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Abstract

This paper is based on a generalization of the idea behind the proof of the Simul-
taneous Shading Lemma by Claesson et al. (2014). We define the occurrence graph
Gp(π) of a pattern p in a permutation π as the graph with the occurrences of p
in π as vertices and edges between the vertices if the occurrences differ by exactly
one element. We study the general properties of the occurrence graphs and some
interesting extreme cases. The main theorem in this paper is that every hereditary
property of graphs produces a permutation class.

Útdráttur

Þessi grein er byggð á útvíkkun á hugmyndinni sem notuð var í sönnuninni á skyg-
gingarhjálparsetningunni í Claesson et at. (2014). Við skilgreinum tilvikanet, Gp(π),
fyrir mynstur p í umröðun π sem net með hnút fyrir hvert tilvik p í π og leggi milli
hnúta hvers samsvarandi tilvik eru eins fyrir utan eitt stak. Við rannsökum almenna
eiginleika þessara tilvikaneta og áhugaverð jaðartilvik. Meginsetning greinarinnar er
að sérhver arfgengur eiginleiki neta leiðir til umraðanaklasa.
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1 Introduction

In this article we extend an idea originating from the proof of the Simultaneous
Shading Lemma made by Claesson, Tenner and Ulfarsson in [1]. Our extension is
to construct a graph from the various stages in the algorithm and the steps that the
algorithm takes to transform between them. The reader does not need to familiarize
himself with the Simultaneous Shading Lemma as everything in this paper stands
independently from the lemma. The main theorem in this paper is that every
hereditary property of graphs produces a permutation class.
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2 Permutation and graph
background

In this article we will be working with permutations and undirected, simple graphs.
The reader does not need to have prior knowledge of either as we will define both.
We will then define occurrence graphs made from patterns in permutations and
present our research results.

Definition 2.1. A simple graph is an ordered pair G = (V,E) where V is a set of
vertices and E is a set of two-element subsets of V . The elements {u, v} ∈ E are
called edges and connect the vertices. Two vertices u and v are called neighbors if
{u, v} ∈ E. The degree of a vertex v is the number of neighbors it has. A graph
G′ = (V ′, E ′) is a subgraph in G if V ′ ⊆ V and E ′ ⊆

{
{u, v} ∈ E : u, v ∈ V ′

}
.

The reader might have noticed that our definition of a graph exludes those with
loops and multiple edges between vertices. Throughout the article we will only
be working with simple, unweighted and undirected graphs. We often write uv as
shorthand for {u, v} and in case of ambiguity we use V (G) and E(G) instead of V
and E.

Definition 2.2. Let V ′ be a subset of V . The induced subgraph G[V ′] is a subgraph
of G with vertex set V ′ and edges {uv ∈ E : u, v ∈ V ′}.

Two graphs G and H are isomorphic if there exist a bijection from V (G) to V (H)
such that two vertices in G are neighbors if and only if the corresponding vertices
(according to the bijection) in H are neighbors. We denote this with G ∼= H.

We let J1, nK denote the integer interval {1, . . . , n}.

Definition 2.3. A permutation of length n is a bijective function σ : J1, nK→ J1, nK.
We denote the permutation with σ = σ(1)σ(2) · · ·σ(n). The permutation idn =
12 · · ·n is the identity permutation of length n.

A permutation is simply a description of what to do with an enumerated list of n
entries. Computer scientists and programmers often work with data structures called
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2 Permutation and graph background

lists and vectors where the elements are enumerated from 1 to n. A permutation
on the list would result in a new or modified list where the elements have been
rearranged according to the permutation. For example, the permutation σ = 35142
sorts the list a = [12, 28, 9, 27, 11] because a(3) = 9 < a(5) = 11 < a(1) = 12 <
a(4) = 27 < a(2) = 28.

The set of permutations of length n is denoted by Sn. The set of all permutations
is S = ∪+∞

n=0Sn. Note that S0 = {E }, where E is the empty permutation, and
S1 = {1}. There are n! permutations of length n.

Definition 2.4. A grid plot or grid representation of a permutation π ∈ Sn is
the subset Grid(π) =

{
(i, π(i)) : i ∈ J1, nK

}
of the Cartesian product J1, nK2 =

J1, nK× J1, nK.

Example 2.5. Let π = 42135. The grid representation of π is

Grid(42135) =

Figure 2.1: The grid plot of the permutation 42135

One of the central definitions of this paper is how permutations can lie inside other
(larger) permutations. Before we define that precisely we need a preliminary defini-
tion:

Definition 2.6. Let a1, . . . , ak be distinct integers. The standardisation of the
string a1 · · · ak is the permutation σ ∈ Sk such that a1 · · · ak is order isomorphic
to σ(1) · · ·σ(k). In other words, for every i 6= j we have ai < aj if and only if
σ(i) < σ(j). We denote this with st(a1 · · · ak) = σ.

For example st(253) = 132 and st(132) = 132.

Definition 2.7. Let p be a permutation of length k. We say that the permuta-
tion π ∈ Sn contains p if there exist indices 1 ≤ i1 < · · · < ik ≤ n such that
st
(
π(i1) · · · π(ik)

)
= p. The subsequence π(i1) · · · π(ik) is an occurrence of p in π

with the index set {i1, . . . , ik}. The increasing sequence i1 · · · ik is a denotement
for the order preserving injection i : J1, kK → J1, nK, j 7→ ij which we call the index
injection of p into π for this particular occurrence.

The set of all index sets of p in π is the occurrence set of p in π, denoted with Vp(π).
If π does not contain p, then π avoids p. In this context the permutation p is called
a (classical permutation) pattern.
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Unless otherwise stated, we write the index set {i1, . . . , in} in ordered form, i.e. such
that i1 < · · · < in, in accordance with how we write the index injection.

The set of all permutations that avoid p is Av(p). More generally for a set of patterns
M we define

Av(M) =
⋂
p∈M

Av(p).

Example 2.8. The permutation 42135 contains five occurrences of the pattern 213,
namely 425, 415, 435, 213 and 215. The occurrence set is

V213(42135) =
{
{1, 2, 5}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}

}
.

The permutation 42135 avoids the pattern 132.
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3 Occurrence graphs

Definition 3.1. For a pattern p ∈ Sk and for a permutation π ∈ Sn we define the
occurrence graph Gp(π) of p in π in the following way:

• The set of vertices is Vp(π), the occurrence set of p in π.

• uv is an edge in Gp(π) if the vertices u = {u1, . . . , uk} and v = {v1, . . . , vk} in
Vp(π) differ by exactly one element, i.e. if

|u \ v| = |v \ u| = 1.

Example 3.2. In Example 2.8 we derived the occurrence set V213(42135). We
compute the edges of G213(42135) by comparing the vertices two at a time to see if
the sets differ by exactly one element. The graph is shown in Figure 3.1.

{1, 2, 5}

{1, 3, 5}

{1, 4, 5}

{2, 3, 4}

{2, 3, 5}

Figure 3.1: The occurrence graph G213(42135)

Remark 3.3. For π ∈ Sn we note that GE (π) is a graph with one vertex and no
edges and G1(π) is a clique on n vertices.

Following the definition of these graphs there are several natural questions that arise.
For example, how many occurrence graphs satisfy a given property such as being
connected or being a tree?

7





4 The pattern p = 12 and the
identity permutation

Let’s fix p = 12 and let n ≥ 2. For this choice of p and a fixed n the identity
permutation π = 1 · · ·n contains the most occurrences of p. This extreme case
makes for an interesting occurrence graph G = Gp(π).

Every set {i, j} with i 6= j is an index set of p in π. We can choose this pair in(
n

2

)
=
n(n− 1)

2

different ways. Therefore, this is the size of the vertex set V (G) = Vp(π).

Every vertex u = {i, j} in G is connected to n − 2 vertices v = {i, j′}, j′ 6= j, and
n− 2 vertices w = {i′, j}, i′ 6= i. Thus, the degree of every vertex in G is 2(n− 2).
By summing this over the set of vertices and dividing by two we get the number of
edges in G:

|E(G)| = n(n− 1)(n− 2)

2
= 3

(
n

3

)
.

For every number i ∈ J1, nK the induced subgraph of
{
{i, j} : j 6= i

}
in G is isomor-

phic to Kn−1. There are n such subgraphs in G.

A triangle in G are three vertices u, v, w with edges uv, vw,wu. If u = {i, j} (not
neccessarily in ordered form) then v must be of the form {j, k}, because u and v have
exactly one element in common. For this triplet to be a triangle w must connect
to both u and v, and therefore w must either be the index set {i, k} or of the form
{j, j′} where j′ 6= i, k.

In the latter case the triangle lies inside a subgraph that is isomorphic to Kn−1.
For each of the n such subgraphs, we can choose any three vertices to make up a
triangle, and therefore there are n

(
n−1
3

)
such triangles in G.

In the former case, we can regard the three vertices u = {i, j}, v = {j, k} and
w = {i, k} as coming from seperate Kn−1 subgraphs, induced by i, j and k. We can
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4 The pattern p = 12 and the identity permutation

choose the three numbers i, j, k, and therefore the three subgraphs, in
(
n
3

)
different

ways.

By summing these two cases together we get that the number of triangles in G is

n

(
n− 1

3

)
+

(
n

3

)
= (n− 2)

(
n

3

)
.

Example 4.1. The graph G12(12345) is pictured in Figure 4.1. Notice the five
subgraphs that are isomorphic to K4, one of them highlighted with bolder gray
edges and gray vertices.

{1, 2}

{1, 3} {1, 4}

{1, 5}

{2, 3}

{2, 4}

{2, 5}{3, 4}

{3, 5}

{4, 5}

Figure 4.1: The graph G12(12345)

In Example 4.1, the induced subgraph of
{
{1, 4}, {2, 4}, {3, 4}, {4, 5}

}
is a clique in

G12(12345) because it is isomorphic to the complete graph K4.

These examples lead us to wonder more generally about cliques in occurrence graphs
with fixed pattern p = 12 and identity permutations π = idn. For a fixed n, how
many cliques are there of size k in Gp(π)?

We were not able to prove it, but computer calculations with the open-source math-
ematical software Sage [4] indicate that k = 1 and k = 3 are odd cases and the
usual case follows the same formula as k = 2.

Conjecture 4.2. For n > 0, the number of cliques of size k > 3 in G12(idn) is

(k + 1)

(
n

k + 1

)
= n

(
n− 1

k

)
.
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5 General results

Intuitively one would think that if a pattern p is contained inside a larger pattern q,
that either of the occurrence graphs Gp(π) and Gq(π) (for any permutation π) would
be contained inside the other. But this is not the case as the following examples
demonstrate.

Example 5.1. 1. Let p = 12, q = 231 and π = 3421. The occurrence sets are
Vp(π) =

{
{1, 2}

}
and Vq(π) =

{
{1, 2, 3}, {1, 2, 4}

}
. The cardinality of the set

Vp(π) is smaller then the cardinality of Vq(π).

2. If on the other hand p = 12, q = 123 and π = 123 then the occurrence sets
are Vp(π) =

{
{1, 2}, {1, 3}, {2, 3}

}
and Vq(π) =

{
{1, 2, 3}

}
. The relative size

of the occurrence sets are now changed.

However, we can argue some kind of containment of one occurrence graph inside the
other if we fix the pattern p and let one permutation contain the other.

Lemma 5.2. Let π and σ be two permutations. For every occurrence of π in σ the
index injection induces an injection Φp : Vp(π)→ Vp(σ), for all patterns p.

Proof. Let p, π, σ be permutations of length l, m, n respectively. Every v =
{i1, . . . , il} ∈ Vp(π) is an index set of p in π with index injection i. Let j be
an index injection for an index set {j1, . . . , jm} of π in σ. It’s easy to see that
u = {ji1 , . . . , jil} is an index set of p in σ because j ◦ i is an index injection of p into
σ. Define Φp(v) = u.

Example 5.3. Let p = 12, π = 132 and σ = 24153. There are three occurrences of
π in σ: 243, 253 and 153 with respective index injections 125, 145 and 345.

For a given index injection, say i = 125, we obtain the injection Φp by mapping
every {v1, v2} ∈ Vp(π) to {iv1 , iv2} ∈ Vp(σ). As there are only two occurrences of p
in π we can quickly calculate that {1, 2} ∈ Vp(π) maps to {i1, i2} = {1, 2} ∈ Vp(σ)
and {1, 3} maps to {i1, i3} = {1, 5}.

For the index injection i′ = 345 we calculate that Φp maps {1, 2} to {i′1, i′2} = {3, 4}
and {1, 3} to {i′1, i′3} = {3, 5}, see Figure 5.1.
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5 General results

Figure 5.1: The occurrence of π in σ that is defined by the index injection i′ = 345
is highlighted with gray circles. The occurrence set {1, 3} of p in π is mapped with
the injection Φp, induced by i′, to the occurrence set {3, 5} of p in σ, highlighted
with black diamonds

Lemma 5.4. Let π and σ be two permutations. For every occurrence of π in σ
the index injection induces an isomorphism of the occurrence graph Gp(π) with a
subgraph in Gp(σ), for all patterns p.

Proof. From Lemma 5.2 we have the injection Φp : Vp(π)→ Vp(σ). We need to show
that for every uv ∈ E (Gp(π)) that Φp(u)Φp(v) ∈ E (Gp(σ)).

To complete the proof let uv be an edge in Gp(π), where u = {u1, . . . , ul} and
v = {v1, . . . , vl}. For every index injection j of π into σ, the vertices u, v map to
Φp(u) = {j(u1), . . . , j(ul)}, Φp(v) = {j(v1), . . . , j(vl)} respectively. Since j is an
injection there exist an edge between these two vertices in Gp(σ).

Example 5.5. We will continue with Example 5.3 and show how the index injections
i = 125 and i′ = 345 define subgraphs of Gp(σ) which are isomorphic to Gp(π). The
occurrence graph of p in π is a graph on two vertices {1, 2} and {1, 3} with an edge
between them. The occurrence graph Gp(σ) with the highlighted subgraphs induced
by i and i′ that are isomorphic to Gp(π) are shown in Figure 5.2.

The next example shows that different occurrences of π in σ do not necessarily lead
to different subgraphs in Gp(σ).

If p = 12, π = 312 and σ = 3412 there are two occurrences of π in σ. The index
injections are i = 134 and i′ = 234. However, as (i2, i3) = (i′2, i

′
3) and the fact that

{1, 2} is the only occurrence set of p in π, we obtain the same injection Φp and
therefore the same subgraph in Gp(σ) for both index injections.

We call a property of a graph G hereditary if it is invariant under isomorphisms and
for every subgraph of G the property also holds. For example the properties of being
a forest, bipartite, planar or k-colorable are hereditary properties. The property of
being a tree is not hereditary.

12



{1, 2}

{1, 4}{1, 5}

{2, 4}

{3, 4} {3, 5}

{1, 2}

{1, 4}{1, 5}

{2, 4}

{3, 4} {3, 5}

Figure 5.2: The graph G12(24153) with highlighted subgraphs that are isomorphic to
G12(132). On the left the subgraph is induced by the index injection i and on the
right by i′

Let c be a property of graphs and let

G p,c = {π ∈ S : Gp(π) has property c} .

Theorem 5.6. Let c be a hereditary property of graphs. For any pattern p the set
G p,c is a permutation class, i.e. there is a set of classical permutations patterns M
such that

G p,c = Av(M).

Proof. Let σ be a permutation such that Gp(σ) satisfies the hereditary property c
and let π be a pattern in σ. By Lemma 5.4 the graph Gp(π) is isomorphic to a
subgraph in Gp(σ) and thus inherits the property c.

We will now focus on the pattern p = 12.
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6 Forests and trees

Recall that a non-empty simple graph on n vertices (n > 0) is a tree if and only
if it is connected and has n − 1 edges. An equivalent condition is that the graph
has at least one vertex and no simple cycles (a simple cycle is a sequence of unique
vertices v1, . . . , vk with edges v1v2, . . . , vk−1vk, vkv1). A forest is a distinct union of
trees. The empty graph is a forest but not a tree. If a graph does not contain any
cycle it is acyclic.

Theorem 6.1. Let c be the property of being a forest and p = 12. Then

G p,c = Av (123, 1432, 2143, 3214) .

Before we can prove this theorem we need a proposition about the length of cycles
in occurrence graphs G12(π).

Proposition 6.2. If G12(π) has a cycle then it has a cycle of length 3 or 4.

Proof. Let p = 12 and let π be a permutation such that Gp(π) contains a cycle of
length k. Name the vertices in the cycle v1, . . . , vk with vl = {il, jl}, il < jl, for
l = 1, . . . , k and note that there are edges between adjacent vertices in the cycle.

The vertices v1 and v2 in the cycle have exactly one index in common, say i1 = i2.
If j1 < j2 and π(j1) < π(j2) (or j1 > j2 and π(j1) > π(j2)) then u = {j1, j2} is an
occurrence of p in π, forming a triangle v1, v2, u in Gp(π). So either j1 > j2 and
π(j1) < π(j2) holds, or, as pictured in Figure 6.1, j1 < j2 and π(j1) > π(j2).

Next we look at the edge v2v3 in the cycle. If the vertices have the index i1 in
common then v1, v2, v3 forms a triangle in Gp(π). So assume that v2 and v3 have the
index j2 in common with the conditions i3 > j1 and π(i3) < π(i1) (because else there
are more vertices and edges forming a cycle of length ≤ 4 in Gp(π)). Continuing
down this road we know that v3v4 is an edge with shared index i3 and conditions
j3 > i3 and π(j3) < π(i1), see Figure 6.2.

Graphicly, it is quite obvious that we cannot extend the graphical line path in
Figure 6.2 with more southwest-northeast line segments (a sequence of vertices

15



6 Forests and trees

v1

v2

· · · i1 · · · j1 · · · j2 · · ·

...
π(j1)
...
π(j2)
...
π(i1)...

Figure 6.1: The vertices v1 and v2 (shown as line segments inside the permutation
π) share the index i1. We picture the case where j1 < j2 and π(j1) > π(j2)

v1

v2

v3

v4

· · · i1 · · · j1 · · · i3 · · · j2 · · · j3 · · ·

...
π(j1)
...
π(j2)
...
π(i1)
...
π(j3)
...
π(i3)...

Figure 6.2: The vertices v1, v2, v3, v4 are shown as line segments with order relative
conditions on the indices i1, i3, j1, j2, j3 and their values inside π

16



v5, . . . , vk) such that the extension closes the path into a cycle without adding more
edges (line segments) between vertices that are not adjacent in the cycle and thus
forming a cycle of length 3 or 4 in the occurrence graph.

For every pair of dots in the grid representation of π, because p = 12, there is a line
segment (a vertex in the occurrence graph) between them if the dot on the right
lies above the dot on the left (if the line segment between the dots lies southwest-
northeast).

Because we cannot close this path into a cycle, k cannot be ≥ 5, meaning that if
there exist a cycle in the occurrence graph, there exist a cycle of length 3 or 4 in
the graph. A similar graphical approach is used for the other cases.

Proof of Theorem 6.1. If π contains the pattern 2143 then Gp(π) contains a sub-
graph that is ismorphic to a cycle of length four, according to Lemma 5.4, be-
cause Gp(2143) is a cycle of length four. If π contains any of the patterns 123,
1432, 3214 then Gp(π) contains a subgraph that is isomorphic to a triangle. So if
π /∈ Av (123, 1432, 2143, 3214) then Gp(π) contains a cycle and is therefore not a
forest.

On the other hand, let π be a permutation such that Gp(π) is not a forest. Then
the occurrence graph contains a cycle and in particular a shortest cycle. From
Proposition 6.2 we know that the length of the shortest cycle in Gp(π) is either 3 or
4. But it’s easy to see that the only permutations whose occurrence graph is a cycle
of length 3 or 4 are 123, 1432, 2143, 3214. Therefore π must contain at least one of
the patterns.

The rest of this section is devoted to counting occurrence graphs that have the
property of being a tree, which we note is not a hereditary property. We start by
introducing a new notation.

Definition 6.3. Let π ∈ Sn and k be an integer such that 1 ≤ k ≤ n + 1. The
k-prefix of π is the permutation π′ ∈ Sn+1 defined by π′(1) = k and

π′(i+ 1) =

{
π(i) if π(i) < k,
π(i) + 1 if π(i) ≥ k

for i = 1, . . . , n. We denote π′ with k � π. In a similar way we define the k-postfix
of π as the permutation π ≺ k in Sn+1.

This notation is chosen because of how graphical it is. Other notations have been
introduced such as an up-arrow in Vidarsdottir and Ulfarsson [3].

17



6 Forests and trees

Example 6.4. Let π = 42135 and k = 2. Visually, if we draw the grid representation
of π, we are putting the new number k to the left on the x-axis and raising all the
numbers ≥ k on the y-axis by one. Thus we have 2 � 42135 = 253146.

7−→

Figure 6.3: The 2-prefix of 42135 is 253146

We note that for every permutation π′ ∈ Sn+1 there is one and only one pair (k, π)
such that π′ = k � π. We let k = π′(1) and π = st(π′(2) · · · π′(n+ 1)).

Example 6.5. For every decreasing permutation π = n · · · 1 the occurrence graph
of 12 in the (n + 1)-postfix π ≺ (n + 1) is a fully connected graph on n vertices
and therefore isomorphic to Kn. Every two vertices from the occurrence set

{
{i, n+

1} : i = 1, . . . , n
}
share exactly one element with each other, see Figure 6.4. The

same is true for the 1-prefix, i.e. G12 (1 � π) ∼= G12 (π ≺ (n+ 1)) ∼= Kn.

and

Figure 6.4: The Grid plots of 1 � 54321 and 54321 ≺ 6

One of our very first discoveries was a nice sequence of quadratic numbers. We
discovered this with the help of Sage [4] and proved it with induction.

Theorem 6.6. The number of permutations of length n in G 12,tree is (n− 1)2.

Proof. Let p = 12. We start by considering three base-cases.

For n = 1 the occurrence graph is the empty graph. For n = 2 we get two occurrence
graphs: Gp(12) is a single node graph and Gp(21) is the empty graph. For n = 3
we have 3! = 6 different permutations π. Of those we calculate that 132, 213, 231

18



and 312 result in connected occurrence graphs on one or two nodes but Gp(123) is
a triangle and Gp(321) is the empty graph.

We have thus showed that the claimed enumeration is true for n = 1, 2, 3.

For the inductive step we assume n ≥ 4 and let π be a permutation of length n. We
look at four different cases of k to construct π′ = k � π. We let x, y and z be the
indices of n− 1, n and n+ 1 in π′ respectively.

(I) k ≤ n− 2: The index sets {1, x}, {1, y} and {1, z} of p in π′ all share exactly
one common element and thus form a triangle in Gp(π

′). Therefore there are
no permutations π resulting in the occurrence graph Gp(π

′) being a tree.

(II) k = n− 1: Let T (n+1) denote the number of permutations π′ of length n+1
with π′(1) = n − 1 such that Gp(π

′) is a tree. Note that T (1) = T (2) = 0,
T (3) = 1 and T (4) = 2. In order to obtain a formula for T we need to look
at a few subcases:

i) If y < z then {1, y}, {1, z} and {y, z} form an triangle in Gp(π
′), see

Figure 6.5. Independent of the permutation π, the graph Gp(π
′) is not a

tree.

1 · · · y · · · z · · ·

n+ 1
n
n− 1
...

Figure 6.5: k = n− 1 and y < z

ii) Assume y > z and z 6= 2, see Figure 6.6. Then π′(2) < n− 1 and {1, z},
{2, z}, {2, y} and {1, y} form a cycle of length 4 in Gp(π

′), resulting in it
not being a tree.

iii) Now lets assume y > z and z = 2, see Figure 6.7.

If y ≥ 5 then the vertices {1, y}, {3, y} and {4, y} form a cycle in Gp(π
′).

If y = 3 then {1, 2} and {1, 3} will be an isolated path component in
Gp(π

′), making π′ = (n − 1)(n + 1)n(n − 2) · · · 1 the only permutation
such that the occurrence graph Gp(π

′) is a tree.

Now fix y = 4 and lets look at some subsubcases for the value of π′(3).
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6 Forests and trees

1 2 · · · z · · · y · · ·

n+ 1
n
n− 1
...
π′(2)
...

Figure 6.6: k = n− 1, y > z and z 6= 2

1 2 3 · · · y · · ·

n+ 1
n
n− 1
...
π′(3)
...

Figure 6.7: k = n− 1, y > z and z = 2
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a) If π′(3) ≤ n− 4 then π′(3)n, π′(3)(n− 2) and π′(3)(n− 3) are all oc-
currences of p in π′, with the respective index sets forming an triangle
in Gp(π

′).

b) If π′(3) = n − 2 then π′ = (n − 1)(n + 1)(n − 2)n(n − 3) · · · 1 is the
only permutation resulting in Gp(π

′) being a tree.

c) If π′(3) = n − 3 we look at Figure 6.8 where the permutation π′ is
shown.

1 2 3 4 · · ·

n+ 1
n
n− 1
n− 2
n− 3
...

Figure 6.8: k = n− 1, y = 4 and z = 2

The permutation σ = st(π′(3) · · · π′(n + 1)) is just like π′ in the case
k = n − 1 and z = 2, only the length of σ is n − 1. Because {1, 2}
is a vertex in Gp(σ) the occurrence graph of p in σ is not the empty
graph. Thus it is easy to see that Gp(π

′) is a tree if and only if Gp(σ)
is a tree, and according to the aforementioned case there are T (n− 1)
such permutations σ.

Summing up the subsubcases there are a total of 1+1+T (n−1) permuta-
tions π′ making the occurrence graph a tree, i.e. T (n+ 1) = 2 +T (n−1).
Because T (4) = 2 and T (3) = 1 we deduce that T (n+ 1) = n− 1.

The whole case k = n − 1 gives us that there are n − 1 permutation π′ such
that Gp(π

′) is a tree.

(III) k = n: We need to examine three subcases:

i) If z ≥ 4 then {1, z}, {2, z}, {3, z} are all index sets of p in π′, forming a
triangle in Gp(π

′).

ii) If z = 3, then {1, 2} is an index set of p in π making the occurrence graph
Gp(π) non-empty, see Figure 6.9.

If π′(2) ≤ n − 3 then π′(2)(n + 1), π′(2)(n − 1) and π′(2)(n − 2) are all
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6 Forests and trees

1 2 3 · · ·

n+ 1
n
...
π′(2)
...

Figure 6.9: k = n and z = 3

occcurrences of p in π′, resulting in Gp(π
′) having a triangle.

If π′(2) = n − 1 then {1, 3} and {2, 3} is an isolated path component in
Gp(π

′) and π′ = n(n− 1)(n+ 1)(n− 2) · · · 1 is the only permutation such
that the occurrence graph is a tree.

We therefore assume π′(2) = n− 2, see Figure 6.10.

1 2 3 · · · x · · ·

n+ 1
n
n− 1
n− 2
...

Figure 6.10: k = n, z = 3 and π′(2) = n− 2

Let σ = st(π′(2) · · · π′(n + 1)). Note that the occurrence graphs Gp(π
′)

and Gp(σ) are the same except the former has an the extra vertex {1, 2}
and an edge connecting it to a graph corresponding to Gp(σ). Therefore,
Gp(π

′) is a tree if and only if Gp(σ) is a tree.

Note that σ(1) = n − 2 and σ(2) = n and therefore σ is like π′ in the
case k = n − 1 and z = 2 as in Figure 6.7, only of length n instead of
n+1. By the same reasoning as in that case the number of permutations
σ (and therefore π′) such that Gp(π

′) is a tree is T (n) = n− 2.

iii) If z = 2, then {1, 2} is an isolated vertex in Gp(π
′), see Figure 6.11. The

occurrence graph of p in π′ is a tree if and only if Gp(π) is the empty graph
which is true if and only if π is the decreasing permutation. Therefore
there is only one permutation π′ = n(n+ 1)(n− 1) . . . 1 such that Gp(π

′)
is a tree.
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1 2 3 · · ·n+ 1

. . .

n+ 1
n
n− 1
...
1

Figure 6.11: k = n and z = 2

To sum up the the case k = n there are 1 + (n − 2) + 1 = n permutation π′
such that Gp(π

′) is a tree.

(IV) k = n+ 1: Every occurrence π(i)π(j) of p in π is also an occurrence of p in
π′, but with index set {i + 1, j + 1} instead of {i, j}. There are no more
occurrences of p in π′ because π′(1) = n + 1 > π′(j′) for every j′ > 1 so
π′(1)π′(j′) is not an occurrence of p for any j′ > 1.

This means that G12(π
′) ∼= G12(π) so by the induction hypothesis we obtain

that there are (n − 1)2 permutations π′ such that the occurrence graph is a
tree for this value of k.

To sum up the four instances there is a total of 0 + (n − 1) + n + (n − 1)2 = n2

permutations π′ such that Gp(π
′) is a tree.
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7 Future work

There are some open questions about occurrence graphs that would be interesting
to look into. Is the function Gp(π) continuous is some sense? Can we make Gp into
a functor? For permutations p, q, π, σ, how do the skew sum and direct sum of
the permutations π and σ affect the occurrence graphs Gp(π), Gp(σ), Gp(π ⊕ σ),
Gp(π 	 σ)? What about Gp⊕q(π) and Gp	q(π)?

25





Bibliography

[1] A. Claesson, B. E. Tenner and H. Ulfarsson, Coincidence among families of
mesh patterns, submitted. arXiv:1412.0703

[2] D. Callan, Pattern avoidance in “flattened” partitions, Discrete Math. 309
(2009) 4187–4191

[3] S. L. Vidarsdottir and H. Ulfarsson, Isomorphisms between consecutive pattern
classes, http://hdl.handle.net/1946/20561

[4] W. A. Stein et al. Sage Mathematics Software (Version 6.5), The Sage Devel-
opment Team, 2015, http://www.sagemath.org

27


	Acknowledgments
	Introduction
	Permutation and graph background
	Occurrence graphs
	The pattern p=12 and the identity permutation
	General results
	Forests and trees
	Future work
	Bibliography

