

Handpoint – Point of sale

Final Report

Spring 2015

Bjarni K. Árnason

Tómas P. Sævarsson

B.Sc. Computer Science

School of Computer Science

Instructor: Haukur Kristinsson T-404-LOKA

Examiner: Elín Torfadóttir School of Computer Science

2

Table of Contents

Abstract.. 4

Introduction ... 5

About Handpoint Point of Sale .. 5

Handpoint... 5

About the company ... 5

Vision.. 6

Mission ... 6

Value Proposition .. 6

Competitive Positioning .. 6

Methodologies and tools .. 6

Scrum ... 6

Scrum team .. 6

Working environment ... 7

Team work setup .. 7

Agreement between team members ... 7

Time planning ... 7

Development environment.. 8

Development rules .. 8

Design and development .. 9

Software Architecture ... 9

System design ..10

Navigation Diagram ..10

Gui Mockups ..11

Application Features ..11

Project progress...12

Product backlog ...13

Tasks ...14

Sprints ...14

Sprint 1 ..15

Sprint 2 ..15

Sprint 3 ..16

Sprint 4 ..16

Sprint 5 ..17

3

Sprint 6 ..17

Sprint 7 ..18

Risks ..18

Risk Matrix ...18

Risk Analysis Table ...19

Testing ..20

System testing ...20

Future work ...23

Deliverables ...23

Conclusion / Summary ...23

Review from Handpoint ...24

Bibliography ..26

4

Abstract

This report describes the project “Handpoint Point of Sale” (HiPOS) which is an application for

the company Handpoint. This project is a B.Sc final project at the Department of Computer

Science at Reykjavik University.

The Handpoint Point of Sale (HiPOS) is a Windows desktop application that will make it

possible for merchants to communicate with USB and Bluetooth card readers from Handpoint.

This connection allows merchants to accept debit/credit cards as payment for their goods. In

brief, the merchants enter the amount for the product/service they are selling and send it

wirelessly via Bluetooth technology or through a USB cable to the card reader. The customer

then inserts his card and enters the PIN number and the transaction takes place. The

application creates receipts that can be printed out or sent by email as attachments.

Furthermore, there is a function that allows for making refund, sale-reversal and refund-

reversal transactions. It is also possible to look up all transactions and print them out again

or send them to customers by email afterwards.

The report also includes descriptions of the design and architecture that we used throughout

the project, including how the project was planned and organized between the team

members.

We utilized the methodology Scrum to manage the project and the artifacts from that, which

we used, was user stories, product backlog, sprints and sprint burndown charts to follow the

process of the project.

We will discuss how the project progress was throughout the project and how we did in each

sprint.

Furthermore we will discuss how we handled the risk of the project, what testing we did and

what the future holds for the application.

5

Introduction

About Handpoint Point of Sale
The project we worked on is called Handpoint Point of Sale, Handpoint POS or HiPOS. In this

report we will use HiPOS when referencing the project.

HiPOS is a desktop client application that runs on the Windows 8.1 operating system. We

worked on the project in cooperation with Handpoint, which is an Icelandic Mobile POS

platform provider. HiPOS is a sales interface for receiving card payments using payment

solutions from Handpoint.

HiPOS communicates through Bluetooth and USB technology with card readers from

Handpoint and makes it possible for merchants to accept debit/credit cards as payment for

their goods. HiPOS uses the Handpoint APIs and SDKs to connect and that gives HiPOS the

opportunity to access all the features that the card reader has to offer.

The reason why Handpoint wanted this solution is that they had an old JAVA client which was

difficult to maintain. Therefore they had a need for a newer and better one that was not

difficult to support and was preferably more user-friendly. The old client also doesn’t have the

functionality to send email which was one of the highest priorities that Handpoint set for the

new client. Furthermore, Handpoint had just released a C# version of their SDK and wanted

to know how outside developers would handle that version.

Handpoint

About the company
Handpoint is a Mobile POS platform provider which enables developers to add highly secure

EMV payments to their applications. Handpoint currently employs 20 people and has offices

in Iceland, Cambridge UK and Palo Alto California. With 13 years experience in the payment

market, the founders pioneered major innovations in the mobile payments market, including

developing Mobile Point-Of-Sale (MPOS) for the airline industry in 2003 and the world's first

Chip and PIN mPOS solution for a handheld device at Manchester United FC’s stadium in 2007.

Handpoint today was set up in 2009 as a pure payments company focused on MPOS and has

developed a comprehensive platform for developers, enabling them to easily add secure, pre-

certified Chip and PIN payments to their app. The Handpoint solution was the world's first

Mobile POS application to be PCI-P2PE certified (About, 2015).

6

The vision, mission, value proposition and competitive positioning of Handpoint is as follows:

Vision

Mobile POS will disrupt Retail and Payments and Handpoint will be a key payments provider

enabling that change.

Mission

Handpoint’s mission is to be the number one choice for Mobile POS developers in Europe and

North America.

Value Proposition

Handpoint provides the most secure Payment service for integrated Mobile POS, which is

efficient and easy to deploy.

Competitive Positioning

Handpoint enables developers to be the first to market with the most secure Mobile POS

solutions suitable for merchants of all sizes.

Methodologies and tools

This chapter contains information regarding our use of the Scrum methodology, the working

environment, team work setup, an agreement between team members, how we planned the

project, and development environment information.

Scrum
The team decided to use Scrum to manage the project. Scrum is an iterative and incremental

methodology for managing product development and has a few artifacts that we employed.

We used user stories, product backlog, sprints and sprint burndown charts to follow the

process of the project. Each story was broken down into tasks and each task estimated

separately. We used Scrum Wall to follow each story and task. Each sprint lasted two weeks,

from Monday to Sunday. On Sundays we had a team meeting where we planned the week

ahead and also talked about retrospective and sprint planning when sprints were finished.

Scrum team

Scrum role Name

Product owner
Jón Hilmar Gústafsson, software
developer, Handpoint

Scrum master/Project
manager

Tómas Sævarsson

Development team Bjarni, Tómas

Stakeholders Handpoint

7

We also had meetings on Wednesdays with our instructor and with two weeks interval a

status meeting with the product owner. Because the product owner was in-house at

Handpoint, he was available for us almost every day if we had any questions. We also

contacted other staff members if any help was needed.

Working environment

Team work setup
The team was located at Handpoint headquarters at Hamraborg in Kópavogur. Handpoint set

up facilities with computer monitors, a blackboard, a scrum wall and other items that we used.

One of the team got a security card with permission to enter the office outside of office hours,

which gave us time to work on weekends as well.

We used Google Drive to store all our files and gave our instructor access. Every hour that we

worked on the project was registered in a Google sheet file. There we registered the date,

when we arrived at Handpoint, when we left the office, how many hours we worked, activities,

task numbers and a description of the work we had done.

Agreement between team members
The team decided to divide responsibilities and the division can be seen in the following table.

It should be noted that we started this project as a team of three people but unfortunately

one team member had to withdraw before the project finished.

Role Description Member

Architect

The main objectives for the Architect was to design the environment

of the project. This included setting up drawings that described the
structure of the system and how everything should work during

development time.

Bjarni K.
Árnason

Product owner
The main objective for the Product owner was to ensure that the

requirements of the project were complied with.

Jón H.

Gústafsson

Project
manager

The main objective for the Project manager was to ensure that the

project was on schedule, to keep track on product backlog, sprints
backlogs and to manage meetings and communications with

stakeholders

Tómas P.
Sævarsson

Programmers Programmed and designed the look of the project
Bjarni,

Tómas

Testers Tested the project
Bjarni,

Tómas

Time planning
The first weeks were all about planning, starting up the project, getting our development

environment up and running and writing user stories. In January the team had a meeting with

the product owner and wrote all user stories. After that meeting, team members sat down

and tasked the user stories. Afterwards we realized that most of the planning hours weren’t

8

registered in sprints so there is a gap between sprint-registered hours and actual registered

hours (See Project progress). Handpoint had estimated that the project would take between

800 and 1000 hours.

Development environment
In developing the system we used Visual Studio 2013 (.NET v4 since that is the version the

HAPI SDK supports) using the C# version of the WPF (Windows Presentation Foundation)

framework. A SQLite relational database was used for the local data storage. All code was

hosted on a private account on GitHub, but will later on be made publicly accessible through

Handpoint’s GitHub account. Also, we used Git as a source control system connected to the

private repository.

Development rules
We decided to set some development rules before we started.

General rules

1. Code must be in English

2. Comments on code must be in English

3. Comments must be written above relevant code and not at the end of a line or below

it

4. Comments must start with a capitalized letter

C#

5. Use four spaces for indentation

6. Use one line space between classes, functions and attributes definitions

7. Use space between keywords and expression for example;

if (true) … // Good

if(true) … // Bad

foreach (var item in list) … // Good

foreach(var item in list) … // Bad

8. Use PascalCasing for classes, functions and class attributes

9. Use camelCasing for local variables and parameters

10. Open braces in the line below a sentence and close below the last line, for example:

public ActionResult Index()

{

 return View();

}

11. Use implicit typing for local variables when tag is given by their assignments, for

example:

var var1 = "This is clearly a string.";

var var2 = 27;

var var3 = Convert.ToInt32(Console.ReadLine());

https://www.handpoint.com/docs/device/Windows/

9

Design and development

In this chapter we will discuss the design of the application. The main objectives of the

application were to make it easily maintainable, loosely coupled and testable. The user

interface should be user-friendly and follow modern design themes for Windows applications.

Software Architecture
To make our code as maintainable and loosely coupled as possible, we structured our code

following the MVVM (Model, View, ViewModel) pattern. Furthermore, for support in using

this pattern, we used the MVVM Light Toolkit which is a NuGet package for WPF. The MVVM

Light Toolkit writes a lot of boilerplate code to help us bind our application together as well

as helping in making data flow between different points in the application. To help us in

implementing a modern Windows feel for the application, we used a UI toolkit called

MahApps.Metro which gave us access to a lot of styled controls that fitted our idea for the

design.

A layering strategy was put in place allowing us to separate our presentation logic from the

business logic. In the business logic, a service layer was created. This service layer contains a

couple of services that we can use in our presentation logic. Each service has an interface and

then an implementation of that interface. We created three services that each take care of a

certain task; HapiService wraps the HAPI SDK for easier access and maintainability,

MailService contains the mail sending logic and methods, and TransactionsDBContext is a

service that implements DbContext using the “Unit of work” pattern which gives us easy

access to our database models. We used Entity Framework 6 (ORM) to map our model objects

to the database which required us to install a couple of dependencies to support the SQLite

database we used. HapiService and MailService use the Singleton pattern with dependency

injection so we only have one instance of those services running and inject the needed

services into our viewmodels so that they can be used in the presentation layer.

Following the MVVM pattern our viewmodels contain the presentation logic, communicate to

the services and create public objects that our views can use to display data. Each view is

bound to a specific viewmodel, i.e. SaleView is bound to SaleViewModel and can only access

data through that specific viewmodel, and following guidelines for this pattern the

viewmodels know nothing about the views. The views then decide how to display the data

from the viewmodels and implement the layout of the application window. For people used

to web development, a view in our context is similar to a HTML file that contains HTML code

as well as CSS code, except our views are written using the XAML language that WPF uses.

We needed a way to make data flow easily through the application and for that we used a

messaging system built into the MVVM Light Toolkit. With this system we are able to send

messages containing data from our services to viewmodels that register to that specific

message and can in turn display the data in our views. The messaging system was both used

https://www.nuget.org/packages/MvvmLight/
http://mahapps.com/

10

to send data between classes and to send simple notification messages that would, for

example, update the list of transactions or navigate between views if something special

happens.

System design
Before we started to program the application, we created a design report which is one of the

attachments of this final project. More information can be accessed in that report.

Navigation Diagram

In the picture below, you can see the main connections between views in the

program. On the main view, which is also the Sales view, there are icon tiles

for each view. From the main view you can click on ‘Refund’, ‘Transactions’,

‘Settings’ and ‘Information’ tiles and from all of them you can go back to the

main view. From the ‘Transactions’ list you can double click on a line in the

grid view and, depending on the type of transaction, you can either do a sales

reversal or a refund reversal. When you click on the ‘Exit’ tile the application

shuts down. On the left is a picture of the navigation bar as it is in the HiPOS

application.

11

Gui Mockups
To help us design the program, we used the
program Evolus Pencil which is an open-
source GUI prototyping tool. With that we
created mockups for most of the views we
programmed in the project. In the picture
on the right is an example of how the
mockup of the Sale view was designed.

Application Features
The main application features are as follows;

Sale transactions

Here users can start a sale

Refund transactions

Here users can start a refund

Transactions list

Here users can access all transactions and print and email receipts.
It is also possible to make a Sale Reversal and a Refund Reversal

Settings

Here users can select different settings. Settings can be changed for
printing, email, default currency, devices etc.

Information

Here users can see information about the application and how to
contact Handpoint.

Exit

Here users can exit the application

More information regarding each transaction and how to change settings can be found in a

User guide that was written along the way.

https://code.google.com/p/evoluspencil/

12

In the picture below there is an example of a sale transaction.

The first step is to enter the amount in the HiPOS client. Then HiPOS connects through

Bluetooth or USB cable to a card reader and asks for card and PIN number. The merchant

hands the card reader to the customer, who enters his PIN number. When the customer has

successfully entered the code, the card reader, via encrypted messages, communicates with

a payment gateway and then a receipt is created in the HiPOS client which the merchant can

print out or send via email to the customer.

Project progress

As we mentioned before, we

used Scrum to plan and have

an overview of the progress of

the project. To begin with, the

goal of the project was to

implement Sale, Refund, Sale

Reversal and Refund Reversal

with features like printing,

email, transactions list etc.

However, at a status meeting

in March, Handpoint decided

to change that.

The process on the right

shows the point of success

from Handpoint’s point of

view.

The definition of

success for Handpoint was

that it would be possible to

make a sale transaction and to follow that through the whole process. That means, in short,

that the application could connect to the card reader, start a sale, communicate with the

card reader, print a receipt and send a receipt as an attachment in an email.

13

Product backlog
In the product backlog we wrote all the user stories regarding the project. We used priority

to decide which stories we had to implement first and then we used importance on stories

with priority A to decide in which order we would work on the tasks.

We created 57 stories which we divided into A, B, C and D priority. The stories were prioritized

as follows;

User stories with priority A were the target for the project at first but like stated above

Handpoint changed that during the project.

In the beginning it was estimated that the project would take around 800-1000 hours to

complete and when this report is written we have registered 863 hours as can be seen in the

table below.

The workload each month throughout the

semester can been seen in the table on the right.

Priority Count

A 32

B 15

C 6

D 4

 Activities

 Time registered

Nr. Activity Status Tómas xxxxx Bjarni SUM

1 Planning Finished 41 8 8 56

2 Work setup/Work plan Finished 111 41 46 198

3 Software installation Finished 4 3 8 15

4 Meetings Finished 8 6 6 19

5 Programming Finished 81 56 254 391

6 Testing Finished 4 0 0 4

7 Final report Finished 116 0 12 128

8 Presentation In process 0 0 0 0

9 Research Finished 18 12 23 52

 SUM 382 126 355

 TOTAL 863

Month Total hours % of total

Jan 120 13,9%

Feb 181 21,0%

Mar 194 22,5%

Apr 115 13,3%

May 253 29,3%

Sum 863 100%

Avg. 173

14

Tasks
We created 140 tasks and estimated they would require around 750 hours. In the latter stages

of the project we estimated that with testing, fixing, final report and presentation the project

should take about 1.080 hours.

After final exams in April we sat down and went over all user stories and all tasks just to make

sure that we were not forgetting anything and also to clarify how many hours we needed to

work before deadline. After that meeting we were able to close some user stories because

tasks within them had already been concluded while working on other things. We were also

able to lower our estimates on many tasks because when we planned them in the beginning,

we really did not know what we were getting into. For example, we had one user story with

seven tasks and we had estimated that would require around 44 hours but because we were

more familiar with the development environment and the tools we were working with we

could lower estimates there to seven hours.

Sprints
We planned seven sprints with 750 hours estimated in total. Like stated before the reason

behind the gap between

registered hours in sprints

(643 hours) and actual

hours (863 hours) is all the

planning time and the

reports written at the

beginning. None of that

was put into sprints which

afterwards proved to be a

big mistake. When we

figured that out, however,

we always had tasks delegated for report writing and planning.

In the table below are overview of all the sprints.

Sprint Started Days Estimated hours
Registered

hours
Difference

Sprint 1 26.1.2015 14 130 84 46

Sprint 2 9.2.2015 14 115 28 87

Sprint 3 23.2.2015 14 68 52 16

Sprint 4 9.3.2015 14 112 93 19

Sprint 5 23.3.2015 14 61 35 26

Sprint 6 20.4.2015 14 118 118 0

Sprint 7 4.5.2015 14 146 233 -87

Sum 98 750 643 107

0

500

1000

Sprint 1 Sprint 2 Sprint 3 Sprint 4 Sprint 5
Sprint 6

Sprint 7

666 638
586

493
458

340

107

Project burndown

15

Sprint 1

GOAL: To start HIPOS project ✔

For Sprint 1 we estimated 130 hours but registered only 84. The difference there is due to

planning which was not registered in the sprint.

In this sprint we worked on setting up the source control and structure of the project, created

Gui mockups of main views and set up the initial appearance of the application.

Sprint 2
GOAL: To implement Sale transaction

Our estimation for Sprint 2 was 115 hours but we registered only 28 hours. This was because

of all the planning, reporting and meetings we did at that time. Also, at the time we had some

other school projects that required our attention.

16

Sprint 3

GOAL: To implement Sale transaction✔

For Sprint 3 we estimated 68 hours of work and registered 52 hours. We reached our goal

which was to implement a sale transaction.

This was the best sprint so far and we reached some milestones. This was the sprint

where the development environment clicked and after that everything went more

smoothly .

Sprint 4

GOAL: To implement transaction list✔

Our estimation for this sprint was 112 hours and in the end we had registered 93 hours. This

was one of the best sprints since the project got off the ground and was very productive. Many

nice features were finished during this sprint.

17

Sprint 5

GOAL: To implement cancel function and remove popups and use views instead✔

For this sprint we estimated 61 hours of work but registered only 35. The reasons for the few

hours registered here were final exams and other school projects.

Sprint 6

GOAL: To implement printing, email and settings view✔

Because of final exams we did not start this sprint until 20 April. We estimated to work for

118 hours and we registered exactly that amount of time. In this sprint we implemented

printing and email features and finished the settings window.

18

Sprint 7

GOAL: To finish HiPOS project✔

This was the final sprint. We foresaw a workload of 148 hours and when this report is written

we have registered 233 hours. This sprint was all about finishing the features Handpoint

wanted, fixing minor things, writing the final report, user guide and operation manual, and

preparing the presentation.

Risks

When we started this project, one of the first tasks was to set up a risk analysis. A risk analysis

should address what could possibly go wrong, what the likelihood is of it happening, how it

will impact the project and what can be done about it.

We used a scale from 1-5 to set our risk likelihood, 1 being most unlikely to happen and 5

most likely. We used the same scale for the impact, where 1 predicted the least impact and

5 the most impact. Then, to calculate the risk, we multiplied these numbers together. More

information regarding risk factors can be found in the risk analysis table.

Risk Matrix

We designed a risk matrix to make

the risk visual and in the table on the

right you can see the matrix. Six risk

factors were low-risk, five medium-

risk and one high-risk.

19

Risk Analysis Table

Risk
factor

nr.

Risk factor
Like-

lihood
Impact Risk

Risk mgmt

approach

Early warning

signs

Solution

date

1

Team members
knowledge of WPF is

not good enough

resulting in delay in
programming

3 3 9

Team member will

try to assist each
other with problems

and if that is not
enough we will

seek outside help

When working on
something we

haven't worked on
before

24.4.2015

2

Other courses and
their workload is not

known by now
causing difficulty in

planning resulting in
fewer burn down

hours

3 3 9
Possible that

sprints has to be

changed

When projects in
other courses are

handed out we can
adjust our plans

24.4.2015

3

Connection between
card reader and

computer through
Bluetooth not working

2 2 4
Get Handpoint to
help on a solution

No early signs 25.2.2015

4

Connection between
card reader and

computer through
USB not working

2 2 4
Get Handpoint to
help on a solution

No early signs 22.3.2015

5
If Handpoint decides

to limit our visits
outside office hours

2 1 2
Plan to use HR,
home or other

facilities

We will know this
next week and can

adjust our plans
according to their

decision

4.3.2015

6
Testing devices like
tablets not available

when needed
3 2 6

If that happens,
test other

equipment instead

but ask Handpoint
to get to us the

devices we need

When starting to
program features
that you need to

test with Handpoint
devices

30.4.2015

7

Testing devices like

printers not available
when needed

3 2 6

If that happens,
test other

equipment instead
but ask Handpoint

to get to us the
devices we need

When starting to
program features

that you need to
test with Handpoint

devices

14.3.2015

8

Testing devices like
card readers not

available when
needed

3 2 6

If that happens,
test other

equipment instead

but ask Handpoint
to get to us the

devices we need

When starting to
program features
that you need to

test with Handpoint
devices

20.2.2015

9 Sickness in the team 3 1 3

It is possible that
sprints have to be
adjusted due to

this. Team
evaluates the need

if this comes up.

When team member
is feeling ill

4.5.2015

10
Team member

computer crashes
2 1 2

Handpoint will have
backup computers

available.
No early signs 4.5.2015

11
Team member hard

drive crashes
3 1 3

Since we are using
source control our

code should always
be accessible

Blue screen flashes 4.5.2015

12
SDK from Handpoint
not supporting Win

8.1
3 1 3

Ask Handpoint to
fix it

When starting to
implement features

In the end, we were able to eliminate every risk factor except risk factor 12. When starting to

implement the feature Start/Stop monitoring connection against the USB card driver, we

20

began to notice high CPU problems. When researching this problem, we found out that the

Start/MonitoringConnections service from Handpoint did not support the Windows 8.1

operating system so this feature was put on hold.

We should have had a risk factor from the start which would assess the problem if some of

the team members were to quit before we finished, because in the end this had quite an

impact on our project.

Testing

In this chapter we will discuss the tests that we carried out. We had planned to carry out four

different types of testing, Think-aloud, UI, Unit and system testing, but the loss of one team

member changed that. In the end we could only manage to do the system testing but an

employee of Handpoint will start testing the application as soon as we hand in our code.

While testing HiPOS, we used MPED-400 card readers and two different POS printers, Epson

TM-T88V and Star TSP 100. HiPOS has successfully completed multiple test transactions with

special test cards and test payment servers.

System testing
The following table shows the test description that we carried out after the program was

finished. This test was performed to verify that all transactions would process like Handpoint

had described. The system was tested 12 and 13 May 2015 and one error was found relating

to the testing of 5.1. We fixed that and when testing the system again no error was found.

Nr. Test description Correct conclusion Error/Comment

1.1

Open the program and connect to
card reader. If connection method

not chosen, go to 'Settings',
choose 'USB', and press 'Search'.
When the application finds device

chose one from list and press
'Connect'.

Program is connected with the card
reader with a status at the bottom
confirming connection

ok

2.1
Make a sale transaction by
choosing currency, enter amount

and press ‘Pay’ button

Message dialog with information
regarding the transaction opens.

When transaction is finished, sale
result view with customer receipt

opens and you see an email button.
Both merchant and customer receipt

should have been printed

ok

2.2

Go to settings view, change
customer default printing to ‘Off’
and do a ‘Sale’ transaction (2.1).

When you get a question whether
you want to print receipt, press

‘Yes’.

Message dialog with information

regarding the transaction opens.
When transactions is finished,

message dialog opens with question
if you want to print receipt. After

pressing ‘Yes’, view with customer
receipt open and you see an email

ok

21

button. Merchant and customer
receipt should have been printed.

2.3

Go to settings view, change
merchant default printing to ‘Off’

and do a ‘Sale’ transaction (2.1).
When you get a question whether
you want to print receipt or not,

press ‘Yes’.

Message dialog with information

regarding the transaction opens.
When transaction has finished,
message dialog opens with question

if you want to print receipt. After
pressing ‘Yes’, sale result view with

customer receipt open and you see
an email button. Customer receipt

should have been printed.

ok

3.1

Make a ’Refund’ transaction by
choosing currency, enter amount

and press refund button. When
you get a question whether you

want to print receipt or not, press
‘Yes’.

Message dialog with information

regarding the transaction opens.
When transaction has finished,

message dialog opens with question
if you want to print receipt. After
pressing ‘Yes’, view with customer

receipt open and you see an email
button. Customer receipt should

have been printed.

ok

3.2

Go to settings view, change

customer and merchant default
printing to ‘On’ and do a refund
transaction (3.1).

Message dialog with information
regarding the transaction opens.
When transaction has finished,

refund result view with customer
receipt opens and you see an email

button. Merchant and customer
receipts should have been printed.

ok

4.1

Go to transactions and find the

transaction that you did in 2.1.
Double click on the line.

Transaction Result view with
merchant and customer receipts

opens. Under each receipt there are
print and email buttons. At the

bottom is a sale reversal button.

ok

4.2

While in the same state that 4.1

ended in, choose ‘Print’ button
under ‘Merchant receipt’.

Merchant receipts should have been
printed.

ok

4.3
While in the same state that 4.2
ended in, choose ‘Print’ button

under ‘Customer receipt’

Customer receipts should have been

printed.
ok

4.4

While in same state that 4.3 ended

in, choose ‘Email’ button under
‘Merchant receipt’. Enter email
address and press ‘OK’.

Message dialog opens with a box to
enter email address. After pressing

‘OK’, new message dialog opens
with information that email is being
sent. Merchant receipt should have

been sent via email.

ok

4.5

While in same state that 4.4 ended

in, choose ‘Email’ button under
‘Customer receipt’. Enter email
address and press ‘OK’.

Message dialog opens with a box to
enter email address. After pressing

‘OK’, new message dialog opens
with information that email is being
sent. Customer receipt should have

been sent via email.

ok

4.6

While in same state that 4.5 ended
in, press ‘Sale Reversal’ button.

Message dialog opens with a
question if you want to make a

reversal transaction. Press 'Yes'
Button.

Message dialog with a question
opens. Press ' Yes' button and a
message dialog with information

regarding the transaction opens.
When transaction has finished, result

view with customer receipt opens
and you see an email button.

ok

4.7

Go to ‘Transactions’ and find the

transaction that you did in 3.1.
Double click on the line.

Transaction result view with

merchant and customer receipts
opens. Under each receipt there are

ok

22

print and email buttons. At the
bottom is a refund reversal button.

4.8

While in same state that 4.7 ended
in, press ‘Refund Reversal’ button.

Message dialog opens with a
question if you want to make a

reversal transaction. Press 'Yes'
Button.

Message dialog with a question

opens. Press ' Yes' button and a
message dialog with information

regarding the transaction opens.
When transaction has finished, result
view with customer receipt opens

and you see an email button.
Merchant and customer receipts

should have been printed.

ok

4.9

Go to transactions and find the
Sale reversal you did in 4.6. Press

'Not Available' button. Press 'Ok'
button.

New line in the transactions list, with

the type ‘Sale void should be there.
You see an 'Not Available' button.

After double click a message dialog
opens stating that reversal is not

possible on this transaction.

ok

4.10

Go to transactions and find the
Refund reversal you did in 4.6.

Press 'Not Available' button. Press
'Ok' button.

New line in the transactions list, with

the type Refund void should be
there. You see an 'Not Available'

button. After double click a message
dialog opens stating that reversal is
not possible on this transaction.

ok

5.1

Go to settings. Change ‘Shared

secret key’. Make a sale
transaction (2.1)

On card reader the message “Not

processed” is shown; in application
nothing happens

ok

5.2
Go to settings. Change default
currency to ISK.

Default currency in Sale and Refund
view should be set to ‘ISK’ button.

ok

5.3
Go to settings. Change default

currency to USD

Default currency in Sale and Refund

view should be set to ‘USD’ button.
ok

5.4

Go to settings view. Set email

server to smtp.google. Go to
transactions and double click on a

transaction. Press ‘Email’ button,
enter email address and press

‘OK’.

Message dialog with information that

mail was not sent should be shown.
ok

5.5

Go to settings. Change email

server to smtp.gmail.com. Set
email subject to “demo” and email

body to “This is a demo body”. Go
to transactions and double click on

a transaction. Press ‘Email’ button,
enter email address and press
‘OK. Check your email.

Your inbox should have an email with
“demo” and the date in the subject,

the receipt as an attachment and the
body should say “This is a demo

body”.

ok

6.1
Go to information. Press

‘www.handpoint.com’

Handpoint website Should open in

browser
ok

6.2
Go to information. Press
‘support@handpoint.com’

Default email program should open

with support@handpoint.com as an
email address.

ok

6.4 Press ’Exit’ tile. Press ‘Quit’.

Message dialog opens with a

question if you want to quit. The
application shuts down.

ok

23

Future work

Handpoint now have a great application to serve their customers that are using Windows 8.1.

It is our opinion that they can, in the future, extend it with features such as a tablet version of

the project, a multi-user platform version and a mobile version as well as implementing more

device management features.

Even though it wasn’t a top

priority, we tried the program

on a Dell Venue 8 pro, Windows

Tablet with Windows 8.1

operating system and the

program works but needs a

tweak here and there to make it

more tablet-friendly.

HiPOS is also an ideal tool for Handpoint’s salespeople to show future customers how

connections, payments and other functions work in this market.

Deliverables

The deliverables, to Handpoint, which we are describing here in this report are as follows:

● All source code is in a single solution that is stored in our private repository at GitHub.

This repository will be transferred over to Handpoint’s repository. Handpoint is the

rightful owner of all source code written for this product.

● User guide which outlines every possible functionality the program offers

● Development Guide which outlines how the project is set up and a guide for

developers from Handpoint on how to continue programming the project.

Conclusion / Summary

To participate in such a big project gives us experience that we can continue to use in our

future jobs. We are really proud of what we have achieved and we learned a lot about the

development of an application for Windows OS. This all started as an idea from Handpoint but

will in the end be used by Handpoint’s staff and customers.

We would like to thank all the people at Handpoint for trusting us with this project and extend

special thanks to the product owner, Jón Hilmar, who helped us continuously in getting the

job done.

24

We would also like to thank our families for their support. Without them this wouldn’t be

possible. Furthermore, we thank our instructor, Haukur, for always believing in us.

Review from Handpoint

It's safe to say that we at Handpoint could not have been luckier with the team that chose our

Windows POS client project. They have produced an excellent application that will prove to

be very useful both for our internal development and our clients.

The team have shown themselves to be extremely organised and approached all aspects of

the project in a structured and consistent way. In their work they have been very independent

and on the few occasions they needed assistance they had good questions and also comments

that we will definitely use to improve our online product documentation.

We are also very happy with how well they managed to adapt our ideas to the layout and

themes of Windows 8 despite not having any prior experience with that, much like ourselves.

Overall we are more than satisfied with the results of this final project and wish the team all

the best in their future endeavours from all the staff at Handpoint.

Jón Hilmar Gústafsson

Integration support manager

25

Reykjavík 15. maí 2015

Bjarni K. Árnason

040986-2789

Tómas P. Sævarsson

181270-3499

26

Bibliography

About. (n.d). Handpoint mobile POS. Retrieved 5. May 2015 from

https://www.handpoint.com/about-handpoint/

