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Abstract

In this thesis, I model quantum mechanical systems and investigate their quantum
properties based on mathematical formulations of quantum mechanics. Modeling
of quantum systems such as qubits in quantum information processing is studied.
Transport of correlated electrons through a quantized electronic system such as sin-
gle or double quantum dots embedded in a quantum wire, and double quantum
waveguide is investigated using a non-Markovian quantum master equation formal-
ism. The quantized electronic system is weakly connected to external leads and
strongly coupled to a single photon mode in a cavity. The total system, the cen-
tral electronic system and the leads, is in an external homogeneous magnetic field
perpendicular to the plane of the electron motion in the system. The photons in
the cavity are linearly polarized either parallel (x-polarization) or perpendicular (y-
polarization) to the direction of electron propagation in the central system. The full
electron-electron and electron-photon interactions are taken into account using an
“exact diagonalization” technique in a truncated many-body space.

I observe that a cavity-photon can enhance the electron transport in the single or
double quantum dot system. In the absence of the cavity, a peak (main peak) in
the net charge current is found due to an electron tunneling almost elastically from
the leads to the central system. In the presence of an x-polarized photon field, a
side peak to the main peak is observed. The side peak indicates inelastic electron
tunneling from the leads to the central system in which the electrons absorb photons
in the cavity. The side peak current is very weak in the y-polarized photon field.
This is caused by the anisotropy of the central system. Furthermore, I notice that
the mechanism of electron transport from the leads to the central system in the
main peak is different from what happens for the the side peak and depends on the
photon number initially in the cavity.

In addition, I use cavity-photons to implement a quantum logic gate in a dou-
ble waveguide system which consists of control- and target-waveguide. The two
waveguides are coupled via a coupling element the so called coupling window. The
coupling window (CW) relies on interference of quantum waves causing electron
switching between the waveguides.

In the case of the waveguide system without the photon cavity, oscillation in the net
charge current is found by tuning the length of the CW indicating inter-waveguide
backward and forward scattering. A current peak for a crossover energy display-
ing ’resonant’ energy levels between the waveguides and a current dip for split en-
ergy levels are observed. In the non-interacting waveguide system, electron charge
from input control-waveguide splits ’equally’ between the output of the control-
and target-waveguide at the current peak. The charge splitting feature indicates a
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quantum logic gate action called square-root-of-Not-operation (
√

NOT-operation).
Including electron-electron interaction in the waveguide system, the net charge cur-
rent is suppressed because the Coulomb interaction raises the two-electron states
in the energy spectrum leading to vanishing participation the two-electron states in
the electron transport.

In the presence of an x-polarized photon field, I observe suppression in the net charge
current in both current peak and the current dip. This is due to contribution of the
photon replica states to the electron transport leading to inter-waveguide backward
scattering. We find that I can influence the logic-gate action of the system by
selecting the initial status of the photon field (number of photons and polarization)
and the size of the coupling window.
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Útdráttur

Í þessari ritgerð er lýst flutningi víxlverkandi rafeinda um tvívítt rafeindakerfi af
takmarkaðri stærð. Um er að ræða staka skammtapunkta eða pör þeirra sem komið
er fyrir í stuttum skammtavír. Einnig verður fjallað um kerfi skammtabylgjuleiðara.
Rafeindakerfið er veikttengt ytri leiðslum, en sterklega tengt einum ljóseindahætti í
rafsegulholi. Rafeindakerfið og leiðslurnar eru í ytra einsleitu þverstæðu segulsviði.
Ljóseindasviðið er skautað samsíða (x-stefna) flutningsstefnunni eða þvert á hana (y-
stefna). Innbyrðis víxlverkun rafeindanna og víxlverkun þeirra við ljóseindasviðið er
reiknuð nákvæmlega í stýfðu fjöleinda Fock-rúmi.

Við sjáum að holljóseind getur aukið leiðni rafeinda um skammtapunktakerfið. Án
ljóseindaholsins finnast smughermur milli leiðslanna og rafeindakerfisins sem leiða
til topps í strauminum í gegnum kerfið. Þegar rafeindakerfið er í ljóseindaholi
finnast hliðartoppar við aðaltoppana. Hliðartopparnir eru vegna ófjaðrandi flut-
nings rafeinda um kerfið þar sem ljóseindir koma við sögu. Fyrir y-skautun eru
hliðartoppar mjög veikir. Skautunarmunurinn er vegna þess hve kerfið er fjarri að
vera einsleitt. Mikill munur er á smásæju ferlunum sem liggja að baki aðal- og
hliðartoppunum og upphaflegur ljóseindafjöldi breytir miklu þar um.

Við sýnum einnig að hægt er að nýta holljóseindir til þess að stýra rökaðgerðum
rafeindanna í kerfi tveggja bylgjuleiðara. Þeir eru tengdir saman um svo kallaðan
tengiglugga milli þeirra. Tengiglugginn verkar vegna bylgjuvíxla rafeindanna í leiðu-
runum.

Án ljóseindaholsins finnast sveiflur í rafeindastraumnum í leiðurunum sem breyta
má með lengd tengigluggans. Rafeindir geta skipt um leiðara (akrein) og haldið
áfram eða snúið til baka. Straumtoppur frá öðrum leiðaranum til hins finnst þegar
orkustig þeirra lenda í hermu, en straumdæld þegar orkustigin leyfa ekki samtal
leiðaranna. Án innbyrðisvíxlverkunar rafeindanna er jafnlíklegt að þær skipti um
leiðara eða haldi beint áfram í straumtoppi. Straumurinn getur því hermt eftir
svo kallaðri kvaðratrót af EKKI-aðgerð. Með innbyrðisvíxlverkun þeirra er líklegra
að rafeindirnar haldi beint áfram vegna þess að tveggja rafeindaástöndin sem eru
nauðsynleg til leiðaraskiptanna liggja hærra í orkurófinu.

Fyrir víxlverkandi rafeindakerfið í rafsegulholi með x-skautað ljóseindasvið sést að
bæði straumtoppurinn og dældin fletjast út. Það er vegna þess að ljóseindasviðið
virðist hvetja rafeindirnar til þess að snúa við. Enn fremur komust við að því að við
getum valið rökaðgerð kerfisins með því að still fjölda ljóseinda og skautun þeirra í
upphafi.
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1. Introduction

Theoretical development of quantum mechanical systems is an initiation point for
new technological devices. Particularly, modeling of quantum mechanical systems
and investigation quantum transport are essential in the field of quantum informa-
tion processing [1] and opto-electronic systems in the nanoscale range [2, 3]. Differ-
ent geometrical structures can be realized in a two-dimensional electron gas (2DEG)
such as quantum dots [4], double dots [5], rings [6], quantum point contacts [7] and
double quantum wires [8]. Investigation of quantum properties of nanostructures is
also motivated by the scientific interest in transport characteristics such as electri-
cal [9], spin [10], thermal [11] transport, that are conveniently studied because of
the large Fermi wavelength and mean free path in the 2DEG at low temperature.

A quantized electronic system in a nanoscale range can be coupled to electron reser-
voirs to form an open quantum system. In theory of open quantum systems, environ-
ments are assumed to be bosonic or fermonic. In the electronic circuit, a quantized
system is usually connected to fermonic reservoirs which act as electron sources.
Therefore, electrons and information exchange between the subsystems is enabled.
A number of approaches have been employed to investigate exchange of electrons
or electron transport in an open system, such as Wigner-function formalism [12],
Landauer formalism [13, 14], Green-Keldysh approach [15], Lippmann-Schwinger
equation [8], and master equation approach [16]. To study time-dependent trans-
port in many-electron open systems, the master equation describing time evolution
of the probability of a given physical system is broadly used. The Jarzynski equation
was derived using a master equation formalism to study fluctuation theorems [17],
and dissipative quantum dynamics [18]. Interaction effects can be investigated with
the master equation, the current noise spectrum [19], statistics of electron transfers
through a coupled system [20], and the evolution of the charge in the presence of
Nyquist or Schottky noise [21].

The quantum master equations are commonly classified as Markovian [22–24] or
non-Markovian [25–29]. It has been reported that the Markovian limit neglects co-
herent oscillations in the transient regime, and that the rate at which the steady
state is reached does not agree with the non-Markovian model [30]. The Markov
approximation shows significantly longer time to reach a steady state when the tun-
neling anisotropy is high, thus confirming its applicability only in the long-time limit.
To investigate the transient transport, a non-Markovian density-matrix formalism

1



1. Introduction

should be explicitly considered [31].

In addition to the electron transport in open systems, the interaction of electrons in
nanoscale system with a photon radiation field has opened a new area of research
with the aim to construct optoelectronic devices. In this case one needs to seek
for optical properties of a quantum system [32]. An interesting study of electronic
system coupled to a photon radiation is photon-assisted transport (PAT), which is
highlighted by many scientific research groups [33, 34]. In the PAT the photon ra-
diation is used to enhance electron transport in a quantum structure. The photon
radiation can also be used for switching electrons between coupled systems such
as double quantum dot and double quantum waveguides. The electron-switching
process has been achieved implementing a quantum logic gate action in quantum
bits [35]. In the following the PAT phenomenon in quantum dots and the im-
plementation of quantum logic gate in qubit systems shall be described using a
non-Markovian master equation formalism.

1.1. Photon-assisted electron transport

A crucial development in experimental and theoretical physics is the capability for
studying dynamical processes in open systems. The electron transport through a
quantized electronic structure connected to the electron reservoirs can be controlled
by a plunger-gate voltage. The plunger-gate voltage can shift the energy levels of
a system with respect to other connected subsystems bringing energy levels into
resonance. The electrons perform elastic transport between the quantized systems.
The elastic electron transport phenomena in the composed electronic system have
received attention in recent years due to their potential application in various fields,
such as for implementation of quantum computing [36], nanoelectromechanical sys-
tems [37], photo-detectors [38].

An opto-electronic device provides a different platform of electron transport, namely
photon-assisted transport [39]. In the presence of an external photon radiation
electron transport is drawing interest because the electron-photon interaction plays
an essential role to enhance the electron transport characteristics [40–43]. In the
PAT, the energy levels of an electronic system have to match the photon frequency
of a radiation source for the electron motion to be influenced. For that purpose,
an electrostatic potential produced by a plunger-gate is applied to the electronic
system to shift it’s energy levels in and out of resonance. The plunger-gate is widely
used to control charge current [44–46], thermal current [47], photo-current [48–50]
and spin-dependent current [51] for various quantized systems coupled to photon
radiation [52–56]. A convenient structure for investigating PAT is a quantum dot
(QD) or a double quantum dot (DQD) because of their discrete energy levels and
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1.2. Implementation of quantum logic gate in qubit systems

potential for application in information storage in a quantum state [57], quantum-
bits for quantum computing [58, 59], and quantum information processing in two-
state system [60]. Recent experimental work has studied PAT using the two lowest
energy states contributing to electron tunneling: A ground state resonance, and a
photon-induced excited state resonance. The study shows multiphoton absorption
processes up to the fourth-order participating in the electron tunneling [61].

In the above mentioned examples the photon-assisted transport was induced by a
classical electromagnetic field. It is also interesting to investigate electron transport
through a QD or DQD system influenced by a quantized photon field because in the
quantized field a single photon can be used to obtain a PAT process. In fact there
are potential efforts for implementing fully optoelectronic device by providing single
photon sources. An example of that is a DQD coupled to a photon field in which
the resonant current and resonant tunneling between two QDs assisted by a single
photon are calculated [57, 62]. However, modeling of transient electronic transport
through QD system in a photon cavity is still in its infancy. In this thesis, the
full quantum description of PAT is considered in which both the electronic and the
photon sources are assumed to be quantized. Furthermore, it is shown how a single
photon mode polarized parallel or perpendicular to the direction of the electron
transport through the system influences the electron motion through it.

1.2. Implementation of quantum logic gate in
qubit systems

An electronic waveguide can be used to implement a quantum logic gate in a quan-
tum information processing [63]. A quantum wire can be considered as a waveguide
in which the electron wave is transported in quantized modes without losing phase
coherence. The essential idea is to use parallel quantum waveguides with a coupling-
window placed between them. Tuning the window-coupling allows an electron wave
interference between the waveguides. Therefore, the electrons can switch from one
waveguide to the other through a coupling element [64]. There are some other
suggestions to construct qubit system such as double quantum dots [65], double
waveguides with double coupling windows [66], and superconducting elements [67].
In this thesis, we only focus on double waveguides with a single coupling window to
implement quantum logic gates.

The electron motion characteristics in the double waveguide system determines
possible quantum logic operations; in particular, a square-root-of-NOt-operation
(
√

NOT-operation) is performed if the electron charge splits equally between the
waveguides [68], a NOT-operation is realized if the electron wavefunction switches

3



1. Introduction

from the first waveguide to the second waveguide [69], and the charge might switch
from the first waveguide to the second one and then re-enter the first. The presence
of the magnetic field corresponds to the input of the control bit in the controlled
NOT function [70].

It is possible to control the fraction (probability) of the electron wave transferred
from one waveguide to the other. There are several techniques that have been sug-
gested to switch electron charge providing the qubit operation as is presented in the
following. Electron switching by an electrostatic potential, in this technique the cou-
pling window is formed by a saddle potential that washes out fluctuation resonance
peaks, but reduces the efficiency of the gate-operation to below 100% [35]. Another
method for increasing inter-waveguide transport in a Coulomb blockade regime is
to use a single quantum dot that is embedded close to the coupling window [71],
the quantum dot increases the coupling between the waveguides. Magnetic switch-
ing can be seen as a different technique to transfer an electron wave between two
asymmetric waveguides. Ferry considered an external magnetic field that is applied
to a double waveguide where the magnetic field is used as an external ‘force’ to
switch electron motion between the waveguides [72]. Another suggestion is to vary
the length of the coupling window between the waveguides implementing different
quantum logic gates and increasing the efficiency of the device [73]. Acoustic waves
have been considered for electron switching [74].

In this thesis, we model a double quantum waveguide (DQW) system weakly con-
nected to the leads and strongly coupled to a photon cavity. The double waveguides
are coupled through a coupling window to facilitate inter-waveguide transport. The
importance of the electron-electron interaction on the quantum logic gates is pre-
sented. In addition, the role of photon energy, photon number, and photon polar-
ization in the cavity on the electron transport and implementation of the quantum
logic gate is demonstrated. This cavity-photon-switched electron transport can be
seen as a new technique in quantum information processing and quantum computer.

This thesis is organized as follows. The theoretical basis and the Hamiltonian of the
total system are described in Chapter 2. In Chapter 3 the non-Markovian generalized
master equation formalism is provided. We describe some physical observables that
we calculate in Chapter 4. Finally, Chapter 5 shows the main result of this thesis.
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2. Theoretical basis

In nanoscale systems, wave-behavior of a particle becomes important because the
dimensions of the system are comparable to the wavelength of the particle. In this
case, the Schrödinger equation is the equation of motion for the wavefunction Ψ of
the particle [75]

Ĥ |Ψ, t〉 = i~
∂

∂t
|Ψ, t〉 , (2.1)

with Ĥ being the Hamiltonian of the system which can either depend on, or be
independent of time. In this Thesis, the time-independent Schrödinger equation is
used to explore the static properties of a closed system but the time-dependent one
is needed when the closed system is opened by weakly coupling it to the environment
or electron reservoirs.

2.1. Single-electron states

In this section, the Hamiltonian of the system in a single electron state (SES) basis
is presented. The system consists of a finite quantized electronic system connected
to electron reservoirs and coupled to a photon cavity. The Hamiltonian of the
system, closed electronic system, electron reservoirs, and the photon cavity, shall be
described in the following. Later we resort to a many-body description since the
number of electrons can vary.

2.1.1. Closed system

A quantized system is a “closed system” if it does not interact with it’s environment
or couple to external electron reservoirs. For instance, a 2DEG can be seen as a
closed system before applying to it a bias voltage [76]. The physical properties of
2DEG have been investigated theoretically [77] and experimentally [78]. The time-
independent Schrödinger equation for the Hamiltonian of the central system, as
considered in this thesis, reduces to the energy eigenvalue problem

ĤSE |Ψ〉 = ESE |Ψ〉 , (2.2)

5



2. Theoretical basis

where ESE is the single-electron (SE) energy, ĤSE is the time-independent Hamil-
tonian of the system, and |Ψ〉 is an eigenstate. The electronic system is a two-
dimensional finite system that is hard-wall confined at x = ±Lx/2 in the x-direction,
and parabolically confinement in the y-direction, where Lx is the length of the sys-
tem. The system is put into an external perpendicular magnetic field B = Bẑ defin-
ing a magnetic length l = (h/eB)1/2 = 25.67[B(T)]−1/2 nm. The single-electron
Hamiltonian of the system is

ĤSE =
1

2m∗
(p +

e

c
Aext)

2 +
1

2
m∗Ω2

0y
2 + VG + eVpg + hZ. (2.3)

Herein, m∗ is the effective mass of the electron, p indicates the canonical momentum
operator, Aext = −Byx̂ is the vector potential of the external magnetic field defined
in the Landau gauge with the cyclotron frequency ωc = eB/m∗. The effective
confinement frequency is thus Ω2

w = ω2
c + Ω2

0, where Ω0 is the transverse electron
confinement frequency. In addition, VG stands for the potential that forms the
geometry of the central system, Vpg is the plunger-gate voltage, and hZ the Zeeman
energy ±1

2
g∗µBB indicating the interaction between spin and the external magnetic

field where µB is the Bohr magneton and g∗ is the effective Lande g-factor for
the material. Including the vector potential of the external magnetic field and
performing the square of the first term, the Hamiltonian presented in Eq. (2.3) can
be reformulated as

ĤSE = − ~2

2m∗
∇2
x +

[
− ~2

2m∗
∇2
y +

1

2
m∗Ω2

wy
2

]
+ i~ωcy∇x + VG + eVpg + hZ. (2.4)

Where ∇x = ∂/∂x and ∇y = ∂/∂y. The Schrödinger equation can not be solved an-
alytically using the Hamiltonian shown in Eq. (2.4). So, a numerical diagonalization
is employed to calculate the eigenvalues and eigenfunctions using basis functions.
We know that the problem with the first two terms of the Hamiltonian in Eq. (2.4) is
separable. The first term is the Hamiltonian for an infinite square well and the second
term is the Hamiltonian for a harmonic oscillator. In this case, the boundary con-
ditions for the states confined by the walls is Ψ(−Lx/2, y) = Ψ(Lx/2, y) = 0 and by
the parabolic confinement it is Ψ(x, y → ±∞)→ 0 where the superscript 0 indicates
the basis eigenfunction for only the first two terms of the Hamiltonian. Then one
can get the eigenfunctions for the hard-wall confinement in the x-direction [79, 80]

〈x|ψn〉 = ψn(x) =


√

2
Lx

cos
(
nπx
Lx

)
if n = 1, 3, 5, . . .√

2
Lx

sin
(
nπx
Lx

)
if n = 2, 4, 6, . . .

(2.5)

and the harmonic oscillator in the y-direction

〈y|ψm〉 = ψm(y) =
exp

(
− y2

2a2w

)
√

2m
√
πm!aw

Hm

(
y

aw

)
, (2.6)
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2.1. Single-electron states

with Hm being the Hermite polynomials and aw =
√

~/m∗Ωw. The eigenfunctions
of the first two terms of the Hamiltonian are thus the product of the two above
eigenfunctions Ψn,m(x, y) = ψn(x) ψm(y).

The eigenfunction in Eq. (2.5) and Eq. (2.6) are used to form a basis for the eigen-
states for the total Hamiltonian written in Eq. (2.4)

|n′,m′〉 =
∑
n,m

Cm′,m
n′,n |n,m〉 (2.7)

where Cm′,m
n′,n are complex valued coefficients.

The Hamiltonian of the system presented in Eq. (2.4) is diagonalized using the basis
Eq. (2.7) to find the single-electron energy spectrum ESE and the corresponding
states. The details of the derivation of the matrix elements can be found in appendix
A.

The energy spectrum of the central system as a function of the single-electron
dummy-index quantum number i = (n,m) is plotted in Fig. 2.1 for plunger-gate
voltage Vpg = 0.1 meV (red diamonds) and 0.4 mV (green triangles). The central
system is a quantum dot embedded in the quantum wire. The energy values for

-1

 0

 1

 2

 3

 4

 5
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 7

 0  5  10  15  20  25  30  35  40

E
S

E
 (

m
e
V

)

i

Vpg = 0.1 mV
Vpg = 0.4 mV

Figure 2.1: (Color online) Eigenvalues of the central system (cross dots) versus
the SES quantum number i = (n,m) for plunger-gate voltage Vpg = 0.1 meV
(red diamonds) and 0.4 mV (green triangles). The magnetic field B = 0.1 T,
~Ω0 = 2.0 mV.

Vpg = 0.4 meV are higher than that for the case of Vpg = 0.1 meV because the
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2. Theoretical basis

positive plunger gate voltage raises the energy spectrum. A Gaussian potential is
used to form the embedded quantum dot in which the parameters of VG potential
Eq. (2.3) and Eq. (A.12) are V0 = −3.3 meV and βx = βy = 3.0× 10−3 nm−1.

2.1.2. Electron reservoirs

The closed system described in the previous section is assumed to be connected to
two electron reservoirs or leads with which they exchange electrons. The leads are
considered to be two-dimensional semi-infinite quantum wires. They are parabol-
ically confined in the y direction. The leads are exposed to an external magnetic
field in the z-direction. The Hamiltonian of the leads is

Ĥ l
SE =

1

2m∗
(p +

e

c
Aext)

2 +
1

2
m∗Ω2

l y
2, (2.8)

where l refers to the left (L) or right (R) lead, p is the momentum operator of an
electron, and Aext = −Byx̂ is the vector potential of the external magnetic field
in the Landau gauge. The second term of the Hamiltonian describes the parabolic
confinement in the y-direction in the leads with transverse confinement frequency
Ωl. Eq. (2.8) is thus modified to

Ĥ l
SE = − ~2

2m∗
∇2
x +

[
− ~2

2m∗
∇2
y +

1

2
m∗(Ωl

w)2y2

]
+ i~ωcy∇x, (2.9)

with Ωl
w =

√
Ω2
l + ω2

c being the effective confinement frequency of an electron in
the leads in the y-direction.

The Hamiltonian of the leads is time-independent, therefore, the corresponding
Schrödinger equation is reduced to energy eigenvalue problem

Ĥ l
SE |Φl〉 = El

SE |Φl〉 , (2.10)

herein, |Φl〉 is an eigenstate of the l lead. Again Eq. (2.10) can not be solved
analytically because of the last term of the Hamiltonian shown in Eq. (2.9), so we
use diagonalization technique to calculate the matrix elements of the Hamiltonian.
The eigenfunctions of the first two terms of the Hamiltonian, the hard-wall and the
harmonic oscillator, can be used to form a basis, Φlm,q(x, y) = φlm(x) φlq(y). The
boundary conditions for a semi-infinite quantum wire are

ΦLm,q

(−Lx
2

, y

)
= ΦRm,q

(
Lx
2
, y

)
= 0, (2.11)

and
ΦLm,q(x, y → 0) = ΦRm,q(x, y → 0) = 0, (2.12)

8



2.1. Single-electron states

with q being the wave number describing the electron motion in the x-direction and
m a quantum number of the discrete subband energy levels in the y-direction. One
can directly get

〈x|φlq〉 = φlq(x) =


√

2
π

sin
(
q
(
x+ Lx

2

))
if l = L,√

2
π

sin
(
q
(
x− Lx

2

))
if l = R,

(2.13)

and
〈y|φlm〉 = φlm(y) = ψm(y), (2.14)

where ψm(y) is given by Eq. (2.6). The eigenvalues are

εlm(q) = ~Ωl
w

(
m+ 0.5 +

q2a2
l

2

)
, (2.15)

with al =
√

~/m∗Ωl
w being the effective magnetic length in the leads.

The basis eigenfunctions are employed to form new eigenfunctions for all the terms
of the Hamiltonian presented in Eq. (2.9)

|m′, q′〉 =
∑
m

∫
dq Cm′,m(q′, q) φlq(x) φlm(y)

=
∑
m

∫
dq Cm′,m(q′, q) |m, q〉 , (2.16)

where Cm′,m are complex expansion coefficients.

One can substitute the Hamiltonian presented in Eq. (2.9), and the new eigenfunc-
tions, Eq. (2.16), into the Schrödinger equation, Eq. (2.10), to form an integral
equation in with the matrix elements of the Hamiltonian of the leads

El
SE(m′, q′) Cm′,m′′(q

′, q′′) =
∑
m

∫
dq 〈m′′, q′′| Ĥ l

SE |m, q〉Cm′,m(q′, q). (2.17)

Herein, 〈m′′, q′′| Ĥ l
SE |m, q〉 are the matrix elements of the Hamiltonian andEl

SE(m′, q′)
are the eigenvalues of the l lead. Further derivations of the Eq. (2.17) is presented
in appendix A.2.

The energy spectrum for the leads (El
SE) as a function of the ‘wave number’ q =

(m, q) scaled by a−1
w is shown in Fig. 2.2. The lowest four energy subband are seen

in the spectra.
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Figure 2.2: (Color online) Energy spectrum of the leads (solid red) versus the wave
number q = (q,m). The magnetic field B = 0.1 T, ~Ωl = 1.0 meV.

2.1.3. Contact area

The central system and the leads are connected via a region which is the so called
coupling region or transfer region. The transfer region is described by a time-
dependent Hamiltonian

H l
SE,T(t) =

∑
m

∫
dq χl(t)

[
T lmq,nm |Ψn,m〉 〈Φlm,q|+ (T lmq,nm)∗ |Φlm,q〉 〈Ψn,m|

]
, (2.18)

where χl(t) is a function describing the switching-on

χl(t) = θ(t− t0)

[
1− 2

eγ(t−t0) + 1

]
, (2.19)

with γ being the switching rate of the coupling, t0 the initial time of the coupling
between the central system and the leads. We assume the switching function of the
left and the right leads are equal χL(t) = χR(t) for t > t0. The coupling between
eigenstates of the central system Ψn,m and the leads Φlm,q is described by the transfer
or coupling tensor

T lnm,mq =

∫
drdr′Φlm,q(r

′)∗glnm,mq(r, r
′)Ψn,m(r). (2.20)

The function glnm,mq is a nonlocal ‘overlap’ facilitating the electron motion between
the single-electron states of the central system |n,m〉 and the leads |m, q〉. The
nonlocal overlap function glnm,mq is given by

glnm,mq(r, r
′) = gl0 exp

[
−δlx(x− x′)2 − δly(y − y′)2

]
× exp

(
−|En,m − εlm(q)|/∆E

)
. (2.21)
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2.1. Single-electron states

Herein, gl0 is the strength of the coupling, δlx and δly are constants that control the
extent of the overlap in the x- and y-direction, respectively, and ∆E is a constant
determining an electron ‘affinity’.
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2. Theoretical basis

2.2. Fock-space and many-electron calculations

The states of the single-electron systems are represented by |Ψ〉 lie in a Hilbert space.
In the presence of more than one electron in the system we need different states. In
this case, the states of the system can be represented in a Fock space in which the
state basis in the occupation number representation is denoted as [81]

|µ〉 = |nµ1 , nµ2 , . . . , nµk , . . . , nµ∞〉 , (2.22)

where nµ is either 0 in the case of an empty state or 1 for an occupied state in
a fermonic system. The many-electron (ME) system is formulated in terms of the
so-called second quantization representation in which the fundamental creation and
annihilation operators are used to form the Hamiltonian of the system. The prop-
erties of Fermi creation and annihilation operators are shown in the following [82].
The way a creation operator acts is

d†k |nµ1 , nµ2 , . . . , nµk , . . . , nµNSES
〉 =

{
0 if nµk = 1,

(−1)γk |nµ1 , nµ2 , . . . , 1, . . . , nµNSES
〉 if nµk = 0,

(2.23)
and for the annihilation operator

dk |nµ1 , nµ2 , . . . , nµk , . . . , nµNSES
〉 =

{
(−1)γk |nµ1 , nµ2 , . . . , 0, . . . , nµNSES

〉 if nµk = 1,
0 if nµk = 0,

(2.24)
with γk =

∑k−1
i=1 n

µ
i . The Fock space in Eq. (2.23) and Eq. (2.24) is truncated by

replacing ∞ by a chosen positive integer NSES. This indicates that a finite number
of single-electron states is used to construct the Fock space in the calculations.

The creation and the annihilation operator can be used to define the electron number
operator as N̂k = d†kdk. The number operator acts on a state and gives

d†kdk |nµ1 , nµ2 , . . . , nµk , . . . , nµNSES
〉 = nµk |nµ1 , nµ2 , . . . , nµk , . . . , nµNSES

〉 , (2.25)

where nµk is the number of electrons in the state k.

An operator (Ô) can be represented in terms of creation and annihilation operators
in second quantization using it’s first quantized form Ô

Ô =
∑
i′,i

〈Ψi′| Ô |Ψi〉 d†i′di (2.26)

where |Ψ〉i is an eigenstate of the system.

In the following we shall construct the interacting many-electron Hamiltonian in a
Fock space.
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2.2. Fock-space and many-electron calculations

2.2.1. Central system with Coulomb interaction

In this section we use the second quantization to represent the Hamiltonian of the
central system. Using Eq. (2.26) the Hamiltonian in Eq. (2.4) can be written as

Ĥ0
e =

∑
i,i′

〈Ψi′ | ĤSE |Ψi〉 d†i′di, (2.27)

where i(i′) is a bijection of quantum numbers of n and m (n′ and m′), introduced
in section 2.1, respectively. Performing the matrix elements, we obtain

Ĥ0
e =

∑
i

ESE,i d
†
idi, (2.28)

where ESE is a single-electron energy.

We include the electron-electron Coulomb interaction in the central system. The
electron-electron interaction Hee is a two-electron operator

Ĥee =
1

2

∑
i′,j′,i,j

〈Ψi′Ψj′|V |ΨiΨj〉 d†i′d†j′djdi, (2.29)

with the two-electron matrix elements in a double integral form

〈Ψi′Ψj′ |V |ΨiΨj〉 =

∫
drΨi′(r)

∗ Ij′i(r) Ψj(r), (2.30)

where Ψ(r) is a single-electron wavefunction of the central system, and Ij′i(r) is an
integral with respect to r′

Ij′i(r) =

∫
dr′ Ψj′(r

′)∗V (r− r′)Ψi(r
′)

=

∫
dr′ [Ψj′(r

′)∗ − Ψj′(r)∗]V (r− r′) [Ψi(r
′)− Ψi(r)]

+

∫
dr′ V (r− r′) [Ψj′(r

′)∗Ψi(r) + Ψj′(r)Ψi(r
′)]

−
∫
dr′ Ψj′(r

′)Ψi(r) V (r− r′), (2.31)

with the electron-electron Coulomb potential

V (r− r′) =
e2

2κ

1√
|r− r′|2 + η2

. (2.32)

Herein, κ = 2πε0εr, εr is the relative dielectric constant of the material, and η is
an infinitesimal positive convergence parameter. The constant appearing Eq. (2.32)
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2. Theoretical basis

can be scaled in the energy and length scale, e2/2κ = ~Ωw(aw/a
∗
0), where a∗0 is the

effective Bohr radius. The second and third terms of Eq. (2.31) vanish identically
[83–85], resulting in

Ij′i(r) =

∫
dr′ [Ψj′(r

′)∗ − Ψj′(r)∗]V (r− r′) [Ψi(r
′)− Ψi(r)] . (2.33)

Adding Eq. (2.28) and Eq. (2.29) gives the ME Hamiltonian of the central system

ĤME = Ĥ0
e + Ĥee =

∑
i

ESE,i d
†
idi +

1

2

∑
i′,j′,i.j

Vi′j′;i,j d
†
i′d
†
j′djdi. (2.34)

There are several techniques to approximate the Coulomb interaction shown in Eq.
(2.34), such as the Hartree approximation [86–88], Hartree-Fock [89–92], and Exact-
diagonalization method [93–95]. In this work, the properties of the Coulomb inter-
acting ME Hamiltonian of the isolated central system are derived with the exact
diagonalization method [93]. One can calculate the matrix representation of ĤME

in a many-electron basis {|µ〉} using

〈µ′| ĤME |µ〉 =
∑
i

ESE,i 〈µ′| d†idi |µ〉+
1

2

∑
i′,j′,i.j

Vi′j′;i,j 〈µ′| d†i′d†j′djdi |µ〉 . (2.35)

The Hamiltonian matrix is diagonalized in a truncated Fock-space. Consequently,
the eigenvalues E0

ME,µ and a unitary transformation V are obtained. Then the uni-
tary transformation is used to construct the interacting many-electron states (MESs)

|ν) =
Nmes∑
µ=1

Vνµ |µ〉 . (2.36)

Herein, Nmes is the number of many-electron states which is
(
NSES

Ne

)
with Ne being

the number of electrons, and the parenthesis bracket |ν) denotes the interacting
many-electron state basis while |µ〉 is the non-interacting many-electron state basis.
The matrix elements in the second term of Eq. (2.35) can be calculated using Eq.
(2.23) and Eq. (2.24) [81].

The many-electron energy spectrum versus the many electron state µ is presented
in Fig. 2.3 for non-interacting (0) (blue triangles), and interacting (I) system (red
diamonds). The central system is assumed to be a quantum dot embedded in a
quantum wire with the parameters of Fig. 2.1. It can be clearly seen that the
electron-electron Coulomb repulsion increases the energy value of two-electron states
for µ ≥ 14. The enhancement of the energy influences the electron transport. The
effects of Coulomb interaction on the electron motion in the system will be discussed
in the result section later.
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Figure 2.3: (Color online) Many-electron energy spectrum of the central system
(cross dots) versus the many-electron state µ for non-interacting (0) (blue tri-
angles) and interacting (I) of the system (red diamonds) is plotted. The central
system is assumed to be a quantum dot embedded in a quantum wire. The plunger-
gate voltage is Vpg = 0.4 mV and same parameters as in Fig. 2.1 are used here.

2.2.2. The leads and Coupling Hamiltonian

In this section, we define the Hamiltonian of the leads and the coupling region in
second quantization form. We assume the Fermi creation and annihilation opera-
tors in the leads are c† and c, respectively. The Hamiltonian of the leads is thus
introduced as

Ĥ l
SE =

∑
l=L,R

∑
m

∫
dq 〈Φlm′,q′ |H l

SE |Φlm,q〉 clm′,q′
†
clm,q. (2.37)

Using the matrix elements 〈Φlm′,q′ |H l
SE |Φlm,q〉 calculated in Eq. (2.17) we get the

Hamiltonian of the leads in the form

Ĥ l
SE =

∑
l=L,R

∑
m

∫
dq El

SE(m, q) clm,q
†
clm,q. (2.38)

The electron-electron Coulomb repulsion is neglected in the leads.

The central system and the leads are connected via a coupling area which allows
electron tunneling between the systems. The electron motion between the central
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2. Theoretical basis

system and the leads is described by the transfer Hamiltonian presented Eq. (2.18).
Using the quantum number q which refers to the wave number q and the sub-
band quantum number m of the leads, one can express the time dependent transfer
Hamiltonian in the second quantization

Ĥ l
SE,T(t) =

∑
l=L,R

χl(t)
∑
i

∫
dq
[
clq
†
T lqidi + d†i (T

l
iq)∗clq

]
. (2.39)

The quantum number i represents n and m, the quantum numbers in the central
system. Here, the electrons are allowed to tunnel from the central system to the
leads as stated in the first part of the Hamiltonian in Eq. (2.39), or an electron
tunnels from a lead to the central system as is described by the second part.

To introduce Eq. (2.39) in a MES basis, we use the completeness of MESs∑
µ

|µ〉〈µ′| = 1 (2.40)

to convert H l
SE,T(t) from a SES to a MES basis. Then the transfer Hamiltonian in

the MES basis can be written as

H l
ME,T(t) = χl(t)

∫
dq
(
T l(q)clq + clq

†
(T l(q))†

)
, (2.41)

with T l(q) being the many-electron coupling matrix in the non-interacting electron
basis

T l(q) =
∑
µ′,ν

T lµ′,ν(q) |ν〉 〈µ′| , (2.42)

where T lµν(q) is defined in terms of the single-electron coupling matrix T lnq as
T lµν(q) =

∑
n

∑
µ,ν′ T

l
nq |µ〉 d†n 〈ν ′|.
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2.3. Cavity photons and the many-body Hamiltonian

2.3. Cavity photons and the many-body
Hamiltonian

In this section, we consider the central electronic system coupled to a cavity electro-
magnetic field with a single photon mode. The photons in the cavity are quantized
and polarized in either parallel or perpendicular to the electron motion in the central
system. We assume the cavity photon field is in a large but finite rectangular cavity
with boundaries at −ac/2 < x, y < ac/2 and −dc < z < dc. Figure 2.4 shows a
schematic representation of the electronic central system (dark blue) coupled to the
photon cavity (light blue) in an external magnetic field B.

y

x

Photon cavity

z BB

Photon

Figure 2.4: (Color online) Schematic of an electron system (dark blue) coupled to a
photon cavity (light blue) in an external magnetic field B.

The photon cavity couples the electronic system via the vector potential. The vector
potential of the quantized electromagnetic field is [96]

Aph = Aph ×
(
êx
êy

)
(a+ a†)

(
cos(2πx

ac
)

cos(2πy
ac

)

)
cos

(
2πz

dc

)
, (2.43)

in the Coulomb gauge where Aph is the amplitude of the vector potential, a† (a) are
Bosonic creation and annihilation operator respectively, and êx,y are the Cartesian
unit vectors. We assume that the vector potential does not change considerably over
the size of the electronic system. We consider the electron-photon coupling strength
to be gph = eAphΩwaw, so one can write the vector potential as

Aph =
gph

eΩwaw
× ê (a+ a†), (2.44)

where ê = (êx, êy). The Many-Body (MB) Hamiltonian of the central system coupled
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to the cavity photon including the vector potential of the photon field is

ĤMB =
∑
ij

〈Ψi|
( 1

2m∗

[
p +

e

c
Aext +

e

c
Aph

]2

+
1

2
m∗Ω2

0y
2 + VG + eVpg + hZ

)
|Ψj〉 d†idj

+ Ĥee + Ĥph. (2.45)

Two terms in the MB Hamiltonian describing the cavity photons are Aph and Ĥph,
where

Ĥph = ~ωph a
†a (2.46)

is the free Hamiltonian of a single-photon mode with the energy ~ωph. In the first
part of the Hamiltonian shown in Eq. (2.45)

Ĥe-ph =
∑
ij

〈Ψi|
1

2m∗

[
p +

e

c
Aext +

e

c
Aph

]2

|Ψj〉 d†idj (2.47)

We write πe := p +
e

c
Aext and obtain

Ĥe-ph =
∑
i,j

〈Ψi|
π2

e

2m∗
|Ψj〉 d†idj +

∑
i,j

〈Ψi|
e

2m∗
(πe.Aph + Aph.πe) |Ψj〉 d†idj

+
∑
i,j

e2

2m∗
〈Ψi|A2

ph |Ψj〉 d†idj, (2.48)

We previously obtained the first term of the Hamiltonian in Eq. (2.28). The second
and the third term of the Hamiltonian in Eq. (2.48) represent the paramagnetic
and diamagnetic electron-photon interactions, respectively. Below, we shall further
describe both the paramagnetic and the diamagnetic terms of the Hamiltonian.

Paramagnetic term

The photon cavity partially influences the electron motion through the paramagnetic
term of the Hamiltonian. In the Coulomb gauge ∇.Aph = 0, so

πe.Aph = Aph.πe. (2.49)

Using Eq. (2.49), the paramagnetic term of the Hamiltonian presented in Eq. (2.48)
is modified to

ĤP =
∑
i,j

〈Ψi|
e

m∗
Aph.πe |Ψj〉 d†idj. (2.50)

Substituting the photon vector potential shown in Eq. (2.44) into the Eq. (2.50) we
get

ĤP = (a+ a†)
∑
i,j

gi,j × d†idj (2.51)
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2.3. Cavity photons and the many-body Hamiltonian

where gi,j is the dipole coupling between the electron system and the photon cavity
mode defined as

gi,j =
aw gph

~

∫
dr Ψ ∗i (r) (ê.π) Ψj(r) (2.52)

with gph being the electron-photon coupling strength.

Diamagnetic term

The diamagnetic interaction is the third term of the Hamiltonian Eq. (2.48)

ĤD =
e2

2m∗
A2

EM

∑
i,j

〈Ψi|Ψj〉d†idj. (2.53)

Using the completeness relation
∑

i 〈Ψi|Ψi〉 = 1 and defining the electron number
operator Ne =

∑
i d
†
idi, one can get

ĤD =
g2

ph

~Ωw

Ne ×
(

(a†a+
1

2
) +

1

2
(a†a† + aa)

)
. (2.54)

Substituting Eq. (2.28), Eq. (2.51), and Eq. (2.54) into Eq. (2.48) modifies the
Hamiltonian describing electron-photon coupling into

Ĥe-ph =
∑
i

ESE,i d
†
idi +

∑
i,j

gi,j(a+ a†)d†idj

+
ε2
ph

~Ωw

Ne ×
(

(a†a+
1

2
) +

1

2
(a†a† + aa)

)
. (2.55)

The MB Hamiltonian presented in Eq. (2.45) for the central electron-photon system
thus becomes

ĤMB =
∑
i

ESE,i d
†
idi +

∑
i,j

gi,j(a+ a†)d†idj +
ε2
ph

~Ωw

Ne ×
(

(a†a+
1

2
) +

1

2
(a†a† + aa)

)
+ Ĥee + ~ωph a

†a. (2.56)

Computational Implementation

We need to construct a MB basis from the many-electron basis of the interacting
electrons {|µ)} and the photon number basis {|M〉}. A straight forward MB basis
is the tensor product of the many-electron and the photon bases

{|µ̆〉} ≡ {|µ)⊗ |M〉}. (2.57)

19



2. Theoretical basis

where |µ) are the eigenstates of the central electronic system and |M〉 are the eigen-
states of the single cavity photon mode.

Using the MB basis Eq. (2.57) and the the MB Hamiltonian Eq. (2.56), the matrix
elements of the MB Hamiltonian including the photon field and electron-photon
interaction are

〈µ̆′| ĤMB |µ̆〉 =
∑
i

ESE,i 〈µ̆′| d†idi |µ̆〉+
∑
i,j

〈µ̆′| gi,j(a+ a†)d†idj |µ̆〉

+
ε2
ph

~Ωw

∑
i,j

〈µ̆′|Ne ×
(

(a†a+
1

2
) +

1

2
(a†a† + aa)

)
|µ̆〉

+ 〈µ̆′| Ĥee |µ̆〉+ ~ωph 〈µ̆′| a†a |µ̆〉 . (2.58)

The first term of the matrix elements represented in Eq. (2.58) yields∑
i

ESE,i 〈µ′;M ′| d†idi |µ;M〉 =
∑
i

ESE,i N
e
i δµµ′δMM ′ = E0

µδµµ′δMM ′ (2.59)

where E0
µ is the many-body energy of the Coulomb interacting electrons in the purely

electronic state |µ), and N e
i is the electron number.

The second term of Eq. (2.58) is the matrix elements of the paramagnetic Hamilto-
nian that describes the electron-photon interaction. This can be evaluated as

〈µ̆′| ĤP |µ̆〉 =
∑
i,j

〈µ̆′| gi,j(a+ a†)d†idj |µ̆〉

=
∑
i,j

gi,j × (µ′|d†idj|µ)× 〈M ′|(a+ a†)|M〉, (2.60)

with
(µ′|d†idj|µ) = 〈µ′| V†d†idjV |µ〉 , (2.61)

and
〈M ′|(a+ a†)|M〉 =

(√
NphδM ′,M−1 +

√
Nph + 1δM ′,M+1

)
. (2.62)

V is the unitary transformation which is obtained from the exact diagonalization of
the ME Hamiltonian.
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2.3. Cavity photons and the many-body Hamiltonian

The matrix elements of the diamagnetic term Eq. (2.58) are

〈µ̆′| ĤD |µ̆〉 =
ε2
ph

~Ωw

〈µ̆′|Ne ×
(

(a†a+
1

2
) +

1

2
(a†a† + aa)

)
|µ̆〉

=
ε2
ph

~Ωw

× (µ′|N e|µ)× 〈M ′|
(

(a†a+
1

2
) +

1

2
(a†a† + aa)

)
|M〉

=
ε2
ph

~Ωw

N e
µδµ′µ

(√
Nph +

1

2
× δM ′,M +

1

2

√
Nph(Nph − 1)× δM ′,M−2

+
1

2

√
(Nph + 1)(Nph + 2)× δM ′,M+2

)
.

(2.63)

where Nph is the photon number.

The last term of Eq. (2.58) indicates the matrix elements of the free photon Hamil-
tonian

~ωph〈M ′|a†a|M〉δµ′µ = Nph~ωph δµ′µδM ′M . (2.64)

Herein, Nph is the photon number operator and ~ωph is the single photon energy.

Finally, we diagonalize the total MB Hamiltonian obtaining the many-body energies
Ĕν̆ and the corresponding eigenstates |ν̆) which are related to |µ̆〉 by a unitary
transformation

|ν̆) =
∑
µ̆

Wν̆µ̆ |µ̆〉 . (2.65)

with W the unitary transformation.
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3. Non-Markovian approach to a
generalized quantum master
equation

Electrons in an active area of a nanoscale system connected to electron reservoirs
constitute a many-body open quantum system. There are several formalisms used to
describe electron motion in an open system, such as Markovian and non-Markovian
master equations in which a density matrix is used to describe the state of the system.
In the following, we shall focus on a non-Markovian master equation approach to
model the transport of electrons through an electronic quantum system coupled to
a photon cavity.

3.1. Liouville-von Neumann equation

Electron motion in a closed system satisfies Liouville-von Neumann equation which
describes how a density operator evolves in time where the density operator is defined
as a superposition of pure states [97, 98]

ρ̂S =
∑
i

pi |Ψi〉 〈Ψi| , (3.1)

with pi being the weight of the probability of the i state. The density matrix for a
close system evolves unitarily in time

ρ̂S(t) =
∑
i

piUt |Ψi〉 〈Ψi|U †t = Utρ̂SU
†
t , (3.2)

where Ut = e−itĤS/~ is the time evolution operator and ĤS is Hamiltonian of the sys-
tem. Consequently, the Liouville-von Neumann equation in the Schrödinger picture
is

∂

∂t
ρ̂S(t) = − i

~
[HS, ρ̂S(t)]. (3.3)

Herein, the Hamiltonian of the system ĤS is assumed to be time-independent.
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3. Non-Markovian approach to a generalized quantum master equation

3.2. Nakajima-Zwanzig Formalism

We consider the system interacting with its environment, exchanging electrons. So,
we need to modify the density operator mentioned in Eq. (3.3). There are several
methods for defining the density operator and its time evolution for a composite sys-
tem, we introduce the Nakajima-Zwanzig approach [99, 100]. This method provides
a systematic theoretical approach to non-Markovian and Markovian dynamics. The
Liouville-von Neumann equation in this approach is written as

∂

∂t
ρ̂(t) ≡ 1

~
L(t)ρ̂(t), (3.4)

where L is the Liouville operator satisfying L(t)ρ̂(t) ≡ −i[Ĥ(t), ρ̂(t)], and ρ̂(t) is the
total density operator of the composite system.

Before the coupling of the central system to the leads, the initial density matrix of
the system is assumed uncorrelated

ρ̂(t0) = ρ̂S(t0)⊗ ρ̂l(t0), (3.5)

where ρ̂l is the density operator of the leads

ρl =
e−β(Hl−µlNl)

Trl{e−β(Hl−µlNl)} . (3.6)

Herein, β = 1/(kBT ) where kB is the Boltzmann constant and T is the temperature
of the leads, Nl is the number of electrons in lead l, and µl is the chemical potential
in lead l. In addition, the Liouville operator L before the coupling is

L(t) = LS + Ll + LT(t) (3.7)

where S, l and T stand for the sample (central system), lead and transfer region,
respectively.

In the Nakajima-Zwanzig approach the density matrix of the leads generates a pro-
jection operator P and a complementary projection operator Q = 1 − P . The
projection operator is

P = Trl ⊗ ρ̂l. (3.8)

The projection operator acts on the operators of the state space of the total system in
which P ρ̂(t) gives the relevant part of the total density matrix and Qρ̂(t) projects
out the irrelevant part. One can write the total density matrix in terms of the
projection and complementary projection operators in the following form

ρ̂(t) = P ρ̂(t) +Qρ̂(t). (3.9)
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3.2. Nakajima-Zwanzig Formalism

We substitute Eq. (3.9) into Eq. (3.4) and multiply the first equation by projection
the operator P and the second one by the complementary operator Q to get two
coupled equations of motion for the projection and the complementary operator

~
∂

∂t
P ρ̂(t) = PL(t)P ρ̂(t) + PL(t)Qρ̂(t), (3.10)

~
∂

∂t
Qρ̂(t) = QL(t)P ρ̂(t) +QL(t)Qρ̂(t). (3.11)

We assume the central system is weakly connected to the leads. In addition, the
properties of the projection operator presented in appendix D.1 are used to modify
the Eq. (3.10) and Eq. (3.11) to

~
∂

∂t
P ρ̂(t) = LSP ρ̂(t) + PLT(t)Qρ̂(t), (3.12)

~
∂

∂t
Qρ̂(t) = LT(t)P ρ̂(t) + L0Qρ̂(t), (3.13)

where L0 = LS + Ll.

Including the weak coupling condition Qρ̂(0) = 0, the solution of Eq. (3.13) for
Qρ̂(t) is [97, 101]

Qρ̂(t) =
1

~

∫ t

t0

dt′Û0(t− t′)LTP ρ̂(t)Û †0(t− t′). (3.14)

Herein, the evolution operator is Û0(t− t′) = e−
i
~ Ĥ0(t−t′) with Ĥ0 = ĤS + Ĥl where

ĤS is the Hamiltonian of the central system and Ĥl is the Hamiltonian of the leads.
Substituting Eq. (3.14) into Eq. (3.12) we obtain the Nakajima-Zwanzig equation

∂

∂t
P ρ̂(t) =

1

~
LSP ρ̂(t) +

1

~2
PLT

{∫ t

t0

dt′ Û0(t− t′) LTP ρ̂(t) Û †0(t− t′)
}
, (3.15)

where we have kept terms in the system lead coupling up to second order in the
integral kernel. Due to the structure of the integro-differential equation specific
terms of all higher order are present in the solution.

Now, we are interested in the relevant part of the density operator ρ̂(t). Taking
the trace over the Fock space of the leads of the full density operator, the reduced
density operator (RDO) is obtained

ρ̂S(t) = Trl(P ρ̂(t)). (3.16)

The density operator ρ̂S(t) in Eq. (3.16) describes the evolution in the central system
under the influence of the leads. Using Trl ρl = 1, P = ρ̂lTrl and Eq. (3.16) in Eq.
(3.15), the equation of motion for the reduced density operator can be written as

˙̂ρS(t) =
1

~
LSρ̂S(t) +

1

~2
Trl

{
LT

∫ t

t0

dt′ Û0(t− t′) LTρ̂lρ̂S(t′) Û †0(t− t′)
}
. (3.17)
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3. Non-Markovian approach to a generalized quantum master equation

Using the definition of a Liouvillian super operator for the transfer Hamiltonian

LTρ̂lρ̂(t′) = −i
[
H l

T(t′), ρ̂lρ̂(t′)
]

(3.18)

we modify the equation of motion Eq. (3.17) for the reduced density operator

˙̂ρS(t) = − i
~

[
ĤS, ρ̂S(t)

]
− 1

~2
Trl

{[
Ĥ l

T(t),

∫ t

t0

dt′Û0(t− t′)
[
Ĥ l

T(t′), ρ̂lρ̂S(t′)
]
Û †0(t− t′)

]}
. (3.19)

To end the derivation of the Nakajima-Zwanzig equation, we compactify the nota-
tion [102]

˙̂ρS(t) = − i
~

[ĤS, ρ̂S(t)] +

∫ t

t0

dt′K(t, t′)ρ̂S(t′), (3.20)

where K(t, t′) is the kernel [102] in the integro-differential equation of motion for the
RDO.

K(t, t′)ρ̂S(t′) = − 1

~2
Trl

{[
Ĥ l

T(t), Û0(t− t′)
[
Ĥ l

T(t′), ρ̂lρ̂S(t′)
]
Û †0(t− t′)

]}
.

(3.21)

We rewrite the general master equation from the Nakajima-Zwanzig equation explic-
itly performing the commutation relation in the integration kernel term and taking
the trace with respect to the states of the leads, then∫ t

t0

dt′K(t, t′)ρ̂S(t′) = − 1

~2
Trl

∫ t

t0

dt′

×
(
Ĥ l

T(t)Û0(t− t′)Ĥ l
T(t′)Û †0(t− t′)Û0(t− t′)ρ̂S(t′)Û †0(t− t′)ρ̂l

− Ĥ l
T(t)Û0(t− t′)ρ̂S(t′)Û †0(t− t′)ρ̂lÛ0(t− t′)Ĥ l

T(t′)Û †0(t− t′)
− Û0(t− t′)Ĥ l

T(t′)Û †0(t− t′)Û0(t− t′)ρ̂S(t′)Û †0(t− t′)ρ̂lĤ l
T(t)

+ Û0(t− t′)ρ̂S(t′)Û †0(t− t′)ρ̂lÛ0(t− t′)Ĥ l
T(t′)Û †0(t− t′)Ĥ l

T(t)
)
.

(3.22)

The transfer Hamiltonian shown in Eq. (2.41) is put in Eq. (3.22). For the sake of
consistency, we use the notation Ĥ l

T(t) instead of ĤME,T(t), and use Eq. (2.41) in
the form

Ĥ l
T(t) = χl(t)

∫
dq
(
T l(q)clq + clq

†
(T l(q))†

)
, (3.23)
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3.2. Nakajima-Zwanzig Formalism

to explicitly write the integral of the kernel as∫ t

t0

dt′K(t, t′)ρS(t′) = −χ
l(t)

~2

∫ t

t0

dt′χl(t′)

∫
dq

×
[{
T l(q′)ÛS(t− t′)

(
(T l(q′))†ρS(t′)

[
1− f(El

SE(q))
]

− ρS(t′)(T l(q′))†f(El
SE(q))

)
× Û †S(t− t′) e

(
−i(t−t′)El

SE(q)
)}

−
{
ÛS(t− t′)

(
(T l(q′))†ρ̆S(t′)

[
1− f(El

SE(q))
]

− ρS(t′)(T l(q′))†f(El
SE(q))

)
Û †S(t− t′)× T l(q)e

(
−i(t−t′)El

SE(q)
)}

+
{
ÛS(t− t′)

(
ρS(t′)T l(q)

[
1− f(El

SE(q))
]

− T l(q)ρS(t′)f(El
SE(q))

)
Û †S(t− t′)× (T l(q))†e

(
i(t−t′)El

SE(q)
)}

−
{

(T l(q))†ÛS(t− t′)
(
ρS(t′)T l(q)

[
1− f(El

SE(q))
]

− T l(q)ρS(t′)f(El
SE(q))

)
× Û †S(t− t′)e

(
i(t−t′)El

SE(q)
)}]

, (3.24)

where f(El
SE(q)) is the Fermi function of lead l. Further details are provided in

appendix D.2 on how we obtain Eq. (3.24) from Eq. (3.22). In addition, ÛS(t − t′)
is the evolution operator of the central system

ÛS(t− t′) = e−
i
~ ĤS(t−t′) = e−

i
~ ĤSt × e i

~ ĤSt
′
. (3.25)

We now introduce

Ωl(q) := e−
i
~ ĤSt

∫ t

t0

dt′ χl(t′)× e i
~ ĤSt

′
(

(T l(q′))†ρS(t′)
[
1− f(El

SE(q))
]

− ρS(t′)(T l(q′))†f(El
SE(q))

)
e−

i
~ ĤSt

′ × e i
~ ĤSte

(
−i(t−t′)El

SE(q)
)
, (3.26)

to rewrite Eq. (3.24) into∫ t

t0

dt′K(t, t′)ρS(t′) = −χ
l(t)

~2

∫
dq×

{(
T l(q)Ωl(q)− Ωl(q)T l(q)

)
+
(

(Ωl(q))†(T l(q))† − (Ωl(q))†(T l(q))†
)}

. (3.27)

Using the commutation relation between T l(q) and Ωl(q)[
T l(q),Ωl(q)

]
= T l(q)Ωl(q)− Ωl(q)T l(q) (3.28)
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3. Non-Markovian approach to a generalized quantum master equation

the integration kernel of Eq. (3.27) becomes∫ t

t0

dt′K(t, t′)ρ̆S(t′) = −χ
l(t)

~2

∫
dq×

([
T l(q),Ωl(q)

]
+
[
T l(q),Ωl(q)

]†)
. (3.29)

In an analogous way, the equation of motion for the reduced density operator by
substituting Eq. (3.29) into Eq. (3.20) becomes

ρ̇S(t) = − i
~

[
ĤS, ρS(t)

]
− 1

~2

∑
l=L,R

χl(t)

∫
dq

([
T l(q),Ωl(q)

]
+
[
T l(q),Ωl(q)

]†)
.

(3.30)
The Eq. (3.30) is the non-Markovian quantum master equation of the reduced den-
sity operator. It is here in a form that is directly appropriate for numerical calcula-
tions.
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4. Calculation of Physical
observables

The properties of the system can be determined by mean values of physical operators.
In this section, we construct physical observables, or “measurables”. The expectation
or mean value of a physical operator (Ô) can be written as

〈Ô〉 = Tr(ρ̂Ô), (4.1)

where ρ̂ is the total density matrix of the system. We are interested in a calculation
of the mean value of the observables of the central system. The reduced density
matrix

ρ̂S = Trl(ρ̂) (4.2)

can be used to rewrite the expectation value as

〈Ô〉 = TrS(ρ̂SÔ). (4.3)

In the following we shall show how some physical observables of interest will be
calculated for our system.

4.1. Electron and photon number operator

We introduce the electron and the photon number operators and their expectation
values to get insight into the nature of the MB states of the central system.

Electron number operator

The electron number operator counts the number of electrons in the system. The
number operator is defined as N̂e =

∑
i d
†
idi, and it’s expectation value is

〈N̂e〉 = Tr(ρ̆SN̂e) =
∑
i

∑
µ̆

(µ̆|d†idiρS|µ̆). (4.4)
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4. Physical observables

Using the completeness relation
∑

µ̆′ |µ̆′)(µ̆′| = 1 we obtain

〈N̂e〉 =
∑
i

∑
µ̆′µ̆

(µ̆′|d†idi|µ̆)ρ̆S;µ̆′µ̆. (4.5)

Photon number operator

The photon number operator is N̂ph = a†a for a state in a single photon mode. The
expectation value of the photon number is given by

〈N̂ph〉 =
∑
i

∑
µ̆

(µ̆|a†aρS|µ̆)

=
∑
µ̆′µ̆

(µ̆′|a†a|µ̆)ρ̂S;µ̆′µ̆. (4.6)

4.2. Charge density

To investigate the electron motion in the central system, we calculate the time-
dependent electron charge density Q̂(r, t), where the charge density operator is

Q̂(r) = e
∑
i,j

Ψ ∗i (r)Ψj(r)d
†
idj, (4.7)

and the expectation value of the time-dependent charge density is thus

Q(r, t) = Tr
[
Q̂(r)ρS(t)

]
= e

∑
i,j

Ψ ∗i (r)Ψj(r)
∑
µ̆′µ̆

(µ̆′|d†idj|µ̆)ρ̆S;µ̆′µ̆(t). (4.8)

4.3. Charge current density

We are also interested in a calculation of the charge current density in the central
system. The mean value of the charge current density operator is defined by

J(r, t) = Tr
(
ρS(t)Ĵ(r)

)
, (4.9)

30



4.4. Net charge current

where the charge current density operator is

Ĵ(r) =
∑
ij

(
e~

2m∗i

[
Ψ ∗i (r)(∇Ψj(r))− (∇Ψ ∗i (r))Ψj(r)

]
+

e2

m∗

[
Aext + Aph

]
Ψ ∗i (r)Ψj(r)

)
d†idj. (4.10)

More information regarding to the charge current density is provided in appendix
C.

4.4. Net charge current

Finally, we seek to investigate the characteristics of electron transport from the leads
to the central system and vice versa. We define the left and right partial current
describing the current from the left lead and the right lead into the central system,
respectively, as

Il(t) = λ
e

~2
χl(t)×

∑
µ̆

∫
dq
(
µ̆|
{ [
T l(q),Ωl(q)

]
+
[
T l(q),Ωl(q)

]† }|µ̆), (4.11)

where λ is a positive sign for the left current and a negative sign for the right current.
The net charge current is thus expressed as

IQ = IL + IR. (4.12)

with IL being the left current and IR the right current.1

1 We have used Eq. (4.12) to define the net charge current for investigation of PAT phenomena.
But the net charge current is defined as IQ = IL − IR to implement quantum logic gate in the
waveguide system.

31





5. Results and Conclusions

In this section, we summarize our results on the characteristics of the electron trans-
port through a quantized system made of a GaAs material with the effective mass
m∗ = 0.067me, and with the relative dielectric constant κ = 12.4. The system is
placed in a static or vanishing perpendicular external magnetic field. The length
scale associated with the magnetic field and the transverse confinement, the effective
magnetic length is aw =

(
~/[m∗

√
(ω2

c + Ω2
0)]
)1/2, where ωc = eB/m∗ is the cyclotron

frequency, and Ω0 is the transverse confinement frequency. For convenience we give
the following formula for numerical values of the effective magnetic

aw =

(
~

m∗Ω0

)1/2(
1

1 + (eB/(m∗Ω0))2

)1/4

=
33.74

4
√

1 + 2.982[B(T)]2
nm. (5.1)

The external magnetic field influences the magnetic length such that increasing
magnetic field leads to decreasing effective magnetic length.

In order to provide coherent electron transport in our system, the length of the
central system is assumed to be ∼ 150 − 300 nm and the temperature of the leads
is ∼ 0.01 − 0.5 K. As we know the phase coherence length Lφ of GaAs material is
around ∼ (30− 40)× 102 nm at low temperature T ∼ 0.1− 2.0 K [13]. Therefore,
the coherence length is much larger than the length of the central system in our
model.

The central system is connected to lead l with the chemical potential µl. The Fermi
function of lead l before the coupling to the central system is

f l(El
SE(q)) =

[
exp

(
El

SE(q)− µl
)

+ 1
]−1

, (5.2)

where El
SE(q) is the SE subband energy of lead l found in Eq. (2.17). The chemical

potentials of the leads imply an applied potential difference or bias window ∆µ =
µL − µR = eVbias.

In addition, the parameters of the Gaussian potential that forms the structure of the
central system and the photon cavity parameters are not fixed throughout this work.
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5. Results and Conclusions

These parameters will be stated later for each specific geometrical confinement of
the central system.

5.1. Cavity-photon-assisted electron transport

The electron-photon interaction in the system leads to an interesting phenomenon,
in electron transport, the so called photon-assisted electron transport. In this section
we show how the photons in the cavity can enhance the electron transport in the
electronic system where we consider a single quantum dot or serial double quantum
dots system.

The magnetic field is assumed to be B = 0.1 T, and the transverse confinement
energy of the central system and the leads is ~Ω0 = ~Ωl = 2.0 meV. The temperature
of the leads before the coupling to the central system is T = 0.01 K, such that the
MB energy level spacing in the central system is greater than the thermal energy
of the leads, namely ∆EMB > kBT , the thermal smearing effect is thus sufficiently
suppressed.

In the following we shall demonstrate the main results of the single and double
quantum dot systems coupled to a single photon mode of the cavity.

5.1.1. Single quantum dot system

We consider a central system consisting of a quantum dot (QD) embedded in a
quantum wire. The quantum wire is a two-dimensional finite wire which is scaled
by the effective magnetic length aw, with the length Lx = 300 nm. In addition,
we assume the potential VG presented in Eq. (2.3) to be VG = VQD where the QD
potential VQD shown in Fig. 5.1 is defined as

VQD(x, y) = V0 exp
[
−β2

0

(
x2 + y2

)]
. (5.3)

Herein, the strength of the potential is V0 = −3.3 meV and β0 = 3.0× 10−2 nm−1,
such that the radius of the QD is RQD ≈ 33.3 nm.

The QD system is connected to the left lead with the chemical potential µL =
1.2 meV, and to the right lead with µR = 1.1 meV. The bias window is thus ∆µ =
eVbais = 0.1 meV. Figure 5.2(a) shows the energy spectrum of the leads versus wave
number q where the green lines are the chemical potentials of the leads. We notice
that the first subband energy (red) is located in the bias window indicating the
activation of the first subband in the electron transport. Figure 5.2(b) demonstrates
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Figure 5.1: (Color online) The potential shows a QD embedded in a quantum wire
with parameters B = 0.1 T, aw = 23.8 nm, and ~Ω0 = 2.0 meV.

the ME energy spectrum of the QD system as a function of the plunger-gate voltage
in the absence of the electron-photon interaction. The energies of one-electron states
Ne = 1 (1ES, red dots) and two-electron states Ne = 2 (2ES, blue dots) vary linearly
proportional to the applied plunger gate voltage Vpg. We find a 1ES in the bias
window at Vpg = 0.4 mV labeled by a red rectangle.
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Figure 5.2: (Color online) (a) SE energy spectrum in the leads (red) is plotted
versus wave number q, where the chemical potentials are µL = 1.2 meV and
µR = 1.1 meV (green). (b) ME energy spectrum in the central system as a function
of the plunger gate voltage Vpg including SE states (1ES, red dots), and two-
electron states (2ES, blue dots). The one-electron state in the bias window is
almost doubly degenerate due to the small Zeeman energy.

The electrons occupying the first subband in the left lead are allowed to tunnel into
the 1ES of the QD system making resonant tunneling from the left to the right lead
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manifesting a peak (main-peak) in charge current at Vpg = 0.4 mV as is shown in
Fig. 5.3.
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Figure 5.3: (Color online) The net charge current versus the plunger gate voltage
Vpg plotted at time t = 220 ps in the absence of a photon cavity. The magnetic
field is B = 0.1 T, and the bias window is ∆µ = 0.1 meV.

Now, we assume the QD system to be placed in a photon cavity with photon en-
ergy ~ωph = 0.3 meV, and one photon Nph = 1 initially in the cavity. The pho-
tons in the cavity are considered to be either parallel (x-direction) or perpendicu-
lar (y-direction) polarized to the electron transport through the QD system. The
many-body (MB) energy spectrum of the QD system coupled to the photon cavity
including the electron-photon interaction is shown in Fig. 5.4. In the absence of the
photon cavity, only one active state around V 0

pg = 0.4 mV gets into the bias window.
But in the case of the system in the photon cavity additional active states can be
found around eVpg = eV 0

pg±~ωph. This implies that the single photon mode induces
active propagating states around Vpg = 0.1 and 0.7 mV when the photon energy is
~ωph = 0.3 meV.

The electrons in the additional states manifest different mechanism of transport.
Figure 5.5 shows the net charge current IQ versus the plunger-gate voltage Vpg at
time t = 220 ps in the presence of the x-polarized (a) and y-polarized (b) photon
field with the energy ~ωph = 0.3 meV. We test three values of the electron-photon
coupling strength, gph = 0.1 meV (blue solid), 0.2 meV (green dashed), and 0.3 meV
(red dotted). In addition to the main peak around V 0

pg = 0.4 mV, a robust left side
peak around eVpg = eV 0

pg − ~ωph is clearly observed, and a right side peak around
eVpg = eV 0

pg + ~ωph can be barely recognized in the presence of the x-polarized
photon field as is shown in Fig. 5.5(a). The left side peak exhibits a photon-assisted
transport, i.e. a transition from the one-electron MB state in the bias window,
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Figure 5.4: (Color online) The MB Energy spectrum as a function of the plunger
gate voltage Vpg in the presence of a photon cavity with an x-polarized photon
field, with zero-electron states (Ne = 0, green dots), one-electron states (Ne = 1,
red dots), and two-electron states (Ne = 2, blue dots) are included. B = 0.1 T,
∆µ = 0.1 meV, and ~ωph = 0.3 meV.
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Figure 5.5: (Color online) The net charge current versus plunger gate voltage Vpg

at time t = 220 ps in the presence of x-polarized (a) and y-polarized (b) of the
photon field with different electron-photon coupling strength: gph = 0.1 meV (blue
solid), gph = 0.2 meV (green dashed), and gph = 0.3 meV (red dotted). The photon
energy ~ωph = 0.3 meV. B = 0.1 T, and ∆µ = 0.1 meV.

absorbing a photon with energy ~ωph, to the photon activated one-electron MB
states above the bias window. Our results show that the transport of electrons
with energy within the bias window can be enhanced by increasing electron-photon
coupling strength. This indicates that the electrons may absorb a single-photon and,
hence, the charge current manifests a photon-assisted transport.
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We have seen that the photon-assisted transport is much weaker in the case of a
y-polarized photon mode in comparison with that of x-polarization as is presented
in Fig. 5.5(b). This is caused by the anisotropy of QD system system. The photon
energy is much smaller than the confinement energy in the perpendicular direction
(the y-direction).

5.1.2. Double quantum dot system

In addition to the single QD system, we investigate a double serial quantum dot
system in order to obtain or enhance inter-dot electron tunneling via the photons in
the cavity. The double dot system is a promising structure for constructing a qubit
in a quantum computer.

We consider the length of the quantum wire Lx = 165 nm, and two serial quantum
dots embedded in the wire with radii RQD ' 20 nm. The DQD system is put in
an external magnetic field B = 0.1 T. The two dots are modeled by two identical
Gaussian potentials in the quantum wire defined as

VDQD(x, y) =
2∑
i=1

Vi exp
[
−β2

i

(
(x− xi)2 + y2

)]
, (5.4)

with strength V1,2 = −2.8 meV, x1 = 35 nm, x2 = −35 nm, and β1,2 = 5.0 ×
10−2 nm−1. The distance between the dots is thus LDQD = 35 nm ' 1.47aw, and
each dot is 25 nm = 1.05aw away from the nearest lead. Again the VG presented in
Eq. (2.3) is assumed to be VG = VDQD in the calculations of the DQD system.

The DQD system is weakly connected to the leads and strongly coupled to a photon
cavity. The chemical potential of the leads are µL = 1.4 meV and µR = 1.3 meV.
Therefore, the bias window ∆µ = 0.1 meV. In addition, the cavity initially contains
two photons Nph = 2 with the photon energy ~ωph = 0.25 meV.

In the absence of the photon cavity, two one-electron states are found in the bias
window, namely, ground state and the first excited state. Therefore, two correspond-
ing peaks in the net charge current are observed [103]. The electron charge density
is accumulated in the dots for the ground state with a strong inter-dot tunneling
as is shown in Fig. 5.6(a). Consequently, the left and the right currents increase
in the system. But the electron charge density of the first-excited state presented
in Fig. 5.6(b) is strongly localized in the dots without much tunneling between the
dots. The tunneling between the dots is thus sufficiently suppressed as is seen in
the current.

In the presence of the photon cavity, two extra side peaks are found at eV GS
pg =

eV GM
pg − ~ωph and eV FES

pg = eV FEM
pg − ~ωph, where GS and GM indicate ground-state
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Figure 5.6: The electron charge density at t = 220 ps in the ground state (a), and
the first-excited state (b), in the absence of a photon cavity. The magnetic field is
B = 0.1 T, aw = 23.8 nm, Lx = 165 nm, and ∆µ = 0.1 meV.

side-peak and ground-state main-peak, and FES and FEM stand for side-peak of
the first-excited state and the main peak of the first-excited state, respectively [103].
The side peaks indicate photon-assisted electron transport from the leads to the
photon activated states of the DQD system. Figure 5.7 shows the electron charge
density in the first-excited state of the DQD system coupled to the cavity in the
case of an x-polarized of the photon field. Comparing to the electron charge density
presented in Fig. 5.6(b) the inter-dot tunneling is enhanced in the main-peak of the
first-excited state. The enhancement is due to participation of the photon activated
states in the electron transport.
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Figure 5.7: The electron charge density at t = 220 ps in the first-excited state in the
presence of a photon cavity. Other parameters are B = 0.1 T, and aw = 23.8 nm,
Lx = 165 nm, ∆µ = 0.1 meV, gph = 0.1 meV, ~ωph = 0.25 meV, and Nph = 2.
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5.2. Quantum Logic gate actions in a qubit system

It is known that waveguides can be used to implement quantum logic gates in a
quantum computer. Many techniques have been used to investigate both classical
and quantum properties of logic gates. In this section, we focus on a different
technique from previous methods to control and implement logic gates in a double
quantum waveguide.

We consider two laterally coupled waveguides connected to two leads as is shown
in Fig. 5.8. The lower waveguide is the so called control-waveguide while the upper
waveguide is the target-waveguide. The double waveguide can be defined as two
parallel finite quantum wires coupled via a window to facilitate coherent electron
inter-wire transport. In our model the DQW has a hard-wall confinement in the
contact area to the external leads at x = ±Lx/2, with Lx = 300 nm the length
of the waveguides in the transport direction, but parabolic confinement in the y-
direction. The waveguide system and the leads have the same transverse confinement
energy (~Ω0 = ~Ωl = 1.0 meV). In addition, the total system is exposed to a weak
or a vanishing external static magnetic field in the z-direction. The temperature of
the leads before the coupling to the DQW system is T = 0.5 K.

e

Target

Control

R

y

x

z

L

 CWL

Figure 5.8: Schematic diagram of the double waveguide with a CW of length LCW

(blue dashed arrow). The lower waveguide is called the ‘Control’ while the upper
waveguide is the ‘Target’. An electron from left side enters the control waveguide
(red arrow). Asymmetric contacts are indicated by the light red rectangles marked
L and R.

The potential defining the DQW system is

VDQW(r) = VB(y) + VCW(x, y), (5.5)

with VB(y) the barrier potential between the waveguides

VB(y) = V0 exp(−β2
0y

2). (5.6)

Herein, V0 = 18.0 meV is the strength of the barrier potential and β0 = 0.03 nm−1

a smoothness parameter. The coupling window (CW) potential is

VCW(x, y) = −V1 exp(−β2
xx

2 − β2
yy

2), (5.7)
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5.2. Quantum Logic gate actions in a qubit system

with V1 = 18.0 meV, and βy = 0.03 nm−1. βx is a parameter that defines the CW
length. Therefore, the length of the CW can be estimated as LCW = 2/βx.

The waveguide system is asymmetrically coupled to the leads by modification of the
nonlocal coupling function demonstrated in Eq. (2.21) to

glnm,mq(r, r
′) = gl0 exp

[
−δlx(x− x′)2 − δly(y − y′ − α)2

]
× exp

(
−|En,m − εlm(q)|/∆E

)
. (5.8)

where α = 4.0aw is a skewing parameter that shifts the weight of the coupling to
the control-waveguide. The electrons from the left lead are thus injected into the
control waveguide. Below, we shall show the transport properties through the DQW
system without and with the photon cavity.

The DQW without a photon cavity

We now demonstrate the electron transport properties of the DQW in the case
of no coupling between the DQW and a photon cavity. In order to perform elec-
tron switching between the waveguides, we first tune the CW length between the
waveguides. In Fig. 5.9 we plot the net charge current versus the CW length at
t = 200 ps and B = 0.0 T in the case without (solid blue), and with (dashed red)
the electron-electron Coulomb interaction. We find oscillations in the net charge
current indicating charge switching between the control- and the target-waveguide.
The oscillations give rise a maxima (peak) and a minima (dip) in the net charge
current at LCW ' 40 nm and 110 nm, respectively. Furthermore, it is clearly
shown that the electron-electron interaction suppresses the net charge current. Both
Zibold et al. and Gong et al reported the same oscillation characteristics in the
absence of the Coulomb interaction. They explained the oscillations by energy-
dependent inter-waveguide transmission in the quantum regime. They pointed out
that the inter-waveguide transmission can be enhanced when the energy levels of
the coupled-waveguide system to achieve a resonance conditions for a specific CW
length [104, 105].

In order to explain the oscillation property in the net charge current, we present
Fig. 5.10 indicating the non-interacting (a) and interacting (b) ME energy spectrum
of the DQW system at B = 0.0 T, where the red dots are one-electron state (1ES)
and the blue dots are two-electron states (2ES). The back lines denote the chemical
potentials of the leads which are µL = 4.0 meV and µR = 3.0 meV. We observe that
the 2ES are shifted up away from the bias window in the presence of the electron-
electron interaction leading to blocking the 2ES. This causes non-participation of
the 2ES in the electron transport. As a result, the net charge current is suppressed.

In the case of a short CW (LCW < 40) there is a weak tunneling between the
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Figure 5.9: Net charge current IQ versus CW length LCW at t = 200 nm without
(w/o) (blue solid) and with (w) (red dashed) the Coulomb interaction. The chem-
ical potentials are µL = 4.0 meV and µR = 3.0 meV implying ∆µ = 1.0 meV.
The magnetic field is B = 0.0 T.

control- and target-waveguide. In this case the coupling between the waveguides
is caused by the electron tunneling and the Coulomb interaction leading to nearly
degenerate states [94]. Increasing the CW length, the ME energy states are no longer
degenerate and the energy spectrum decreases monotonically [104]. Furthermore,
higher excited states enter the active bias window resulting in a level crossover with
lower excited states. A crossover energy observed at LCW ' 40 nm (left green
rectangular) indicates a resonant energy between the waveguides. The contribution
of the higher excited states to the electron transport increases the net charge current
forming a current peak as is shown in Fig. 5.9. At this point, the inter-waveguide
electron transport is enhanced leading to an increase in the net charge current. By
tuning further the CW length to LCW ' 110 nm (right green rectangular), the
splitting of the energy levels increases. In addition, the lowest energy state of the
second subband (the highest state in the green rectangle) enters the bias window
leading to a strong ‘interaction’ between the waveguides. Consequently, the inter-
waveguide back-scattering is enhanced.
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Figure 5.10: The ME energy spectrum of the DQW system versus the CW length
LCW without (a), and with (b) the electron-electron interaction including one-
electron states (1ES, red dots) and two-electron states (2ES, blue dots) at B =
0.0 T. The one-electron states in the left green rectangle are close to be in res-
onance, but the one-electron states in the right green rectangle are not. The
chemical potentials are µL = 4.0 meV and µR = 3.0 meV (black) implying
∆µ = 1.0 meV.

It is interesting to see the charge motion at the crossover energy. Figure 5.11 shows
the charge current density for the resonant energy levels at LCW ' 40 nm for both
non-interacting (a) and interacting (b) DQW system at t = 200 ps and B = 0.0 T.

In Fig. 5.11(a) the charge current density coming from the input of the control-
waveguide splits equally to the control and the target output. This is similar to
the condition of splitting of electron transmission ratio in the DQW at a crossover
energy [104]. The dynamical evolution occurring in the CW region implements a√

NOT-operation quantum logic gate [68].

In Fig. 5.11(b) the charge current density mostly transfers through the control-
waveguide with a weak inter-waveguide forward scattering in the presence of the
Coulomb interaction. The charge does not split in the interacting DQW system
because the 2ESs do not participate in the electron transport.

In the following we connect the DQW system to a photon cavity with a single photon
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Figure 5.11: Charge current density in the DQW at t = 200 ps without (a), and
with (b) the electron-electron interaction in the peak of the net charge current at
LCW = 40 nm shown in Fig. 5.9. The magnetic field is B = 0.0 T and the effective
magnetic length is aw = 33.72 nm.

mode.
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5.2. Quantum Logic gate actions in a qubit system

The DQW in a photon cavity

In this section, we connect the DQW system to a photon cavity in which the pho-
tons are polarized in either the x-direction or the y-direction. The electron-photon
coupling strength is fixed at gph = 0.1 meV, but the photon energy and the pho-
ton number in the cavity are varied to control the electron switching between the
waveguides. Our goal here is to use the photon cavity to facilitate or control the
implementation of a quantum logic gate in the double waveguide system.

We first compare the net charge current in the DQW without and with the photon
cavity in order to understand the effects of the electron-photon interaction. Figure

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0  20  40  60  80 100 120 140

I Q
 (

n
A

)

Lcw (nm)

 

w/o ph
w ph, x-p
w ph, y-p

Figure 5.12: The net charge current IQ as a function of the CW length LCW without
(w/o) a photon (ph) cavity (blue solid), and with a photon (w ph) cavity in the
case of x-polarization (green dashed) and y-polarization (red dotted) at time t =
200 ps. The photon energy ~ωph = 0.3 meV, gph = 0.1 meV, B = 0.001 T,
and the chemical potentials are µL = 4.0 meV and µR = 3.0 meV, implying
∆µ = 1.0 meV.

5.12 shows the net charge current in the DQW without a photon cavity (blue solid)
and with a photon cavity in the case of an x-polarization (green dashed) and a y-
polarization (red dotted) of the photon field with energy ~ωph = 0.3 meV and one
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photon initially in the cavity Nph = 1. We previously explained the characteristics of
net charge current in the DQW without the photon cavity in Fig. 5.9. It is clearly
seen that the net charge current is generally reduced in the presence of a cavity
initially containing one photon. The reduction is due to the participation of photon
replica states in the electron transport as is shown in Fig. 5.13.

Figure 5.13 displays the MB energy spectrum of the DQW coupled to the x-polarized
photon field including zero-electron states (0ES) (green dots) and 1ES (red dots)
with the photon energy ~ωph = 0.3 meV, and one photon initially in the cavity.
It can be seen that the photon replica states are produced with different photon
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Figure 5.13: Energy spectra of the DQW system versus CW length LCW with a
photon cavity including zero-electron states (0ES, green dots) and one-electron
states (1ES, red dots) at B = 0.001 T. The 1ES states in the left blue rectangle
are close to the crossover region of states, but the 1ES states in the right blue
rectangular are not. The left rectangle contains the most active transport states.
The change in the height of the rectangle from left to right indicates the spreading
of states from the resonance to the off-resonance condition. The photon energy
~ωph = 0.3 meV with x-polarization, gph = 0.1 meV. The chemical potentials are
µL = 4.0 meV and µR = 3.0 meV (black) implying ∆µ = 1.0 meV.

content in the presence of the photon cavity. The energy difference between two
photon replicas is close to multiples of the photon energy in case of weak electron-
photon coupling [103]. At LCW ' 40 nm (left blue rectangle), the one-photon
replicas of the states in the energy crossover region are found to be active in the
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5.2. Quantum Logic gate actions in a qubit system

transport at 4.1-4.3 meV instead of the states themselves in the bias window. Since
the photon energy is ~ωph = 0.3 meV the replicas of the states in the energy crossover
region still are in the first subband. Therefore, a total switching of electron charge
from the control- to the target-waveguide does not happen. But, we found a weak
inter-waveguide backward scattering leading to current suppression in the case of
an x-polarized photon as is shown in Fig. 5.12 (green dashed line). In addition,
the two-photon replicas of the ground state and first-excited state enter the energy
crossover region in the bias window. The participation of the two photon state in
the electron transport is weak because the cavity initially contains only one photon.

At LCW ' 110 nm (right blue rectangle), the photon replicas of the ground state
and the first excited state containing three and four photons appear in the split
energy levels. Their contribution to the electron transport is not influential. But
the most active state here is the photon replica of the lowest state of the second
subband containing one photon. This photon replica is a localized state in the CW
region leading to a suppression in the net charge current for both x- (green dashed)
and y-polarized (red dotted) photon field at the dip as is shown in Fig. 5.12.

Figure 5.14 demonstrates the charge current density in the x-polarized (a), and
the y-polarized (b) photon field at LCW ' 40 nm (current peak) presented in Fig.
5.12 where the electron-photon coupling is gph = 0.1 meV and the photon energy is
~ωph = 0.3 meV. In the case of an x-polarization the charge distribution indicates

-6
-5
-4
-3
-2
-1
 0
 1
 2
 3
 4
 5
 6

-3 -2 -1  0  1  2  3

y
/a

w

x/aw

(a)

 

-6
-5
-4
-3
-2
-1
 0
 1
 2
 3
 4
 5
 6

-3 -2 -1  0  1  2  3

y
/a

w

x/aw

(b)

 

Figure 5.14: (Color online) The charge current density of the DQW coupled to a
cavity with an x-polarized (a) and a y-polarized (b) photon field at t = 200 ps in
the current peak at LCW ' 40 nm shown in Fig. 5.14. The photon energy ~ωph =
0.3 meV, Nph = 1, and gph = 0.1 meV. Other parameters are Lx = 300 nm,
~Ω0 = 1.0 meV, B = 0.001 T, and aw = 33.72 nm.

an inter-waveguide transport. Comparing to the charge current density in the ab-
sence of the photon cavity presented in Fig. 5.11(b), the inter-waveguide backward
scattering is increased as is shown in Fig. 5.14(a). The inter-waveguide backward
scattering may be partially related to the charge polarization in the x-direction in-
duced by the photon field, and the activation of the one-photon replicas of the states
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5. Results and Conclusions

in energy crossover regime in the transport. Consequently, the net charge current
decreases in the dip.

It is interesting to see the charge current density in the current peak at LCW ' 40 nm
in the presence of y-polarization as is displayed in Fig. 5.14(b), where the electron
transverse confinement energy and the photon energy are ~Ω0 = 1.0 meV, and
~ωph = 0.3 meV, respectively. The charge transfers from the input control-waveguide
to the output control-waveguide without inter-waveguide transport. This is because
the photon energy is much smaller than the electron confinement energy in the
waveguide system in the y-direction.

Tuning the photon number and energy

Wementioned that the photon replica states influence the electron switching between
the waveguides. Now, we tune the photon number and energy in order to control
the electron switching process. We first consider two photons initially in the cavity
and increase the photon energy to ~ωph = 0.6 meV with g = 0.1 meV and x-
polarization of the photon field. In this case the electron charge at the CW length
LCW ' 40 nm switches from the input control-waveguide to the output target-
waveguide as is shown in the Fig. 5.15. The electron switching process is caused by
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Figure 5.15: (Color online) The charge current density at t = 200 ps with an x-
polarized photon field at LCW ' 40 nm. The photon number in the cavity initially
is Nph = 2, ~ωph = 0.6 meV, and gph = 0.1 meV. Other parameters are Lx =
300 nm, ~Ω0 = 1.0 meV, B = 0.001 T, and aw = 33.72 nm.

the participation of two-photon replicas of states at the energy crossover located in
the second subband. In this case the electron may absorb two photons with energy
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5.2. Quantum Logic gate actions in a qubit system

Nph × ~ωph = 1.2 meV and subsequently be transferred to the second subband
from the first subband of the waveguide system. As a result, the charge is totally
switched from the control to the target waveguide. In addition to that the one-
photon replicas of the ground state and the first-excited state are seen in the energy
crossover regime in the bias window. But, they contribute weakly to the electron
transport. The charge motion occurring in the DQW system implements a quantum
logic gate operation and a Not-operation is realized.

We mentioned that an inter-waveguide transport at the crossover energy is not
found in the y-polarization because the photon energy is smaller than transverse
confinement energy of electron. In order to obtain inter-waveguide transport, we
need to increase either the photon energy or the photon number initially in the
cavity. Figure 5.16 shows the charge current density at LCW ' 40 nm where the
photon energy is increased to ~ωph = 0.9 meV but keeping one photon initially in
the cavity. Comparing to the charge current density shown in Fig. 5.14(b) when the
photon energy is ~ωph = 0.3 meV, inter-waveguide transport is increased because the
photon energy is close to the electron confinement energy in the waveguide system
in the y-direction. An electron in the control-waveguide may obtain energy from
the photon to partially occupy a state in the second subband of the two parallel
waveguides and thus being transferred to the target-waveguide.
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Figure 5.16: (Color online) The charge current density at t = 200 ps with y-polarized
photon field in the current peak at LCW ' 40 nm. The photon energy ~ωph =
0.9 meV, gph = 0.1 meV and Nph = 1. Other parameters are Lx = 300 nm,
~Ω0 = 1.0 meV, B = 0.001 T, and aw = 33.72 nm.

Let us consider two photons (Nph = 2) initially in the cavity and the photon en-
ergy is ~ωph = 0.6 meV, which is smaller than the electron confinement energy
(~Ω0 = 1.0 meV). In this case, an electron coming from the left lead may absorb two
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5. Results and Conclusions

photon with the total energy Nph × ~ωph ' 1.2 meV and then being transferred to
the target-waveguide. Consequently, the charge from the input control-waveguide
totally transfers to the target-waveguide as is shown in Fig. 5.17. The charge motion
occurring here implements a NOT-operation quantum logic gate action.
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Figure 5.17: (Color online) The charge current density in the y-polarized photon
field at LCW ' 40 nm and t = 200 ps. The photon energy ~ωph = 0.6 meV,
Nph = 2, and gph = 0.1 meV. Other parameters are Lx = 300 nm, ~Ω0 = 1.0 meV,
B = 0.0 T, and aw = 33.72 nm.

As a last relevant consideration, the features of the coherent electron transport in
a DQW coupled to a photon cavity discussed in this thesis offer interesting and
innovative new possibles for implementing quantum logic gate in waveguide system
in nanoscale range.
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5.3. Conclusions

In this thesis we have investigated physical properties of quantum systems with
various complicated geometrical structures. We considered a two-dimensional finite
electronic system connected to electron reservoirs (leads). The chemical potentials
of the leads define a bias window or potential difference driving electrons through
the total system. The total system is exposed to an external static magnetic field
perpendicular to the electron motion in the system. The electron-electron interaction
in the central finite size system is taken into account while the Coulomb interaction
in the leads is neglected. The electron transport is investigated in the system using a
general master equation. In this approach, we use a non-Markovian master equation
for a reduced density matrix describing the electron motion in the central system
under the influence of the leads.

The central system is coupled to cavity photons of a single mode. The photons in the
cavity are assumed to be polarized either parallel or perpendicular to the electron
motion in the central system. The electron-photon interaction plays an essential role
in the electron transport properties in such a way that the electrons absorb or emit
photons in the cavity leading to enhancement or suppression the electron transport.

In addition, a plunger gate voltage is applied to the central system to move the
quantized energy states up or down with respect the the bias window. Therefore,
one can investigate the physical properties of each quantized energy state of the
central system. Furthermore, the absorption and emission photon processes and
their roles to the electron transport can be controlled or selected by the plunger
gate voltage.

We have focused on two physical phenomena which are the cavity photon-assisted
electron transport through a single quantum dot or double quantum dot system
and implementation of quantum logic gate in waveguides or qubit systems. In the
first part, we have used the cavity-photon to enhance the electron transport in a
quantum dot system. In the case of a quantum dot embedded in a photon cavity,
a peak in the net charge current is found by tuning the plunger-gate voltage. The
current peak is due to a resonance of a one-electron state with the chemical potential
of the leads. We call this current peak the main peak. In the case of a QD system
coupled to an x-polarized photon mode, the main current peak is enhanced by the
electron-photon coupling. The electrons may absorb a single photon manifesting
a photon-assisted secondary peak which also incorporates correlation effects. In
the case of a QD coupled to a y-polarized photon mode, the main current peak is
contributed to by two photon-activated one-electron states and a correlation-induced
two-electron state. In the y-polarization the secondary peak current is suppressed
due to the anisotropy of our system.
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In the second part of this thesis, we have studied quantum logic gate action in a
charge qubit. We have presented a model for a window coupled double quantum
waveguide in an external perpendicular magnetic field. The DQW is weakly con-
nected to two leads and strongly coupled to a photon cavity. We investigate coherent
switching in the electron transport between the waveguides for the implementation
of quantum logic gates.

By tuning the length of the CW, we have shown two important physical charac-
teristics of the waveguide system: resonant energy-levels and oscillations in the net
charge current. The resonant energy levels indicate coupling between the DQW and
the oscillations denote the resonance conditions that are governed by the length of
the CW.

In the absence of the electron-electron and electron-photon interactions, the charge
current density splits equally between the waveguides at resonant energies, there-
fore, the net charge current reaches it’s maximum value and the waveguide system
works as a

√
NOT-operation qubit. The split charge current is facilitated by the

participation of two-electron states to the electron transport. But in the present of
the electron-electron interaction the charge splitting is strongly reduced because the
2ES are lifted out of the group of active states in the transport.

We have identified the implementation of various types of quantum logic gates by
varying the photon number and energy, or the photon polarization in the presence
of the photon cavity in the system. Photon replicas for each MB energy state
are produced in the presence of the photon cavity. The character of the active
photon replicas in the electron transport depends on the photon energy, the pho-
ton number, and the photon polarization. In the presence of an x-polarized single
photon mode with two photons initially in the cavity, the charge from input control-
waveguide switches to the output of the target-waveguide. In this case, an electron
in the control-waveguide may interact with two photons and transfer to the target-
waveguide. Consequently, a Not-operation quantum logic gate is implemented. For
the y-polarized photon field, the electron-switching processes only occurs if the pho-
ton energy is equal to or greater than the electron confinement energy in the DQW
system in the y-direction.

In addition, we have used side QDs in the double waveguide system to enhance the
electron switching process. We see that more energy-levels of the two waveguides
are brought into resonance which can lead to stronger coupling between them. Ef-
fectively, the dots can increase the density of states around the resonant transport
states.
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A. Matrix elements of the
single-electron Hamiltonian

A.1. Closed system

In section 2, we have shown the Hamiltonian of the central system. In this appendix
we present the derivation of the matrix elements of the Hamiltonian shown in Eq.
(2.3). The matrix elements are

〈n′′,m′′|HSE |n,m〉 = 〈n′′,m′′|
( 1

2m∗
(p +

e

c
Aext)

2

+
1

2
m∗Ω2

0y
2 + VG + eVpg + hZ

)
|n,m〉 . (A.1)

Reorganizing Eq. (A.1) to simplify the the matrix elements we split it into four
terms

〈n′′,m′′|HSE |n,m〉 = 〈n′′,m′′|
(

1

2m∗
(p +

e

c
Aext)

2 +
1

2
m∗Ω2

0y
2

)
|n,m〉

+ 〈n′′,m′′|VG |n,m〉+ 〈n′′,m′′| eVpg |n,m〉+ 〈n′′,m′′|hZ |n,m〉 .
(A.2)

In the following, we shall calculate each term of Eq. (A.2) separately.

A.1.1. Matrix elements of p and Aext terms

The matrix element of the canonical momentum operator and the vector potential
of the external magnetic field are calculated here. We begin with the p and Aext

terms of the Hamiltonian which are combined as

hES =
1

2m∗
(p +

e

c
Aext)

2 +
1

2
m∗Ω2

0y
2, (A.3)

where the magnetic field is assumed to be homogenous and perpendicular to the elec-
tron motion. The vector potential described in Landau gauge is Aext = (−By, 0, 0),
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then the Hamiltonian is modified to

hES = − ~2

2m∗
∇2
x +

[
− ~2

2m∗
∇2
y +

1

2
m∗Ω2

wy
2

]
+ i~ωcy∇x. (A.4)

Using the eigenfunctions of the central system in Eq. (2.5) and Eq. (2.6), the matrix
elements of Eq. (A.4) can be divided into three terms:

First term is the matrix elements of the x-component of the canonical momentum
operator

〈n′′,m′′| (−~2∇2
x

2m∗
) |n,m〉 =

n2π2

2

(
a2
w

Lx

)2

(~Ωw)δn′′,nδm′′,m, (A.5)

Second term is y-component of canonical momentum operator and harmonic poten-
tial

〈n′′,m′′|
[
−~2∇2

y

2m∗
+

1

2
m∗Ω2

wy
2

]
|n,m〉 =

(
m+

1

2

)
(~Ωw)δn′′,nδm′′,m, (A.6)

And the last term is

〈n′′,m′′| i~ωcy∇x |n,m〉 = i~ωc 〈m′′| y |m〉 〈n′′|
∂

∂x
|n〉 , (A.7)

where

〈m′′| y |m〉 = 〈m′′| aw
2

(a+ a†) |m〉 = aw

[√
m

2
δm′′,m−1 +

√
m+ 1

2
δm′′,m+1

]
, (A.8)

with a(a†) being the lowering(raising) operator of Harmonic oscillator, respectively,
and

〈n′′| ∂
∂x
|n〉 = In′′,n =

{
4nn′′(−1)

n′′+n−1
2

Lx(n′′2−n2)
if n′′ + n = 3, 5, 7, . . .

0 if n′′ + n = 2, 4, 6, . . .
(A.9)

Substituting Eq. (A.8) and Eq. (A.9) into Eq. (A.7) we obtain

〈n′′,m′′| i~ωcy∇x |n,m〉 = i~ωcaw In′′,n

[√
m

2
δm′′,m−1 +

√
m+ 1

2
δm′′,m+1

]
, (A.10)

Then adding Eq. (A.5), Eq. (A.6), and Eq. (A.10) together to get the matrix element
of the first part of the Hamiltonian in the following form

〈n′′,m′′|hES |n,m〉 =

[
n2π2

2

(
a2
w

Lx

)2

+

(
m+

1

2

)]
(~Ωw)δn′′,nδm′′,m

+ i~ωcaw In′′,n

[√
m

2
δm′′,m−1 +

√
m+ 1

2
δm′′,m+1

]
. (A.11)
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A.1.2. Matrix elements of a Gaussian potential

The second part of Eq. (A.2) describes the matrix elements of the potential describ-
ing the geometry of the system. A Gaussian potential has been chosen to describe
parts of the central system

VG(x, y) = −V0 e
(−β2

x(x−x0)2−β2
y(y−y0)2), (A.12)

where V0 is the strength of the potential, βx and βy define the range of the potential,
and (xi, yi) is the center of the potential. The matrix elements of the Gaussian
potential are

〈n′′,m′′|VG(x, y) |n,m〉 = −V0 Vn′′,nVm′′,m, (A.13)
herein, the x-component of the matrix elements is governed by

Vn′′,n = 〈n′′| e−β2
x(x−x0)2 |n〉 ,

and the y-component is

Vm′′,m = 〈m′′| e−β2
y(y−y0)2 |m〉 .

The derivation of both x- and y-component is shown in the following.

x-component (Vn′′,n)

There are four possibilities of integration in the x-component regarding to the quan-
tum numbers n′′ and n: (a) n′′ and n are odd, (b) n′′ is odd and n is even, (c) n′′
is even and n is odd, and (d) n′′ and n are even. Using Eq. (2.5), the integration
in the case of (a) and (d) is not zero but for the other two cases is zero. We now
calculate the non-vanishing terms, if n′′ and n are odd integer then

Vn′′,n = 〈n′′| e−β2
x(x−x0)2 |n〉 =

2

Lx

∫ +Lx
2

−Lx
2

dx cos

(
n′′πx

Lx

)
e−β

2
x(x−x0)2 cos

(
nπx

Lx

)
,

(A.14)
and in the case of even integer of n′′ and n the integration is

Vn′′,n = 〈n′′| e−β2
x(x−x0)2 |n〉 =

2

Lx

∫ +Lx
2

−Lx
2

dx sin

(
n′′πx

Lx

)
e−β

2
x(x−x0)2 sin

(
nπx

Lx

)
.

(A.15)
The substitution of ux =

x

Lx
gives

Vn′′,n = 2

∫ + 1
2

− 1
2

dux cos(n′′πux) e
−[βxLx(ux−ux0 )]2 cos(nπux), (A.16)

and

Vn′′,n = 2

∫ + 1
2

− 1
2

dux sin(n′′πux) e
−[βxLx(ux−ux0 )]2 sin(nπux). (A.17)
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y-component (Vm′′;m)

The matrix elements of the y-component are

Vm′′;m = 〈m′′| e−β2
y(y−y0)2 |m〉 =

∫
dy ψ∗m′′(y)e−β

2
y(y−y0)2 ψm(y), (A.18)

using the basis wave functions in Eq. (2.6), the integral is then given by

Vm′′;m =
1

aw[2(m′′+m) m′′!m! π]
1
2

×
∫
dy e

[
−β2

ya
2
w

(
(y/aw)−(y0/aw)

)2
−(y/aw)2

]
Hm′′(y/aw)Hm(y/aw). (A.19)

To simplifying further the matrix elements, one can use uy = y/aw and β̃y = β2
ya

2
w

Vm′′;m =
1

[2(m′′+m) m′′!m! π]
1
2

∫
du e−

[
β̃y(uy−uy0 )2+u2y

]
Hm′′(uy)Hm(uy). (A.20)

In order to be able to perform the integration, we need to modify

β̃y(uy − uy0)2 + u2
y = β̃yu

2
y − 2β̃yuyuy0 + β̃yu

2
y0

+ u2
y

= β̃yu
2
y − 2β̃yuyuy0 + β̃yu

2
y0

+ u2
y −

β̃yu
2
y0

1 + β̃y
+

β̃yu
2
y0

1 + β̃y

= −
[

(1 + β̃y)
1
2uy −

β̃yuy0

(1 + β̃y)
1
2

]
− β̃yu

2
y0

1 + β̃y
. (A.21)

Using Eq. (A.21) and assuming z = (1 + β̃y)
1
2uy, then Eq. (A.20) is transformed to

Vm′′;m =
1

[2(m′′+m) m′′!m! π]
1
2

e−[β̃0u2y0/(1+β̃y)]

(1 + β̃y)
1
2

×
∫
dz e

−
[
z−β̃yuy0/(1+β̃y)

1
2

]2
Hm′′

(
z

(1 + β̃y)
1
2

)
Hm

(
z

(1 + β̃y)
1
2

)
. (A.22)

An identity of integral Hermite polynomials is∫
dze−(z−z0)2Hm′′(αz)Hm(αz) = π

1
2

min(m′′,m)∑
k=0

2k k!

(
m′′

k

)(
m

k

)

× (1− α2)(m′′+m
2
−k) Hm′′+m−2k

(
αz0

(1− α2)
1
2

)
.

(A.23)
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Comparing Eq. (A.22) to Eq. (A.23), we explicitly obtain α = 1/(1 + β̃0)
1
2 . Then

Eq. (A.22) can be written as

Vm′′;m =
1

[2(m′′+m) m′′!m!]
1
2

e−[β̃yu2y0/(1+β̃y)]

(1 + β̃y)
1
2

min(m′′,m)∑
k=0

2k k!

(
m′′

k

)(
m

k

)

×
(

β̃y

(1 + β̃y)

)(m′′+m
2
−k)

Hm′′+m−2k

 β̃y
1
2uy0

(1 + β̃y)
1
2

 . (A.24)

Finally replacing the values uy = y/aw, uy0 = y0/aw and β̃y = β2
ya

2
w to get the

matrix elements of the y-component

Vm′′;m =
1

[2(m′′+m) m′′!m!]
1
2

e−[(β2
yy

2
0)/(1+β2

ya
2
w)]

(1 + β2
ya

2
w)

1
2

min(m′′,m)∑
k=0

2k k!

(
m′′

k

)(
m

k

)

×
(

β2
ya

2
w

(1 + β2
ya

2
w)

)(m′′+m
2
−k)

Hm′′+m−2k

(
βyy0

(1 + β2
ya

2
w)

1
2

)
. (A.25)

A.1.3. Matrix elements of Vpg and hZ terms

The third term of Eq. (A.2) describes the matrix elements of the plunger-gate voltage
which is governed by

〈n′′,m′′| eVpg |n,m〉 = eVpg

∫
dx ψ∗n′′(x) ψn(x)×

∫
dy ψ∗m′′(y) ψm(y)

= eVpg δn′′n δm′′m = eVpg δn′′,n δm′′,m. (A.26)

And the fourth term of Eq. (A.2) indicates the Zeeman energy which is a constant
value for a fixed magnetic filed added to the matrix elements of the canonical mo-
mentum operator

〈n′′,m′′|hZ |n,m〉 = 〈n′′,m′′| (±1

2
g∗µBB) |n,m〉 , (A.27)

where µB = e~
m0

with m0 = me/m
∗. Using m∗ = 0.067, g∗ = −0.44, and ωc = eB/me

we get
〈n′′,m′′|hZ |n,m〉 = ±00737 ~ωc δn′′,n δm′′,m. (A.28)
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The total matrix elements of the Eq. (A.2) can be expressed as the following

〈n′′,m′′|HSE |n,m〉 =

[
n2π2

2

(
a2
w

Lx

)2

+

(
m+

1

2

)]
(~Ωw)δn′′,nδm′′,m

+ i~ωcaw In′′,n

[√
m

2
δm′′,m−1 +

√
m+ 1

2
δm′′,m+1

]
− V0 Vn′′,nVm′′,m + eVpg δn′′,n δm′′,m

± 00737 ~ωc δn′′,n δm′′,m. (A.29)

A.2. Matrix elements of the lead Hamiltonian in
the SE basis

In this appendix, the matrix elements shown in Eq. (2.17) are calculated. We use
the Hamiltonian of the lead presented in Eq. (2.9) to get

〈m′′, q′′| Ĥ l
SE |m, q〉 = 〈m′′, q′′|

(−~2

2m∗
∇2
x +

[−~2

2m∗
∇2
y +

1

2
m∗(Ωl

w)2y2

]
+ i~ωcy∇x

)
|m, q〉 .

(A.30)
Using the basis eigenfunctions in Eq. (2.13) and Eq. (2.14), the matrix elements
of the lead Hamiltonian are divided into three parts. The first part is the matrix
elements of the Hard-well confined potential

〈m′′, q′′|
(−~2

2m∗
∇2
x

)
|m, q〉 =

~Ωl
w

2
(alq)

2 δm′′,mδ(q
′′ − q), (A.31)

and the second part is the matrix elements for the Harmonic oscillator Hamiltonian

〈m′′, q′′|
(−~2

2m∗
∇2
y +

1

2
m∗Ω2

wy
2

)
|m, q〉 = ~Ωw

(
m+

1

2

)
δm′′,mδ(q

′′ − q). (A.32)

Putting these two parts together results in

〈m′′, q′′|
(−~2

2m∗
∇2
x +

[−~2

2m∗
∇2
y +

1

2
m∗Ω2

wy
2

])
|m, q〉 = εlm(q) δm′′,mδ(q

′′ − q) (A.33)

where εlm(q) are the eigenvalues presented in Eq. (2.15).

The third part is a Hamiltonian mixing the motion of the x- and the y-directions,
the matrix elements consists of two terms

〈m′′, q′′| i~ωcy∇x |m, q〉 = i~ωc 〈q′′|
∂

∂x
|q〉 〈m′′| y |m〉 , (A.34)
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where the x-component is

〈q′′| ∂
∂x
|q〉 =

2

π

∫ −Lx
2

−∞
dx sin

(
q′′
(
x+

Lx
2

))
∂

∂x
sin

(
q

(
x+

Lx
2

))
=

2iq

π

∫ −Lx
2

−∞
dx sin

(
q′′
(
x+

Lx
2

))
cos

(
q

(
x+

Lx
2

))
. (A.35)

We assume u =
(
x+ Lx

2

)
, so x =

(
u− Lx

2

)
and dx = du

〈q′′| ∂
∂x
|q〉 =

2iq

π

∫ 0

−∞
du sin(q′′u) cos(qu) (A.36)

The identity sin(q′′u) cos(qu) = 1
2

[sin(u(q′′ + q)) + sin(u(q′′ − q))] [106] modifies
Eq. (A.36) to

〈q′′| ∂
∂x
|q〉 =

iq

π

∫ 0

−∞
du sin(u(q′′ + q)) + sin(u(q′′ − q))

=
q

2π

∫ ∞
0

du [exp(−iu(q′′ + q))− exp(iu(q′′ + q))

+ exp(−iu(q′′ − q))− exp(iu(q′′ − q))] (A.37)

We use the formula ζ(q) = −i
∫∞

0
du exp(iqu) = B

u
− iπδ(u) [107] to obtain

〈q′′| ∂
∂x
|q〉 =

iq

2π
[ζ(−q′′ − q)− ζ(q′′ + q) + ζ(q − q′′)− ζ(q′′ − q)]

=
iq

π

[
− B

q′′ + q
+

B

q − q′′
]

= −2iq′′q

π

B

q′′2 − q2

:= Iq′′q. (A.38)

And the y-component of Eq. (A.34) is

〈m′′| y |m〉 = al

[√
m

2
δm′′,m−1 +

√
m+ 1

2
δm′′,m+1

]
. (A.39)

The matrix elements of both the x- and the y-components of Eq. (A.34) give

〈m′′, q′′| i~ωcy∇x |m, q〉 = i~ωcalIq′′q

[√
m

2
δm′′,m−1 +

√
m+ 1

2
δm′′,m+1

]
. (A.40)

Substituting Eq. (A.33) and Eq. (A.40) into Eq. (A.30) we obtain

〈m′′, q′′| Ĥ l
SE |m, q〉 = εlm(q) δm′′,mδ(q

′′ − q)

+ i~ωcalIq′′q

[√
m

2
δm′′,m−1 +

√
m+ 1

2
δm′′,m+1

]
. (A.41)
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A. Matrix elements of the single-electron Hamiltonian

Putting the matrix elements shown in Eq. (A.41) into Eq. (2.17) we get the following
structure

El
SE(m′, q′) Cm′,m′′(q

′, q′′) =
∑
m

∫
dq εlm(q)Cm′,m(q′, q) δm′′,mδ(q

′′ − q)

+ i~ωcal
∑
m

[√
m

2
δm′′,m−1 +

√
m+ 1

2
δm′′,m+1

]
×
∫
dq Iq′′qCm′,m(q′, q), (A.42)

where the integral is∫
dq Iq′′qCm′,m(q′, q) = −2iq′′

π

∫ ∞
0

dq
Bq

q′′2 − q2
Cm′,m(q′, q)

=
iq′′

π

∫ ∞
−∞

dq
B|q|

q2 − q′′2 Cm′,m(q′, |q|)

=
iq′′

2π

∫ ∞
−∞

dq B|q| Cm′,m(q′, |q|) 1

q′′

[
1

q − q′′ −
1

q + q′′

]
=

i

2π
iπ
[
|q′′| Cm′,m(q′, |q′′|)− |q′′| Cm′,m(q′, |q′′|)

]
= 0. (A.43)

As the result, the second term of Eq. (A.42) vanishes

El
SE(m′, q′) Cm′,m′′(q

′, q′′) =
∑
m

∫
dq εlm(q)Cm′,m(q′, q) δm′′,mδ(q

′′ − q) (A.44)

Performing the summation we get

El
SE(m′, q′) Cm′,m′′(q

′, q′′) = εlm′′(q
′′)Cm′,m′′(q

′, q′′). (A.45)

If we considered Cm′,m′′(q′, q′′) = δm′,m′′δ(q
′ − q′′) then we obtain

El
SE(m′, q′) = εlm′(q

′). (A.46)

The Eq. (A.46) shows that the third term of the Hamiltonian presented in Eq. (2.9)
does not influence the eigenvalues.
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B. Many-Body Hamiltonian

Further derivation of the MB Hamiltonian of the system coupled to a photon cavity
is demonstrated in this appendix.

B.1. Electron-photon coupling function

We first show the constant of the coupling function shown in Eq. (2.52). If we
substitute the vector potential into the paramagnetic Hamiltonian shown in Eq.
(2.50), then the constant of the Hamiltonian becomes

gph
m∗ × Ωwaw

but a2
w = ~

m∗Ωw
, so one can write 1

m∗Ωwaw
= aw

~ . The constant is thus given by

gph
m∗ × Ωwaw

=
gph aw

~
.

Then the coupling function describing the interaction between the electrons and the
photons presented in Eq. (2.52) can be written as

gi,j =
aw
~
gph

∫
dr Ψ ∗i (r) (ê.π) Ψj(r) =

aw
~
gph × 〈Ψi| ê.π |Ψj〉 . (B.1)

We assume ê = êx + êy and π̂ = π̂x + π̂y, where π̂x = px + eAx = −i~∂x− eBy and
π̂y = py + eAy = −i~∂y to get

gi,j =
aw
~
gph × 〈Ψi| (ex(−i~∂x − eBy) + ey(−i~∂y)) |Ψj〉 . (B.2)

Further modifying Eq. (B.2)

gi,j = gph ×
[
ex(−iaw)× 〈Ψi| ∂x |Ψj〉 − ex(

eBaw
~

)× 〈Ψi| y |Ψj〉 − iey × 〈Ψi| aw∂y |Ψj〉
]

(B.3)
The constant of the second term eBaw/~ needs to be scaled. The effective magnetic
length is aw = ~/(mΩwaw), and eB/m = ωc, then one can write the constant of the
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B. Many-Body Hamiltonian

second term of Eq. (B.3) as eBaw/~ = ωc/Ωwaw. We further rearrange Eq. (B.3),
and multiplying the first term by Lx

Lx

gi,j = gph×
[
−iex(

aw
Lx

)×〈Ψi|Lx∂x |Ψj〉−iey×〈Ψi| aw∂y |Ψj〉−ex(
ωc
Ωw

)×〈Ψi|
y

aw
|Ψj〉

]
.

(B.4)

For sake of consistency, we use Dirac notation for the single-electron eigenstate basis
|n,m〉 to calculate the matrix elements in Eq. (B.4)

gi,j = gph ×
[
− iex(

aw
Lx

)× 〈n′|Lx∂x |n〉 δm′,m − iey × 〈m′| aw∂y |m〉 δn′,n

− ex(
ωc
Ωw

)× 〈m′| y
aw
|m〉 δn′,n

]
. (B.5)

The matrix elements of the first and the last terms are calculated in A.1.1, we do
not repeat it here. And the matrix elements of the second term are

〈m′| aw∂y |m〉 = 〈m′|
(√m

2
|m− 1〉 −

√
m+ 1

2
|m+ 1〉

)
=

√
m

2
δm′,m−1 −

√
m+ 1

2
δm′,m+1. (B.6)

Adding the matrix elements of all three terms of Eq. (B.5) together

gi,j = gph ×
[
− iex(

aw
Lx

)× δm′,m − iey ×
(
−
√
m+ 1

2
δm′,m+1 +

√
m

2
δm′,m−1

)
× δn′,n

− ex
( ωc

Ωw

)
×
(√m+ 1

2
δm′,m+1 +

√
mj

2
δm′,m−1

)
× δn′,n

]
. (B.7)

B.2. A2- term

We show how Eq. (2.54) is obtained from Eq. (2.53). The diamagnetic Hamiltonian
shown in Eq. (2.53) is

ĤD =
e2

2m∗
A2

EM

∑
i,j

〈Ψi|Ψj〉d†idj, (B.8)

using the completeness relation
∑

j |Ψj〉 〈Ψj| = 1 and the electron number operator
N̂e =

∑
i d
†
idi

ĤD =
e2

2m∗
×A2

EM × N̂e. (B.9)
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B.2. A2- term

The vector potential defining in Eq. (2.44) is put into Eq. (B.9) to obtain

ĤD =
e2

2m∗
×

g2
ph

e2Ω2
wa

2
w

(a+ a†)(a+ a†)× N̂e, (B.10)

and using m∗a2
wΩw = ~

ĤD =
g2

ph

2~Ωw

(a+ a†)(a+ a†)× N̂e. (B.11)

We perform the multiplication of creation and annihilation operators

1

2
(a+ a†)(a+ a†) =

1

2
(aa+ aa† + a†a+ a†a†)

=
1

2
(aa† + a†a) +

1

2
(aa+ a†a†). (B.12)

In addition, the creation and annihilation operators satisfy commutation relation
[a, a†] = 1 =⇒ aa† − a†a = 1 =⇒ aa† = 1 + a†a. Then Eq. (B.12) becomes

1

2
(a+ a†)(a+ a†) =

1

2
(1 + a†a+ a†a) +

1

2
(aa+ a†a†)

=
1

2
(2a†a+ 1) +

1

2
(aa+ a†a†)

= (a†a+
1

2
) +

1

2
(a†a† + aa). (B.13)

Substituting Eq. (B.13) into Eq. (B.11), the final form of the Diamagnetic term of
the Hamiltonian is

ĤD =
g2

ph

~Ωw

(
(a†a+

1

2
) +

1

2
(a†a† + aa)

)
× N̂e. (B.14)

The Eq. (B.14) corresponds to the Eq. (2.54).
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C. Charge current density

We calculate the matrix elements of the charge current density demonstrated in Eq.
(4.10). The matrix elements are then used to find expectation value of the charge
current density in Eq. (4.9). The matrix elements of the charge current density in
the SES-basis can be expressed by

〈m′| ĵ(r) |m〉 =
∑
ij

(
e~

2m∗i

[
Ψ ∗i (r)(∇Ψj(r))− (∇Ψ ∗i (r))Ψj(r)

]
+

e2

m∗

[
Aext(r) + Aph(r)

]
Ψ ∗i (r)Ψj(r)

)
〈m′| d†idj |m〉 . (C.1)

In order to write the matrix elements of the charge current density in MES-basis,
we need a unitary transformation (Vµ′µ) shown in Eq. (2.36) to convert the current
density from the SES-basis to the interacting MES-basis

(µ′|̂j(r)|µ) =
∑
ij

(
e~

2m∗i

[
Ψ ∗i (r)(∇Ψj(r))− (∇Ψ ∗i (r))Ψj(r)

]
+

e2

m∗

[
Aext(r) + Aph(r)

]
Ψ ∗i (r)Ψj(r)

)
×
∑
m′m

V†µ′m′ 〈m′| d†idj |m〉 Vmµ.

(C.2)

In the closed electron-photon interacting system, the MB-space {|µ̆)} is constructed
from the tensor product of the electron-electron interacting many-electron (ME)
state basis |µ) and the eigenstates |M〉 of the photon number operator a†a, namely
|µ̆) = |µ)⊗|M〉. Therefore, the matrix elements of the charge current density in the

65



C. Charge current density

MB-basis are

(µ̆′|̂j(r)|µ̆) =
∑
ij

∑
M ′M

W †
µ′µ̆′

(
e~

2m∗i

[
Ψ ∗i (r)(∇Ψj(r))− (∇Ψ ∗i (r))Ψj(r)

]
〈M ′|M〉

+
e2

m∗

[
〈M ′| (Aext(r) + Aph(r)) |M〉

]
Ψ ∗i (r)Ψj(r)

)
×
∑
m′m

V†µ′m′ 〈m′| d†idj |m〉 VmµWµ̆µ, (C.3)

whereWµ̆µ is the unitary transformation in the MB-basis demonstrated in Eq. (2.65).

We substitute the magnetic vector potential Aext(r) and the photon vector potential
shown in Eq. (2.44) into Eq. (C.3) and separate x- and y-component of the charge
current density. Then the x-component is written as

(µ̆′|ĵx(r)|µ̆) =
∑
ij

∑
M ′M

W †
µµ̆′

(
e~

2m∗i

[
Ψ ∗i (r)(∂xΨj(r))− (∂xΨ

∗
i (r))Ψj(r)

]
〈M ′|M〉

+
e2

m∗

[
−By〈M ′|M〉+ exAph 〈M ′| (a† + a) |M〉

]
Ψ ∗i (r)Ψj(r)

)
×
∑
m′m

V †µ′m′ 〈m′| d†idj |m〉VmµWµ̆µ′ , (C.4)

and the y-component is

(µ̆′|ĵy(r)|µ̆) =
∑
ij

∑
M ′M

W †
µµ̆′

(
e~

2m∗i

[
Ψ ∗i (r)(∂yΨj(r))− (∂yΨ

∗
i (r))Ψj(r)

]
〈M ′|M〉

+
e2

m∗
eyAph 〈M ′| (a† + a) |M〉Ψ ∗i (r)Ψj(r)

)
×
∑
m′m

V †µ′m′ 〈m′| d†idj |m〉VmµWµ̆µ′ . (C.5)

Using the photon creation and annihilation operators properties

a† |n〉 =
√
n+ 1 |n+ 1〉 ,

and
a |n〉 =

√
n |n− 1〉 ,

where n is the photon number. Then the x-component of the charge current density
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is modified to

(µ̆′|ĵx(r)|µ̆) =
∑
ij

∑
M ′M

W †
µµ̆′

(
e~

2m∗i

[
Ψ ∗i (r)(∂xΨj(r))− (∂xΨ

∗
i (r))Ψj(r)

]
δM ′,M

+
e2

m∗

[
−ByδM ′,M + exAph(

√
M + 1δM ′,M+1 +

√
MδM ′,M−1)

]
Ψ ∗i (r)Ψj(r)

)
×
∑
m′m

V †µ′m′ 〈m′| d†idj |m〉VmµWµ̆µ′ , (C.6)

and the y-component becomes

(µ̆′|ĵy(r)|µ̆) =
∑
ab

∑
M ′M

W †
µµ̆′

(
e~

2m∗i

[
Ψ ∗i (r)(∂yΨj(r))− (∂yΨ

∗
i (r))Ψj(r)

]
δMN

+
e2

m∗
eyAph

[√
M + 1δM ′,M+1 +

√
MδM ′,M−1

]
Ψ ∗i (r)Ψj(r)

)
×
∑
m′m

V †µ′m′ 〈m′| d†idj |m〉VmµWµ̆µ′ . (C.7)

Further rearranging of both components, one can write

(µ̆′|ĵx(r)|µ̆) =
∑
ij

([
e~

2m∗i

[
Ψ ∗i (r)(∂xΨj(r))− (∂xΨ

∗
i (r))Ψj(r)

]
− eB

m∗
yΨ ∗i (r)Ψj(r)

]

×
∑
M ′M

(
W †
µµ̆′
δM ′,M

∑
m′m

V †µ′m′〈m′|d†idj|m〉VmµWµ̆µ′

))

+
∑
ij

(∑
M ′M

[
W †
µµ̆′

(
e2Aph

m∗
)ex(
√
M + 1δM ′,M+1 +

√
MδM ′,M−1)

×
∑
m′m

V †µ′m′〈m′|d†idj|m〉VmµWµ̆µ′

]
Ψ ∗i (r)Ψj(r)

)
, (C.8)
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and

(µ̆′|ĵy(r)|µ̆) =
∑
ij

(
e~

2m∗i

[
Ψ ∗i (r)(∂yΨj(r))− (∂yΨ

∗
i (r))Ψj(r)

]
×
∑
M ′M

(
W †
µµ̆′
δM ′,M

∑
m′m

V †µ′m′〈m′|d†idj|m〉VmµWµ̆µ′

))

+
∑
ij

(∑
M ′M

[
W †
µµ̆′

(
e2Aph

m∗
)ey(
√
M + 1δM ′,M+1 +

√
MδM ′,M−1)

×
∑
m′m

V †µ′m′〈m′|d†idj|m〉VmµWµ̆µ′

]
Ψ ∗i (r)Ψj(r)

)
. (C.9)

We should mention that the eigenvalue M is the photon number Nph in both com-
ponents of the charge current density.
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D. Quantum Master equation

In this appendix we show the general properties of the projection operator and few
steps of the derivation of non-Markovian master equation in the MB-basis.

D.1. Properties of Projection operator

We write some characteristics of the projection operator P and the complemen-
tary projection operator Q. We begin with the projection operator which has the
following properties

1. P2 = P

2. PLS = LSP

3. LlP = 0

4. PLlP = 0

5. PLP = LSP + LlP + LTP = LSP

6. PLTP = 0

and the complementary projection operator properties are

1. QLQ = (LS + Ll +Q LT)Q

2. PLQ = PLSQ+ PLlQ+ PLTQ = PLTQ

3. PLlQ = 0

4. QLP = QLSP +QLlP +QLTP = LTP
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D. Quantum Master equation

In addition, in the case of weak coupling between the central system and the leads
QLT � LS or Ll.

D.2. Derivation of Eq. (3.24)

Now, we show further steps of the derivation of the general master equation and
demonstrate how the Eq. (3.24) can be obtained from Eq. (3.22). Since the Hamil-
tonian of the central system commutes with the lead Hamiltonian, the evolution
operator can be separable

U0(t− t′) = US(t− t′)UL(t− t′) (D.1)

where US(t − t′) = exp (− i
~ĤS(t− t′)) and UL(t − t′) = exp (− i

~Ĥl(t− t′)). Using
the identity of the creation and annihilation operators of the leads

c̃q(t) = e( i
~ Ĥlt) cq e

(− i
~ Ĥlt) = e(− i

~E
l
SE(q)t), (D.2)

and the property
Trl(c̃q(t)c̃q′(t)ρl) = 0. (D.3)

allow us to write the integral kernel of Eq. (3.22) including the transfer Hamiltonian
in the MES basis in the following form∫ t

t0

dt′K(t, t′)ρ̆S(t′) = −χ
l(t)

~2

∫ t

t0

dt′χl(t′)

∫
dqdq′

×
[
T l(q)ÛS(t− t′)(T l(q′))†ρ̆S(t′)Û †S(t− t′) Trl

(
c̃†q′(t

′)c̃q(t)ρl
)

+ (T l(q′))†ÛS(t− t′)T l(q)ρ̆S(t′)Û †S(t− t′) Trl
(
c̃q′(t

′)c̃†q(t)ρl
)

− ÛS(t− t′)(T l(q′))†ρ̆S(t′)Û †S(t− t′)T l(q) Trl
(
c̃q(t)c̃†q′(t

′)ρl
)

− ÛS(t− t′)T l(q)ρ̆S(t′)Û †S(t− t′)(T l(q′))†Trl
(
c̃†q(t)c̃q′(t

′)ρl
)

− T l(q)ÛS(t− t′)ρ̆S(t′)(T l(q′))†Û †S(t− t′) Trl
(
c̃†q′(t

′)c̃q(t)ρl
)

− (T l(q′))†ÛS(t− t′)ρ̆S(t′)T l(q)Û †S(t− t′) Trl
(
c̃q′(t

′)c̃†q(t)ρl
)

+ ÛS(t− t′)ρ̆S(t′)(T l(q′))†Û †S(t− t′)T l(q) Trl
(
c̃q(t)c̃†q′(t

′)ρl
)

+ ÛS(t− t′)ρ̆S(t′)T l(q)Û †S(t− t′)(T l(q′))†Trl
(
c̃†q(t)c̃q′(t

′)ρl
) ]
.

(D.4)

We conclude some properties of the trace of the leads

Trl

(
c̃q(t)c̃†q′(t)ρ̂l

)
= e

(
−i(t−t′)El

SE(q)
)
δ(q− q′)

(
1− f(El

SE(q))
)
, (D.5)
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Trl

(
c̃†q′(t)c̃q(t)ρ̂l

)
= e

(
i(t−t′)El

SE(q)
)
δ(q− q′)

(
f(El

SE(q))
)
, (D.6)

and using Eq. (D.5) and Eq. (D.6). Then we take the integral
∫
dq′δ(q−q′) in order

to modifying Eq. (D.4) into∫ t

t0

dt′K(t, t′)ρ̆S(t′) = −χ
l(t)

~2

∫ t

t0

dt′χl(t′)

∫
dq

×
[
T l(q)ÛS(t− t′)(T l(q′))†ρ̆S(t′)Û †S(t− t′)

[
1− f(El

SE(q))
]

× e
(
−i(t−t′)El

SE(q)
)

− T l(q)ÛS(t− t′)ρ̆S(t′)(T l(q′))†Û †S(t− t′) f(El
SE(q))

× e
(
−i(t−t′)El

SE(q)
)

− ÛS(t− t′)(T l(q′))†ρ̆S(t′)Û †S(t− t′)T l(q)
[
1− f(El

SE(q))
]

× e
(
−i(t−t′)El

SE(q)
)

+ ÛS(t− t′)ρ̆S(t′)(T l(q′))†Û †S(t− t′)T l(q) f(El
SE(q))

× e
(
−i(t−t′)El

SE(q)
)

+ ÛS(t− t′)ρ̆S(t′)T l(q)Û †S(t− t′)(T l(q′))†
[
1− f(El

SE(q))
]

× e
(
i(t−t′)El

SE(q)
)

− ÛS(t− t′)T l(q)ρ̆S(t′)Û †S(t− t′)(T l(q′))† f(El
SE(q))

× e
(
i(t−t′)El

SE(q)
)

− (T l(q′))†ÛS(t− t′)ρ̆S(t′)T l(q)Û †S(t− t′)
[
1− f(El

SE(q))
]

× e
(
i(t−t′)El

SE(q)
)

+ (T l(q′))†ÛS(t− t′)ρ̆S(t′)T l(q)Û †S(t− t′) f(El
SE(q))

× e
(
i(t−t′)El

SE(q)
) ]

. (D.7)

Rearranging Eq. (D.7), we obtain Eq. (3.24).
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Abstract
We investigate transient transport of electrons through a single quantum dot controlled by a
plunger gate. The dot is embedded in a finite wire with length Lx assumed to lie along the
x-direction with a parabolic confinement in the y-direction. The quantum wire, originally with
hard-wall confinement at its ends, ±Lx/2, is weakly coupled at t = 0 to left and right leads
acting as external electron reservoirs. The central system, the dot and the finite wire, is
strongly coupled to a single cavity photon mode. A non-Markovian density-matrix formalism
is employed to take into account the full electron–photon interaction in the transient regime. In
the absence of a photon cavity, a resonant current peak can be found by tuning the
plunger-gate voltage to lift a many-body state of the system into the source–drain bias
window. In the presence of an x-polarized photon field, additional side peaks can be found due
to photon-assisted transport. By appropriately tuning the plunger-gate voltage, the electrons in
the left lead are allowed to undergo coherent inelastic scattering to a two-photon state above
the bias window if initially one photon was present in the cavity. However, this
photon-assisted feature is suppressed in the case of a y-polarized photon field due to the
anisotropy of our system caused by its geometry.

(Some figures may appear in colour only in the online journal)

1. Introduction

Electronic transport through quantum dot (QD) related
systems has received tremendous attention in recent
years due to its potential application in various fields,
such as the implementation of quantum computing [1],
nanoelectromechanical systems [2], photodetectors [3], and
biological sensors [4]. The QD-embedded structure can be
fabricated in a two-dimensional electron gas, controlled by a
plunger-gate voltage, and connected to the leads by applying
an external source–drain bias voltage.

Electronic transport under the influence of time-varying
external fields is one of the interesting areas. Transport
phenomena in the presence of photons have been intensively
studied in many mesoscopic systems [5–14]. Among the
various quantum confined geometries to characterize the
photon-assisted features are, for example, a quantum ring

with an embedded dot for exploring mono-parametric
quantum charge pumping [7], a single QD for investigating
single-electron (SE) tunneling [8], a quantum wire for
studying electron population inversion [9], and a quantum
point contact involving photon-induced intersubband transi-
tions [10, 11]. Recently, the electrical properties of double QD
systems influenced by electromagnetic irradiation have been
studied [12, 13], indicating a spin-filtering effect [12], and
two types of photon-assisted tunneling related to the ground
state and excited state resonances [13]. The classical and
quantum response was investigated experimentally in terms
of the sharpness of the transition rate, which depends on the
thermal broadening of the Fermi level in the electrodes and
the broadening of the confined levels [14].

In the above-mentioned examples the photon-assisted
transport was induced by a classical electromagnetic field. It
is also interesting to investigate electronic transport through

10953-8984/13/465302+12$33.00 c© 2013 IOP Publishing Ltd Printed in the UK & the USA
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a QD system influenced by a quantized photon field. A
single-photon source is an essential building block for the
manipulation of the quantum information coded by a quantum
state [15]. This issue has been considered by calculating
the resonant current carried by negatively charged excitons
through a double QD system confined in a cavity [16],
where resonant tunneling between two QDs is assisted by
a single photon. Recently several experimental groups have
successfully coupled a single quantum dot with one cavity
mode [17–20]. However, modeling of transient electronic
transport through a QD in a photon cavity is still in its infancy.

To study time-dependent transport phenomena in
mesoscopic systems, a number of approaches have been
employed. In closed systems, the Jarzynski equation was
derived by defining the free-energy difference of the system
between the initial and final equilibrium state in terms
of a stochastic Liouville equation [21] or microscopic
reversibility [22]. In open quantum systems where the
system is connected to electron reservoirs, the Jarzynski
equation can be derived using a master equation approach to
investigate fluctuation theorems [23] and dissipative quantum
dynamics [24]. In order to investigate interaction effects
on the transport behavior, several approaches have been
proposed based on the quantum master equation (QME)
applied to a quantum measurement of a two-state system [25],
calculation of current noise spectrum [26], and the counting
statistics of electron transfers through a double QD [27].
The QME describes the evolution of the reduced density
(RD) operator caused by the Hamiltonian of the closed
system in the presence of electron or photon reservoirs. Thus,
the QME usually consists of two parts: one describing the
unitary evolution of the closed system and the other being a
dissipative part describing the influence of the reservoirs [28].

In an open current-carrying system weakly coupled
to leads, master equations within the Markovian and
wide-band approximations have been commonly derived
and used [29–31]. The coupling to electron or photon
reservoirs can be considered to be Markovian and the rotating
wave approximation is often used for the electron–photon
coupling [29]. The QME may reduce to a ‘birth and
death master equation’ for populations [30], or modified
rate equations [31]. The energy dependence of the electron
tunneling rate or the memory effect in the system are usually
neglected.

The non-Markovian density-matrix formalism with
energy-dependent coupling elements should be considered
to study the full counting statistics for electronic transport
through interacting electron systems [32–34]. It was noticed
that the Markovian limit neglects coherent oscillations in the
transient regime, and the rate at which the steady state is
reached does not agree with the non-Markovian model [35].
The Markov approximation shows significantly longer times
to reach a steady state when the tunneling anisotropy is high,
thus confirming its applicability only in the long-time limit. To
investigate the transient transport, a non-Markovian density-
matrix formalism involving energy-dependent coupling
elements should be explicitly considered [36].

The aim of this work is to investigate how the x-
and y-polarized single-photon modes influence the ballistic

transient electronic transport through a QD embedded in a
finite quantum wire in a uniform perpendicular magnetic
field based on the non-Markovian dynamics. We explicitly
build a transfer Hamiltonian that describes the contact
between the central quantum system and semi-infinite leads
with a switching-on coupling in a certain energy range.
By controlling the plunger gate, we shall demonstrate
robust photon-assisted electronic transport features when
the physical parameters of the single-photon mode are
appropriately tuned to cooperate with the electron–photon
coupling and the energy levels of the Coulomb interacting
electron system.

The paper is organized as follows. In section 2, we
model a QD with interacting electrons embedded in a
quantum wire coupled to a single-photon mode in a uniform
magnetic field, in which the full electron–photon coupling
is considered. The transient dynamics is calculated using
a generalized QME based on a non-Markovian formalism.
Section 3 demonstrates the numerical results and transient
transport properties of the plunger-gate controlled electron
system coupled to the single-photon mode with either x-
or y-polarization. Concluding remarks will be presented in
section 4.

2. Model and theory

In this section, we describe how the embedded QD, realized
in a two-dimensional electron gas in gallium arsenide (GaAs),
can be described by the potential VQD in a finite quantum
wire and its connection to the leads in a uniform perpendicular
magnetic field. The plunger-gate controlled central electronic
system is strongly coupled to a single-photon mode that
can be described by a many-body (MB) system Hamiltonian
HS, in which the electron–electron interaction and the
electron–photon coupling to the x- and y-polarized photon
fields are explicitly taken into account, as depicted in
figure 1(a). A generalized QME is numerically solved to
investigate the dynamical transient transport of electrons
through the single QD system.

2.1. QD-embedded wire in magnetic field

The electron system under investigation is a two-dimensional
finite quantum wire that is hard-wall confined at x = ±Lx/2 in
the x-direction, and parabolically confined in the y-direction.
The system is exposed to an external perpendicular magnetic
field B = Bẑ, defining a magnetic length l = (h/eB)1/2 =
25.67[B(T)]−1/2 nm, and the effective confinement frequency
�2

w = ω
2
c + �

2
0, being expressed in the cyclotron frequency

ωc = eB/m∗c as well as in the bare confinement energy
h̄�0 characterizing the transverse electron confinement.
The system is scaled by the effective magnetic length
aw = (h̄/m∗�w)

1/2. Figure 1(b) shows the embedded QD
subsystem scaled by aw, where the QD potential is considered
of a symmetric Gaussian shape

VQD(x, y) = V0 exp[−β2
0 (x

2
+ y2)] (1)

with strength V0 = −3.3 meV and β0 = 3.0 × 10−2 nm−1

such that the radius of the QD is RQD ≈ 33.3 nm.
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Figure 1. (a) Schematic of a QD embedded in a quantum wire coupled to a photon cavity, connected to the left lead (red) with chemical
potential µL, and the right lead (brown) with chemical potential µR in an external magnetic field B. (b) Schematic diagram depicting the
potential representing the QD embedded in a quantum wire with parameters B = 0.1 T, aw = 23.8 nm, and h̄�0 = 2.0 meV.

2.2. Many-body model

In this section, we describe how to build up the time-
dependent Hamiltonian H(t) of an open system that couples
the QD-embedded MB system to the leads. The Coulomb
and photon interacting electrons of the QD system are
described by a MB system Hamiltonian HS. In the closed
electron–photon interacting system, the MB-space {|ν̆)} is
constructed from the tensor product of the electron–electron
interacting many-electron (ME) state basis |ν) and the
eigenstates |N〉 of the photon number operator a†a, namely
|ν̆) = |ν) ⊗ |N〉 [37]. The Coulomb interacting ME states of
the isolated system are constructed from the SE states [38].
The time-dependent Hamiltonian describing the MB system
coupled to the leads

H(t) = HS +
∑

l=L,R
[Hl + HTl(t)] (2)

consists of a disconnected MB system Hamiltonian HS,
and the ME Hamiltonian of the leads Hl where the
electron–electron interaction is neglected. In addition, L and
R refer to the left and the right lead, respectively. Moreover,
HTl(t) is a time-dependent transfer Hamiltonian that describes
the coupling between the QD system and the leads.

The isolated QD system including the electron–electron
and the photon–electron interactions is governed by the MB
system Hamiltonian

HS =
∑
i,j
〈ψi|

{
π2

2m∗
+ VQD + eVpg

}
|ψj〉d

†
i dj

+ He–e + Hph + HZ (3)

where |ψ〉 is a SE state, d†i (dj) are the electron creation
(annihilation) operators in the central system, and Hph =

h̄ωpha†a is the photon Hamiltonian. In addition, π = πe +
e
c Aph, where πe = p + e

c Aext is composed of the momentum
operator p of the electronic system and the vector potential
Aext = (0,−By, 0) represented in the Landau gauge. HZ is the
Zeeman energy ± 1

2 g∗µBB, where µB is the Bohr magneton
and g∗ the effective Lande g-factor for the material.

In the Coulomb gauge, the photon vector potential can be
represented as

Aph = Aph(a+ a†)ê, (4)

if the wavelength of the cavity mode is much larger than the
size of the central system. Herein, Aph is the amplitude of
the photon field. The electron–photon coupling strength is
thus defined by gph = eAph�waw/c. In addition, ê = (ex, 0)
indicates the electric field is polarized parallel to the transport
direction in a TE011 mode, and ê = (0, ey) denotes the electric
field is polarized perpendicular to the transport direction in a
TE101 mode. Moreover, we introduce the plunger-gate voltage
Vpg to control the alignment of quantized energy levels in the
QD system relative to the electrochemical potentials in the
leads. In the second term of equation (3), h̄ωph is the quantized
photon energy, and a†(a) are the operators of photon creation
(annihilation), respectively. The last term He–e describes the
electron–electron interaction.

In a second quantized form, the isolated MB system
Hamiltonian HS can be separated as

HS = He + Hph + He–ph + HZ. (5)

The first part of HS is the Coulomb interacting electron
Hamiltonian

He =
∑

i

(
Ei + eVpg

)
d†

i di +
1
2

∑
ijrs
〈VCoul〉d

†
i d†

j dsdr, (6)

where Ei is the energy of a SE state, Vpg is the electrostatic
potential of the plunger gate, and

〈VCoul〉 = 〈ij|VCoul|rs〉

=

∫
dr dr′ ψS

i (r)
∗ψS

j (r
′)∗

× V(r− r′)ψS
r (r
′)ψS

s (r) (7)

are the Coulomb matrix elements in the SE state basis,
with ψS(r) being the SE state wavefunctions and V(r − r′)
the Coulomb interaction potential [38]. The second part in
equation (5) is the photon Hamiltonian Hph = h̄ωphN̂ph, with
N̂ph = a†a being the photon number operator. The third part
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in equation (5) is the electron–photon coupling Hamiltonian

He–ph = gph
∑

ij
d†

i djgij{a+ a†
}

+

g2
ph

h̄�w

∑
i

d†
i di

[
N̂ph +

1
2
(a†a†

+ aa+ 1)
]

(8)

with the dimensionless electron–photon coupling factor
gij [39]. An exact diagonalization method is used to solve
the Coulomb interacting ME Hamiltonian for the central
system [40]. In order to couple the central system to the leads
connecting to the left (right) reservoir with chemical potential
µL (µR), it is important to consider all MB states in the system
and SE states in the leads within an extended energy interval
[µR − 1R, µL + 1L] in order to include all the relevant MB
states involved in the dynamical transient transport.

The second term in equation (2) is the noninteracting ME
Hamiltonian in the lead l given by

Hl =

∫
dq εl(q)c†

qlcql (9)

where we combine the momentum of a state q and its subband
index nyl in lead l into a single dummy index q = (nyl, q);
we thus use

∫
dq ≡

∑
ny

∫
dq to symbolically express the

summation and integration for simplicity. In addition, c†
ql and

cql are, respectively, the electron creation and annihilation
operators of the electron in the lead l.

The system–lead coupling Hamiltonian is expressed as

HTl(t) = χl(t)
∑

i

∫
dq
[
c†

qlTqildi + d†
i (Tiql)

∗cql

]
(10)

where χl(t) = 1−2{exp[αl(t− t0)]+1}−1 is a time-dependent
switching function with a switching parameter αl, and

Tqil =

∫
dr dr′ ψql(r′)∗gqil(r, r′)ψS

i (r) (11)

indicates the state-dependent coupling coefficients describing
the electron transfer between a SE state |i〉 in the central
system and the extended state |q〉 in the leads, where ψql(r)
is the SE wavefunction in the lead l and gqil(r, r′) denotes the
coupling function [36].

2.3. General formalism of the master equation

The time evolution of electrons in the QD-leads system
satisfies the Liouville–von Neumann (LvN) equation [41, 42]

ih̄Ẇ(t) = [H(t),W(t)] (12)

in the MB-space, where the density operator of the total
system is W(t), with the initial condition W(t < t0) =
ρLρRρS. Electrons in the lead l in steady state before coupling
to the central QD system are described by the grand canonical
density operator [43]

ρl =
e−β(Hl−µlNl)

Trl{e−β(Hl−µlNl)}
(13)

where µl denotes the chemical potential of lead l, β = 1/kBTl
is the inverse thermal energy, and Nl indicates the total
number of electrons in lead l. The LvN (equation (12)) can
be projected on the central system by taking the trace over
the Hilbert space of the leads to obtain the RD operator
ρ(t) = TrLTrRW(t), where ρ(t0) = ρS [44, 45].

We diagonalize the electron–photon coupled MB system
Hamiltonian HS within a truncated Fock space built from 22
SE states {|µ〉} [39, 46], then the system is connected to the
leads at time t = t0 thus containing a variable number of
electrons. We include all sectors of the MB Fock space, where
the ME states with zero to four electrons are dynamically
coupled to the photon cavity with zero to 16 photons. The
diagonalization gives us a new interacting MB state basis
{|ν̆)}, in which |ν̆) =

∑
αWµα|ᾰ〉, with Wµα being a unitary

transformation matrix with size NMB × NMB. SE states are
labeled with Latin indices and many-particle states have a
Greek index. The spin information is implicit in the index.
The spin degree of freedom is essential to describe correctly
the structure of the few-body Fermi system. This allows us
to obtain the RD operator in the interacting MB state basis
ρ̆(t) =W†ρ(t)W .

Using the notation

�ql(t) = U†
S(t)

∫ t

t0
dsχl(s)5ql(s)

× exp
[
−

i
h̄
(t − s)εl(q)

]
US(t), (14)

where

5ql(s) = US(s)[(T̆l)
†ρ̆(s)[1− fl(ε(q))]

− ρ̆(s)(T̆l)
†fl(ε(q))]U†

S(s),

with US(t) = exp[iHS(t − t0)/h̄] being the time evolution
operator of the closed central system and fl(ε(q)) =
{exp[ε(q) − µl] + 1}−1 being the Fermi function in lead l
at t = t0, the time evolution of the RD operator can then be
expressed as

dρ̆(t)
dt
= −

i
h̄

[
HS, ρ̆(t)

]
−

1

h̄2

∑
l=L,R

χl(t)

×

∫
dq([T̆l(q),�ql(t)] + h.c.). (15)

The first term governs the time evolution of the disconnected
central interacting MB system. The second term describes the
energy dissipation of interacting electrons through charging
and discharging effects in the central system by the leads. In
the second term, T̆l(q) is the interacting MB coupling matrix

T̆l(q) =
∑
µ,ν

T̆µνl(q)|ν̆)(µ̆|, (16)

in which both the Coulomb interaction and the electron–
photon coupling have been included. Here T̆µνl(q) =∑

iTiql(µ̆|d
†
i |ν̆) indicates the coupling of MB states |ν̆) in the

central system caused by the coupling to the SE states in the
leads described by the coupling matrix Tiql.
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2.4. Charge and current

We now focus on the physical observables that we calculate
for the QD system. The mean photon number in each MB state
|ν̆) can be written as

Nph = (ν̆|N̂ph|ν̆), (17)

where N̂ph is the photon number operator. The average of the
electron number operator can be found by taking the trace
of the MB states {|ν̆)} in the Fock space, namely 〈N̂e(t)〉 =
Tr{W(t)N̂e}.

The mean value of the interacting ME charge distribution
in the QD system is thus defined by

Q(r, t) = e
∑
i,j
ψ∗i (r)ψj(r)

∑
µ,ν

(µ̆|d†
i dj|ν̆)ρ̆νµ(t) (18)

where e > 0 stands for the magnitude of the electron charge,
and ρ̆νµ(t) = (ν̆|ρ̆(t)|µ̆) is the time-dependent RD matrix in
the MB-space.

In order to analyze the transient transport dynamics, we
define the net charging current

IQ(t) = IL(t)+ IR(t) (19)

where IL(t) indicates the partial charging current from the left
lead into the system, and IR(t) represents the partial charging
current from the right lead into the system. Here, the left and
right partial currents Il(t) can be explicitly expressed in the
following form

Il(t) = −
e

h̄2χl(t)

×

∑
µ

∫
dq (µ̆|[T̆l(q),�ql(t)] + h.c.|µ̆). (20)

3. Results and discussion

In this section, we consider a QD embedded in a finite
quantum wire system, made of a high-mobility GaAs/AlGaAs
heterostructure with an electron effective mass m∗ = 0.067me
and relative dielectric constant εr = 12.4, with length Lx =

300 nm and bare transverse electron confinement energy
h̄�0 = 2.0 meV. A uniform perpendicular magnetic field
B = 0.1 T is applied and, hence, the effective magnetic length
is aw = 23.8 nm and the characteristic Coulomb energy is
EC = e2/(2εraw) ≈ 2.44 meV. The effective Lande g-factor
g∗ = 0.44.

We select β0 = 3.0 × 10−2 nm−1 such that the radius
of the embedded QD is RQD = 1.4aw. The QD system
is transiently coupled to the leads in the x-direction that
is described by the switching parameter αl

= 0.3 ps−1

and the nonlocal system–lead coupling strength 0l =

1.58 meV nm2 [38]. A source–drain bias Vbias is applied,
giving rise to the chemical potential difference1µ= eVbias =

0.1 meV.
To take into account all the relevant MB states, an

energy window 1E = 5.5 meV is considered to include
all active states in the central system contributing to the

Figure 2. Energy spectra in the case of no photon cavity with a
magnetic field B = 0.1 T. (a) The SE energy spectrum in the leads
(red) is plotted as a function of wavenumber q, where the chemical
potentials are µL = 1.2 meV and µR = 1.1 meV (green). (b) The
ME energy spectrum in the central system as a function of
plunger-gate voltage Vpg including SE states (1ES, red dots) and
two-electron states (2ES, blue dots). The SE state in the bias
window is almost doubly degenerate due to the small Zeeman
energy.

transport. The temperature of the system is assumed to be
T = 0.01 K, such that the typical MB energy level spacing
is greater than the thermal energy, namely 1EMB > kBT ,
the thermal smearing effect is thus sufficiently suppressed. In
the following, we shall select the energy h̄ωph of the photon
mode to be smaller than the characteristic Coulomb energy,
namely EC > h̄ωph. In the following, we shall demonstrate
the plunger-gate controlled transient transport properties both
in the case without a photon cavity and in the case including a
photon cavity with either an x- or y-polarized photon field.

The energy of the photons, h̄ωph will in both polarization
cases be held at 0.3 meV. For the length of the central system,
Lx = 300 nm, the photon energy will be comparable to the
spacing of energy levels connected to motion of the electrons
in the x-direction. We can thus expect the x-polarized photons
to be able to promote resonances with translation in the
x-direction—the transport direction. The confinement energy
in the y-direction, h̄�0 = 2.0 meV, on the other hand, is large
enough to ensure almost all photon-induced motion in the
y-direction to be out-of-resonance phenomena. This simple
picture is slightly modified by the embedded quantum dot.
The anisotropy of the central system can be expected to show
up in the photon-activated processes investigated, due to the
interplay of the photon energy and the characteristic energy
scales for x- and y-motion.

3.1. Without a photon cavity

First, we consider the QD embedded in a quantum wire
without a photon cavity in a uniform magnetic field B =
0.1 T that is coupled to the leads acting as SE reservoirs
controlled by a source–drain bias. In figure 2(a), we show
the SE energy spectrum in the leads (red) as a function of
wavenumber q scaled by the effective magnetic length a−1

w .
The first subband, ny = 0, contributes to the propagating
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Figure 3. The net charging current IQ is plotted as a function of
plunger-gate voltage Vpg at time t = 220 ps in the case of no photon
cavity. Other parameters are B = 0.1 T and 1µ = 0.1 meV.

modes, while higher subbands contribute to the evanescent
modes. In addition, the chemical potential (green) is µL =

1.2 meV in the left lead and µR = 1.1 meV in the right lead,
implying the chemical potential difference 1µ = 0.1 meV.
Figure 2(b) shows the ME energy spectrum of the QD system,
in which the electron–electron interaction is included while
no electron–photon coupling has been introduced. Both the
energies of SE states Ne = 1 (1ES, red dots) and two-electron
states Ne = 2 (2ES, blue dots) vary linearly proportional
to the applied plunger-gate voltage Vpg, but with different
slopes. The two-electron states are located at relatively
higher energies due to the Coulomb repulsion effect in the
QD-embedded system.

The SE state energy is tunable as a function of
plunger-gate voltage Vpg following ESE(Vpg) = ESE(0) +
eVpg. We rank the SE and ME states by energy. In the
absence of a plunger-gate voltage, the lowest active SE
states in the central system are |4) and |5), with energies
E4(0) = 0.741 meV and E5(0) = 0.744 meV, respectively.
These two SE states may enter the chemical potential window
[µL, µR] = [1.1, 1.2]meV by tuning the plunger-gate voltage
to be Vpg ≈ [0.35, 0.45] mV. Consequently, the SE states
occupying the first subband in the left lead are allowed to
tunnel into the central ME system, resonantly tunneling from
the left to the right lead, manifesting a main-peak feature in
charging current IQ = 0.112 nA at Vpg = 0.4 mV, as shown
in figure 3.

In the following sections, we shall place the QD system in
a photon cavity with a single-photon mode. We shall analyze
the transient transport properties for the cases with linear
polarizations in either the x- or y-direction.

3.2. x-polarized photon mode

Here, we demonstrate how the QD embedded in a quantum
wire can be controlled by the plunger gate and how it
is influenced by the photon field, where the electric field
of the TE011 mode is polarized in the x-direction. The
initial condition of the system under investigation is an
empty central system (no electron) that is coupled to a
single-photon mode with one photon present, connected to
the leads with a source–drain bias. The MB energy spectrum

Figure 4. MB energy spectrum versus the plunger-gate voltage Vpg
in the case of an x-polarized photon field, where zero-electron states
(Ne = 0, green dots), single-electron states (Ne = 1, red dots), and
two-electron states (Ne = 2, blue dots) are included. Other
parameters are B = 0.1 T,1µ = 0.1 meV, and h̄ωph = 0.3 meV.

Figure 5. The net charging current IQ versus the plunger-gate
voltage Vpg in the case of an x-polarized photon field at time
t = 220 ps with different electron–photon coupling strengths:
gph = 0.1 meV (blue solid), gph = 0.2 meV (green dashed), and
gph = 0.3 meV (red dotted). Other parameters are h̄ωph = 0.3 meV,
1µ = 0.1 meV, and B = 0.1 T.

of the electron–photon interacting MB system is illustrated in
figure 4. As shown in the previous section, active states enter
the bias window around V0

pg = 0.4 mV in the case with no
photon cavity. It is interesting to note that additional active
states can be included around eVpg = eV0

pg ± h̄ωph, as is
clearly seen in figure 4, implying that the x-polarized photon
field induced active propagating states can be found around
Vpg = 0.1 and 0.7 mV when the photon energy is h̄ωph =

0.3 meV. The additional photon-induced propagating states
play an important role in enhancing the electron tunneling
from the leads to the QD system.

Figure 5 shows the net charging current IQ as a
function of the plunger-gate voltage Vpg in the presence
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Figure 6. The MB energy spectrum Eµ (dotted green), the mean electron number in the MB state |µ̆) (blue dashed line), and the mean
photon number Nph (red line) in the case of an x-polarized field: (a) Vpg = 0.4 meV and (b) Vpg = 0.7 meV. Other parameters are
B = 0.1 T,1µ = 0.1 meV, gph = 0.1 meV, h̄ωph = 0.3 meV.

of the x-polarized photon field at time t = 220 ps. We
fix the photon energy at h̄ωph = 0.3 meV and change the
electron–photon coupling strength gph. A main peak around
V0

pg = 0.4 mV is found, a robust left side peak around
eVpg = eV0

pg − h̄ωph is clearly shown, and a right side peak
around eVpg = eV0

pg+ h̄ωph can be barely recognized. The left
side peak exhibits photon-assisted transport feature from the
SE MB states |2̆0) and |2̆2) in the bias window by absorbing
a photon energy h̄ωph to the SE MB states |2̆6) and |2̆8)
above the bias window. However, the opposite photon-assisted
transport feature caused by a photon emission (the right side
peak) is significantly suppressed.

The main charge current peaks for Vpg = 0.4 mV are
IM
Q = 0.120, 0.173, and 0.270 nA corresponding to gph =

0.1 meV (blue solid), gph = 0.2 meV (green dashed), and
gph = 0.3 meV (red dotted), as shown in figure 5. Our results
demonstrate that the current carried by the electrons with
energy within the bias window can be strongly enhanced by
increasing the electron–photon coupling strength. At Vpg =

0.1 mV, the left side peaks in the charging current are IS
Q =

0.017, 0.072, and 0.103 nA, corresponding to gph = 0.1, 0.2,
and 0.3 meV. This implies that the electrons may absorb the
energy of a single photon and, hence, the charging current
manifests photon-assisted transport.

To identify the active MB states contributing to the
transient transport, we show the characteristics of the MB
states at Vpg = 0.4 and 0.1 meV in figures 6(a) and (b),
corresponding, respectively, to the main peak and the left
side peak in IQ shown in figure 5. More precisely, there
are five MB states contributing to the main peak in IQ at
Vpg = 0.4 meV. The five active MB states are: |1̆7) and
|1̆8), with energies E17 = 1.143 meV and E18 = 1.145 meV
in the bias window (Ne = 1,Nph = 0.04), |2̆1), |2̆3), with
energies E21 = 1.439 meV and E23 = 1.441 meV above the
bias window (Ne = 1,Nph = 0.96) shown in figure 6(a), and
|5̆3) with energy 2.488 meV (not shown). It is interesting to
notice that E17+ h̄ωph ∼= E21 and E18+ h̄ωph ∼= E23, implying
a photon-assisted transport through the higher MB states.

When an electron enters the QD system it interacts
with the photon in the cavity. Its energy is thus not in

resonance with the electron states in the bias window, but
with the electron states, photon replicas, which are with a
photon energy h̄ωph above the states in the bias window.
The photon-activated states above the bias window contain
approximately one more photon than the states in the bias
window and, hence, the main peak in IQ is mainly due to
a single-photon absorption mechanism. In addition to the
main-peak feature at the plunger-gate voltage VM

pg, two side
peaks can be recognized at eVS

pg = eVM
pg ± h̄ωph, induced

by photon-assisted transport, where the system satisfies
e1VMS

pg = e|VM
pg − VS

pg|
∼= h̄ωph. It has been pointed out

that this plunger-gate controlled photon-assisted transport is
repeatable with a period related to the Coulomb charging
energy [47].

Figure 6(b) shows how the left side peak in the net
charging current IQ shown previously in figure 5 is contributed
by the MB states. First, the left current IL = 0.001 nA and the
right current IR = −0.001 nA contributed by the |2̆0) and |2̆2)
MB states (green squared dot) containing Ne = 1 and Nph =

0.96 within the bias window are almost negligible, implying
the left side peak in IQ is not induced by the resonant tunneling
effect. Second, the |2̆4) and |2̆5) MB states (pink squared
dot) contain Ne = 1 and Nph = 0.04, with energies E24 =

1.376 meV and E25 = 1.379 meV above the bias window.
These two states contribute, respectively, to the charging
current I24 = 0.0 nA (IL,24 = 0.003 nA, IR,24 = −0.003 nA)
and I25 = 0.001 nA (IL,25 = 0.007 nA, IR,25 = −0.006 nA)
and, hence, generate a charging current Ic

Q = 0.001 nA. Third,

the |2̆6) and |2̆8) MB states (orange squared dot) contain
Ne = 1 and Nph = 1.96, with energies E26 = 1.435 meV and
E28 = 1.438 meV above the bias window. These two states
contribute, respectively, to the charging current I26 = 0.01 nA
(IL,26 = 0.010 nA, IR,26 = 0.0 nA) and I28 = 0.004 nA
(IL,28 = 0.005 nA, IR,28 = −0.001 nA) and, hence, generate
a photon-assisted tunneling current Iph

Q = 0.014 nA. The main
contribution of the left side peak in the charging current is then
IQ ≈ Ic

Q + Iph
Q = 0.015 nA, which coincides with the result

shown in figure 5.
The schematic diagram in figure 7 is shown to illustrate

the dynamical photon-assisted transport processes involved in
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Figure 7. Schematic representation of photon-activated resonance energy levels and electron transition by changing the plunger-gate
voltage Vpg at the main peak (a) and the left side peak (b) in figure 5. The QD system is embedded in a photocavity with a photon energy
h̄ωph and photon content Nph in each many-body state. The chemical potential difference is 1µ = µL − µR, and 0L,R is the coupling
strength between the QD system and the leads.

the formation of the main peak and the left side peak in the
net charging current IQ shown in figure 5. It is illustrated in
figure 7(a) that the transport mechanism forming the main
peak in IQ is mainly due to the photon-assisted tunneling to the
MB states above the bias window containing approximately a
single photon. Figure 7(b) represents the two main transport
mechanisms forming the left side peak in IQ. The electrons
in the left lead may absorb two photons to the MB states
containing approximately two photons above the bias window.
After that, the electrons may either perform resonant tunneling
to the right lead (red solid arrow) or undergo multiple inelastic
scattering by absorbing and emitting a photon energy h̄ωph in
the QD system (blue dashed arrow). This is the key result of
this paper.

To get better insight into the dynamical electronic
transport, the spatial distribution of the ME charge at t =
220 ps is shown in figure 8. Similar to the QD system in the
absence of the photon cavity, the ME charge distribution at
the main peak in IQ forms resonant peaks at the edges of the
QD, as shown figure 8(a), that are related to an antisymmetric
state in the QD. The partial occupation contributed by the
photon-activated resonant MB states |2̆1) and |2̆3) are 0.432e
and 0.454e, respectively. Comparing to the case with no
photon cavity, the slight enhancement in the ME charge
indicates that the tunneling of electrons into the QD system
becomes faster in the presence of the photon cavity and,
hence, the charging current is enhanced. It is shown in
figure 8(b) that the ME charge in the case of the side
peak in IQ manifests an extended SE state, which is formed
outside the QD. The partial occupations contributed by the
photon-activated resonant MB states |2̆4) and |2̆5) are 0.018e
and 0.025e, respectively. By increasing the photon energy
h̄ωph, the left side peak in IQ can be enhanced and is shifted to
lower energy (not shown). The slight asymmetry seen in the
charge distribution in figure 8(b) is caused by the x-polarized
electric field of the photons.

Figure 8. The spatial distribution of the many-electron charge
density of the QD system with an x-polarized photon field at time
220 ps corresponding to the main peak (a) and the left side peak (b)
for the case of gph = 0.1 meV shown in figure 5 (blue solid line).
Other parameters are h̄ωph = 0.3 meV,B = 0.1 T, aw = 23.8 nm,
Lx = 300 nm, and h̄�0 = 2.0 meV.

3.3. y-polarized photon mode

We consider here the TE101 y-polarized photon mode, where
the electric field of the photons is perpendicular to the
transport direction through the QD system. The QD system
is assumed initially to contain no electron Ne = 0, but
one photon in the cavity Nph = 1. Since our system is
considered to be anisotropic, elongated in the x-direction,
we shall demonstrate that the photon-assisted transport
effect is much weaker in the case of a y-polarized photon
mode in comparison with that of x-polarization discussed in
section 3.2.

In figure 9, we present the MB energy spectrum as
a function of plunger-gate voltage Vpg for a QD system
influenced by a y-polarized field with photon energy h̄ωph =

0.3 meV. Besides the propagating state at Vpg = 0.4 mV
within the bias window (green lines), there are two additional
electronic propagating states appearing at Vpg = 0.1 and
0.7 mV, caused by the presence of the photon field, as marked
by the square dots shown in the figure.

Figure 10 shows the net charging current in the case
of a y-polarized photon field, in which there is initially
one photon Nph = 1 with energy h̄ωph = 0.3 meV fixed
while the electron–photon coupling strength is changed. It
is seen that the main-peak currents at Vpg = 0.4 mV are:
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Figure 9. MB energy spectrum versus the plunger-gate voltage Vpg
in the case of a y-polarized photon field: zero-electron states Ne = 0
(green dots), single-electron states Ne = 1 (red dots), and
two-electron states Ne = 2 (blue dots). Other parameters are
B = 0.1 T,1µ = 0.1 meV, h̄�0 = 2.0 meV, h̄ωph = 0.3 meV, and
gph = 0.1.

IM
Q = 0.115 nA for gph = 0.1 meV (blue solid), IM

Q =

0.127 nA for gph = 0.2 meV (green dashed), and IM
Q =

0.159 nA for gph = 0.3 meV (red dotted). Moreover, a weak
left side-peak current at Vpg = 0.1 mV can be recognized:
IS
Q = 1.0 pA for gph = 0.1 meV, IS

Q = 1.7 pA for gph =

0.2 meV, and IS
Q = 3.2 pA for gph = 0.3 meV. We notice

that both the side- and main-peak currents are enhanced when
the electron–photon coupling strength is increased. In order
to get a better understanding of the current enhancement, we
repeat the analysis of the photon-activated MB energy states
contributing to the electronic transport.

In figure 11(a), we show the MB states at Vpg = 0.4 mV
and gph = 0.1. The active MB states are |1̆6) and |1̆8), with
energies 1.141 and 1.144 meV in the bias window (Nph = 0),
|2̆1) and |2̆3), with energies 1.441 and 1.444 meV above the
bias window (Nph = 1), and |5̆3) with energy 2.483 meV
(Nph = 1). It should be noticed that E16 + h̄ωph ∼= E21 and
E18 + h̄ωph ∼= E23, indicating that these two MB states above
the bias window are photon-activated states. Furthermore, the
higher active MB state with energy approximately the same as
the characteristic Coulomb energy, that is E53 ≈ EC, indicates
a correlation induced active two-electron state.

The net charging current at Vpg = 0.4 mV exhibiting
the main current peak in figure 10 at t = 220 ps is mainly
contributed by the MB states |2̆1) (IL,21 = 0.127 nA, IR,21 =

0.125 nA) and |2̆3) (IL,23 = −0.032 nA, IR,23 = −0.018 nA).
This indicates that the electrons in the left lead can absorb one
photon to the state |2̆1), then emit one photon, performing
resonant tunneling to the right lead and contributing to the

Figure 10. Net charging current versus the plunger-gate voltage
Vpg at time t = 220 ps in the case of a y-polarized photon field. The
electron–photon coupling is varied as: gph = 0.1 meV (blue solid),
gph = 0.2 meV (green dashed), and gph = 0.3 meV (red dotted).
Other parameters are h̄ωph = 0.3 meV,1µ = 0.1 meV, and
B = 0.1 T.

charging current I21 = 0.252 nA. Moreover, an opposite
transport mechanism can occur for the electrons in the right
lead through the state |2̆3), thus contributing to the charging
current I23 = −0.05 nA. The scattering processes through
these two states result in a photon-assisted tunneling current
Iph
Q = 0.202 nA. A small current through |5̆3) is found due

to the charging effect, namely IL = 0.002 nA and IR =

−0.087 nA, hence contributing to the charging current Ic
Q =

−0.085 nA due to the charging effect. The contribution to the
main peak in the charging current is therefore IQ ≈ Iph

Q + Ic
Q =

0.117 nA. This analysis is consistent with the result shown in
figure 10.

In figure 11(b), we show the MB states at Vpg = 0.1 mV
and gph = 0.1. The active MB states are: |2̆0) and |2̆2), with
energies E20 = 1.141 meV and E22 = 1.144 meV in the bias
window (Nph = 1); |2̆4) and |2̆5), with energies 1.368 and
1.371 meV above the bias window (Nph = 0); and |2̆7) and
|2̆9), with energies E27 = 1.441 meV and E29 = 1.444 meV
(Nph = 2). We notice that E20+ h̄ωph ∼= E27 and E22+ h̄ωph ∼=

E29. This implies that the two MB states |2̆7) and |2̆9) above
the bias window are photon-activated states.

In figure 10, the net charging current at Vpg = 0.1 mV
manifests a small side-peak current IS

Q = 1.0 pA at t = 220 ps.
This left side-peak structure in IQ is mainly contributed by
the MB states |2̆0) (IL = 1.1 pA, IR = −0.9 pA) and |2̆2)
(IL = 1.2 pA, IR = −0.9 pA) in the bias window. These
two states contribute to the resonant tunneling current, Ir

Q =

0.5 pA, which is related to the charge accumulation effect.
In addition, the states |2̆7) (I27 = 4 × 10−3 pA) and |2̆9)
(I29 = 2 × 10−3 pA) contribute to a very weak charging
current Iph

Q = 6 × 10−3 pA due to photon-assisted tunneling.
The contribution to the side-peak current is therefore IS

Q ≈

Ir
Q + Iph

Q = 0.51 pA. The suppression of the side-peak current
in the case of y-polarization is due to the anisotropy of our
system. The dipole momentum in the y-direction is much
smaller than in the x-direction, and so is the electron–photon
interaction strength.
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Figure 11. The many-body energy spectrum Eµ (dotted green), the mean electron number in the many-body state |µ̆) (blue dashed line),
the mean photon number Nph (red line) of the main peak Vpg = 0.4 meV (a), and the left side peak Vpg = 0.1 meV (b). The magnetic field is
B = 0.1 T, 1µ = 0.1 meV, gph = 0.1 meV, h̄ωph = 0.3 meV. In the case of a y-polarized photon field.

Figure 12. The spatial distribution of the ME charge density in the
case of a y-polarized photon field at time 220 ps: (a) Vpg = 0.4 mV
and (b) Vpg = 0.1 mV corresponding, respectively, to the main peak
and the left side peak in figure 10 (blue line, gph = 0.1 meV). Other
parameters are h̄ωph = 0.3 meV, B = 0.1 T, aw = 23.8 nm,
Lx = 300 nm, and h̄�0 = 2.0 meV.

The ME charge distribution in the presence of the
y-polarized photon mode is shown in figure 12. It is seen that
the main-peak current in figure 10 forms an elongated broad
bound state in the central system due to the electron–photon
interaction, as shown in figure 12(a). Moreover, the side-peak
current in figure 10 forms a photon-assisted resonant state at
the edges of the QD embedded in the quantum wire, as is
shown in figure 12(b). We notice that the charge distribution
maxima around x ≈ ±aw of the main peak in IQ at Vpg =

0.4 mV with gph = 0.1 meV are almost the same in the cases
without and with the photon mode. As a consequence, the
main-peak current IM

Q ' 0.1 nA for these cases. Furthermore,
the charging current maxima are located around x ≈ ±3aw in
the case of x-polarization and around x ≈ ±2aw in the case
of y-polarization. The charge distribution maxima in the case
of x-polarization are closer to the edges of the central system,
implying a higher left side-peak current at Vpg = 0.1 mV.

4. Concluding remarks

We have performed numerical calculations to investigate the
transient current and charge distribution of electrons through
a QD embedded in a finite wire coupled to a single-photon
mode with x- or y-polarization. A non-Markovian theory is
utilized, where we solve a generalized QME that includes the
electron–electron Coulomb interaction and electron–photon
coupling. Initially, we examined the case without a photon

cavity. In the short-time regime, the charging current exhibits
a significant charge accumulation effect. In the long-time
regime, the charging current is suppressed due to the Coulomb
blocking effect. Furthermore, we have analyzed the photon-
assisted current and the characteristics of photon-activated
MB states with various parameters coupled to a single-photon
mode in the photon cavity. The photon-assisted current peaks
are enhanced by increased electron–photon coupling strength.

In the case of a QD system coupled to an x-polarized
photon mode, the main current peak is enhanced by the
electron–photon coupling. The electrons may absorb a single
photon, manifesting a photon-assisted secondary peak which
also incorporates correlation effects. In the case of a QD
coupled to a y-polarized photon mode, the main current
peak is contributed to by two photon-activated single-electron
states and a correlation induced two-electron state. The
secondary peak current in the case of y-polarization is
suppressed due to the anisotropy of our system.

The cavity photon assisted or enhanced transport here
was attainable by selecting a narrow bias window in order to
facilitate the resonant placement and isolation of a spin-pair
of states with a single-electron component by the plunger gate
in the bias window. The bias window was kept in the lowest
part of the MB energy spectrum and the low photon energy
guarantees in most cases that only states close to this very
discrete part of the spectrum are relevant to the transport. This
is in contrast to our experience with a large bias window,
where the coupling to the cavity photons most often reduces
the charging of the central system [39, 46, 48].

Our proposed plunger-gate controlled transient current
in a single-photon mode influenced QD system should be
observable due to recent rapid progress of measurement
technology [49]. The realization of a single-photon influenced
QD device and the generation of plunger-gate controlled
transient transport may be useful in quantum computation
applications.
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a b s t r a c t

We present results on cavity-photon-assisted electron transport through two lateral quantum dots
embedded in a finite quantum wire. The double quantum dot system is weakly connected to two leads
and strongly coupled to a single quantized photon cavity mode with initially two linearly polarized
photons in the cavity. Including the full electron–photon interaction, the transient current controlled by
a plunger-gate in the central system is studied by using quantum master equation. Without a photon
cavity, two resonant current peaks are observed in the range selected for the plunger gate voltage: The
ground state peak, and the peak corresponding to the first-excited state. The current in the ground state
is higher than in the first-excited state due to their different symmetry. In a photon cavity with the
photon field polarized along or perpendicular to the transport direction, two extra side peaks are found,
namely, photon-replica of the ground state and photon-replica of the first-excited state. The side-peaks
are caused by photon-assisted electron transport, with multiphoton absorption processes for up to three
photons during an electron tunneling process. The inter-dot tunneling in the ground state can be
controlled by the photon cavity in the case of the photon field polarized along the transport direction.
The electron charge is delocalized from the dots by the photon cavity. Furthermore, the current in the
photon-induced side-peaks can be strongly enhanced by increasing the electron–photon coupling
strength for the case of photons polarized along the transport direction.

& 2014 Elsevier B.V. All rights reserved.

An opto-electronic device provides a different platform of
electron transport, namely photon-assisted transport (PAT) [1]. In
the PAT, the energy levels of an electronic system have to match to
photon frequency of a radiation source to control the electron
motion. Therefore, the photon emission and the photon absorption
processes play an essential role to enhance electron transport [2].
For that purpose, an electrostatic potential produced by a plunger-
gate is applied to the electronic system to shift its energy levels in
and out of resonance. The plunger-gate is widely used to control
charge current [3], thermal current [4], photo-current [5] and
spin-dependent current [6] for various quantized systems coupled
to photon radiation.

The PAT controlled by plunger-gate has been investigated to
study electrical [7] and optical [8,9] properties of a double-
quantum dot (DQD) system , in which the PAT can be used as a
spectroscopic tool in two different regimes defined by a zero [10],
and non-zero [11] bias voltage. At zero-bias voltage, the DQD

works as a proper electron pumping device in which the photon
absorption process leads to electron tunneling producing a dc
current. In the non-zero bias voltage, both the photon absorption
and the photon emission processes generate a dc current. Recently,
both regimes have been realized experimentally in a DQD system
at low temperature [12,13].

The most important application of a DQD system in the
quantum regime is intended for information storage in a quantum
state [14], quantum-bits for quantum computing [15,16], and
quantum information processing in two-state system [17]. Recent
experimental work has focused on using the two lowest energy
states contributing to tunneling processes in a DQD working as a
two state system: The ground state resonance, and a photon-
induced excited state resonance. They observed multiphoton
absorption processes up to the four-order contributing to the
electron transport [13].

Based on the above-mentioned considerations, we analyze PAT
in serial double quantum dots embedded in a quantum wire. The
DQD system is connected to two leads and coupled to a photon
cavity with linearly polarized photons in the x- and y-directions,
where the transport along the quantum wire is in the x-direction.
As will be seen in our results the essential difference from the
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more traditional modeling of photo assisted transport is the
presence of a photon cavity with few photons and the fact that
we will monitor the resonant transport in the transient regime
approaching a steady state regime for single-electron tunneling
processes.

A quantum master equation (QME) formalism is utilized to
investigate transient transport of electrons controlled by the
plunger-gate in the system without and with a single-photon
mode [3]. Generally, there are two types of QME when character-
ized according to memory effects, energy-dependent coupling,
and the system-leads coupling strength: The Markovian and the
non-Markovian QME. In the case of the Markovian approxima-
tion, the system-leads coupling is assumed weak and indepen-
dent of energy, memory effect are ignored and most commonly a
steady state is sought [18–21]. In the non-Markovian approach,
the system is energetically coupled to the leads including
memory effect in the system [22–24]. Since we are interested
in studying transient transport of electrons in a regime with
possible resonances, the non-Markovian model is used in our
system [25].

In addition, we assume the DQD system to be connected to the
leads through a non-zero or small bias window, where the two
lowest energy states of the QDQ system can be isolated in the bias
window: The ground state and the first-excited state. Our model of
the DQD system can be seen as a qubit. In which the states j0〉 and
j1〉 can be represented in terms of the ground state and the first-
excited state. We will show how the single-photon mode affects
the electron transport through both states when located in the
bias window and demonstrate the role of photon activated states
in the transient current. The double serial quantum dot is essential
here: The two lowest single-electron states of the dot molecule
have very different symmetry. The ground state has a symmetric
wavefunction, but the excited state has an antisymmetric one. The
conduction through the ground state is thus higher than through
the excited one. The “inter-dot tunneling” can be influenced by a
photon mode polarized in the transport direction, thus strongly
modifying the conduction through the photon replicas of the
states in a photon cavity. The nontrivial details of this picture will
be analyzed in this paper reminding us that the effects rely on the
geometry of the system and states beyond the ground state and
the first excited one.

The rest of the paper is organized as follows. In Section 1 we
introduce the model to describe the electron transport through a
DQD embedded in a quantum wire connected to two leads and a
photon cavity. Section 2 contains two subsections, the system
without and with the photon cavity. In the absence of the photon
cavity, the transient current through the system controlled by the
plunger-gate is demonstrated in the presence of the electron–
electron interactions in the DQD system. In the photon cavity, the
photon-assisted electron transport in the system is presented for a
system initially with no electron, but with two linearly polarized
photons in the single-photon mode. Finally, conclusions are
provided in Section 3.

1. Model and computational methods

The aim of this study is to model a photon-assisted electron
transport in a DQD system connected to two identical electron
reservoirs (lead) and coupled to a single photon mode in a cavity.
Our first step is to look at the central system, in which electrons
are confined in two dimensions. We assume a finite quantum wire
with hard-wall ends at x¼7Lx=2 with length Lx¼165 nm. It is
parabolically confined in the y-direction (perpendicular to the
transport direction) with transverse confinement energy
ℏΩ0 ¼ 2:0 meV. The embedded quantum dots are modeled by

two identical Gaussian potentials in the quantum wire defined as

VDQDðx; yÞ ¼ ∑
2

i ¼ 1
Viexp½�β2

i ððx�xiÞ2þy2Þ�; ð1Þ

with quantum-dot strength V1;2 ¼ �2:8 meV, x1 ¼ 35 nm,
x2 ¼ �35 nm, and β1;2 ¼ 5:0� 10�2 nm�1 such that the radius of
each quantum-dot is RQD � 20 nm. A sketch of the DQD system
under investigation is shown in Fig. 1. We should mention that the
distance between the dots is LDQD ¼ 35 nmC1:47aw , and each dot
is 25 nm¼ 1:05aw away from the nearest lead, where aw is the
effective magnetic length.

The DQD system is in a rectangular photon cavity with a single
photon mode. The photons in the single photon mode are linearly
polarized in the x- or y-directions, meaning that the photon
polarization in the cavity is assumed to be parallel or perpendi-
cular to the transport direction with respect to the electric field

Aph ¼ Aphðaþa†Þê; ð2Þ
where Aph is the amplitude of the photon vector potential, a†ðaÞ are
the creation (annihilation) operators for a photon, respectively,
and ê determines the polarization with

ê ¼
ðex;0Þ; TE011

ð0; eyÞ; TE101;

(

where TE011 (TE101) indicates the parallel (perpendicular) polar-
ized photon in the transport direction, respectively.

In the following sections, we shall couple the DQD system to
both the photon cavity and the leads.

1.1. DQD system coupled to cavity

We consider the closed DQD system to be strongly coupled to a
photon cavity. The many-body (MB) Hamiltonian

HS ¼HDQDþHCavityþHInt ð3Þ
consists of the Hamiltonian for the closed DQD system with the
electron–electron interaction HDQD, the free photon cavity Hamil-
tonian HCavity, and the Hamiltonian for the electron–photon inter-
action HInt.

The DQD system (and the external leads) is placed in an external
uniform perpendicular magnetic field Bẑ in the z-direction defining

an effective lateral confinement length aw ¼ ðℏ=mn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω2

c þΩ2
0Þ

q
Þ1=2,

where the effective electron mass is mn ¼ 0:067me for GaAs
material and ωc ¼ eB=mnc is the cyclotron frequency. The Hamilto-
nian for the DQD system in a magnetic field including the electron–
electron interaction can be written as

HDQD ¼∑
i;j
〈ψ i

���� π2
e

2mn
þVDQDþeVpg

� �����ψ j〉δi;jd
†
i dj

þHCoulþHZ; ð4Þ
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Fig. 1. Schematic diagram depicts the potential representing the DQD embedded in
a quantum wire with parameters B¼ 0:1 T, aw ¼ 23:8 nm, and ℏΩ0 ¼ 2:0 meV.
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where jψ i〉 stands for a single-electron (SE) states, Vpg is the plunger
gate potential that shifts the energy levels of the DQD system with

respect to the chemical potentials of the leads, d†i (dj) is an operator
that creates (annihilates) an electron in the DQD system, respec-
tively. Moreover, the canonical momentum is πe ¼ pþðe=cÞAext with
the kinetic momentum operator p, and the vector potential in the
Landau gauge Aext¼(0; �By;0). The electron–electron interaction in
the central system is given by

HCoul ¼
1
2
∑
ijrs
V ijrsd

†
i d

†
j dsdr ; ð5Þ

with the Coulomb matrix elements V ijrs [26]. The characteristic
Coulomb energy is EC ¼ e2=ð2εrawÞ � 2:44 meV at B¼0.1 T with
aw ¼ 23:8 nm and εr ¼ 12:4, the dielectric constant of GaAs. The
characteristic Coulomb energy is greater than the thermal energy of
the leads. An exact numerical diagonalization method is used here
for solving the Coulomb interacting many-electron (ME) Hamilto-
nian in a truncated Fock space to obtain the ME energy spectrum of
the DQD system [27]. The Zeeman Hamiltonian shown in the third
part of Eq. (4) describes the interaction between the external
magnetic field and the magnetic moment of an electron

HZ ¼ 7
gnμB

2
B; ð6Þ

where 7 stands for z-spin components, μB ¼ eℏ=2mec is the Bohr
magneton, and the effective Lande g-factor is gn ¼ �0:44 for GaAs.

In order to investigate photon-assisted electron transport in the
DQD system, the electronic system is coupled to a photon cavity.
The Hamiltonian of the free photon cavity is given by

HCavity ¼ ℏωphN̂ph; ð7Þ

where ℏωph is the energy of the single mode in the cavity, and
N̂ph ¼ a†a is the photon number operator. The interaction of the
single quantized electromagnetic mode with the electronic system
is described by the Hamiltonian including both the diamagnetic
and the paramagnetic interaction of photons and electrons

HInt ¼ gph∑
ij
d†i djgij aþa†

n o

þ
g2ph
ℏΩw

∑
i
d†i di N̂phþ

1
2
ða†a†þaaþ1Þ

� �
ð8Þ

herein, gph ¼ eAphΩwaw=c is the electron–photon coupling
strength, and gij are dimensionless electron–photon coupling
matrix elements [28].

Finally, the MB system Hamiltonian HS is diagonalized in a MB
Fock-space fj �α〉g to obtain the MB energy spectrum of the DQD
system coupled to the photon cavity [29]. The diagonalization
builds a new interacting MB state basis fj �νÞg, in which
j �νÞ ¼∑αWμαj �α〉 with Wμα being a unitary transformation matrix.
The unitary transformation is used to convert the QME and the
physical observables from non-interacting MB basis to the inter-
acting MB basis.

1.2. DQD system connected to leads

The DQD system is connected to two semi-infinite leads with
the same width. The chemical potential of the lead l is μl, with
lAfL;Rg being the left L and the right R lead. The Fermi function in
the isolated lead l before coupling to the central system is
f lðϵlðqÞÞ ¼ fexp½ϵlðqÞ�μl�þ1g�1, where ϵl is the SE subband energy
of the lead l (q is the momentum dummy index [3].) found from
the non-interacting ME Hamiltonian of lead l

Hl ¼
Z

dqϵlðqÞc†qlcql; ð9Þ

with c†ql (cql) the electron creation(annihilation) operator in lead l,
respectively [30].

In order to instigate electron transport between the subsys-
tems, the DQD system is coupled to the leads with energy
dependent coupling coefficients reflecting the geometry of the
system

Tqil ¼
Z

dr dr0ψqlðr0Þngqilðr; r0Þψ S
i ðrÞ: ð10Þ

An electron may be transferred from a state jq〉 with the wave-
function ψqlðr0Þ in the leads to a SE state ji〉 with the SE
wavefunction ψ S

i ðrÞ in the DQD system and vice versa, where the
coupling function is gqilðr; r0Þ [25]. The coupling coefficients are
utilized to construct a time-dependent coupling Hamiltonian in
the second quantization language

HTlðtÞ ¼ χ lðtÞ∑
i

Z
dq½c†qlTqildiþd†i ðTiqlÞncql�; ð11Þ

with a time-dependent switching function χ lðtÞ ¼ 1�2fexp½αl

ðt�t0Þ� þ1g�1 with αl ¼ 0:3 ps�1 being a switching parameter.
After the DQD system is coupled to the leads at t¼0, we

calculate the time evolution of the electrons and photons using the
density operator and its equation of motion, the Liouville-von
Neumann (Lv-N) equation iℏ _W ðtÞ ¼ HðtÞ;WðtÞ½ � for the whole
system. As this cannot be accomplished we resort to using a
projection formalism taking a trace over the Hilbert space of the
leads introducing the reduced density operator

ρðtÞ ¼ TrLTrRWðtÞ ð12Þ
with ρðt0Þ ¼ ρS [31] and the condition that Wðtot0Þ ¼ ρLρRρS is
the density operator of the total system before the coupling with
ρS being the density operator of the isolated DQD system [32]. The
density operator of the leads before the coupling is
ρl ¼ exp½�βðHl�μlNlÞ�=Trlfexp½�βðHl�μlNlÞ�g, where β¼ 1=kBTl

is the inverse thermal energy, and Nl is the number operator for
electrons in the lead l [30],

The time-dependent mean charge in the central system and the
current in the leads are calculated from the reduced density
operator as has been detailed in earlier publications [3,29].

We choose to explore the charging currents at time t¼220 ps.
At this time point the transport through the single-electron states
lying low in the energy spectrum has almost reached a steady
state in case of no photon cavity. This will not necessarily be the
case for the photon replicas of the states when the system is
placed in a cavity with strong coupling to the electrons, but we
still observe charging resonances into these states. We are thus
studying resonant transport through the central system in the
transient to the steady state regime. The charge is strictly con-
served in the total system, central system and leads, but not in the
central system in the transient regime. The central system is an
open system, weakly coupled to the leads.

2. Numerical results

In this section, we discuss the transport properties through the
DQD system controlled by plunger-gate voltage in both cases
without a photon cavity and with x- or y-polarized photons in a
cavity.

In order to obtain the PAT, the system has to satisfy the
following conditions: the MB energy level spacing has to be
greater than the thermal energy ΔEMB4kBT , and the MB energy
level spacing has to be smaller or equal to the photon energy
ΔEMBrℏωph [33]. Initially the temperature of the central system
is assumed to be T¼0 K, and the leads are at T¼0.01 K initially.
Other physical parameters of the system are presented in Table 1.
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In addition, we assume the external magnetic field to be
B¼0.1 T with the effective lateral confinement length aw¼23.8 nm
and initially no electron is in the DQD system.

2.1. The DQD system without a photon cavity

In this section, the properties of the electron transport through
the DQD system are presented in the absence of the photon cavity
in order to establish a comparison for later results for transport
through the system inside a cavity.

Fig. 2(a) shows the energy spectrum of the leads versus wave
number qaw. The horizontal black lines are chemical potentials of
the left lead μL and the right lead μR. The chemical potentials are
considered to be μL ¼ 1:4 meV and μR ¼ 1:3 meV, implying a small
bias voltage Δμ¼ 0:1 meV. Therefore, the first subband in the
parabolic energy spectrum becomes the most active subband
contributing to the electron transport process in the energy range
[1.3,1.4] meV.

In Fig. 2(b), the ME energy spectrum of the DQD-system as a
function of applied plunger-gate voltage Vpg is shown. The
energies of two-electron states Ne¼2 (2ES, blue dots) are higher
than the SE states Ne¼1 (1ES, red dots) due to the electron–
electron interaction. In the absence of the photon cavity, two
resonant SE states are situated in the bias window for the range of
plunger gate voltage selected here, namely, the ground state
resonance and first-excited state resonance (blue squared dots).

The almost degenerate two spin states of the single-electron
ground state are j2Þ and j3Þ with energies E2 ¼ 1:343 meV and
E3 ¼ 1:346 meV. These two states get into resonance with the first-
subband of the leads at VG

pg ¼ 1:2 mV, where the superscript G
refers to the ground state. By tuning the plunger-gate voltage, the
two spin states of the first-excited state j4Þ and j5Þ with energies
E4 ¼ 1:358 meV and E5 ¼ 1:361 meV contribute to the electron

transport at VFE
pg ¼ 0:8 mV, where the superscript FE stands for

the first-excited state.
Fig. 3 displays the left current IL (red solid) and the right

current IR (dashed blue) through the DQD system. We notice two
resonance peaks in the currents: The ground state peak at
VG
pg ¼ 1:2 mV and the first-excited state peak at VFE

pg ¼ 0:8 mV.
The reason for the two current peaks is resonance of the SE states
in the DQD system with the first subband energy of the leads. An
electron in the first-subband of the left lead may tunnel to the
state j2Þ or j3Þ of the DQD system and subsequently tunnel out to
the right lead. Consequently the ground state peak is observed at
VG
pg ¼ 1:2 mV. In addition, the first-excited state peak reflects a

resonance with the states j4Þ and j5Þ at plunger-gate potential
VFE
pg ¼ 0:8 mV.
Fig. 4 shows the charge density distribution in the DQD system

at time t¼220 ps (after the initial transient, close to a steady state)
in the ground state peak (a), and the first-excited state peak (b).

In the case of the ground state peak at VG
pg ¼ 1:2 mV, the

electron state accumulates in the dots with a strong inter-dot
tunneling. Therefore, the left and right currents increase in the
system. But in the case of first-excited state peak at VFE

pg ¼ 0:8 mV,
the electron state is strongly localized in the dots without much
tunneling between the dots. Thus the tunneling between the dots
is sufficiently suppressed and the current drops as shown in Fig. 3.

2.2. x-photon polarization (TE011 mode)

In this section we analyze the electron transport through the
DQD system in the presence of an x-polarized single-photon mode
with initially two photons in the cavity. The photons in the cavity
can excite electrons in the DQD system and enhance the electric
current, similar to the “classical” PAT case [11]. The condition for
PAT involving Nph photon(s) is jEi�Ef j ¼Nphℏωph [34], where Ei(Ef)

Table 1
Characteristic energy scales of the system.

Quantity Typical parameter

Thermal energy in leads (kBT) � 8:6� 10�4 meV
Characteristic Coulomb energy (EC) � 2:44 meV
Photon energy (ℏωph) ¼0.25 meV
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Fig. 2. Energy spectra in the case of no photon cavity with magnetic field B¼0.1 T.
(a) SE energy spectrum in the leads (red) is plotted as a function of scaled wave
number qaw , where the chemical potentials are μL ¼ 1:4 meV and μR ¼ 1:3 meV
(black). (b) ME energy spectrum in the central system as a function of plunger gate
voltage Vpg including SE states (1ES, red dots) and two electron states (2ES, blue
dots). The SE state in the bias window is almost doubly degenerate due to the small
Zeeman energy. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this paper.)
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is the highest possible initial (lowest possible final) MB energy
level of the DQD system, respectively [33]. We vary the applied
plunger-gate to match jEi�Ef j to the photon energy, thus the PAT
is an active process in the system.

Fig. 5 shows the MB energy spectrum of the DQD system
including the photons with zero-electron states Ne¼0 (0ES, green
dots) and SE states Ne¼1 (1ES, red dots).

In addition to the former states at VG
pg ¼ 1:2 mV and

VFE
pg ¼ 0:8 mV, two extra active MB-states are observed in the

presence of the photon cavity at eVGγ ;FEγ
pg ¼ eVG;FE

pg �ℏωph in the
bias window (pink squared dots), where the photon energy is
ℏωph ¼ 0:25 meV, and GγðFEγÞ stands for the photon-replica of the
ground state(first-excited state), respectively. We notice that all
states in the bias window are SE states containing only one-
electron Ne ¼ 1.

Fig. 6 displays the left current IL (a) and the right current IR
(b) as a function of the plunger-gate voltage Vpg in the presence of
the x-polarized photon field at time t¼220 ps for different
electron–photon coupling strength gph ¼ 0:1 meV (blue solid),
0.2 meV (green dashed), and 0.3 meV (red dotted). The positive
value of the left current indicates electrons tunneling from the left
lead to the DQD system, while the negative value of the right
current denotes electrons tunneling from the right lead to the DQD
system and vise versa.

In the absence of the photon cavity, two main-peaks are found
at VFEM

pg ¼ 0:8 mV and VGM
pg ¼ 1:2 mV as shown in Fig. 3. In the

presence of the photon cavity, two extra side-peaks at
eVGS;FES

pg ¼ eVGM;FEM
pg �ℏωph are observed in addition to the original

main-peaks at VGM;FEM
pg . The superscripts GM(FEM) refers to the

ground states(first-excited state) main-peak, respectively, and GS
(FES) stands for photon-induced ground state(first-excited state)
side-peak, respectively.

The side-peaks indicate the PAT, where the system satisfies
ejVGM;FEM

pg �VGS;FES
pg jffiℏωph [33]. The two new side-peaks at

VGS
pg ¼ 0:95 mV and VFES

pg ¼ 0:55 mV shown in Fig. 6 are caused by
photon-replica of the ground state and photon-replica of the first-
excited state, respectively. We find that the separation of the
photon replica side-peaks from the original main-peaks corre-
sponds to the photon energy.

It should be noted that the current in the photon-induced side-
peaks is strongly enhanced by increasing the electron–photon

coupling strength. Thus the photon-induced side-peaks exhibits a
PAT process with different photon absorption mechanisms from
the main-peaks.

In order to show the dynamics of the PAT process involved in
the formation of the photon-induced side-peaks in the left and
right current shown in Fig. 6, we schematically present the photon
absorption process in Fig. 7.

Fig. 7(a) demonstrates the tunneling processes forming the FES
at VFES

pg ¼ 0:55 mV. The electron from the left or the right lead
absorbs two photons and is transferred to the MB states containing
two photons Nph ¼ 2 (red solid arrows) situated above the bias
window with photon energy ℏωph. The electron tunneling process
in the states containing one photon Nph ¼ 1 (blue dashed arrows)
and three photons Nph ¼ 3 (green dashed arrows) is very weak.
Fig. 7(b) shows the dynamical mechanism that makes the GS at
VGS
pg ¼ 0:95 mV. In addition to the electron tunneling in the state

containing two photons Nph ¼ 2 (red solid arrows), the tunneling
process in one photon state Nph ¼ 1 (blue solid arrows) and three
photons Nph ¼ 3 states (green solid arrows) becomes active. The
tunneling mechanism here is a multiphoton absorption process
with up to three photons with a strong inter-dot tunneling. In
which the electron is scattered between one, two, and three
photon(s) states by absorbing and emitting photon energy
Nph � ℏωph. The two photons state here has a shorter lifetime
than the two photons' states in the FES, because whenever an
electron from the left lead tunnels into the two photon states in
the DQD system it subsequently directly tunnels out to the
right lead.
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To further illustrate the characteristics of the most active MB
states in the tunneling process forming the two main current
peaks and the two side current peaks in Fig. 6, we present Fig. 8
which shows the characteristics of the MB states at plunger-gate
voltage VFES

pg ¼ 0:55 mV (a), VFEM
pg ¼ 0:8 mV (b), VGS

pg ¼ 0:95 mV (c),
and VGM

pg ¼ 1:2 mV (d) in the case of gph ¼ 0:1 meV.
Fig. 8(a) indicates how the FES is contributed to by the MB

states at VFES
pg ¼ 0:55 mV. Since there are two photons initially in

the cavity, we shall seek the MB-states that contain one, two, and
three photon(s), to observe multiple inelastic electron scattering in
the states of DQD system at the side-peaks [2]. Here, we focus on
six MB states, two inactive MB states j �15Þ and j �16Þ in the bias
window (blue squared dot) with Nph ¼ 1:052 in each state and the
energies E15 ¼ 1:364 meV and E16 ¼ 1:366 meV. There are four MB
states above the bias window: Two photon-activated states j �20Þ
and j �21Þ (red squared dot) with Nph ¼ 2:073 in each state and

energies E20 ¼ 1:616 meV and E21 ¼ 1:618 meV, and two more MB
states j �25Þ and j �26Þ (green squared dot) with Nph ¼ 3:094 in each
state and energies E25 ¼ 1:867 meV and E26 ¼ 1:870 meV. We
clearly see that the energy difference between the inactive states
and the photon-activated states is appropriately equal to the
ðNph;ac�Nph;inÞ � ℏωph, where Nph;ac and Nph;in are the photon
number in the photon-activated states and the inactive states,
respectively. We observe that the electrons can undergo the
following possible tunneling process: An electron from either
lead may absorb two photons from the cavity being trans-
ferred to two photons' states j �20Þ and j �21Þ with absorption
energy E20�E15 ¼ ðNph;20�Nph;15Þ � ℏωphC0:252 meV or E21�E16
¼ ðNph;21�Nph;16Þ � ℏωphC0:252 meV which is approximately
equal to the energy required to transfer an electron from the leads
to two photons' states as schematically shown in Fig. 7(a). There-
fore, the two photon absorption mechanism dominates here
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without making electron inelastic scattering to the one and three
photon states. The electron tunneling process from the leads to the
DQD system suggests that the electrons are collected in either
individual dot.

Fig. 8(b) shows the MB states of the first-excited state main-peak at
VFEM
pg ¼ 0:8 mV. There are two inactive states j �11Þ and j �12Þ (blue

squared dot) with energies E11 ¼ 1:362 meV and E12 ¼ 1:364 meV in
the bias window (Ne¼1, Nph ¼ 0:029) and two photon-activated states
j �21Þ, and j �22Þ (red squared dot) with energies E21 ¼ 1:866 meV
and E22 ¼ 1:868 meV above the bias window (Ne¼1, Nph ¼ 2:073).
The photon-activated states that contain two photons are
responsible for the electron transport with energy values E21�E11ffi
ðNph;21�Nph;11Þ � ℏωphffi0:504 meV or E22�E12ffiðNph;22�Nph;12Þ�
ℏωphffi0:504 meV.

Fig. 8(c) demonstrates the MB states that participate in the
electron transport in the GS at VGS

pg ¼ 0:95 mV. The electron transport
mechanism here is different from the one for the FES. The contribu-
tions to the GS is by the following significant MB states: Two active
MB states j �9Þ and j �10Þ (blue squared dot) containing Nph ¼ 0:976
with energies E9 ¼ 1:342 meV and E10 ¼ 1:344 meV are located in
the bias window, two photon-activated states j �14Þ and j �15Þ (red
squared dot) have Nph ¼ 1:95 above the bias window with energies
E14 ¼ 1:5901 meV and E15 ¼ 1:5902 meV, and two more photon-
activated states j �19Þ and j �20Þ (green squared dot) contain Nph ¼ 2:93
with energies E19 ¼ 1:838 meV and E20 ¼ 1:840 meV. Significantly,
these six MB states participate in the electron transport with the
following important photon absorption processes with inter-dot
tunneling as schematically shown previously in Fig. 7(b): (1) Electron
from either lead absorbs one photon tunneling to the one photon
states j �9Þ and j �10Þ. (2) An electron from the left lead absorbs two
photons and is transferred to two photons' states j �14Þ and j �15Þ with
absorption energy E14�E9 ¼ ðNph;14�Nph;9Þ � ℏωphC0:248 meV or
E15�E10 ¼ ðNph;15�Nph;10Þ � ℏωphC0:247 meV which is approxi-
mately equal to the energy required to transfer electron from
one photon state to two photons' states, then the electron tunnels
to the right lead emitting photons. (3) Absorbing three photons, an
electron from either the left lead or the right lead trans-
fers to three photons states j �19Þ and j �20Þ with energy
E19�E9 ¼ ðNph;19�Nph;9Þ � ℏωphC0:496 meV or E20�E10 ¼ ðNph;20

�Nph;10Þ � ℏωphC0:496 meV that is approximately the energy
amount needed to transfer an electron to a three photons' state.
The tunneling processes from the leads to the DQD system and all
activated six-MB states suggest that the electrons perform multiple
scattering absorption and emission processes between the states in
each individual dot with inter-dot tunneling. These possible tunnel-
ing processes indicate to us that the existence of the FES is caused by
multiphoton absorption processes with up to three photons. In
addition, we should mention that the tunneling process from the
left lead to two photon states in the DQD system and the tunnel out
to the right lead decreases the dwell time of electron in the central
system, while the dwell time of electron in the FES was longer due to
charge accumulation in the DQD system.

Fig. 8(d) demonstrates the MB states of the ground state main-
peak at VGM

pg ¼ 1:2 mV. Four MB states are also important here, two
inactive states j �7Þ and j �8Þ (blue squared dot) with energies
E7 ¼ 1:344 meV and E8 ¼ 1:346 meV in the bias window (Ne¼1,
Nph ¼ 0:029) and two photon-activated states j �15Þ and j �16Þ (red
squared dot) with energies E15 ¼ 1:840 meV and E16 ¼ 1:842 meV
above the bias window (Ne¼1, Nph ¼ 1:951). The energy difference
between photon-activated states above the bias window and the
inactive states in the bias window satisfies the same rule of the
FEM, such that E15�E7ffiðNph;15�Nph;7Þ � ℏωphffi0:496 meV and
E16�E8ffiðNph;16�Nph;8Þ � ℏωphffi0:496 meV.

These results suggest that each photon-activated state above
the bias window has two more photons than the inactive states in
the bias window at both the main peaks. When an electron from

the left lead tunnels to the DQD system it absorbs (or forms a
quasi-particle with) two photons from the cavity and is transferred
to the photon-activated states above the bias window, then it
tunnels to the right lead. Therefore, both main-peaks are caused
by two photons absorption processes in the transport.

Observing all these photon activated processes it is important
to have in mind that the fact that we retained the dia- and the
paramagnetic parts of the electron–photon interaction (Eq. (8))
thus allowing for a broader range of transitions possibilities than
only the paramagnetic term describes.

Fig. 9 indicates the charge density distribution in the
DQD system with x-polarized photon field at plunger-gate

VFES
pg ¼ 0:55 mV (a), VFEM

pg ¼ 0:8 mV (b), VGS
pg ¼ 0:95 mV (c), and

VGM
pg ¼ 1:2 mV (d) of Fig. 6 at time t¼220 ps and gph ¼ 0:1 meV.

In the FES at VFES
pg ¼ 0:55 mV, the electron charge density forms

two peaks which are strongly localized in the dots without inter-
dot tunneling shown in Fig. 9(a), thus the electron dwell time is
increased and the electrons stay longer time in the DQD system.

In the case of VFEM
pg ¼ 0:8 mV, the electrons are accumulated in

the dots with a weak inter-dot tunneling. Comparing to the case
with no photon cavity Fig. 4(a), a slight inter-dot tunneling is
observed indicating charge polarization between the dots. As a
result, the electron charge density is slightly enhanced in the x-
polarized photon field, but more importantly it is also slightly
delocalized resulting in a higher conductance through the serial
dot molecule.

In the GS at VGS
pg ¼ 0:95 mV, the electron charge density is

enhanced and exhibits charge accumulation in the dots with a
very strong inter-dot tunneling shown in Fig. 9(c) which decreases
the electron dwell time in the DQD-system. This is the reason why
the current in the GS is relatively higher than the current in FES.

In the case of VGM
pg ¼ 1:2 mV, the electron–photon interactions

do not have a big effect on the charge density distribution, the
charge distribution of the dots is already overlapping.

2.3. y-photon polarization (TE101 mode)

In this section, we assume the photon-cavity is linearly polar-
ized in the y-direction with photon energy ℏωph ¼ 0:25 meV and
initially two photons in the single photon mode. The MB energy
spectrum of the DQD-system in the y-polarization is very similar
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Fig. 9. The charge density distribution of the DQD system with x-polarized photon
field at time 220 ps corresponding to (a) photon-induced first-excited side-peak
VFES
pg ¼ 0:55 mV, (b) first-excited main-peak VFEM

pg ¼ 0:8 mV, (c) photon-induced
ground-state side-peak VGS

pg ¼ 0:95 mV, and (d) ground-state main-peak
VGM
pg ¼ 1:2 mV of Fig. 6. for the case of gph ¼ 0:1 meV (blue solid line). Other

parameters are ℏωph ¼ 0:25 meV, B¼0.1 T, aw ¼ 23:8 nm, Lx ¼ 300 nm, and
ℏΩ0 ¼ 2:0 meV. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this paper.)
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to that in the x-polarization photon mode as shown in Fig. 5. Two
extra MB states are observed with the spin states of the ground
state and first-excited state in the bias window, the extra MB
states indicate the photon-replica states in the presence of the
photon cavity.

Fig. 10 shows the left current (a) and the right current (b) at
time t¼220 ps for different electron–photon coupling strength
gph ¼ 0:1 meV, (blue solid), 0.2 meV (green dashed), and 0.3 meV
(red dotted). Similar to the x-polarized photon field, two extra

photon-induced side-peaks at VFES
pg ¼ 0:55 mV and VGS

pg ¼ 0:95 mV

are observed with the main-peaks at VFEM
pg ¼ 0:8 mV VGM

pg ¼ 1:2 mV.
A very weak current enhancement in the photon-induced side-
peaks is predicted by increasing the electron–photon coupling
strength, while the current enhancement in the photon-induced
side-peaks is very strong in the x-polarized photon field shown in
Fig. 6. The weaker effects for the y-polarization are expected since
the photon energy is farther from resonance for states describing
motion in that direction, i.e. the confinement energy in the
y-direction is much higher.

The characteristics of the MB states in the bias window and
above the bias window in the y-polarized photon field are very
similar to that in the x-direction shown in Fig. 8. The main-peaks
and the photon-induced side-peaks in the y-polarized photon are
contributed to by almost the same absorption processes of the
x-polarized photon.

Fig. 11 demonstrates the charge density distribution in the
DQD system in the case of y-polarized photon field at plunger-gate
voltage VFES

pg ¼ 0:55 mV FES (a), VFEM
pg ¼ 0:8 mV FEM (b),

VGS
pg ¼ 0:95 mV GS (c), and VGM

pg ¼ 1:2 mV GM (d) shown in
Fig. 10, at time t¼220 ps and gph ¼ 0:1 meV.

In the case of VFES
pg ¼ 0:55 mV (FES), the electrons are strongly

localized in the dots with no electron tunneling from the left-dot
to the right-dot.

In FEM at VFEM
pg ¼ 0:8 mV, the electron makes a resonance state

localized in each dot without inter-dot tunneling, while a weak
inter-dot tunneling was observed in the x-polarized photon field
at FEM shown in Fig. 9(b). Therefore, the electron dwell time in
the DQD system in y-polarized photon is longer than that in the
x-polarized photon at FEM.

But at VGS
pg ¼ 0:95 mV (GS), the inter-dot tunneling is very

strong and electrons prefer to make inelastic multiple scattering
in each dot with inter-dot tunneling.

In GM at VGM
pg ¼ 1:2 mV, the electrons form a state accumulated

in the dots with a strong electron tunneling between the dots
similar to the charge density distribution in the x-polarization
shown in Fig. 9(d). Thus, the current in the GM is higher than that
in the FES.

3. Conclusions

We have demonstrated a plunger-gate controlled photon-
assisted transient electronic transport through a DQD system that
is placed in a photon cavity with initially two linearly polarized
photons. The serial double quantum dot molecule is important
since the two lowest states of it have very different properties
reflecting the fact that the wavefunction of one is symmetric, but
antisymmetric of the other.

We analyzed the electron transport through the system with-
out and with a photon cavity by using a non-Markovian QME
formalism. In the absence of a photon cavity, two current peaks
were found: Ground state peak and a peak due to the first-excited
state, originating from resonance energy levels of the DQD system
with the first-subband energy of the leads. These two states could
be used for a qubit in a quantum computer, in which the ground
state resonance exhibits a strong inter-dot electron tunneling
while the electrons in the first-excited state resonance form a
state localized in each dot.

In the presence of either longitudinally or transversely polar-
ized cavity photon field, two extra side-peaks are found: A peak
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due to the photon-replica of the ground state, and a photon replica
of the first-excited state. The appearance of side-peaks is due to
PAT of electrons in the DQD system. The characteristics of the
photon activated MB states have been used to analyze the nature
of the PAT. The peak due to the photon-replica of ground state is
caused by multiphoton absorption processes with up to three
photons. In the peak caused by the photon replica of the first-
excited state, the electrons in the leads are transferred to two-
photons states in the DQD system accumulation charge in the
individual dots without inter-dot tunneling. Furthermore, the
current in the photon-induced side-peaks is strongly enhanced
by increasing electron–photon coupling strength in the x-polar-
ized of the photon field, while a very slightly enhancement in the
photon-induced side-peak current was observed in the y-polar-
ization photon. This discrepancy between the polarizations is
explained by the anisotropy of the confinement of the central
system.

Change in the photon–electron coupling strength alters the
inter-dot tunneling sensitively, altering the conduction through
the system. To describe this effect properly it is important to
include many higher energy states in the system. Along the similar
line of thought our calculations show that in the present system
photon processes of more than one photon are important.

The fact that we include both the para- and diamagnetic terms
in the electron–photon interaction leads to complex photon–
electron processes that all contribute to the PAT resonance peaks
observed. This has to be viewed in light of the common practice to
use only the paramagnetic part in two-level systems in order to
calculate PAT phenomena. In many systems the geometry matters,
and the both parts of the interaction can be important for strong
enough coupling.
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We study a cavity-photon-switched coherent electron transport in a symmetric double quantum

waveguide. The waveguide system is weakly connected to two electron reservoirs, but strongly

coupled to a single quantized photon cavity mode. A coupling window is placed between the

waveguides to allow electron interference or inter-waveguide transport. The transient electron

transport in the system is investigated using a quantum master equation. We present a cavity-photon

tunable semiconductor quantum waveguide implementation of an inverter quantum gate, in which

the output of the waveguide system may be selected via the selection of an appropriate photon

number or “photon frequency” of the cavity. In addition, the importance of the photon polarization

in the cavity, that is, either parallel or perpendicular to the direction of electron propagation in the

waveguide system is demonstrated. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4904907]

I. INTRODUCTION

In quantum information technology, researchers seek

quantum storage devices to develop a quantum computer, in

which a qubit is used as an elementary unit for encoding

information. In practice, several systems have been sug-

gested to build a qubit. Among many based on semiconduc-

tors promising are, for example, double quantum dots1 and

double quantum waveguides (DQW).2

A semiconductor waveguide can be defined as a quan-

tum wire conserving the phase coherence of electrons in the

system at low temperature.3 Two parallel quantum wave-

guides separated by an electrostatic potential barrier and

coupled via a coupling region or a window to facilitate an

interference between the waveguides, may be one of the can-

didates to construct a qubit.4,5 The characteristics of the

transport of electrons through the double waveguide system

determines possible quantum logic operations.6 A Not-

operation is realized if an electron switches from the first

waveguide to the second waveguide,7 and a square-root-of-

Not-operation ð
ffiffiffiffiffiffiffiffiffiffi
NOT
p

Þ is formed if the electron wave splits

equally between the waveguides.8

Several proposals have been suggested to control the

electron motion in a waveguide system that provides the

qubit operation such as: Magnetic switching, an external

magnetic field can be used to transfer an electron wave

between two asymmetric waveguides;9 Electrostatic poten-

tial switching, the coupling window (CW) can be defined by

a saddle potential that washes out fluctuation resonance

peaks and increases the speed of electron switching proc-

esses between the waveguides;10 A single quantum dot close

to the coupling window has been considered to enhance

electron inter-waveguide transport in a Coulomb blockade

regime;11 and Electron switching by using acoustic waves.12

There are still non-trivial aspects that need to be investi-

gated concerning the control of electron switching in a DQW

system for implementing an action of a quantum logic gate.

In this work, we show how a cavity-photon can implement a

quantum logic gate action in a single semiconductor qubit

that is embedded in a photon cavity with a single quantum

mode. A qubit system can be constructed from a coupled

double semiconductor waveguide. Our DQW system consists

of symmetric control- and target-waveguides with a window

is placed between them to facilitate inter-waveguide trans-

port. The DQW is weakly connected to two leads with asym-

metric coupling, where the left lead is coupled only to the

control-waveguide while the right lead is connected to both

the control- and the target-waveguide. The DQW system is

in a photon cavity, in which the photons can be polarized

parallel (x-direction) or perpendicular (y-direction) to the

direction of electron propagation with a fixed electron-

photon coupling strength. A non-Markovian quantum master

equation (QME) is used to explore the electron transport

through the DQW system caused by a bias between the

external leads.13,14

In the absence of a photon cavity, we observe oscilla-

tions in the charge current by varying the length of the CW.

The oscillations are caused by inter-waveguide transport due

to interference of states between the guides. In the presence

of the photon cavity, the current oscillations are affected by

the photon polarization, the number of photons, and the

photon frequency as these cavity parameters influence the

interference between the states in the waveguide system.

Therefore, the electron motion can be manipulated to imple-

ment a quantum logic gate action by the cavity photon. In

the x-polarized photon field, a
ffiffiffiffiffiffiffiffiffiffi
NOT
p

-operation and a NOT-

operation quantum logic gates are obtained by tuning the

a)Electronic mail: nra1@hi.is
b)Electronic mail: vidar@raunvis.hi.is
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photon number in the cavity. For the y-polarized photon

field, electron-switching process can be accomplished if the

energy of “absorbed photon(s)” is equal or greater than the

confinement energy of electron in that direction in the wave-

guide system. The many-body (MB) cavity-photon-switch-

ing is of importance as yet another mechanism to implement

quantum logic gate operations in a semiconductor qubit.

The paper is organized as follows: In Sec. II, we present

the model describing the window-coupled double waveguide

system based on the QME approach. Section III presents our

numerical results and discussion. Concluding remarks are

addressed in Sec. IV.

II. MODEL AND THEORETICAL METHOD

We model a two dimensional symmetric double quan-

tum wire in a perpendicular magnetic field. The double

waveguide system is placed in a photon cavity, as schemati-

cally shown in Fig. 1(a). The waveguide system is connected

to two external leads with different chemical potentials ll,

where l refers to the left (L) or the right (R) lead, respec-

tively. The DQW system consists of a control- and a target-

waveguide with the same width providing a symmetric

double waveguide system. A window is placed between the

waveguides with length LCW (red arrow) to facilitate inter-

waveguide transport. The DQW and the leads are exposed to

an external magnetic field B in the z-direction. The total

system is designed such that the electrons in the left lead are

only injected into the control-waveguide (blue dashed

arrow).

Figure 1(b) shows the DQW potential whose dimensions

are characterized by the effective magnetic length aw. The

DQW system has a hard-wall confinement in x-direction at

x ¼ 6Lx=2, where Lx is the length of the waveguide system

and parabolic confinement in the y-direction with,

VcðyÞ ¼ 1
2

m�X2
0y2, where �hX0 is the characteristic energy.

The DQW potential is described as

VDQWðrÞ ¼ VB expð�b2
0y2Þ þ VCW expð�b2

xx2 � b2
yy2Þ: (1)

The first term of Eq. (1) represents a potential barrier

between the quantum waveguide with VB ¼ 18:0 meV and

b0¼ 0.03 nm�1. The second term defines the potential of the

CW with VCW ¼ �18:0 meV and by¼ 0.03 nm�1 implying a

barrier width WB ’ 66:5 nm for the first subband. The CW

length can be estimated as LCW ¼ 2=bx and which influences

the electron transport between the waveguides. The effective

magnetic length, aw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=ðm�XwÞ

p
, with X2

w ¼ X2
0

þðeB=m�Þ2, here essentially the natural length scale of the

y-confinement, due to the low magnetic field B, serves as a

natural length scale to refer all other lengths to.

A. DQW coupled to cavity

Now, we demonstrate how the DQW system is coupled

to the photon cavity. The Hamiltonian of the system can be

described by a MB Hamiltonian that describes the DQW and

the photon cavity. The MB Hamiltonian consists of the

electronic DQW including electron-electron interaction, the

photon cavity, and the interaction between the DQW and

the photon cavity. The Hamiltonian of the total system can

be written as15

HS ¼
X
n;n0
hwn j

pe þ
e

c
Aph

� �2

2m�
þ VDQW

2
64

3
75
jwn0 id†

ndn0

þ 1

2

X
nn0

mm0

VCoulð Þnn0;m0md†
nd†

n0dmdm0

þ �hxpha†aþ gph

X
n;n0

d†
ndn0 gnn0 aþ a†f g

þ
g2

ph

�hXw

X
n

d†
ndn N̂ph þ

1

2
a†a† þ aaþ 1ð Þ

� �
: (2)

The first term of Eq. (2) describes the DQW system without

the electron-electron interaction, where jwi is a single-

electron SE state, m* is the effective mass of an electron, e is

the electron charge, and d†
n and dn0 are the electron creation

and annihilation operators, respectively. In addition,

pe ¼ pþ e
c Aext, where p is the momentum operator, Aext is

the vector potential for the static magnetic field which can be

FIG. 1. (a) Schematic of DQW coupled to a photon cavity, connected to the

left lead with chemical potential lL and the right lead with chemical poten-

tial lR in an external magnetic field B. A coupling window is placed

between the control- and the target-waveguide with a length LCW (red

arrow). The electrons from the left lead only enter the control waveguide

(blue arrow). (b) The potential defines the double waveguide system with a

coupling window between the control- and target-waveguide. All lengths are

characterized by the effective magnetic length aw. The physical parameters

are B¼ 0.001 T, aw ¼ 33:72 nm, LCW ¼ 100 nm, and �hX0 ¼ 1:0 meV.
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defined as Aext ¼ ð0;�By; 0Þ, and Aph is the photon vector

potential that can be introduced as

Aph ¼ Aphðaþ a†Þê ; (3)

wherein, Aph is the amplitude of the photon field and ê is the

unit vector that determines the direction of the photon polar-

ization either parallel (ex) in a TE011 mode or perpendicular

(ey) in a TE101 mode to the transport direction. In the second

term of Eq. (2), the Coulomb interacting electron

Hamiltonian is shown with the Coulomb matrix elements in

the SE state basis ðVCoulÞnn0;m0m.14 The third term of Eq. (2)

denotes the free photon field, where �hxph is the quantized

photon energy and a†ðaÞ is the operator of photon creation

(annihilation), respectively. In Eq. (2), the para-magnetic

(gph-term) and the dia-magnetic (g2
ph-term) of the electron-

photon interaction are presented, in which gph ¼ eAphXwaw=c
is the electron-photon coupling, gnn0 are the dimensionless

electron-photon coupling tensor elements,15 and N̂ph ¼ a†a is

the photon number operator.

In our calculations, we include both the para- and the

dia-magnetic interaction terms which lead to more complex

photon-electron interaction processes than are present in the

resonant two-level Jaynes-Cummings model, where only the

paramagnetic term is taken into account.16 In addition, we

use exact diagonalization (configuration interaction) includ-

ing many levels to treat the electron-electron Coulomb

interaction and the electron-photon interaction17–19 without

resorting to the rotating wave approximation.20,21

B. Transport formalism

Our model for the calculation of time dependent proper-

ties of transport through an open system requires a coupling

to electron reservoirs. Here, we show how the central system

is connected to the leads via coupling regions. Later in this

section, a time-dependent formalism will be presented to

investigate the electron transport in the system.

The total Hamiltonian of the system describing the

waveguide system, the leads, and the coupling between the

DQW and the leads can be written as13

HðtÞ ¼HS þ
X

l¼L;R

ð
dq �lðqÞcl

q
†cl

q

þ
X

l¼L;R

vlðtÞ
X

n

ð
dq ½cl

q
†Tl

qndn þ d†
nðTl

nqÞ
�cl

q�; (4)

where HS indicates the Hamiltonian of the DQW system

coupled to the photon cavity, as shown in Eq. (2). The sec-

ond term of the Hamiltonian describes the lth lead with q

being the dummy index representing the momentum of the

standing electron waves in the semi-infinite leads and their

subband number,14 �lðqÞ being the single-electron energy

spectrum in the lead l, and cl
q

† ðcl
qÞ being the electron crea-

tion (annihilation) operators, respectively. The last term of

the Hamiltonian demonstrates the time-dependent coupling

between the DQW and the leads describing a transfer of an

electron between a single-electron state of the central system

jni and a single-electron energy state of the leads jqi through

a coupling tensor13

Tl
qn ¼

ð
drdr0wl

qðr0Þ
�gl

qnðr; r0ÞwS
nðrÞ; (5)

with wS
nðrÞ ðwl

qðr0ÞÞ being a single-electron wave function of

the DQW system (leads). In addition, vlðtÞ is a time-

dependent function defining the onset of the coupling, and

gl
qnðr; r0Þ ¼gl

0 exp ½�dl
xðx� x0Þ2 � dl

yðy� y0 � aÞ2�
� exp ð�Dl

nðqÞ=DÞ (6)

is a nonlocal coupling, where g0 is the coupling strength, dl
x

and dl
y are the coupling parameters that control the range of

the coupling in the x- and y-direction, respectively, Dl
nðqÞ ¼

jEn � �lðqÞj and D adjust the energy overlap of lead and

DQW states and wavefunctions in the contact region,13 and

a is a skewing parameter that shifts the weight of the cou-

pling from the left lead to the control-waveguide.

We use a non-Markovian QME formalism to calculate

the electron transport from the left lead to the right lead

through the DQW system.22 The QME approach describing

the time-dependent electron transport can be obtained from

quantum Liouville-von Neumann equation23

_q tð Þ ¼ � i

�h
H tð Þ; q tð Þ½ �; (7)

where q(t) is the density operator of the total system. The total

density operator before the coupling between the waveguide

system and the leads can be written as qðt0Þ ¼ qLqRqSðt0Þ,
where qL and qR are the density operators of the isolated left

and right leads, respectively.24

Our aim in this work is to seek the dynamics of the

electron and the inter-waveguide switching processes in the

system. To calculate the electron motion in the DQW system

under the influence of the leads, we take the trace over

the Fock space with respect to the lead variables to build a

reduced density operator of the waveguide system

qSðtÞ ¼ TrLTrRqðtÞ, which leads to the Nakajima-Zwanzig

equation of time-evolution in an open system25

_qSðtÞ ¼ �iLSqðtÞ þ
ðt

t0

dt0Kðt; t0ÞqSðt0Þ; (8)

where LS� ¼ ½HS; ��=�h is the Liouvillian with respect to the

time-independent Hamiltonian HS of the DQW system and

Kðt; t0Þ is the integral kernel representing the dissipative time-

dependent coupling to the leads.14,25 For the regime of weak

coupling by sequential tunneling to the leads treated in our

model, we derive the dissipative kernel of Eq. (9) by keeping

terms up to second order in the time dependent coupling.15,26

The reduced density operator allows us to calculate the

left and the right charge currents into or out of the DQW.24

Therefore, the net charge current can be introduced as

IQðtÞ ¼ ILðtÞ � IRðtÞ; (9)

where ILðtÞ denotes the partial current from the left

lead into the control-waveguide and IRðtÞ describes to
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the partial current into the right lead from both

waveguides.24

To explore the properties of the charge switching

between the waveguides, the expectation value of the charge

current density operator in the central system is calculated.

The charge current density can be defined as

Jðr; tÞ ¼ Trðq̂SðtÞĴðrÞÞ; (10)

where the charge current density operator is

Ĵ rð Þ ¼
X
nn0

e�h

2m�i
wS�

n rð ÞðrwS
n0 rÞð Þ � ðrwS�

n rð ÞÞwS
n0 rð Þ

h i�

þ e2

m�
Aext rð Þ þ Aph rð Þ
� �

wS�
n rð ÞwS

n0 rð Þ
�

d†
ndn0 : (11)

In light of presently attainable quality factors of photon

cavities and our interest in the transient regime with t� 200

ps, we neglect cavity loss or photon coupling to external res-

ervoirs. In the following, we shall investigate numerically

the influence of the cavity photon on the coherent electron

transport through the DQW system in the case of x- or

y-polarization of the photon field.

III. RESULTS AND DISCUSSION

In this section, we will discuss our numerical results that

demonstrate photon-switched coherent electron transport in a

double quantum waveguide. To provide coherent electron

transport in the system, we consider the double waveguide

system to be made of a GaAs semiconductor with length

Lx¼ 300 nm. It is known that the phase coherence length L/

of a GaAs semiconductor can be �(30–40)� 103 nm at low

temperature T� 0.1–2.0 K.27 Thus, the coherence length is

much larger than the length of the waveguide system, which

is an essential requirement to construct a qubit in quantum

information technology.

We have fixed the following physical parameters in the

calculations, the temperature of the leads is 0.5 K, the chemi-

cal potentials of the leads are considered to be lL¼ 4.0 meV

and lR¼ 3.0 meV, the confinement energy of the leads and

the DQW system in the y-direction is �hXl ¼ 1:0 meV and

�hX0 ¼ 1:0 meV, respectively, the skewing parameter is

a ¼ 4aw, and the electron-photon coupling strength is

gph ¼ 0:1 meV.

A. The system without/with photon cavity

In order to understand the influence of the photons on

the transport, we first explore the electron transport charac-

teristics in the system without and with the photon cavity.

Initially, the photon energy and the electron-photon coupling

strength are assumed to be constant at �hxph ¼ 0:3 meV and

gph ¼ 0:1 meV, respectively.

In a previous work,28 we demonstrated the effects of the

electron-electron interaction and an external magnetic field

on the electron switching process between the waveguides.

In this work, we will show how photons in a cavity can be

used to switch the electron motion between the waveguides.

Figure 2 shows the net charge current versus the CW

length LCW without (w/o) a photon cavity (ph) (blue solid),

and with (w) a photon cavity in x-polarized (x-p) (green

dashed) and y-polarized (y-p) (red dotted) photon field. The

oscillation in the net charge current depends on the transport

properties of electrons between the control- and the target-

waveguide. The electrons can be subjected to inter-

waveguide forward or backward scattering, consequently, a

current peak at LCW ’ 40 and a current dip at LCW ’ 110 nm

are formed. The net charge current decreases in the presence

of cavity photon for the x- and y-polarized field where the

cavity contains one photon initially.

To explain the current oscillation and the suppression in

the net charge current in the presence of photon cavity, we

refer to the energy spectrum of the DQW system. Figure 3

shows energy spectra for the DQW system as a function of

the CW length LCW for the case of the no photon cavity (a),

and for the system in the photon cavity (b). When the CW

length LCW is increased, we observe the following effects in

the energy spectra: the energy of the states with an electron

component decreases monotonically, and generally the

degeneration of energy levels reduces. We observe an energy

level crossover at LCW ’ 40 nm, and increased splitting of

levels at ’110 nm. The weak tunneling through the central

barrier between the waveguides leads to almost degenerate

symmetric and antisymmetric one-electron states (1ES), but

the opening of the coupling window increases the

“interaction” between these states leading to a reduced

degeneracy.

In Fig. 3(a), the low end of the spectrum with only 1ES

(red dots) is shown for the waveguide system without the

photon cavity. At LCW ’ 40 nm (left blue rectangle), higher

excited states enter the active bias window resulting in a level

crossover with lower excited states.29,30 The energy crossover

reflects a “resonance” energy levels between the waveguides

leading to inter-waveguide transport. The contribution of the

FIG. 2. The net charge current IQ versus coupling window length LCW with-

out (w/o) a photon (ph) cavity (blue solid), and with a photon (w ph) cavity

in the case of x-polarization (green dashed) and y-polarization (red dotted)

at time t¼ 200 ps. The photon energy �hxph ¼ 0:3 meV, gph ¼ 0:1 meV,

B¼ 0.001 T, and the chemical potentials are lL ¼ 4:0 meV and

lR ¼ 3:0 meV, implying Dl ¼ 1:0 meV.
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higher excited states to the electron transport increases the

net charge current forming a current peak, as shown in Fig. 2

(blue line). In the current peak, the charge is transferred from

the input to the output of the control-waveguide with a slight

inter-waveguide forward scattering (not shown).28 For the re-

gime of increased level splitting at LCW ’ 110 nm (right blue

rectangle), the state of the second subband with lowest energy

is the highest state in the blue rectangle enters the bias win-

dow. Even though the energy splitting indicates an “off-

resonance” between the waveguides, the mixing of a state

from the second subband with the first subband in the elec-

tron transport leads to a stronger coupling between the wave-

guides. Here, the charge from the control-waveguide partially

switches to the target-waveguide due to inter-waveguide

backward and forward scattering and is partially transferred

to the output of the control-waveguide (not shown).28 The

inter-waveguide backward scattering decreases the net charge

current forming a current dip, as shown in Fig. 2 (blue line).

We should note that the two-electron states (2ES) of the

energy spectrum are not active in the presence of the

Coulomb interaction because the electron-electron interaction

raises the 2ES well above the bias window; consequently, the

2ES are effectively blocked.28

Figure 3(b) presents the MB energy spectrum including

zero-electron states (0ES) (green dots) and 1ES (red dots) in

the presence of a cavity including one photon initially with

the photon energy �hxph ¼ 0:3 meV and x-polarization. The

one-electron states of the energy spectrum decrease monot-

onically with increasing CW length while the 0ES remain

unchanged. We can clearly see that photon replicas for elec-

tron state appear with different photon content. The energy

difference between two photon replicas is close to multiples

of the photon energy in case of weak electron-photon

coupling.31 The photon replicas of the energy levels at

LCW ’ 40 nm (left blue rectangle) and 110 nm (right blue

rectangle) become active in the presence of a photon cavity.

To a lesser extent, photon replicas of states originally below

the bias region that ends up in the active bias window also

contribute. Therefore, more states participate in the electron

transport. In addition, the shape of the active states (and the

photon replicas) is influenced by the photon field. The pho-

ton field stretches or polarizes the wavefunctions.

The photon replicas have a very important and influential

role in the electron-switching process in the waveguide sys-

tem. At LCW ’ 40 nm, the photon replicas of the ground and

the first-excited states containing two photons enter the energy

crossover region. The replicas containing two photons have a

weaker contribution than the replicas containing one photon

in the electron transport because the cavity initially contains

only one photon. At LCW ’ 110 nm (right blue rectangle), a

photon replica of the lowest state of the second subband con-

taining one photon participates in the electron transport. The

photon replica is a localized state in the CW region leading to

a suppression in the net charge current for both x- (green

dashed) and y-polarized (red dotted) photon field at the dip, as

shown in Fig. 2. However, the photon replicas of the ground

state and the first excited state containing three and four pho-

tons are found among the split energy levels. But they do not

influence the electron transport in any significant way.

We should mention that the energy spectrum for the y-

polarized photon field is very similar to the spectrum shown

in Fig. 3(b) with a slightly different photon content in the

MB energy states.

Figure 4 shows charge current density for the current

peak in the x-polarized (a), and the y-polarized (b) photon

field shown in Fig. 2, where the photon energy is �hxph ¼
0:3 meV and the electron-photon coupling is gph ¼ 0:1 meV.

In Fig. 4(a), the charge is partially transported through

the control-waveguide and partially is subject to inter-

waveguide backward scattering, while in the absence of the

photon cavity the charge from the input of control-waveguide

moves to the output of the control- and target-waveguide.

The inter-waveguide backward scattering is partially caused

by the charge polarization in the x-direction induced by the

photon field, and a weak participation of photon replica states

containing two photons in the electron transport. As a result,

the net charge current decreases in the dip. In Fig. 4(b), the

charge remains completely within the control-waveguide

because the photon energy is much smaller than the electron

confinement energy in the waveguide system in the y-direc-

tion. The confinement and the photon energy are �hX0 ¼
1:0 meV and �hxph ¼ 0:3 meV, respectively. In this case, the

charge from the control-waveguide does not tunnel into the

target-waveguide. The dynamic evolution of the charge in the

control-waveguide implements a controlled NOT function,

which is so called CNOT-operation quantum logic gate lead-

ing to enhancement in the net charge current.

B. Variation of the frequency and the initial number
of photons

In this section, we demonstrate how the photon fre-

quency influences the electron transport through the DQW

FIG. 3. Energy spectra of the DQW system as a function of CW length LCW

without (a) and with (b) photon cavity in the system including zero-electron

states (0ES, green dots) and one-electron states (1ES, red dots) at

B¼ 0.001 T. The 1ES states in the left blue rectangle are close to the cross-

over region of states, but the 1ES states in the right blue rectangle are not.

The left rectangle contains the most active transport states. The change in

the height of the rectangle from left to right indicates the spreading of states

from the resonance to the off-resonant condition. The photon energy �hxph ¼
0:3 meV with x-polarization, gph ¼ 0:1 meV. The chemical potentials are

lL ¼ 4:0 meV and lR ¼ 3:0 meV (black) implying Dl ¼ 1:0 meV.
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system in the x- and y-polarized photon cavity. In addition,

we show the effects of the number of photons initially in the

cavity on electron switching processes between the wave-

guides. The electron-photon coupling strength is assumed to

be constant at gph ¼ 0:1 meV.

Figure 5 displays the net charge current for the x-polar-

ized (a) and y-polarized (b) photon field with initially one

photon in the cavity for different photon energies

�hxph ¼ 0:3 meV (blue solid), 0.6 meV (dashed green),

and 0.9 meV (dotted red). In Sec. III A, we discussed the

electron transport in the system when the photon energy is

�hxph ¼ 0:3 meV for both x- and y-polarized photon field.

Now, we explore the results when the photon energy is either

�hxph ¼ 0:6 meV or 0.9 meV.

We begin by analyzing the net charge current in the

x-polarized photon field shown in 5(a). In the case of a

photon energy �hxph ¼ 0:6 meV (dashed green), the net

charge current is strongly reduced for the crossover energy

at LCW ’ 40 nm to a current dip instead of the current

peak seen for �hxph ¼ 0:3 meV, while for the region of

split levels at LCW ’ 110 nm the net charge current in the

dip is enhanced. If we further increase the photon energy

to 0.9 meV (red dotted), a current peak is again seen at LCW

’ 40 nm and a slightly shifted current dip at LCW ’ 120 nm.

To explore the characteristics of the net charge current

in the x-polarized photon field, we provide Fig. 6 which

shows the MB energy spectrum including 0ES (green dots)

and 1ES (red dots) with the photon energy �hxph ¼ 0:6 meV

(a) and 0.9 meV (b). In Fig. 6(a), the MB energy spectrum is

shown for the photon energy �hxph ¼ 0:6 meV. Each MB

state has photon replica with a different photon content in

the presence of the photon cavity. We notice that the MB

ground state is replicated into the CW with one photon and

energetically enters the region of levels crossover at LCW

’ 40 nm (left blue rectangle). The effect of this localized

photon replicated state here on the electron transport is a

suppression of the net charge current leading to a current

dip. But at LCW ’ 110 nm (right blue rectangle), the photon

replica of the first excited state containing one photon con-

tributes to the electron transport leading to an increasing net

charge current at the dip, as shown in Fig. 5 (green dashed).

FIG. 5. The net charge current IQ versus coupling window length LCW at

time t¼ 200 ps for the x-polarized (a) and y-polarized (b) photon field with

initially one photon in the cavity for different photon energies �hxph ¼
0:3 meV (blue solid), 0.6 meV (dashed green), and 0.9 meV (dotted red).

The electron-photon coupling gph ¼ 0:1 meV, B¼ 0.001 T, and the chemical

potentials are lL ¼ 4:0 meV and lR ¼ 3:0 meV, implying Dl ¼ 1:0 meV.

FIG. 6. Energy spectrum of the DQW in a cavity as a function of CW length

LCW and photon energy �hxph ¼ 0:6 meV (a), and photon energy �hxph ¼
0:9 meV (b). The spectra include zero-electron states (0ES, green dots) and

one-electron states (1ES, red dots) at B¼ 0.001 T. The 1ES in the left blue

rectangle are close to be in crossing, but the 1ES states in the right blue rec-

tangle are not. The left rectangle contains the most active transport states.

The change in the height of the rectangle from left to right indicates the

spreading of states from the resonance to the off-resonant condition. The

chemical potentials are lL ¼ 4:0 meV and lR ¼ 3:0 meV (black) implying

Dl ¼ 1:0 meV.

FIG. 4. The charge current density at t¼ 200 ps for x-polarized (a) and the

y-polarized (b) photon field in the current peak at LCW ’ 40 nm shown in

Fig. 2. The photon energy �hxph ¼ 0:3 meV, Nph ¼ 1, and gph ¼ 0:1 meV.

The length of the DQW system is Lx¼ 300 nm, �hX0 ¼ 1:0 meV,

B¼ 0.001 T, and aw ¼ 33:72 nm.
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In Fig. 6(b), the MB energy spectrum is displayed for the

photon energy �hxph ¼ 0:9 meV. The photon replica of nei-

ther the ground state nor the first excited states enters the

active bias window (left blue rectangle). The result is that

the net charge current is almost unaltered. However, at

LCW ’ 120 nm (right blue rectangle), the photon replica of

the first excited state is found among the active split energy

levels. This photon replica containing one photon enhances

the net charge current in the dip.

To clarify further the dynamic motion of the charge and

explain the current oscillations, we present Fig. 7 which

shows the charge current density at the current peak shown

in Fig. 5 in the case of the photon energy �hxph ¼ 0:6 meV

(a) and �hxph ¼ 0:9 meV (b). In Fig. 7(a), the charge current

density is seen for the current dip at LCW ’ 40 nm when the

photon energy is �hxph ¼ 0:6 meV. The charge is localized in

the CW region, which suppresses the net charge current and

leads to a current dip. The localized charge can be identified

as a contribution of the photon replica of the MB ground

state containing one photon.

In Fig. 7(b), the charge current density for the current

peak at LCW ’ 40 nm is presented for photon energy �hxph

¼ 0:9 meV. The charge from the input control-waveguide is

equally split between the output of the control- and the

target-waveguide. The photon replica of neither the ground

state nor the first excited state contributes to the electron

transport. But the charge density of the active states occupies

both the control- and target waveguide. Therefore, the net

charge current remains almost unchanged. The splitting of

the charge indicates a
ffiffiffiffiffiffiffiffiffiffi
NOT
p

-operation quantum logic gate

action.

We have seen that the charge current density for the cur-

rent dip at LCW ’ 110 nm in the case of photon energy

�hxph ¼ 0:6 meV and 0.9 meV is delocalized (not shown)

while a localized charge is observed for �hxph ¼ 0:3 meV.

The delocalization of charge is due to participation of a pho-

ton replica of the first excited MB state. Consequently, the

net charge current is enhanced.

We have noticed that the electron-switching process can

be achieved by tuning the photon number initially in the cav-

ity. Let us consider two photons initially in the cavity with

energy �hxph ¼ 0:6 meV and photon-electron coupling

strength g ¼ 0:1 meV. Figure 8 shows the charge current

density at the CW length LCW ’ 40 nm in the presence two

photons in the cavity. Comparing to the charge current den-

sity in the case of one photon in the cavity with photon

energy �hxph ¼ 0:6 meV shown in Fig. 7(a), the charge

motion in the DQW system is drastically changed. The elec-

tron charge switches totally from the input control- to the

output target-waveguide. The dynamic evolution occurring

in the DQW system implements a quantum logic gate opera-

tion. In this case, a Not-operation is realized by transferring

the charge from the control- to the target-waveguide. The

electron switching process is due to contribution of a photon

replica of the both MB ground state and first-excited state

containing two photons to the transport.

Let us now look at the influences of photon frequency in

the y-polarized photon field on the electron-switching pro-

cess. The net charge current IQ in the presence of y-polarized

photon field and initially one photon in the cavity displayed

in Fig. 5(b) indicates that the influences of photon frequency

on the electron transport is very weak compared to the x-

polarized photon field for the same selected photon energies

�hxph ¼ 0:3 meV (blue solid), 0.6 meV (green dashed), and

0.9 meV (red dotted). This is due to the anisotropy of the ge-

ometry of the DQW system. The total charge-switching from

the control- to the target-waveguide can not be achieved for

FIG. 7. Charge current density at t¼ 200 ps for x-polarized photon field

with photon energy �hxph ¼ 0:6 meV (a) and 0.9 meV (b) for the current

peak at LCW ’ 40 nm shown in Fig. 5. The initial photon number in the cav-

ity Nph ¼ 1, and the electron-photon coupling gph ¼ 0:1 meV. The length of

the DQW system is Lx¼ 300 nm, �hX0 ¼ 1:0 meV, B¼ 0.001 T, and

aw ¼ 33:72 nm.

FIG. 8. Charge current density at t¼ 200 ps with x-polarized photon field at

LCW ’ 40 nm. The photon energy �hxph ¼ 0:6 meV, gph ¼ 0:1 meV, and ini-

tial photon number Nph ¼ 2. The length of the DQW system is Lx¼ 300 nm,

�hX0 ¼ 1:0 meV, B¼ 0.001 T, and aw ¼ 33:72 nm.
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the same selected photon energy as in the case of a x-polar-

ized photon field. For example, Fig. 9 shows the charge cur-

rent density in the current peak at LCW ’ 40 nm

demonstrated in Fig. 5(b) (red dotted), where the cavity ini-

tially contains one photon and the photon energy is

�hxph ¼ 0:9 meV. Comparing to the charge current density

shown in Fig. 4(b) when the photon energy is �hxph

¼ 0:3 meV, inter-waveguide transport is enhanced because

the photon energy here is �hxph ¼ 0:9 meV, which is close to

the electron confinement energy in the waveguide system in

the y-direction. An electron in the control-waveguide may

obtain energy from the photon to partially occupy a state in

the second subband of the two parallel waveguides and thus

being transferred to the target-waveguide.

In order to facilitate total electron-switching between the

waveguides in the y-polarization, we need to increase either

the photon energy to be equal to or greater than the confine-

ment energy of the electrons in the waveguide system in the y-

direction or the photon number initially present in the cavity.

We now consider the photon energy to be �hxph ¼ 0:6 meV,

which is smaller than the electron confinement energy ð�hX0 ¼
1:0 meVÞ and consider two photons ðNph ¼ 2Þ initially in the

cavity. An electron in the control-waveguide can absorb two

photons with total energy Nph � �hxph ’ 1:2 meV and then

being transferred to the target-waveguide. In this case, the

charge from the input control-waveguide totally switches to

the target-waveguide, as shown in Fig. 10. As a result a NOT-

operation quantum logic gate action is obtained.

Our results for the two different photon polarizations

have revealed that a variety of quantum logic gate actions can

be observed in the waveguide system with the switching

being strongly influenced by the photon energy and the pho-

ton number initially in the cavity. In this connection, we have

to comment on the fidelity32 of the gates. Ideally, one might

want the two states of a quantum bit to be associated with an

electron to be found either in the control or the target wave-

guide, but the situation is more complex due to the geometry

of our system. The central hill separating the waveguides

makes the low lying single-electron states with respect to

energy to come in pairs with nearly degenerate symmetric or

antisymmetric wavefunctions with respect to the two

waveguides. The injection of electrons into the control wave-

guide28 breaks this symmetry, i.e., the asymmetric coupling

to the left lead breaks it. The coupling window further influ-

ences the wavefunctions. Their degeneracy with respect to

the symmetry or the antisymmetry along the waveguides is

broken by the CW. With all this in mind, we can analyze the

situation for the NOT gate shown in Fig. 8. Here, a group of

seven one-electron states (with state numbers 31–37, and

energy in the range 5.04–5.17 meV) strongly coupled to states

in the bias window (with energy around 3.8 meV), by one or

two-photon processes, are partially occupied. More impor-

tantly, various pairs of them are highly correlated (with off-

diagonal terms in the density matrix) resulting in the current

mimicking a NOT-gate in Fig. 8. Like seen before, the photon

interaction does slow down the charging and at t¼ 200 ps,

the system is still not very close to a steady state.15 This

example shows that the complexity of the final state makes

the determination of the fidelity of the gate process rather dif-

ficult. Clearly, our system will have a difficulty in competing

for fidelity with a qubit built from two well isolated states.

IV. CONCLUSIONS AND REMARKS

We have presented the results of a detailed investigation

of how to implement a quantum logic gate action in a semi-

conductor qubit by using a new and different technique, a

cavity-photon-switching. In the cavity-photon-switching

method, a quantized photon cavity can be used to realize a

different quantum logic gate action by varying the photon

number, the photon energy, or the photon polarization.

To build a semiconductor qubit, we have considered two

parallel symmetric quantum waveguides, the control- and

the target-waveguide. A window is placed between them to

facilitate interference and inter-waveguide electron transport.

The waveguide system is connected to two leads with asym-

metric coupling in which the control-waveguide is coupled

to the leads from both ends, while the target-waveguide is

only coupled to the right lead. The DQW system is embed-

ded in a quantized photon cavity with a photon field polar-

ized either parallel or perpendicular to the direction of

electron motion in the system, in which the electron-photon

interactions are described by exact numerical

FIG. 10. Charge current density at t¼ 200 ps with y-polarized photon field

at LCW ’ 40 nm. The photon energy �hxph ¼ 0:6 meV, Nph ¼ 2, and

gph ¼ 0:1 meV. The length of the DQW system is Lx¼ 300 nm,

�hX0 ¼ 1:0 meV, B¼ 0.001 T, and aw ¼ 33:72 nm.

FIG. 9. Charge current density at t¼ 200 ps with y-polarized photon field

in the current peak at LCW ’ 40 nm shown in Fig. 5(b) (red dotted). The

photon energy �hxph ¼ 0:9 meV, gph ¼ 0:1 meV, and Nph ¼ 1. The length

of the DQW system is Lx¼ 300 nm, �hX0 ¼ 1:0 meV, B¼ 0.001 T, and

aw ¼ 33:72 nm.
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diagonalization. We use a non-Markovian master equation to

investigate the transient electron motion in the system.

In the absence of a photon cavity, the electron-switching

process depends on the ME states active in the electron trans-

port and their characteristics. By tuning the CW length, the

energy spectrum of the DQW system monotonically

decreases and new states enter and leave the bias window.

Therefore, oscillation in the net charge current occurs, indi-

cating inter-waveguide forward or backward scattering into

the target waveguide.

In the presence of the photon cavity, photon replicas for

each MB energy state appear. The character of the active

photon replicas in the electron transport depend on the pho-

ton energy, the photon number, and the photon polarization

in the cavity. In the case of an x-polarized photon field, pho-

ton replicas contribute to the electron transport processes

leading to the following scenarios: First, at high photon

energy and one photon initially in the cavity a
ffiffiffiffiffiffiffiffiffiffi
NOT
p

-opera-

tion quantum logic gate is found which is due to lifting the

photon replica of the ground state out of the active energy

states in the electron transport. Second, the charge from the

input control-waveguide switches to the output of the target-

waveguide in the presence of two photons in the cavity. In

this case, an electron in the control-waveguide may interact

with two photons and transfer to the target-waveguide.

Therefore, a Not-operation quantum logic gate is imple-

mented. For the y-polarized photon field, the electron-

switching processes only occur if the photon energy is equal

to or greater than the electron confinement energy in the

DQW system in the y-direction.

We have demonstrated that the transport properties of a

system with nontrivial geometry can be strongly influenced

by choosing the type of electron states replicated into the

active transport bias window. This control can both be

excised with the photon energy and the number of photons in

the cavity at the onset of an operation. It should also be

stressed that our study of the time-evolution of the switching

and charging processes shows that it is not necessary to await

the steady state in order to complete an operation.

The optoelectronic device considered here differs from

many purely optically operated devices suggested to imple-

ment quantum gates, in the sense that it need to be an open

system with respect to both electrons and photons in order to

operate. This definitely lowers expected values of fidelity and

purity needed for quantum operations, as we discuss at the

end of Sec. III, but at the same time might open up other pos-

sibilities. For example, the behaviour of our system can be

continuously switched between different logical functions.
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Abstract
We investigate coherent electron-switching transport in a double quantum waveguide system
in a perpendicular static or vanishing magnetic field. The finite symmetric double waveguide
is connected to two semi-infinite leads from both ends. The double waveguide can be defined
as two parallel finite quantum wires or waveguides coupled via a window to facilitate coherent
electron inter-wire transport. By tuning the length of the coupling window, we observe
oscillations in the net charge current and a maximum electron conductance for the energy
levels of the two waveguides in resonance. The importance of the mutual Coulomb interaction
between the electrons and the influence of two-electron states is clarified by comparing results
with and without the interaction. Even though the Coulomb interaction can lift two-electron
states out of the group of active transport states the length of the coupling window can be
tuned to locate two very distinct transport modes in the system in the late transient regime
before the onset of a steady state. A static external magnetic field and quantum-dots formed by
side gates (side quantum dots) can be used to enhance the inter-waveguide transport which can
serve to implement a quantum logic device. The fact that the device can be operated in the
transient regime can be used to enhance its speed.

Keywords: quantum transport, electron–electron interaction, quantum wire and dot

(Some figures may appear in colour only in the online journal)

1. Introduction

Various schemes associated with quantum computing have
been proposed for quantum information storage and transfers,
such as superconducting coplanar waveguide resonators and
dual waveguide devices [1, 2]. A waveguide can be defined
as a quantum wire in which the electron wave propagates
in quantized modes without losing phase coherence at low
temperature. Various proposals have been suggested to
implement a semiconductor qubit [3–5]. Among these, one
idea is to use parallel quantum waveguides with a coupling-
window placed between them [6]. Tuning the window-
coupling allows an electron wave interference between the

waveguides and can switch the electron motion from one
waveguide to the other [7].

The interference in the coupling-region specifies the
possible types of qubit-operations: The electron wave can
be transferred through either waveguide only (pass gate-
operation). It can travel through both waveguides, split equally,
implementing the so called square-root-of-Not (

√
NOT)

operation [8]. It can switch totally from one waveguide
to the other (Not-operation) [9]. Or it might switch from
the first waveguide to the second one and then re-enter the
first waveguide (CNot-operation) [10]. There are several
parameters and phenomena that can modify the efficiency of
the kind of qubit-operation that are mentioned above such as an

0953-8984/15/015301+10$33.00 1 © 2015 IOP Publishing Ltd Printed in the UK
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external magnetic field, the Coulomb interaction, electrostatic
gate voltage, and the geometry of the coupling window
between the waveguides.

Ferry’s group proposed magnetically switching transport
in an asymmetric double quantum waveguide, in which an
external magnetic field is applied to switch electron motion
from one quantum-waveguide to the other [7, 10]. Another
suggestion for a switching-qubit is to vary the length of the
coupling window (CW) LCW. By varying the length of the
CW, a maximum inter-waveguide tunneling can be found that
increases the efficiency of the device [7]. Another approach for
a switching-qubit is to define a saddle potential in the coupling
window instead of a hard-walled well potential. The smoother
potential defines a soft barrier between the two waveguides that
washes out sharp resonance peaks, but decreases the efficiency
of the qubit [11].

In the present work, we consider a double quantum
waveguide (DQW) system with a CW between the waveguides
in a static perpendicular magnetic field. Both ends of the DQW
are connected to semi-infinite leads with an applied source-
drain bias. A coherent electron transport is investigated in the
system by using a non-Markovian master equation [12–15].
Smooth Gaussian potentials are used to define the barrier
between the waveguides and the saddle-like CW potential. In
addition, two dots are embedded in the waveguides close to the
CW to enhance inter-waveguide transport. We will investigate
coherent electron transport in the system by varying the CW
length.

Our results lead to the following conclusions: First, we
predict a maximum conductance at resonant energy-levels
between the two waveguides. At a resonance energy, inter-
waveguide forward scattering is enhanced and the charge
density splits equally between the waveguides when two-
electron states are activated in the transport. In this case,
the DQW essentially works as a

√
NOT-operation qubit. The

Coulomb interaction shifts the two-electron states above the
selected bias window and the charge current density does
not split equally between the waveguides at the resonance
condition. The conductance peak is slightly reduced, but
it remains a peak as backward scattering is absent. In
the conductance dip that forms when the energy levels of
the waveguides are not in resonance backward scattering is
sharply increased with or without the Coulomb interaction.
The strength of the Coulomb blocking can be varied by the
geometry or the material of the system. The transient transport
through two capacitively coupled parallel quantum dots has
been investigated by Moldoveanu et al in a lattice model for
a weaker Coulomb interaction than is assumed here [16].
Second, an increased external static magnetic field favors inter-
waveguide backward scattering leading to a decrease in the
efficiency of the qubit. These results make clear the difference
to previous schemes where variable magnetic field was used to
control the switching between asymmetric waveguides [6, 11].
Third, the influence of the side quantum dots (QDs) can be to
induce more energy-levels into resonance, and consequently
increase the coupling between the waveguides and enhance the
inter-waveguide transport mechanism. In the presence of side
QDs, a Not-operation qubit can be realized. The efficiency

e
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Figure 1. Schematic diagram depicting the double waveguide with a
CW of length LCW (blue dashed arrow). A quantum dot QDC (QDT)
is embedded in the control (target) waveguide. An electron from left
side enters the control waveguide (red arrow). Asymmetric contacts
are indicated by the light red rectangles marked L and R.

is slightly decreased in the presence of side QDs because
inter-waveguide backward scattering is also enhanced. At
high magnetic field such that the effective magnetic length is
comparable to the radius of the dots, variation of length of the
CW does not influence the electron transport characteristics
further as the electrons tend to be localized in the side dots.
Thus, the net charge current is extremely suppressed.

The paper is organized as follows: in section 2, we present
the model describing the window-coupled double waveguide
system based on a quantum master equation (QME) approach.
Section 3 presents our numerical results and discussion.
Concluding remarks are addressed in section 4.

2. Model and theory

In this section, we present a method for calculating the transient
ballistic transport in the coupled-window quantum waveguides
without and with side QDs. We consider two laterally coupled
waveguides connected to two semi-infinite wires from both
ends. The lower waveguide (control) and the upper waveguide
(target) are coupled through a CW with length LCW as is
schematically shown in figure 1. We consider a control-
QD (QDC) and a target-QD (QDT) embedded, respectively,
in the control- and the target-waveguide near the CW. The
total system is exposed to an external magnetic field in the
z-direction Bẑ. The system is designed such that the electrons
are injected from the left lead to only the control-waveguide
(red arrow). Our aim here is to study the charging of, and
the output from each of the waveguides by varying the CW
length LCW (blue dashed arrow). In addition, the effects of the
Coulomb interaction, the external magnetic field, and the side
dots on the conductance will be explored.

The DQW is a two dimensional system with hard-wall
confinement in the contact area to the external leads at x =
±Lx/2, with Lx the length of the waveguides in the transport
direction, but parabolic confinement in the y-direction. The
single-electron Hamiltonian of the DQW including side QDs
in an external magnetic field is

hS = (p + eAext)
2

2m∗ + Vc(x, y) + VDW(r) + VQDs(r), (1)

where p indicates the canonical momentum, Aext =
(0, −By, 0) is vector potential of the external magnetic

2
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field, and m∗ is the effective mass of an electron. The
confining potential of the DQW is Vc(x, y) = Vc(x) + Vc(y),
where Vc(x) stands for a hard-wall confining potential and
Vc(y) = 1

2m∗�2
0y

2 refers to a parabolic confining potential
with characteristic energy h̄�0. The Gaussian potential barrier
between the two waveguides is presented by VDW(r) and
the side QDs are defined by VQDs(r). We diagonalize the
Hamiltonian of the central system presented in equation (1)
using a basis [15] built with the eigenfunctions of the first two
terms of (1) to find the single-electron energy spectrum En,
where n is the composite quantum number of a single-electron
state. The eigenfunctions of (1) are consequentially used to
construct a many-electron Fock space for the central system,
the DQW, in anticipation of the fact that its electron number
will not be constant as it will be opened up to the leads. Below,
we demonstrate how the DQW is connected to the leads and
how the time evolution of the system is described.

2.1. DQW connected to leads

We connect the DQW to two leads that act as electron reservoirs
via a contact region. The central system and the leads have
the same confinement energy and the same strength of the
perpendicular magnetic field. The total Hamiltonian of system
is then

H(t) =
∑

n

End
†
ndn +

1

2

∑
nn′mm′

〈VCoul〉d†
nd

†
n′dmdm′

+
∑

l=L,R

∫
dq εl(q)cl

q

†
cl
q (2)

+
∑

l=L,R

χl(t)
∑

n

∫
dq

[
cl
q

†
T l
qndn + d†

n(T l
nq)

∗cl
q

]
.

The first term describes the central system, where En is the
single-electron energy of state |n〉 of the central system, and
d†

n (dn) denotes the electron creation (annihilation) operator
respectively. The second term is the mutual Coulomb
interaction between electrons in the central system. The third
term of the Hamiltonian denotes the semi-infinite lth lead,
where l refers to the left L or the right R lead with the dummy
index q representing the ‘momentum’ of an electron in the lead
and its subband index [15], εl(q) is the single-electron energy
spectrum in lead l, and the electron creation and annihilation
operator in lead l are cl

q
†

and cl
q, respectively.

The last term is the time-dependent coupling Hamiltonian
that connects the central system, the DQW to the external
leads via a coupling tensor T l

qn, and χl(t) dictates the time-
dependence of the coupling. The coupling Hamiltonian
describes the transfer of an electron between the single-
electron state of the central system |n〉 and the single-electron
state of the leads |q〉

T l
qn =

∫
drdr′ψl

q(r
′)∗gl

qn(r, r′ψS
n (r). (3)

ψS
n (r) and ψl

q(r
′) are the corresponding single-electron wave

functions of the DQW system and the leads. gl
qn(r, r′) is a

nonlocal coupling kernel

gl
qn(r, r′) = gl

0 exp
[−δl

x(x − x ′)2 − δl
y(y − y ′ − α)2

]
× exp

(−�l
n(q)/�

)
, (4)

where g0 is the coupling strength, δl
x and δl

y are the coupling
range parameters in the x- and y-direction, respectively, �

controls together with �l
n(q) = |En−εl(q)| the energy affinity

between states in the leads and the central system [13], and α

is a skewing parameter that shifts the weight of the coupling
to the lower waveguide for an appropriate value stated below.

Before coupling the central system to the external leads
a many-electron Fock space with sectors for 0-, 1-, 2-, and
3- electron states is constructed for the first term of the total
Hamiltonian (2). This noninteracting many-electron (ME)
basis is then used to diagonalize the Hamiltonian of the central
system, the first two terms in equation (2) obtaining a Coulomb
interacting ME basis. This procedure of exact numerical
diagonalization of a ME Hamiltonian in a truncated basis is
used in order to capture correlation effects that are of crucial
importance in small systems with few electrons [17]. The
diagonalization and the truncation procedure together with the
necessary basis changes is described elsewhere [18, 19].

2.2. QME and Charge current density

In this subsection, we present how the time evolution of the
open system is calculated in order to study time-dependent
transport properties within the QME approach [20]. The
time evolution of our system obeys the quantum Liouville–
von Neumann equation

dW(t)

dt
= − i

h̄
[H(t), W(t)] , (5)

where W(t) is the density operator of the total system. In order
to focus our attention on the open central system we project the
dynamical evolution of the whole system on the central system
introducing a reduced density operator (RDO), by tracing out
all varibles of the leads, ρ(t) = TrLTrRW(t), with the initial
conditionW(t < t0)=ρLρRρS, whereρL andρR are the density
operators of the isolated left and the right leads, respectively.
The density operator of the isolated lth lead can be defined as
ρl = e−β(Hl−µlNl)/Trl{e−β(Hl−µlNl)}, where β = 1/(kBT ) with
kB the Boltzmann constant, and Nl is the number of electrons
in the leads. The projection formalism delivers an equation of
motion for density operator of the central system, the quantum
master equation [21, 22]

dρ(t)

dt
= −iLSρ(t) +

∫ t

t0

dt ′K(t, t ′)ρ(t ′), (6)

where LS· = [HS, ·]/h̄ is the Liouvillian with respect to the
time-independent Hamiltonian HS of the central system and
K(t, t ′) is an integral kernel describing the dissipative time-
dependent coupling to the leads [15, 22]. In our approach
the non-Markovian QME is derived keeping terms for the
system-lead coupling up to second order in the dissipation
term, i.e. the integral kernel. The explicit expressions for
the kernel have been published elsewhere [12, 13, 18]. The
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QME is appropriate to describe sequential tunneling between
the central system and the leads in the weak coupling limit.
The structure of the QME as an integro-differential equation
with memory effects implies higher order sequential tunneling,
but not cotunneling processes.

In order to explore the switching processes between the
waveguides, we define the net charge current with respect to
the external leads as

IQ(t) = IL(t) − IR(t), (7)

where IL(t) refers to the partial current from the left lead into
the control-waveguide and IR(t) indicates the partial current
into the right lead from both waveguides [23]. In equation (7)
the negative sign in front of IR is since a positive charge current
is defined as the current into the central system, but the currents
IL and IR are defined positive from left to right.

To monitor the dynamic evolution of the electrons inside
the central system, we calculate the expectation value of the
local charge current density operator

J(r, t) = Tr(ρ̂(t)Ĵ(r)), (8)

where operator is defined by

Ĵ(r) =
∑
nn′

(
eh̄

2m∗i

[
ψS∗

n (r)(∇ψS
n′(r)) − (∇ψS∗

n (r))ψS
n′(r)

]

+
e2

m∗ Aext(r)ψS∗
n (r)ψS

n′(r)

)
d†

ndn′ . (9)

In the following, we shall demonstrate the influence of the
length of the CW, external magnetic field, and the side QDs
on the coherent electron transport through the system and
the charge current density in the central system in order to
investigate inter-waveguide forward and backward scattering
processes.

3. Results

In this section, we shall discuss our numerical results of the
ballistic transport properties of the double waveguide system
made of a GaAs semiconductor with the electron effective
mass m∗ = 0.067me. The length of the central system
is Lx = 300 nm which is assumed to be much smaller
than the phase coherent length Lφ . At low temperature
T ∼ 0.1–2.0 K, the phase coherent length of a semiconductor
based (GaAs/Al1−xGaxAs) electron waveguide is ∼ (30 −
40) × 103 nm [24]. The coherence in the electron transport
through the double waveguide is an essential requirement
for constructing a qubit. For the system placed in a static
or vanishing external magnetic field, its length scales can
be characterized by the effective magnetic length aw =
{h̄/(m∗

√
(ω2

c + �2
0))}1/2, where the cyclotron frequency ωc =

eB/m∗, and the transverse confinement energy h̄�0 =
1.0 meV. Numerically the effective magnetic length can be
expressed as

aw =
(

h̄

m∗�0

)1/2 (
1

1 + (eB/(m∗�0))2

)1/4

= 33.74
4
√

1 + 2.982[B(T)]2
nm. (10)
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Figure 2. The potential (in meV) defining the DQW central system
with the CW and the side QDs. The parameters are h̄�0 = 1.0 meV,
B = 0.0 T, aw = 33.72 nm, LCW = 100 nm, and RDot = 25 nm.

For the case of a vanishing magnetic field we assign to it a
finite very small value in order to avoid numerical problems
caused by exact degeneration of states with opposite spin.

We assume the central system is connected to the external
leads acting as electron reservoirs with chemical potential in
the left (right) lead µL = 4.0 meV (µR = 3.0 meV), implying
an applied potential difference or bias window �µ = eVbias =
1.0 meV. Furthermore, the temperature of the leads is fixed at
T = 0.5 K. The potential of the double quantum waveguides
is shown in figure 2 with the side QDs located near the CW
in order to influence the inter-waveguide transport. In the
following, we shall explore the influence of the CW and the side
QDs on the charging of and the transport through the system.

3.1. DQW without side QDs

We start by considering an ideal window-coupled DQW
without side QDs. The injected electrons are assumed to
come from the left lead only into the control-waveguide. This
asymmetry in the injection is accomplished with the choice
of the skewing parameter α = 4.0aw defined in equation (4)
and only used for the left lead. In addition, we assume the
two quantum waveguides to be of the same width. They are
separated by a Gaussian potential barrier, in which the control-
and target-waveguide interact with each other via a CW. The
DQW system is described by

VDQW(r) = VB(y) + VCW(x, y), (11)

where VB(y) is the barrier potential between the quantum
waveguides defined as

VB(y) = V0 exp(−β2
0y2), (12)

with V0 = 18.0 meV and β0 = 0.03 nm−1, as well as a CW
potential

VCW(x, y) = −V0 exp(−β2
xx

2 − β2
yy

2), (13)

with V0 = 18.0 meV, and βy = 0.03 nm−1 implying a barrier
width WB � 66.5 nm for the first subband which can prevent
electron tunneling between the waveguides through the barrier.
βx is a parameter that determines the CW length. Thus, the
length of the CW can be defined as LCW = 2/βx .
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Figure 3. The net charge current IQ versus CW length LCW without
(w/o) (blue solid) and with (w) (red dashed) electron–electron (e–e)
interaction for magnetic field B = 0.0 T The chemical potentials are
µL = 4.0 meV and µR = 3.0 meV implying �µ = 1.0 meV.

We begin to analyze the results by presenting figure 3
showing the net charge current IQ as a function of the CW
length LCW at t = 200 ps and B = 0.0 T for noninteracting
electrons (solid blue), and for Coulomb interacting electrons
(dashed red). The Coulomb interaction reduces the overall
current slightly. The oscillations in the net charge current are
indicative of a possible charge transport between the control-
waveguide and the target-waveguide. The oscillations give rise
to a peak and a dip in the net charge current at LCW � 40 and
110 nm, respectively. Similar oscillation features have been
found by Zibold et al and Gong et al in the absence of the
Coulomb interaction, and put in relation to energy-dependent
inter-waveguide transmission in the quantum regime. They
pointed out that the inter-waveguide transmission can be
enhanced when the energy levels of the coupled-waveguide
system achieve a resonance conditions for a specific CW
length [25, 26].

To find resonant energy levels of the two waveguides,
we present figure 4 showing the many-electron (ME) energy
spectra for the DQW system as a function of the CW length
at B = 0.0 T including one-electron states (1ES, red dots) and
two-electron states (2ES, blue dots). The ME spectrum without
the mutual Coulomb interaction is displayed in figure 4(a), but
the interacting spectrum in figure 4(b). The only difference
between the energy spectra is that the Coulomb interaction
has raised most of the 2ES well above the bias window in
figure 4(b). The 2ES do not contribute to the electron transport
in the presence of the Coulomb interaction because they are
far from the chosen bias window, leading to a decrease in the
net charge current.

In the case of no coupling window the two waveguides
are only weakly coupled through tunneling and the Coulomb
interaction [16] leading to nearly degenerate states. When
the length of the CW LCW is increased we thus find: First,
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Figure 4. ME energy spectrum in the central system as a function of
CW length LCW without (a), and with (b) the electron–electron
Coulomb interaction including one-electron states (1ES, red dots)
and two-electron states (2ES, blue dots) at B = 0.0 T. The
one-electron states in the left green rectangle are close to be in
resonance, but the one-electron states in the right green rectangle are
not. The chemical potentials are µL = 4.0 meV and µR = 3.0 meV
(black) implying �µ = 1.0 meV.

the energy spectrum decreases monotonically [25]. Second,
the near degeneration of the energy-levels is lifted. As a
result, this leads to a crossover of energy levels (resonance)
between the control- and target-waveguide at LCW � 40 nm
(left green rectangular) which corresponds to the current-peak
in figure 3. The resonance between the waveguides enhances
the inter-waveguide electron transport and increases the net
charge current. The splitting of the energy levels increases
at a higher coupling window length such as LCW � 110 nm
(right green rectangular) indicating weaker resonances and
more back-scattering inter-waveguide transport.

To further explain the peak and the dip in the net charge
current, we present the charge current density at B = 0.0 T
and t = 200 ps in figure 5 for the noninteracting system
(left panels) and the interacting one (right panels) for the
peak and the dip net charge current at LCW � 40 nm (a)–
(b) and 110 nm (c)–(d), respectively, shown in figure 3. The
dynamical evolution occurring in the CW exhibits different
types of quantum logic gates actions in our system. In the
absence of the Coulomb interaction the charge current density
shown in figure 5(a) reveals the following electron motion in
the waveguides at LCW � 40 nm: The charge is injected into
the control input, then it exits equally from both control and
target output. In the DQW the charge exhibits partial inter-
waveguide forward scattering which is similar to the condition
of having equal electron transmission ratio in the double
waveguides at a resonance [25]. The DQW here can be defined
as a beam splitter or a

√
NOT-operation quantum logic gate

(
√

NOT-operation qubit) [8]. Figure 5(c) shows the charge
current density in the current-dip at LCW � 110 nm. The
charge current density switches from the control- to the target-
waveguide with a small ratio of inter-waveguide backward
scattering. The charge switching property of the system here
can be introduced as a Not-operation quantum logic gate [11].
The net charge current is suppressed here due to the presence of
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Figure 5. Charge current density in the DQW at t = 200 ps without (left panels) with (right panels) electron–electron Coulomb interaction
in the peak and the dip net charge current at LCW � 40 nm (a, b) and 110 nm (c, d), respectively, shown in figure 3 in the case of B = 0.0 T
(blue solid). The effective magnetic length is aw = 33.72 nm.

an inter-waveguide backward scattering that forms the current-
dip. The cause of the inter-waveguide backward scattering is
the geometry of the system, the symmetric waveguides, while
in an asymmetric system back scattering can be avoided [6].
In the presence of the Coulomb interaction the charge current
density is very similar for the dip near 110 nm (comparing
figures 5(c) and (d)), but different for the peak at 40 nm,
where very little scattering into the target waveguide is seen
(comparing figures 5(a) and (b)). Without the Coulomb
interaction 2ES contribute up to 1/3 of the charge current,
but the interaction reduces this with Coulomb blocking to a
negligible quantity. The forward inter-waveguide scattering in
figure 5(a) is facilitated by two-electron processes and states.
In the present system the Coulomb interaction blocks these
processes to a large extent.

The effects of a static external magnetic field are presented
in figure 6(a) which shows the net charge current IQ as a
function of the CW length LCW at t = 200 ps in the presence
of the Coulomb interaction for different values of the magnetic
field B = 0.0 T (blue solid), 0.1 T (green dashed), and 0.2 T
(red dashed). For comparison we display in figure 6(b) the left
and the right currents IL and IR at B = 0.0 T and the same
point in time. The comparison shows that at t = 200 ps the
system is still in the charging phase, but the overall shape of
the currents is similar. The role of the external magnetic field
in our system is different from the role it plays in many models
where researchers have applied a variable magnetic field to
switch between different processes in the waveguides. The
external magnetic field has been used to switch an electron
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Figure 6. (a) The net charge current IQ versus CW length LCW in
the presence of the Coulomb interaction for different values of the
magnetic field B = 0.0 T (blue solid), 0.1 T (green dashed), and
0.2 T (red dotted) at time t = 200 ps. (b) The current from the left
lead IL (pink dotted), the current into the right lead IR (blue dashed),
and the net charge current IQ (blue solid) for B = 0.0 T versus the
CW length. The chemical potentials are µL = 4.0 meV and
µR = 3.0 meV implying �µ = 1.0 meV.

current from one quantum-waveguide to the other one in a
window coupled double waveguide [6]. In our model, we
observe switching in the absence of a magnetic field, i.e. for
B = 0.0 T. In the presence of stronger magnetic field, the
electron motion is affected by the Lorentz force in which
the electrons tend to a circular motion in both control- and
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Figure 7. Charge current density in the DQW at t = 200 ps in the presence of the Coulomb interaction in the peak at LCW � 40 nm (a), and
the dip at LCW � 110 nm (b) net charge current of figure 6(a) in the case of B = 0.2 T (red dotted). The effective magnetic length is
aw = 32.76 nm.

target-waveguides increasing the electron dwell-time in the
system. The inter-waveguide backward scattering is enhanced
while a suppression in the inter-waveguide forward scattering
is observed in the presence of strong magnetic field. Therefore,
the net charge current decreases as shown in figure 6(a) in the
case of B = 0.1 T (green dashed) and 0.2 T (red dotted).

To understand the reasons for the suppression of the net
charge current in the presence of a higher magnetic field,
we show in figure 7 the charge current density at magnetic
field B = 0.2 T in the peak at LCW � 40 nm (a) and
the dip at LCW � 110 nm (b), of the net charge current
shown in figure 6(a) (red dotted). An obvious explanation
is: The perpendicular magnetic field reduces the effective
barrier height and increases the splitting of the energy levels
at the crossover energy or resonance energy (not shown).
Therefore the charge current density does not split equally
between the waveguides or localize in only control-waveguide,
but rather an inter-waveguide backward scattering is observed
due to the Lorentz force, consequently the net charge current
is suppressed and we observe formation of edge states in each
of the waveguides. In this case the double-waveguide system
does neither play the role of a

√
NOT-operation, nor a Not-

operation qubit in the presence of a higher magnetic field.

3.2. DQW with side QDs

In this section, we consider a side dot embedded in each
waveguide to enhance the inter-waveguide transport as is
shown in figure 2. The dots to the sides of the CW
may be expected to increase the dwell time in the coupling
region and change the resonance condition between the two
waveguides. The window-coupling DQW potential with side
QDs is described by

VDQW(r) = VB(y) + VCW(x, y) + VDot(x, y), (14)

where VDot(x, y) is the side dot potential that is defined as

VDot(x, y) = −VD exp(−γ 2
x x2 − γ 2

y (y − y0)
2), (15)

with VD = 8.0 meV, y0 = 5.6aw, and γx = γy = 0.04 nm−1

implying the radius of each side-dot RDot ≈ 25 nm.

 0.13

 0.14

 0.15

 0.16

 0.17

 0.18

 0.19

 0.2

 0.21

 0  20  40  60  80 100 120 140

I Q
 (

nA
)

Lcw (nm)

(a)

B = 0.0 T
B = 0.1 T
B = 0.2 T

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  20  40  60  80 100 120 140
I 

(n
A

)
Lcw (nm)

(b)

IL
IR
IQ

Figure 8. The net charge current IQ versus the window-coupling
length LCW in the presence of the Coulomb interaction for different
magnetic field B = 0.0 T (blue solid), 0.1 T (green dashed), 0.2 T
(red dotted), 0.9 T (pink dotted) at time t = 200 ps. (b) The current
from the left lead IL (pink dotted), the current into the right lead IR

(blue dashed), and the net charge current IQ (blue solid) for
B = 0.0 T versus the CW length. The chemical potentials are
µL = 4.0 meV and µR = 3.0 meV implying �µ = 1.0 meV.

Figure 8(a) shows the net charge current as a function of
the CW length at t = 200 ps in the presence of the Coulomb
interaction for different values of the magnetic field B = 0.0 T
(blue solid), 0.1 T (green dashed), and 0.2 T (red dashed). An
oscillation in the net charge current is again established in a
vanishing magnetic field 0.0 T, while at higher magnetic field
values 0.1 and 0.2 T some extra fluctuations in the current
are observed. The existence of these fluctuations correlates
with the dynamic motion of the charge in the system in
which electrons participate in an inter-waveguide backward
or forward scattering at different CW length. If the magnetic
field is increased to B = 0.9 T, such that the effective magnetic
length is close to the dot radius aw = RDot the net charge
current is suppressed to vanishing values (not shown). In that
case, varying of the CW length does not affect the electron
transport in the system. There are several reasons that lead to
the almost vanishing net charge current at high magnetic field
such as edge effects, inter-waveguide backward scattering and
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Figure 9. The interacting ME energy spectrum of the central
system with side QDs as a function of the CW length LCW including
one-electron states (1ES, red dots) and two electron states (2ES,
blue dots) at B = 0.0 T. The one-electron states in the left green
rectangular are close to be in resonance, but the one-electron states
in the right green rectangular are not. The chemical potentials are
µL = 4.0 meV and µR = 3.0 meV (black) implying �µ = 1.0 meV.

localized electrons in the dots as the effective magnetic length
is close to the dot radius. We present figure 8(b) to compare the
left partial current (pink dotted), the right partial current (blue
dashed) to the net charge current (blue solid) at B = 0.0 T. It
can be seen that the partial currents have the same oscillation
features and develop a peak and a current dip at the same CW
lengths.

In order to understand the characteristics of net charge
current, we refer to the energy spectrum and the charge current
density. Figure 9 shows the ME-energy versus the window-
coupling length at B = 0.0 T including one-electron states
(1ES, red dots) and two electron states (2ES, blue dots). It
should be noted that more energy levels get into resonance at
LCW � 40 nm (left green rectangular) in the presence of the
side-gate dots which indicates a stronger coupling between the
control- and the target-waveguide. At larger CW length such as
LCW � 110 nm (right green rectangular), the energy splitting
increases resulting in different electron motion in the system.

The electron motion in the waveguides is completely
changed in the presence of the side QDs. Figure 10 displays the
charge current density at B = 0.0 T and LCW � 40 nm (a) and
current-dip at LCW � 110 nm (b) shown in figure 8(a) (blue
solid). In figure 10(a) the charge current density is displayed
for LCW � 40 nm. The charge in the control-waveguide
is switched to the target-waveguide, thus a Not-operation is
realized. Comparing to the system without side-gate dots in
figure 5(b), the inter-waveguide transport is enhanced due to
a stronger coupling between the waveguides at the resonant-
energy levels at LCW � 40 nm. Therefore, the side QDs play
an essential role to convert the qubit operation in the system. In
addition, the inter-waveguide backward scattering here reduces
the efficiency of the qubit. As we mention previously, the

existence of inter-waveguide backward scattering might be
due to symmetric waveguides while the backward-scattering
in an asymmetric waveguides can be avoided or reduced [27].
Figure 10(b) shows the charge current density at the current-
dip LCW � 110 nm. The incoming charge into the control-
waveguide encounters the control-QD leading to electron back-
scattering in the control-waveguide, thus the net charge current
is suppressed forming a current-dip. We can say that the side-
dots play a scattering role in the waveguides in such way that
the electrons partially get forward- and backward-scattered in
and into both waveguides.

By tuning the external magnetic field to a higher value,
B = 0.2 T, the electrons manifest different dynamical motion
in the waveguides. In figure 11 the charge current density
is shown in this stronger magnetic field B = 0.2 T at the CW
lengthLCW � 40 (a) and 110 nm (b). The graphs show circular
motion, edge states, in each waveguide. Figure 11(a) shows
the current charge density at LCW � 40 nm, the electrons
in the control-waveguide do not totally switch to the target-
waveguide, because of increased energy level splitting at the
resonance-energy in the presence of higher magnetic field. In
addition, charge is partially localized in the control-QD as the
effective magnetic length approaches the radius of the quantum
dot aw � RDot. In figure 11(b), the electrons are mostly
localized in the control-QD corresponding to the current-dip at
LCW � 110 nm. This electron localization is expected because
at a larger CW length the splitting of energy levels increases
and leads to suppression of the inter-waveguide scattering.
Therefore, the electrons move along the control-waveguide
and get localized in the control-QD at this higher magnetic
field.

4. Concluding remarks

We have presented a model for a double quantum waveguide in
an external perpendicular magnetic field. The waveguides are
coupled via a window to facilitate inter-waveguide transport.
The DQW is weakly connected to two leads with different
chemical potentials in which a non-Markovian master equation
is utilized to investigate coherent switching in electron
transport between the waveguides for the implementation of
quantum logic gates.

By tuning the length of the CW, we have demonstrated
two important physical characteristics of the waveguide
system: resonant energy-levels and oscillations in the net
charge current. The resonant energy levels indicate a strong
coupling between the DQW and the oscillations reflect that the
resonance conditions are governed by the length of the CW.

In the case of an ideal non-Coulomb-interacting window-
coupled DQW system without a magnetic field, the charge
current density splits equally between the waveguides at
resonant energies, therefore, the net charge current reaches
it’s maximum value and the waveguide system works as a√

NOT-operation qubit. The splitting of charge is due to
the contribution of 2ES to the electron transport. The inter-
waveguide forward scattering leading to the charge splitting
at resonant levels is not seen without including two-electrons
states in the model. It is strongly reduced by the Coulomb
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Figure 10. Charge current density in the DQW at t = 200 ps in the presence of the Coulomb interaction in the peak LCW � 40 nm (a), and
the dip LCW � 110 nm (b) of the net charge current of figure 8(a) in the case of B = 0.0 T. Other parameters are aw = 33.72 nm, and
RDot ≈ 25 nm.
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Figure 11. Charge current density in the DQW at t = 200 ps in the presence of the Coulomb interaction in the peak LCW � 40 nm (a), and
the dip LCW � 110 nm (b) net charge current of figure 8(a) in the case of B = 0.2 T. Other parameters are aw = 32.78 nm, and RDot ≈ 25 nm.

interaction that lifts the 2ES out of the group of active states in
the transport. This aspect can though be controlled by the exact
system size and design as the Coulomb blocking is reduced in
a larger system, or by using a higher bias window or different
material. Our model only includes sequential tunneling of
electrons from the leads to the system, but the addition of
higher order tunneling would only increase the importance of
the many-electron structure and the Coulomb interaction on the
operation of the system. The charge splitting process can not be
obtained in the presence of an external magnetic field because
inter-waveguide backward scattering is enhanced leading to
decrease in the efficiency of the logic gate.

Two parallel waveguides or dots can be coupled in many
distinct ways. Moldoveanu et al [16] attain it capacitively,
while Zibold et al [25] fine tune the system by tunneling
coupling. Both groups stress the strong dependence of
the device on its exact geometry, and the structure and
correlations of many-electron states that are active in the
transport. Our investigation with a different coupling scheme
for the waveguides confirms this sensitive dependence.

In addition, we have embedded a quantum dot in
each waveguide to enhance inter-waveguide transport. In
the presence of side QDs, more energy-levels of the two
waveguides are brought into resonance which can lead to a
stronger coupling between them. Effectively, the dots can
increase the density of states around the resonant transport

states. The electrons from the control-waveguide switch to
the target-waveguide indicating a Not-operation qubit. But
on the other hand, the side-dots can also increase the inter-
waveguide backward scattering and reduce the qubit efficiency.
In a stronger external magnetic field, the electrons get localized
in the dots as the effective magnetic length is comparable
to the radius of the side dot. In this case, the geometry of
the CW does not affect the electron transport anymore. The
external magnetic field here is considered static, but one more
variable to influence the transport is the shape of the side QDs
in the waveguides. We show that the varying of the CW length
between the waveguides can specify the type of the qubit logic
gate to be implemented by the DQW system.

A comparison between the charge current and the left
and right currents in figures 6 and 8 at the time point in time
t = 200 ps shows that the system has not completely reached
a steady state yet, but the sought after function of the DQW is
already present in the late transition regime. This is important.
The exact steady state takes a long time to reach due to a low
rate of charging for 2 and 3 electron states. Valuable time can
be gained by operation of a device in the transition regime.
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