

T-404-LOKA-2015

Delivery Automation Tool
for Isavia

Árni Þorvaldsson

Freyr Bergsteinsson
Gunnar Þór Helgason

Sigurbjörn Kristjánsson
BSc Computer Science 2015

Authors:
Árni Þorvaldsson 270874-3209 Instructor:
Freyr Bergsteinsson 010975-3019 Daníel Máni Jónsson
Gunnar Þór Helgason 231074-4579 Examiner:
Sigurbjörn Kristjánsson 170488-2889 Hannes Pétursson

1

Contents
Introduction .. 2

The Company .. 2

The Product ... 2

1. Project Description ... 3

1.1. Description .. 3

1.2. Django Models .. 4

1.3 Script Overview .. 5

1.4. Testing .. 7

2. Working Arrangements .. 8

2.1. Methodology - Scrum .. 8

2.2. Roles and Responsibilities .. 9

2.2.1. Team ... 9

2.2.2. Product Owner .. 9

2.2.3. Scrum Master .. 9

2.3. Software Environment .. 9

2.4 Time registration .. 9

3. Progress ... 10

3.1. Cumulative Flow Chart for User Stories .. 11

3.2. Sprint 0 ... 11

3.3. Sprint 1 ... 11

3.4. Sprint 2 ... 12

3.5. Sprint 3 ... 14

3.6. Sprint 4 ... 15

3.7. Sprint 5 ... 16

3.8. Sprint 6 ... 17

3.9. Sprint 7 ... 18

3.10. Sprint 8 ... 19

3.11. Sprint 9 ... 20

4. Summary .. 21

4.1 Team Experience ... 21

4.2 User Experience .. 22

4.3 Results and Comparison.. 22

4.4 Review from Contact / Product Owner ... 24

Appendices .. 25

Appendix A - Code Coverage .. 25

Appendix B - Terms ... 27

2

Introduction

The Company
Tern Systems is an Icelandic company that reaches back to the late 1970’s, but was formally
established in 1997 by the University of Iceland and the Icelandic Aviation Administration. Tern
Systems makes software for air-traffic control that is being used all around the world. Tern
Systems is also maintaining and developing software for Isavia, its parent company. Isavia
handles the operation and development of all airports in Iceland and manages air traffic in the
Icelandic control area.

The official language at Tern Systems is English and thus all reports and documents regarding
the project will be in English.

The Product
Software delivery for software maintained by Isavia often proves to be a tedious task sometimes
requiring a developer to spend several hours manually checking to see if everything is in order.
The product created by this project is called the Delivery Automation Tool - DATI for short - and
it aims to solve that problem by automating the delivery process. For clarification, “the product”
is what is being developed for Tern Systems, while “the project” is the graduate project at
Reykjavík University.

DATI runs on any modern Linux distribution. The Operational Manual contains instructions on
how to set up an operating system and all needed system components to run DATI.

To use DATI, only one command is needed:

$ scripts/create_delivery.sh <product> <version>

where <product> is the name of the product to create a delivery for, e.g. ISDS or ICE, which are
actual product names at Tern Systems and <version> is the version of the product to create a
delivery for, e.g. 14.05 or 15.02.

The User Guide contains further instructions on how to use and configure DATI.

3

1. Project Description

Figure 1. Overview of the system architecture. It shows the input from various systems
into DATI. Pre-existing systems are depicted in green. DATI takes the information and

produces a package ready for delivery to Isavia.

1.1. Description
The process that employees of Tern Systems go through when delivering software to Isavia has
proven to be very time consuming and error prone. The process involves collecting and
certifying great quantities of information. To this day this has been done manually. Going
through this process can take two employees up to two days.

The project was to develop an automatic delivery software for Tern Systems that makes it
easier and faster for employees of the company to deliver software to Isavia. DATI is a software
that makes deliveries by collecting information via communication with Perforce, Parabuild,
SharePoint and TargetProcess servers, all of which are vital to Tern Systems’ development
lifecycle. DATI gathers all this information into a package of an ISO file, a MD5 file and a PDF
file which are then delivered to Isavia.

4

DATI is a command line tool and includes a collection of scripts that run in a specific sequence
for a specific product delivery. It can also run one script at time to collect desired data.

The Django framework was used as a framework for DATI. Within Django the user can keep
track of everything that is configurable like paths to certain system that needs to be accessed,
the username and password for that specific system access. DATI version 1.0 comes with two
views, an overview of stored deliveries and a report view for each individual delivery containing
more detailed information about that delivery.

DATI communicates with 4 different systems to gather the data needed to complete the
delivery. These systems are Parabuild, a continuous integration server, SharePoint for storage
of documentation, TargetProcess, which is a project management system and Perforce, a
revision control system.

Using DATI, the delivery process today is as simple as typing in one line at the command line
and has shortened the time down to about 30-60 seconds. See chapter 4.3 for more detailed
information.

1.2. Django Models
A database can be generated from Django models. For development of DATI, the following
models were created; Products, ProductVersions, Scripts, ProductScripts, Config and
Deliveries.

Products and ProductVersions store the names of products available for delivery and their
version numbers respectively. The Scripts model stores the names of each script and contains
the static function execute() that runs the corresponding script after setting up logging handlers.
The ProductScripts model pairs scripts with products along with an assigned sequence number.

The two models that are most used are the Deliveries model and the Config. The former
represents a delivery report and is used for storage of information for each individual delivery
and is eventually used to generate the delivery report. The Config on the other hand works as a
dictionary, with entries mapped to a string. The model stores all usernames, passwords
(encrypted), URLs, folder paths, placeholder texts and product specific configurations. Adding
new configurations is also easy through the Django admin site.

5

1.3 Script Overview
The following table contains an overview of the scripts that make up DATI. All scripts take a
delivery number as their parameter unless noted otherwise. The scripts retrieve paths,
usernames and other values from the config for use. Scripts exit with a status code 0 unless a
fatal error occurs, in that case the script in question exits with a status code 1. The scripts are
categorized by which systems they rely on, if any.

TargetProcess

get_tasks_from_targetprocess.py Accesses the TargetProcess API and retrieves a list
of task numbers that is associated with the given
product and version. Puts the task numbers along
with description into the delivery object.

Perforce

update_product_version.py Checks Perforce which products are available for
delivery and updates the database to reflect that.
Accepts no parameters.

check_task_header_incremental_nr.py

Goes through all the files that have been modified
since the last delivery for the product being delivered.
For each file, it examines the task headers. Each
task header entry has an entry number that starts
with 1 and increments by 1 for each task header
entry. This script makes sure that the task header
entries conform to this.

check_task_header_dates.py Goes through all the files that have been modified
since the last delivery for the product being delivered.
Script examines task headers in each file, making
sure that the date format in each task header entry is
the same within that file. The script also makes sure
that the dates in the task headers that are new since
the last delivery are are in range between the last
delivery and the current day.

check_task_header_valid_tasks.py Extracts task numbers from delivery object. Goes
through new and modified files to confirm that new
task header entries contain valid tasks. Raises
warnings if either an invalid task is found or a valid
one isn’t found.

6

create_new_mod_del_files.py Each delivery contains 4 files, one which lists which
files are new since the last delivery, one which lists
files are modified, one which lists files are removed
and one file that contains the difference in the source
files since the last delivery. The lists of new, modified
and removed files are stored in the delivery object in
corresponding fields.

Parabuild

get_build_from_parabuild.py Script retrieves the build that the Parabuild server
has generated for the product and version that is
being delivered. The script creates a SOAP client
and uses the Parabuild web services API to find the
relevant build result. Tarball(s) are then kept locally
in a staging directory until later when the delivery is
finalized.

SharePoint

get_documentation_from_sharepoint.py This script retrieves the documentation that the
SharePoint server is storing for the product and
version that is being delivered. The script then
creates a REST client and uses the SharePoint web
services API to find the relevant documentation file(s)
by matching the product name and version in the
delivery. The documentation files are kept locally in a
staging directory until later when the delivery is
finalized.

Independent scripts

create_delivery.py Takes 2 parameters, product and version and
creates a corresponding delivery with an
incremented delivery number. If a delivery already
exists for the product and version given, the script
returns the number of that delivery.

run_all_delivery_scripts.py Runs all scripts for a given delivery. Order
determined by configurations. Is called by
create_delivery.sh along with create_delivery.py to
make delivery from scratch.

7

task_header_parser.py The task header parser finds task headers in files
and creates task header entry objects for each task
header entry within the task header. Each entry
contains data about the task; date, description,
author, entry number and task number along with a
bool flag declaring whether the entry is new or not.

create_iso_and_md5.py After all the items of the delivery have been put
together in a staging directory, this script creates an
ISO file from the contents of that directory and stores
the ISO file in a delivery directory. A checksum file is
then created for the ISO file, which is also stored in
the delivery directory.

export_delivery_report_to_pdf.py After all the items of the delivery have been put
together, this script creates a PDF file from the view
of the delivery in Django and stores it in the delivery
directory. The PDF is created with a Python module
called easy_pdf that relies on xhtml2pdf and
reportlab.

copy_delivery_files_to_storage_server.py When all delivery files are ready, this script copies
them to a server for storage/backup. The files are
uploaded using scp.

create_delivery.sh Serves as a “master script”, takes in 2 parameters.
product and version and runs the system with a
series of scripts. The script run and their order is
configured within Scripts module for each product.

1.4. Testing
Because Tern Systems specializes in making software for air traffic control, testing is an integral
part of their development process. Strict testing requirements applied for this project as well and
the team utilized Test Driven Development. It turned out that it was not possible in all cases to
write unit tests before coding, but it was a rule that was followed as rigidly as possible. The
testing process improved gradually over the span of the project and required several code
refactorings. Mock objects were used for the unit tests and a close eye was kept on the
percentage of code covering.

The project consists of 5981 lines of Python code (the unit tests alone make up 2556 lines of
code) and 105 lines of bash code. As can be seen from appendix A, the Python code contains
3689 statements with a code coverage of 91%.

Information about how to create and run unit tests in DATI, as well as how to generate a code
coverage report, can be found in the Operational Manual.

8

2. Working Arrangements

2.1. Methodology - Scrum
At Tern Systems work is done in accordance with Agile methodology, and both Scrum and
Kanban are used. For this project, Scrum was our preference.

Team meetings were held at Tern Systems premises and daily meetings were held on Google
Hangout the days that the team did not meet (except for weekends).

Sprints started and ended on a Monday with sprint reviews (including a demo), retrospective
analysis and planning during the meetings. The duration of the introductory first sprint and the
last 3 sprints, when team members had more time available, was one week, while the duration
for the remaining sprints were 2 weeks.

Table 1. Overview of sprints

Sprint # Sprint Name Start Date End Date

0 N/A 2015-01-19 2015-01-26
1 Grimlock 2015-01-26 2015-02-09

2 Bumblebee 2015-02-09 2015-02-23
3 Megatron 2015-02-23 2015-03-09

4 Ironhide 2015-03-09 2015-03-23

5 Jazz 2015-03-24 2015-04-05
6 Optimus Prime 2015-04-08 2015-04-19

7 Hot Rod 2015-04-27 2015-05-03
8 Mirage 2015-05-04 2015-05-10

9 Ultra Magnus 2015-05-11 2015-05-17

The user stories’ story points were estimated with Planning Poker before Sprint #1 began.
During all subsequent sprint planning meetings, the backlog was reviewed and updated
according to the team’s experience with story point estimation and the velocity of the team
(backlog grooming). Planning Poker was then used for all new user stories.

When planning the sprints, user stories were prioritized according to what’s called MoSCoW
(“Must have, Should have, Could have, Won’t have”). Then each user story was broken down
into as small tasks possible and the remaining work (in hours) for each task was estimated. At
the start of the project Trello was used to keep track of the Scrum board and product backlog,
but it was soon replaced with Visual Studio Online, which was better suited to the requirements
of the team. User stories that were selected for a sprint were removed from the backlog and
assigned accordingly.

9

Sprint reviews and retrospectives were held after each sprint. Retrospectives were held
immediately after status meetings with examiners and instructors as well so issues raised at the
meetings could be noted down at once.

2.2. Roles and Responsibilities

2.2.1. Team
The Autobots team consists of the following members:

● Árni Þorvaldsson
● Freyr Bergsteinsson
● Gunnar Þór Helgason
● Sigurbjörn Kristjánsson

Each member has the role of a developer, which is an interdisciplinary role, meaning everyone
takes on tasks that pertain to coding, documenting, testing and more.

2.2.2. Product Owner
The Product Owner is Heiðar Harðarson, which is also the team’s correspondent at Tern
Systems. Mr. Harðarson has been employed by Tern Systems since 2000 as a programmer and
project manager. He leads the team at Tern Systems that is responsible for development and
maintenance of systems owned by Isavia. This gives him a very clear vision in regards to what
the end-product of this project should feature.

2.2.3. Scrum Master
The Scrum Master of the team is Freyr Bergsteinsson. It was decided he would take this role
because of previous Agile experience, even though he has more experience with Kanban than
with Scrum. In addition to being a student, Freyr is also an employee at Tern Systems.

2.3. Software Environment
The project is made mostly of Python and Bash files and text editors and PyCharm were used
for coding. The code was kept on a private repository on github. Django is used to configure the
system and for the web-based front end. The database system chosen for the project is MySQL.

2.4 Time registration
A journal was shared on Google Drive to keep track of the group members working hours, with
tables and live charts to show progress visually.

10

Figure 2. Overall time registration

Figure 3. Summary of weekly work hours in relation to desired timeframe

11

3. Progress

3.1. Cumulative Flow Chart for User Stories

Figure 4. Cumulative flow chart for user stories.

As can be seen from the cumulative flow chart, most of the new user stories were drawn up in
the first month of the project when the emphasis was on design and planning. Then at the end,
when the project is reaching its conclusion, there is a new peak when unforeseen user stories
were added.

3.2. Sprint 0
Sprint 0 was one week long and was mostly seen as an introduction to the project and for
choosing and setting up software and tools. The team agreed on using the Scrum software
development framework for managing product development. First draft of the project report was
completed.

3.3. Sprint 1
First hand-in of reports to examiner. Developer server and web server were set up. The
following user stories were selected for the sprint. One story (“As a user I want to configure the
tool to run appropriate tasks”) was removed after the start of the sprint due to updated
requirements. Another story (“As a user I want to make a master script that runs the whole
project so that it is simpler to create delivery”) was left unfinished and moved to next sprint.

12

Table 2. User Stories in sprint 1

User story Est. story points
As a user I want to configure the tool to run appropriate tasks 8
As a user I want to make a master script that runs the whole project so
that it is simpler to create delivery 2
As an instructor and examiner I want to see the team's working
arrangements so I can assess the progress of the project 1

As an instructor and examiner I want to see the team's Project Schedule
so I can assess the progress of the project 1

As an instructor and examiner I want to see a presentation of the product
so I can assess the progress of the project 1
As as user I want a web front end to the product so that I can interact with
it 2
As a developer I want a server for the product so that I can run a
centralized server for web front end and running of scripts 2

Figure 5. Sprint 1 burndown chart.

Points from sprint retrospective:
What went well:

● Work on reports went well.
● Preparation for presentation of project went well.

What could be improved:
● Draw diagrams of user stories and tasks to enhance understanding of the project in a

visual way before coding is started. Will also be of use for instructor and examiner.

3.4. Sprint 2
The emphasis was on design and reports. First steps were taken in coding and the first draft of
a master scripts was completed.

13

Table 3. User stories in sprint 2
User story Est. story points
As a user I want to make a master script that runs the whole project so that
it is simpler to create delivery 5
As an instructor and examiner I want to see the team's Developments
Report so I can assess the progress of the project 2
As an instructor and examiner I want to see the team's Risk Analysis so I
can assess the progress of the project 2

As an instructor and examiner I want to see the team's updated Project
Schedule so I can assess the progress of the project 1

As a developer I want a better overview of the internal working of the
product so that I better understand it 3
As a scrum master I want to see scrum tools in order so that we can report
work progress (Framvinduskýrsla) 1

Figure 6. Sprint 2 burndown chart.

Points from sprint 2 and status meeting 1 retrospectives:
What went well:

● Better workflow than in previous sprint
● Status meeting 1 very informative
● Good spirits within team

What could be done better
● Explain product better to examiner
● Team members should be more vigilant in asking for help
● Document what to do in more detail before coding
● Work journal entries disappeared
● Further highlight the dangers and pitfalls in the project
● In risk analysis don’t make the risks too general

Actions
● Update documentation with points from status meeting
● Update work journal summary to better handle entries, preferably so that entries can be

assigned to sprints by date alone

14

3.5. Sprint 3
A good deal of the time in this sprint was spent on unit tests. Work began on creating a design
document, which would prove very useful in the forthcoming sprints when work on scripts
started. Two stories were left unfinished in the sprint and moved to next sprint.

Table 4. User stories for sprint 3
User story Est. story points
As a developer I want to easily add unit tests to the product so that the
product is more reliable 2
As a developer I want the config manager in a separate database than
the delivery report as to keep the tool separate from the data 2
As a developer I want the Config Manager to be part of the Django
framework so that it is easier to maintain 4

As an instructor and examiner I want to see the project documents
updated with regards to points made in Status Meeting 1 1
As a user I want delivery reports to be stored in a database so I can
use it to generate a report later 2

As an instructor and examiner I want to see a draft of a design
document so that I can better understand how the product is supposed
to work

3

Figure 7. Sprint 3 burndown chart.

Points from sprint 3 retrospective :
What went well

● Better overview of the project than before
● Unit tests went well
● Diagrams help to visualize and deepen understanding

What could be done better
● Encourage dialogue between group members - ask questions

15

Actions
● Setup virtual environment?
● Setup Django locally on all computers

3.6. Sprint 4
After the three first sprints the team could assess its velocity quite accurately, which would hold
up well in the following sprints. Having established an accurate velocity also facilitated the
subsequent sprint plannings.

From this point on, when most of the groundwork had been laid regarding design and planning,
the emphasis in the project shifted towards writing scripts and adding unit tests.

Table 5. User stories for sprint 4
User story Est. story points
As a user I want to be able to look at and edit data in an admin web
interface to better control the data in a visual manner 1
As a user I want delivery reports to be stored in a database so I can use it
to generate a report later 2
As an instructor and examiner I want to see a draft of a design document
so that I can better understand how the product is supposed to work 3

As a user I want to fetch a list of projects and versions from Perforce so I
can use them to select what to deliver 3
As a developer I want to have a list of auxiliary requirements so that I can
continue developing if all other requirements are met 1

As an instructor and examiner I want to see the work progress updated
regularly to have a better overview of the project 1
As an instructor and examiner I want to see a presentation of the product
for the second status meeting so I can assess the progress of the project 1
As a user I want to automatically get user manuals for a specific version
of my software from SharePoint so I can add it to the delivery 3

Figure 8. Sprint 4 burndown chart.

16

Points from retrospectives after sprint 4 and status meeting 2
What went well

● Generally positive status meeting
● Few questions, instructors seemed to get the point of the project
● We got something to run (which shows some functionality)

What could be done better
● Explain which scripts are completed and what is left to-do
● Attendance at daily meetings

Actions
● Deal with request time-out from browser
● Use RabbitMQ?

3.7. Sprint 5
The greatest challenge in this sprint was to write the script that connects to Parabuild using
SOAP API, retrieves data and stores it in a storage server.

Table 6. User stories for sprint 5
User story Est. story points
As a user I want to be able to fetch a build from Parabuild so that I can
include it in the delivery 5
As a user I want the delivery to show up in a list of deliveries (in Django)
so I can see what has been delivered 2

As a user I want the delivery output files to be uploaded to a storage
server so that I have a backup of the data 3

As an instructor and examiner I want to see the work progress updated
regularly to have a better overview of the project 1

As an instructor and examiner I want to see the project documents
updated with regards to points made in Status Meeting 2 1

17

Figure 9. Sprint 5 burndown chart.

Points from sprint 5 retrospective:
Actions

● Check timeout for larger files when copying to storage server
● Add to Risk Analysis risk of cloud based programs
● Explain to instructors about low priority of web front end

3.8. Sprint 6
For this sprint the following user stories were selected:

Table 7. User stories for sprint 6.
User story Est. story points
As an instructor and examiner I want to see the work progress updated
regularly to have a better overview of the project 1

As a developer I want a parsing tool to recognize task headers so that it
becomes easier to examine them in scripts 5

As a developer I want to connect to TargetProcess through an API to get
access to task numbers 4

As a user I want to make sure that task header numbers are correctly
numbered in an incremental fashion so that the delivery isn't rejected 2

Figure 10. Sprint 6 burndown chart.

Points from sprint 6 retrospective:
What went well

● Work on scripts went well
What could be done better

● Less capacity because of exams was not taken into account in sprint planning

18

Actions
● Update copy_delivery_to_storage_server so it does not overwrite existing
● Sharepoint config - use folder instead of an url to retrieve documents

April 21st - April 26th: The team took 6 days time off due to exams and family obligations before
the start of sprint 7.

3.9. Sprint 7
Sprint length was reduced from two weeks to one week for sprint 7 and the following sprints, as
other school courses were finished and team members could henceforth focus solely on the
project. Thus team capacity and velocity estimations were increased for this sprint and the
following.

Table 8. User stories for sprint 7
User story Est. story points
As an instructor and examiner I want to see the work progress updated
regularly to have a better overview of the project 1

As a user I want to make sure that the task headers delivered contain valid
task numbers so that the delivery isn't rejected 3

As a user I want task headers to show the correct date in task headers so
that the delivery isn't rejected 5

As a user I want to retrieve all documents from a folder in SharePoint for a
product instead of one document 3

As a user I don't want old backup files to be overwritten in case of
mistakes in new delivery 3

As an instructor and examiner I want to see a presentation of the product
for the third status meeting so I can assess the progress of the project 1

As a user I want to be able to create a new delivery with a command line
script or perform re-delivery on an existing delivery 3

Figure 11. Sprint 7 burndown chart.

19

Points from sprint 7 retrospective:
What could be done better

● Unit tests were very challenging in this sprint
Actions

● Make use of collaboration when pair coding

3.10. Sprint 8
As this was supposed to be the last sprint with coding, an exceptionally high number of story
points were chosen for the sprint, and as can be seen from the burndown chart, not everyone of
them could be finished.

Table 9. User stories for sprint 8
User story Est. story points
As an instructor and examiner I want to see the work progress updated
regularly to have a better overview of the project 1

As a user I want to make sure that the task headers delivered contain
valid task numbers so that the delivery isn't rejected 3

As an instructor and examiner I want to see a presentation of the product
for the third status meeting so I can assess the progress of the project 1

As a user I want to view one specific delivery report so I can verify its
correctness 3

As a user I want to generate a delivery report in PDF format so that I can
add it to the delivery 3

As an instructor and examiner I want to see the project documents
updated with regards to points made in Status Meeting 3 1

As a user I want the run_script script to behave the same as the
Script.execute method 1

As a user I don't need config values for a specific product version (only
for products) 1

As a user I want the system to work on product versions regardless of
minor version being zero padded or not 3

As a user I want the system to automatically get a list of new, modified
and removed files between to deliveries 4

As a user I want the system to automatically create an ISO of a staging
directory and MD5 3

20

Figure 12. Sprint 8 burndown chart.

Points from sprint 8 retrospective:
Actions:

● Deployment of DATI
○ from runserver(Django) to Apache server

● Demo failure
○ new delivery does not work - missing tern_base_tag and tern_delivery_tag

● For final presentation:
○ show the sequence diagram for each script when running demo

● Finish info log for all scripts

3.11. Sprint 9
In the last sprint emphasis was on documentation; updating reports, creating a final report and a
final presentation. Some work was done on reviewing, refining and testing code as well. The
sprint was still on-going at the time of the final hand-in.

Table 10. User stories for sprint 9.
User story Est. story points
As an instructor and examiner I want to see the work progress updated
regularly to have a better overview of the project 1

As an instructor and examiner I want to see the project documents
updated with regards to points made in Status Meeting 3
(unfinished from previous sprint)

1

As an instructor and examiner I want to see a final report for the project
so I can grade the project 8

As an instructor and examiner I want to see a presentation of the product
for the final presentation 3

21

Figure 13. Sprint 9 burndown chart.

4. Summary

4.1 Team Experience
DATI is a flexible tool and it its easy to implement new scripts and features. It could be adapted
to other systems than it was especially developed for with minor revisions. DATI will be
implemented in Tern Systems by the team which faces the delivery process containing the
highest complexity. In the future, DATI will likely be used by other teams at Tern Systems as
well. DATI is primarily a command line tool but adding a web based front end is an option. The
team has a clear view of how the web front end could look in the future, with a delivery creation
mode and visual picking scripts that benefit a specific product.

The Autobots Team members agreed that the work on the project was very instructive. The
challenges in the project were many. The majority of team had little or no experience with
Python and none of us had ever used Django before. Interaction with other systems like
Perforce, SharePoint, Parabuild and TargetProcess through APIs was a big challenge for the
majority of the team members, who had never done that kind of work before.

Although we all had previous experience of using Scrum it was still a challenge to run it
smoothly. In retrospect the Scrum methodology turned out to be an invaluable tool. A few points
that we learned from the process:

● The importance of breaking user stories/tasks into as small units as possible.
● The retrospectives are very important and offer a built-in continuous process

improvement.
● The importance of writing good stories, specifying especially the who, what and why of

each feature.
● Tracking team velocity greatly helps for further sprint planning.

There are strict testing requirements at Tern Systems and those applied for our project as well.
To write unit tests and mocks in Python was a good learning experience and the good code

22

coverage percentage fills us with confidence that we’ve created a system that will become
useful for Tern Systems and will soon replace the time-consuming and error-prone process that
has been in use for years.

4.2 User Experience
A few users were interviewed about their experience with the old delivery procedure with
regards to time spent performing them.

Table 11. User experience

Name Sigurjón Örn Sigurjónsson Birgir Ragnarsson Davíð Halldór
Kristjánsson

Job Title Software Engineer Software Engineer Software Engineer

Division System Solutions - ACC System Solutions -
ACC

System Solutions -
Simulator

Comments I spend anywhere from 3 to
16 hours on the delivery. I
estimate it takes 6 hours on
average.

Delivery takes 4 to 24
hours, depending on
whether there are
errors in the delivery. I
spend 7 hours on
average for each
delivery.

Our team does not
deal with task
headers, but an official
delivery still takes 4 to
8 hours.

23

4.3 Results and Comparison
Table 12 shows data provided by Tern Systems directly from their time registration system
(which is used to bill Isavia) for the last three deliveries made.

Table 12. Time spent on delivery
Delivery Name Delivery Date Hours billed
ISDS 15.01 13.03.2015 12:00 27.50 hrs
ISDS 15.02 15.04.2015 15:30 17.50 hrs
ISDS 15.03 11.05.2015 15:00 11.25 hrs

Table 13 shows data of how long DATI took to recreate the same deliveries as in Table 12.
Each delivery was created three times and the average running time is shown.

Table 13. Running time of DATI
Delivery Name Running time
ISDS 15.01 36.146 sec
ISDS 15.02 N/A
ISDS 15.03 31.321 sec

DATI was unable to recreate the ISDS 15.02 delivery because TargetProcess contained
insufficient data. This is due to the fact that Tern Systems recently changed from JIRA to
TargetProcess and are still in the process of migrating data between the two systems at the
time of this writing.

In addition to running DATI, a human would have to take time to set up the delivery process,
verify that the output is correct and possibly respond to any warning messages produced by
DATI. It is fair to assume that, even with DATI, the new delivery process will still take 0.5 to 3
hours, which means we are reducing time spent on the deliveries in Table 12 by 88% to 98%.

24

4.4 Review from Contact / Product Owner
The following is a direct comment made by our contact and product owner at Tern Systems,
Heiðar Harðarson, in Icelandic:

“Viðfangsefni verkefnisins er sjálfvirknivæðing vinnufreks og villugjarns vinnuferils við
að afhenda hugbúnaðaruppfærslur til okkar stærsta viðskiptavinar. Afurð verkefnisins er
afhendingin, þ.e. það sem við afhendum viðskiptavininum. Afhendingin er í grunninn
byggð á afhendingu kóðaskráa og handbóka ásamt greinargerðum um hverju var breytt
og afhverju. Viðskiptavinurinn byggir síðan kerfið sitt sjálfur og setur í rekstur.

Þessi vinna er oftast allt of tímafrek, betra og skemmtilegra væri að nýta tímann í
skapandi vinnu við verkefnin sjálf. Og villur rata stundum inn í skilavinnunna þannig að
hún sem slík stenst ekki væntingar viðskiptavinarins, sem kallar þá á endurtekningu með
lagfæringum á skilavinnunni sjálfri - ekki vörunni.

Hópurinn hefur greint þarfir verkefnisins í þaula og afurðin lofar mjög góðu. Skilavinnan
mun væntanlega minnka niður í hluta úr degi. Ég vænti þess að við tökum hana í notkun
fljótlega með ávinningi fyrir okkur og viðskiptavininn.”

 - Heiðar Harðarson, Project Manager at Tern Systems

25

Appendices

Appendix A - Code Coverage
Table 14. code coverage.

Module statements missing coverage
configmanager/__init__ 0 0 100%
configmanager/admin 6 1 83%
configmanager/models 66 0 100%
configmanager/test_config 148 0 100%
configmanager/views 1 1 0%
dati/__init__ 0 0 100%
dati/settings 19 0 100%
dati/urls 6 6 0%
dati/wsgi 4 4 0%
deliveries/__init__ 0 0 100%
deliveries/admin 3 0 100%
deliveries/models 61 0 100%
deliveries/tests 71 0 100%
deliveries/urls 5 5 0%
deliveries/views 22 22 0%
manage 6 0 100%
products/__init__ 0 0 100%
products/admin 4 0 100%
products/models 46 0 100%
products/test_product 69 0 100%
products/test_product_version 51 0 100%
products/views 1 1 0%
scripts/__init__ 0 0 100%
scripts/admin 4 0 100%
scripts/collection/__init__ 0 0 100%
scripts/collection/check_task_header_dates 94 0 100%
scripts/collection/check_task_header_incremental_nr 65 25 62%
scripts/collection/check_task_header_valid_tasks 94 9 90%
scripts/collection/copy_delivery_files_to_storage_serv
er 87 9 90%

26

scripts/collection/create_delivery 67 9 87%
scripts/collection/create_iso_and_md5 53 2 96%
scripts/collection/create_new_mod_del_files 102 11 89%
scripts/collection/export_delivery_to_pdf 48 21 56%
scripts/collection/get_build_from_parabuild 144 22 85%
scripts/collection/get_documentation_from_sharepoint 137 78 43%
scripts/collection/get_tasks_from_targetprocess 71 35 51%
scripts/collection/run_all_delivery_scripts 37 37 0%
scripts/collection/update_product_versions 42 7 83%
scripts/messages 64 1 98%
scripts/mocks/__init__ 0 0 100%
scripts/mocks/always_callable 14 2 86%
scripts/mocks/mock_parabuild 74 2 97%
scripts/mocks/mock_perforce 114 12 89%
scripts/mocks/mock_ssh 39 6 85%
scripts/models 117 3 97%
scripts/task_header_parser 148 12 92%
scripts/test_check_task_header_dates 136 0 100%
scripts/test_check_task_header_incremental_nr 71 0 100%
scripts/test_check_task_header_valid_tasks 109 0 100%
scripts/test_copy_delivery_files_to_storage_server 97 0 100%
scripts/test_create_delivery 21 0 100%
scripts/test_create_iso_and_md5 98 1 99%
scripts/test_create_new_mod_del_files 96 0 100%
scripts/test_export_delivery_to_pdf 32 0 100%
scripts/test_get_build_from_parabuild 113 0 100%
scripts/test_get_documentation_from_sharepoint 74 0 100%
scripts/test_get_tasks_from_targetprocess 49 0 100%
scripts/test_productscript 259 0 100%
scripts/test_script 104 0 100%
scripts/test_task_header_date_parser 15 0 100%
scripts/test_task_header_parser 180 0 100%
scripts/views 1 1 0%
scripts/wrapper 30 0 100%

Total 3689 345 91%

27

Appendix B - Terms

Table 15. Terms
English Icelandic
Design Document Hönnunarskýrsla
Development Report Framvinduskýrsla
Operational Manual Rekstrarhandbók
Project Report Verkefnislýsing
Project Schedule Verkáætlun
Risk Analysis Áhættugreining
Status Meeting Stöðufundur
User Guide Notendaleiðbeiningar
Working Arrangements Verkskipulag

	Introduction
	The Company
	The Product

	1. Project Description
	1.1. Description
	1.2. Django Models
	1.3 Script Overview
	1.4. Testing

	2. Working Arrangements
	2.1. Methodology - Scrum
	2.2. Roles and Responsibilities
	2.2.1. Team
	2.2.2. Product Owner
	2.2.3. Scrum Master

	2.3. Software Environment
	2.4 Time registration

	3. Progress
	3.1. Cumulative Flow Chart for User Stories
	3.2. Sprint 0
	3.3. Sprint 1
	3.4. Sprint 2
	3.5. Sprint 3
	3.6. Sprint 4
	3.7. Sprint 5
	3.8. Sprint 6
	3.9. Sprint 7
	3.10. Sprint 8
	3.11. Sprint 9

	4. Summary
	4.1 Team Experience
	4.2 User Experience
	4.3 Results and Comparison
	4.4 Review from Contact / Product Owner

	Appendices
	Appendix A - Code Coverage
	Appendix B - Terms

