni,2 =

 (1−Hi−1)Sc(Ni−1,1 +Ni−1,2 · Sx,i−1) 1 ≤ i < c

(1−Hi−1)Sc(Ni−1,1 +Ni−1,2 · Sx,i−1) c ≤ i ≤ T
(3.11)

where

Hi = 1− e−a, Hi = 1− e−a+b·Ii or Hi = 1− e−b·fi (3.12)

and

Sx,i = 1, Sx,i = a or Sx,i = a− b · Ii−1 (3.13)

With this model it is possible to estimate the abundance of juveniles (Ni,1)
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before the hunting season in year i, the abundance of adults in the first year
(N1,2), the excess winter survival (Sx,i) of adults in year i and annual survival
of juveniles (Sc). Here it is possible to have Sx,i fixed and if the natural survival
of juveniles and adults is equal then Sx,i = 1. It is also possible to model the
survival as a function of density (see Equation 3.13) but Sc is fixed in both cases.
It is also possible to assume that the juvenile survival is density dependent and
the adult survival fixed. The function for hunting mortality (Hi) is assumed
common for juveniles and adults. If one wishes to assume a separate hunting
mortality for the two age groups another likelihood needs to be included, e.g.
a likelihood which includes age ratios from a telemetry study. The hunting
mortality can be assumed fixed, it can also be assumed to be a function of
either hunting effort or the prey density (see Equation 3.12), depending on the
hunting strategy. The number of juveniles is estimated for every year and the
number of adults is estimated for the first year only. These estimates along
with the estimates of survival and hunting mortality are used to calculate the
number of adults for each year after the first year (see Equation 3.11).

This modeling approach gives the possibility of including a CP in the model.
For example if there has been a change in hunting regulations, the function for
hunting mortality is allowed to be different before and after the CP. This can be
used to test whether a change in hunting regulations had an actual effect, since
models with and without a CP can be compared using either a likelihood ratio
test or the AIC. If the inclusion of a CP improves the model one can conclude
that the new hunting regulations did indeed have an effect.

3.5 Statistical issues

3.5.1 The normal assumption

Many statistical methods assume that the error terms follow the normal dis-
tribution. This is the case in the polynomial models, which are just a special
case of multiple linear regression, the mixed models and the CP model. If this
assumption is seriously violated the interpretation of the p-values is not mean-
ingful. These methods are usually robust enough to handle small deviations
from the normal distribution. Non-normal data are, however, common in eco-
logical studies and right-skewed data is often encountered. In these cases a
log-transformation can be helpful. Transforming the dependent variable will in
many cases of right-skewed data make the error terms normal. The analysis
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is then done on the log-transformed variables and the results can be back-
transformed to the original scale, which facilitates interpretation of the trend,
as was done with the contaminant concentrations in Papers I and II.

3.5.2 Autocorrelation

Most standard statistical methods assume that the observations are indepen-
dent but in time-series this may not be the case. Observations close in time
may be correlated, e.g. population size and mortality rates may be correlated
through time because of density dependence. Such dependence between suc-
cessive observations is called autocorrelation and is frequently observed in eco-
logical time-series (Bence, 1995; Peres-Neto, 2009). If this autocorrelation is
ignored in time-series analysis, e.g. when testing for a trend, the type I error
rate gets inflated (Bence, 1995), i.e. one concludes that there is a significant
trend too often when in truth there is no trend. It is very difficult to distinguish
between a trend and autocorrelation as autocorrelated series can be observed
to have a trend and series with a trend can be observed to be autocorrelated
(Chandler and Scott, 2011; Kutner et al., 2005).

It is possible to account for autocorrelation in time-series and this can e.g.
be done using the method of mixed models where the covariance structure
allows for correlated observations (Verbeke and Molenberghs, 2000; Wolfinger,
1996). Autocorrelation greatly inflates the type I error rate, when detecting
CP, if ignored and this was accounted for when the method of CP detection was
developed, as seen in Paper III. Another way to account for autocorrelation is
to study annual observations instead of e.g. monthly observations, which may
be assumed independent in some cases.

To test if observations are independent a simulation study can be conducted
where estimation of the autocorrelation from the data is compared to estimation
from simulated time-series. To do this study a number of time-series must be
available to get a distribution of the autocorrelation parameter from the data.
The contaminant concentrations are annual observations and to test whether
these time-series could be assumed to be independent, a simulation study was
carried out. The simulated time-series were of length 14, which was the av-
erage length of the 118 time-series of contaminants. Four simulation studies
were carried out, where time-series were simulated with a) no trend b) linear
trend c) quadratic trend and d) cubic trend. In each study, independent and
autocorrelated (ρ = 0.0, 0.1, 0.2, 0.3) time-series were simulated 1000 times. The
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simulated distribution of ρ was compared to the empirical distribution of ρ from
the data where the trend was assumed to be nonexistent, linear, quadratic or cu-
bic using the Kolmogorov-Smirnov test (Marsaglia et al., 2003) (Figure 3.1). In
the no trend study (a) all of the simulated distributions were significantly differ-
ent from the distribution derived from the data (p < 0.05). In the study where
a linear trend was assumed (b), all the simulated distributions were significantly
different from the distribution from the data (p < 0.05) except where ρ = 0.1

(p = 0.550). In the third simulation study where a quadratic trend was assumed
(c) the simulated distribution with ρ = 0.0 was not significantly different from
the distribution from the data (p = 0.088) but the autocorrelated distributions
were all significantly different from the data distribution (p < 0.01). The results
were the same for the fourth simulation study where cubic trend was assumed.
Therefore, it is most likely that there is no or very weak autocorrelation in the
time-series of contaminant concentrations.

3.5.3 Statistical power

Statistical power is the probability of a test being significant, e.g. the probability
of detecting a trend. The power increases with sample size and with significance
level but it decreases with increasing variance. The power depends on the
magnitude of the trend as time-series with large changes have higher power
than time-series where the change is small. It can also depend on the pattern
of the change (Nicholson and Fryer, 1992). It can be useful to think about
statistical power when interpreting results from statistical tests. The absence
of statistically significant trend may not imply that there has not been any
change in the mean value, as this can be a consequence of low statistical power,
typically that the sample size is too small to detect the trend.

The statistical power of detecting trends in time-series of contaminant con-
centration in the biota has been observed to be very low, probability of 24-47%
of detecting annual change of 5% in 10 years of data (Rigét et al., 2010). Many
time-series from monitoring programs only have one observation per year but
observations from multiple locations. Analyzing time-series from these locations
simultaneously should give more power as the sample size has increased. This
can be done with the method of mixed models (see Section 3.2 and Paper I).
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Figure 3.1: Empirical cumulative distribution of the ρ estimated from the data and ρ
estimated from simulated time-series with independent and autocorrelated errors (ρ =
0, 0.1, 0.2, 0.3) where a) No trend is assumed b) linear trend is assumed c) quadratic
trend and d) cubic trend.
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3.5.4 Covariates

In a simple test for trend detection, e.g. in linear regression, the dependent
variable is regressed against the explanatory variable time. In most cases other
variables may affect and cause variation in the dependent variable. Including
these variables as covariates in the analysis should then reduce the variability in
the data and make trend detection more likely, i.e. increase the power for trend
detection. This can easily be done using polynomial regression (see Section 3.1).

Covariates can also be confounding variables and a trend detected in one
variable might be explained by a trend in another variable. For example, in
the case of contaminant concentration, an increasing trend in concentration of
a chemical component in cod liver might not necessary be because of increasing
contaminant load in the environment but because of an increasing trend in fat
content. POPs are known to be lipophilic and higher concentrations in wet
weight are found in livers with higher fat content as discussed in Paper II.

3.5.5 Observations under limit of detection

Chemical analyses of contaminant concentrations are limited and low concentra-
tions cannot always be accurately determined. In these cases the concentrations
are reported to be under limit of detection (LOD). These values are then known
to be somewhere between zero and the LOD. To be able to statistically analyze
data with these values there are two options, either exclude these observations,
replace them with values between zero and the LOD or use a maximum likeli-
hood (ML) approach (Bignert, 2003; Chandler and Scott, 2011). If these obser-
vations are excluded the power of the statistical method applied will be reduced
as the sample size has decreased. Replacing it with some value between zero and
the LOD can introduce bias. The ML method would be the preferred method
but it needs numerical techniques for maximization and is complicated to im-
plement when using more advanced statistical methods such as mixed models.
Observations below LOD have frequently be replaced by LOD/2 (Jörundsdóttir
et al., 2006) or LOD/

√
2 (Nyberg et al., 2014) but was chosen to be at the LOD

in this study (Paper I and II) because these observations were very close to the
observations that were above the LOD. This was believed to introduce less bias
than using the other methods. Bignert (2003) has suggest using the medians
as they are not sensitive of outliers and observations below LOD. This was not
possible in the mussel case as there was only one observation per year at each
location. The medians were also not used in the cod case as it would reduce
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the sample size and hence reduce the power of detecting a trend.
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4
Results

The statistical methods described in Chapter 3 were used to analyze trends in
two monitoring programs, monitoring of contaminants in the marine environ-
ment around Iceland and monitoring of the population of the rock ptarmigan
in Iceland. The results are presented in Papers I-IV and will be summarized in
this chapter.

4.1 Trends in contaminant concentrations

4.1.1 Trends in contaminants measured in mussel

Contaminant concentrations measured in mussel at 11 locations around the
Icelandic coastline from 1991-2010 were analyzed for trend using the method of
mixed models as described in Section 3.2.1 (see also Paper I). The method of
mixed models revealed whether there was a significant change in concentration
over the periods and whether the change and concentration were consistent at
all locations. These results are shown in Figure 4.1 for the POPs and Figure
4.2 for the trace elements.

The concentration of p,p’-DDE did not have a consistent trend at all 11
locations, most locations showed decreasing or no trends in recent years except
one location, Hvalstöð had a sudden increase which indicates a local source,
possibly originating from a nearby whaling station which restarted operation in
2009 after a 20 year moratorium. HCB was observed to be decreasing at most
locations but had an increasing trend at Úlfsá. A waste incinerator was operated
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2 km from the sampling site which probably was the cause of the increasing
HCB concentration at Úlfsá. The decreasing trend in α−HCH concentration
was consistent at all locations where it started to decrease by −13% annually
from 1999 to 2010. The concentration of PCB-153 has been decreasing around
the Icelandic coastline except close to the whaling station and in a fjord on
the east coast where aquaculture was carried out, which quite plausibly caused
the elevated concentration. There was inconsistent trend between locations
for trans-nonachlor concentration which showed again an increase close to the
whaling station (Figure 4.1).

The change in As concentration was the same at all locations, a 2% annual
increase followed by a −3% annual decrease. The concentration at Úlfsá was
observed to be much higher than at the other locations, the cause of this is not
known (see discussion in Paper I, Section 6.4.3). The Cd concentration showed
fluctuating trends which was not the same at all locations. The concentration
of Cu and Se was consistent at all locations and showed an increase followed by
a decrease. There was no significant trend observed for Hg and Zn but there
was a significant difference in the concentrations between locations (Figure 4.2).

4.1.2 Trends in contaminants measured in cod

Contaminant concentrations were measured in cod sampled at two locations,
NW and NE of Iceland, from 1990 to 2011. Trends were analyzed using the
method of mixed models as described in Section 3.2.2. Results of the trend
analysis are given in Table 4.1 for both the POPs and the trace elements. More
detailed results are presented in Paper II.

The concentration of all of the POPs measured in cod liver had a significant
decreasing trend which was consistent at both the NW and NE locations. The
decrease was −3 to −2% annually for PCB, p,p’-DDE, HCB, CHL and Tox
but −9% for HCHs. No general trend was observed for the trace elements.
The As concentration increased by 2% annually at both locations while the
Zn concentration decreased significantly by −1% annually. Both the Cd and
Cu showed fluctuating trends which were different between the two locations,
while Hg and Se also showed fluctuating trends which were consistent at both
locations (Table 4.1).

Biological covariates such as age, length, liver fat content and liver weight,
were included in the analysis of trend in the cod. All of these covariates were
significant except age. Interactions between the covariates and location were
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Figure 4.1: Predicted concentrations and trends of the POPs measured in mussels
at the 11 locations.
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Figure 4.2: Predicted concentrations and trends of the trace elements measured in
mussels at the 11 locations (see Figure 4.1).
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included in the models to account for the possibility of different relationships
between them and the contaminant concentrations at the two locations. This
made the interpretation of the results more difficult as is discussed in detail in
Paper II.

Table 4.1: Change in the contaminant concentrations and median concentrations
measured in cod sampled NE and NW of Iceland from 1990-2011.

Annual P-value Median
change (%) concentration
NE NW NE NW

μg kg−1

PCB -2 -2 0.0003 68 70
DDE -2 -2 0.044 48 45
HCB -3 -3 0.0007 19 18
HCH -9 -9 <0.0001 5.9 4.9
CHL -3 -3 0.0008 53 46
Tox -3 -3 0.0009 77 65

mg kg−1

As 2 2 0.0004 5.2 5.6
Cd non-linear non-linear 0.0065 0.14 0.24
Cu non-linear non-linear 0.0474 3.2 3.2
Hg non-linear non-linear 0.0143 0.022 0.03
Se non-linear non-linear 0.0276 0.85 0.85
Zn -1 -1 0.0201 14 14

4.2 Trends in population parameters of the rock

ptarmigan

4.2.1 Changepoint in annual mortality

The CP model (see Section 3.3) was used to test if there had been a change
in the annual mortality (1 − e−z2 , see Magnússon et al. (2005) for mortality
calculations) of adult rock ptarmigans in NE-Iceland after a change in hunting
regulations in 2003. There was a significant CP in 2002 indicating that some-
thing changed after that year but the test was only significant if the CP was
known, i.e if only one point was tested for (see Paper III). The annual mortality
had been increasing from 1982 to 2002 followed by a sudden drop in 2003 when
it starting increasing again to 2012 (Figure 4.3).
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Figure 4.3: Mortality rate (Z2) of the adult ptarmigan from 1982 to 2012.

4.2.2 Population dynamics

A population reconstruction model was done for the rock ptarmigan in NE-
Iceland and the results are presented in Paper IV. Various models were fitted as
suggested in Section 3.4 and the model which fitted the data best had a separate
natural survival for adults and juveniles and the adult survival was modeled as
a function of density with one year lag. The survival of the juveniles was taken
as a constant as it was not possible to model survival of the two cohorts as a
time-varying function and it gave a better fit to have the adult survival density-
dependent rather than the survival of the juveniles. It was not possible to have a
separate hunting mortality for juveniles and adults and it fitted the data best to
include a CP in the hunting mortality. The CP was included when the hunting
ban took place in 2003. The final model had different functions before and after
the CP; before the hunting mortality was modeled as a function of density but
after the CP as a function of hunter numbers. Therefore, the adult abundance
was modeled in the following way:

Ni,2 =

 (1−Hb,i−1)Sc(Ni−1,1 +Ni−1,2 · Sx,i−1) 1998 ≤ i < 2003

(1−Ha,i−1)Sc(Ni−1,1 +Ni−1,2 · Sx,i−1) 2003 ≤ i ≤ 2012
(4.1)
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where Hb,i = 1− e−b+cb·Ii and Ha,i = 1− e−ca·fi and Sx,i = d− e · Ii−1
The maximum likelihood estimates from the final model are presented in

Table 4.2. The abundance decreased from 1998 to a low in 2002, it increased
again during the hunting ban years and reached a peak in 2005. It then de-
creased again to a low in 2007 and then increased again until it reached another
peak in 2009 when it started decreasing again. The natural survival of adult
rock ptarmigans ranged from 36% (95% CL 33−38%) in 1999 and 2011 to 65%
(95% CL 60− 70%) in 2003 and 2004. The survival for juveniles was taken as a
constant and was estimated to be 19% (95% CL 18− 20%). Before the hunting
ban in 2003 the hunting mortality ranged from 32% (95% CI 28− 35%) in 1998
to 54% (95% CI 49−60%) in 2002. After the hunting ban, the hunting mortality
ranged from 11% (95% CI 9− 13%) in 2007 to 17% (95% CI 14− 20%) in 2009.
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Table 4.2: Parameter estimates from the final model with 95% confidence intervals
(CI) for rock ptarmigan in NE-Iceland 1998-2012.

Parameter Estimate LCI UCI
N1998,1 121000 107000 138000
N1999,1 82000 78000 94000
N2000,1 57000 55000 64000
N2001,1 38000 36000 42000
N2002,1 31000 30000 34000
N2003,1 58000 43000 79000
N2004,1 96000 37000 73000
N2005,1 90000 73000 127000
N2006,1 71000 57000 87000
N2007,1 58000 47000 72000
N2008,1 80000 66000 99000
N2009,1 109000 89000 133000
N2010,1 95000 78000 116000
N2011,1 51000 41000 62000
N2012,1 55000 45000 68000
N1998,2 32000 28000 37000
cb 0.0029 0.0021 0.0038
b 0.93 0.75 1.11
ca 1.36 1.09 1.70
Sc 0.19 0.18 0.20
d 4.01 3.41 4.65
e 0.011 0.008 0.014
α 0.0013 0.0011 0.0015
σ2 464 220 1100
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Conclusion and future

perspectives

Statistical methods have been adapted to detect trends in two monitoring pro-
grams. Polynomial models were used to account for trends with no consistent
direction, mixed models were used to analyze data from multiple sites simul-
taneously and to include correlation between observations. A CP model was
investigated and a new method proposed which takes autocorrelation into ac-
count when detecting a CP in short time-series. A population reconstruction
model was developed for the ptarmigan population in Iceland which allows for
the possibility of including a CP.

The method of mixed models was used to analyze trends in contaminant
concentrations in mussel and cod. The trends were not simply assumed to
be increasing or decreasing but permitted to have no consistent direction. To
account for the possibility of an increasing trend followed by a decreasing trend
a polynomial model was used in the analysis. There was a sudden increase in the
POP concentrations at some of the mussel sampling sites which the polynomial
models detected, while linear models would in some cases not be able to detect
these sudden increases. The sudden increases in p,p’-DDE, PCB-153 and trans-
nonchlor concentrations could be explained by anthropogenic activity such as
aquaculture and whale processing that were carried out for some time close
to the sampling sites. A gradual linear increase in HCB was also detected
that could be traced back to a waste incinerator (see Paper I Section 6.4.3 for

35



5 Conclusion and future perspectives

further discussion). Only linear decreasing trends were detected for the POPs
measured in cod. The cod is sampled in the open sea and minor sources of
pollution do not have as much effect on the contaminant concentration in cod
as they do in mussel sampled closer to the sources. However, non-linear trends
were detected for some of the trace elements measured in cod as well as in the
mussel. The reason for the non-linear trends in the trace elements is not known
as no local sources of these elements are known in Iceland. There was however
a sign of a local pollution with respect to As at one of the mussel sampling
sites as the concentration was much higher at that location, the reason for this
is not known but a possible source could be an oil storage facility. The waste
incinerator and the oil storage facility have now been closed down and continued
monitoring and statistical analysis of the data should reveal decreasing trends
for the contaminants if those were the source. These kind of trends can be
detected with polynomial models or with a CP model.

The CP model detects a point in time where there is a step change and/or
a trend change. The CP model was investigated with simulations and a new
method proposed. The simulation study revealed the effect of ignoring autocor-
relation when detecting a CP. The type I error rate gets inflated even for low
autocorrelation so there has to be strong evidence of no autocorrelation if the
test is to be carried out assuming independent data. The new method was able
to detect a CP in two different time-series while accounting for autocorrelation,
one where no point was assumed more likely a priori, i.e. the CP was unknown,
and in the other where the CP was known (see Paper III, Section 8.7). As
expected, the test has more power when only one point in time is tested for,
i.e. one tests whether a change occurs at the true CP. On the other hand,
testing for one point in time should only be done when there is evidence that
something may have caused a change in the time-series at a particular point
in time. This method could for example be used to test if the close down of
the waste incineration and the oil storage facility did in fact have an effect on
contaminant concentrations. In this case the CP would be known, i.e. the time
when the facilities were closed, and a test where the CP is known would be used
as it has more power than when the CP is unknown. It may also be appropriate
to assume independent data in the time-series of contaminant concentrations as
was shown in Section 3.5.2 as this would increase the power further.

A population reconstruction model was adjusted to fit the rock ptarmigan in
NE-Iceland. The model estimates the juvenile and adult abundance, separate
natural survival for juveniles and adults and a common hunting mortality for
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both age groups. All the parameters are estimated simultaneously which should
give better estimates than when parameters are estimated separately as in the
population model proposed by Magnússon et al. (2005). This model also allows
for the possibility of adding a CP to the model, e.g. in the hunting mortality.
By the inclusion of a CP it is possible to test if a hunting regulation had an
effect on the hunting mortality.

The population model was used to estimate the demographic parameters
for the ptarmigan in NE-Iceland but it could also be used for the ptarmigan
in other parts of the island and for the entire country. It is possible that the
ptarmigan has higher natural survival in other parts of the island and can
therefore withstand higher hunting mortality in some areas. The model could
also be used for other species that are hunted, e.g. the arctic fox (Vulpes lagopus)
in Iceland.

It may be possible to improve the model further, by the inclusion of random
survival and hunting mortality parameters to account for stochasticity in envi-
ronmental conditions (Gast et al., 2013). The population of the gyrfalcon (Falco
rusticolus) and the arctic fox are monitored and these are the main predators
of the ptarmigan, it may be possible to model the effects of these predators
by adding parameters in the survival function. Addition of parameters would
however make the model computationally unstable and it is possible that other
parts of the model would have to be simplified or more data would have to be
included in order to be able to estimate all the parameters of the model.

The results of this thesis showed that human activity can have impact on the
ecosystems. Elevated contaminant concentrations were found at some locations
along the coastline that can most likely be traced back to aquaculture, whale
processing, waste incineration and an oil storage facility. Hunting was found to
affect the annual mortality of the rock ptarmigan and the hunting regulation
did have an effect on the hunting strategy and the mortality.

Monitoring programs are essential to assess the changes that take place in
the ecosystems and statistical analyses are an important part of that assess-
ment. The information that these programs provide is important for decision
and policy makers to carry out efficient conservation and to be able to ensure
environmental quality, food safety and public health.
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Abstract

Contaminants have been determined in blue mussels (Mytilus edulis) at 11 lo-
cations around the Icelandic coastline from 1990-2010. The aim of the present
study was to investigate if there has been a change in concentration of contam-
inants around the Icelandic coastline for the last two decades and if the concen-
trations and changes, if present, were consistent between locations. Concentra-
tions of the persistent organic pollutants, p,p’-dichlorodiphenyl dichloroethene
(p,p’-DDE), hexachlorobenzene (HCB), α-hexachlorocyclohexane (α-HCH), poly-
chlorinated biphenyl (PCB-153) and trans-nonachlor, have decreased at most
of the sampling locations in Iceland in recent years. However, an increasing
trend was found at few locations that could be explained by anthropogenic ac-
tivity. The concentration levels of the persistent organics were much lower than
found at the Norwegian, USA and Chinese coasts, especially levels of p,p’-DDE.
The concentration of copper and selenium had a consistent pattern of change
and concentration between locations over the period which showed a decreasing
trend in recent years. The trace elements arsenic, cadmium, mercury and zinc
showed more variation in concentration between locations, the concentration of
arsenic, mercury and zinc was fairly stable over the period, whereas there were
fluctuations in cadmium concentrations. The concentrations of cadmium and
zinc were observed to be somewhat higher than found in mussels from Norway,
USA and China but values of mercury and lead were much lower in the mussel
sampled in Iceland. The higher concentrations of cadmium and zinc can be ex-
plained by the volcanic activity in Iceland but no major anthropogenic sources
of trace elements are known in Iceland.
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6.1 Introduction

Trace elements, such as metals in the Arctic have both natural geological and
anthropogenic sources. Their output from anthropogenic sources increased dur-
ing the 20th century (Järup, 2003). In order to mitigate the emission of trace
elements, international agreements, such as the OSPAR convention have been
implemented. This is considered a necessary action since trace elements, es-
pecially arsenic, cadmium, lead and mercury, can cause adverse health effects
(Järup, 2003). Unlike the trace elements, persistent organic pollutants (POPs)
mainly come from anthropogenic sources. They have been used extensively in
agriculture and industry in the past. However, most countries have signed the
Stockholm convention and have consequently banned or restricted the use of
POPs due to their persistence and negative effects on the health, reproduction
and survival of wildlife and humans (Fisk et al., 2005; Smith and Gangolli,
2002).

POPs and trace elements can migrate from lower latitudes to higher ones
by long-range transport (Pacyna et al., 1985; Wania and Mackay, 1993). The
contaminants are mainly transported to the Arctic with air, ocean currents
and rivers (AMAP, 1998) and these main pathways can be affected by climate
change (Macdonald et al., 2005). These changes can make interpretation from
time-series difficult as trends may also arise from climate change but not only
change in emission (Macdonald et al., 2005). Results from spatial and temporal
analysis of POPs in Arctic air indicate that the reducing ice cover, increasing
temperature of the sea and biomass burning may affect trends in POP concen-
trations in the Arctic (Hung et al., 2010).

A meta-analysis was carried out by Rigét et al. (2010) on temporal trends
of POPs in the Arctic biota. Their results revealed that POPs in the Arctic
have mostly been decreasing the last two to three decades, even if increasing
trends were observed in some cases. The same results were reported from trend
analysis of POPs in the Arctic air (Hung et al., 2010). Research on spatial and
temporal trends of metals in the Arctic area has mainly focused on mercury
(Hg). Temporal trends of Hg in the Arctic biota have shown no consistent
pattern of change over the last 30 years (Rigét et al., 2011). Nevertheless, a
spatial trend for Hg was observed, higher proportion of time-series from Canada
and Greenland showed increasing trends than time-series from eastern regions
(Rigét et al., 2011). Less is known regarding trends of other trace elements
in the Arctic such as arsenic (As), cadmium (Cd), copper (Cu), lead (Pb),
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selenium (Se) and zinc (Zn). Analysis of time series from the marine biota
around Greenland and Norway showed no consistent pattern of change for Cd
concentration (Green et al., 2011; Riget et al., 2004). The metal Pb was found
to decrease in concentration during the period 1990-2010 in the marine biota at
the Norwegian coast, and some of the Norwegian time-series of Cu and Zn had
either increasing or decreasing trends (Green et al., 2011).

National monitoring programs for environmental conditions in the sea around
Iceland have been running since 1989. The program is under the auspices of
the Environmental Agency of Iceland on the behalf of Ministry for the Environ-
ment. The execution of the program is coordinated by Matís ltd. in cooperation
with the Marine Research Institute and the Department of Pharmacology and
Toxicology at the University of Iceland. The program is part of the fulfillment
of Iceland’s obligations to the Stockholm Convention, OSPAR commission and
the Arctic Monitoring and Assessment program (AMAP). Contaminants have
been measured in blue mussels (Mytilus edulis) for 15 to 21 years at 11 locations
around the Icelandic coastline (depending on contaminant and location). Blue
mussels are common around the Icelandic coast, they are filter feeding organisms
that live in intertidal areas attached to secure substrates and are therefore a
good biomonitoring species, indicating local pollution at the sampling site. The
aim of the present study was to use the monitoring data collected in Iceland to
answer the following questions: 1) Has there been a change in concentration of
contaminants around the Icelandic coastline for the last two decades? 2) Are
concentrations and changes, if present, consistent between locations?

6.2 Materials and methods

6.2.1 Sampling method and locations

Blue mussels (Mytilus edulis) with shell length of 4-6 cm have been sampled
in autumn (August to October) since 1990 in Iceland and contaminants in the
mussels have been measured for 15-21 years at 11 locations (depending on con-
taminant and location) around the Icelandic coastline by the Marine Research
Institute. Each sample contained 50 individuals which were deshelled, pooled
and homogenized, making one sample per location each year. The samples were
kept frozen at −20◦C until analysis was performed.

The sampling sites are shown in Figure 6.1. Two of these sampling sites are
located close to villages on the Westfjord peninsula, a village of 145 residents is
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Figure 6.1: Sampling site locations and average concentrations of the POPs at each
location.

located 4 km from Dvergasteinn and a village of 2600 people is 2 km from Úlfsá.
A small waste incineration plant was in operation from 1994 to 2010 about 2
km from Úlfsá. Hvalstöð, Hvaleyri and Hvítanes are all located in the same
fjord, Hvalfjörður, in western Iceland, where an aluminum factory started its
operation in 1998, a ferro-silicon plant was in operation for the whole period and
a whaling station, located close to the site Hvalstöð restarted operation in 2009
and 2010 after a 20 year cease. The sampling sites Dalatangi, Brekka and Botn
are in a fjord in the eastern part of Iceland called Mjóifjörður with a population
of about 40 people. Salmon aquaculture was carried out in the fjord from 2001
to 2007 and there is a small fish factory at Brekka. Straumur is located beside
an aluminum factory not far from the capital area and Hvassahraun is 6 km
southwest from Straumur. Grímsey is a remote island in the north with around
80 residents.
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6.2.2 Chemical analysis

Chemical analysis of POPs

POPs were analyzed at the Department of Pharmacology and Toxicology at
the University of Iceland. The mussels were extracted wet, basically according
to the method of Jensen et al. (1983) as described earlier (Ólafsdóttir et al.,
1995). In short, the tissue was extracted with hexane/acetone/diethyl ether,
solvents evaporated at 40◦ C under N2, the residue resuspended in isooctane
containing 1, 2, 3, 4-tetrachloronapthalene (the internal standard) and cleaned
with concentrated sulfuric acid. Recovery was checked and corrected for by the
addition of ε-HCH, op’-DDD, PCB #112 and PCB #198 (no. according to
IUPAC) to all samples at the first step of the extraction. The fat content was
determined gravimetrically.

The individual polychlorinated biphenyls (PCBs) and pesticides were deter-
mined by gas chromatography (HP6890) against a six level standard curve (0.5-
200 pg/μl) made from the corresponding individual standards and the internal
standard from Promochem, Wesel, Germany and Accustandard, USA. Twelve
chlorinated pesticides or their metabolites, hexachlorobenzene (HCB), α-, β- and
γ-hexachlorocyclohexane (HCH), α- and γ-chlordane, trans-nonachlor, oxychlor-
dane, p,p’-dichlorodiphenyl dichloroethene (p,p’-DDE), p,p’-dichlorodiphenyl di-
chloroethane (p,p’-DDD), p,p’-dichlorodiphenyl trichloroethane (p,p’-DDT) and
o,p’-DDT and 11 PCB-congeners (#28, 31, 52, 101, 105, 118, 138, 153, 156, 170,
180) were determined using two different capillary columns from JW Scientific
(DB5, 60 m, 0.25 mm inside diameter, 0.25 μm film thickness and DB1701, 60
m, 0.25 mm inside diameter, 0.25 μm film thickness) and an ECD detector.
Helium was used as the carrier gas (25 cm/s) and nitrogen as a make-up gas,
splitless injection of 2.5 min, injector temperature 270◦C. Temperature program
for DB5: 85◦C for 2 min, 30◦C/min to 200◦C, hold for 29 min, 1.5◦C/min to
246◦C, 10◦C/min to 310◦C, hold for 8 min; and for DB1701: 85◦C for 1.5 min,
30◦C/min to 200◦C, hold for 28 min, 2◦C/min to 250◦C, 7◦C/min to 290◦C,
hold for 8 min. The limit of quantification was at least 0.01-0.1 μg/kg ww (wet
weight) (0.05-0.25 μg/kg dw (dry weight)) for the pesticides and the individual
PCB congeners.

Quality assurance was ascertained in the laboratory participating twice an-
nually in QUASIMEME (Quality Assurance of Information for Marine Environ-
mental Monitoring in Europe) BT2 and BT5 exercises, the use of blank samples
and a mussel reference sample from QUASIMEME was extracted and run with
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every analysis. The standard solutions were checked by comparison to certified
reference material (NIST1493, Promochem, Germany).

Chemical analysis of trace elements

The analysis of trace elements (As, Cd, Cu, Hg, Pb, Se and Zn) was carried
out at Matís ltd. The samples analyzed before 2007 were analyzed using cold
vapor atomic absorption (Hg), FAA/impact bead using D2-background correc-
tion (Cd, Cu, Zn, Pb) and hydride generation atomic absorption (As, Se) as
described by Yngvadóttir et al. (2006) after sample digestion in 50 ml Parr
digestion bombes as described by Rabieh et al. (2007). Samples analyzed in
the year 2007 and later were analyzed with microwave digestion (Mars5, CEM,
Matthews, USA) and inductively coupled plasma mass spectrometer (ICP-MS,
Agilent 7500ce, Agilent Technologies, Waldbronn, Germany). All samples were
freeze dried before analysis and dry weight content calculated. Matís ltd. is ac-
credited for analysis of trace elements and detailed description of the analytical
method is found in Reykdal et al. (2011).

Blank samples and certified reference samples were treated and analyzed
simultaneously with the samples to ensure the quality and accuracy of the
analyses. Mussel tissue (ERM-CE278, DG, JRC, IRMM, Geel, Belgium) was
used as certified reference material. Further, the laboratory participates in the
QUASIMEME interlaboratory performance program BT-1 twice annually.

6.2.3 Statistical analysis

The data used for the statistical analysis was retrieved from the ICES database
and can be accessed at http://dome.ices.dk/. To test for an overall pattern
of change of concentration of the contaminants and to test whether the pat-
tern of change and concentration was different between locations, analyses with
random coefficient models were carried out using a method by Verbeke and
Molenberghs (2000). They recommend starting with a saturated model, both
fixed and random effects. A polynomial model of order four was considered to
be a saturated model. The percentage of fat in the mussels was also included
in the model with a quadratic term to reduce variability. The concentrations
were log-transformed prior to analysis to meet the normal assumption. The full
model was thus:

47



6 Paper I

Yit = β0 + β1t+ β2t
2 + β3t

3 + β4t
4 + β5fit + β6f

2
it

+b0i + b1it+ b2it
2 + b3it

3 + b4it
4 + b5ifit + b6if

2
it + εit

b ∼ N(0,G)

ε ∼ N(0, σ2I)

where Yit is the log-concentration of a contaminant at location i and year
t. The βs are fixed effect coefficients, the bs are coefficient describing random
effects and fit is the percentage of fat in the sample at location i and year t.
The G matrix was fitted as a diagonal matrix, i.e. the random effects were
assumed independent. Random effects were tested first using the restricted
likelihood ratio test, which is known to be conservative (Pinheiro and Bates,
2000). Subsequently the fixed effects were tested using likelihood ratio tests.
Terms not significant at α = 0.05 were removed from the model. If fixed effects
could be dropped the random effects were tested again. The modeling procedure
was done using the nlme package (Pinheiro et al., 2012) in the statistical software
R (R Development Core Team, 2012).

The random effects indicate whether and how much variation exists be-
tween locations in concentration and pattern of change with time. If none of
the random effects are significant then there is not a significant difference in
concentration between locations or in the pattern of change. If for example
only the intercept, b0i is significant then there is no significant difference in
the pattern of change between locations but there is a significant difference in
average concentration. The expected values of the bs are zero so the fixed ef-
fects can be interpreted as the average concentration and pattern of change of
all locations. The best linear unbiased predictions (BLUPs) of random effects
were used to determine the pattern of change at the individual locations. The
average concentration for each individual sampling location was calculated from
the predicted values for the years sampled, adjusted for average fat percentage
(0.41%). All values are given on a dry weight basis.

Of the PCBs, only the highest congener, PCB-153 was statistically analyzed,
to avoid uncertainties accompanying lower levels. Similarly, p,p’-DDE was cho-
sen for the DDT-compounds, trans-nonachlor for the chlordanes and α-HCH for
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Table 6.1: The final model for each contaminant.

Contaminant Model
p,p’-DDE Yit = β0 + β5fit + b0i + b1it+ b2it

2 + b3it
3 + εit

HCB Yit = β0 + β5fit + b0i + b1it+ εit

α-HCH Yit = β0 + β1t+ β2t
2 + β5fit + b0i + εit

PCB-153
Yit = β0 + β1t+ β2t

2 + β3t
3 + β4t

4 + β5fit + β6f
2
it

+b0i + b1it+ b2it
2 + εit

trans-Nonach. Yit = β0 + β5fit + b0i + b1it+ b2it
2 + b3it

3 + εit

As Yit = β0 + β1t+ β2t
2 + β5fit + b0i + εit

Cd
Yit = β0 + β1t+ β2t

2 + β3t
3 + β4t

4 + β5fit

+b0i + b1it+ εit

Cu Yit = β0 + β1t+ β2t
2 + εit

Hg Yit = β0 + β5fit + β6f
2
it + b0i + εit

Se Yit = β0 + β1t+ β2t
2 + β3t

3 + β5fit + β6f
2
it + εit

Zn Yit = β0 + β5fit + b0i + εit

the HCHs. Values under the limit of detection (LOD) were taken as being at the
LOD. The series of α-HCH had the most frequent <LOD values or 8% and the
Hg series had 4% of its values <LOD, other series had 2% or less <LOD values.
Statistical analysis of Pb was not included because over 35% of the values were
<LOD which ranged between 0.06 to 1.1 mg kg−1 for Pb with median of 0.13
μg kg−1.

6.3 Results

Results for both POPs and trace elements are interpreted from the final model
for each contaminant (Table 6.1). All concentrations are predicted from the
model adjusted for the average fat percentage in the samples. The average
concentration at each location is shown in Figure 6.1 for the POPs and Figure
6.2 for As, Cd and Hg and patterns of change for POPs are presented in Figure
6.3 and in Figure 6.4 for trace elements.

6.3.1 Spatial and temporal trends of POPs

p,p’-DDE

The average concentration of p,p’-DDE over all locations was 0.60 μg kg−1 and
on average there was no significant change in the concentration over the period.
However, the year effect had a significant random cubic term indicating that
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Figure 6.2: Sampling site locations and average concentrations of As, Cd and Hg at
each location (note different axes are applied for each element).
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although there was no change on average, there was some change at individual
locations. Three locations in the same fjord, Botn, Brekka and Dalatangi, had
a similar pattern of change, seen as an increase followed by a decrease. The
increase was largest at Botn (10% annually from 1996 to 2002) but less at Brekka
(8% annually from 1995 to 2003) and Dalatangi (2% annually from 1997 to
2002). The concentration started decreasing 2002-2003 by 11 and 13% annually
at Botn and Dalatangi, respectively but only by 2% at Brekka. Mussels collected
at Brekka had the highest average p,p’-DDE concentration (0.76 μg kg−1) of
the three sites (Figure 6.1). Hvaleyri and Hvítanes, which are both located in
Hvalfjörður at the west coast, had a consistent pattern of change, which was
fairly constant, and an average concentration of 0.58 μg kg−1. Hvalstöð, which is
located at the head of the same fjord, had a very different pattern from Hvaleyri
and Hvítanes. There was a sudden increase in concentration in 2009 at Hvalstöð
(Figure 6.3), the average concentration before 2009 was 0.82 μg kg−1 but after
2009 it was 4.52 μg kg−1. Dvergasteinn and Úlfsá are located in two parallel
fjords next to each other (Figure 6.1). The average concentration at Úlfsá (0.56
μg kg−1) was higher than at Dvergasteinn (0.36 μg kg−1) and no decrease was
observed there, as was the case at Dvergasteinn (annual decrease of -11% from
2002 to 2010). Straumur and Hvassahraun are located close to each other, but
Straumur is closer to an industrial area. A higher concentration was found at
Straumur (0.69 μg kg−1) than at Hvassahraun (0.42 μg kg−1). Furthermore, no
decrease was observed at Straumur while at Hvassahraun a -7% average annual
decrease from 2002 to 2010 was noted. The p,p’-DDE concentration at Grímsey
(0.61 μg kg−1), an island north of the mainland, was stable in the beginning but
started to decrease around 2001 (average annual decrease of -11% from 2001 to
2010).

HCB

There was no change in HCB concentration when averaged over all locations
(0.13 μg kg−1), but the year effect had a significant random term indicating
different trends between the locations. Hvassahraun, Dvergasteinn, Grímsey,
Hvítanes, Dalatangi, Straumsvík and Hvaleyri all had a decreasing trend ranging
from -6 to -1% a year (Hvassahraun with the highest trend and Hvaleyri the
lowest). Úlfsá, Hvalstöð, Brekka and Botn had an increasing trend from 1 to
2% a year. There was a difference in concentration between the locations, with
Úlfsá having the highest concentration (0.22 μg kg−1) which was 1.5-2 times
more than found at the other locations (0.11-0.14 μg kg−1).
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α-HCH

The year effect did not have a significant random term, suggesting a consistency
in the pattern of change of α-HCH between the locations. The concentration
decreased on average by -13% annually from 1999 to 2010. There was a sig-
nificant difference in concentration between the locations. The three locations
with the highest concentration were all from the same fjord system at the east
coast, Botn, Brekka and Dalatangi, with average concentrations from 0.23 to
0.24 μg kg−1. The three locations with the lowest concentration were Dver-
gasteinn (0.16 μg kg-1), Úlfsá (0.15 μg kg−1) and Hvassahraun (0.14 μg kg−1).
The concentration at Hvassahraun was about 60% of the highest concentration.

PCB-153

There was a significant difference in the pattern of change in PCB-153 concen-
tration between locations. Dalatangi and Botn which are located in the same
fjord had a consistent pattern of change, in the form of slight increase followed
by a decrease but the average concentration at Dalatangi (0.73 μg kg−1) was
higher than at Botn (0.22 μg kg−1). Brekka, located in the same fjord as Botn
and Dalatangi, had an increase in PCB-153 concentration of 16% a year on aver-
age from 1995 to 2008 and an average concentration of 1.22 μg kg−1. Hvalstöð,
Hvaleyri and Hvítanes (all in the same fjord) had a similar decreasing trend
until 2001 when the concentration at Hvalstöð started to increase by 7% a year
on average until 2008. At other locations there was a decreasing trend between
-8 to -5% annually and a decreasing trend of -12% a year at Grímsey from 1993
to 2010. There was a considerable difference in concentrations at some locations
that are not located far apart (Figure 6.1) e.g. Straumur (2.71 μg kg−1) had 2.4
times higher concentrations than Hvassahraun (1.11 μg kg−1) and Úlfsá (1.84
μg kg−1) had 1.7 times higher concentrations than Dvergasteinn (1.08 μg kg−1).

trans-Nonachlor

Averaged over all locations there was no pattern of change in the trans-nonachlor
concentration in the last 14 years (0.26 μg kg−1). There was, however, a signif-
icant difference in pattern of change between locations. Hvaleyri and Hvítanes
had very similar concentrations (0.23-0.24 μg kg−1) that were fairly stable over
the period. The pattern of change was similar at the locations, Botn, Brekka
and Dalatangi, located in the eastern part of Iceland, where an increase was
observed until 2003-2004 when the concentration started decreasing again. The
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increase was largest at Brekka, 10% a year and less at Botn and Dalatangi, 1
and 5% a year respectively. The decrease at Brekka (-6% a year from 2003 to
2010) was not as large as at the other two locations where it was -11% a year at
Botn and -10% at Dalatangi. Dvergasteinn, Hvassahraun and Straumur showed
a decreasing trend of -9, -7 and -4% a year, respectively. At Úlfsá there was a
decreasing trend of -4% a year until 2003 when it started increasing by 4% a
year. There was a sudden increase in trans-nonachlor concentration at Hvalstöð
in 2009, where the average concentration was 0.30 μg kg−1 before 2009 but 1.18
μg kg−1 after 2009.

6.3.2 Spatial and temporal trends of trace elements

Arsenic

There was not a significant difference in pattern of change in the As concen-
tration between locations (Figure 6.4). There was an increase in concentration
of 2% a year on average from 1996 to 2001 when it started decreasing by 3%
a year. There was a significant difference in concentration between locations.
Úlfsá had a much higher As concentration (62 mg kg−1) than was observed at
any other location investigated (10-17 mg kg−1), furthermore the concentration
at Úlfsá was 3.7 times higher than at Dvergasteinn which is located in the next
fjord (Figure 6.2).

Cadmium

There was a significant difference in pattern of change of Cd concentration
between locations. Hvassahraun, Hvalstöð, Hvaleyri, Hvítanes and Úlfsá all
had similar concentration (1.3-1.7 mg kg−1) and pattern of change, which was
fairly constant. All the locations in the fjord in the east had a decrease in
concentration of -11, -8 and -8% at Botn, Brekka and Dalatangi, respectively.
Increasing trend of 6% was observed at Grímsey from 1994 to 2002 when it
started to decrease by 4% a year. The pattern was similar at Dvergasteinn
where the concentration increased from 1996 to 2003 by 9% a year and then
decreased by 2% a year. The highest concentrations were found at Botn, Brekka
and Grímsey (3.9-4.2 mg kg−1).
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Figure 6.3: Predicted concentration and pattern of change of the POPs (p,p’-DDE,
HCB, α-HCH, PCB-153 and trans-nonachlor) at the 11 locations.
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Copper

There was no significant difference of pattern of change and concentration of
Cu between locations. There was an increasing trend from 1990 to 1998 of
3% a year on average when it started decreasing by -5% a year. The average
concentration was 6.6 mg kg−1 the last two decades.

Mercury

There was no significant change in Hg concentration. There was, however, a
significant difference in average concentration between the locations (Figure
6.2 and 6.4). Hvítanes, Hvaleyri, Hvalstöð, Hvassahraun and Straumur had
similar concentrations (0.041-0.049 mg kg−1). Brekka and Botn had similar
concentrations (0.054-0.060 mg kg−1) while the concentration at Dalatangi was
0.072 mg kg−1 and at Grímsey 0.077 mg kg−1. The highest concentration was
found at Úlfsá (0.081 mg kg−1) which was twice as high as the concentration
at Hvítanes where it was lowest.

Selenium

There was no significant difference in pattern of change and of Se concentration
between locations. The concentration of Se had been increasing by 4% a year
on average from 1993 to 2005 when it reached 3.5 mg kg−1. Then it started
decreasing again by -9% a year on average.

Zinc

There was no significant change in Zn concentrations and the average concen-
tration was 130 mg kg-1. There was, however, a significant difference in Zn con-
centration between locations. The lowest concentration was found at Botn, 120
mg kg−1, but the two other locations, Dalatangi and Brekka, in the same fjord
had 25-29% higher concentrations (150-160 mg kg−1) and in fact the second
and third highest concentration of all the locations. The highest concentration
was observed at Grímsey (180 mg kg−1).
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Figure 6.4: Predicted concentration and pattern of change of the trace elements (As,
Cd, Cu, Hg, Se and Zn) at the 11 locations (see Figure 6.3).
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6.4 Discussion

6.4.1 Concentrations of contaminants

The levels of POPs in mussels collected at the Icelandic coast are generally very
low, even compared to pristine sites. The results from this study can be com-
pared to results from the monitoring programs in Norway (Green et al., 2011),
northeastern USA (Kimbrough et al., 2008) and in China (conversion from wet
weight assuming 10% dry weight) (Fung et al., 2004; Monirith et al., 2003).
Median values were used in these comparisons. The concentration of ΣDDTs
(ΣDDTs: o,p’-DDD+o,p’-DDE+o,p’-DDT+p,p’-DDD+p,p’-DDE+p,p’-DDT in
USA, p,p’-DDD+p,p’-DDE+p,p’-DDT in China and p,p’-DDD+p,p’-DDE+p,p’-
DDT+o,p’-DDT in Iceland (median of 1.2 μg kg−1, not shown in results )) was
20 and 1000 times higher in mussel from USA and China, respectively, than
in the ones from Iceland. The concentration of p,p’-DDE was about 10 times
higher in Norway compared to Iceland. The concentration of HCB was five
times higher both in mussels from China and in Norway compared to Iceland,
but was not reported for the US mussels. The PCB-7 was calculated (sum of
PCBs#28, 52, 101, 118, 138, 153, 180, not shown in results) to compare to
the values from Norway. The concentration of PCB-7 in mussels from Norway
was about two times higher than found in the ones sampled in Iceland (5.8 μg
kg−1). PCBs reported in the US and Chinese mussels could not be compared
to PCB-7.

The median concentration of As was similar in mussels sampled in Iceland,
Norway, USA and China (10-16 mg kg−1). However, the highest concentration
was found in Iceland at Úlfsá which was approximately two times higher than
the second highest which was observed in Norway. The concentration of Cd
was two times higher in Iceland compared to Norway and USA but very sim-
ilar compared to China. The concentration of Zn was also found to be higher
in mussels from Iceland than from Norway, USA and China of about 20-30%.
However, higher values were observed at few locations from both Norway and
USA than at any of the Icelandic sites for both Cd and Zn. The concentration
of Cu was in the same range in mussel from Iceland, Norway, USA and China
(6-10 mg kg−1). The concentration of Hg was two times and three times higher
in mussels from Norway and USA, respectively, than in mussels from Iceland
but the concentration of Hg in China was about 700 times higher than observed
in Iceland. The concentration of Pb was found to be 5, 15 and 19x higher in
mussels in China, Norway and USA, respectively, than the median concentra-
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tion in mussels sampled in Iceland (0.15 mg kg−1, not shown in results) which
was frequently below the LOD. There are no major anthropogenic sources of
trace elements known in Iceland that could explain the high concentration ob-
served in the Icelandic mussels. Iceland is a volcanic island where there are
20-25 eruptions per century (Thordarson and Larsen, 2007) and eruptions are
known sources of metals (AMAP, 2005; Hong et al., 1996). Krause-Nehring
et al. (2012) concluded that the Pb concentration in northern Atlantic bivalves
(Arctica islandica) sampled near Iceland had volcanic origin but not anthro-
pogenic like the ones sampled in the USA and Europe. It is likely that other
trace elements have the same origin in Iceland as Pb.

6.4.2 Temporal trends of contaminants

The concentration of p,p’-DDE has been decreasing around Iceland in recent
years which is consistent with what has been found elsewhere in the Arctic
region (Green et al., 2011; Rigét et al., 2010). There was, however, a substan-
tial increase after 2009 at Hvalstöð suggesting a local source, most likely the
whale-processing at the whaling station but whales are known to have high
concentrations of POPs compared to the mussels. There was not much change
observed in HCB concentration, although seven of the 11 sample locations in-
vestigated in Iceland had decreasing trends which is consistent with results from
Norway (Green et al., 2011) and other locations in the Arctic (Rigét et al., 2010).
Four of the Icelandic locations showed signs of increasing trend of HCB. Out
of the forty time-series of HCB concentration analyzed by Rigét et al. (2010),
no significant increasing trends were observed while Green et al. (2011) found a
significant increase in one time-series. The decrease found in α-HCH was consis-
tent with what has been found elsewhere in the Arctic where 59% of time-series
were found to have a decreasing trend (−7.4% annual decrease on average) and
none with increasing trends (Rigét et al., 2010). In our study most time-series
of PCB-153 had a decreasing trend but two locations showed increasing trends.
In the meta-analysis carried out by Rigét et al. (2010) only three out of forty
time-series of PCB-153 concentration had increasing trends and one of those
time series was from Iceland. Of the 33 locations where ΣPCB-7 concentration
was measured in blue mussel in Norway no significant increasing trends were
found (Green et al., 2011). There was no consistent pattern of change in trans-
nonachlor concentrations in our study but other studies have in general shown
a decreasing trend of 1% on average (Rigét et al., 2010).
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In our study the Cd concentration was unstable at most locations. This
is in agreement with the results from Norway where no general trend in Cd
concentration in blue mussel was observed (Green et al., 2011). Decrease in Cu
concentration was found in our study while no trends out of the 25 time-series
were observed in Norway (Green et al., 2011). Meta-analysis of 83 Hg time-series
from the Arctic carried out by Rigét et al. (2011) showed trends ranging from
-8.6 to 10% annual change and most of the time-series did not show a significant
trend, which is consistent with what was found at the Icelandic locations where
no trend could be detected. No trends in Zn concentration were found at any
of the Icelandic locations which is consistent with results from most of the
Norwegian locations (Green et al., 2011). The trend in As concentration could
not be compared to the Norwegian data because the Norwegian time-series were
too short for trend analysis.

6.4.3 Local sources

There appears to be some local sources of pollution around the Icelandic coast-
line. There was an increase in PCB-153 concentration at Brekka, located in the
middle of a fjord on the east coast, although no increase was observed at the
location at the head of the fjord, Botn, or at the mouth of the fjord, Dalatangi.
Furthermore, elevated concentrations of p,p’-DDE, HCB and trans-nonachlor
were observed at Brekka. Salmon aquaculture was carried out from 2001 to
2008 close to Brekka which could be the explanation for the increased concen-
trations since higher levels of PCBs have been observed in fish from aquaculture
than in wild fish and the elevated levels have been traced back to the fish feed
(Sapkota et al., 2008).

In 1986 commercial whaling was banned in Iceland but permitted again in
2006 and in 2009 the cutting of fin whale started again at the whaling station
close to the sampling site Hvalstöð. The same year a sudden increase was
observed in p,p’-DDE and trans-nonachlor concentration in the mussels collected
at that site. The ratio of PCB-153:p,p’-DDE in the mussels sampled in 2010
at Hvalstöð was 0.4 but this ratio was usually between 2 and 3.5 at other
locations. The ratio in whale cut at the station at the same time was 0.2-0.4
(G.A. Auðunsson, unpublished data) suggesting that the elevated values could
be explained by waste from the station.

The results showed that there was much higher concentration of As and
HCB at Úlfsá than at any other location. A waste incinerator was operated
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from 1994 approximately 2 km from the sampling site. It is well known that
HCB is produced by combustion (Bailey, 2001) and this might explain the ele-
vated value of HCB at this location. The elevated level of As, but not for any
of the other trace elements, is however difficult to explain. Measurements of
both ash and water from the incinerator did not reveal high values of As (G.S.
Jónsson, Environment Institute of Iceland, personal communication) suggesting
that the As may have a different origin. Iceland is a volcanic island and erup-
tions are sources of inorganic compounds. The As at Úlfsá does, however, not
seem to have volcanic origin as mussels were also sampled in the next fjord, at
Dvergasteinn, where the concentration of As was much lower. Other possible
sources of As is an old landfill that a part of the village is built on or an oil
storage facility located 2 km from the sampling location which has been running
on an exemption from operating license for some years. A study carried out by
Wainipee et al. (2010) showed that absorption of As by the mineral goethite was
reduced in water with high oil loads. Oil polluted water could therefore have an
effect on the cycling and biogeochemistry of As and raise the As concentration.
The waste incinerator has now been shut down and a new oil storage facility will
be operating next year. If the oil storage facility and the waste incinerator were
the sources for elevated levels of As and HCB at Úlfsá, continued monitoring
should show decreasing concentrations of HCB and As over the next years.

6.5 Conclusion

There has been a decreasing trend in the concentration of POPs at most of
the sampling locations in Iceland in recent years, consistent with observations
elsewhere in the North. Nevertheless, an increasing trend was found at a few
locations that could be explained by anthropogenic activity. The Cu and Se
concentrations have been consistent between locations with decreasing trends
in recent years. The concentrations of As, Hg and Zn have been fairly stable in
the last 15 years at all locations but no general pattern of change was observed
for Cd concentration. The decrease in the levels of some contaminants can be
traced to banned or restricted usage but some changes in concentration could
be due to climate change in recent years. The climate change could affect wind
fields and sea currents which would lead to change in transport pathways of
the contaminants. Increase in sea temperature could also have some effect on
the growth of the mussels and influence bioaccumulation of the contaminants.
The concentrations of the POPs were generally found to be lower in Iceland
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compared to Norway, China and the northeastern coast of USA. However, the
concentration of Cd and Zn were observed to be somewhat higher than found in
Norway, USA and China but values of Hg and Pb were much lower in the mussel
sampled in Iceland. The higher concentrations of Cd and Zn can probably
be explained by the volcanic activity in Iceland since no major anthropogenic
sources of trace elements are known in Iceland, such as e.g. mining. The
results further show that human activity can have impact on the environment,
elevated concentration of contaminants found at some locations in Iceland can
most likely be traced back to aquaculture, whale processing, waste incineration
and an oil storage facility. Monitoring is therefore essential to identify and
prevent contamination from human activity.
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Abstract

Contaminants have been analyzed in cod (Gadus morhua) since 1990 as part
of the national monitoring program for the environmental conditions in the sea
around Iceland. The aim of this study was to determine the temporal trends of
persistent organic pollutants (POPs: polychlorinated biphenyls (PCBs), p,p’-
dichlorodiphenyl dichloroethene (p,p’-DDE), hexachlorobenzene (HCB), hexa-
chlorocyclohexanes (HCHs), chlordanes (CHLs) and toxaphenes (Tox)) and
trace elements (As, Cd, Cu, Hg, Pb, Se and Zn) in cod over the last two decades
at two different locations in the Arctic Ocean north of Iceland. The relation-
ship between the contaminant concentrations and biological covariates was also
determined. All of the POPs showed decreasing trends but the trace elements
showed no clear signs of trend except arsenic which showed an increasing trend
and zinc which showed a decreasing trend. The concentration of the POPs were
lower or similar in the Icelandic cod compared to cod sampled in Norway, the
Barents Sea and in the Baltic Sea, except for HCB which was higher in the
Icelandic cod compared to the Norwegian cod. The concentration of the trace
elements As, Cu, Hg and Zn were similar in the Icelandic cod compared to cod
sampled in Norway and Greenland but the concentration of Cd was higher in
the Icelandic cod. The inclusion of the biological covariates was found to be
important for the statistical analysis. The POPs had a positive relationship
with liver fat content but negative relationship with liver weight. The trace
elements had a negative relationship with liver fat and liver weight except As
which had positive relationship with liver weight. Only positive relationships
were observed between the contaminant concentrations and length.
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7.1 Introduction

The Arctic is sparsely populated with very limited industrial activity and is
therefore considered a pristine area. However, contaminants like persistent or-
ganic pollutants (POPs) which have anthropogenic origin are found all over the
Arctic and sub-Arctic (Ólafsdóttir et al., 2005; Rigét et al., 2010) although they
have rarely been used there. The POPs are transported from sources at lower
latitudes, to higher ones by long-range transport (Pacyna et al., 1985; Wania
and Mackay, 1993). Most time-series of POPs in the Arctic have shown decreas-
ing trends, nonetheless, a few series have shown increasing trends (Rigét et al.,
2010). Although trace elements occur naturally in the environment a significant
amount comes from human activity such as from fossil fuel combustion, non-
ferrous metal production and waste incineration (AMAP, 2005). The analysis of
POP and metal concentrations in mussels (Mytulis edulis) around the coastline
of Iceland mostly indicated reducing levels from 1990-2010, but revealed three
minor local sources of the contaminants (Sturludottir et al., 2013). Increased
levels of mercury in the Arctic biota have been observed in the Canadian Arctic
and in Greenland (Muir et al., 1999; Rigét et al., 2011). The concentration
of mercury in some Arctic species such as pilot whales and beluga exceed the
toxicological threshold limits and increasing concentrations are alarming (Dietz
et al., 2013).

Fish liver is often used as a monitoring matrix for POPs and metals in
the marine environment as their concentrations are elevated in the liver either
due to high lipid content (POPs) or certain organ affinity (trace elements) and
thus give more reliable results of the usually low levels. The livers can be
very variable in size and composition depending on the nutritional status of the
individual which has great influence on the concentration of contaminants in the
livers (Auðunsson, 1999). The contaminants are either lipophilic or lipophobic
and the fat content of the liver is therefore considered an important covariate
when determining temporal or spatial trends. Other biological factors are also
expected to affect the concentration of contaminants such as: age, length, dry
and total weight of the liver (Auðunsson, 1999; Green and Knutzen, 2003; Riget
et al., 2000).

Contaminants have been analyzed in cod (Gadus morhua) liver and muscle
since 1990 as a part of the national monitoring program for the environmental
conditions in the sea around Iceland (Jörundsdóttir et al., 2012). The cod
studied in the national monitoring program has mainly been caught north of
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Iceland where the ocean can be divided into two areas with different types of
waters, relatively warm and saline Atlantic water to the west and mixture of
Atlantic water and cold and low-salinity Polar water to the east (Valdimarsson
and Malmberg, 1999). Cod caught in these two areas may also have different
genetic structures. A study by Pampoulie et al. (2006) on the genetic variability
of the Icelandic cod showed a significant difference in the genetic structure in cod
that spawned at the main fishing grounds at the SW coast and at the NE coast
of Iceland. Marteinsdottir et al. (2000) have shown that first year cod caught
off the NE coast are younger (born later in the year) than the ones caught off
the NW coast. This indicates that juveniles in the NE area are mainly from
local spawning areas whereas more of the juveniles at the NW area come from
the spawning grounds to the SW of Iceland.

The cod feeds mainly on capelin (Mallotus villosus) and other fish but the
northern shrimp (Pandalus borealis) and other decapods are also important in
the cod diet (Jaworski and Ragnarsson, 2006). Regional differences in cod diets
have been observed where the northern shrimp is more common in the diet of
cod in the NW area than at the NE area and small crustaceans of the order Eu-
phausiacea are more common at the NE than at the NW area (Pálsson, 1983).
Temporal changes in the cod diet have been observed from 1988 to 2010 where
the consumption of capelin and northern shrimp has fluctuated (Pálsson and
Björnsson, 2011). Diet preferences may influence biomagnifications of contam-
inants (Ruus et al., 1999; Skarphedinsdottir et al., 2010) and therefore factors
such as season, location and fish size can affect the concentrations of contami-
nants as feeding depends on these factors and fish becomes a larger proportion
of the cod diet as the cod grows (Jaworski and Ragnarsson, 2006).

The aim of this study was to use the data collected as a part of the national
monitoring program to determine temporal trends of POPs and trace elements
in cod liver and mercury in cod muscle over the last two decades at two different
locations in the Arctic Ocean north of Iceland. The relationship between the
contaminant concentrations and biological covariates is also determined.

7.2 Materials and Methods

7.2.1 Sampling method and locations

Sampling of cod (Gadus morhua) was carried out from 1990-2011 using sampling
guidelines from OSPAR/ICES. Cod of length 30-45 cm were collected in March
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Figure 7.1: Sampling site locations.

in the annual bottom trawl survey carried out by the Icelandic Marine Research
Institute. Samples were taken from two locations NW and NE of Iceland (Figure
7.1). One or two samples were taken each year from the NW location and
one from the NE location. Each sample contained 25 individuals which were
gutted at time of sampling and the livers were put in a pre-weighed and pre-
cleaned glass jars and both the livers and the fish were frozen at −20◦C until
sample preparation. Further handling of the samples was carried out in the
laboratory. Each individual was weighed, the length of the fish measured, the
gender determined, otoliths were removed for age determination, the fish was
filleted, skinned and the muscle weighed (Table 7.1). The 25 muscles from
each sample were homogenized and kept frozen until chemical analysis was
performed. The 25 livers were divided into four to six sub-samples according to
the weight of the livers, livers with similar weight were pooled together, except
in 1992 and 1995 when all the livers were pooled into one group. The liver
samples were then homogenized and kept frozen until chemical analysis took
place.
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Table 7.1: Median (and range) of age, length, liver weight and liver fat of cod sampled
at the NE and NW locations from 1991-2011.

NE NW
Age (years) 3.0 (2.0-5.0) 3.0 (2.0-5.0)
Length (cm) 38 (31-45) 39 (31-45)
Liver weight (g) 23 (4-79) 17 (2-80)
Liver fat (%) 55 (19-69) 53 (9-74)

7.2.2 Chemical analysis

Chemical analysis of POPs

The homogenized cod livers were extracted wet, basically according to the
method of Jensen et al. (1983) as described earlier (Ólafsdóttir et al., 1995).
In short, approx. 3 g of tissue were extracted with hexane/acetone/diethyl
ether, solvents evaporated at 40◦C under N2, the residue or a fraction of it, re-
suspended in isooctane containing 1, 2, 3, 4-tetrachloronapthalene (the internal
standard) and cleaned with concentrated sulfuric acid. Recovery was checked
and corrected for by the addition of ε-HCH, o,p’-DDD, PCB #112 and PCB
#198 (no. according to IUPAC) to all samples at the first step of the extraction.
The fat content was determined gravimetrically.

The individual polychlorinated biphenyl (PCB) congeners and pesticides
were determined by gas chromatography (HP6890) against a six level standard
curve (0.5-200 pg/μl) made from the corresponding individual standards and
the internal standard from Promochem, Wesel, Germany and Accustandard,
USA. Fifteen chlorinated pesticides or their metabolites; i.e. hexachlorobenzene
(HCB), α-, β- and γ- hexachlorocyclohexane (HCH), α- and γ- chlordane, trans-
nonachlor, oxychlordane, three toxaphene congeners (Parlar no. 26, 50 and
62), p,p’- dichlorodiphenyl dichloroethene (p,p’-DDE), p,p’- dichlorodiphenyl
dichloroethane (p,p’-DDD), p,p’- dichlorodiphenyl trichloroethane (p,p’-DDT)
and o,p’-DDT and 11 PCB-congeners (#28, 31, 52, 101, 105, 118, 138, 153,
156, 170, 180), were determined using two different capillary columns from
JW Scientific (DB5, 60 m, 0.25 mm inside diameter, 0.25 μm film thickness
and DB1701, 60 m, 0.25 mm inside diameter, 0.25 μm film thickness) and an
ECD detector. Helium was used as the carrier gas (25 cm/s) and nitrogen
as a make-up gas, splitless injection of 2.5 min, injector temperature 270◦C.
Temperature program for the DB5 column: 85◦C for 2 min, 30◦C/min to 200◦C,
hold for 29 min, 1.5◦C/min to 246◦C, 10◦C/min to 310◦C, hold for 8 min;
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and for the DB1701 column: 85◦C for 2 min, 30◦C/min to 200◦C, hold for 28
min, 1.5◦C/min to 250◦C, 7◦C/min to 290◦C, hold for 8 min. The limit of
quantification was at least 0.1-0.5 μg/kg wet weight (ww) for the pesticides and
the individual PCB congeners.

Quality assurance was ascertained in the laboratory participating bi-annually
in QUASIMEME (Quality Assurance of Information for Marine Environmen-
tal Monitoring in Europe), BT2 and occasionally BT5 exercises and the use
of blank samples and a cod liver reference sample from QUASIMEME was ex-
tracted and run with every analysis. The standard solutions were checked by
comparison to certified reference material (NIST1493).

Chemical analysis of trace elements

The trace elements As, Cd, Cu, Pb, Se and Zn were analyzed in cod liver
and Hg in cod muscle. Before 2007, Hg was analyzed using cold vapor atomic
absorption, Cd, Cu, Zn and Pb were analyzed using FAA/impact bead using
D2-background correction and As and Se were analyzed with hydride genera-
tion atomic absorption as described by Yngvadóttir et al. (2006) after sample
digestion in 50 ml Parr digestion bombes as described by Rabieh et al. (2007).
Samples analyzed in the year 2007 and later were analyzed with microwave di-
gestion (Mars5, CEM, Matthews, USA) and inductively coupled plasma mass
spectrometer (ICP-MS, Agilent 7500ce, Agilent Technologies, Waldbronn, Ger-
many). The laboratory is accredited for analysis of trace elements and a detailed
description of the analytical method can be found in Reykdal et al. (2011). To
assure the validity of the new analytical method when the method was changed
in 2007, the results of the two analytical methods were compared by analyzing
a range of samples and certified reference material with both methods as well as
participate in interlaboratory comparison studies such as QUASIMEME with
the new method. The difference in the results between the two methods was
within set criteria of |Z| score ≤ 2. Results for all samples are presented on wet
weight bases (w.w.).

7.2.3 Statistical analysis

The data used for the statistical analysis were retrieved from the ICES database
and can be accessed at http://dome.ices.dk/. The contaminant concentrations
are all on wet weight basis. Some of the POPs were statistically analyzed
together; PCBs (sum of PCB-congeners #28, 52, 101, 118, 138, 153, 180),
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HCHs (sum of α-, β- and γ-HCH), CHLs (sum of α- and γ-chlordane and trans-
nonachlor) and Tox (sum of three toxaphene congeners, Parlar no. 26, 50 and
62). The time-series are variable of length as analysis of some of the con-
taminants started after 1990. Analysis of HCH began in 1994 with missing
observations from 1997-98. Analysis of CHLs started in 1997, analysis of Tox
in 2000, of As in 1996 and of Se in 1994. Other time-series are from 1990. In
1990 the fish was frozen whole and the livers were damaged, therefore data from
that year was not used in the statistical analysis. Values of β-HCH from 1994
and 1995 were unusually high and because of missing observations from 1997-98
the time-series of HCH was analyzed from 1999. The concentration of Pb was
not used in the statistical analysis because 90% of the data was below the limit
of detection (LOD) which ranged from 0.02 to 0.1 mg kg−1 wet weight. For
other contaminants 0-7% of the data was <LOD and these values were treated
as equal to the LOD in the statistical analysis.

To test whether the concentration of contaminants in cod had changed over
the periods a method of mixed models was applied (Pinheiro and Bates, 2000).
The change in concentration over time was modeled as a polynomial and a
polynomial model of order four was considered a saturated model. The average
age, length, liver fat content and liver weight of the sub-samples were used as
covariates to adjust for biological variation. Interactions between location and
the fixed effects were added to the model to test whether the change in concen-
tration was different between the locations and to test whether the relationship
between the concentrations and the covariates were different at the two loca-
tions. It is well established that biological attributes of marine animals caught
in close vicinity of each other tend to be more similar than attributes of ani-
mals caught at very different locations. In the context of general random effects
model this is the intra-class correlation or, for marine surveys, the intra-haul
correlation (Pennington and Volstad, 1994) and is typically taken into account
by using the discrete sampling location as a random effect. Therefore, a ran-
dom year-location interaction was also included in the model to account for
correlation between observations from the same year at each location.

The saturated model of the change in concentration of the contaminants
(PCBs, DDE, HCB, HCHs, CHLs, Tox, As, Cd, Cu, Se and Zn in cod liver) is
as follows.

yijt =β0j + β1jt+ β2jt
2 + β3jt

3 + β4jt
4

+ β5jaijt + β6j leijt + β7jfijt + β8j lwijt + γjt + εijt
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where yijt is the log-concentration of a contaminant in sub-sample i at lo-
cation j in year t, aijt is the average age, leijt is the average length, fijt is the
average fat content of the livers and lwijt is the log of the average liver weight
in the sub-samples. The γjt is the random effect for the intra-haul correlation
and the G matrix was fitted as a diagonal matrix, i.e. the random effects were
assumed independent. The model for Hg in cod muscle was different because
of the different data structure, it did not have a random term and it only had
age and length as covariates. The models were fitted with restricted maximum
likelihood (REML) using the nlme package (Pinheiro et al., 2013) in the statis-
tical software R (R Development Core Team, 2012). Fixed effects were tested
using the conditional t-test which is an approximate test (Pinheiro and Bates,
2000), terms not significant at α = 0.05 were removed from the model.

7.3 Results

The change in concentration and median concentrations of the contaminants
were predicted from the final models (Table 7.2) adjusted for the median of the
significant covariates, age (3 years), length (39 cm), liver fat content (53%) and
liver weight (19 g). The changes in the POP concentrations are shown in Figure
7.2 and for the trace elements in Figure 7.3 , where all concentrations are on
wet weight basis.

7.3.1 Temporal trends of POPs

A significant change in concentration of all of the POPs was observed (see Table
7.3). The concentration decreased by -3 to -2% for PCB, p,p’-DDE, HCB, CHL
and Tox but by -9% for HCHs (Figure 7.2). The annual decrease was the same
at both locations and the median concentration of the POPs over the periods
were similar or higher at the NE location compared to the NW location (Table
7.3).

The biological covariates, except age were found to have a significant rela-
tionship with the POP concentrations. Length had a significant and positive
relationship with all the POPs except with HCH where it was not significant.
This relationship was not the same at both locations; the concentration in-
creased significantly more with length at the NE location (PCB: p = 0.0121,
DDE: p = 0.0344, HCB: p = 0.0403, CHL: p = 0.0098) and it was found to
have a negative relationship with HCB at the NW location. The relationship
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Table 7.2: Final model for each contaminant where yijt is the log-concentration of
a contaminant in sub-sample i at location j in year t (a = age, le = length, f = liver
fat content, lw = log liver weight, γ = random effect)

Contaminant Model
PCBs yijt = β0j + β1t+ β6j leijt + β8j lwijt + γjt + εijt

DDE yijt = β0j + β1t+ β6j leijt + β7fijt + β8j lwijt + γjt + εijt

HCB yijt = β0j + β1t+ β7jfijt + β8j lwijt + γjt + εijt

HCHs yijt = β0j + β1t+ β7fijt + γjt + εijt

CHLs yijt = β0j + β1t+ β6j leijt + β7fijt + β8j lwijt + γjt + εijt

Tox yijt = β0j + β1t+ β6leijt + β7fijt + β8j lwijt + γjt + εijt

As yijt = β0j + β1t+ β7jfijt + β8j lwijt + γjt + εijt

Cd yijt = β0j + β1jt+ β2jt
2 + β3jt

3 + β7fijt + β8lwijt + γjt + εijt

Cu
yijt = β0j + β1jt+ β2jt

2 + β3jt
3 + β4t

4

+β6leijt + β7fijt + β8lwijt + γjt + εijt

Hg yijt = β0j + β1t+ β2t
2 + β3t

3 + γjt + εijt

Se yijt = β0 + β1t+ β2t
2 + β6leijt + β7fijt + β8lwijt + γjt + εijt

Zn yijt = β0 + β1t+ β6leijt + β7fijt + β8lwijt + γjt + εijt

between length and Tox concentration (p = 0.0001) was, however, consistent
at both locations (Table 7.4). Liver fat content had a significant and positive
relationship that was consistent at both locations with DDE, HCH, CHL and
Tox (p = 0.0002, p < 0.0001, p = 0.0002, p < 0.0001, respectively). Liver fat
also had a positive relationship with HCB but there was a significant difference
between the locations (p = 0.0009) and PCB did not have a significant relation-
ship with liver fat (Table 7.4). All the POP concentrations had a significant
and negative relationship with liver weight, except HCB and HCH where signif-
icance was not detected. This relationship was however not consistent between
the locations (Table 7.4), the concentration decreased significantly more with
liver weight at the NE location compared to the NW location (PCB: p = 0.0044,
DDE: p = 0.0008, CHL: p = 0.0002, Tox: p = 0.0058).

The interactions between the covariates and location make interpretation
more difficult as the difference in concentration between the two locations de-
pends on the covariates. The interactions between location and length for the
PCB, DDE, HCB and CHL resulted in a higher concentration at the NW lo-
cation compared to the NE location for short fish but higher concentration at
the NE location for longer fish. The interactions between liver weight and lo-
cation had opposite effects for PCB, DDE and CHL, fish with small livers had
higher concentration at the NE location but fish with larger livers had higher
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Table 7.3: Change in the contaminant concentrations and median concentrations at
NE and NW location.

Annual P-value Median
change (%) concentration
NE NW NE NW

µg kg−1

PCB -2 -2 0.0003 68 70
DDE -2 -2 0.044 48 45
HCB -3 -3 0.0007 19 18
HCH -9 -9 <0.0001 5.9 4.9
CHL -3 -3 0.0008 53 46
Tox -3 -3 0.0009 77 65

mg kg−1

As 2 2 0.0004 5.2 5.6
Cd non-linear non-linear 0.0065 0.14 0.24
Cu non-linear non-linear 0.0474 3.2 3.2
Hg non-linear non-linear 0.0143 0.022 0.03
Se non-linear non-linear 0.0276 0.85 0.85
Zn -1 -1 0.0201 14 14

concentration at the NW location. The concentrations of HCB and Tox were
higher at the NE location but this difference decreased as the livers got smaller
because of the interactions between liver weight and location. The relationship
between liver fat content and the POP concentrations was consistent for all the
POPs except for HCB where the concentration increased more with increasing
fat content at the NW location compared to the NE location. Therefore, the
concentration of HCB was higher at the NE location for livers with low fat
content but higher at the NW location for livers with high fat content.

7.3.2 Temporal trends of trace elements

No general trend was observed for the trace elements. The concentration of
As increased significantly by 2% annually at both the NE and NW location
while the Zn concentration decreased significantly by -1% annually (see Table
7.3 and Figure 7.3). There were significant changes in the other trace elements,
the concentration of Cd and Cu showed fluctuations over time that were not
consistent at both locations. The Hg and Se concentrations also fluctuated with
time but the change was consistent at both the NE and NW location (Figure
7.3). The median concentration of the trace elements were the same for Cu, Se
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Figure 7.2: Predicted change in concentration of the POPs (PCBs, p,p’-DDE, HCB,
HCHs, CHLs and Tox) from the final models (see Table 7.2) at the NE and NW
location (see Figure 7.1).
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Table 7.4: Increase/decrease (%) in concentration of POPs with age, length, liver
fat and weight, estimates ((eβ − 1) ∗ 100) from the final models in Table 7.2.

PCB DDE HCB HCH CHL Tox

Age
NE 0 0 0 0 0 0
NW 0 0 0 0 0 0

Length
NE 5.5 7.2 0.9 0 6.1 3
NW 1.8 2.6 -1 0 1.4 3

Liver fat
NE 0 1.3 1.4 2.2 1.1 2.1
NW 0 1.3 2.5 2.2 1.1 2.1

Log liver weight
NE -34.5 -51.8 0 0 -38.9 -31.6
NW -18.3 -29.4 0 0 -13.5 -21.7

and Zn at the both locations but higher for As, Cd and Hg at the NW location
compared to the NE location (Table 7.3).

The biological covariates, except age were found to have a significant rela-
tionship with the trace elements concentrations. Length had a significant and
positive relationship with the Cu, Se and Zn concentrations (p < 0.0001,p =

0.0045, p < 0.0001, respectively) which was consistent at both locations but sig-
nificant relationships were not detected with As, Cd and Hg (Table 7.5). Liver
fat content had a significant and negative relationship with all concentration
measured in the liver (Cd: p < 0.0001, Cu: p = 0.0044, Se: p < 0.0001 and
Zn: p < 0.0001) which was consistent at both location for all the trace elements
except As where the concentration decreased significantly (p < 0.0001) more
with increasing fat content at the NE location (Table 7.5). The relationship
between liver weight and the trace elements concentrations were found to be
significant and negative for all the elements at both locations (Cd: p = 0.0141,
Cu: p < 0.0001, Se: p < 0.0001 and Zn: p < 0.0001), except for As where
the difference was significant between locations (p = 0.0012), it was positive at
the NE location but negative at the NW location (Table 7.5). This interaction
between the liver and location for the As concentration resulted in higher con-
centration of As at the NE location for livers with a low fat content and weight
compared to the NW location.
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Figure 7.3: Predicted change in concentration of the trace elements (As, Cd, Cu,
Hg, Se and Zn) from the final models (see Table 7.2) at the NE and NW location.
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Table 7.5: Increase/decrease (%) in concentration of trace elements with age, length,
liver fat and weight, estimates ((eβ − 1) ∗ 100) from the final models in Table 7.2.

As Cd Cu Hg Se Zn

Age
NE 0 0 0 0 0 0
NW 0 0 0 0 0 0

Length
NE 0 0 5.2 0 1.8 2.5
NW 0 0 5.2 0 1.8 2.5

Liver fat
NE -3.3 -2.5 -0.9 - -2.2 -1.5
NW -1.4 -2.5 -0.9 - -2.2 -1.5

Log liver weight
NE 23.9 -12.2 -32.4 - -18.5 -18.4
NW -3.4 -12.2 -32.4 - -18.5 -18.4

7.4 Discussion

7.4.1 Concentrations of contaminants

The concentrations of the POPs in cod were similar or higher at the NE location
than at the NW location but the concentration of Cd and Hg was higher at the
NW location than at the NE location for the average fish (age = 3 years, length
= 39 cm, liver fat content = 53% and liver weight = 19 g). The ocean at
the NW location is mainly relatively warm and saline Atlantic water, while
the ocean at the NE location is mixed with cold and low salinity Polar water
(Valdimarsson and Malmberg, 1999). The chemical composition may not be
same in the different waters (Hafrannsóknastofnun, 2008), consequently causing
some of the difference in the contaminant concentrations. Different diets at
the two locations (Pálsson, 1983) probably have the greatest influence on the
contaminant concentrations and the liver fat.

Three minor local sources of contaminants have been found at the Icelandic
coastline (Sturludottir et al., 2013). These sources are a small waste incineration
plant, a whale processing station and aquaculture; these sources are too small
to significantly contribute to contamination at the open sea where the cod was
sampled. The similar PCB/DDE ratios at both locations and the correlation
between individual POP levels indicate that the source of the POPs is the same
at both locations, most likely long range transport.

It can be difficult to compare concentrations between locations because of
the influence of biological covariates such as age, length, liver fat and weight. In
many studies on concentration of contaminants information on the covariates
is missing. The concentrations of the contaminants in this study were com-
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pared to results from Norway (Green et al., 2011), the Barents Sea (Stange and
Klungsøyr, 1997), the Baltic Sea (Fromberg et al., 2000; Szlinder-Richert et al.,
2009) and West Greenland (Riget et al., 2003) using median values as follows.

The median concentration of PCBs was observed to be four times higher in
cod liver sampled in Norway from 2000 to 2010 (288 μg kg−1) than in Iceland.
The cod in Norway is sampled both off the open coast and in the fjords where it
can be affected by local pollution which may result in higher contaminant con-
centrations than in cod sampled at the open sea. The cod sampled in Norway
is also larger (37-70 cm) than the one sampled in Iceland which could explain
higher concentrations in Norway. The concentration of p,p’-DDE was very sim-
ilar in the Icelandic and the Norwegian cod (40 μg kg−1). The concentration
of HCB was, however, three times higher in the Icelandic cod than in the cod
sampled in Norway (7.2 μg kg−1). This is in contrast with results of air levels
of HCB at the S-Icelandic coast which were an order of magnitude lower than
at the Zeppelin station at Svalbard, Norway (Hung et al., 2010). PCBs concen-
tration was six times higher in cod in the Barents Sea in 1992-1993 (sum of 13
PCBs, 392 μg kg−1) than in the Icelandic cod. The concentration of DDTs (sum
of p,p’-DDD, p,p’-DDE and p,p’-DDT, 114 μg kg−1) and the HCH concentration
(12 μg kg−1) were about two times higher in cod sampled in the Barents Sea
compared to cod sampled in Iceland. The concentration of HCB and CHLs were
in the same range in the Icelandic cod and the cod from the Barents Sea (HCB
= 23 μg kg−1, CHLs (sum of trans-nonachlor, oxychlordane, cis-chlordane and
trans-chlordane) = 75 μg kg−1). The PCB concentration was also much lower
in cod sampled in Icelandic waters than reported in cod caught in the Baltic
Sea from 1998 to 2003 (640 µg kg−1, converted to w.w. assuming 50% liver
fat). The p,p’-DDE concentration was nine times higher in cod in the Baltic
Sea (439 μg kg−1) compared to the Icelandic cod but Tox concentration was two
times higher in the Icelandic cod compared to the concentration in 1996 in the
Baltic Sea (33 μg kg−1). All this difference in POP levels and ratios indicate
the variable sources or pathways for the persistent contaminants to the Arctic
and sub-Arctic as discussed by Li and Macdonald (2005).

The concentration of As was similar in cod sampled in Iceland and Norway
(4.7 mg kg−1). The concentration of Cu (5.7 mg kg−1), Zn (23 mg kg−1) and Hg
(0.06 mg kg−1) measured in Norwegian cod were about two times higher than
in the Icelandic cod. The Cd concentration was on the other hand six times
higher in the Icelandic cod than what was found in cod from most monitoring
stations in Norway (0.03 mg kg−1). The concentration of Se was similar in
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cod in West Greenland (0.78 mg kg−1 mean of five individuals) and Iceland.
The concentration of Cd and Hg was observed to be four and two times higher
in cod sampled in Icelandic waters than in cod from West Greenland (Cd =
0.05 mg kg−1 mean of five individuals, Hg = 0.014 mg kg−1 mean of nine
individuals). Similar observations were seen in mussels collected on the eastern
coast of Iceland (Sturludottir et al., 2013) where high Cd concentrations, in the
absence of any known anthropogenic sources, were believed to be due to the
volcanic nature of Icelandic rock. Comparison of the Pb levels could not be
done, since 90% of the Icelandic cod had levels <LOD in the livers.

7.4.2 Temporal trends of contaminants

Due to worldwide efforts to reduce the use and control waste management of
POPs over extended periods, decreasing trends were expected. In the present
study significant decreasing trends were detected in PCB, HCB, p,p’-DDE,
HCHs, CHLs and Tox at both the NE and NW location. These results are
consistent with results from Riget et al. (2010) and Green et al. (2011). HCB
have been found to be decreasing in many time-series from the Arctic, Green
et al. (2011) found decreasing trends in six out of eight time-series of HCB in
cod liver and Rigét et al. (2010) found decreasing trends in 14 out of 40 time
series from the Arctic biota. No increasing trends were observed in either of
these studies. HCB has also been observed to be decreasing in the atmosphere,
by 90% from 1990 to 2011 (Gusev et al., 2011). Green et al. (2011) also found
decreasing trends in most of the p,p’-DDE time series and in all eight time series
of γ-HCH. Rigét et al. (2010) found decreasing trends in half of the HCH time
series analyzed but only in 28% of the 40 time series of p,p’-DDE. Rigét et al.
(2010) analyzed 17 time series of CHLs and ten of Tox and found two decreasing
trends for each.

There were fluctuations in the concentration of the metals Cd, Cu and Hg
in this study at both locations (Figure 7.3). Green et al. (2011) reported both
decreasing and increasing trends in Hg in cod muscles and in Cd and Cu in cod
liver sampled in Norway. No general trend was found in Hg concentration in
the Arctic biota (Rigét et al., 2011; Riget et al., 2004) or in Cd concentration
in the Greenland biota (Riget et al., 2004). The results in this study showed
decreasing trends for Zn at both locations which is consistent with results from
Norway where only decreasing trends were observed in Zn in cod liver (Green
et al., 2011). Increasing concentration of As was observed in the presents study
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but the reason for the increase remains unknown. The literature study did not
provide any time series for As from other monitoring activities for comparisons.

Temporal trend analysis done by Sturludottir et al. (2013) on contaminant
values in mussel around the Icelandic coast revealed that the concentration of
POPs had decreased in recent years at most locations. In that study, α-HCH
had decreased by −13% annually from 1999 to 2010 which is consistent with
results from the present study where HCH decreased by −9% annually. There
were no signs of decreasing trends of Zn and increasing trends of As in the
mussel study as was observed in this study.

7.4.3 Effects of biological covariates

Care must be taken before drawing conclusions from observed relationships
between the contaminant concentrations and biological covariates. Correlations
between many of the biological covariates, i.e. positive log-linear correlation
between length and liver weight (r = 0.7, p < 0.001) and between liver fat
content and weight (r = 0.7, p < 0.001), have to be considered in order to be
able to make meaningful predictions from the models obtained.

Excluding important biological variables from the models can change the
observed relationship between the concentrations and covariates, i.e. excluding
liver weight from the models resulted in a negative relationship between liver
fat content and some of the POP concentrations. In addition, ignoring the
effect of the biological covariates can result in a different final statistical model
of the change in concentration over the period. For example, if the covariates
are excluded from the model for the As concentrations the predicted change
in the concentration becomes different, resulting in an apparently decreasing
concentration at the NW location instead of an increasing one. One sub-sample
is measured with high concentration in the first year, this sub-sample also has
low liver fat and weight and if those covariates are ignored this measurement
acts as an influential observation, i.e. deleting this observation changes the
regression slope. Including biological covariates also reduces the error of the
models making it more likely to detect significant changes in the concentration
of contaminants.

A temporal change in the biological covariates can look like a temporal
change in the concentrations, i.e. if the fat content of the liver has increased
with time the concentration of the POPs may appear to have increased because
of the positive relationship between liver fat content and POP concentrations.
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It is therefore important to include biological covariates and also to check if
there are temporal changes in the covariates. The liver weight was observed to
be increasing in time at the NW location but it was stable at the NE location.
The concentrations of the PCB and DDE were observed to be decreasing at
the NW location with and without the covariates but there was no significant
change at the NE location without the covariates included in the model. If
the decrease in the POP concentrations at the NW location were only due to
the change in liver size, this decrease should not be detected when the liver
covariates were included in the models as was done in this study. Decrease in
the POP concentrations was also detected at the NE location where the livers
were stable, which further supports that the decrease seen in PCB and DDE at
the NW location are not a result of the change in liver size.

The relationship between contaminant concentration in cod liver and co-
variates has often been described with log-log linear relationship (Auðunsson,
1999; Nicholson et al., 1991). Log transforming the variables liver fat content,
fish length and age did not result in a better fit in this study but transform-
ing liver weight did. Age was not found to have a significant relationship with
any of the contaminant concentrations. The range of age was very narrow and
the cod was in most cases three to four years old and very few were two and
five years old. This limited age range may be the reason why effects of age
were not detected for any of the contaminants but other studies have for exam-
ple shown positive correlation between age and Cd concentration (Auðunsson,
1999). However, Nicholson et al. (1991) did not find a significant relationship
between Cd concentration and age and Riget et al. (2000) concluded that fish
length was more important than age. Livers from a few individuals were homog-
enized into one sub-sample, which also reduces the power to detect significant
relationships between age and contaminant concentrations.

A positive relationship was observed between some of the contaminant con-
centrations (Cu, Se, Zn, PCB, DDE, CHLs and Tox) and length (Table 7.4
and 7.5). Green and Knutzen (2003) and Nicholson et al. (1991) also observed
a positive correlation between length and PCBs concentration. No significant
relationship was observed in this study between Hg concentration and length
as has been observed in other studies (Riget et al., 2000; Rigét et al., 2011),
which is probably due to the limited length range of the cod samples investi-
gated in this study. Also, Hg was measured in pooled samples of muscle of the
25 individuals which made only one sample a year per location. Therefore there
are fewer observation in the Hg time-series compared to the other time-series
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which comes from the livers (which were grouped according to weight), making
it more difficult to detect significance in the Hg time-series.

A positive relationship was observed between all of the POP concentrations
and liver fat, except PCBs and a negative relationship between all of the POP
concentrations and liver weight, except HCB and HCHs which only had a sig-
nificant relationship with liver fat. High fat content in the liver indicates that
the fish is well fed and has consequently ingested more POPs than fish which is
not well fed. When feed availability is low the fat content in the liver decreases
and the concentrations of the POPs increases as they remain in the cod. This
factor should however, be avoided due to the consistent seasonal sampling done
in this study.

A negative relationship was observed between the As, Cd, Cu , Se and Zn
concentrations and liver fat and a negative relationship between all of those
concentrations and liver weight, except the As concentration had a positive
relationship with liver weight which may be because of the special properties
of As. Sele et al. (2012) has for example reported that As is transformed to
both lipophilic and lipophobic organic compounds in marine organisms and that
arsenolipids can be up to 77% of the total As in cod liver, which is different
from the other trace elements which are lipophobic.

Significant interactions between the locations and the covariates were fre-
quently observed and many factors can cause these interactions. It is for exam-
ple possible that the different waters at the two locations i.e. Atlantic water at
the NW location and Polar water at the NE location (Valdimarsson and Malm-
berg, 1999) can have an effect as the temperatures are different with colder
water to the NE. This can influence food availability which has been observed
to be diverse at the two locations (Pálsson, 1983) which consequently leads to
different biomagnification rate at these two locations. The genetic structure of
the cod at these two locations may be different (Pampoulie et al., 2006) and
this may also have an effect on the biomagnifications of the contaminants in the
liver.

7.5 Conclusion

Biological covariates such as age, length, liver fat and weight need to be con-
sidered before making inference about contaminant concentration, both when
comparing concentrations and when analyzing temporal trends. In the present
study all covariates, except age were found to influence the contaminant con-
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centrations and were adjusted for, before conclusions were drawn. The con-
centration of the POPs were lower or similar in the Icelandic cod compared
to cod sampled in Norway, the Baltic Sea and in the Barents Sea, except for
HCB which was higher in the Icelandic cod compared to the Norwegian cod.
The concentration of the trace elements As, Cu, Hg and Zn were similar in the
Icelandic cod compared to cod sampled off Norway and Greenland but the con-
centration of Cd was found to be higher in the Icelandic cod. All of the POPs
showed decreasing trends but the trace elements showed no clear signs of trend
except As which showed an increasing trend and Zn which showed a decreasing
trend. It is important for regulators and policy makers to have information
regarding trends of environmental pollutants in order to forecast their future
behavior and distribution to ensure environmental quality, food safety and pub-
lic health. The information presented in this paper shows the trends of several
major environmental pollutants in the North Atlantic and is an important con-
tribution for international monitoring programs such as the Arctic Monitoring
and Assessment Programme (AMAP) and the Oslo-Paris convention (OSPAR)
for comparison of the global pollution load.
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Abstract

In this study a changepoint model, which can detect either a mean shift or
a trend change when accounting for autocorrelation in short time-series, was
investigated with simulations and a new method proposed. The changepoint
hypotheses were tested using a likelihood ratio test. The test statistic does
not follow a known distribution and depends on the length of the time-series
and the autocorrelation. The results imply that it is not possible to detect
autocorrelation and that the estimate of the autocorrelation parameter is biased.
It is therefore recommended to use critical values from the empirical distribution
for a fixed autocorrelation.
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8.1 Introduction

Short time-series are frequent in environmental studies and in such programs it
is often of interest to detect when a change has taken place. This time of change
is called a changepoint (CP) and is a point in time-series when there is either a
step change, i.e. a mean shift in the response variable or a trend change. These
changes can occur e.g. in time-series of concentration of contaminants or in a
time-series of wildlife population; a change in the analysis method can result in
a step change in the contaminants and a change in source of contaminants can
result in a change in trend. A change in time-series of wildlife population can
for example occur after a modification in wildlife management.

A number of methods exist to detect CP, back to Quandt (1958) who de-
veloped a method using the likelihood ratio test where the test statistic was
assumed to follow the χ2 distribution. Later, Quandt (1960) published another
article which showed that the approximation of the χ2 distribution was poor.
Approximation methods have been developed using the likelihood ratio test
(Kim and Siegmund, 1989; Liu and Qian, 2009). All of these methods assume
independent and normally distributed errors. However, an autocorrelation is
common in time-series which inflate the type I error rate if ignored when test-
ing for a trend (Yue et al., 2002) or a CP (Lund et al., 2007). It can be difficult
to estimate autocorrelation in short time-series. Further, the estimate is bi-
ased and the bias is greater for shorter time-series and stronger autocorrelation
(Bence, 1995). This bias also needs to be considered when testing for a CP. The
test statistic for an unknown CP does not follow a known distribution (Lund
and Reeves, 2002) and the critical value of an empirical distribution depends
both on the length of the time-series and the unknown true autocorrelation pa-
rameters (Wang, 2008a). Changepoint analyses have been carried out in long
time-series, e.g. in climate time-series (Lund and Reeves, 2002; Lund et al.,
2007; Reeves et al., 2007; Wang, 2008b). Methods for detecting a mean shift in
long time-series have been developed both as a parametric (Lund et al., 2007;
Wang, 2008a) and as a non-parametric test (Dehling et al., 2012). The focus
has been on a step change rather than a change in trend (Lund et al., 2007;
Wang, 2008b) and also many of the methods assume independent errors (Lund
and Reeves, 2002; Reeves et al., 2007; Wang, 2008b).

In this study a CP model which can detect either a mean shift or a trend
change when accounting for autocorrelation in short time-series will be investi-
gated with simulations and a new method of analysis proposed. Applications
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of the new method will be given using data from monitoring studies.

8.2 Changepoint model

Model (1) allows for a CP in a time-series yt, i.e. the intercept (α1 6= α2) and/or
the slope (β1 6= β2) are different before and after the CP.

yt =

 α1 + β1t+ εt 1 ≤ t ≤ c

α2 + β2t+ εt c < t ≤ N
(8.1)

The errors εt are autocorrelated with autocorrelation parameter ρ, i.e. εt =

ρεt−1 + ut and u is assumed to follow normal distribution with mean 0 and
variance σ2

u. Time c is the unknown CP in the interval [n0, N − n0] where n0
is the first possible CP and N is the length of the time-series. This model is
designed to detect both step and trend type CP. A reduced model with no CP
would be.

yt = α+ βt+ εt (8.2)

To test the null hypothesis of no CP (H0) against an alternative hypothesis
of unknown CP (H1) a likelihood ratio test is applied. The full model (1) and
the reduced model (2) where α1 = α2 and β1 = β2 are fitted using maximum
likelihood and the likelihood ratio statistic D is calculated for each c. The most
likely CP is the point in time where these D are at a maximum (Dmax), this is
the test statistic for the CP test.

H0 : α1 = α2 and β1 = β2

H1 : α1 6= α2 or β1 6= β2

Dc =

{
− 2 ln

(
likelihood for model (2)
likelihood for model (1)

)}

Dmax = max
c
Dc

The Dmax statistic does not follow a χ2 distribution. To test whether the
CP is significant, the empirical distribution needs to be simulated and Dmax

tested against the critical values of the simulated distribution. The empirical
distribution of Dmax depends on both the length of the time-series and on the
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structure of the autocorrelation. The test statistic also depends on n0, where
the first CP is allowed to take place. In this study n0 = 4 and the errors will
be assumed to be normally distributed and with an autoregressive of order 1
structure (AR(1)).

8.3 Critical values from the empirical distribution

The empirical distribution of Dmax under the null hypothesis was simulated
with Monte Carlo simulations for time-series of length N = {10, 20, 30, 50, 100}
with autocorrelation parameters ρ = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.
The critical values were the 95th percentiles of the empirical distributions and
shown in Figure 8.1. Each combination of N and ρ were simulated 50,000 times,
all together 2.5 million time-series were simulated.

The critical values of the empirical distribution depended both on N and ρ
(Figure 8.1) as Wang (2008a) had shown before when testing for a mean shift.
The critical values became larger as the autocorrelation increased and also as
the time-series became shorter. The difference in the critical values was large
between short time-series, e.g. the difference between the critical values for
N = 10 and N = 20 with ρ = 0.5 was 3.85 but between N = 20 and N = 30

this difference was 1.35. This difference reduced further for longer time-series.
It is therefore important to use critical values from the empirical distributions,
approximated with the correct length for short time-series.

It is well known that the type I error rate is inflated when autocorrelation is
ignored (Lund et al., 2007; Yue et al., 2002). The error rate in the test for a CP
was inflated when the test was applied and no autocorrelation assumed although
present in the time-series. The error rate was larger for longer time-series and
increased fast as the autocorrelation became stronger in the time-series (Figure
8.2). The error rate was about 20% for time-series of length N = 20 with an
autocorrelation of ρ = 0.3 but close to 30% in time-series of length N = 50.

To keep the type I error rate at 5% it would be necessary to use the critical
values for each autocorrelation parameter ρ. To do this the ρ needs to be esti-
mated in the time-series and the critical value chosen according to the estimated
ρ. Estimating the autocorrelation in short time-series is however very difficult
(Bence, 1995). As shown in Figure 8.3, the estimate of the autocorrelation in
the CP model was observed to be negatively biased. This bias increased as
the time-series became shorter and with increasing autocorrelation. The esti-
mated autocorrelation for time-series of length N = 10 was negative even when
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Figure 8.1: Critical values from the empirical distributions for N={10, 20, 30, 50,
100} assuming autocorrelation from ρ = 0 to ρ = 0.9.

Figure 8.2: Error rate when ignoring autocorrelation for time-series of length N =
10, 20, 30, 50 and 100.
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Figure 8.3: The bias in the estimate of the autocorrelation parameter (ρ̂) in the
changepoint model for time-series of length N = 10, 20, 30, 50 and 100. The thick
black line shows unbiased estimates.

the true autocorrelation was ρ = 0.9. Using the critical values based on esti-
mated autocorrelation would lead to inflated error rate and is therefore not the
appropriate method for detecting CP.

Choosing a critical value using a model where autocorrelation is assumed
to exist greatly reduces the type I error rate even though the percentiles for
ρ = 0 are used as the critical values (autocorrelation is assumed when the
empirical distribution of Dmax was simulated but the simulated time-series were
not autocorrelated). When the autocorrelation parameter ρ is equal to 0.5
the error rate is 0.10 for time-series of length 50 (Figure 8.4) but 0.60 when
the autocorrelation is ignored (Figure 8.2). The difference is even larger for
longer time-series; it is 0.09 for time-series of length 100 but 0.70 when the
autocorrelation is ignored. The error rate is reduced even further if percentiles
for ρ = 0.2 is used as the critical values, e.g. time-series with autocorrelation
lower than ρ = 0.6 have error rate below 10%. A critical value for ρ = 0 or
ρ = 0.2 can be used when testing for a CP in short time-series with positive
autocorrelation which is assumed to be low or moderate and an error rate of
10% is acceptable.
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Figure 8.4: Actual error rate when using critical values from the empirical distri-
butions for ρ = 0.0 and ρ = 0.2 when using a nominal error rate of α = 0.05 and
assuming autocorrelation for time-series of length N = 10, 20, 30, 50 and 100.

8.4 Testing for autocorrelation

It is well known that assuming autocorrelation when there is none reduces the
power of statistical tests. Therefore, it would be ideal to test for an auto-
correlation in the CP model and if it turned out to be significant, then do
the test assuming autocorrelation, otherwise assume independence. To test
this method 5000 time-series for each combination of N = {10, 20, 30, 50, 100}
and ρ = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} were simulated under the null
hypothesis of no CP. First, the time of the most likely changepoint was esti-
mated assuming autocorrelation and then compared to a model with the same
changepoint but without autocorrelation. The autocorrelation was tested using
a restricted likelihood ratio test (Wolfinger, 1993), where the test statistic was
assumed to follow the χ2 distribution with one degree of freedom. If the test was
significant at α = 0.05 the model with autocorrelation was fitted again using
maximum likelihood and Dmax compared to a critical value from the empirical
distribution assuming ρ = 0.2. If however, the test was not significant, Dmax

from the model without autocorrelation was compared to a critical values from
the empirical distribution where independence was assumed.

Autocorrelation rarely became significant in short time-series even though
they were strongly autocorrelated (Figure 8.5). In time-series of length N = 10

autocorrelation was significant in less than 5% of the time-series, even when
the true autocorrelation was ρ = 0.9. Even when the time-series were of length
N = 50, detection of autocorrelation did not reach 80% until the autocorrelation
became stronger than ρ = 0.6. For time-series of lengthN = 100 autocorrelation
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Figure 8.5: Power of detecting autocorrelation in time-series of length N =10, 20,
30, 50 and 100.

became significant in more than 80% of the time-series when the autocorrelation
was ρ = 0.3 or higher. As was shown in Figure 8.3 the autocorrelation is
seriously underestimated and this has influence when testing for autocorrelation.

The type I error rate of CP detection at the 5% significance level when
using the method of testing for autocorrelation, as described earlier in this
section, was over 10% for all the time-series when the autocorrelation exceeded
ρ = 0.2 except for time-series of length N = 100 (Figure 8.6). The error rate
increased with stronger autocorrelation for time-series of length N = 10 and
N = 20 and the error rate was higher for the N = 20 time-series, especially
for strong autocorrelation. The pattern was different for time-series of length
N = 30 and N = 50, where the error rate increased until the autocorrelation
reached ρ = 0.4 to ρ = 0.5 when it decreased and then it increased again for
very strong autocorrelation. The error rate for the N = 100 time-series was
very close to 10% for all values of ρ. This different error rate pattern for time-
series of different length comes from the ability of detecting whether there is
autocorrelation in the time-series or not, which is very different for the time-
series as can be seen in Figure 8.5. This method of testing for autocorrelation is
not acceptable in short time-series (N < 100) as the error rate becomes higher
than 10% even when the autocorrelation is weak.
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Figure 8.6: Error rate when using the method of testing for autocorrelation in time-
series of length N = 10, 20, 30, 50 and 100

8.5 Power

The power of the CP model was studied with simulation of 1000 time-series
for each combination of N and ρ as described above. The variance was fixed
at σ2 = 1 for each ρ by setting σ2

u = 1 − ρ2. The power was tested for time-
series where a step change occurred, α2 − α1 = 4 and a trend change, where
the trend was β1 = 0 before the CP and β2 = 0.4 after. The trend change
was a continuous change and no step occurred, i.e. the α2 was constrained to
be α2 = α1 + (β1 − β2) ∗ c. The power was investigated for two different CP,
at quarter (c = N/4, except for N = 10) and in the middle (c = N/2) of the
time-series. Further, the power of detecting a CP and the power of detecting
the "correct" CP was documented, where the CP was deemed "correct" if it
was within 0.1 ∗N of the true CP.

The power of detecting a step change was higher at the quarter in the time-
series than in the middle. The difference was the largest in time-series of length
N = 20 and it was larger when the autocorrelation was weak. The power was
for example 64% for time-series of length N = 20 with ρ = 0.2 when the CP was
at the quarter but 51% when it was in the middle (Figure 8.7a and 8.7b). The
power was stable in all the time-series when the autocorrelation was weak and
started to increase when autocorrelation reached ρ = 0.4 as well as the error
rate (Figure 8.4). The test did detect the "correct" CP (0.1∗N of the true CP)
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Figure 8.7: Power of detecting a CP in a time-series with a step change of α2−α1 = 4
where a) c=N/4 and b) c=N/2 and the power of detecting the correct CP where c)
c=N/4 and d) c=N/2.

in most cases when it did detect a CP (Figure 8.7c and 8.7d). The power of the
CP model increased with increasing length of the time-series and reached 80%
in time-series of length N = 30.

The power of detecting a trend change of β2 − β1 = 0.4 was higher when
the CP was in the middle compared to when it was at the quarter but it was
the other way around when detecting step change. This difference was highest
in time-series of N = 30, where the power was 21% when the CP was at the
quarter (Figure 8.8a) and 66% when it was in the middle (Figure 8.8b) for
ρ = 0.2. The power decreased with increasing autocorrelation in time-series of
length N = 50 and in time-series of length N = 30 where the CP was in the
middle. The "correct" CP was detected in over 50% of the occurrences when a
CP was detected for time-series of length N = 20 and N = 30 but over 70% for
the longer time-series (Figure 8.8c and 8.8d).

8.6 Method proposed

When testing for a CP in time-series, i.e. a mean shift accompanied with a
trend change, autocorrelation must be accounted for to reduce the type I error
rate. As was shown previously testing for autocorrelation is not feasible in
time-series which have less than 100 observations. Also, the estimation of the
autocorrelation parameter is heavily biased in short time-series and therefore
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Figure 8.8: Power of detecting a CP in a time-series with a trend change where
β1 = 0, β2 = 0.4, α1 = 0 and α2 = α1 + (β1 − β2) ∗ c where a) c=N/4 and b) c=N/2
and the power of detecting the correct CP where c) c=N/4 and d) c=N/2.

it is not possible to use the estimated parameters to choose the critical value
to use to test the hypothesis of a CP. For detection of a mean shift that is
accompanied with a trend change, we recommend that a critical value for ρ = 0.2

will be used when positive autocorrelation is assumed in the time-series and the
autocorrelation is not assumed to exceed ρ = 0.6. Critical values for time-series
of length N = 10 to N = 100 are available in Table 8.1.

8.7 Applications

The method described above was used to test for a CP in two different time-
series, both originating from monitoring programs. The first example is a time-
series of the trace element cadmium measured in mussel (Mytilus edulis) and
the second example is a time-series of mortality rate in the bird species rock
ptarmigan (Lagopus muta).

8.7.1 Cadmium concentration in mussel

Cadmium concentration in mussel has been monitored around the Icelandic
coastline for two decades. Time-series of 18 observations, from 1991 to 2010,
from Hvalstod at the west coast of Iceland (Sturludottir et al., 2013) was used
to test for a CP.
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Table 8.1: Critical values for time-series of length N = 10 to 100 at ρ = 0.2.

N
Critical
Value

N
Critical
Value

10 20.37 26 15.84
11 19.77 27 15.80
12 19.14 28 15.69
13 18.78 29 15.64
14 18.34 30 15.58
15 17.97 32 15.39
16 17.70 34 15.31
17 17.32 36 15.26
18 17.12 38 15.15
19 16.97 40 15.03
20 16.70 45 14.90
21 16.55 50 14.80
22 16.37 60 14.63
23 16.18 80 14.54
24 16.08 100 14.53
25 15.92

To test if there has been a CP in the time-series, Dmax was calculated and
compared to the critical value from the empirical distribution from time-series
with length N = 18 and ρ = 0.2 (Table 8.1). Using maximum likelihood
and assuming AR(1) covariance structure the CP was estimated to be in the
year 2004 and Dmax = 23.2, which exceeded the critical value of 17.12. The
cadmium concentration was increasing until 2004 when there was a sudden drop
in the concentration and it started to decrease (Figure 8.9). It is not known
what caused this drop in concentration, most likely it was natural fluctuations
as cadmium has shown fluctuations at other locations around the Icelandic
coastline (Sturludottir et al., 2013). This method could be very useful when
monitoring contaminants to detect when a change in concentration has taken
place and to locate a possible source to prevent further contamination. The
error rate using this method can be as high as 10% but in cases like this that
may well be an acceptable rate.
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Figure 8.9: Change in cadmium concentration in mussel from 1991 to 2010.

8.7.2 Mortality rate of the rock ptarmigan

Indexes of population abundance and age ratios of the rock ptarmigan in Iceland
were used to calculate the mortality rate of adult birds as described in Magnús-
son et al. (2005). The mortality rates were calculated for each year from 1982
to 2012.

To test if a CP could be detected the method previously described was
applied. Using maximum likelihood and assuming AR(1) covariance structure
the CP was estimated to be in the year 2002 and Dmax = 13.0 which did
not exceed the critical value of 15.39. If however, autocorrelation was ignored
then Dmax = 14.8 which exceeded the critical value of 12.8 from the empirical
distribution when independence is assumed. It has to be kept in mind that the
type I error rate when autocorrelation is ignored can be as high as 50%. Both
methods revealed a CP in the year 2002. The rock ptarmigan is a popular game
bird in Iceland and in 2003 a hunting ban was enforced because of a decline
in the population, the ban lasted two years and in 2005 the hunting started
again but with different regulations, this included a ban to market hunting and
shortening of the hunting season. The method described above is used when
there is an interest to test if there has been a CP in the time-series and no point
is assumed a priori to be more likely than any other, i.e. the CP is unknown.
In this case we knew something had changed at a particular point in time that
could have caused either a step or trend change. Therefore, we could test if that
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Figure 8.10: Motality rate (Z2) of the adult ptarmigan from 1982 to 2012.

CP was significant. In that case only one point would be chosen and tested for
and in that case the CP is known and the critical value is lower than when an
unknown CP is tested. In this case the critical value would be 8.4 for ρ = 0.2

and the test statistic from the likelihood ratio test was 13.0 which is higher than
the critical value and the CP would be significant (Figure 8.10).

8.8 Conclusion

A new method has been proposed to detect CP in time-series when accounting
for autocorrelation. This study has shown that accounting for autocorrelation
is important in time-series when detecting CP to reduce the error rate which
is high when autocorrelation is ignored, even when the autocorrelation is weak.
It was not possible to test for autocorrelation in the time-series as the power
was very low. Also, the estimate of the autocorrelation was negatively biased
and could not be used to choose the right critical value for the CP test. It is
therefore recommended to use a critical value for a fixed autocorrelation and
a critical value for ρ = 0.2 was chosen to keep the true error rate below 10%
(using a nominal error rate of 5%). The new method was able to detect a CP
in two different time-series while accounting for autocorrelation, one where no
point was assumed more likely a priori, i.e. the CP was unknown, and in the
other where the CP was known. Also, as seen in the case study on ptarmigan
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mortality, the test has more power when only one predefined point in time is
tested for being a CP, i.e. one tests whether a change occurs at the true CP. On
the other hand, testing for a CP at a fixed point in time should only be done
when there is priori evidence that something may have caused a change in the
time-series at a particular point in time.
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Abstract

The rock ptarmigan (Lagopus muta) is found all over Iceland but has the high-
est density in the northeastern part of the island. It is a popular game bird but
the hunting regulation was changed in 2003. The aim of this study was to build
a population reconstruction model for the rock ptarmigan in NE-Iceland, to es-
timate the population size, recruitment, natural survival and hunting mortality.
The total abundance at the beginning of the hunting season was estimated to
have ranged from 38,000 birds in 2002 to 153,000 birds in 1998. The natural sur-
vival of adult rock ptarmigans was assumed to be density dependent, it ranged
from 36% in 1999 and 2011 to 65% in 2003 and 2004. The survival of juveniles
was taken as a constant and was estimated to have been 19%. A changepoint
was included in the model to account for a change in the hunting mortality
that could have occurred with the changes in the hunting regulations. Before
2003 the hunting mortality was modeled as a function of ptarmigan density and
ranged from 32% to 54%. After the hunting ban, the hunting mortality was
modeled as a function of the number of hunters and ranged from 11% to 17%.
This model indicates that changes in the hunting regulation did have an effect
in reducing the hunting mortality and also changing the harvest strategies of
hunters. Still, management goal of reducing the total annual mortality to 37%
has not been achieved and a further change in regulation may be needed.
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9.1 Introduction

The rock ptarmigan (Lagopus muta) is the only grouse (Tetraoninae) that breeds
in Iceland. It is found all over Iceland but has the highest densities in the north-
eastern part of the island. The population has cyclic fluctuations in numbers
with a periodicity of 10-12 years (Gudmundsson, 1960; Nielsen and Petursson,
1995). It is a popular game bird and market hunting was allowed prior to 2003
but that year a hunting ban was enforced after a long-term decline of the pop-
ulation (Brynjarsdóttir et al., 2003). The hunting ban lasted for two years and
in 2005 hunting started again but with shortening of the hunting season and
market hunting was not allowed.

The winter mortality of the rock ptarmigan accounts for the greatest part of
the total annual mortality and is the main demographic factor influencing the
size of the breeding population the following spring (Gardarsson, 1988). The
total mortality of adults increased from 1981 to 2002, it was estimated to be
47% in 1981 but had risen to 62% in 2002 (Magnússon et al., 2005). The winter
mortality of juveniles was observed to be density dependent with a delay of 2-4
years (Magnússon et al., 2005), it was 80% when the population was increasing
and 94-97% when the population was decreasing (Gardarsson, 1988).

The rock ptarmigan is an important prey to a number of predators, including
the gyrfalcon (Falco rusticolus), the raven (Corvus corax), the mink (Mustela
vison) and the arctic fox (Vulpes lagopus). Of those predators only the gyrfalcon
is specialized on ptarmigan and the two species show a coupled predator-prey
cycle in Iceland (Nielsen, 2011). The ptarmigan is especially vulnerable for
predation in spring and in early autumn (Gardarsson, 1988; Nielsen and Cade,
1990).

The management goal for the ptarmigan population in Iceland has been to
keep the total annual mortality at a level that will allow the population to have
natural fluctuations. The sustainable mortality rate was estimated to be 37%
for adults (Magnússon et al., 2005; Nielsen, 2006). Knowledge of abundance,
recruitment rate, survival, harvest mortality, age and sex ratios of populations
can be helpful to wildlife managers to determine how regulations affect the
population and to estimate whether management goals have been achieved.
Different methods have been used to estimate these demographic parameters
(Skalski et al., 2005; Williams et al., 2002). Most of them only estimate one or a
few of these parameters so a different appraoches have to be applied to estimate
all of them. Also, many methods do not provide uncertainty of parameter
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estimation. Population reconstruction models can be used to estimate these
parameters simultaneously using age-at-harvest data and auxiliary data (Broms,
2007; Broms et al., 2010; Gove et al., 2002; Skalski et al., 2005).

The aim of this study was to build a population reconstruction model for
the rock ptarmigan in NE-Iceland, to estimate the population size, recruitment,
natural survival and hunting mortality.

9.2 Methods

9.2.1 The data

The data used in the population model was a spring population index, age ratios
measured in both autumn and spring, the number of hunters and the number of
harvested rock ptarmigans (Table 9.1). Ptarmigans were counted on six plots
in the study area, total size 26.8 km2 (Figure 9.1), and the sum of all cocks
observed on these six plots is the population index (Nielsen, 2011). The age
ratios were determined in spring and in the autumn using the pigmentation
of the primary feathers (Weeden and Watson, 1967). The bird age can only
be determined to be either juvenile (< 1 year) or adult (> 1 year). The age
ratios in spring were derived from ptarmigans found dead during field work
(mostly killed by gyrfalcons), birds trapped for ringing and from birds flushed
and photographed. The age ratios in the autumn were estimated from samples
(wings) that hunters send in after the hunting season. Hunters must buy an
annual hunting card issued by the Environmental Agency of Iceland (EAI) to
have a hunting license. After the hunting season the hunters turn in a report
stating how many ptarmigans were caught, in what part of the country and
since 2005 how many days were spent hunting. The number of hunters that
hunted ptarmigans in NE-Iceland, 21,000 km2 (Figure 9.1), was used and the
number of harvested ptarmigans. The number of hunters was missing for 1998
and 1999 and these values were estimated by regressing the number of hunters
in NE-Iceland on total number of hunters in 2000-2012. The estimated values
for both years were 1,106 hunters.

9.2.2 The population reconstruction model

Gove et al. (2002) and Skalski et al. (2005) suggested using a statistical popula-
tion reconstruction model for modeling populations of game species. Population
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Table 9.1: The data used in the population model for the rock ptarmigan in northeast
Iceland. Number of juveniles aged from harvest (ahi,1), number of adults aged from
harvest (ahi,2), number of juveniles aged in spring (asi,1),number of adults aged in
spring (asi,2), number of harvested rock ptarmigans (hi), number of hunters (fi) and
the density index (Ii) for northeast Iceland from 1998 to 2013.

Yeari ahi,1 ahi,2 asi,1 asi,2 hi fi Ii

1998 859 213 48,269 189
1999 400 109 109 87 48,343 110
2000 345 61 68 69 36,203 1,047 80
2001 320 82 34 9 24,236 968 76
2002 332 99 21 14 20,194 886 54
2003 0 0 59 37 0 0 52
2004 0 0 97 54 0 0 97
2005 911 369 121 79 14,680 963 180
2006 614 155 65 50 11,342 893 140
2007 625 192 93 70 8,407 829 91
2008 817 200 109 53 13,080 1,047 129
2009 1534 464 85 70 21,894 1,337 178
2010 1651 424 178 84 18,482 1,221 190
2011 516 207 148 127 9,858 1,045 103
2012 459 129 143 149 7,581 840 82
2013 159 92

reconstruction is a method that utilizes harvest data, i.e. the number of har-
vested animals, age ratios from the harvest and the hunting effort, which can be
measured as the number of hunters. The precision of the model can be improved
by adding auxiliary data, e.g. data from radio telemetry studies or index data
from count studies. The method was developed for animals where the age could
be determined to years but Broms et al. (2010) adjusted the method of Gove
et al. (2002) and Skalski et al. (2005) for small game species where the age can
only be determined into two classes, juveniles and adults.

The model as defined by Broms et al. (2010) consists of four likelihoods,
three likelihoods of the binomial distribution and one of the normal distribution
(see Model 9.1). The likelihood Lcatch provides an estimate of the probability
of catching a bird using the harvest data, and LAAH provides an estimate of
the probability that a harvested bird is a juvenile using the age ratio from
the harvest. Auxiliary data is used to construct the likelihoods Lradio and
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Figure 9.1: The study area for the rock ptarmigan in NE-Iceland and the 6 census
plots.

Lindex. Lradio provides an estimate of the probability of harvesting a juvenile of
all marked juveniles by using the number of all radiomarked birds (Ri,j) and
the number of marked birds harvested (ri,j), for age group j (j = {1, 2}, 1 =

juvenile, 2 = adult). Lindex includes the relationship between the index and
total abundance. The maximum likelihood of the joint likelihoods gives the
estimates for the demographic parameters of the model.

The likelihoods can contribute differently to the joint likelihood as they in-
clude different data sources and weighting of the likelihoods will make the model
fit the data better. However, Gove et al. (2002) recommend using unweighted
likelihood model for the population reconstruction model.
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Ljoint = Lcatch · LAAH · Lradio · Lindex

Lcatch =

Y∏
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(
Ni
hi

)(
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)hi

(
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)Ni−hi
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year=i=1

1√
2πσ

exp

[
−(Ii − αNi)2

2σ2

]

(9.1)

Ni,2 = Ni−1,1 · (1−Hi−1,1) · S1 +Ni−1,2 · (1−Hi−1,2) · S2 (9.2)

Hi,j = 1− e−cj ·fi (9.3)

With this model it is possible to estimate the abundance of juveniles (Ni,1)

before the hunting season in year i, the abundance of adults before the hunting
season for the first year in the time period (N1,2), natural survival (Sj), from
hunting season to hunting season, for age group j, the hunting vulnerability
coefficient (cj) for age group j, the relationship (α) between the index (I) and
total abundance (N). The number of juveniles is estimated for every year but
the number of adults is estimated for the first year. These estimates along with
the estimates of Sj and cj are used to calculate the number of adults for each
year after the first year (see Equation 9.2). The hunting mortality rate (Hi,j)
is assumed to be a function of the number of hunters (fi) (see Equation 9.3).

There are four variations of this model: 1) juveniles and adults have a com-
mon S and c (1c1s); 2) juveniles and adults have a different S but a common
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c (1c2s); 3) juveniles and adults have a common S but a different c (2c1s); 4)
juveniles and adults have a different S and c (2c2s).

When there are 15 years of data as in our case the number of parameters
that needs to be estimated in the simplest model (1c1s) is 20 and 22 for the
most complex model (2c2s). It can be very difficult to estimate all of those
parameters, especially separate survival and vulnerability parameters for adults
and juveniles.

9.3 Results

The model of Broms et al. (2010) was adjusted to fit the rock ptarmigan in
Iceland. We did not use data from radio telemetry studies as they only existed
for one year, but age ratios had been estimated in spring and a likelihood
using these age ratios was included in the model. Also, variations of how to
model the hunting mortality was proposed along with the possibility of adding
a changepoint (CP) to the model (Sturludottir et al., 2015).

9.3.1 Inclusion of age in spring

A likelihood with the age ratios in spring (Equation 9.4) was added to the
model of Broms et al. (2010). With this addition it becomes easier to estimate
separate survival parameters for adults and juveniles. This likelihood is based
on the binomial distribution and uses the spring age ratios to estimate the
proportion of juveniles in the population during spring and the winter survival
(Sw,j). This proportion can be simplified, so instead of estimating a separate
Sw,j for adults and juveniles one survival parameter Sw,x is sufficient. This
parameter is the excess winter survival of adults, i.e. the survival ratio of adults
and juveniles Sw,x =

Sw,2

Sw,1
.
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LAAS =
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(9.4)

If the hunting vulnerability coefficient is assumed to be equal for juveniles
and adults the likelihood can be simplified further (see Equation 9.5).

LAAS =

Y∏
year=i=1

(
asi+1,1 + asi+1,2

asi+1,1

)(
Ni,1

Ni,1 +Ni,2Sw,x

)asi+1,1

(
1− Ni,1

Ni,1 +Ni,2Sw,x

)asi+1,2

(9.5)

The calculation of Ni,2 has to be simplified accordingly (see Equation 9.6
and 9.7).
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Ni,2 = Ni−1,1 · (1−Hi−1,1) · Sw,1 · Ss +Ni−1,2 · (1−Hi−1,2) · Sw,2 · Ss
= Sw,1 · Ss(Ni−1,1 · (1−Hi−1,1) +Ni−1,2 · (1−Hi−1,2) · Sw,x)

= Sc(Ni−1,1 · (1−Hi−1,1) +Ni−1,2 · (1−Hi−1,2) · Sw,x)

(9.6)

If the hunting mortality is equal for adults and juveniles Equation 9.6 sim-
plifies to Equation 9.7.

Ni,2 = Sc(1−Hi−1)(Ni−1,1 +Ni−1,2 · Sw,x) (9.7)

When we added the spring ratios, we had the survival of juveniles (Sw,1) and
adults (Sw,2) over the winter (from hunting season to spring) and the survival
over the summer (Ss) which is assumed to be equal for adults and juveniles (the
second summer of the juveniles, the first four months in the life of juveniles are
excluded in this approach). Instead of having these three survival parameters
two are sufficient, the excess adult survival (Sw,x) and juvenile survival from
hunting season to hunting season (Sc = Sw,1 · Ss). The adult survival from
hunting season to hunting season can then be calculated as Sw,x · Sc.

9.3.2 Survival and hunting mortality as functions

The hunting mortality can be modeled as a function of the number of hunters
as suggested by Gove et al. (2002) and Broms et al. (2010) (see Equation 9.3),
but it could also be assumed fixed or modeled as a function of the size of the
population or the abundance index, i.e. Hi,j = 1−e(−bj+cjIi). The relationship
between hunting mortality and population size depends on the harvest strategy
(Deroba and Bence, 2008). When the hunting mortality is assumed fixed the
harvest increases when the population increases but when the harvest is assumed
to be constant the hunting mortality is a function of the population and the
hunting mortality decreases with increasing population size.

The natural survival can be assumed fixed and equal for all age groups in
the simplest case but it may be more fitting to model the survival as a function
of density Si,j = e(dj−ej∗Ii) if e.g. the survival is higher when the density is low
and lower when the density is high.
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9.3.3 Changepoint

A CP can occur if there is a change in the management of the population (Sturlu-
dottir et al., 2015), and in particular if the hunting regulations are changed it
may be better to allow the function of the harvest mortality (Hi,j) to change.
The vulnerability coefficients (cj) may not be the same before and after the
change or the function of the harvest mortality might change, e.g. it might be a
function of the population size before the change but a function of the number
of hunters after the change. It may also be appropriate to assume a CP in the
natural survival if there was a point in time when the environmental conditions
for the population changed permanently, i.e. the changes were not attributed
to a random changes which frequently take place in the environment.

9.3.4 The final model

Five variations of the model were used to fit the data (Table 9.2). The maximum
likelihood of the joint likelihoods with equal weights was found using the nlminb
function in the statistical software R (R Development Core Team, 2012). These
models were compared using the AIC. It was not possible to estimate separate
vulnerability coefficient for adults and juveniles and the number of hunters was
scaled with 1/10, 000 to aid in the numerical optimazation. Model (a) with a
common survival parameter for both juveniles and adults was compared with
a model (b) with a CP, where the vulnerability coefficient c was allowed to be
different before and after the hunting ban in 2003. The model (b) with a CP
included fitted the data better. Model (b) was compared to model (c) with a
CP and a separate survival parameter for juveniles and adults. The model (c)
fitted the data better than model (b). In model (d) the survival was assumed
different for juveniles and adults but the excess winter survival of the adults was
assumed to be a function of the density with a one year-lag. This model (d) had
a better fit than model (c) where the survival was assumed to be constant. The
fifth model (e) had the survival parameters as model (d) but the function for the
hunting mortality was assumed to be a function of the density before 2003 but
a function of the number of hunters after 2003. This addition gave a better fit
than model (d) where the hunting mortality was assumed to be a function of the
number of hunters both before and after 2003 but with a different vulnerability
coefficient. The model that fitted the data best of the five models was model
(e) which can be seen in details in Model 9.8 and description of the parameters
in the model are in Table 9.3.
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Table 9.2: Fitted models with number of parameters (pm) and AIC (smaller is better).

Model Description pm AIC

a) Ni,2 = Sc(Ni−1,1 · (1−Hi−1) +Ni−1,2 · (1−Hi−1)) 20 1063
Hi = 1− e−cfi

b)
Ni,2 = Sc(Ni−1,1 · (1−Hi−1) +Ni−1,2 · (1−Hi−1))

21 1043
H(i<2003) = 1− e−cbfi and H(i≥2003) = 1− e−cafi

c)
Ni,2 = Sc(Ni−1,1 · (1−Hi−1) +Ni−1,2 · (1−Hi−1) · S†w,x)

22 730
H(i<2003) = 1− e−cbfi and H(i≥2003) = 1− e−cafi

d)
Ni,2 = Sc(Ni−1,1 · (1−Hi−1) +Ni−1,2 · (1−Hi−1) · S††x,i−1)

23 721
H(i<2003) = 1− e−cbfi and H(i≥2003) = 1− e−cafi

e) Ni,2 = Sc(Ni,1 · (1−Hi−1) +Ni,2 · (1−Hi−1) · Sx,i−1) 24 690
H(i<2003) = 1− e−b+cbIi and H(i≥2003) = 1− e−cafi

†Sw,x = constant, excess winter survival of adults.
††Sx,i = d− e · Ii−1, excess winter survival of adults.
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Ljoint = Lcatch · LAAH · LAAS · Lindex
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(9.8)

The abundance of adult ptarmigans was calculated with Equation 9.9.

Ni,2 =

 (1−Hb,i−1)Sc(Ni−1,1 +Ni−1,2 · Sx,i−1) 1998 ≤ i < 2003

(1−Ha,i−1)Sc(Ni−1,1 +Ni−1,2 · Sx,i−1) 2003 ≤ i ≤ 2012
(9.9)

where Hb,i = 1− e−b+cb·Ii and Ha,i = 1− e−ca·fi and Sx,i = d− e · Ii−1
The model estimates the natural survival and hunting mortality from au-

tumn to autumn which can be used to calculate the total annual mortality
(Mi,j) for juvenile (Equation 9.10) and adult (Equation 9.11) ptarmigans.

Mi,1 =

 1− (1−Hb,i)Sc 1998 ≤ i < 2003

1− (1−Ha,i)Sc 2003 ≤ i ≤ 2012
(9.10)
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Mi,2 =

 1− (1−Hb,i) · Sc · Sx,i 1998 ≤ i < 2003

1− (1−Ha,i) · Sc · Sx,i 2003 ≤ i ≤ 2012
(9.11)

Table 9.3: Description of parameters in the final model for the rock ptarmigan in
NE-Iceland 1998-2012.

Data Description
Ni,1 Abundance of juveniles.
Ni,2 Abundance of adults.
Ni Total abundance Ni,1 +Ni,2.
cb Coefficient in the function for hunting mortality.
b Coefficient in the function for hunting mortality.
ca Vulnerability coefficient.
d Coefficient in the function of excess winter survival of adults.
e Coefficient in the function of excess winter survival of adults.
Sc Survival of juveniles.
α Index to abundance ratio.
σ2 Variance associated with the index abundance ratio.

.

9.3.5 The estimated population size, survival and hunting
mortality

The maximum likelihood estimates of Model 9.8 are presented in Table 9.4
with 95% confidence intervals (CI) which were found using the profile likelihood
method (Stryhn and Christensen, 2003).

The autumn abundance of juvenile and adult rock ptarmigans from 1998 to
2012 can be seen in Figure 9.2. The abundance of juveniles ranged from 31,000
(95% CI 30, 000 − 34, 000) in 2002 to 121,000 (95% CI 107, 000 − 138, 000) in
1998 and the abundance of adults ranged from 6,500 in 2002 to 32,000 in 1998.
The abundance decreased from 1998 to a low in 2002, it increased again in the
hunting ban and reached a peak in 2005. It then decreased again to a low in
2007 and then increased again until it reached another peak in 2009 when it
started decreasing again. The total abundance followed the fluctuations in the
density index but did not reach the peaks of the index in 2005 and 2010 (Figure

114



9.3 Results

Table 9.4: Parameter estimates (see description in Table 9.3) from Model 9.8 with
95% confidence intervals (CI) for rock ptarmigan in NE-Iceland 1998-2012.

Parameter Estimate LCI UCI
N1998,1 121000 107000 138000
N1999,1 82000 78000 94000
N2000,1 57000 55000 64000
N2001,1 38000 36000 42000
N2002,1 31000 30000 34000
N2003,1 58000 43000 79000
N2004,1 96000 73000 127000
N2005,1 90000 72000 111000
N2006,1 71000 57000 87000
N2007,1 58000 47000 72000
N2008,1 80000 66000 99000
N2009,1 109000 89000 133000
N2010,1 95000 78000 116000
N2011,1 51000 41000 62000
N2012,1 55000 45000 68000
N1998,2 32000 28000 37000
cb 0.0029 0.0021 0.0038
b 0.93 0.75 1.11
ca 1.36 1.09 1.70
Sc 0.19 0.18 0.20
d 4.01 3.41 4.65
e 0.011 0.008 0.014
α 0.0013 0.0011 0.0015
σ2 464 220 1100
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Figure 9.2: Estimated autumn abundance of juvenile and adult rock ptarmigan in
NE-Iceland from 1998 to 2012.

9.3).
It was not possible to estimate both the juvenile and adult survival as a

function of density but only either one. It fitted the data better to assume con-
stant survival for the juveniles. The natural survival of adult rock ptarmigans
was assumed to be a function of the density with a one year lag, it ranged from
36% (95% CL 33− 38%) in 1999 and 2011 to 65% (95% CL 60− 70%) in 2003
and 2004. The survival for juveniles was taken as a constant and was estimated
to be 19% (95% CL 18− 20%) (Figure 9.4).

The hunting mortality was assumed to be equal for juvenile and adult rock
ptarmigans (Figure 9.5a). A CP was included in the model to account for a
change in the hunting mortality that could have occurred with the hunting ban
and changes in the hunting regulations. Before the hunting ban in 2003 the
hunting mortality was modeled as a function of density and ranged from 32%
(95% CI 28−35%) in 1998 to 54% (95% CI 49−60%) in 2002. After the hunting
ban, the hunting mortality was modeled as a function of the number of hunters
and ranged from 11% (95% CI 9− 13%) in 2007 to 17% (95% CI 14− 20%) in
2009 when the number of hunters peaked.

The total mortality of the juveniles (Equation 9.10) was higher before the
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Figure 9.3: Estimated total autumn abundance of rock ptarmigan in NE-Iceland
from 1998 to 2012 compared with the spring density index.

hunting ban than after the ban or around 90% and 83%, respectively. The total
mortality of adults (Equation 9.11) was lowest during the hunting ban in 2003
and 2004 when it was 35%. It was higher before the hunting ban than after, or
67% to 81% and 51% to 69%, respectively (Figure 9.5b).

9.4 Discussion

9.4.1 The estimated abundance

The population of rock ptarmigan in Iceland has previously shown 10-12 year
cycles in numbers (Gudmundsson, 1960; Nielsen and Petursson, 1995). The
estimated abundance in this study did not show a 10 year cycle. Instead, there
was a peak in 1998, then in 2005 and again in 2009. Hunting ban was in effect
in 2003 and 2004 which might explain this different pattern. The hunting ban
resulted in greatly reduced mortality rates which probably lead to the peak in
2005. The estimated abundance did follow the density index which also showed
an increase in density after the hunting ban.

The total estimated abundance was around 120,000-150,000 in the peak
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Figure 9.4: Estimated natural survival for juvenile and adult rock ptarmigan in
NE-Iceland from 1998 to 2012.

years and around 40,000 when it was lowest in 2002. The population in NE-
Iceland has not been estimated before but the spring population has been esti-
mated for the whole country. Using the method of Magnússon et al. (2005) the
total spring population in 2005 was estimated as 219,000 birds (Nielsen, 2006).
From this number the total population in autumn 2005 was estimated using a
method described in Nielsen (2006) as 765,000 birds.

The method described in Magnússon et al. (2005) involves estimating the
relationship between the spring abundance and the density index (N = 1/q · I)
along with the natural survival. Using data from 1998-2012 for NE-Iceland
(Table 9.1) gives an estimate of 1/q = 345 and calculated spring population of
62,000 birds in 2005. This would then make a total population in autumn of
216,000 birds, assuming 68.5% annual survival and juvenile age ratio of 76% as
was done in Nielsen (2006). This estimate is twice the estimated population size
using the model from the present study (Figure 9.6a). The confidence limits
are very wide when this method is used. For example, Magnússon et al. (2005)
estimated 1/q = 1207 with 95% confidence interval of 628-15667 which makes
total autumn population for the entire country of 393,000 to 9,816,000 birds.
The method used to estimate q includes highly autocorrelated data and this
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Figure 9.5: Estimated mortality of juvenile and adult rock ptarmigan in NE-Iceland
from 1998 to 2012. a) Estimated hunting mortality (assumed equal for juveniles and
adults) and b) estimated total mortality (see Equations 9.11 and 9.10).

needs to be taken into acccount which widens the intervals. The estimate of q
is also highly variable with respect to the time-period chosen. If the period is
1998-2004 1/q = 256 and for 2003-2012 1/q = 79 which gives a total autumn
population for NE-Iceland in 2005 of 161,000 and 49,000 birds, respectively.

The method of Magnússon et al. (2005) has high uncertainty which has to
be kept in mind if used. The confidence limits obtained from the population
reconstruction model are much narrower, e.g. the 95% confidence interval for
the juvenile abundance in 2005 is 72,000-111,000 birds. However, it is possible
that the confidence intervals from the model are too narrow. Gast et al. (2013)
showed that the confidence intervals of a population reconstruction model only
covered the true abundance in <40% of simulated cases and the estimates were
biased in some cases. The coverage of the confidence intervals improved and
the bias was reduced with addition of auxiliary data such as age ratios from
telemetry study. The model tested in Gast et al. (2013) is not exactly the same
as the model in the present study and further Broms (2007) showed that the
model which the present model is built on had accurate abundance estimates
when hunting mortality was between 20-50%. A separated simulation study is
needed to determine whether the estimates from the present model are unbiased
and if the confidence intervals have 95% coverage.
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9.4.2 The estimated natural survival

The excess natural survival of adults was modeled as a function of density with
a lag of one year. The survival was estimated to be highest one year after the
population was the lowest and lowest one year after the peak in population
number. This is in accordance with theory on density-dependence (Skalski
et al., 2005; Turchin, 1999). Magnússon et al. (2005) calculated excess winter
mortality of juvenile ptarmigan in NE-Iceland and observed a relation between
the mortality of juveniles and density but not for adults. The data they used
were from 1981 to 2004. If the mortality for juveniles and adults is calculated
using the method of Magnússon et al. (2005) for 2005 to 2012, the pattern
changes, the mortality of juveniles no longer follows the density but the adult
mortality seems to be density dependent after 2002. Density dependence has
been observed to be more common for juvenile survival for many animals but
density dependent adult survival has also been observed (Gaillard et al., 1998).

The survival of juveniles was assumed constant as it was not possible to
estimate both the adult and juvenile survival as a function. It is however possible
to estimate the juvenile survival as a function of density and the adult survival
as a constant. This was done in the present study (results not shown) but
it did not improve the model to assume the juvenile survival as a function of
density over a constant. It did however improve the model to model the adult
survival as a function of density. The connection between survival and density
can change in the future and inclusion of a CP can improve the fit of the model
by allowing the function for survival to be different before and after the CP.

9.4.3 The estimated harvest and total mortality

The hunting mortality of juveniles and adults was assumed to be equal but this
may not be the case. If this was the case and the juveniles were for example
more vulnerable for hunting than adults then the proportion of juveniles should
be higher in the harvest than in the population. Age ratios are also recorded in
late summer and they do not support this theory as they are in the same range
as age ratios from the harvest. The age ratios from spring are however different
from both the harvest and late summer where the proportion of juveniles is
much lower indicating higher mortality rates of juveniles than adults over the
winter (Figure 9.7).

Including a CP in the function of the hunting mortality improved the model
and indicates that the hunting ban and the changes in hunting regulations did
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have an effect. The hunting mortality was modeled as a function of density
before 2003, this should be more appropriate than to model it as a function of
hunter numbers that is to say if the hunters show a saturation effect (Van Deelen
and Etter, 2003), i.e. hunters harvest a smaller proportion as the population
increases. Prior to 2003 the hunters had 69 days to hunt and might have used
more time hunting when the population was low to achieve same harvest as
when the population numbers were high. The time spent hunting before 2003
is not known as data on hunting effort was not registered until 2005. After the
hunting ban the hunting mortality was modeled as a function of hunter numbers
as the reduced length of the hunting season limited the ability of the hunters
to compensate for low catch. Also, the ban to market hunting should have
reduced the drive to catch many birds. It might be better to model the harvest
mortality as a function of days spent hunting. This was not done as this data
has only been available since 2005. The data shows that the average number
of the hunting days has been relatively stable 2005-2012 or between three and
four days (Steinar Rafn Beck Baldursson in litt. 6.3.2015).

Before the hunting ban in 2003 and 2004 the hunting season was 69 days
and market hunting was allowed. Hunting was allowed again in 2005 but there
was a ban to market hunting and the hunting season was reduced to 47 days
in 2005 and then to 26 days in 2006. Later, the hunting season was reduced
further, and has been 9-18 days since. This change has led to a decrease in
hunting mortality, still the management goal of keeping the total annual adult
mortality below 37% has not been reached. The total annual mortality of adults
was only below this limit during the hunting ban when it was 35% but after
the hunting began again it has always been above 50%. To achieve this goal
the harvest mortality may not be higher than 3% (2000-3000 birds) when the
natural mortality is the lowest (natural survival the highest) which was one year
after the population was the lowest but the natural mortality was 64% when
the population was the highest which does not support any hunting as it is then
already higher than the set goal of 37%.

The reduced hunting mortality after the hunting ban has not led to an
increase in the population as would have been expected. The adult population
shows an increase in 2004 and 2005 but decreases again when hunting started in
2005 and the peak abundance in 2010 is not higher than in 1998. The density
index does also not show higher peaks after the hunting ban than in 1998.

The harvest mortality was estimated to be as high as 54% in 2002 and was
always higher than the estimated mortality from the previous method (Figure
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9.6b). It was assumed to be a function of density, this may not be correct
though this gave a better fit than to assume it as fixed or a function of hunter
numbers. It is possible that the estimated harvest mortality is biased upwards
and the abundance biased downwards. This needs to be investigated further
with simulations. However, the estimated total mortality, which consists of both
the natural mortality and the hunting mortality, of adults was consistent with
the calculated adult mortality using the method of Magnússon et al. (2005)
as can be seen in Figure 9.6c (note that the calculation of the total annual
mortality by Magnússon et al. (2005) is independent of the estimation of the
abundance discussed in Section 9.4.1). The total annual mortality of juveniles
from autumn to autumn can be calculated using the method of Magnússon et al.
(2005) as the adult mortality plus the excess winter mortality of juveniles. This
calculated mortality is in the same range as the juvenile mortality from Model
9.8 as seen in Figure 9.6d.

9.5 Conclusion

A population reconstruction model for the rock ptarmigan in NE-Iceland has
been developed. The model estimates the juvenile and adult abundance and
separate survival for juveniles and adults, where the adult survival is modeled
as a function of the density with a one year lag. The hunting mortality rate
is assumed to be equal for both juveniles and adults. A CP was included in
the model when hunting regulations were altered and allowed a change in the
function for hunting mortality which improved the model. This indicates that
the regulation did reduce the hunting mortality and also changed the harvest
strategy of hunters. Still, management goal of reducing total mortality to 37%
has not been achieved and a further change in regulation may be needed. This
model can then be used to estimate what effect new regulations have on the
population dynamics of the rock ptarmigan.
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Figure 9.6: Estimation of demographic parameters of rock ptarmigans in NE-Iceland
from 1998 to 2012 from Model 9.8 and using previous method described in Magnússon
et al. (2005) and Nielsen (2006) of a) total abundance b) hunting mortality c) annual
adult mortality and d) annual juvenile mortality.
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Figure 9.7: The proportion of juvenile ptarmigans in the harvest, in late summer
and in spring in NE-Iceland from 1998-2013.
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