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Abstract

The research project presented in this Ph.D. thesis aims to provide both a
general and a computationally efficient approach to Bayesian statistical modeling
and Bayesian inferential computations, with the focus on applications to spatial
extremes. The research project can be can be split into the three following
categories.

First, the author provides his stance towards a general approach to statistical
analysis in practice. To that end, it is discussed how various regression models
can be viewed as a broader class of a more general and flexible framework for
statistical models. Furthermore, it is established that latent Gaussian models
(LGMs) provide a flexible and interpretable class of statistical models for various
statistical applications, in particular, for the statistical analysis provided in this
thesis. A discussion is also given on how LGMs can be viewed as a specific
extension of structured additive regression models, in the sense that, the data
density function of each data point can depend on more than a single linear link
function of the latent parameters.

Second, a novel computationally efficient Markov chain Monte Carlo (MCMC)
sampling scheme for LGMs is proposed in this thesis. The sampling scheme is
a two block Gibbs sampling scheme designed to exploit the model structure of
LGMs. The author refers to the proposed sampling scheme as the MCMC split
sampler in this thesis. The principle idea behind the MCMC split sampler is
to split the latent Gaussian parameters into two vectors. The former vector
consists of latent parameters which appear in the data density function while the
latter vector consists of latent parameters which do not appear in it. The former
vector is placed in the first block of the proposed sampling scheme and the latter
vector is placed in the second block along with any potential hyperparameters.
The resulting conditional posterior density functions within the blocks allow the
MCMC split sampler to handle, by design, LGMs with latent models imposed
on more than just the mean structure of the data density function. The MCMC
split sampler is also designed to be applicable for any choice of a parametric data
density function. Moreover, it scales well in terms of computational efficiency
when the dimension of the latent model increases.

Third, a computationally efficient statistical method is proposed in this the-
sis to obtain distributional properties of annual maximum 24-hour precipitation
on a 1 km by 1 km regular grid over Iceland. A covariate which is based on a
local meteorological model that captures information on the physical processes
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of precipitation is constructed, providing an additional spatial information on
maximum precipitation. An LGM is built which takes into account observed
maximum precipitation, the covariate based on the local meteorological model,
and spatial variations. The observations are assumed to follow the generalized
extreme value distribution, where spatial models based on approximate solutions
to stochastic partial differential equations are implemented for the location, scale,
and shape parameters of the data density function. The MCMC spilt sampler
is applied as inferential algorithm, which in turn exploits the sparse matrices
induced by the stochastic partial differential equation modeling, yielding contin-
uous spatial predictions for spatially varying model parameters and quantiles.
The construction of the meteorological covariate is extendable to any regions in
the world where local meteorological models are available. The proposed model-
ing strategy is general in the sense that it is extendable to any spatial domain of
interest.
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Ágrip

Markmið doktorsritgerðarinnar er að setja fram almenna og skilvirka aðferðafræði
fyrir bæði Bayesíska tölfræðilega líkanagerð og reiknilega Bayesíska ályktunartölfræði,
með áherslu á staðsetningaháð útgildi. Rannsóknunum má skipta niður í þrjá
meginflokka.

Fyrst er almenn afstaða tekin til tölfræðilegrar líkanagerðar. Leitt er í ljós
að línuleg aðhvarfsgreining sé sértilfelli af almennri tölfræðilegri líkanagerð þar
sem gagnaþéttleiki er settur fram til að lýsa gögnum og líkön sett fram til að
lýsa stikum gagnaþéttleikans. Enn fremur er sýnt fram á að stigskipt Gaussísk
líkön mynda sveigjanlegan og túlkanlegan flokk af tölfræðilíkönum sem hægt er að
beita á ýmis tölfræðileg verkefni. Einnig er sýnt fram á að stigskipt Gaussísk líkön
framlengja flokk almennra línulegra líkana í þeim skilningi að hægt er að setja
fram líkön til að lýsa ekki einungis staðsetningarstika gagnaþéttleikans heldur
einnig öðrum stikum gagnaþéttleikans eins og til dæmis skölunarstika hans.

Í öðru lagi er sett fram nýtt almennt Markov keðju Monte Carlo hermunar
reiknirit fyrir Bayesíska ályktunartölfræði sem sniðið er að stigskiptum Gaussískum
líkönum. Reikniritið er byggt á tveggja blokka Gibbs reikniriti og er hannað til
að nýta stærðfræðilegt form stigskiptra Gaussískra líkana. Grunnhugmyndin á
bak við reikniritið er að setja stika líkansins sem koma fram í gagnaþéttleikanum
og þá stika sem koma ekki fram í honum í tvær aðskildar blokkir. Tilsvarandi
stærðfræðilegt form skilyrtra eftiráþéttleika í hvorri blokk fyrir sig má nýta til að
sníða reikniritið að stigskiptum Gaussískum líkönum þar sem líkön eru sett fram
til að lýsa staðsetningarstika og skölunarstika gagnaþéttleikans sem og öðrum
stikum hans. Reikniritið er hannað fyrir öll stigskipt Gaussísk líkön með stikuðum
gagnaþéttleikum. Reikniritið heldur reiknilegri skilvirkni sinni með vaxandi fjölda
stika í þeim hluta líkansins sem lýst er með Gaussískum þéttleika.

Að lokum er tölfræðilegt líkan sett fram til að lýsa gagnaþéttleika árlegrar
hámarks sólarhringsúrkomu í hverjum punkti á þéttu neti yfir Íslandi. Annars
vegar er sýnt fram á hvernig megi nýta upplýsingar úr veðurfræðilíkani sem
aukalega upplýsingagátt fyrir hegðun hámarksúrkomu í öllum punktum þétta
netsins þar sem engar mælingar á úrkomu eru til staðar. Aðferðin felur í sér smíði
á skýribreytum í öllum punktum þétta netsins sem byggðar eru á upplýsingum
úr veðurfræðilíkaninu. Hins vegar er sett fram stigskipt Gaussískt líkan sem nýtir
áðurnefndar upplýsingar í formi skýribreyta og tekur tillit til breytileika úrkomu
í rúmi. Breytileika í rúmi er lýst með tölfræðilegu rúmlíkani sem byggir á nálgu-
narlausn á slembni hlutafleiðujöfnu sem gefur af sér aðferðafræði fyrir hraðvirka
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útreikninga. Áðurnefnt reiknirit er svo notað til að meta stika líkansins sem gefur
samfellda rúmspá fyrir rúmháða stika í gagnaþéttleika hámarksúrkomu og nýtist
við spá um stærðargráðu aftakaúrkomu í sérhverjum punkti þétta netsins yfir
Íslandi. Auðsótt er að yfirfæra tölfræðilíkanið og aðferðafræðina á önnur svæði
að því gefnu að hægt sé að nálgast upplýsingar úr veðurfræðilíkani af svæðinu.
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additional discussion and motivation. Part I begins with an introduction to the
research project, along with a brief overview of the development process of the
statistical methodology proposed in this thesis. A background is provided of the
statistical methods which form the basis of the research in this thesis. The aims
and goals of the thesis are then formally defined and outlined. Part I further
provides an overview of the proposed statistical methodology, along with the
corresponding main results. Part I concludes with a discussion on future work
and improvements. References made to the three papers in Part I are denoted
in bold letters. Part II, Papers, consists of the three papers which this thesis is
based on, with some minor editing.
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Part I

Thesis





1
Introduction

The original goal of the Ph.D. research project presented in this thesis was to
develop a statistical method for describing the distributional properties of an-
nual maximum 24-hour precipitation in Iceland. This distributional information
is needed at a fine spatial resolution as the characteristics of extreme precipita-
tion events can be local, especially in regions with heterogeneous topography. As
a result, statistical spatial modeling for this type of spatial data becomes chal-
lenging, especially when observational sites are scarce relative to changes in the
topography. The main objective was thus to develop an efficient spatial modeling
framework for maximum precipitation on a fine grid.

Early in the development process, it was established that the Bayesian paradigm
can provide the necessary modeling flexibility to accomplish this goal. However,
it quickly became apparent that the desired Bayesian model structure introduced
several challenging computational problems. Established Bayesian inferential al-
gorithms were either too slow to converge to be practical or not applicable to the
desired fine scale spatial model structure. The work presented in this thesis aims
to provide both a general and a computationally efficient approach to Bayesian
statistical modeling and inference, with the focus on applications to spatial ex-
tremes, in particular, annual maximum 24-hour precipitation in Iceland.

It is established in this thesis that the class of latent Gaussian models (LGMs)
is well suited for the purposes of this research project. LGMs form a flexible sub-
class of Bayesian hierarchical models and are practical from a statistical modeling
point of view and readily interpretable. Consequently, LGMs have become pop-
ular in many areas of statistics and various fields of applications. However, the
availability of inferential algorithms for LGMs limits the potential scope and flex-
ibility of LGMs in practice. One of the main novel contributions of this Ph.D.
research project is to develop an inferential algorithm aimed to address this issue.
To that end, a computationally efficient MCMC sampling scheme designed for
LGMs is proposed in this thesis. The proposed sampling scheme is designed to
be naturally applicable to LGMs where the data density of each data point is
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4 Chapter 1

allowed to depend on more than a single linear link function of the latent pa-
rameters. Furthermore, the sampling scheme is also designed to be applicable to
LGMs with any choice of a parametric data density function. The author refers
to the proposed sampling scheme as the MCMC split sampler.

By working within the the LGM framework with the MCMC split sampler as
an inferential algorithm, the following novel contributions to statistical modeling
of maximum precipitation in a spatial setting are presented in this thesis. First,
a method is proposed which leverages information on the physical processes of
precipitation from a local meteorological model to yield additional spatial infor-
mation on maximum precipitation. This is achieved by constructing a spatial
covariate from the outputs of the local meteorological model. Secondly, an LGM
is proposed for observed annual maximum 24-hour precipitation which takes into
account both the covariate based on the local meteorological model and spatial
variation of the underlying physical processes of precipitation. The observations
are assumed to follow the generalized extreme value distribution, where spatial
models based on approximate solutions to stochastic partial differential equations
are implemented for the location, scale, and shape parameters of the data density.

Part I of this thesis is organized as follows. Chapter 2 provides a background
of the statistical methods which form the theoretical basis for the thesis. More
specifically, in Section 2.1 a brief introduction to the Bayesian paradigm and
Bayesian hierarchical models is given. Section 2.2 provides an overview of infer-
ential algorithms for Bayesian statistical models. A summary of spatial statistics
is given in Section 2.3, where spatial random fields and their applications in prac-
tice are explored. The chapter concludes with Section 2.4, which provides a brief
overview of statistical models for extreme precipitation. In Chapter 3, the aims
and goals of this thesis are formally defined and outlined.

Chapter 4 provides an overview of the proposed statistical methodology and
novel contributions developed in this thesis and presented in the three papers. In
Section 4.1 a summary of the discussion in Paper I is given, where the author’s
view on modern statistical modeling is elaborated on. Section 4.2 provides an
overview of the novel inferential algorithm, the MCMC split sampler, which is
presented in Paper II. The section discusses the derivation, design and the
implementation of the MCMC spilt sampler to LGMs. In Section 4.3 a summary,
motivation and discussion of the statistical modeling of annual maximum 24-hour
precipitation in Iceland is given, which is presented in Paper III.

In Chapter 5, the main results from the research project are presented. Sec-
tion 5.1 provides an evaluation of the computational efficiency of the MCMC
split sampler. This is carried out by applying the MCMC split sampler to three
different LGMs, one of which, is the proposed model for annual 24-hour max-
imum precipitations. Section 5.2 gives an overview of the main findings from
the statistical modeling of annual maximum 24-hour precipitation in Iceland. Fi-
nally, Chapter 6 provides conclusions and reflections regarding future research
stemming from the proposed methodology in this thesis.



2
Background

2.1 Bayesian statistical modeling
The Bayesian statistical methodology presents a well-established framework for
making inference from observed data for quantities of interest by using an un-
derlying probability model, see Gelman et al. (2014) and Berger (2013) for a
comprehensive overview of modern Bayesian statistical analysis. The Bayesian
methodology differs from the classical frequentist approach in that all of the un-
known parameters in the underlying probability model are treated as random
variables, as opposed to unknown constants1. As such, the unknown parameters
are assigned prior distributions which are based on a priori subjective beliefs or
scientific knowledge about the unknown parameters. In other words, prior distri-
butions serve as probabilistic descriptions of what is known about the unknown
parameters before observational data are collected and analyzed. After observing
the data, knowledge about the model parameters and quantities of interest are
updated by conditioning the underlying probability model on observed data by
utilizing Bayes’ theorem. This process, referred to as Bayesian inference, yields
the posterior distribution of the model. The posterior distribution incorporates
updated knowledge about the unknown parameters in light of new knowledge
obtained from the observed data, as discussed in Berger (2013).

As presented in Gelman et al. (2014), the process of the Bayesian statistical
methodology can be categorized into three main steps:

Bayesian statistical modeling: Setting up the underlying probability model,
by constructing a joint probability distribution for both the observations
and the model parameters. A preferable model, in most situation, is a
model which incorporate a priori knowledge about the model parameters
through prior distributions.

1The scope of this thesis is limited to Bayesian parametric models. Non-parametric Bayesian
models are not considered.
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6 Chapter 2

Bayesian inference: Conditioning on the observed data. This step consists of
calculating and interpreting the posterior distribution of the model param-
eters.

Model evaluation: Evaluating how well the model, which is induced by pos-
terior distribution of the model parameters, describes the observed data.

The main concepts of the Bayesian methodology can be described in mathe-
matical terms as follows. Let y denote a vector of observed data and let π(y|θ)
denote the data density function conditioned on the model parameters θ. Ad-
ditionally, let π(θ) denote the prior density function of the model parameters
and π(θ|y) denote the corresponding posterior density function of the model pa-
rameters conditioned on the data vector y. Applying Bayes’ theorem yields the
following relation

π(θ|y) =
π(θ)π(y|θ)

π(y)
(2.1)

where π(y) denotes the marginal density function of the data y, that is

π(y) =

∫
π(θ)π(y|θ) dθ.

As the marginal data density function π(y) is independent of parameters θ, the
expression in (2.1) is often summarized as

π(θ|y) ∝ π(θ)π(y|θ).

Assuming the vector of parameters θ is multivariate the marginal posterior den-
sity function of a single parameter θi is obtained by integrating out other param-
eters θ−i from the joint posterior density function. That is,

π(θi|y) =

∫
π(θ|y) dθ−i,

where the subscript −i denotes all but the i-th entry of vector θ.

2.1.1 Bayesian hierarchical models
In many statistical applications, the observable data are believed, or known a
priori, to have a certain latent dependence on underlying processes which drives
the observed data. For example, in Hrafnkelsson et al. (2012), minimum and
maximum temperature in Iceland is analyzed. The observed data, consisting
of measurements of temperature, exhibit a latent dependence structure in the
sense that the temperature is dependent on where and when it is measured. The
location and time of measurements, along with other potential factors, thus drive
the observed temperature.

The Bayesian paradigm presents a systematic modeling methodology to cap-
ture the latent dependence structure of observed data, referred to as Bayesian
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hierarchical modeling (Gelman and Hill 2006). In this framework, a Bayesian
model involving multiple parameters is proposed, where the model parameters
are related or dependent in a systematic manner. The resulting joint probability
model should thus reflect the dependence structure of the parameters. Further,
it is considered natural to structure a model of this type hierarchically, with ob-
servable data modeled conditionally on a certain set of model parameters, which
in turn can be potentially dependent on another set of model parameters. See
for example Gelman and Hill (2006), Gelman et al. (2014) and Banerjee et al.
(2014), for an overview of Bayesian hierarchical modeling.

The hierarchy of the Bayesian hierarchical modeling adhered to in this thesis,
can be idealized in the following three levels.

Data level: A data density is chosen for the observations conditioned on the
latent processes and other potential parameters.

Latent level: A probability model is constructed for the latent processes con-
ditioned on other potential parameters. This is attained by selecting prior
distribution which should ideally incorporate a priori knowledge on the
latent processes.

Hyper level: Prior distributions for the parameters of the latent processes are
chosen.

In particular, the above modeling hierarchy is designed to combine observed data
sources with known scientific knowledge on the latent processes. This is generally
achieved by constructing prior distributions at the latent level, which are in line
with prior knowledge on the corresponding latent processes. Thus, due to its
flexibility, Bayesian hierarchical modeling has become a popular statistical tool
for modeling physical phenomena, as well as various other fields of application.
See for example, Guttorp and Gneiting (2006), Cooley et al. (2007), Tebaldi and
Sansó (2009), Davison et al. (2012), Fuglstad et al. (2013), and Dyrrdal et al.
(2015) where Bayesian hierarchical modeling is used to model precipitation and
its underlying physical latent processes, briefly discussed in Section 2.4.

The mathematical formulation of Bayesian hierarchical models adhered to in
this thesis, can be summarized as follows. Let y denote the data vector and
x denote the latent process, refereed to as the latent parameters. Additionally,
denote the parameters of the probability model for the latent process, referred to
as hyperparameters, with θ. The hierarchy can then be categorized a follows

Data level: A data density, π(y|x,θ), is chosen for the data vector y condi-
tioned on the latent parameters x and the hyperparmeters θ,

Latent level: A prior density function, π(x|θ), is selected for the latent param-
eters x given the hyperparameters θ.

Hyper level: A prior density function, π(θ), is chosen for the hyperparameters
θ.
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In order to infer the above Bayesian hierarchical model, the posterior density
function π(x,θ|y) needs to be evaluated. Repeated use of Bayes’ theorem yields
the following proportional relation

π(x,θ|y) ∝ π(y|x,θ)π(x,θ) ∝ π(y|θ,x)π(x|θ)π(θ). (2.2)

The relation in (2.2) can be utilized to evaluate or approximate the posterior
density function π(x,θ|y).

2.1.2 Latent Gaussian models

An important subclass of Bayesian hierarchical models is the class of latent Gaus-
sian models (LGMs), in which Gaussian priors distributions are imposed on the
latent parameters x the latent parameters x of the hierarchical model. The Gaus-
sian distribution is arguably the most recognized and widely used probability
distribution in statistics, see for instance Johnson et al. (1992) and Tong (2012)
for an extensive overview. The multivariate Gaussian distribution is defined as
follows.

Definition 1. An n-dimensional random vector x is said to follow a Gaussian
distribution with a mean vector µ ∈ Rn and a positive definite covariance matrix
Σ ∈ Rn×n, denoted x ∼ N (µ,Σ), if its density function is of the form

π(x) =
1√

(2π)n det Σ
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, (2.3)

where µi = E[xi], Σij = Cov(xi, xj) and Σii = Var(xi). A density of the form
(2.3) is referred to as a Gaussian density and denoted with N (x|µ,Σ).

LGMs have become popular in many areas of statistics and various fields of
applications. For example, LGMs are widely used in modern spatial statistics, see
for example Cressie (1993), Diggle et al. (1998), Rue and Held (2005), Guttorp
and Gneiting (2006) and Chiles and Delfiner (2009). The main reason for the
popularity of LGMs is that they are practical from a statistical modeling point
of view, readily interpretable, and in most cases it is possible to evaluate the
corresponding posterior density. Additionally, LGMs can be viewed as a specific
extension of structured additive regression models (Fahrmeir et al. 1994), which is
further discussed in Rue et al. (2009). That is, LGMs extend structured additive
regression models in the sense that the data density function of each data point
can depend on more than a single linear link function of the latent parameters
through more than just the mean structure of the data density. This viewpoint
is further discussed in Paper I and Paper II.

A generalized mathematical formulation of LGMs, which is adhered to in this
thesis, can be summarized as follows.

Data-level: The observations y depend on the latent field x, through some
choice of data distribution with a data density function π(y | x,θ).
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Latent level: The prior for the latent field x is Gaussian and is potentially
dependent on hyperparameters θ, with a density function

π(x | θ) = N
(
x | µ(θ),Q(θ)−1

)
.

Hyperparameter level: A prior distribution is assigned for the hyperparame-
ters θ, with a density function π(θ).

2.2 Computations for Bayesian inference
Once a Bayesian model has been proposed for a certain statistical application,
the next step is to assess how the corresponding posterior distribution is to be
evaluated. In a few special cases the posterior density function can be evaluated
analytically. However, for involved Bayesian model structures, such as in the
case of most Bayesian hierarchical models, the full joint posterior in only known
up to a normalizing constant. In these cases, the posterior density function
needs to be approximated numerically. Most of the commonly used numerical
methods use stochastic simulations, via Markov chain Monte Carlo (MCMC)
simulations, to sample from the posterior distribution. The samples from the
stochastic simulations yield a numerical approximation of the posterior density
function, which in turn can be used for Bayesian inference purposes.

2.2.1 Fundamentals of Markov chain Monte Carlo simulations
Markov chain Monte Carlo (MCMC) methods form the backbone of modern
numerical methods for Bayesian posterior inference, as they are essentially appli-
cable to almost any Bayesian model. See for example Gelman and Rubin (1992),
Smith and Roberts (1993), Gilks (2005) and Robert and Casella (2013) for a
detailed overview of the subject. MCMC methods consist of general algorithms
for simulating Markov chains which have a desired target density as a station-
ary distribution2. In the Bayesian paradigm, the posterior density of a proposed
Bayesian model is the desired target density. After a certain burn in period, that
is, after a certain number of iterations in the Markov chain, the sequence of sim-
ulations from the Markov chain serve as samples from the posterior distribution
of the proposed model. This procedure is often carried out by the use of the
Gibbs sampling algorithm (Geman and Geman 1984, Casella and George 1992)
and the Metropolis–Hastings algorithm (Metropolis et al. 1953, Hastings 1970),
which are both outlined in the subsequent sections.

2.2.2 The Gibbs sampler
The Gibbs sampler is an iterative MCMC sampling algorithm designed to ob-
tain samples from a joint distribution of multidimensional random variable. The
Gibbs sampler is, therefore, well suited for obtaining samples from the posterior

2The Markov chain’s stationary distribution exist under the assumptions of aperiodicity and
irreducibility.
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distribution of a given multi-parameter Bayesian model. The mathematical for-
mulation of the Gibbs sampler, as designed for Bayesian inference, is as follows.

Let θ denote a vector of model parameters of a given multi-parameter Bayesian
model and π(θ|y) denote the corresponding joint posterior density function. Fur-
ther assume that the vector θ can be decomposed into J subvectors, that is,

θ = (θT1 , . . . ,θ
T
J)T.

In every iteration, the Gibbs sampler cycles through the subvectors of θ and
draws samples from the conditional posterior distribution of the subvectors of θ
conditioned on latest values of other subvectors of θ. This procedure generates
a Markov chain consisting of samples of θ obtained in every iteration, that can
be shown to converge to the target distribution π(θ|y), see for example Gilks
(2005).

The algorithm for the Gibbs sampler, based on K iterations and with π(θ|y)
as a target density, is outlined in Algorithm 1.

Algorithm 1 The Gibbs sampler, based on K iterations with a target density
π(θ|y).

1: Initialize the Markov chain, by choosing an arbitrary starting value θ0 such
that π(θ0|y) > 0.

2: for k = 1, . . . ,K − 1
3: for j = 1, . . . , J

4: Sample θ(k+1)
j from π(θj | y,θk+1

1 , . . . ,θk+1
j−1 ,θ

k
j+1, . . . ,θ

k
J)

5: end for
6: end for

2.2.3 Metropolis–Hastings Algorithm

The Gibbs sampler, in the form presented in Section 2.2.2, is only applica-
ble to a multivariate Bayesian model if the conditional posterior distributions
π(θj |θ−j ,y) are known for all subvectors θj . However, in many statistical appli-
cations the conditional posterior distributions π(θj |y,θ−j) are only known up to
a normalizing constant. The Metropolis–Hastings algorithm, which is arguably
one of the most successful and widely used MCMC algorithms (Beichl and Sul-
livan 2000), is a class of algorithms which can be considered as an extension to
the Gibbs sampler, which serves to address this issue. That is, the Metropolis–
Hastings algorithm is applicable for drawing samples from a desired target den-
sity if the target density is known up to a normalizing constant. As such, the
algorithm can be implemented within the Gibbs sampling scheme when the con-
ditional posterior distributions π(θj |θ−j ,y) are only known up to a normalizing
constant.

The Metropolis–Hastings algorithm generates a Markov chain that converges
to the desired target density, which is the posterior density in the Bayesian setting,
under mild regularity conditions (Chib and Greenberg 1995). For demonstrative
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purposes assume that θ is a random vector with a target density π(θ|y). The
Metropolis–Hastings algorithm for obtaining K samples from the target density
π(θ|y) is summarized in Algorithm 2.

Algorithm 2 The Metropolis–Hastings algorithm, based on K number of itera-
tions with a target density π(θ|y).

1: Initialize the Markov chain, by choosing an arbitrary starting value θ0 such
that π(θ0|y) > 0.

2: for k = 0, . . . ,K − 1
3: Sample a proposal value θ∗ from a given proposal density q(θ∗ | θk)
4: Calculate

α = min

{
1,
π(θ∗ | y)

π(θk | y)

q(θk | θ∗)
q(θ∗ | θk)

}
(2.4)

5: Sample u ∼ U(0, 1)
6: if α > u
7: θk+1 = θ∗

8: else
9: θk+1 = θk

10: end if
11: end for

The probability in (2.4) is often referred to as acceptance probability. Addition-
ally, the ratio in (2.4) is referred to as the acceptance ratio in this thesis.

One of the advantages presented by the Metropolis–Hastings algorithm is
that the algorithm converges to the target density for almost any choice of a
proposal density function3, see Rue and Held (2005) for discussion on this point.
Furthermore, different choice of proposal densities result in different classes of
Metropolis–Hastings algorithms. For example, consider the special case when
the target density π(θ|y) is known. By selecting the target density π(y|θ) as
proposal density in Metropolis–Hastings algorithm, that is q(θ∗|θk) = π(θ|y),
then the acceptance probability in (2.4) becomes equal to one. This version of
the Metropolis–Hastings algorithm is the Gibbs sampler.

Common classes of Metropolis–Hastings algorithms, discussed in this thesis,
are based on the following types of proposal densities.

Symmetric random walk proposal: If the proposal density is symmetric,
such that, the following relation holds

q(θk | θ∗) = q(θ∗ | θk),

then the acceptance probability in (2.4) simplifies to

α = min

{
1,
π(θ∗ | y)

π(θk | y)

}
.

3Under mild regularity conditions. One which is that the support of the proposal density
function must contain the support of the target density function.
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The most common symmetric random walk proposal density, is a Gaussian
density centered at the current value of θ with a predetermined variance or
covariance matrix.

Independence proposal: A proposal density referred to as an independence
proposal density if it is independent of the current value of θ in MCMC
chain, that is, if q(θ∗|θk) = q(θ∗). In this case, the acceptance probability
in (2.4) simplifies to

α = min

{
1,
π(θ∗ | y)

π(θk | y)

q(θk)

q(θ∗)

}
.

2.2.4 Assessing computational efficiency
Although Metropolis–Hastings algorithms are guaranteed to converge to the tar-
get density, the rate of convergence and the degree of dependence between suc-
cessive samples can vary significantly between particular classes of Metropolis–
Hastings algorithms and how they are implemented. In general, fast convergence
and low dependence between successive samples yield higher quality of MCMC
chains. The quality of a simulated MCMC chain can be assessed through its
effective sample size, which is an estimate of the equivalent number of indepen-
dent iterations in the simulated MCMC chain, see Gelman et al. (2014). In this
thesis, MCMC algorithms which yield high quality MCMC chains are referred to
as being computationally efficient, or just efficient for short4.

The convergence diagnostics tools which are normally used for assessing com-
putational efficiency of MCMC chains are the following.

Trace plots: A traceplot is a plot of an MCMC simulation, in which the value
of the MCMC chain is plotted as a function of iterations. By visual inspec-
tion of the trace plots, it is possible to identify if and where the MCMC
chain gets stuck in the same value for many consecutive iterations. If the
MCMC chain does get stuck, that indicates low computational efficiency.

Running mean plots: A running mean plot is a plot, in which the mean val-
ues of the draws in the MCMC chain up to the current iterations are plotted
as a functions of iterations. The running plots serve as a visual inspection
tool for assessing the rate convergence in the mean of the MCMC chain.

Autocorrelation: The dependence between successive samples of the Markov
chain is evaluated with its autocorrelation which is estimated with the sam-
ple correlation. The j-th lag autocorrelation ρj is defined as the correlation
between every j successive draws. The j-th lag autocorrelation of a MCMC
chain {θk}Kk=1 can be estimated with

ρ̂j =

∑K−j
k=1

(
θk − θ̄

) (
θk+j − θ̄

)∑K
k=1

(
θk − θ̄

)2 ,

4Also referred to as having good mixing and convergence properties by many authors.
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where θ̄ = K−1
∑K
k=1 θk. How the j-th lag autocorrelation decreases as

function of lag k yields insight into the computational efficiency of the
MCMC sampler. That is, the j-th lag autocorrelation decreases rapidly if
the MCMC algorithm is computationally efficient. However, high j-th lag
autocorrelation for relatively high values of j indicates poor computational
efficiency.

Autocorrelation plots, which are plots showing the j-th lag autocorrelation
as a function of lag j, are useful visual diagnostics tools for assessing the
behavior of the autocorrelation.

Gelman–Rubin statistic: The Gelman–Rubin statistic5, proposed by Gel-
man and Rubin (1992) is a metric for assessing convergence of iterative
MCMC simulations. The Gelman–Rubin statistic is evaluated from the
m simulated MCMC chains, which have different initial values and have
been simulated independently of each other. The algorithm for calculat-
ing the Gelman–Rubin statistic is thoroughly outlined in Brooks and Gel-
man (1998). The Gelman–Rubin statistic can be interpreted as follows.
A Gelman–Rubin statistic close to 1 suggests that the MCMC simulations
are close to the target distribution. In most practical cases, values below
1.05 are acceptable. However large values of the Gelman–Rubin statistic,
typically greater than 1.1, indicate that the simulations have not converged
to the target density.

Gelman–Rubin plots are plots where the Gelman–Rubin statistic is plotted
as a function of iteration. These plots can be used as a visitation tool for
assessing the rate of convergence of the given MCMC chain.

2.2.5 Proposal densities and efficiency

The computational efficiency of a Metropolis–Hasting algorithm is highly influ-
enced by the choice of a proposal density. Utilizing a proper density, such that the
MCMC chain converges in theoretical terms, but a poorly designed one may lead
to an MCMC chain that converges too slowly to be considered practical. Thus,
designing an efficient proposal density is vital when implementing the Metropolis–
Hasting algorithm in practice. In this section a few common guidelines and known
results are given for designing an efficient proposal density.

The computational efficiency of the Metropolis–Hasting algorithm can of-
ten be controlled through the acceptance probability α, or the expected accep-
tance rate E [α] of the MCMC chain in equilibrium. Depending on the class of
Metropolis–Hastings algorithms, different behavior of the acceptance rate E [α]
is desired for optimal computational efficiency. This in turn, leads to guidelines
for tuning the proposal densities for optimal efficiency.

Random walk proposals: If the acceptance rate E [α] is too high, the proposed
values tend to be close to the current position of the chain. In other words, the

5Also referred to as potential scale reduction factor.
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main bulk of the proposal’s probability density is too narrow to properly explore
the space of the posterior density. Therefore, the Markov chain will take too
small steps in every iteration. This results in an MCMC chain that exhibits a
high autocorrelation, and thus reduces computational efficiency. However, when
the acceptance rate is too low, the proposed draws take large steps from the
current positions in the chain but are frequently rejected by the Metropolis–
Hastings algorithm. This results in the chain getting stuck in the same state for
many iterations, which reduces computational efficiency. Roberts et al. (1997)
show that the optimal acceptance rate for random walk proposals is 44% when
the θ is a scalar and 23% when θ is a multidimensional.

In practice random walk proposal densities are tuned to achieve the desired
acceptance rate for computational efficiency. An example of a random walk
proposal for a target density π(θ|y), which is tuned for computational efficiency,
is given in Roberts et al. (1997). That is, a proposal density based on the Gaussian
distribution centered on the last draw of θ with a precision matrix −cH where
H is the of the Hessian matrix of log π(θ|y) evaluated at the mode θ0. That is,

H = ∇2 log π(θ|y)
∣∣
θ=θ0

(2.5)

Further, the scaling parameters c serves as a tuning parameter for the proposal
density. However, the scaling c = 2.382/dim(θ) can be shown to yield optimal ac-
ceptance rates in a particular large dimension scenario, see Roberts et al. (1997).
The resulting proposal density therefore becomes

q(θ∗|θk) = N
(
θ∗ | θk, (−cH)

−1
)
.

Independence proposals: Consider again the special case when the target density
is known and chosen as a proposal density. In the role as a proposal density, the
target density is an independence proposal, as it is independent of the current
state in the chain, and has the acceptance rate 1. As the target density is trivially
the optimal proposal density the following can be stated. In the case of indepen-
dence proposal when the target density is unknown, choosing a proposal density
which approximates the target density well yields higher computational efficiency.
Further, high values of expected acceptance rate E [α] indicates that the proposal
density approximates the target density well. Therefore, higher value of E [α] are
desired for independence proposals.

An example of an independence proposal, is a proposal designed as a Gaussian
approximation of the target density evaluated at its mode. That is, assume that
π(θ | y) is the target density with the mode θ0. The resulting proposal density
becomes

q(θ∗) = N
(
η | θ0, (−H)−1

)
(2.6)

whereH is the Hessian of the logarithm of conditional posterior evaluated at the
mode, given in equation (2.5).

Mengersen et al. (1996) show that, in some cases, using independence propos-
als may result in the MCMC chain getting stuck in regions of low target density.



2.2 Computations for Bayesian inference 15

Further, Mengersen et al. (1996) give a criterion for independence Metropolis–
Hasting algorithms such that they do not exhibit this behavior, that is, they
show that the resulting MCMC chains is geometrically convergent as a function
of iterations if and only if the proposal density is bounded below by a multiple
of the target density. Their analytic results can be interpreted as follows. If the
tail of the proposal density is “thick enough” with respect to target density, the
resulting algorithm does not stick and exhibits fast convergence.

The Metropolis Adjusted Langevin algorithm: A proposal density can be de-
rived from a discretized Langevin diffusion, see Roberts and Rosenthal (1998)
referred to as the Metropolis Adjusted Langevin algorithm (MALA). The MALA
algorithm aims to provide a high computational efficiency, such that both large
proposal steps are proposed that are also accepted with high probability. To that
extent, the MALA algorithm uses the gradient of the target density to drive the
proposal density toward regions of higher posterior density. That is, assume that
the target density, π(θ|y) is known up to a constant, then the MALA proposal
density is given by

q(θ∗|θk) = N
(
θ∗ | µ(θk, ε), ε2I

)
where

µ(θk, ε) = ∇ log π(θ|y)
∣∣
θ=θk

and ε is a tuning parameter. As the proposal density is not symmetric, the
acceptance probability for the MALA class Metropolis–Hastings algorithm is of
the same form as in equation (2.4). In order to circumvent computationally costly
tuning of the MALA algorithm, Girolami and Calderhead (2011) suggested an
automated adaptation mechanisms for ε for optimal computational efficiency.
Their methods exploit the Riemannian geometry, see Boothby (2003), of the
parameter space of statistical models which provide highly efficient convergence
and exploration of the target density.

2.2.6 Block sampling
A popular inference scheme for sampling from a multidimensional target den-
sity, which is the posterior density π(θ|y) for Bayesian hierarchical models, is
the single-site updating scheme. The single-site updating scheme is a Gibbs-
sampler where every one-dimensional element θj of the vector θ is updated, using
a Metropolis–Hastings algorithm if necessary, conditioned on θ−j . However, in
the case of most Bayesian hierarchical models, parameters can become highly
dependent in the posterior, see for example Murray and Adams (2010). In this
case, Knorr-Held and Rue (2002) demonstrate that the resulting MCMC chain
transits slowly around the target density space, which in turn leads to poor
computational efficiency. Further, Knorr-Held and Rue (2002) suggest a general
approach to circumvent this issue by updating subvectors of θ, say θj , which are
highly dependent in the target density together in one block. Ideally, the vector
θ should be partitioned into blocks that have high dependence within the blocks
but low dependence between them. This general scheme is referred to as block
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sampling scheme in this thesis. In Rue and Held (2005) a thorough analyzes of
block sampling is given, along with various blocking strategies for various types
of Bayesian models.

Of particular interest in this thesis are sampling schemes for LGMs. Filippone
et al. (2013) conducted a detailed comparison of modern sampling schemes6 for
LGMs and found that the one-block updating scheme of Knorr-Held and Rue
(2002) performed best, in terms of efficiency, when applicable. The one-block
sampling strategy is as follows.

Assume the LGMs setup in Section 2.1.2. The posterior density, π(x,θ|y), of
the model is proportional to

π(x,θ|y) ∝ π(y|x,θ)π(x|θ)π(θ)

Additionally, assume that the form of the conditional posterior π(x|y,θ) is a
known Gaussian density. The one-block updating scheme is a Metrpolis–Hastings
algorithm with the following proposal density

θ∗ ∼ q(θ∗ | θk) (2.7)

x∗ ∼ π(x∗ | yk+1,θ∗).

Denote the proposal density implied by (2.7) with q(x∗,θ∗ | xk,θk). A proposed
value (x∗,θ∗) in the (k+ 1)-th iteration is then accepted jointly with acceptance
probability

α = min

{
1,
π(x∗,θ∗ | y, )
π(xk,θk | y)

q(xk,θk | x∗,θ∗)
q(x∗,θ∗ | xk,θk)

}
. (2.8)

Further, it can be shown that the acceptance probability in (2.8) can be written
as

α =

{
1,
π(θ∗ | y)

π(θk | y)

q(θk | θ∗)
q(θ∗ | θk)

}
(2.9)

The acceptance ratio in (2.9) shows that the expected acceptance rate for the one-
block sampler is only dependent on θ. Further, the result in (2.9) indicate that
by sampling x from the known Gaussian density π(x|y,θ), the vector x has been
essentially integrated out from the joint posterior π(x,θ|y). The computational
efficiency of the one-block sampler is thus only dependent of the choice of proposal
density q(θ∗ | θk) for θ. As θ is normally of low dimension, implementing an
efficient proposal density for θ is often readily achievable. For example, the
proposal densities from Section 2.2.5 are applicable for θ in this setup.

However, if π(x|y,θ) is not know, which is often case for LGM with a non-
Gaussian data-density, the one-block scheme is not applicable as presented above.
In Paper II a more general sampling scheme for LGMs, referred to a the MCMC
split sampler, is presented which can be viewed as an extension to the one-block
sampler.

6Including, the Riemannian geometry manifold MALA based Metropolis–Hastings algo-
rithm.
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2.2.7 Approximate inference

Alternative to MCMC methods are deterministic approximate posterior inference
methods, such as the Integrated nested Laplace approximation (INLA) proposed
by Rue et al. (2009). INLA is a fast approximate inference method for LGMs
in which the data density of each data point only depends on a single linear
functional of the latent field. INLA makes use of deterministic nested Laplace
approximations which provides a fast and accurate alternative to MCMC meth-
ods7.

2.3 Spatial statistics

Physical modeling of spatial phenomena without stochastic components may not
adequately capture the complex processes of nature. However, spatial physical
phenomena which are located close together is space tend to exhibit a high degree
of dependency, while physical phenomena located far apart tend to show low levels
of dependency. On that point, Cressie and Wikle (2011) comment “[...] there is
a flux of causal relationships in the space-time continuum that, when integrated
out over time or captured in a micro-instant of time, shows neighboring values to
be more highly correlated ”. The dependence between neighboring locations can
be utilized to borrow information for statistical modeling of spatial data.

Spatial statistics is a branch of statistics which involves the quantitative anal-
ysis of spatially referenced data. In other words, spatial statistics can be de-
scribed as the statistical modeling of spatial variability and uncertainty. In re-
cent decades, great advances have been made in the field of spatial statistics,
both in terms of flexible statistical modeling and computational efficiency, see
for example Besag (1974), Grondona and Cressie (1991), Rue and Held (2005),
Cressie and Wikle (2011), Lindgren et al. (2011) and Banerjee et al. (2014). In
this section, a brief overview of spatial statistics and computationally efficient
spatial modeling is given.

2.3.1 Spatial random fields

To motivate the fundamental mathematical concepts of spatial statistics, consider
a Euclidean spatial domain of interest and denote it with D. The spatial domain
D can be, for instance, a flat surface such that D ⊂ R2. Although the theory of
spatial statistics extends to non-Euclidean spatial domains, such as a spheroid
like the Earth, only Euclidean spatial domains, such that D ⊂ Rd, are considered
in this thesis. Serving as an analogy, a spatial field can be viewed as a temporal
snapshot of a physical phenomena over the domain D, aggregated over time or a
frozen temporal space-time process (Cressie and Wikle 2011).

To illustrate further, assume that a potential datum u(s) for any given loca-
tion s ∈ D is a random variable. A spatial random field is generated by varying

7Other deterministic methods include for example the expectation–maximization (EM) al-
gorithm, which is an iterative method to finding the mode of a posterior density, see McLachlan
and Krishnan (2007) for an overivew.
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the spatial index over the spatial domain s ∈ D yielding

{u(s) : s ∈ D} , (2.10)

which is denoted with {u(s)} for short, see Cressie (1993) for a more rigorous
definition8. In this thesis, the spatial index is assumed continuous, in the sense
that the spatial index s in (2.10) is assumed to vary continuously over the spatial
domain D. Continuing the aforementioned analogy, any realization of the random
field can be viewed as a snapshot of a spatially referenced physical phenomenon.

For statistical modeling of spatial fields, a set of n locations s1, . . . , sn ∈ D
is selected. Let u denote a spatially referenced random vector based on the
spatial field in (2.10) at those locations, that is, u = (u(s1), . . . , u(sn)). The
i-th element of u corresponds to the random variable at the location si, for all
i = 1, . . . , n. Observing the values of u at every location s1, . . . , sn ∈ D yields a
spatially referenced observational data, which in turn can be used for statistical
analysis. Furthermore, the dependence structure of the random vector u can
reflect on the dependence of the spatial field {u(s)} between locations in D.
The dependence structure is often described with covariance functions, which are
defined as follows.

Definition 2. Let {u(s)} be a given random field over a domain D. The covari-
ance function of {u(s)} is a function C : D ×D → R which satisfies

C(s, t) = Cov(u(s), u(t)), for all s, t ∈ D.

Furthermore, for a given set of locations s1, . . . , sn ∈ D let u = (u(s1), . . . , u(sn)).
The covariance matrix of u is then given as

Σij = C(si, sj) for all i, j = 1, . . . , n.

A widely used subclass in the statistical analysis of spatial data are stationary
spatial fields. The reason for this is that the dependence structure of stationary
spatial fields is only dependent on the difference between locations in the domain.
In other words, the dependence structure of stationary spatial fields is invariant to
translations in the spatial domain. Therefore, the parameterization of stationary
fields is more accessible than in the case of non-stationary spatial fields. The
definition of a stationary spatial field is as follows.

Definition 3. Let {u(s)} be a given random field over a domain D. The spa-
tial field {u(s)} is said to be strongly stationary if for every set of n points
s1, . . . , sn ∈ D the following holds

(u(s1), . . . , u(sn))
D
= (u(s1 + h), . . . , u(sn + h)) for any h in Rd,

where D
= denotes equality in distribution.

8That is, equation (2.10) is essentially {u(s, ω) : s ∈ D, ω ∈ Ω} where {Ω,F , P} is a proba-
bility space.
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The spatial field {u(s)} is said to be weakly stationary if it has a constant
mean function, that is

E [Y (s)] = µ for all s ∈ D,

and its covariance functions depends on the distance between two locations s and
t = s+ h such that,

C(s, s+ h) = C(h) for all s ∈ D, (2.11)

A covariance function which satisfies the condition in (2.11) is said to be station-
ary.

It can be shown that strong stationary implies weak stationary, see for exam-
ple Grimmett and Stirzaker (2001). For the rest of this thesis, weakly stationary
spatial fields are referred to as stationary spatial fields. A stationary covariance
function C(·, ·) that only depends on the distance between two locations s, t ∈ D,
that is

C(s, t) = C(||s− t||) for all s, t ∈ D (2.12)

where || · || denotes some a Euclidean distance, is referred to as an isotropic
covariance function. A simple example of an isotropic covariance function for
describing dependence of spatial data, is the exponential covariance function,
which is defined as follows.

Definition 4. An isotropic covariance function of a spatial field {u(s)} over a
domain D is called an exponential covariance function if

C(si, sj) = σ2 exp (−φ||si − sj ||) , for all s, t ∈ D,

where σ2 is a marginal variance, φ > 0 is a decay parameter.

The marginal variance parameter σ2 is the variance of the spatial field for
a given location, and the decay parameter φ describes how rapidly the spatial
correlation decays with increasing distance. Although the exponential covariance
function is readily interpretable, it lacks the means to adapt to the smoothness
of the spatial field.

The Matérn covariance function, see for instance Cressie and Huang (1999)
and Stein (1999), is a class of covariance functions which can be viewed as an
extension to the exponential covariance function. That is, Matérn covariance
function can describe the decay rate of the spatial correlation and the smooth-
ness of the spatial field. Due to this flexibility, the Matérn covariance function
has become popular in recent years for modeling physical processes in a spatial
setting, see Guttorp and Gneiting (2006). The Matérn covariance function is
defined as follows.

Definition 5. An isotropic covariance function of a spatial field {u(s)} over a
domain D is referred to as the Matérn covariance function if
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C(s, t) =
σ2

2ν−1Γ(ν)
(κ‖s− t‖)ν Kν (κ‖s− t‖) (2.13)

where Γ is the gamma function; Kν is the modified Bessel function of the sec-
ond kind and order ν > 0 (Abramowitz and Stegun 1964); κ > 0 is a scaling
parameter; and σ2 denotes the marginal variance of the Matérn field.

The parameters κ and ν are referred to as the scaling and smoothness param-
eters, respectively, of the spatial field. For interpretation, the Matérn covariance
function is often parameterized with

C(s, t) =
σ2

2ν−1Γ(ν)

(
‖s− t‖
φ

)ν
Kν

(
‖s− t‖
φ

)
where φ acts as a decay rate of the spatial correlation, see Diggle et al. (1998).
The scaling parameter κ is related to the decay rate of the spatial correlation φ,
through the relation φ = 1/κ. The form in equation (2.13) is adhered to in this
thesis for the Matérn covariance function. The integer value of ν determines the
mean-square differentiability of the latent field, which in turn, determines the
smoothness of the spatial field.

2.3.2 Gaussian fields
Gaussian fields (GFs) are spatial fields which build upon the Gaussian distribu-
tion. As GFs share the analytical properties of the Gaussian distribution, they
form a flexible and practical class of spatial models. Further, GFs are one of a few
multivariate models with an explicit and computable normalizing constant. Due
to these properites, GFs play a dominant role in the field of spatial statistics, see
for example Cressie (1993), Diggle et al. (1998) and Stein (2012). The definition
of a GF a over spatial domain D is as follows.

Definition 6. Let {u(s)} be a spatial field over a spatial domain D. The field is
called a Gaussian field with a mean function and a covariance function

µ(s) = E [u(s)] , C(s, t) = Cov(u(s), u(t)), for all s, t ∈ D

if for any n ≥ 1 and any finite collection of locations s1, . . . , sn ∈ D the random
vector u = (u(s1), . . . , u(sn))T follows a multivariate Gaussian distribution with
a mean vector µ = (µ(s1), . . . , µ(sn))T and a covariance matrix Σij = C(si, sj),
that is

u ∼ N (µ,Σ) . (2.14)

Gaussian fields are thus uniquely determined by the mean function and the
covariance function. The Gaussian vector in (2.14) serves as finite dimensional
representation of the GF {u(s)}. The following theorem, see Rue and Held (2005)
for proof, demonstrates analytical closure properties of the Gaussian distribution
which are particularly useful in a spatial setting.
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Theorem 1. Let u be an n-dimensional random vector such that u ∼ N (µ,Σ).
Further, split u into two parts, u = (uT

A,u
T
B)T and split the mean vector µ and

Σ accordingly, that is,

µ =

(
µA
µB

)
, Σ =

(
ΣAA ΣAB

ΣBA ΣBB

)
.

Then the following holds

a) uA ∼ N (µA,ΣAA)

b) ΣAB = 0 if and only if uA and uB are independent

c) The conditional density of uA conditioned on uB is

π(uA|uB) = N
(
uA|µA|B ,ΣA|B

)
(2.15)

where

µA|B = µA + ΣABΣ−1BB(uB − µB)

ΣA|B = ΣAA −ΣABΣ−1BBΣBA. (2.16)

d) Assume that Z ∈ Rk×n, where k ≤ n, is some fixed matrix, then

π(Zu) = N
(
Zu|Zµ,ZΣZT

)
.

To demonstrate how the properties in Theorem 1 can be utilized for modeling
spatial data in a domain D with a GF {u(s)} in the Bayesian paradigm, consider
the following. Let s1, . . . , sn ∈ D be any locations in the spatial domain selected
for observing the spatial physical process. Impose a Gaussian prior density on
the random vector u = (u(s1), . . . , u(sn))T, that is, the prior density of u is

π(u) = N (u|µ,Σ) ,

and u is assumed to be observable at the locations s1, . . . , sn ∈ D. Further
assume that both µ and Σ have been estimated based on the observations9.
Then, estimates of any subvector uA ⊂ u follow immediately, that is without
any additional estimation calculations, from the estimation of u, by property a)
in Theorem 1. This is particularly useful from a computational point of view, as
estimates of the covariance structure of any uA ⊂ u is readily available. Further
on that point, by property b) in Theorem 1, the marginal dependence structure
of u is also available without the need of any extra calculations.

Next, assume that a set of locations t1, . . . , tm ∈ D are given where the
values of the GF are unobserved, and denote the unobserved values with uun =

9In Bayesian hierarchical modeling, the mean vector µ and the covariance matrix Σ are
allowed to depend on any potential hyperparameters θ. The estimation of µ and Σ then involves
evaluating the joint posterior distribution of the model parameters.
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(u(t1), . . . , u(tm))T. Property c) in Theorem 1 can be utilized to make statements
about the values at the unobserved locations. That is, by the model assumptions
and property c) in Theorem 1 the conditional distribution of uun conditioned on
the observed values u is a Gaussian distribution given by equations (2.15) and
(2.16), with u and uun in the role of uA and uB , respectively. This procedure
thus yields spatial predictions of the unobserved values. The spatial predictions
are, in a sense, a best linear prediction given the model values and referred to as
Kriging, see Stein (1999) for further discussion.

Property d) in Theorem 1 states that any linear combination of a Gaussian
vector u is also a Gaussian vector. This property will become particularly useful
for approximating GFs with Gaussian Markov random fields. A further discussion
on the subject can be found in Section 2.3.3 and Section 2.3.4.

2.3.3 Gaussian Markov random fields
Although GFs are analytically convenient from both an interpretational and im-
plementational standpoint, they become increasingly computationally demand-
ing to evaluate as the dimensions of the corresponding finite Gaussian vectors
increase, for example when the number of observational points increase. Con-
sider, from a computational point of view, an n-dimensional Gaussian vector u
from a GF, such that u ∼ N (µ,Σ). In the calculations of, for instance, the
log-likelihood of u, which is given by

log π(u) = −1

2
log det Σ− 1

2
(u− µ)TΣ−1(u− µ) + constant

both determinant and inverse calculations10 of the n × n covariance matrix Σ
are involved. As n × n covariance matrices have O(n2) unique elements, both
the determinant and inverse calculations scale as O(n3). However, GFs can be
approximated with Gaussian Markov random fields (GMRFs), which in turn can
increase the speed of computation significantly, see Rue (2001) and Rue and Held
(2005).

A fundamental concept for both the interpretation and the structure of GM-
RFs is conditional independence, which is defined as follows.

Definition 7. Let u be a finite random vector. Two elements ui and uj, such
that i 6= j of u are said to be conditionally independent given u−ij if the random
variables ui|u−ij and uj |u−ij are independent, denoted ui⊥uj |u−ij.

A GMRF is essentially an n-dimensional Gaussian vector parameterized with
a precision matrix Q, which is the inverse of the covariance matrix Q = Σ−1.
Further, a GMRF is defined with respect to certain neighbor index sets11. That
is, for given n locations s1, . . . , sn ∈ D, let N(i) denote the neighbor index set of
locations which are “close” to the location si, in the sense that,

N(i) =
{
j = 1, . . . , n | j 6= i, ui and uj are conditionally dependent given u−ij

}
,

10In form of solving an n× n linear system.
11GRMFs are alternatively defined with respect to a directed graph, see Rue and Held (2005).
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for all i = 1, . . . , n, and denote the collection of neighbor index sets as {N(i)}ni=1.
A Gaussian Markov random field can then be defined with respect to the neighbor
index sets as follows.

Definition 8. An n-dimensional Gaussian vector u ∼ N (µ,Q−1) which satisfies

ui|u−i
D
= ui|{uj : j ∈ N(i)}, for all i = 1, . . . , n

is referred to as a Gaussian Markov random field with respect to the collection of
neighbor index sets {N(i)}ni=1.

To compare the interpretation of the elements of a precision matrix Q to
the elements of the corresponding covariance matrix Σ, consider the following
theorem.

Theorem 2. Let u be a GMRF as in Definition 8. Then the following holds

E [ui|u−i] = µi −
1

Qii

∑
j∈N(i)

Qij(xj − µj),

Prec (ui|u−i) = Qii,

Corr (ui, uj |u−i,j) = − Qij√
QiiQjj

, for i 6= j.

See Rue and Held (2005) for proof. Theorem 2 states that the diagonal
elements of Q consist of the conditional precisions of ui conditioned on u−i, for
all i, and the off-diagonals provide insight into the conditional correlation between
ui and uj conditioned on u−ij . On the other hand, the covariance matrix yields
information on the marginal variances for all ui and the marginal correlation
between every pairs of ui of uj . Therefore, interpretation of elements in precision
matrices is thus arguably not as intuitive as the interpretation of the elements in
the covariance matrix. In terms of interpretation, Rue and Held (2005) comment
that “The interpretation provided by Q is hard (or nearly impossible) to interpret
marginally [...] ”.

However, the parameterization of GRMF through precision matrices, as op-
posed to covariance matrices, reveals a connection between the Markov property
and the neighbor index sets of a GRMF, as illustrated in the following theorem.

Theorem 3. Let u be a GMRF as in Definition 8. Then

ui⊥uj |u−ij if and only if Qij = 0.

In other words, Theorem 3 demonstrates that the nonzero pattern of a preci-
sion matrix Q determines the conditional dependence structure of neighbor index
sets. Reversely, the conditional independence structure of the neighbor index sets
induces the zero pattern in Q. As a consequence, the Markov property thus gen-
erates sparse precision matrices for GMRFs in a spatial setting. This fact leads
to fast computation of samples, likelihoods and other quantities of interest of a
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GMRF in a spatial setting12. For example, in a one-dimensional spatial setting,
where D ⊂ R, these quantities can be computed using O(n) operations. In a
two dimensional spatial setting, where D ⊂ R2, these quantities can be com-
puted using O(n3/2) operations, see Simpson et al. (2012). In both of the these
spatial settings, which are the primary spatial settings in this thesis, using GM-
RFs as opposed to GFs for modeling spatial data offers significant advantages to
computational speed.

Another important result of GMRFs, from a computational point of view, is
stated in the following theorem.

Theorem 4. Let u be a GMRF as in Definition 8. Split the vector u into two
parts, u = (uT

A,u
T
B)T and split the mean vector µ and Q accordingly, that is,

µ =

(
µA
µB

)
, Q =

(
QAA QAB

QBA QBB

)
.

The vector uA|uB is then a GMRF with respect to sub-neighbor index set {NA(i)}i∈A,
where

NA(i) =
{
j ∈ A | j 6= i, ui and uj are conditionally dependent given u−ij

}
,

for all i ∈ A. The conditional density function uA given uB thus becomes

π(uA|uB) = N
(
uA|µA|B ,QA|B

)
(2.17)

where

µA|B = µA +Q−1AAQAB(uB − µB)

QA|B = QAA (2.18)

The computational importance of Theorem 4 stems from the fact that if Q
is sparse, then every precision matrix QA|B of the corresponding conditional, as
implied by equations (2.17), is also sparse, as demonstrated by equation (2.18).
In other words, the sparsity of the precision matrix Q is preserved under any
conditioning of any subvectors of u. This property is referred to as preserving
the sparse GMRF precision structure in this thesis. Comparing equations (2.18)
in Theorem 4 to corresponding general result (2.16) in Theorem 1 reveals the
computational advantages presented by the GMRF structure under conditioning.
This result is utilized extensively in both Paper II and Paper III.

2.3.4 SPDE spatial models
GMRFs can offer significant computational advantages over GFs in spatial setting,
as seen in Section 2.3.3, when their precision structures are sparse. To that

12The key factor in the fast computations of GMRFs, is the Cholesky decomposition of the
sparse precision matrix. That is, Q = LLT, where L is a lower triangular matrix. Rue and
Held (2005) provide an extensive overview of fast algorithms for GMRFs.
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extent, Lindgren et al. (2011) proposed a method to parametrize the precision
matrix of a GMRF to achieve a predefined spatial covariance which yields sparse
precision structure. The method computes a numerical approximation to a GF
on a triangulated mesh based on a stochastic partial differential equation (SPDE)
representation, which is referred to a SPDE spatial models in this thesis.

The theory on SPDE spatial models is built upon the following theorem.

Theorem 5. The solution {u(s)} to the following fractional SPDE

(κ2 −∆)α/2u(s) =W(s), (2.19)

s ∈ Rd, α = ν + d/2, κ > 0, ν > 0

is an isotropic mean zero GF with a Matérn covariance function as given in
equation (2.13).

The process W(s) in Theorem 5 is an isotropic zero mean GF over Rd with a
unit variance13; the term (κ2 −∆)α/2 serves as a pseudo-differential operator14 ;
and ∆ is the Laplacian. Further, the marginal variance of the solution {u(s)} is

σ2 =
Γ(ν)

Γ(ν + d/2)(4π)d/2κ2ν
.

Lindgren et al. (2011) proposed constructing a finite dimensional represen-
tations of the solution to the SPDE in (2.19) with a sparse GRMF precision
structure. To elaborate, first consider the weak solution form of the SPDE in
(2.19), which given by{

〈φj , (κ2 −∆)α/2u〉
}m
j=1

D
=
{
〈φj ,W〉

}m
j=1

, (2.20)

for a set of test functions {φj(s)}mj=1, where the inner product is defined as

〈f, g〉 =

∫
Rd
f(s)g(s)ds.

The spatial domain is then subdivided into a set of non-intersecting triangles,
referred to as a triangulated mesh. For every point s in the spatial domain, a
finite element representation (Brenner and Scott 2008) of the solution u(s) is
constructed. The finite element representation is of the form

u(s) =

n∑
k=1

ψk(s)wk (2.21)

where n is the number of vertices in the mesh, ψk are a set of basis functions, and
wk are Gaussian weights at the vertices of the triangles in the mesh. Lindgren
et al. (2011) selected the functions in {ψk}nk=1 in (2.21) as a piecewise linear basis

13An isotropic mean-zero Gaussian field with a unit variance is referred to as a white noise
by many authors.

14A general pseudo-differential operator is defined by the Fourier inversion formula.
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functions within each triangle, such that ψk is 1 at vertex k and 0 at other vertices.
The Gaussian weights in the finite element representation (2.21) thus determine
the values at the vertices of the mesh. Moreover, the values in the interior of the
triangles are determined by linear interpolation of the surrounding vertices15. As
a result, the methods yields a continuously indexed approximate solution to the
SPDE in (2.19). In practice this mean that the approximate solution can be
projected from the vertices of the mesh with a linear transformation onto every
finite set of points, denoted with S, within the spatial domain. Such a linear
projection matrix is denoted with AS in this thesis.

In order to construct a finite dimensional representations of the solution, the
solution u(s) in equation (2.20) is replaced with the finite element representation
in (2.21). The distribution of Gaussian the weights w = (w1, . . . , wn)T are then
found such that (2.20) holds, for a specific set of test functions {φk}mk=1, with
m = n. The structure of the test functions affect the structural properties of
the corresponding the finite dimensional representations. For further details on
the choice of test functions see Lindgren et al. (2011). Finally, by defining the
following precision matrices

Cij = 〈ψi, ψj〉
Gij = 〈∇ψi,∇ψj〉
Kij = κ2Cij +Gij ,

and using Neumann boundary condition on the boundary of the spatial domain,
the following be shown.

Theorem 6. Let Qα(κ2) denote the precision matrix for the Gaussian weights
w in the finite element representations in (2.21), for α = 1, 2, . . . as a function
of κ2. Then the finite dimensional representations of the solution to the SPDE
in (2.19)

Q1(κ2) = K(κ2)

Q2(κ2) = K(κ2)C−1K(κ2)

Qα(κ2) = K(κ2)C−1Qα−2C
−1K(κ2) α ≥ 3

From a computational point of view, consider the following. The elements
in C and G are non-zero only for pairs of basis functions which share common
triangles. This meansC andG are both sparse and easily computable. Moreover,
the values of the elements of C and G are independent of the parameter κ. From
a Bayesian computational standpoint, this means that the C and G matrices can
be computed invariantly of Bayesian inference computations. For example, in the
MCMC setting, the C and G do not have to be recalculated in every iterations,
which reduces the computational cost of every iteration significantly.

Lindgren et al. (2011) further demonstrate that, although the matrix C−1

is dense, it can be replaced by a diagonal matrix C̃, such that, C̃ii = 〈ψi, 1〉.
15The linear interpolation into the triangles is essentially as convex linear combination of

Gaussian weights at the surrounding vertices.
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This in turn makes all the precision matrices in Theorem 6 sparse. As a result,
Theorem 6 yields a way to construct a GMRF representations with a sparse
precision structure of a Gaussian field with a Matérn covariance function.

2.4 Extreme precipitation
Understanding the spatial behavior of extreme precipitation, and the frequency
and intensity of extreme events is important for public safety and various types of
long term agricultural, industrial and urban planning. Extreme precipitation can
be a major trigger of floods in urban areas resulting in large economic loss every
year, and can be a threat to life and property. For example, extreme rainfall
in Reykjavík on the 16th of August 1991 resulted in overloaded local drainage
systems causing severe damage to industrial buildings, houses and apartments.
As an another example, the Norwegian Water Resources and Energy Directorate
(NVE) has estimated the average annual cost of flood damage in Norway to
be about 200 million NOK, see Dyrrdal (2012). Moreover, the information on
extreme precipitation is needed at a fine resolution as the characteristics of ex-
treme precipitation events can be local, especially in regions with heterogeneous
topography.

Meteorological models, of various complexities, have been proposed to model
precipitation spatially. Although meteorological models are well suited to give
insight into the spatial mean behavior of precipitation, they tend to deviate signif-
icantly from observations when predicting extreme precipitation, see for example
the analyzes given in Section 4.3.2. Thus, there is an additional need for sta-
tistical methods which take into account observations and spatial variation of
extreme precipitation events. Reliable fine scale probabilistic spatial predictions
of extremes are of importance as they can provide climatologists with more in-
formative maps on the severity and variability in extremes. Such predictions are
also important for mapping risk to human health and useful for engineering pur-
poses, for instance, for design and safety issues. A map showing the severity for
locations on a fine grid makes it possible to identify which areas are subject to
greater risk than others

In this section, a brief overview of both modern meteorological precipitation
models and statistical models for extreme precipitation is given.

2.4.1 Meteorological models for precipitation
Meteorological models, of various complexities, have been proposed to model
precipitation on a fine grid. Traditional meteorological models implement inter-
polation methods to estimate area-averaged precipitation or to produce a gridded
datasets based on observations from irregularly spaced network of observational
sites, see for example Creutin and Obled (1982). However, such methods are
inadequate for mountainous regions with large spatial gradients from both a the-
oretical and practical standpoint. In order to tackle this problem various meteoro-
logical models have been proposed, such as regression models with topographical
and atmospherical covariates (Basist et al. 1994, Daly et al. 1994, Wotling et al.
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2000). These methods, however, rely heavily on observational coverage and can
fail to provide good estimates of precipitation in the absence of a dense network of
observational sites. To address these issues, Smith and Barstad (2004) proposed
a quasi-analytic linear orographic method to simulate precipitation over a spatial
domain that takes into account the effects of topography as well as atmospheric
information on orographic precipitation. Furthermore, Crochet et al. (2007) have
adopted the method to precipitation in Iceland. The resulting model simulates
daily precipitation on a 1 km by 1 km regular grid across Iceland over the years
1958-2002. Crochet et al. (2007) showed that this model is well suited to give
insight into the observed spatial mean behavior of precipitation.

2.4.2 Statistical models for extreme precipitation
In recent years, several statistical methods capable of better quantifying the prob-
ability of extreme events have grown in popularity in environmental sciences, see
for example Coles and Tawn (1996) and Sang and Gelfand (2009). The standard
likelihood based approach in the literature is modeling extreme events with the
generalized extreme value (g.e.v.) distribution16 , which has a cumulative density
function of the form

F (y) = exp

{
−
(

1 + ξ
(y−µ
σ

))−1/ξ}
(2.22)

if 1+ξ(x−µ)/σ > 0, F (y) = 0 otherwise. The parameters µ, σ and ξ serve as lo-
cation, scale and shape parameters, respectively. The shape parameter ξ governs
the tail behavior of the distribution. That is, if ξ > 0 the g.e.v. distribution has
a lower bound, such that the support is y > µ− σ/ξ, and belongs to the Fréchet
family of distributions. For the values ξ < 0 then the g.e.v. distribution has an
upper bound, with support y < µ − σ/ξ, and belongs to the negative Weibull
family of distributions. For the value ξ = 0, the expression in (2.22) is undefined.
In this case, the expression in (2.22) is replaced by the limiting distributional
form when ξ → 0, that is

F (y) = exp

{
− exp

(
−x− µ

σ

)}
,

which is the Gumbel type distribution, which in turn is defined for all y ∈ R.
Data on extreme precipitation in Iceland have been analyzed before using sta-

tistical methods, see Elíasson (1994). Spatial predictions of extreme precipitation
in Iceland were given in Eliasson et al. 2009 where precipitation simulations on
an 8 km by 8 km grid based on the PSU/NCAR Mesoscale Model MM5 were
used to predict annual extreme 24-hour precipitation with 5 years return period.
Two of the suggestions in Eliasson et al. (2009) were to check the assumptions of
the Gumbel distribution at the data level and to move to a finer grid

As previously discussed, the Bayesian hierarchical model offers a flexible prob-
abilistic framework for spatial modeling of physical phenomena and quantifying

16Alternative modeling approaches have been explored, such as the peaks over threshold
methods with the generalized Pareto distribution (Cooley et al. 2007).
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uncertainty of the latent physical processes; see for example in Berliner (1996),
Berliner (2003), and Tebaldi and Sansó (2009). Bayesian hierarchal modeling
is also well suited to leverage external information on physical phenomena into
the statistical model. For example, Cooley et al. (2007) demonstrated that co-
variates which assimilate available spatial information, such as the topography of
the domain and the underlying physical processes of precipitation, are reasonable
covariates for extreme precipitation.

As an example of Bayesian hierarchal modeling of extreme precipitation, Sang
and Gelfand (2009) implemented a Bayesian hierarchical model with a g.e.v. data
density function to model extreme rainfall for the Cape Floristic Region of South
Africa. Spatial autoregressive models17 were imposed on locations and scaling
parameters to model the spatial variability. Another comparable spatial modeling
is presented by Cooley and Sain (2010), where extreme precipitation simulated
by a regional climate model is characterized with a Bayesian hierarchical model,
where all the data density parameters are allowed to vary in space. However,
using autoregressive models to the spatial variation is only feasible if the data
are observed on a regular grid, which is rarely the case, and in particular, not
the case for observational sites in Iceland.

Alternative approaches to modeling extreme precipitation is, for example,
the peaks over threshold method with the generalized Pareto distribution as
presented in (Cooley et al. 2007). The advantage of that approach is that more
of the data can be incorporated into the modeling, depending on the choice of
threshold. Davison et al. (2012) give another alternative approach to modeling of
maximum precipitation, where a t-copula with g.e.v. marginals is utilized. The
method presents an appealing choice to model the probabilistic dependence of the
observations and for simulating spatial realizations of the extreme precipitation
for the next year or unobserved sites for an observed year.

Guttorp and Gneiting (2006) demonstrated that Gaussian fields with a Matérn
covariance function present a flexible and interpretable way of modeling underly-
ing physical processes of natural phenomena in a spatial setting. This approach
does not require the observational sites to be located an a regular grid. For exam-
ple, Hrafnkelsson et al. (2012) implemented a Bayesian hierarchical model with
a g.e.v. data density to model extreme temperatures in Iceland. Spatial models
based on Gaussian fields with a Matérn covariance function were imposed on
all of the parameters of the data density, to model the spatial variation of the
underlying processes. However, as discussed in Section 2.3 posterior inference
for Gaussian fields becomes increasingly computationally demanding as number
of observational points increase. As an example of this can be seen in Schliep
et al. (2010), where a spatial model with a GF and Matérn covariance structure
is found to be too computationally challenging for The North American Regional
Climate Change Assessment (NARCCAP) due to the high dimension of the un-
derlying GF over the domain of NARCCAP. Paper III addresses the problem
of high dimensional GFs by implementing SPDE spatial models.

17which are essentially GMRFs with a neighbor index sets defined on a regular grid
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3
Aim

The main goals and objectives of this research in this Ph.D. research project are
essentially twofold: Firstly, to propose a computationally efficient spatial model-
ing framework for maximum precipitation on a fine grid. Secondly, to develop a
computationally efficient and general inference scheme for latent Gaussian models
which is, in particular, applicable to computationally challenging spatial model-
ing problems. These objective are addressed in the three papers presented in
this thesis. The following summarizes the novel contributions presented in each
paper.

Paper I: The main objective of the discussion in Paper I is to demonstrate
that LGMs present a flexible modeling class for various statistical prob-
lems. That is, the authors establish that LGMs can be viewed as a specific
extension of structured additive regression models Fahrmeir et al. (1994),
in the sense that, the data density function of each data point can depend
on more than a single linear link function of the latent parameters through
more than just the mean structure of the data density.

Paper II: The aim of the research presented in Paper II is to develop a novel
computationally efficient MCMC sampling scheme for LGMs. The authors
refer to the sampling scheme as the MCMC split sampler. The proposed
sampling is designed to be naturally applicable to LGMs with latent models
imposed on more than just the mean structure of the data density function;
designed for any choice of a parametric data density function; and designed
to scale well in terms of computational efficiency when the dimension of the
latent model increase.

In the paper a theoretical basis is established for the development of MCMC
split sampler, along with necessary proofs. Furthermore, two examples are
given where the MCMC split sampler is used as an inferential algorithm for
LGMs. Both the examples demonstrate that the MCMC split sampler is
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computationally efficient in terms good mixing properties of the posterior
samples, and it scales well as the dimensions of the latent fields increase.

Paper III: The main goal in Paper III is to propose a computationally effi-
cient spatial model for annual maximum 24-h precipitation on a fine grid.
To achieve this goal, the two following novel contributions were are pro-
posed.

First, a the method is proposed which leverages information on the phys-
ical processes of precipitation from a local meteorological model, in order
to yield additional spatial information on maximum precipitation. The
proposed method is extendable to any regions in the world where local
meteorological models are available.

Secondly, a LGM is constructed with a data density based on the g.e.v.
distribution, where the spatial variation of the underlying physical pro-
cesses of extreme precipitation is modeled with the SPDE approach. To
that extend, SPDE spatial models are imposed on the location, scale and
shape parameters of the g.e.v. distribution. Although LGMs with a GMRF
structure have been proposed to model extreme precipitation, LGMs with
spatial models based on the SPDE approach have not been proposed in the
literature on spatial extreme precipitation before. The proposed modeling
strategy is general in the sense that it is extendable to any spatial domain
of interest. The proposed LGM is applied to data on annual maximum
24-hour precipitation in Iceland.



4
Proposed statistical

methodology

In this chapter, an overview of the proposed statistical methodology developed
in this thesis is given. The discussion in this chapter cycles through the proposed
statistical methodology developed and implemented in the thesis and is in ac-
cordance with the objectives outlined in Chapter 3, with appropriate references
to the three papers. Additional discussion and motivation to the material in the
three papers is also given when relevant.

4.1 Towards applicable, flexible and interpretable
statistical modeling

In Paper I, the authors participate in a research discussion where they share
their view on how modern statistical analysis of involved problems should be
thought of and practiced. The authors’ stance towards a general approach to
statistical analysis in practice can be summarized in the following three steps.

1. Design a sensible statistical model for a specific problem. This can be
accomplished through the probabilistic framework offered by Bayesian sta-
tistical modeling, as discussed in Section 2.1.

2. Implement, or develop, a inferential algorithm which can provide the poste-
rior distribution of the proposed model. Section 2.2 offers a brief overview
of the building blocks for Bayesian inferential algorithms.

3. Based on samples from the posterior distribution obtained by applying
the inferential algorithm, compute quantities of interest such as posterior
means, posterior intervals and posterior quantiles.

33
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In the authors’ view, “modeling” and “inferential algorithms” should be considered
as two separate but not entirely unrelated entities. That is, in some sense, as two
opposite sides of the same coin. As such, the design of a sensible statistical model
for a specific problem should, in an ideal situation, be accomplished without the
concern for the availability of fast inferential algorithms for it1. Once a model
has been proposed and put forth, then a suitable inferential algorithm should be
implemented if available, or developed if not available2.

In the design of a sensible statistical model the focus should, from the authors’
perspective, be on statistical modeling as opposed to regression modeling. In order
to clarify the authors’ viewpoint, consider a Gaussian response with one covariate
z, where the following statistical model is imposed

yi | . . . ∼ N (β0 + β1zi, σ
2).

This statistical model does in fact encompass a linear mean “regression” model
of the type

yi = β0 + β1zi + εi, where εi ∼ N (0, σ2),

but that is due to the fact that the mean structure is a natural parameter in the
Gaussian distribution. Further, consider a regression model that “goes beyond
mean regression”. For example, using the same covariate z, a regression model
that regresses both the mean and the log variance parameter on the data y. This
general regression modeling3 can also be achieved through the use of the following
probabilistic model

yi | . . . ∼ N (β0 + β1zi, exp(b0 + b1zi)).

To allow for more flexibility the linear dependence on the covariate z may be
relaxed

yi | . . . ∼ N (f(zi), exp(g(zi))),

where, f(·) and g(·) are two “smooth” unknown functions of the covariate z,
typically some finite-dimensional GF representations. Assuming a Bayesian in-
ferential algorithm is available, or can be developed, inference for any quantities
of interest can be extracted from the posterior distribution alone. From the au-
thors’ point of view, this way of thinking about statistical analysis moves the
focus from regression modeling towards statistical modeling.

With this discussion in mind, the question remains whether a common, flex-
ible and interpretable class of Bayesian models exists for which computationally
efficient and fast inferential algorithms are available or can be developed? To
that end, the class of latent Gaussian models (LGMs), introduced in Section
2.1.2, potentially provides such a statistical framework. LGMs serve as a flexible
and interpretable model class which stems from the mathematical properties of

1The authors’ recognize that this is not always the case, and from a practical point of view
the authors further agree on that “A man’s got to do what a man’s got to do”.

2Which is exactly the story in this thesis and how the MCMC split sampler came into being.
3This class of regression models is called “Generalized Additive Models for Location, Scale

and Shape”, abbreviated with GAMLSS, see Rigby and Stasinopoulos (2005) for further details.
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the Gaussian distribution. While this property of LGMs is true in general for var-
ious statistical modeling problems, this is particularly useful in spatial statistics
as discussed in Section 2.3.2, Section 2.3.3 and Section 2.3.4.

To add a viewpoint to the previous discussion on the flexibility of LGMs,
consider several linear predictors, say one for each natural parameter of a given
data density with k parameters, that is

η(1), . . . ,η(k).

In the LGM framework, the joint prior distribution of (η(1), . . . ,η(k)) conditioned
on any potential hyperparameters θ is Gaussian. Assuming the observations in
y are conditionally independent over i, and depended on all the linear predictors
in some form, the following statistical model can be constructed

yi | . . . ∼ π(yi | η(1)i , . . . , η
(k)
i ). (4.1)

The model is completed with a prior density on the non-Gaussian components
in the vector θ, denoted by π(θ). This model formulation is further generalized
in the hierarchical form given below, which is an alternative yet an equivalent
expression of the formulation in Section 2.1.2. The authors refer to the following
LGM setup as the extended LGM framework4, when the need for such clarity is
necessary.

Stage 1: The observations y depend on the latent field x and potential hyper-
parameters θ, through

yi | x,θ ∼ π(yi | {xj : j ∈ Ii},θ)

for some set Ii.

Stage 2 The latent field x is Gaussian with hyperparameters θ,

x | θ ∼ N
(
µ(θ),Q(θ)−1

)
Stage 3 The hyperparameters are given a prior density π(θ).

To emphasize, in the extended LGM framework the linear predictors η(1), . . . ,η(k)

can be associated with any parameters of the data density, not only the location
parameter. In this thesis, this property of the extended LGM framework is often
phrased as “imposing latent models on more than just the mean structure of the
data density”.

From an inferential perspective, the mathematical structure of LGMs is well
suited for the development of efficient inferential algorithms. Of particular notice
is the integrated nested Laplace approximation (INLA) proposed by Rue et al.
(2009). INLA is an inferential algorithm which performs approximate Bayesian
inference on a subclass of LGMs, through use of deterministic nested Laplace
approximations. INLA has been shown to give fast and accurate estimates of

4This is referred to as “LGM-2.0" in Paper I
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posterior marginals, and has also been shown to be a valuable tool in practice
via the R-package R-INLA; see web-site www.r-inla.org for available software.
However, R-INLA only provides support for LGMs in which the data density
of each data point only depends on a single linear predictor ηi of the latent
parameters, where ηi is limited to the location parameter, such that

yi | . . . ∼ π(yi | ηi).

In Paper II a computationally efficient simulation based inferential algorithm
is proposed that is designed, in particular, to be applicable to statistical models
from the extended LGM framework.

The concept of LGMs has proven to be very successful for doing Bayesian
inference, and a wealth of models may be presented as LGMs, which in turn are
amenable to the Bayesian inference approaches developed specifically for LGMs;
see Martins et al. (2013b) for various applications and further references.

4.1.1 A demonstration of an extended LGM setup

Within the extended LGM framework, latent models can be imposed on any
parameter of a given data density function. In Paper II, a demonstration of
such an LGM setup is given as a motivational example. In this section, this
demonstration is given to highlight how LGMs can be expressed in order to allow
latent models to enter more than just the mean structure of a given data density.

Consider, without loss of generality, a data density function π(y | µ, τ ) where
µ and τ are vectors of location and log-scale parameters, respectively. Next,
impose latent Gaussian models on both µ and τ , for example, the following
additive model structure

µ = Xµβµ +Aµuµ + εµ and τ = Xτβτ +Aτuτ + ετ , (4.2)

where Xµ and Xτ are fixed design matrices; βµ and βτ are the corresponding
weights; Aµ and Aτ are fixed matrices5; uµ and uτ are structured random
effects; and εµ and ετ are unstructured random effects which serve as model
errors terms6.

Working within the LGM framework, assign the following Gaussian prior
density functions to the latent model parameters

π(βµ) = N (βµ | µβµ,Q
−1
βµ), π(βτ ) = N (βτ | µβτ ,Q

−1
βτ )

π(uµ) = N (uµ | µuµ,Q
−1
uµ), π(uτ ) = N (uτ | µuτ ,Q

−1
uτ )

π(εµ) = N (εµ | 0,Q−1εµ ), π(ετ ) = N (ετ | 0,Q−1ετ ) (4.3)

5For example, spline matrices or projection matrices.
6Adding the unstructured random effects is reasonable in many cases from a statistical

modeling point of view as they serve as error terms for the latent model. Small variances can
be imposed a priori on the unstructured random effects εµ and ετ if they are not desired in
the model. See Paper II for further discussion.
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where the parameters of the prior density functions can potentially depend on a
set of hyperparameters θ, and Q−1εµ and Q−1ετ are diagonal matrices.

The latent model structure in equation (4.2) and the prior distributions given
by the equations in (4.3) can be written in an equivalent joint matrix form, which
is arguably more convenient to work with from a mathematical standpoint7.
Thus, define the following vectors and matrices

η =
(
µT, τT

)T
, ν =

(
βT
µ,u

T
µ,β

T
τ ,u

T
τ

)T
, ε =

(
εTµ, ε

T
τ

)T
and

Z =

(
Xµ Aµ · ·
· · Xτ Aτ

)
, Qε =

(
Qεµ ·
· Qετ

)
.

Next, group the following parameters and matrices together and define

µν =


µβµ
µuµ
µβτ
µuτ

 , Qν =


Qµβ · · ·
· Quµ · ·
· · Qτβ ·
· · · Quτ


where the dotted entries denote zero entries. The additive model structure im-
plied by (4.2) for both the location and log-scale parameter can then be jointly
expressed in the following equivalent matrix form

η = Zν + ε, (4.4)

and the Gaussian prior assumptions in (4.3) can be jointly expressed in following
equivalent joint distributional form

π (η | ν) = N
(
η | Zν,Q−1ε

)
, (4.5)

π (ν) = N
(
ν | µν ,Q

−1
ν

)
.

As the data density function and the corresponding parameters are arbitrarily
chosen, analogous model setup can be carried out for any parametric data density
function and any of its parameters. For example, in addition to imposing latent
Gaussian models on the location and log-scale parameters of the g.e.v. distri-
bution, a latent Gaussian model can also be imposed on the shape parameter,
see both Paper II and Paper III for such model setups. Therefore, equations
(4.4) and (4.5) are general in the sense that most of LGMs used in practice can
be expressed in the same form. The model setup implied by equations (4.4) and
(4.5) is therefore adopted as a general setup for the latent model structures for
LGM in this thesis.

To see how the LGMs setup implied by (4.4) and (4.5) relates to the general
LGM setup in Section 2.1.2, consider the following. Assume the vector ν depends

7In fact, this joint matrix form will become essential for exploring some of the mathematical
properties offered by the extended LGM framework. This is explored in great details in Paper
II in the derivation of the MCMC split sampler.
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on a vector of hyperparameters θ. By using the Gaussian prior assumptions in
(4.5), it can be shown that the joint distribution of η,ν|θ, becomes

π

((
η
ν

)∣∣∣∣θ) = N

((
η
ν

)∣∣∣∣ (Zµνµν

)
,

(
Qε −QεZ

−ZTQε Qν +ZTQεZ

)−1)
(4.6)

see Appendix II.B in Paper II for proof. As the vector x = (ηT,νT)T is Gaus-
sian, which follows immediately from (4.6), it can be viewed as the latent param-
eter x in the general LGM setup in Section 2.1.2.

4.2 The MCMC split sampler

As discussed in Section 4.1 and in Paper I, the extended LGM framework is
a flexible modeling class for various statistical applications. However, LGMs
become increasingly more computationally challenging to infer in practice when
latent models are desired for more than just the mean structure of the data
density function; when the number of parameters associated with the latent model
increase; or when the data density function is non-Gaussian.

One of the main goals of this thesis is to propose a novel computationally
efficient sampling based inference scheme for LGMs that addresses the aforemen-
tioned computational issues, which is the main research objective of Paper II.
The proposed sampling scheme in Paper II is an MCMC strategy which is re-
ferred to as the MCMC split sampler in this thesis. The MCMC split sampler
is designed to handle LGMs where latent models are imposed on more than just
the mean structure of the data density; to scale well in terms of computational
efficiency when the dimensions of the latent models increase; and to be applicable
for any choice of a parametric data density function. The main novelty of the
MCMC split sampler lies in how the model parameters of a LGM are split into
two blocks, such that one of the blocks exploits the latent Gaussian structure in a
natural way and becomes invariant of the data density function. A brief overview
of the MCMC split sampler is given in this section.

4.2.1 The block design

The MCMC split sampler is a two block Gibbs sampling scheme, which is designed
to exploit the model structure of LGMs. The principle idea behind the MCMC
split sampler is to split the latent Gaussian parameters x into two vectors, such
that x = (ηT,νT)T, where η consists of elements that appear in the data density
function and ν consists of elements that do not appear in it. Thus, the data y
become conditionally independent of the parameters ν and θ conditioned on the
parameter η, that is,

π(y | x,θ) = π(y | η). (4.7)

In the LGM setup implied by equations (4.4) and (4.5), which is hereby adopted
as the setup for the extended LGM framework in this thesis, both η and ν are
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designed such that the equality in equation (4.7) holds8. The parameters η and
ν are referred to as the data-rich and data-poor components of the latent field,
respectively, in this thesis.

The block sampling scheme of the MCMC split sampler consists of grouping
the model parameters η, ν and θ into two blocks. That is, η is placed in a
block referred to as the data-rich block in this thesis, while both ν and the
hyperparameters θ are placed in another block referred to as the data-poor block.
A Gibbs sampling strategy is then implemented for each block, conditioned on
the other block. That is, the (k+1)-th MCMC sample from the posterior density
π(η,ν,θ | y) is obtained by using the following two block Gibbs sampling scheme

Data-rich block: sample ηk+1 from π(η | y,νk,θk)

Data-poor block: sample (νk+1,θk+1) jointly from π(ν,θ | y,ηk+1)

To elaborate on the potential computational efficiency gain offered by this
blocking scheme, consider the following. In many practical applications of LGMs
with a non-Gaussian data density function, especially in spatial statistics, the
data-rich component of the latent field η is of relatively low dimension compared
to the dimension of the data-poor component of the latent field ν. However,
due to the non-Gaussianity of the data density function, the conditional pos-
terior density π(η | y,ν,θ) in the data-rich block can become computationally
challenging in posterior simulations. By design, the data-rich block contains a
minimum number of parameters which are needed for the evaluation of the po-
tentially computationally demanding conditional posterior density π(η | y,ν,θ).
In other words, the dimensions of the potentially computationally demanding
data-rich block is designed to be as low as possible.

An additional key part of the design is the following. Due to the splitting of
the latent field expressed in equation (4.7) the parameters (ν,θ) in the data-poor
block become conditionally independent of y conditioned on the vector η from
the data-rich block, that is,

π(ν,θ | y,η) = π(ν,θ | η).

In other words, the form of the conditional posterior π(ν,θ | y,η) becomes
invariant of the data density function. The resulting conditional posterior density
function in the data-poor block is thus proportional to

π(ν,θ | y,η) ∝ π(θ)π(ν|η,θ). (4.8)

Furthermore, the conditional posterior density of ν conditioned on the parameter
vector η and the hyperparameters θ becomes Gaussian and is independent of the
data y, that is,

π(ν | y,η,θ) = π(ν | η,θ)

= N
(
ν
∣∣∣Q−1ν|η (Qνµν +ZTQεη

)
,Q−1ν|η

)
(4.9)

8To give a demonstration, in the context of the example setup in Section 4.1.1, the latent
parameter x is then split into x = (η,ν) with η =

(
µT, τT

)T and ν =
(
βT
µ,u

T
µ,β

T
τ ,u

T
τ

)T.
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whereQν|η = Qν+ZTQεZ. See Appendix II.B inPaper II for proof. Due to the
Gaussianity offered by equation (4.9), it is possible to obtain exact samples from
π(ν|η,θ) in every MCMC iterations. Consequentially, the proposed sampling
scheme scales well, in terms of computational efficiency, when the dimension of
ν increases.

The MCMC split sampler is designed such that, in principle, any efficient
MCMC sampler can be implemented for each block. In this thesis, computa-
tionally efficient sampling strategies tailored to the particular conditional model
structure of each block are proposed. These strategies are described in the sub-
sequent sections.

4.2.2 Data-rich block
The conditional posterior density π(η | y,ν,θ) in the data-rich block is often
only known up to a constant. Thus, a Metropolis–Hastings algorithm with an
independence proposal density9 is proposed for the data-rich block. An efficient
proposal density is constructed in this section by approximating the conditional
posterior density π(η | y,ν,θ) with a Gaussian approximation evaluated at the
mode of conditional posterior density π(η | y,ν,θ), denoted with η0. It can be
shown that the Gaussian approximation of the conditional posterior becomes

π̃(η | y,ν,θ) = N
(
η | η0, (Qε −H)−1

)
(4.10)

where H = ∇2 log π(η | y,ν,θ). Due to the potentially low dimension of the
data-rich block, the calculation of the Gaussian approximation in equation (4.10)
can be reasonably fast within every MCMC iteration.

Once a new η∗ is proposed in the (k + 1)-th iteration of the MCMC chain
with the independence proposal density q(η∗) = π̃(η∗ | y,νk,θk), it is accepted
with the following acceptance probability

α = min

{
1,
π(η∗ | y,ν,θ)

π(ηk | y,ν,θ)
· q(η

k)

q(η∗)

}
. (4.11)

The logarithm of the acceptance ratio given in (4.11) can be simplified to

r =f(η∗)−
(

1

2
(η∗)TH + bT

)
η∗ − f(ηk) +

(
1

2
(ηk)TH + bT

)
ηk (4.12)

where b = ∇f(η0) − Hη0, see Appendix II.B in Paper II. As the gradient
∇f(η0) and Hessian H have already been calculated to obtain (4.10), the ex-
pression in (4.11) can be computed with low computational cost in every iteration
of the MCMC chain.

In many applications conditional independence assumptions are imposed on
the data density function. That is, there exists a partition of η into subvectors
ηi, such that

π(y | η) =
∏
i

πi(yi | ηi).

9That is, in the (k + 1)-th iteration the proposal density is invariant of ηk, such that
q(η∗ | ηk) = q(η∗).
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In some cases, a proposal density based on the Gaussian approximation in (4.10)
can be a poor approximation of the conditional posterior density in some partition
of η. Updating the whole vector η in one block may then result in the MCMC
chain getting stuck, thus leading to lower computational efficiency. In order to
circumvent this issue and to retain the computational speed gained by using the
Gaussian approximation in (4.10) as a proposal density, a modification can be
made to the sampling scheme which utilizes the conditional independence of the
partitions within the data-rich block. The details on the modification can be seen
in Appendix II.A in Paper II.

The proposed sampling scheme for the data-poor block is outlined in Algo-
rithm 3 in Paper II. Note that by choosing I = 1 in Algorithm 3, the above
sampling scheme without the conditional independence assumptions on the like-
lihood is obtained, while selecting I ≥ 2 in Algorithm 3 assumes the aforemen-
tioned partitioning of η and that each ηi is accepted or rejected separately.

4.2.3 Data-poor block

The relation in (4.8) and the Gaussianity of the conditional posterior density
π(ν|η,θ) in (4.9) demonstrate that the one-block updating scheme of Knorr-Held
and Rue (2002), discussed in Section 2.2.6, is applicable within the data-poor
block with some modifications10. As discussed in Section 2.2.6, the one-block
updating scheme is known to outperform most modern sampling algorithms in
terms of efficiency when applicable. Therefore, the following modified version of
the one-block updating scheme, adapted for the data-poor block of the MCMC
split sampler, is proposed.

For some proposal density q(θ∗|θk) for the hyperparameters θ, a new proposed
value (ν∗,θ∗) is generated jointly as follows:

θ∗ ∼ q(θ∗ | θk) (4.13)

ν∗ ∼ π(ν∗|ηk+1,θ∗).

Denote the proposal density implied by (4.13) with q(ν∗,θ∗|νk,θk). The pro-
posed value (ν∗,θ∗) is then accepted jointly with acceptance probability

α = min

{
1,
π(ν∗,θ∗ | y,ηk+1)

π(νk,θk | y,ηk+1)

q(νk,θk | ν∗,θ∗)
q(ν∗,θ∗ | νk,θk)

}
. (4.14)

It can be shown, see Paper II, that the acceptance ratio in (4.14) can be sim-
plified to

π(ν∗,θ∗ | y,ηk+1)

π(νk,θk | y,ηk+1)

q(νk,θk | ν∗,θ∗)
q(ν∗,θ∗ | νk,θk)

=
π(θ∗ | ηk+1)

π(θk | ηk+1)

q(θk | θ∗)
q(θ∗ | θk)

(4.15)

10The author would like to add that this fact is the original motivation of the MCMC split
sampler. That is, to find a subset of the model parameter space for which the one-block sampling
scheme is applicable.
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The relation in (4.15) shows that the acceptance ratio is only dependent on the
acceptance ratio for θ. Further, since the conditional posterior π(ν | η,θ) is a
known Gaussian the proposed sampling strategy scales well in terms of computa-
tional efficiency as the dimensions of the data-poor component of the latent field,
that is ν, increases.

If the Gaussian models in the prior assumptions (4.5) are GMRF density
functions with a sparse precision structure, the ratio in (4.15) is computationally
costly to calculate directly, since π(θ | η) ∝ π(θ)π(η | θ) and π(η | θ) does not
necessarily preserve the sparse GMRF structure. However, as the ratio in (4.15)
is only dependent on the acceptance ratio for θ it can be shown that the ratio in
(4.15) can be rewritten in order to preserve the sparse GMRF precision structure.
That is, in Paper II it is shown that the term π(θ∗ | ηk+1)

/
π(θk | ηk+1) in

equation (4.15) equates to

π(θ∗ | ηk+1)

π(θk | ηk+1)
=
π(θ∗)

π(θk)
· π(ηk+1 | 0,θ∗)π(0 | θ∗)

π(0 | ηk+1,θ∗)
· π(0 | ηk+1,θk)

π(ηk+1 | 0,θk)π(0 | θk)
(4.16)

where ν is set as the 0 vector for computational reasons and as the ratio in (4.16)
is independent of ν, see Theorem II.5 in Paper Paper II for further details. By
Theorem 4 in Section 2.3.3, all of the conditional posterior density function on
the right hand side of equation (4.16) are GMRF density function with a sparse
precision structure, which is discussed in Section 2.3.3. Additionally, Theorem
II.5 in Paper II shows the form of the conditional posterior densities on the
right hand side in (4.16) on a logarithmic scale.

The results in (4.15) and (4.16) show how the ratio in (4.14) can be calculated
with low computational cost. This is a key result for the implementation of
the proposed sampling scheme in the data-poor block for GMRFs with sparse
precision structures. The algorithm for the sampling scheme in the data-poor
block is summarized in Algorithm 4 in Paper II.

4.2.4 Examples
Two examples are presented in Section II.3 in Paper II, where the MCMC split
sampler is applied as an inferential algorithm to two different LGMs with differ-
ent model structures. In the former example, a data set on annual precipitation
in Iceland is analyzed. The latter example is on simulated extreme flood events.
To emphasize, the aim of the examples in Paper II is to present some of the
possibilities offered by the MCMC split sampler as an flexible and efficient in-
ferential algorithm, rather than to claim which model is the best for each data
set. The main purpose of the first example, see Section II.3.1 in Paper II, is
to demonstrate that the MCMC split sampler is well suited to infer LGMs with
spatial models imposed on both location and scale parameters of the data den-
sity function. Furthermore, the goal is to demonstrate that the computational
efficiency of the MCMC split sampler scales well as the dimension of the spatial
model, which belongs to the data-poor component of the latent field, increases.
The main goal of the latter example, see Section II.3.2 in Paper II, is to show
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that the MCMC split sampler is well suited to infer LGMs with a non-Gaussian,
three parameter data density function, where all the three parameters of the data
density are modeled with latent Gaussian models.

4.3 Spatial modeling of extreme precipitation on
a fine grid

One of the main goals in this research project, outlined in Chapter 3, is to present
a flexible modeling framework for statistical spatial analysis of extreme precip-
itation. As previously discussed in Section 2.4, there is a need for a statistical
approach for modeling observed extreme precipitation as meteorological models
for precipitation tend to underestimate observed extreme precipitation. An ex-
ample of this underestimation is given in Section 4.3.2, where observations on
24-hour extreme precipitation in Iceland are compared to the simulated values
of 24-hour extreme precipitation based on the model of (Crochet et al. 2007).
Furthermore, the information on the distributional properties of extreme pre-
cipitation is needed at a fine spatial resolution as the characteristics of extreme
precipitation events can be local, especially in regions with heterogeneous topog-
raphy.

The research goal of Paper III is thus to develop a statistical methodology to
model the distributional properties of extreme precipitation on a fine grid. The
statistical model in Paper III, is developed by using the statistical modeling
methodology introduced in the previous sections of this thesis. To elaborate on
this point, the modeling approach in Paper III is line with the authors’ stance
towards statistical modeling presented in Section 4.1. That is, an LGM with a
g.e.v data density, discussed in Section 2.4.2, is constructed where latent models
are imposed on the location, scale and shape parameter, as discussed in Section
4.1.1. Furthermore, the underlying spatial variation is modeled with a GF with
a Matérn covariance function which is approximated with a finite dimensional
GMRF representation constructed with the SPDE approach11, as presented in
Section 2.3. Finally, the MCMC split sampler is used as an inferential algorithm,
which was introduced in Section 4.2. The proposed modeling strategy is general
in the sense that it is extendable to any spatial domain of interest.

Furthermore, the aim of the research is also to provide information about the
characteristics of extreme precipitation at a fine spatial resolution, in particular,
where limited spatial information is available due to a relatively sparse network of
observational sites. To address the sparsity of the observational sites, a method
is proposed in Paper III that leverages information from an external local me-
teorological model that provides spatial information on mean precipitation on a
fine grid. The leveraged information is thus based on scientific knowledge on the
physical processes of precipitation and not directly on observations on extreme
precipitation. This is a novel extension of the concept presented in Benestad et al.

11Although LGMs with a GMRF structure have been proposed to model extreme precipitation
(Schliep et al. 2010, Cooley and Sain 2010), LGMs with spatial models based on the SPDE
approach have not been proposed in the literature on spatial extreme precipitation before.
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(2012), which states that observed mean precipitation provides information on
observed extreme precipitation. To demonstrate the use of the proposed method
for a particular region, which is Iceland in the analysis in this thesis, information
is extracted from a meteorological model proposed by Smith and Barstad (2004)
which Crochet et al. (2007) adapted to a 1 km by 1 km grid over Iceland. The
proposed method is extendable to any regions in the world where outputs from
a local meteorological models are available

4.3.1 The data and visual inspection

The observed data on precipitation were provided by the Icelandic Meteorolog-
ical Office (IMO). The data set contains observations on accumulated 24-hour
annual maximum precipitation from 40 observational sites in Iceland over the
years 1958 to 2006, as seen in (Crochet et al. 2007). The locations of the obser-
vational sites can be seen in Figure 4.1. The observations have been corrected
according to a dynamic correction method proposed by Førland and Hanssen-
Bauer (2000), which Crochet et al. (2007) adapted to the Icelandic data set. The
correction method accounts for trace; wetting and evaporation losses; and for the
catch deficiencies due to aerodynamic effects and is applied to daily precipitation
observations from every observational site.

Time series from four observational sites, Reykjavík, Æðey, Akureyri, and
Kvísker, can be seen in Figure III.2 in Paper III. Reykjavík and Akureyri were
chosen because they are the most populated areas in Iceland. Æðey was chosen
due to its geological position. Finally, Kvísker was chosen as it has the highest
observed precipitation. Furthermore, the geographical locations of the observa-
tional sites in Reykjavík, Æðey, Akureyri, and Kvísker can also be seen in Paper
III.

Boxplots of the observed 24-hour annual maximum precipitation is given in
Figure 4.2 for all of the observational sites. The observational sites are placed on
the x-axis as follows. The leftmost site on the x-axis is in Reykjavík. The rest of
sites are placed on the x-axis corresponding to a clockwise labeling across the sites
shown in Figure 4.2. For further clarification of the arrangement, corresponding
observational sites in Figure 4.1 and Figure 4.2 share the same color labeling.
Visual inspection of the boxplots in Figure 4.2 reveals that observational sites
which are located close together in space exhibit similar observed distributional
properties. That is, both the observed sample median and interquartile range
of the 24-hour annual maximum precipitation, show evidence of spatial depen-
dence between neighboring observational site. This observational fact is used as
a motivation for the spatial statistical modeling presented in Section 4.3.4.

4.3.2 The meteorological model

The meteorological model which is used in this thesis to leverage spatial in-
formation on precipitation, is based on a linear orographic precipitation model
proposed by Smith and Barstad (2004). Crochet et al. (2007) have adapted the
method to precipitation in Iceland. The model is driven by coarse resolution
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Figure 4.1: The figure shows the locations of the observational sites in Iceland.
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Figure 4.2: The figure shows boxplots of observed 24-hour annual maximum precipi-
tation at every observational site.
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precipitation, wind and temperature data obtained from re-analyses (1958-2001)
(ERA-40) (Uppala et al. 2005) and analyses made by the European Center for
Medium Range Weather Forecast (2002-2004). The model takes into account the
topography of the spatial domain; airflow dynamics; condensed water advection;
and downslope evaporation. This means that outputs from the model contain
information about the underlying physical processes of precipitation.

The meteorological model of Crochet et al. (2007), hereby referred to as the
meteorological model, is a physical model mainly driven by the scientific knowl-
edge on the physical processes of precipitation. However, the meteorological
model has three free parameters that need to be calibrated. The calibration
made by Crochet et al. (2007) is mainly based on an extensive data set on glacier
mass balance observations in Iceland at the glaciers Vatnajökull, Hofsjökull and
Langjökull (Sigurdsson et al. 2004). The data on glacier mass balance are not
used in the statistical modeling of annual maximal precipitation proposed in this
thesis, but are only used to calibrate the three free parameters of the meteoro-
logical model. Furthermore, Crochet et al. (2007) also used daily observations of
precipitation over the period 1995-2000 as complementary source of information
for the calibration of the free parameters. The resulting model simulates daily
precipitation on a 1 km by 1 km regular grid, of the size 521 km×361 km, across
Iceland for the years 1958-2002.

Although the meteorological model has been shown to adequately capture
the observed mean behavior of precipitation across all observational sites, see
the Crochet et al. (2007) for results, the model tends to underestimate extreme
precipitation, in particular, 24-hour annual maximum precipitation. The under-
estimation between the observational sites ranges from being relatively minor
to significantly large. As a demonstration of this underestimation, Figure 4.3
shows the empirical cumulative distributions of both the simulated maximum
precipitation based on the meteorological model, and of the observed maximum
precipitation at the same locations. The comparison is made for the observational
sites at Reykjavík, Æðey, Akureyri and Kvísker. Figure 4.3 demonstrates that the
meteorological model yields moderate underestimates of maximum precipitation
in Reykjavík and Akureyri. However, Figure 4.3 shows significant discrepancies
between the model values and the observed values at both Æðey and Kvísker.
As Kvísker is known to have the highest observed maximum precipitation in Ice-
land, see for example the boxplot of the observations in Figure 4.2, it becomes
of particular interest for the statistical modeling of maximum precipitation in
Iceland.

4.3.3 Leveraging spatial information on precipitation

Covariates which assimilate available spatial information, such as the topogra-
phy of the domain and the underlying physical processes of precipitation, have
been shown to be reasonable for statistical modeling of extreme precipitation,
see Cooley et al. (2007). By constructing covariates based on the outputs from
the meteorological model, the information about the above factors can be assim-
ilated. Moreover, Benestad et al. (2012) suggested that observed mean values
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Figure 4.3: The black dashed curves show the empirical cumulative distribution of the
simulated values annual maximum 24-hour precipitation based on the meteorological
model. The blue solid curves show the empirical cumulative distribution of the observed
annual maximum 24-hour precipitation at the corresponding observational sites.

of precipitation have high predictive power for maximum precipitation. As the
meteorological model has been shown to capture the observed mean behavior
of precipitation across all observational sites well, see Crochet et al. (2007), the
argument made in Benestad et al. (2012) can be extended to the outputs of
the meteorological model, assuming the outputs describe the mean behavior of
precipitation reasonably well in every regular grid point. As such, the authors
propose that calculated sample mean values based the outputs of the meteorolog-
ical model serve as reliable predictors for extreme precipitation at every regular
grid point. The sample means based on the meteorological model are referred to
hereafter as the meteorological covariates12. Furthermore, for notational conve-
nience let G denote the set of every regular grid point in the 1 km by 1 km grid
and let S denote the set of the observational sites.

To emphasize, the information stemming from the meteorological model is

12However, as observational sites are not necessarily at the regular grid points a spatial
smother was implemented in order construct the covariates at the observational sites. See
Section III.A.1 in Paper III for details on the implementation of the spatial smoother.
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primarily based on scientific knowledge on the physical process of precipitation.
Also note that the meteorological model of Crochet et al. (2007) used six years
worth of data on observed daily precipitation and observed monthly means, not
observed annual 24 hour maximum precipitation. The resulting constructed co-
variate is thus related to the observed mean of the time period. Based on the
argument made by Benestad et al. (2012) and the quality of the outputs from the
meteorological model in terms of mean precipitation, the constructed covariate
serves to describe the spatial variation of climate, in terms of precipitation, which
is then relevant for describing extreme precipitation.

4.3.4 Statistical model
The formulation of the proposed LGM for the statistical modeling annual maxi-
mum 24-hour precipitation is as follows.

The data level: As the observed data on annual maximum 24 hour precipi-
tation are based on extreme precipitation events, the generalized extreme value
distribution, discussed in Section 2.4.1, is implemented where the observations
are assumed to be conditionally independent. That is, let yit denote the annual
maximum 24 hour precipitation at station i at year t, with a cumulative density
function of the form

F (yit) = exp

{
−
(

1 + ξi

(
yit − µi
σi

))−1/ξi}
, i = 1, . . . , I, t = 1, . . . , T

if 1 + ξi(x− µi)/σi > 0, F (yit) = 0 otherwise. The parameters µi, σi and ξi are
location, scale and shape parameters; I is the number of observational sites; and
T is the number of years.

The latent level: The motivation for the proposed latent model for the lo-
cation parameter is as follows. The boxplots in Figure 4.2 demonstrate that
observed maximum precipitation at observational sites which are close together
in space exhibit similar observed distributional properties. In particular, this
observational fact yields evidence for spatially dependent medians of observed
maximum precipitation. Furthermore, preliminary statistical analysis revealed a
linear relationship between the ML estimates of the location parameter µ and the
meteorological covariate at the observational sites, see Figure III.4 in Paper II.

Therefore, the following model structure is implemented for the location pa-
rameter µ = (µ1, . . . , µI)

T at the latent level of the model,

µ = Xµβµ +ASuµ + εµ. (4.17)

The matrix Xµ in (4.17) is a design matrix consisting of a vector of ones and the
meteorological covariate, where βµ denotes the corresponding weights. Further-
more, uµ in (4.17) denotes a finite GMRF representation of a Gaussian field with
a Matérn covariance function, constructed with the SPDE approach in Theorem
5, on a triangulated mesh over the spatial domain, shown in Figure 4.4. The
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precision matrix of uµ given in Theorem 5, denoted with Quµ in the proposed
LGM, has two parameters, κuµ and ωuµ, which enter the proposed LGM as hy-
perparameters. The hyperparameter κuµ is inversely proportional to the range of
the Gaussian field corresponding to uµ and the hyperparameter ωuµ is related to
the marginal variance of the spatial effect uµ, see Appendix III.A.2 of Paper III
for details. The parameter α in Theorem 5 is chosen as one, which corresponds to
an almost once differentiable Gaussian field with a Matérn covariance function.
The matrix AS in (4.17) is a fixed projection matrix which describes the convex
linear interpolation of the finite GMRF representation located at the vertices of
the mesh onto the location of the observational sites. As each observational site
is located in the interior of only one triangle, the number of non-zero entries in
each row of AS is three and the sum of every row is one. The matrix product
ASuµ in (4.17) thus denotes the spatial effect at the observational sites, which
serves to captures the spatial variation in the data that is unexplained by the
meteorological covariate. Finally, the parameter εµ in (4.17), which serves as a
model error term, is an unstructured random effect with a variance σ2

εµ. The
variance σ2

εµ enters the proposed LGM as a hyperparameter.

Figure 4.4: Triangulated mesh over Iceland.

Similar to the observed medians, the boxplots in Figure 4.2 show evidence for
spatially dependent scale structure of the observed maximum precipitation. Ad-
ditionally, the preliminary statistical analysis also revealed a linear relationship
between the ML estimates of the scale parameter σ and the meteorological covari-
ate on a logarithmic scale, see Figure III.4 in Paper III. Therefore, an analogous
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model structure was implemented for the scale parameter on a logarithmic scale.
That is, let τi = log σi and then model τ = (τ1, . . . , τI)

T as

τ = Xτβτ +ASuτ + ετ .

The design matrixXτ consists of a vector of ones and the meteorological covariate
on a logarithmic scale; uτ is a spatial random effect with the same SPDE structure
as uµ and has parameters κuτ and ωuτ ; and ετ is an unstructured random effect
with a variance σ2

ετ .
The boxplots in Figure 4.2 show that the right tail behavior of maximum

precipitation is similar between observational sites close together in space. Ad-
ditionally, the preliminary statistical analysis revealed that ML estimates for the
shape parameter ξ vary among the observational sites. This evidence might in-
dicate spatially dependent tail structure of maximum precipitation. However, no
evidence was seen for a linear relationship between the ML estimates of ξ and
the meteorological covariate or other available geological covariates ,see Figure
4.2 in Paper III. Thus, the following spatial model was implemented for the
shape parameter

ξ = Xξβξ +ASuξ + εξ

where Xξ is vector of ones; the weight βξ serves as an overall effect for the shape
parameter over the spatial domain; uξ is a spatial random effect that captures
the spatial deviation from the overall effect with the same SPDE structure as
uµ with parameters κuξ and ωuξ; and εξ is an unstructured random effect with
variance σ2

εξ.

Prior density functions: Working within the LGM setup, the following prior
density functions were assigned to parameters at the latent level of the proposed
model.

π(βµ) = N (βµ | 0, σ2
βµI), π(βτ ) = N (βτ | 0, σ2

βτI), π(βξ) = N (βξ | 0, σ2
βξ),

π(uµ) = N (uµ | 0,Q−1uµ), π(uτ ) = N (uτ | 0,Q−1uτ ), π(uξ) = N (uξ | 0,Q−1uξ )

π(εµ) = N (εµ | 0, σ2
εµI), π(ετ ) = N (ετ | 0, σ2

ετI), π(εξ) = N (εξ | 0, σ2
εξI)

The parameters βµ,βτ and βξ are assumed a priori to have a low precision on
their native scales in order to let the data play the dominate role in their inference.
Thus, the parameter values σβµ = 20, σβτ = 4 and σβξ = 2 were chosen for the
prior distributions.

The hyper level: Let θ denote all the hyperparameters of the model that are
not fixed, that is

θ = (κuµ, ωuµ, σεµ, κuτ , ωuτ , σετ , κuξ, ωuξ, σεξ). (4.18)

Lognormal prior distributions with fixed parameters were assigned to the hyper-
parmeters in θ. The selection of the prior distributions is further discussed in
Section III.3.2 and Appendix III.A.2 in Paper III.
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4.3.5 Model setup for the MCMC split sampler
In order to implement the MCMC split sampler as an inferential algorithm for
the proposed LGM in Section 4.3.4, the model parameters are first assigned
into the two block design of the MCMC split sampler. The data-rich com-
ponent of latent field, which is η = (µT, τT, ξT)T, is assigned into the data-
rich block. The data-poor component of the latent field, which consists of
ν = (βT

µ,u
T
µ,β

T
τ ,u

T
τ , β

T
ξ ,u

T
ξ )T, is are assigned to data-poor block along with

the hyperparameter vector θ, which is given in equation (4.18).
To adapt the formulation of the LGM in Section 4.3.4 to the model setup of

the MCMC split sampler, define the following sparse matrices

Z =

Xµ AS · · · ·
· · Xτ AS · ·
· · · · Xξ AS

 , Qε =

σ−2εµ I · ·
· σ−2ετ I ·
· · σ−2εξ I

 .

Furthermore let prior mean of ν, denoted with µν , be such that µν = 0T and

Qν =


κβµI · · · · ·
· Quµ · · · ·
· · κβτI · · ·
· · · Quτ · ·
· · · · κβξI ·
· · · · · Quτ

 .

The latent model of the LGM in Section 4.3.4 can thus be expressed equivalently
with equations (4.4) and (4.5), that is

η = Zν + ε,

with the prior densities written as

π (η | ν) = N
(
η | Zν,Q−1ε

)
,

π (ν) = N
(
ν | µν ,Q

−1
ν

)
.

For further details on the implementation of the MCMC split sampler to the
proposed model, see Appendix III.A.3 in Paper III.

4.3.6 Continuous spatial predictions
The SPDE approach discussed in Section 2.3.4 yields continuously indexed ap-
proximate solutions to the underlying GF, which is achieved through the use
of the piecewise linear basis functions in the finite element representation given
in (2.21). To briefly elaborate on how this property of the SPDE approach is
implemented for continuous spatial predictions in this analysis, assume that the
posterior distribution of the spatially varying model parameters of the proposed
LGM has been obtained. Note that, obtaining the posterior distribution of, for
example the spatially varying model parameter uµ, equates to obtaining the pos-
terior distribution of the Gaussian weights in equation (2.21) for the finite GMRF
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representation of the GF for the location parameter. By construction, every reg-
ular grid points in G belongs to the interior of only one triangle in the mesh.
Consequently, by using the piecewise linear basis functions in (2.21), MCMC
samples of the spatially varying model parameters at the regular grid point in
G can be obtained by a linear interpolation of the MCMC samples of the spa-
tially varying model parameters located at vertices of the surrounding triangle.
The linear interpolation of the k-th MCMC sample of the spatial varying model
parameters is thus calculated with

AGu
[k] = u

[k]
G , (4.19)

where the matrix AG describes the linear interpolation from the vertices of the
mesh onto the regular grid points in G; u[k] denotes the k-th posterior MCMC
sample of the spatial effects for the location, scale or shape parameters at the
vertices of the mesh; and u[k]

G denotes the k-th posterior MCMC sample of the
spatial effects at the regular grid points in G. The calculations in equation (4.19)
can be carried out in post calculations after the MCMC simulations.

Furthermore, as the meteorological covariates are available by construction
at every regular grid point in G, the above procedure can be implemented to
obtain MCMC samples of the location, scale, and shape parameters of the data
density at every grid point in G. Consequently, the posterior distribution of
every quantity of interest of the generalized extreme value can be evaluated at
every regular grid point in G. In particular, the posterior distribution of the p-th
quantile of the generalized extreme value distribution can be calculated at every
regular grid point G. See Section III.3.4 in Paper III for further details on the
corresponding computations.



5
Results

A concise overview of the main results of this Ph.D. research project is given in
this chapter, with appropriate references to the papers. Figures and tables are not
repeated from the papers, however, additional figures are shown to broaden the
overview of the results when relevant. The results in this chapter are divided into
two main categories. Firstly, in Section 5.1, the computational efficiency of the
MCMC split sampler is evaluated, based on result from MCMC simulations from
both Paper II and Paper III. Secondly, the results of the statistical analysis
of 24-hour annual maximum precipitation carried out in Paper III are briefly
summarized in Section 5.2.

5.1 MCMC split sampler: Evaluation of computa-
tional efficiency

The computational efficiency of the MCMC split sampler in practice is explored
in this section. This is achieved by applying the MCMC split sampler as an infer-
ential algorithm to three different LGMs. The quality of the resulting simulated
MCMC chains from each model is assessed by using the posterior diagnostics
tools introduced in Section 2.2.4. The first two models which are used for the
evaluation of the MCMC split sampler are presented and discussed in details in
Section II.3 in Paper II. The goal of presenting the first two models is to show
some of the possibilities offered by the MCMC split sampler rather than to claim
which model is the best for each data set. The third model in this section is the
proposed statistical model for 24-hour maximum precipitation, which is presented
in Section 4.3.4.

All of the following convergence diagnostics are based on four MCMC chains
sampled in parallel with the MCMC split sampler as a sampling scheme. Every
chain was simulated with 50000 iterations where 10000 iterations were burned in.
All calculations were carried out using R on a modern desktop (Ivy Bridge Intel
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Core i7-3770K, 16GB RAM and a solid state hard drive).

5.1.1 Annual mean precipitation in Iceland

In this example, a data set on annual mean precipitation in Iceland is modeled
with an LGM that has a SPDE spatial model structure at the latent level. The
data density is assumed Gaussian, where latent models are imposed both on the
mean and log-variance parameters of the data density. For detailed description
of the data and the model structure, see Section II.3.1 in Paper II. The main
purpose of this example is to demonstrate that the MCMC split sampler is well
suited to infer LGMs with spatial models on both location and log-variance pa-
rameters of the data density function, and that the computational efficiency of
the sampler scales well as the number of vertices in the mesh increases. To that
extend, the MCMC split sampler is applied as an inferential algorithm to three
versions of the proposed LGM, each with spatial model based on a different mesh
resolution. That is, a coarse resolution based on 411 mesh points; a medium
resolution based on 858 mesh points; and a dense resolution based 1752 mesh
points. In Figure II.3 in Paper II the three different meshes are presented on a
same scale. The top, middle and bottom panels in Figure II.3 show the coarse
resolution, medium resolution and dense resolution meshes, respectively

Gelman–Rubin plots, based on the MCMC simulations, of the the log-variance
parameter τ at Kvísker; the covariate coefficient βτ2; and the standard deviation
of the unstructured random effect σετ are shown in the first, second and third
column, respectively, in Figure 5.1. The results based on the coarse resolution,
medium resolution and dense resolution meshes for the aforementioned parame-
ters are shown in the first, second and third row, respectively, in Figure 5.1. A
comparison of the results in Figure 5.1 between the different mesh resolutions
reveals that the convergence of the Gelman–Rubin statistic is achieved for the
the three parameters at a similar rate. Furthermore, the Gelman–Rubin plots in
Figure 5.1 show that the sampler has converged in the mean after roughly 7500
iterations for all mesh resolutions. Similar results hold for the mean parameter µ
in Reykjavík; the covariate coefficient βµ2; and the marginal standard deviation
for the spatial field σuµ, see Figure II.4 in Paper II. Comparable results also
hold for all other model parameters (results not shown).

Autocorrelation plots for the same set of parameters and arranged identically
as in Figure 5.1 are shown in Figure 5.2. The results demonstrate that the MCMC
chains for the log-variance parameter τ in Kvísker and the covariate coefficient
βτ2 exhibit a negligible autocorrelation after lag 10. The MCMC samples of the
hyperparameter σετ show autocorrelation around 0.3 at lag 50. Furthermore,
the autocorrelation plots of µ in Reykjavík, βµ2 and σuµ given in Figure II.5 in
Paper II, reveal a similar behavior. Comparable results hold for all the other
model parameters (results not shown).

Additionally, trace plots and running mean plots for the same set of param-
eters which are arranged identically as in Figure 5.1 are shown in Figure 5.3
and Figure 5.4, respectively. Figure 5.3 shows that the MCMC chain of the pa-
rameters does not get stuck and mixes well for all resolutions. A comparison of
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the results in Figure 5.4 between the different mesh resolutions reveals that the
convergence in the mean is achieved for the three parameters at a similar rate.
Comparable results hold for all the other model parameters (results not shown).

Relying on the Gelman–Rubin statistics, the autocorrelation plots, the trace
plots and running mean plots, the MCMC chains exhibit all signs of having
converged. Moreover, the autocorrelation plots in Figure 5.2 reveal that the
autocorrelation in the MCMC chains does not increase with number of vertices
in the mesh, which in turn indicates that the autocorrelation in the MCMC
chains is invariant of the dimension of ν, that is, the data-poor part of the
latent field. These results demonstrate that the MCMC split sampler retains its
computational efficiency when the number of mesh points increases.

The runtime of this model was approximately 6, 6.5 and 7 hours for the coarse,
medium and dense mesh resolution, respectively. For further discussion on the
results see Section II.3 in Paper II.

5.1.2 Flood analysis

This example is based on a simulation study on extreme flood events in Iceland.
An LGM is constructed with a g.e.v. data density to describe monthly maximum
instantaneous flow from 10 rivers. Latent seasonal models are imposed on the log-
location, log-scale and shape parameters of the g.e.v. data density. See Section
II.3.2 in Paper II for detailed data and model descriptions. The goal of this
example is to show that the MCMC split sampler is designed to infer LGMs
with a non-Gaussian three parameter data density function, where all the three
parameters are modeled with latent Gaussian models.

Gelman–Rubin plots, autocorrelation plots, trace plots and running mean
plots of nine model parameters based on the MCMC run are shown in Figures
5.5, Figure 5.6, Figure 5.7 and Figure 5.8, respectively. All the plots are based
on the same set of parameters and arranged identically. Three parameters were
chosen from the location, scale and shape structures of the proposed model which
were placed in the first, second and third rows, respectively, in each figure. The
first columns are based on parameters from the data-rich component of the latent
field; the second columns are based on parameters from the data-poor component
of the latent field; and the third column is based on hyperparameters.

The Gelman–Rubin plots in Figure 5.5 show that the sampler has converged
after roughly 10.000 iteration. The autocorrelation plots in Figure 5.6 demon-
strate that the MCMC chains of all nine parameters, exhibit an autocorrelation
around 0.1 after lag 40. The low autocorrelation of the hyperparameters is of
particular note, as the hyperparameters tend to be hard to infer in the LGM
setup due to their posterior dependence on other model parameters. Addition-
ally, Gelman–Rubin and autocorrelation plots for another set of nine parameter
are shown in Figure II.8 and Figures II.9, respectively, in Paper II, which in
turn exhibit similar behavior. The trace plots in Figure 5.7 show that the MCMC
chains of all the nine parameters mix well. Figure 5.8 further demonstrates that
the MCMC samples of the nine parameters have converged in the mean. Simlar
results hold for all the other model parameters (results not shown).
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Relying on these results, the MCMC chains exhibit all signs of having con-
verged. Moreover, these results further indicate high efficiency at all model levels.
Of particular note is that highly efficient MCMC samples of the hyperparame-
ters are obtained.1 Furthermore, the runtime of this model was approximately 7
hours. For more detailed discussion on the results see Section II.3.2 in Paper II.

5.1.3 Annual maximum precipitation in Iceland

The MCMC split sampler is applied as an inferential algorithm to the proposed
model for annual maximum 24-hour precipitation, presented in Section 4.3.4.
See Section 4.3.5 and the Appendix III.A.3 Paper III for implementation of the
MCMC split sampler for this model.

Gelman–Rubin plots, autocorrelation plots, trace plots and running mean
plots of nine model parameters based on the MCMC run are shown in Figures
5.9, Figure 5.10, Figure 5.11 and Figure 5.12, respectively. These four plots are
all based on the same parameters and are arranged identically to the figures in
Section 5.1.2. That is, the first columns are based on parameters from the data-
rich component of the latent field; the second columns are based on parameters
from the data-poor component of the latent field; and the third column is based
on hyperparameters. As the observational site Kvísker is of particular interest in
this analysis, the parameters µ, τ , and ξ at Kvísker were chosen from the data-
rich component of the latent field. Furthermore, the covariate coefficients βµ2,
βτ2 and the intercept coefficient βξ were chosen from the data-poor component
of the latent field. Finally, the range parameters of the SPDE spatial models,
that is ωuµ, ωuτ and ωuξ, were chosen from the hyperparameters.

The Gelman–Rubin plots in Figure 5.9 show that the sampler has converged
after roughly 15.000 iteration. The autocorrelation plots in Figure 5.6 demon-
strate that the MCMC chains for the parameters from both the data-rich and
the data-poor parts of the latent field, exhibit an autocorrelation less than 0.10
after lag 15. The MCMC samples of the hyperparameter ωuµ demonstrate auto-
correlation around 0.25 at lag 50, which is within an acceptable range. However,
the autocorrelation of both ωuτ and ωuξ are negligible after lag 50, which demon-
strates high efficiency2. The trace plots in Figure 5.11 demonstrate that the
MCMC chains of all the nine parameters mixes reasonably well. Finally, Figure
5.8 shows that the MCMC samples of the nine parameters have converged in the
mean. Comparable results hold for all the other model parameters (results not
shown). Relying on these results, the MCMC chains exhibit all signs of hav-
ing converged and the MCMC split sampler shows high computational efficiency.
The runtime of this model was approximately 7 hours.

1In fact, a proposal density of Roberts et al. (1997) implied by equation (II.27) in Paper II
is implemented in the data-poor block in this example, as opposed the proposal density (II.20)
in Paper II.

2In this analysis, the proposal density of (II.26) in Paper II is used in the data-poor block
due to its implementational simplicity. However, preliminary computational analysis reveals
that using the proposal density of Roberts et al. (1997), as implemented for the model in
Section 5.1.2, further improves the efficiency of the MCMC split sampler for inferring the
hyperparameters of this model
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Figure 5.1: Gelman–Rubin plots based on the MCMC simulations in Section 5.1.1.
The black solid curve denotes the median of the Gelman–Rubin statistics, and the blue
dashed curve denotes the upper limit of the 95% confidence interval for the Gelman–
Rubin statistics.
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Figure 5.2: Autocorrelation plots based on the MCMC simulations in Section 5.1.1
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Figure 5.3: Trace plots based on the MCMC simulations in Section 5.1.1

Figure 5.4: Running mean plots based on the MCMC simulations in Section 5.1.1
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Figure 5.5: Gelman–Rubin plots based on the MCMC simulations in Section 5.1.2.
The black solid curve denotes the median of the Gelman–Rubin statistics, and the blue
dashed curve denotes the upper limit of the 95% confidence interval for the Gelman–
Rubin statistics.
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Figure 5.6: Autocorrelation plots based on the MCMC simulations in Section 5.1.2
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Figure 5.7: Trace plots based on the MCMC simulations in Section 5.1.2

Figure 5.8: Running mean plots based on the MCMC simulations in Section 5.1.2
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Figure 5.9: Gelman–Rubin plots based on the MCMC simulations in Section 5.1.3.
The black solid curve denotes the median of the Gelman–Rubin statistics, and the blue
dashed curve denotes the upper limit of the 95% confidence interval for the Gelman–
Rubin statistics.
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Figure 5.10: Autocorrelation plots based on the MCMC simulations in Section 5.1.3
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Figure 5.11: Trace plots based on the MCMC simulations in Section 5.1.3

Figure 5.12: Running mean plots based on the MCMC simulations in Section 5.1.3
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5.2 Annual maximum 24-hour precipitation in Ice-
land

A brief summary of the results from the statistical analysis of annual maximum
24-hour precipitation in Iceland based on the statistical model presented in Sec-
tion 4.3 and Paper III, is given in this section. That is, posterior estimates of
the model parameters, which are based one the four MCMC chains examined in
Section 5.1.3, are evaluated and discussed. The spatial predictions of the loca-
tion, the log-scale and shape parameters are then considered. Lastly, the spatial
maps of the 0.90 and 0.99 quantiles based on the proposed LGM presented in
Section 4.3 for annual maximum 24-hour precipitation in Iceland are examined.
For a more detailed discussion on the results, see Section III.4 in Paper III.

5.2.1 Posterior estimates

Figure III.6 in Paper III shows the posterior mean, along with 95% posterior
intervals, of the location, log-scale and shape parameters of the proposed model
for every observational site. The top left and right panels in Figure III.6 in Paper
III show that both the location and the scale parameters of the generalized
extreme values distribution have the highest posterior estimates in the south-
eastern part in Iceland, especially on the southern side of Vatnajökull Glacier.
The lowest posterior estimates of the location and scale parameters are found in
the northern part, and in the vicinity of Akureyri. Furthermore, the bottom left
panel in Figure III.6 indicates that the posterior mean of the shape parameter is
positive at all the observational sites, indicating an unbounded right tail behavior
of observed maximum precipitation. However, some of the 95% posterior intervals
for the shape parameter include zero.

Table III.1 in Paper III shows the posterior mean, posterior standard de-
viation and posterior 0.025 and 0.975 quantile estimates for the non-spatially
varying model parameters. The results shown in Table III.1 indicate that the
posterior means of βµ1 and βµ2 are 10.6 and 11.9, respectively, and that both pa-
rameters are most likely positive as their corresponding 95% posterior intervals
are both above zero. These results indicate that the location parameter describ-
ing the extreme precipitation is roughly 12 times the value of the corresponding
meteorological covariate, see Paper III for further discussion. Furthermore, the
posterior means of βτ1 and βτ2 are close to 2.05 and 0.5, respectively, and both
parameters are positive as their 95% posterior intervals are above zero. That
means that the relationship between the meteorological covariate and the scale
parameter of the generalized extreme value distribution for some observational
site i can be roughly summarized as

σ̂i = eβ̂τ1 x̄∗β̂τ2i ≈ 7.8 · x̄∗0.5i

where σ̂i denotes a rough estimate of the scale parameter at observational site i
and x̄∗i denotes the value of the meteorological covariate at observational site i.
The posterior mean of βξ is 0.12 and its posterior interval is (0.07, 0.17). That
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indicates that the field describing the shape parameter has mean greater than
zero. This in turn indicates that the overall mean tail behavior of 24-hour annual
maximum precipitation has a lower bound and is unbounded above.

The posterior mean of the parameters κuµ, κuτ and κuξ, suggest that the
correlation between two points in space is near 0.1 at a roughly 40 km distance
for the location parameter; roughly 25 km distance for the scale parameter; and
almost 7 km for the shape parameter, which is short compared to the range
of µ and τ and the scale of the spatial domain. The posterior mean of the
parameters ωuµ, ωuτ and ωuξ indicate that the marginal standard deviation of
uµ is approximately 8; roughly 0.45 for uτ ; and almost 0.1 for uξ.

For further analysis of the posterior distribution of σvµ, σvτ and σvµ, see
Section III.4.2 in Paper III.

5.2.2 Spatial predictions

Figures III.9, III.10 and III.11 in Paper III show the spatial predictions for the
spatially varying model parameters, namely, the the location parameter µ; the
log-scale parameter τ ; and the shape parameter ξ and their corresponding spatial
effects. The spatial predictions are based on the method outlined in Section 4.3.6
and Section III.3.4 in Paper III.

The top left panel of Figure III.9 shows the spatial predictions for the spatial
random effect uµ based on the posterior mean of (4.19) on the regular grid G.
The figure shows where the spatial random effect lowers and raises the prediction
surface, therefore revealing the areas where the effect of the meteorological co-
variate overestimates and underestimates the extreme precipitation, respectively.
The spatial prediction surface is lowered in most of the south-western part of
Iceland, but is raised in the north-western and south-eastern part. The spatial
random effect yields high positive values for Kvísker, which is known to have
the highest observed precipitation in Iceland; negative value in the south-eastern
part close to Reykjavík and values close to zero in the interior of Iceland where
there are no observational sites. The top right panel of Figure III.9 shows the
spatial prediction for the standard deviation of the spatial random effect uµ on
the regular grid G. As expected, the standard deviation increases at points fur-
ther away from the observational sites, forming sinks in the standard deviation
near the observational sites.

The bottom left panel of Figure III.9 shows the spatial prediction of the
location parameter µG , based on (III.6) in Paper III, on the regular grid G.
The figure shows that the location parameter is at its highest in the south-eastern
parts of Iceland, in the vicinity of the southern side of Vatnajökull Glacier. This
is to be expected, as the spatial gradient at the southern side of Vatnajökull
increases rapidly moving from the nearby coastline to the top of the glacier. Due
to these topographical properties and the fact that humid air blows in from the
southern shoreline towards the roots of the glacier, the physical law of orographic
precipitation predicts high precipitation. However, the areas north of Vatnajökull
Glacier and in the middle of the country are known to be in a rain shadow by
the same meteorological law. This is in line with the results seen in the bottom
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left panel of Figure III.9.
Figure III.10 shows the spatial prediction for the scale parameter on a log-

arithmic scale. The figure is arranged in the same manner as Figure III.9. In
the top left panel of Figure III.10 it can been seen that the spatial random ef-
fect uτ raises the spatial prediction surface in the eastern, south-eastern and
north-western parts and lowers it in the south-western part. In the top right
panel of Figure III.10, similar results appear for the standard deviation as for
the location parameter, that is, sinks in the standard deviation form close to the
observational sites. Moreover, the figure demonstrates that the spatial range for
τ is shorter than for µ, as discussed above. On the bottom left panel of Figure
III.10, it can be seen that the estimates for the scale parameter are highest along
the south-eastern coastline.

Figure III.11 shows the spatial prediction for the shape parameter, arranged
in the same manner as Figures III.9 and III.10. The top left panel of Figure III.11
shows the posterior mean of uξ on the regular grid G. The magnitude of uξ is
only 0.015 which is smaller than the variation in the ML estimates (results not
shown). Furthermore, the top right panel in Figure III.11 shows that the sinks
in the standard deviation of the spatial field for ξ are almost not visible. This is
to be expected as the range of the spatial field for ξ is only 7 km, as discussed
above. The bottom left panel of Figure III.11 demonstrates that the predicted
posterior mean values of ξ are close to the posterior mean of the overall shape
effect βξ, which is 0.117. These results indicate that a data set based on a denser
network of observational sites is required to give better spatial predictions for ξ.

Spatial predictions of the 0.90 quantile and the 0.99 quantiles of 24-hour maxi-
mum precipitation in Iceland are shown in Figure 5.13. The predictions are based
on the posterior mean of the 0.90 and 0.99 quantile of the g.e.v. distribution.
The predictions are based on the methods discussed in Section 4.3.6 and Section
III.3.4 in Paper III. The 0.90 and 0.99 quantile can be interpreted as the 10-year
and 100-year precipitation events, respectively. The results reflect the previous
posterior results about the location and scale parameters. For example, the high-
est predicted 10-year and 100-year precipitation events are along the south and
south-eastern coastlines, while the lowest predicted events are in the interior of
Iceland. The maximum of the predicted values are located at the southern side
of Hvannadalshnjúkur mountain and are approximately 400 mm per 24 hours for
the 10-year precipitation event and 570 mm per 24 hours for the 100-year precip-
itation event. See Section III.4.4 for further discussion on the spatial predictions
of annual maximum 24-hour precipitation in Iceland. An informative spatial co-
variate for ξ, if it exists, would also potentially improve the spatial predictions of
the shape parameter ξ.
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Figure 5.13: The posterior mean of the 0.90 quantile (top) and 0.99 quantile of annual
maximum 24-hour precipitation assuming the generalized extreme value distribution



6
Conclusions and future

perspective

Various aspects of computationally efficient Bayesian statistical methodology,
with focus on applications to spatial extremes, have been explored in this the-
sis. To summarize the proposed methods and the main novel contributions in
this thesis, the conclusions of the research project are divided into the following
categories. In Section 6.1, a brief overview is given of the efficient and inter-
pretable modeling approach offered by the extended LGM framework1. Section
6.2 discusses the novel inferential algorithm, the MCMC split sampler, developed
in this thesis for the extended LGM framework. Furthermore, Section 6.2 dis-
cusses potential future improvements and extensions to the MCMC split sampler.
Section 6.3 examines the proposed method that leverages spatial information on
precipitation by using an external meteorological model as an additional source
of information. Future improvements and extension to the proposed methodol-
ogy are also discussed. In Section 6.4, the advantages of using the SPDE spatial
models in the statistical modeling of spatial extremes are discussed and possible
extensions to the proposed modeling framework. The chapter concludes in Sec-
tion 6.5, where a discussion is given on how the combinations of the proposed
methodology can be extended to other areas of future research.

6.1 Computationally efficient Bayesian modeling

The statistical model constructed in Section 4.3.4, and the statistical models pre-
sented in Section II.3 in Paper II, demonstrate that the LGM framework offers
an interpretable, flexible and consistent approach to constructing statistical mod-
els. To elaborate on this point, the interpretability of LGMs stems mainly from

1Referred to as LGM-2.0 in Paper I
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the analytical properties of the of the Gaussian distribution. This is particularly
true in a spatial setting, where the latent Gaussian parameters of an LGM can
be thought of as a finite representation of an underlying GF with a certain prede-
fined covariance structure. For instance, in the model in Section 4.3.4, both the
range and the marginal variance of the underlying GF serve as hyperparameters
within the LGM setup and have thus a predefined interpretation.

To give examples of the flexibility offered by LGMs, consider the following
two properties of LGMs. First, in a spatial setting, LGMs can be used to give
spatial predictions at unobserved locations by utilizing the closure property of the
Gaussian distribution in Theorem 1, as discussed in detail in Section 2.3.2. Sec-
ond, consider the boxplots given in Figure 4.2. The boxplots indicate that both
the location and scale structure of the data distribution vary among the observa-
tional sites. This behavior can be modeled within the flexible LGM framework
by imposing latent Gaussian models on both the location and scale parameters.
As such, LGMs of this type can be inferred using the MCMC split sampler,
introduced in Section 4.2. See Section 6.2 for further discussion on this point.

The demonstration in Section 4.1.1 shows how LGMs can be constructed in
a consistent manner. This general approach to constructing an LGM is further
demonstrated by the statistical model for annual maximum 24-hour precipitation
in Iceland, as derived in Section 4.3.4. The LGMs in Section II.3.1 and Section
II.3.2 in Paper II serve as further demonstration of this general consistent ap-
proach to constructing LGMs. The LGM framework offers a modular approach
for statistical modeling. That is, first a data density is selected, then the latent
behavior of the data density parameters is modeled with Gaussian models. To
allow for more flexibility of the overall model, hyperparameters are included in
the model structure.

To reduce the computational cost of LGMs with a GF at the latent level,
the GF can be represented with a GMRF. As discussed in Section 2.3.3, the
GMRF parameterization can offer significant computational advantage over the
standard GF parameterization. To further increase the practicality of the GM-
RFs in the LGM framework, especially in a spatial setting, the newly developed
SPDE approach, of Lindgren et al. (2011) introduced in Section 2.3.4, provides
a consistent method to utilize the computational advantages offered by GMRFs,
without sacrificing flexibility of a predefined covariance structure. Serving as an
example of model structure, is the model introduced in Section 4.3.4 and Paper
III, which demonstrates that this framework is well suited for computationally
efficient modeling of spatial extremes.

6.2 Computationally efficient inferential algorithm
for LGMs

As previously discussed in Section 2.2.6, the one block updating scheme of Knorr-
Held and Rue (2002) is known to be a highly computationally efficient simulation
based inferential algorithm for LGMs. Moreover, the computational cost of every
iteration of the one block updating scheme can be further reduced if the LGM is
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parameterized with a GMRF, by using fast sampling algorithms designed for GM-
RFs, see Rue (2001) and Rue and Held (2005). However, the one-block updating
scheme is only applicable to LGMs where the data density is assumed Gaussian.
Different versions of the one block sampling scheme have been proposed, see Rue
and Held (2005), however in the authors experience those algorithms often result
in the MCMC chain getting stuck, as discussed briefly in Paper II. Furthermore,
although INLA offers a very fast and accurate approach to posterior inference of
LGMs, it is only applicable2 if the data density of each data point only depends
on a single linear predictor, as discussed in Section 4.1.

The MCMC split sampler is a novel sampling based inferential algorithm
which is built upon the one block updating scheme of Knorr-Held and Rue (2002)
and addresses the aforementioned issues. That is, the MCMC split sampler is
designed to be applicable to LGMs with any parametric data density, and is
also designed for LGM where latent models are imposed on more than just the
mean structure of the data density. This is achieved by finding a subset of the
model parameter space of the extended LGM framework, for which the one-block
sampling scheme is applicable. Namely, by separating the parameters in the data-
rich block from the parameters in the data-poor block, a modified version of the
one-block updating scheme becomes applicable to the data-poor block. From the
author’s perspective, the MCMC split sampler is therefore a natural extension of
the one block updating scheme for the extended LGM framework.

The MCMC split sampler is, in principle, designed as a modular sampling
scheme in the sense that any MCMC sampling scheme can be implemented within
the blocks. Therefore, potential new sampling schemes for either block can be
developed independently of the other block. To elaborate on some of the potential
extensions to the proposed sampling schemes within both blocks, consider the
following.

The proposed sampler for the data-rich block, discussed in Section 4.2.2
exhibits high computational efficiency, in terms of good mixing properties, as
demonstrated by the results in Section 5.1. However, the sampler is only appli-
cable in practice if the mode of the conditional posterior density function can
be found, and can be calculated reasonably fast in every iteration of the MCMC
simulations. For example, in the case of models where each observed data point
has more than one unique data density parameters associated with it, say of the
type yi ∼ π(yi|µi, σi) for every measurement i, finding the mode of the conditional
posterior π(µi, σi|yi) becomes computationally impractical in some cases. Models
of this type include, for example, certain spatio-temporal models (Hrafnkelsson
et al. 2012). Similar computational issues also arise if data dependence at the
data-level of an LGM is desired, see for example Davison et al. (2012) where t-
copulas are implemented with g.e.v. marginal density functions at the data level
as a model for spatial extremes.

In the aforementioned cases, the two block design of the MCMC split sampler
offers a platform for the development of a potentially efficient inferential algo-
rithm. Consider, for example, an LGM with with a t-copula based data density
function. By using the two block design of the MCMC split sampler, the computa-

2In its current state.
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tionally costly data-rich part, which includes calculations of the computationally
costly t-copula based data density, is separated from the data-poor part. To tackle
the data-rich block, a Riemann manifold MALA based Metropolis–Hastings al-
gorithm is, for example, applicable. This can be achieved without changing the
structure of the data-poor block, which in turn means that the modified version
of the one-block sampler can still be used in the data-poor block in this case.

In the data-poor block, it is shown in Section 4.2.3 that the conditional poste-
rior density π(ν|η,θ) is a known Gaussian density and the acceptance probability
of the proposed sampling scheme for the data-poor block in Section II.2.4 is only
dependent on the hyperparameters. Consequently, choosing a computationally
efficient sampling scheme for the hyperparameters can thus increase the com-
putational efficiency of the overall sampling scheme within the data-poor block.
In Section II.3.2 in Paper II, this aspect of the MCMC split sampler is further
explored by using two different proposal densities for the hyperparameters. De-
veloping more efficient proposal density for the hyperparmeters in the data-poor
block can further increase the computational efficiency of the MCMC split sam-
pler.

Furthermore, as the proposed sampler in the data-poor block is a modified
version of the one block sampling scheme, linear constraints can be imposed on
the data-poor component of the latent field. That is, MCMC samples obtained
from the proposed sampler in Section 4.2.3, can be corrected for given linear
constraints by conditioning by kriging, see for example Cressie (1993) and Rue
and Held (2005). The development of conditioning by kriging for the MCMC
split sampler is thus natural extension to the proposed inferential algorithm.

Due to the modularity of the MCMC split sampler, sampling schemes for the
data-rich block can be developed and improved independently of the sampler in
the data-poor block, and vice versa. Additionally, as the conditional posterior
density π(ν|η,θ) becomes invariant of the data in the data-poor block, the com-
putational advantages introduced by the conditional posterior structure in the
data-poor block hold for all LGMs. Thus, in the author’s view, further develop-
ing and improving sampling schemes that utilize the computational advantages
introduced by the MCMC spilt sampler presents a promising area of future re-
search.

6.3 Exracting external information from physical
models

A novel method is proposed in this thesis that leverages information on the phys-
ical processes of precipitation from a local meteorological model, in order to yield
an additional external source of spatial information on the physical processes of
precipitation. The method is, in particular, aimed to address the limited amount
of observational data from the sparse network of observational sites in Iceland.
By extending the argument made in Benestad et al. (2012), the proposed method
extracts spatial information on the physical processes of maximum precipitation
by calculating sample mean values from outputs of the local meteorological model
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of Crochet et al. (2007) on a 1 km by 1 km grid over the Icelandic spatial do-
main. This in turn yields a spatially referenced covariate, which aims to describe
the spatial variation of average climate, in terms of precipitation, at every grid
point. Although the proposed method is presented for an Icelandic data set, the
method is extendable to any other location in the world where outputs from local
meteorological models are available on a fine grid.

In addition to providing spatial information on extreme precipitation, the
method can be extended to other response variables. For example, the method
is likely to be well suited to resolve spatial information on annual or monthly
precipitation. This is briefly explored in the example presented in Section II.3.1
in Paper II, which shows promising initial results. Additionally, the method
can be utilized to extract any desired sample statistics from meteorological mod-
els in order to leverage spatial information. For example, instead of calculating
the mean values from the outputs of the meteorological model at every regu-
lar grid point, standard deviation or quantiles could be extracted. To conclude,
leveraging information from meteorological models for different regions, for other
response variables and basing the information on various extracted sample statis-
tics presents a potential venue for future research.

6.4 The statistical modeling of spatial extremes

The statistical analysis of annual maximum 24-hour precipitation in Iceland pre-
sented in this thesis is in line with the general approach to statistical modeling
discussed in Section 4.1. Furthermore, the analysis demonstrates how an LGM
with latent spatial models imposed on the location, scale and shape parameter
of the g.e.v. distribution can be applied to the statistical modeling of spatial ex-
tremes. Moreover, the proposed spatial models are constructed with the SPDE
method, which is a novel approach to the statistical modeling of spatial extremes,
to the best of the author’s knowledge. The main advantage of using spatial models
based on the SPDE method is that they can be implemented with low computa-
tional cost. As such, SPDE spatial models scale well, in terms of computational
cost, as the number of vertices in the mesh increases as discussed in Section 2.3.3
and Section 2.3.4. Therefore, the entire finite dimensional representation of the
underlying GF can be sampled in each MCMC iteration with low computational
cost3. In other words, the SPDE spatial models yield spatial predictions alongside
the MCMC simulations. Further, by using linear interpolation in post calculation
as discussed in Section 2.3.4 and Section 4.3.6, MCMC samples of all spatially
varying model parameters are obtainable at every location in the spatial domain.
Therefore, in this sense, the SPDE approach yields continuous spatial prediction
of the spatially varying model parameters. As a consequence of this property,
the posterior distribution of every p-th quantile of the g.e.v. distribution is also
obtainable at every location in the spatial domain. For example, in Figure 5.13,
the posterior mean of the 0.9 and the 0.99 quantiles are given at every regular
point in the regular grid G. Furthermore, the proposed LGM structure is extend-

3Especially, if the MCMC split sampler is used as an inferential algorithm
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able to any regions in world, to any spatial domains of interest, and for any other
response variable.

Furthermore, due to the modular property of LGMs, a different data den-
sity can be chosen in the proposed model setup without the need to change the
structure of the SPDE spatial models at the latent level. As an example of a dif-
ferent choice of a data density for extreme precipitation is a t-copula with g.e.v
marginals, as explored for example by Davison et al. (2012). The t-copula based
data density presents an appealing choice to model the probabilistic dependence
of the observations. The approach is well suited for simulating spatial realizations
of the extreme precipitation for the next year or unobserved sites for an observed
year4. Furthermore, the t-copula based data density can be implemented within
the presented modeling framework, and presents possible future extensions to the
proposed model

Stationary SPDE spatial models were implemented at the latent level of the
proposed model, that is, the underlying GF is assumed stationary. However, the
results in this thesis show evidence of a non-stationary behavior in some of the
mountainous regions, for example near Kvísker, as discussed in Section III.4.2 in
Paper III. Non-stationary SPDE spatial models have been proposed recently
in the literature, see for example Fuglstad et al. (2013) and Ingebrigtsen et al.
(2014). Implementing non-stationary SPDE models was beyond the scope of the
research in this thesis. However, these models yield an appealing modeling op-
tion for non-stationary spatial fields. Future research could involve using spatial
covariates in the dependence structure of the spatial model in a similar fashion as
in Ingebrigtsen et al. (2014). For example, new spatial covariates based on out-
puts from a local meteorological model, as suggested here, could be designed to
provide useful information for the dependence structure of non-stationary SPDE
spatial models. This is, in the author’s view, an interesting example of how the
proposed method can be extended to other areas of future research.

6.5 Final words

This thesis has presented a general and computationally efficient approach to
Bayesian statistical modeling and posterior inference. Through the use of LGMs
and GMRF representations, it has been shown in this thesis that flexible Bayesian
hierarchical models can be efficiently adapted to model involved and computa-
tionally challenging statistical problems. Furthermore, with the introduction of
the MCMC split sampler to the extended LGM framework, a wealth of flexible
statistical models become applicable in practice, from a computational stand-
point, to various statistical problems. Therefore, from the author’s point of
view, the extended LGMs framework armed with the MCMC split sampler as

4There are two main reasons why this approach was not chosen in the analysis in this
thesis. First, the main purpose is to give spatial predictions of marginal quantiles using the
SPDE approach but not to simulate spatial realizations of the extremal surfaces. Secondly,
many of the observational sites had missing observations, which presents further computational
difficulties with the copula based data density.
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an inferential algorithm provides a sizable venue of interesting future research of
computationally efficient statistical research.

The efficiency of this general approach becomes particularly beneficial in the
field of spatial statistics with the use of SPDE spatial models. By using the
sparse precision structures of the GMRF representations, constructed with the
SPDE approach, high dimensional representations of underlying spatial fields
can be implemented efficiently within the extended LGM framework to various
spatially referenced data. As demonstrated in this thesis, the extended LGM
framework with SPDE spatial models is well suited for statistical modeling of
spatial extremes and any statistical problem involving spatial modeling. More-
over, as a result of modularity of the MCMC split sampler, future improvements
can be made separately to each of the two blocks of the model. Therefore, in
the author’s opinion, implementation of the proposed statistical model for spa-
tial extremes to other areas in the world along with future improvements of the
MCMC split sampler, presents an interesting and vivid area of future research.



74 Chapter 6



Part II

Papers





I
Paper I

Discussion of ’Beyond mean regression’

Thiago G. Martins, Daniel Simpson, Janine B. Illian, Håvard Rue &
Óli Páll Geirsson

Martins T.G., Simpson D., Illian J.B., Rue H. and Geirsson Ó.P. 2013
Discussion of ’Beyond mean regression’. Statistical Modelling 13(4):355-361

77



78 Chapter I

I.1 Statistical modeling
The author of Kneib (2013) correctly points out that there is much more out
there than “regression models for the mean”, and discusses quantile regression
in particular. While we agree with the first statement, from an academic point
of view we do not share the enthusiasm about replacing the likelihood model
with the generic quantile model. In a Bayesian context this leads to results
that far from easy to interpret (see Yue and Rue (2011)). In addition, we do
not advocate inferential schemes that do not yield good/reasonable estimates
for the uncertainty involved. However, we agree that from a practical point of
view “A man’s got to do what a man’s got to do”, and sometimes just providing
a (quantile) estimate for a specific dataset by using any reasonable approach
with appropriate software, is the only thing one can do. Since this is a research
discussion, however, the following focuses on how we think things should be done
instead of how things are currently done in practice by applied researchers.

Since the discussion in Kneib (2013) does not explicitly distinguish between
“modelling” and “inference”, it is not clear to us if the author favours the non-
parametric quantile approach due to its non-parametric nature or due to the
availability of fast inferential algorithms for it. Our general approach to modelling
complex problems is to design a sensible statistical model for a specific problem,
to then develop a formal Bayesian machinery that is able to provide posterior
distributions, and to then compute all the quantities of interest, such as quantiles,
means, credible intervals, etc., from these posteriors.

Regarding the design of a sensible statistical model, we think that the focus of
the discussion in Kneib (2013) should not only be on going “beyond mean regres-
sion”, also beyond “beyond mean regression”, i.e. with emphasis on regression, in
the sense that it is perhaps time to think about statistical modelling rather than
about “regression models”. With a Gaussian response and with one covariate z
we might then postulate that

y | . . . ∼ N (β0 + β1z, exp(b0)).

Although this model also models the mean structure it does this because the mean
is a natural parameter in the Gaussian distribution. If we want to go “beyond
mean regression” in this example, we could, as mentioned in Kneib (2013), model
the log-variance as well, using the same covariate

y | . . . ∼ N (β0 + β1z, exp(b0 + b1z)).

This is an example of a GAMLSS model that results naturally from allowing the
canonical parameters in the likelihood function to depend on various covariates.
To allow for more flexibility the linear dependence on the covariate z may be
relaxed

y | . . . ∼ N (f(z), exp(g(z))),

where, f(·) and g(·) are two “smooth” unknown functions of the covariate z,
typically some finite-dimensional Gaussian process models. Assuming that we
have access to a Bayesian inference machine, inference for the quantiles could be
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extracted from the posterior distribution alone. In our view, it is not natural to
use the “quantile-likelihood”, as discussed in Kneib (2013), since the likelihood
itself is often better understood than how various covariates enter the model. And
clearly, with this way of thinking we are already moving away from regression
modelling and towards statistical modelling.

More generally, we could proceed in a similar way and include a linear predic-
tor or functions f(·) and g(·), or combinations of these, possibly sharing effects,
in various places in the likelihood depending on the specific application. (We ig-
nore the issue of parameterizing likelihood models here. Note that the GAMLSS
models follow this route for location, scale and shape.) If we agree that this is a
useful approach, then the question remains as to how to perform (approximate)
Bayesian inference for such models, without using simulation based inference,
which in our opinion is still too slow and too unreliable for routine usage. We
return to this question below.

Another useful extension are models with more than one type of response.
For instance, to expand on the model of the “Munich rental data” used by the
author in Kneib (2013), we might be interested in jointly analysing a certain
quantile of the rent per unit with, say, for the sake of argument, some longitudinal
data on the people renting the apartments. It is reasonable to assume that
these two responses share common covariates or ”random”-effects, hence it makes
statistical sense to do a joint analysis of these data. With a parametric form for
the longitudinal data, it is not clear to us what scaling the quantile-likelihood,
as presented in Kneib (2013), should have in such a joint formulation and if
that approach is useful in this extended setting at all. Of course, a Bayesian
approach will automatically make sense and provide a reasonable measure of the
uncertainty in the estimates – if we can do the computations.

With these extensions in mind, is there any common model structure for
which we can build a general approximate Bayesian inferential machine? In this
context, we notice that, although implicitly mentioned, the role of “Gaussian
Models” is not highlighted by the author of Kneib (2013). However, all the semi-
parametric models in Section 2 in Kneib (2013) are Gaussian models, conditional
on the non-Gaussian variables θ. As sums of Gaussians are Gaussian, the joint
conditional distribution of (η, β0,β1, . . . ,βp) | θ is also Gaussian. With several
linear predictors, say one for each natural parameter of a given likelihood with k
parameters

η(1), . . . ,η(k),

their joint conditional distribution conditional on θ is also Gaussian. With (con-
ditional independent) observations y depending on all the linear predictors in
some form, we have

yi | . . . ∼ π(yi | η(1)i , . . . , η
(k)
i ).

The model is completed with a prior on the non-Gaussian components π(θ). To
further generalise the model formulation, we may then write it in a hierarchical
form, as outlined below.

Stage 1: The observations y depend on the latent field x and potential hyper-
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parameters θ, through

yi | x,θ ∼ π(yi | {xj : j ∈ Ii},θ)

for some set Ii.

Stage 2 The latent field x is Gaussian with hyperparameters θ,

x | θ ∼ N
(
µ(θ),Q(θ)−1

)
Stage 3 The hyperparameters have prior π(θ).

A reader familiar with the INLA approach to approximate Bayesian inference for
latent Gaussian models (LGMs), will recognise the similarity of the definition of a
LGM in Rue et al. (2009) and this more general one defined here, where each data
point can be connected with more than one latent component in an arbitrary way,
see Rue et al. (2009), Martins et al. (2013b) and the web-site www.r-inla.org
for available software. In particular, a more restrictive definition is obtained with
|Ii| ∈ {0, 1} for all i.

The concept of LGMs has proved very successful for doing Bayesian infer-
ence, and the wealth of models that may be interpreted as LGMs, and hence are
amenable to the Bayesian inference approach developed specifically for LGMs,
is simply impressive; see Martins et al. (2013b) for various applications and fur-
ther references. Needless to say, the more general setting outlines above, which
we might call “LGM–2.0” for the moment, can do even more. In fact, much
much more, and it is to our view the most commonly used (Bayesian) model
construction in statistics. However, only the case where |Ii| ∈ {0, 1} for all i is
supported by the current INLA approach, and the R-package R-INLA provides
support for the most common models, although the INLA idea has already been
re-implemented in a special case of a LGM–2.0 (Ferkingstad et al. 2008). The
extension in LGM–2.0 might seem trivial but it is not. However, it is solvable.
Due to the generality of LGM–2.0, a further challenge is to implement a general
interface within R.

I.2 Example: Modeling maximum precipitation
We present an example where one should consider to go beyond a simple mean
regression scheme and think more in terms of statistical modelling. Within this
framework the usefulness of LGMs is obvious. The example is based on obser-
vations of annual maximum 24 hour precipitation from 86 observation sites in
Iceland, as seen in Figure I.1, and outputs from a local climate model on a 1
km regular grid as covariates. We are interested in making quantile predictions
of maximum precipitation on the 1 km grid. Thus, in the statistical modelling
sense, the aim is to obtain distributional properties of maximum precipitation on
the grid.
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Figure I.1: The location of observation sites

Following the modelling formulation above, we propose the following model.

Stage 1 The data are modelled with a Bayesian hierarchical model assuming a
generalized extreme value distribution for the observations. That is, let yit
denote the annual maximum 24 hour precipitation at station i at year t,
with a cumulative distribution function of the form

F (yit) = exp

{
−
(

1 + ξ

(
yit − ηi
σi

))−1/ξ}
,

where ηi, σi and ξ are location, scale and shape parameters, respectively.
Observations are assumed to be independent at the data level.

Stage 2 Working within the LGM framework, we decompose η into

η = Xηβη + uη + vη,

where X is a design matrix based on outputs from the local climate model,
βη are the corresponding weights, uη denotes a Matérn type spatial field
constructed with the SPDE approach of Lindgren et al. (2011) and vη is
an unstructured random effect. We assign the following priors

β ∼ N (0, κ−1β )

u ∼ N (0,Qu(θu)−1)

v ∼ N (0, κ−1v I).

The joint distribution of (η,u, β) is a zero mean Gaussian with precision
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matrix

Qη =

 κvI −κvI −κvXη

−κvI κvI +Qu κvXη

−κvXT
η κvX

T
η κvX

T
ηXη + κβ .


Let τi = log σi, then a similar structure can be implemented for τ . Let

x = (η,uη, βη, τ ,uτ , βτ ).

The joint distribution of x is then a zero mean Gaussian with precision
matrix

Qx =

(
Qη 0
0 Qτ .

)
Note that the regression aspect of this modelling scheme appears naturally
in the parameterization of the Gaussian distribution.

Stage 3 Suitable prior distributions are chosen for the hyper parameters θ.

Successfully inferring the parameters of the model yields posterior estimates
for the distribution of maximum annual 24 hour precipitation in every grid point.
In particular, an estimate of the p-th quantile can be given in every grid point.
The p-th quantile function of the likelihood is of the form

qp(η, τ, ξ) = η +
exp(τ)

ξ

(
− log(p)−ξ − 1

)
.

So a posterior estimate for the p-th quantile can be found with

E [qp(η, τ, ξ)|y] =

∫
qp(η, τ, ξ)π(η, τ, ξ|y)dηdτdξ.

This estimate can be given in each grid point, as can be seen in Figure I.2, where
estimates for the 95th quantile are given.
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Figure I.2: Estimates for the 95th quantile of maximum precipitation.
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Abstract
A novel computationally efficient Markov chain Monte Carlo (MCMC) scheme for
latent Gaussian models (LGMs) is proposed in this paper. The sampling scheme
is a two block Gibbs sampling scheme designed to exploit the model structure of
LGMs. We refer to the proposed sampling scheme as the MCMC split sampler.
The principle idea behind the MCMC split sampler is to split the latent Gaussian
parameters into two vectors. The former vector consists of latent parameters
which appear in the data density function, while the latter vector consists of
latent parameters which do not appear in it. The former vector is placed in
the first block of the proposed sampling scheme and the latter vector is placed
in the second block along with any potential hyperparameters. The resulting
conditional posterior density functions within the blocks allow the MCMC split
sampler to handle, by design, LGMs with latent models imposed on more than
just the mean structure of the data density function. The MCMC split sampler
is also designed to be applicable for any choice of a parametric data density
function. Moreover, it scales well in terms of computational efficiency when the
dimension of the latent model increase.

II.1 Introduction
Latent Gaussian models (LGMs) form a flexible subclass of Bayesian hierarchical
models and have become popular in many areas of statistics and various fields
of applications, as LGMs are practical from a statistical modeling point of view
and readily interpretable. For example, LGMs play an important role in spatial
statistics, see Cressie (1993), Diggle et al. (1998), Chiles and Delfiner (2009);
statistical climatology (Cooley et al. 2007, Guttorp and Gneiting 2006); disease
mapping (Pettitt et al. 2002, Lawson 2013); stochastic volatility models (Martino
et al. 2011); and hydrology (Schaefli et al. 2007), to name a few. Moreover,
LGMs can be viewed as a specific extension of structured additive regression
models (Fahrmeir et al. 1994, Rue et al. 2009), in the sense that, the data density
function of each data point can depend on more than a single linear functional
of the latent field through more than just the mean structure, as discussed in
Martins et al. (2013a).

Although LGMs are well suited from a statistical modeling point of view
their posterior inference becomes computationally challenging when latent models
are desired for more than just the mean structure of the data density function
(Martins et al. 2013a), when the number of parameters associated with the latent
model increase; or when the data density function is non-Gaussian. The aim of
this paper is to propose a novel computationally efficient Markov chain Monte
Carlo (MCMC) scheme which serves to address these computational issues. The
proposed sampling scheme is referred to as theMCMC split sampler in this paper.
It is designed to handle LGMs where latent models are imposed on more than
just the mean structure of the likelihood. It scales well in terms of computational
efficiency when the dimensions of the latent models increase and it is applicable
for any choice of a parametric data density function. The main novelty of the
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MCMC split sampler lies in how the model parameters of a LGM are split into
two blocks. As a result of the proposed blocking scheme, one of the blocks exploits
the latent Gaussian structure in a natural way and becomes invariant of the data
density function.

Markov chain Monte Carlo (MCMC) methods form the backbone of mod-
ern Bayesian posterior inference and are, in principle, applicable to almost any
Bayesian model. However, the mixing and convergence properties of the MCMC
chains can be poor for involved models structures and large data sets if param-
eters that are dependent in the posterior are not dealt with properly, see for
example Murray and Adams (2010). In particular, the mixing and convergence
properties of the popular single site updating strategy can be extremely poor due
to strong dependencies of parameters in the posterior distribution as discussed
in Knorr-Held and Rue (2002). Several MCMC sampling strategies have been
suggested for Bayesian hierarchical models to improve the mixing properties of
MCMC algorithms. For example, methods based on approximate diffusions such
as the Metropolis Adjusted Langevin algorithm (MALA), see Roberts and Rosen-
thal (1998); methods based on Hamiltonian mechanics (HMC), suggested by Neal
(1993), which use the gradient of the target density to drive the proposal mecha-
nism toward regions of higher posterior density; manifold methods, proposed by
Girolami and Calderhead (2011), which provide a systematic way of designing
proposal densities for MALA and HMC by making use of the gradient and cur-
vature information of the target density; and various block sampling strategies
such as the one block updating strategy of Knorr-Held and Rue (2002). Filip-
pone et al. (2013) conducted a detailed comparison of these methods for LGMs
and found that the single block strategy of Knorr-Held and Rue (2002), in which
the latent field and its corresponding hyperparameters are updated jointly in a
single block, performed best in most situations. Furthermore, by using numeri-
cal methods for fast sampling of Gaussian Markov random fields (GMRFs) (Rue
2001), the single block sampler can be implemented with a low computational
cost for LGMs. However, using only a single block sampler for LGMs with a non-
Gaussian likelihood and high dimensional latent fields can be problematic, as
parameters accepted in regions of low posterior probability can cause the MCMC
chain to get stuck.

Alternative to MCMC methods are deterministic approximate posterior in-
ference methods, such as the Integrated nested Laplace approximation (INLA)
(Rue et al. 2009). INLA is a fast approximate inference method for LGMs in
which the data density of each data point only depends on a single linear func-
tional of the latent field. While this assumption holds in many practical cases,
there are many models in which we want the latent field to enter the data density
of a single observation through two or more parameters, see Kneib (2013) and
Martins et al. (2013a) for further discussion. For example in Hrafnkelsson et al.
(2012) and Geirsson et al. (2015), latent Gaussian spatial models were imposed
on the location, scale and shape structure of the data density function.

The MCMC split sampler is a two block Gibbs sampling scheme (Geman and
Geman 1984, Casella and George 1992) designed for LGMs, which addresses the
aforementioned inference problems. The MCMC split sampler is based on the
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following model setup for LGMs, to which we adhere to in this paper.

Data-level: The observations y depend on the latent field x, through some
choice of data distribution with a data density function π(y | x).

Latent level: The prior for the latent field x is Gaussian and is potentially
dependent on hyperparameters θ, with a density function

π(x | θ) = N
(
x | µ(θ),Q(θ)−1

)
.

Hyperparameter level: A prior distribution is assigned for the hyperparame-
ters θ, with a density function π(θ).

The principle idea behind the MCMC split sampler is to split the latent Gaussian
parameters x into two vectors, η and ν, where η consists of elements that appear
in the data density function and ν consists of elements that do not appear in
it. Thus, the data y become conditionally independent of (ν,θ) conditioned on
η, that is, π(y | x,θ) = π(y | η). For the posterior inference, all the model
parameters are grouped into two blocks. That is, η is placed in a block we refer
to as the data-rich block in this paper, while both ν and the hyperparameters θ
are placed in another block referred to as the data-poor block. A Gibbs sampling
strategy is then implemented for each block, conditioned on the other block.

In many practical applications with non-Gaussian data density functions, es-
pecially in the field of spatial statistics, the vector η in the data-rich block has
a complicated but low-dimensional conditional posterior structure, while the pa-
rameter vector ν in the data-poor block is often of much higher dimension than
that of the parameters in the data-poor block (Hrafnkelsson et al. 2012). There-
fore, by using the proposed blocking scheme the potentially computationally de-
manding conditional posterior density in the data-rich block contains a minimum
number of necessary parameters. Furthermore, the conditional posterior density
of ν becomes conditionally Gaussian conditioned on the parameter vector η and
the hyperparameters θ. This designed structure, that is, the minimal dimension
of the parameters in the data-rich block and the conditional Gaussian posterior
structure within the data-poor block, is exploited to implement computationally
efficient sampling schemes within the blocks. Further, the proposed scheme scales
well when the dimension of ν increases, as discussed in the ensuing paragraph.

The MCMC split sampler is modular by design such that, in principle, any
efficient MCMC sampler can be implemented for each block. In this paper, we
propose computationally efficient sampling strategies that are tailored to the
particular conditional model structure of each block. Within the data-rich block
we present a strategy based on the gradient and curvature information of the
target density that results in an independence proposal mechanism as discussed
in Rue and Held (2005). Conditional independence resulting from the model
structure within the block can be utilized in some cases to increase acceptance
in the Metropolis-Hastings algorithm (Metropolis et al. 1953, Hastings 1970). In
order to update the data-poor block, a modified version of the fast single block
updater of Knorr-Held and Rue (2002) is proposed, which exploits the fact that
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the conditional posterior of the vector ν is Gaussian conditioned on η and θ. This
step is invariant of the choice of a data density function as the data-poor block
is updated conditioned on the data-rich block. Moreover, if the latent field x is a
GMRF with a sparse precision structure, the sampling strategy for the data-poor
block is shown to conserve the sparse GMRF precision structure, allowing for fast
sampling of the corresponding GMRF.

The paper is organized as follows. Section 2.1 and Section 2.2 are devoted to
the motivation, introduction and the setup of the MCMC split sampler. The pro-
posed sampling schemes within the data-rich and data-poor blocks are presented
in Sections 2.3 and Section 2.4, respectively. Examples on the implementation
of the MCMC split sampler are given in Section 3. In Section 3.1 we present
a LGM with a latent spatial model structure on mean and log-variance param-
eters, and show how the MCMC split sampler scales well as the dimensions of
the latent parameters in the data-poor block increase. An example on extremes
based on a simulated data set is given in Section 3.2, where the focus is on a
LGM where latent models are imposed on all three parameters of the generalized
extreme value distribution. In Appendix A, we give an extension to the sampling
scheme proposed in Section 2.3, which is applicable if conditional independence
assumptions are imposed on the data data density function. Lastly, in Appendix
B, we show the necessary proofs for the main results in the paper.

II.2 The MCMC split sampler

II.2.1 Motivation and model setup
Consider, as a motivation and without loss of generality, a data density function
π(y | µ, τ ) where µ and τ are vectors of location and log-scale parameters,
respectively, which are modeled with latent Gaussian fields. That is, assume the
following additive model structure

µ = Xµβµ +Aµuµ, τ = Xτβτ +Aτuτ

where Xµ and Xτ are fixed design matrices; βµ and βτ are the corresponding
weights; Aµ and Aτ are fixed matrices; and uµ and uτ are structured random
effects. In order to increase computational stability in the posterior inference
calculations and for mathematical derivations of the MCMC split sampler, we
introduce unstructured random effects, εµ and ετ , to the model. That is,

µ = Xµβµ +Aµuµ + εµ, τ = Xτβτ +Aτuτ + ετ . (II.1)

Small variances can be imposed a priori on the unstructured random effects εµ
and ετ if they are not desired in the model. However, adding the unstructured
random effects is reasonable in many cases from a statistical modeling point of
view as they serve as error terms for the latent models. Furthermore, adding the
εµ and ετ terms to the latent models yields an analogous latent model structure
as implied by the structured additive regression in Fahrmeir et al. (1994) where
only the mean is linked to a structured additive predictor through a link function.
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Assign the following Gaussian prior density functions to the latent model
parameters

π(βµ) = N (βµ | µµβ ,Q
−1
µβ ), π(βτ ) = N (βτ | µτβ ,Q

−1
τβ )

π(uµ) = N (uµ | µµu,Q
−1
µu), π(uτ ) = N (uτ | µτu,Q

−1
τu )

π(εµ) = N (εµ | 0,Q−1µε ), π(ετ ) = N (ετ | 0,Q−1τε ) (II.2)

where parameters of the prior density functions can potentially depend of a set
of hyperparameters θ, and Q−1µε and Q−1τε are diagonal matrices.

As the vector µ in equation (II.1) is a linear combination of βµ, uµ and εµ, it is
equivalent to obtain MCMC samples from the posterior distribution of (µ,βµ,uµ)
and from the posterior distribution of (βµ,uµ, εµ). Analogous argument holds for
the log-scale parameters. The MCMC split sampler is designed to obtain MCMC
samples from the posterior distribution of (µ, τ ,βµ,βτ ,uµ,uτ ) as opposed to
(βµ,βτ ,uµ,uτ , εµ, ετ ) as in the former parameterization only the vector (µ, τ )
enters the data density function, while all the elements of the latter vector enter
the data density function in the latter parameterization. This parameterization
for posterior inference is along the lines of the posterior inference scheme proposed
in Rue et al. (2009). Thus, define

η =
(
µT, τT

)T
, ν =

(
βT
µ,u

T
µ,β

T
τ ,u

T
τ

)T
which will act as the splitting of the parameters of the latent field.

The latent model structure in (II.1) and the prior distributions in (II.2) can
be written in a joint matrix form, which forms the basis for the derivation of the
MCMC split sampler. Define the following matrices and vectors

Z =

(
Xµ Aµ · ·
· · Xτ Aτ

)
, ε =

(
εµ
ετ

)
, Qε =

(
Qµε ·
· Qτε

)
and group the following parameters and matrices together

µν =


µµβ
µµu
µτβ
µτu

 , Qν =


Qµβ · · ·
· Qµu · ·
· · Qτβ ·
· · · Qτu


where the dotted entries denote zero entries. The additive model structure im-
plied by (II.1) for both latent parameters is thus equivalent to the matrix form

η = Zν + ε (II.3)

and the Gaussian prior assumptions in (II.2) are equivalent to
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π (η | ν) = N
(
η | Zν,Q−1ε

)
, (II.4)

π (ν) = N
(
ν | µν ,Q

−1
ν

)
.

As the data density function and the corresponding parameters were arbi-
trarily chosen above, analogous derivations can be carried out for any parametric
data density function and any of its parameters. For example, in addition to
imposing latent Gaussian models on the location and log-scale parameters of the
generalized extreme value distribution a latent Gaussian model can also be im-
posed on the shape parameter, see Section II.3.2 for details. Therefore, equations
(II.3) and (II.4) are general in the sense that most of LGMs used in practice can
be expressed in the same form. We will thus adapt equations (II.3) and (II.4)
as a general setup for the latent model structures for LGMs henceforth in this
paper.

The following lemma, based on known results, plays a vital role in the imple-
mentation of the MCMC split sampler.

Lemma II.1. Assume the distribution assumptions given in (II.4), for any mean
vector µν , fixed matrix Z, and precision matrices Qε and Qν . The joint prior
density function of (η,ν) is then Gaussian of the form

π

(
η
ν

)
= N

((
η
ν

)∣∣∣∣ (Zµνµν

)
,

(
Qε −QεZ

−ZTQε Qν +ZTQεZ

)−1)
(II.5)

and the conditional density function of ν conditioned on η becomes

π(ν | η) = N
(
ν
∣∣∣Q−1ν|η(Qνµν +ZTQεη),Q−1ν|η

)
(II.6)

where Qν|η = Qν +ZTQεZ.

See Appendix II.B.1 for proof. Note that, as the vector (ηT,νT)T is jointly
Gaussian it can be viewed as the latent Gaussian vector x in the LGM setup.

II.2.2 The sampling scheme

The vector η in (II.3) consists of the parameters of the latent field that explicitly
enter the likelihood function while the vector ν consists of the parameters of the
latent field which do not enter it. Therefore, the data vector y is conditionally
independent of ν conditioned on η, that is π(y | η,ν) = π(y | η). The parameters
η and ν are referred to as the data-rich and data-poor components of the latent
field, respectively, in this paper. The corresponding posterior distribution, where
the data-poor components of the latent field are potentially dependent on a vector
of hyperparameters θ, is thus proportional to

π(η,ν,θ | y) ∝ π(y | η)π(η,ν | θ)π(θ). (II.7)
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Using the relationship in (II.7), we propose the following two block MCMC sam-
pling scheme to obtain MCMC samples from the posterior density π(η,ν,θ | y).
The vector η is placed in the data-rich block, and the vectors ν and θ are grouped
together in the data-poor block. The MCMC split sampler obtains a sample from
the posterior density π(η,ν,θ | y) by sampling from one of the blocks conditioned
on the other in a Gibbs sampling setting. That is, the (k+ 1)-th MCMC sample
from the posterior density π(η,ν,θ | y) is obtained by using the following two
block Gibbs sampling scheme

Data-rich block: sample ηk+1 from π(η | y,νk,θk)

Data-poor block: sample (νk+1,θk+1) jointly from π(ν,θ | y,ηk+1)

This scheme forms the basis of the MCMC split sampler. The potentially in-
volved but often low-dimensional structure of the data-rich block is separated
from the parameters in the data-poor block. By separating the two blocks,
MCMC sampling strategies which exploit the conditional model structures can
be implemented within each block in order to increase computational efficiency.
Although any computationally efficient MCMC samplers are applicable within
the blocks, we propose the following sampling schemes which are tailored for the
conditional model structures of the blocks. The details of the proposed samplers
for each block are summarized in Section II.2.3 and Section II.2.4.

II.2.3 Sampler for the data-rich block

The conditional posterior density function π(η | y,ν,θ) in the data-rich block
is intractable in most applications. In order to obtain MCMC samples from
the conditional posterior density function we propose the following Metropolis–
Hasting type MCMC algorithm with a tailored independence proposal density
(Rue and Held 2005).

To construct a computationally efficient independence proposal density, we
approximate the conditional posterior density π(η | y,ν,θ) with a Gaussian
approximation evaluated at the mode of conditional posterior density. Using the
logarithm of the conditional posterior, that is

log π(η | y,ν,θ) = f(η)− 1

2
ηTQεη + (QεZν)Tη + const (II.8)

where f(η) = log π(y | η) for notational convenience, the following can be shown.

Theorem II.2. The Gaussian approximation of the conditional posterior density
π(η | y,ν,θ) is given by

π̃(η | y,ν,θ) = N
(
η | η0, (Qε −H)−1

)
(II.9)

where η0 is the mode of the conditional posterior density π(η | y,ν,θ) and H
is the Hessian of the logarithm of conditional posterior evaluated at the mode,
H = ∇2f(η0).
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See Appendix II.B.1 for proof. Note that, adding the additive unstructured
error term ε to the model in (II.2) prevents the precision matrix in (II.9) from
being singular and thus ensures numerical stability.

As the Gaussian approximation in (II.9) is constructed at the conditional
posterior mode η0, a proposal density q for η based on (II.9) thus becomes
invariant of the current position of η in the MCMC iteration. Therefore, the
proposal density q is an independence proposal density (Chib and Greenberg
1995, Rue and Held 2005). That is, in the (k + 1)-th iteration the proposal
density is invariant of ηk, that is q(η∗ | ηk) = q(η∗).

When a new η∗ is proposed with the independence proposal density in (II.9)
in the (k + 1)-th iteration, it is accepted with probability

α = min

{
1,
π(η∗ | y,ν,θ)

π(ηk | y,ν,θ)
· q(η

k)

q(η∗)

}
. (II.10)

The logarithm of the ratio in (II.10) can be simplified, as stated in Lemma
II.3, in order to reduce computational cost.

Lemma II.3. Assume the proposal density q implied by the Gaussian approx-
imation in (II.9) for the data-rich block. The logarithm of the acceptance ratio
given in (II.10) can be simplified to

r =f(η∗)−
(

1

2
(η∗)TH + bT

)
η∗ − f(ηk) +

(
1

2
(ηk)TH + bT

)
ηk (II.11)

where b = ∇f(η0)−Hη0.

See Appendix II.B.2 for proof. As the gradient ∇f(η0) and Hessian H have
already been calculated to obtain (II.9), the expression in (II.11) is computation-
ally efficient to calculate.

In many applications conditional independence assumptions are imposed on
the data density function. That is, there exists a partition of η into subvectors ηi,
such that π(y | η) =

∏
i πi(yi | ηi), which is turn implies f(η) =

∑
i fi(ηi), where

fi is the logarithm of the marginal data density function in the i-th partition. In
some cases, a proposal density based on the Gaussian approximation in (II.9) can
be a poor approximation of the conditional posterior density in some partition of
η. Updating the whole vector η in one block may then result in the MCMC chain
getting stuck. As a result the computational efficiency of the sampler is reduced.
In order to circumvent this issue and to retain the computational speed gained by
using the Gaussian approximation in (II.9) as a proposal density, a modification
can be made to the sampling scheme which utilizes the conditional independence
of the partitions within the data-rich block. The details on the modification can
be seen in Appendix II.A. The resulting sampling scheme is outlined in Algorithm
3. Note that by choosing I = 1 in Algorithm 3, the above sampling scheme
without the conditional independence assumptions on the likelihood is obtained,
while selecting I ≥ 2 in Algorithm 3 assumes the aforementioned partitioning of
η and that each ηi is accepted or rejected separately.
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Algorithm 3 The proposed algorithm for obtaining the (k + 1)-th sample from
π(η|y,ν,θ) in the data-rich block. By choosing I = 1, the sampling scheme
introduced in Section II.2.3 is obtained. For I ≥ 2 the modified sampling scheme,
which is derived in Appendix II.A, is obtained for the partitions.
Input: (ηk,νk)
1: Find the mode η0 = arg max

η
log π(η|y,νk,θ)

2: Calculate H = ∇2f(η0) and b = ∇f(η0)−Hη0

3: Sample η∗ ∼ N
(
η0, (Qε −H)

−1
)

4: Calculate ρ(ηk) and ρ(η∗), where

ρ(η) =

(
−1

2
ηTH − bT

)
◦ η

and ◦ denotes an entrywise product
5: for i = 1, . . . , I
6: Calculate ri = fi(η

∗
i ) + ρ(η∗)Ti 1−

(
fi(η

k
i ) + ρ(ηk)Ti 1

)
7: Calculate αi = min {1, exp ri}
8: Sample ui ∼ U(0, 1)
9: if αi > ui

10: ηk+1
i = η∗i

11: else if αi < ui
12: ηk+1

i = ηki
13: end if
14: end for
Output: ηk+1
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II.2.4 Sampler for the data-poor block

The parameters (ν,θ) in the data-poor block are, by construction, conditionally
independent of y conditioned on the vector η from the data-rich block, that is,

π(ν,θ | y,η) = π(ν,θ | η).

The conditional posterior density function of the data-poor block is therefore
invariant of the choice of likelihood function and proportional to

π(ν,θ | y,η) ∝ π(ν | η,θ)π(θ) (II.12)

where the conditional density function π(ν | η,θ) is a Gaussian density of the
form given in equation (II.6). Moreover, if the Gaussian density functions in the
prior assumptions in (II.4) are GMRFs with sparse precision structures then the
Gaussian density function in (II.6) retains the sparse GMRF structure induced
by the prior assumption, by known results about conditioning of GRMFs (Rue
and Held 2005). Fast sampling algorithms for GMRFs can thus be implemented
to obtain samples from the Gaussian density function in (II.6), as discussed in
Rue (2001).

The relation in (II.12) and the Gaussianity of π(ν | η,θ) in (II.6) motivate
the following Metropolis–Hastings based sampling algorithm, which is a modified
version of the one block sampler of Knorr-Held and Rue (2002). For some proposal
density q(θ∗ | θk) for the hyperparameters θ, a new proposed value (ν∗,θ∗) is
generated jointly as follows:

θ∗ ∼ q(θ∗ | θk) (II.13)

ν∗ ∼ π(ν∗ | ηk+1,θ∗).

Denote the proposal density implied by (II.13) with q(ν∗,θ∗ | νk,θk). The
proposed value (ν∗,θ∗) is then accepted jointly with acceptance probability

α = min

{
1,
π(ν∗,θ∗ | y,ηk+1)

π(νk,θk | y,ηk+1)

q(νk,θk | ν∗,θ∗)
q(ν∗,θ∗ | νk,θk)

}
. (II.14)

In Lemma II.4 we show how the acceptance ratio in (II.14) can be simplified,
which is modified version of the results shown in Knorr-Held and Rue (2002).

Lemma II.4. Assume the proposal density implied by (II.13) for the data-poor
block, and denote the proposal density with q(ν∗,θ∗ | νk,θk). The corresponding
acceptance ratio in (II.14), can be simplified to

π(ν∗,θ∗ | y,ηk+1)

π(νk,θk | y,ηk+1)

q(νk,θk | ν∗,θ∗)
q(ν∗,θ∗ | νk,θk)

=
π(θ∗ | ηk+1)

π(θk | ηk+1)

q(θk | θ∗)
q(θ∗ | θk)

(II.15)

and is therefore independent of the value of ν.
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In other words, the acceptance ratio in (II.15) is only dependent on the accep-
tance ratio for θ. Further, since the conditional posterior π(ν | η,θ) is a known
Gaussian the proposed sampling strategy scales well in terms of computational
efficiency as the dimensions of the data-poor component of the latent field ν
increases.

When the Gaussian models in the prior assumptions (II.4) are GMRF density
functions with a sparse precision structure, the ratio in (II.15) is computationally
costly to calculate directly, since π(θ | η) ∝ π(θ)π(η | θ) and π(η | θ) does not
necessarily preserve the sparse GMRF structure. However, as the ratio in (II.15)
is only dependent on the acceptance ratio for θ it can be shown that the ratio in
(II.15) can be rewritten in order to preserve the sparse GMRF precision structure,
as stated in the Theorem II.5.

Theorem II.5. The term π(θ∗ | ηk+1)
/
π(θk | ηk+1) in (II.15) can be rewritten

as

π(θ∗ | ηk+1)

π(θk | ηk+1)
=
π(θ∗)

π(θk)
· π(ηk+1 | 0,θ∗)π(0 | θ∗)

π(0 | ηk+1,θ∗)
· π(0 | ηk+1,θk)

π(ηk+1 | 0,θk)π(0 | θk)
(II.16)

Additionally, the conditional density functions on the right hand side in (II.16)
on a logarithmic scale are

log π(η|0,θ) =
1

2
log detQε −

1

2
ηTQεη + const

log π(0|θ) =
1

2
log detQν + const (II.17)

log π(0|η,θ) =
1

2
log det

(
Qν +ZTQεZ

)
+((

Qν +ZTQεZ
)−1

ZTQεη

)
ZTQεη + const

Moreover, if the Gaussian prior density functions in (II.4) are GMRFs with
sparse precision structures, then all of the conditional density functions on the
right hand side of (II.16) are GMRFs with sparse precision structures.

Theorem II.5 shows how the ratio in (II.14) can be calculated with low compu-
tational cost by using the results in (II.15), (II.16) and (II.17) in case of GMRFs
with sparse precision structures. This is a key result for the implementation of
the proposed sampling scheme in the data-poor block for GMRFs with sparse
precision structures. The algorithm for the sampling scheme in the data-poor
block is is summarized in Algorithm 4.
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Algorithm 4 The proposed algorithm for obtaining the (k + 1)-th sample from
π(ν,θ|y,η) in the data-poor block.

Input: (νk,θk,ηk+1)
1: Sample each element of θ∗ from a proposal density q(θ∗ | θk)
2: Calculate

r =
π(θ∗)

π(θk)
· π(ηk+1|0,θ∗)π(0|θ∗)

π(0|ηk+1,θ∗)

π(0|ηk+1,θk)

π(ηk+1|0,θk)π(0|θk)
· q(θ

k | θ∗)
q(θ∗ | θk)

on a logarithmic scale, using the equations in (II.17) for the conditional pos-
terior densities functions

3: Calculate α = min {1, r}
4: Sample u ∼ U(0, 1)
5: if α > u
6: Calcualte Qν|η = Qν +ZTQεZ
7: Sample ν∗ from

ν∗|ηk+1,θ∗ ∼ N
(
ν∗
∣∣∣Q−1ν|η(Qνµν +ZTQεη

k+1),Q−1ν|η

)
8: (νk+1,θk+1) = (ν∗,θ∗)
9: else if α < u

10: (νk+1,θk+1) = (νk,θk)
11: end if
Output: (νk+1,θk+1)
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II.3 Examples
Two examples are presented in this section where the MCMC split sampler is
applied to obtain posterior samples from the proposed models. In the former
example, a data set on annual mean precipitation in Iceland is modeled with a
LGM that has a spatial model structure at the latent level. The latter example
is on extreme flood events.

We will emphasize that the aim of this section is to present some of the pos-
sibilities offered by the MCMC split sampler rather than to claim which model
is the best for each data set. The main purpose of the first example is to demon-
strate that the MCMC split sampler is well suited to infer LGMs with a spatial
models on both location and scale parameters of the data density function, and
that the computational efficiency of the sampler scales well as the number of
unobserved spatial grid points increases. The main goal of the latter example
is show that the MCMC split sampler is designed to infer LGMs with a non-
Gaussian three parameter data density function, where all the three parameters
are modeled with latent Gaussian models.

II.3.1 Annual mean precipitation in Iceland
The data set analyzed in this section is on observations on annual precipitation
from 86 observational sites across Iceland, see Figure II.1, over the years 1962 to
2006. Times series on annual precipitation from the observational sites Reykjavík,
Æðey, Akureyri and Kvísker are shown in Figure II.2. The data was provided by
the Icelandic Meteorological Office (IMO).

A LGM with a SPDE spatial model structure (Lindgren et al. 2011) at the
latent level is presented to obtain the spatially varying distributional properties
of annual precipitation over the domain. We will demonstrate that the compu-
tational efficiency of the MCMC split sampler scales well as the number of grid
points in the mesh in the SPDE approach increase.

Model setup

The data level: The data were modeled with a LGM assuming the Gaussian
distribution for the observations and conditional independence over the observa-
tional sites. That is, let yit denote the annual precipitation at observational site
i at year t then the data density function becomes

π(yit|µi, τi) =

N (yit | µi, exp(τi)) , i = 1, . . . , I, t = 1, . . . , T

where I is the number of sites, T is the number of years; µi and τi are mean and
log-variance parameters, respectively, which are both allowed to vary spatially.

The latent level: The following model structure was implemented for the mean
parameter µ = (µ1, . . . , µI)

T at the latent level of the model,

µ = Xµβµ +Aµuµ + εµ,
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Figure II.1: The I = 86 observational sites in Iceland. Reykjavík is marked with red,
Æðey is marked with blue, Akureyri is marked with green and Kvísker is marked with
purple.
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Figure II.2: Times series over the years 1962 to 2006 on annual precipitation. The
time series are based on observations from Reykjavík (red curve), Æðey (blue curve),
Akueyri (green curve) and Kvísker (purple curve).
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where Xµ is a design matrix consisting of a vector of ones and covariates that
are based on the meteorological model of Crochet et al. (2007), see Geirsson
et al. (2015) for details; βµ are the corresponding weights; uµ denotes a Matérn
type spatial field constructed with the SPDE approach (Lindgren et al. 2011)
on a triangulated mesh over the spatial domain with a smoothness parameters
chosen as one, which corresponds to an almost once differentiable Matérn field
and α = 2 in the SPDE method; AS is a known projection matrix; the matrix
product ASuµ then denotes the spatial effect at the observational sites, which
captures the spatial variation in the data that is unexplained by the covariate
and εµ is an unstructured random effect. Analogous model structure is also
implemented for the log-variance parameter, that is

τ = Xτβτ +ASuτ + ετ .

whereXτ is a design matrix consisting of a vector of ones and the aforementioned
meteorological covariate on a logarithmic scale.

Working within the LGM setup, the following prior density functions were
assigned to parameters at the latent level of the model.

π(βµ) = N (βµ | 0, κ−1βµI), π(βτ ) = N (βτ | 0, κ−1βτ I),

π(uµ) = N (uµ | 0,Q−1uµ), π(uτ ) = N (uτ | 0,Q−1uτ ),

π(εµ) = N (εµ | 0, σ2
εµI), π(ετ ) = N (ετ | 0, σ2

ετI).

The parameter values κβµ = 0.0025 and κβτ = 0.25 were fixed in the prior dis-
tributions for βµ and βτ . The precision matrices Quµ and Quµ are constructed
with SPDE approach, and have sparse GMRF precision structures. Further, the
precision matrix Quµ has two parameters, σuµ and κuµ, which serve as hyper-
parameters of the spatial model for µ. The hyperparameters σuµ and κuµ are
related to the marginal variance and range of the spatial field, respectively. Anal-
ogous structure holds forQuτ . The parameters σ2

εµ and σ2
ετ are unknown variance

parameters for the unstructured random effects.

The hyper level: Let θ denote all the hyper parameters of the model that are
not fixed, that is

θ = (σuµ, κuµ, σεµ, σuτ , κuτ , σετ )T.

Lognormal prior distributions with fixed parameters were assigned to the hyper-
parmeters in θ.

Posterior inference

In order to apply the MCMC split sampler to the aforementioned model, the
model parameters are assigned to the data-rich block which includes η = (µT, τT)T

and the data-poor block which consists of ν = (βT
µ,u

T
µ,β

T
τ ,u

T
τ )T and the hyper-

parameters θ.
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The aforementioned model setup and prior assumptions are equivalent to the
setup implied in equations (II.3) and (II.4) with

Z =

(
Xµ Aµ · ·
· · Xτ Aτ

)
, Qε =

(
σ−2εµ I ·
· σ−2ετ I

)

Qν =


κβµI · · ·
· Quµ · ·
· · κβτI ·
· · · Quτ

 . (II.18)

Data-rich block: The conditional posterior π(η | y,ν,θ) in the data-rich
block is intractable. However, the logarithm of the conditional posterior of the
data-rich block is of the same form as in equation (II.8), with Z and Qε defined
in equation (II.18) and

f(η) =

I∑
i=1

fi(ηi) =

I∑
i=1

∑
t∈Ai

logN (yit|µi, exp τi), (II.19)

where the set Ai contains the indices of the years t observed at site i. By model
assumptions, the vectors ηi = (µi, τi)

T become conditionally independent in the
conditional posterior π(η | y,ν,θ) over observational sites i. This demonstrates
that the modification of the sampling scheme in Section II.2.3, outlined in Ap-
pendix II.A, is applicable. Therefore Algorithm 3 was used to obtain MCMC
samples from the conditional posterior π(η | y,ν,θ) with I = 86, Qε as in (II.18)
and f(η) as in (II.19).

Data-poor block: In order to implement the sampling strategy outlined in Sec-
tion II.2.4 and to obtain MCMC samples from the conditional posterior π(ν,θ |
y,η), a proposal density q for the hyperparameters θ must be chosen. In this
example, the proposal strategy suggested in (Knorr-Held and Rue 2002) is used
for each element of θ. That is, let θ∗i = fθki where the scaling factor f has the
density

π(f) ∝ 1 + 1/f for f ∈ [1/F, F ] (II.20)

where F > 1 is a tuning parameter. Knorr-Held and Rue (2002) show that this
is a symmetric proposal density in the sense that q(θ∗i |θki ) = q(θki |θ∗i ). Therefore,
by using this proposal density, the acceptance probability in equation (II.14)
simplifies to

α = min

{
1,
π(θ∗ | ηk+1)

π(θk | ηk+1)

}
Moreover, the ratio in (II.16) in Theorem II.5 was used to calculate the acceptance
probability, which preserves the sparse GMRF precision structure induced by
the SPDE approach. Thus, Algorithm 4 is was implemented to obtain MCMC
samples from the conditional posterior π(ν,θ | y,η), with Z, Qε and Qν defined
in (II.18) and the proposal density in (II.20).
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Convergence diagnostics

The following convergence diagnostics are based on four MCMC chains sampled
in parallel with the MCMC split sampler from the proposed model. Each chain
was calculated with 50000 iterations where 10000 iterations were burned in. The
posterior inference was carried out separately for three different mesh resolutions.
That is, a coarse resolution based on 411 mesh points; a medium resolution based
on 858 mesh points; and a dense resolution based 1752 mesh points. In Figure
II.3 the three different meshes are presented on a same scale. The top, middle and
bottom panels in Figure II.3 show the coarse resolution, medium resolution and
dense resolution meshes, respectively. Runtime, on a modern desktop (Ivy Bridge
Intel Core i7-3770K, 16GB RAM and a solid state hard drive), was approximately
6, 6.5 and 7 hours for the coarse, medium and dense mesh resolution, respectively.
All calculations were carried out using R.

Figure II.3: The triangulated meshes over the spatial domain, based on the coarse
mesh (top left), medium mesh (top right) and dense mesh (bottom).

Gelman–Rubin plots, based on the MCMC runs, of the mean parameter µ in
Reykjavík; the covariate coefficient βµ2; and the marginal standard deviation for
the spatial field σuµ are shown in the first, second and third column, respectively,
in Figure II.4. The results based on the coarse resolution, medium resolution and
dense resolution meshes for the aforementioned parameters are shown in the first,
second and third row, respectively, in Figure II.4. A comparison of the results in
Figure II.4 between the different mesh resolutions reveals that the convergence
in the mean is achieved for the three parameters at a similar rate. Furthermore,
the Gelman–Rubin plots in Figure II.4 show that the sampler has converged in
the mean after roughly 7500 iterations for all mesh resolutions. Similar results
hold for all of the other model parameters (results not shown).
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Autocorrelation plots for the same set of parameters and arranged identically
as in Figure II.4 are shown in Figure II.5. The results demonstrate that the
MCMC chains for the mean parameter µ in Reykjavík and the covariate coefficient
βµ2 exhibit a negligible autocorrelation after lag 10. The MCMC samples of the
hyperparameter σuµ show autocorrelation around 0.3 at lag 50. Similar results
hold for all the other model parameters (results not shown).

Relying on the Gelman-Rubin statistics and the autocorrelation plots, the
MCMC chains exhibit all signs of having converged. Moreover, the autocorre-
lation plots in Figure II.5 reveal that the autocorrelation in the MCMC chains
does not increase with number of mesh points, which in turn indicates that the
autocorrelation in the MCMC chains is invariant of the dimensions of the data-
poor part of the latent field ν. These results demonstrate that the MCMC split
sampler retains its computational efficiency when the number of mesh points in-
creases, which is to be expected as the acceptance probability in (II.15) in the
data-poor block in independent of the ν.

Furthermore, as the acceptance probability in (II.15) within the data-poor
block is only dependent on the hyperparameters, the autocorrelation seen in
MCMC chains for the hyperparameter σuµ in Figure II.5 is mainly affected by
the choice of proposal density for θ, which is in this example the sampler in (II.20).
In Section II.3.2 we will demonstrate the modularity of the MCMC split sampler,
by choosing another proposal density for the hyperparmeters θ in Algorithm 4
which significantly reduces the autocorrelation in MCMC chains for θ.

II.3.2 Flood analyzis
In this section, we present a simulation study on extreme events. The data set
consists of simulations of monthly maximum instantaneous flow based on charac-
teristics of ten river catchments around Iceland. The characterizing features that
were used to simulate the data for each river were chosen as river catchment area
and maximum daily precipitation, as both river catchment area and maximum
daily precipitation are known to be positively correlated with maximum instan-
taneous flow, see Davíðsson (2015) and Crochet et al. (2012). The simulated time
series were chosen to be 150 years.

Model setup

The data level: The data were modeled with a LGM assuming the generalized
extreme value distribution (g.e.v.) for the observations. To that extend, let ymj,t
denote the value from river j at month m and year t, with a cumulative density
function of the form

F (ymj,t) = exp

{
−
(

1 + ξmj

(
ymj,t − µmj

σmj

))−1/ξmj}

if 1 + ξmj(x − µmj)/σi > 0, F (yit) = 0 otherwise. The parameters µmj , σmj
and ξmj are the location, scale and shape parameters of the g.e.v. distribution
for river j in month m. Additionally, J is the number of rivers and T is the



104 Chapter II

µReykjavík βµ2 σuµ

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●●
●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●
●
●●

●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●
●●

●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

1.0

1.1

1.2

1.3

1.4

1.5

1.0

1.1

1.2

1.3

1.4

1.5

1.0

1.1

1.2

1.3

1.4

1.5

C
oarse

M
edium

D
ense

0 25000 50000 0 25000 50000 0 25000 50000
Iterations

G
el

m
an

−
R

ub
in

 s
ta

tis
tic

Figure II.4: Gelman–Rubin plots for µ, βµ2, and σuµ for three different mesh res-
olutions. The black solid curve denotes the median of the Gelman–Rubin statistics,
and the blue dashed curve denotes the upper limit of the 95% confidence interval for
the Gelman–Rubin statistics. The first row is based on a coarse resolution (411 mesh
points). The second row is based on a medium resolution (858 mesh points). The third
row is based on a dense resolution (1752 mesh points). The results demonstrate the
MCMC split sampler has converged in the mean after roughly 7500 iterations.
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Figure II.5: Autocorrelation plots for µ, βµ2, and σuµ for three different mesh sizes.
The first row is based on a coarse resolution (411 mesh points). The second row is
based on a medium resolution (858 mesh points). The third row is based on a dense
resolution (1752 mesh points). The results demonstrate that the autocorrelation in the
MCMC chains decays rapidly and in invariant of the number of points in the mesh.
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number of years. Further, the data is assumed independent between both rivers
and between months. These assumptions were made for demonstrative purposes.

The latent level: The location and scale parameters are modeled on a loga-
rithmic scale at the latent level, which is modelling setup along the lines presented
in Cunnane and Nash (1971) and GREHY (1996). Thus, define λmj = logµmj
and τmj = log σmj . The shape parameter is modeled on its native scale.

As discussed in Davíðsson (2015), the underlying processes of monthly max-
imum instantaneous flow exhibit a seasonal behavior. Therefore, the following
seasonal model is proposed for the location parameter on a logarithmic scale.
That is,

λmj = β0,λ + u0,m,λ + x1,mj(β1,λ + u1,m,λ)

+ . . .+ xp,m,j(βp,λ + up,m,λ) + εmj,λ (II.21)

where β0,λ denotes an overall intercept term; xi,mj denotes the i-th covariate
in month m at the j-th river; βi,λ denotes the weight of the i-th covariate for
i = 1, . . . , p; u0,m,λ denotes the seasonal random effect of the m-th month; ui,m,λ
denotes the seasonal additional weight of the i-th covariate within month m; and
εmj,λ denotes an unstructured random effect.

In order to write the model in a matrix form for the implementation of the
MCMC split sampler, combine the location parameters for river j over months.
That is,

λj = (λ1j , . . . , λ12j)
T, j = 1, . . . , J

and define the following

ui,λ = (ui,1,λ, . . . , ui,12,λ)T,Ai,j = diag(xi,j1, . . . , xi,j12),

where i = 0, . . . , p and x0,jm = 1 denotes the intercept term for river j and month
m. Additionally, define

Xj =


1 x1,j,1 . . . xp,j,1
1 x1,j,2 . . . xp,1,2
...

...
1 x1,j,12 . . . xp,1,12

 , Aj =
(
A0,j , . . . ,Ap,j

)
.

The seasonal model presented in (II.21) for the log-location parameter for river
j can be written in matrix form as

λj = Xjβλ +Ajuλ + εj,λ

where βλ = (β0,λ, . . . , βp,λ)T, uλ = (uT
0,λ, . . . ,u

T
p,λ)T, and εj,λ = (ε1j,λ, . . . , ε12j,λ)T.

By combing the seasonal model over rivers, the following holds

λ = Xβλ +Auλ + ελ
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where

λ =

λ1

...
λJ

 ,X =

X1

...
XJ

 ,A =

A1

...
AJ

 , ελ =

ε1,λ...
εJ,λ

 .

Analogous model structure was also implemented for the log-scale parameter.
That is,

τ = Xβτ +Auτ + ετ .

A reduced model with a similar structure was implemented for the shape param-
eter ξ. That is

ξmj = β0,ξ + u0,m,ξ + εmj,ξ (II.22)

where β0,ξ denotes an overall intercept term; u0,m,ξ denotes the seasonal random
effect of the m-th month; and εmj,ξ denotes an unstructured random effect. The
full matrix model for ξ becomes

ξ = 112Jβ0,ξ + (1J ⊗ I12)uξ + εξ

where 1n denotes an n-dimensional vector of ones.
Working within the LGM framework, the following prior density functions

were assigned to the latent parameters. First assign,

π(βλ) = N (βλ | 0, σ2
βλI), π(βτ ) = N (βτ | 0, σ2

βτI), π(βξ) = N (βξ | 0, σ2
βξ).

The parameters βλ,βτ and βξ are assumed a priori to have a low precision on
their native scales in order to let the data play the dominate role in their inference.
Thus, the parameter values σβλ = 4, σβτ = 4 and σβξ = 2 were chosen for the
prior density functions.

Secondly, the selection of prior density functions for the seasonal random ef-
fects needs to incorporate a correlation structure that induces a strong correlation
between neighbouring months. This is achieved by assigning the following prior
density functions

π(uλ) = N (uλ | 0, diag(ψλ)⊗Q−1u ),

π(uτ ) = N (uτ | 0,diag(ψτ )⊗Q−1u ),

π(uξ) = N (uξ | 0, ψξQ−1u )

where ψλ = (ψ0,λ, . . . , ψp,λ)T, ψτ = (ψ0,τ , . . . , ψp,τ )T and ψξ serve as scaling
parameters for the monthly random effects corresponding to the three intercepts
and the covariates; and the Qu(κ) is a 12 × 12 circular band precision matrix
that has the vector

[1 − 2(κ2 + 2) κ4 + 4κ2 + 6 − 2(κ2 + 2) 1]
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on the diagonal band, as discussed in Lindgren et al. (2011), which capture the
autocorrelation between months. In this example, the decay parameters was
fixed to simplify the inference and set equal to κ = 1. Further, this value of κ
induces an autocorrelation a priori between consecutive months. Third, for the
unstructured random effects, the following priors were chosen.

π(ελ) = N (ελ | 0, σ2
ελI), π(ετ ) = N (ετ | 0, σ2

ετI), π(εξ) = N (εξ | 0, σ2
εξI).

The hyper level: Let θ denote all the hyperparameters of the model that are
not fixed on a logarithmic scale for computational purposes. That is,

θ = ( logψ0,λ, . . . , logψp,λ, logψ0,τ , . . . , logψp,τ , logψξ, log σ2
ελ, log σ2

ετ , log σ2
εξ)

Gaussian prior distributions with fixed parameters were assigned to the hyper-
parmeters in θ.

Posterior inference

The data-rich block includes ηT = (µT, τT, ξT)T and the data-poor block consists
of νT = (βT

µ,u
T
µ,β

T
τ ,u

T
τ , β

T
ξ ,u

T
ξ )T and the hyperparameters θ. For the implemen-

tations of the MCMC split sampler, define the following sparse matrices

Z =

X A · · · ·
· · X A · ·
· · · · 112J I12J

 ,Qε =

σ−2ελ I · ·
· σ−2ετ I ·
· · σ−2εξ I

 (II.23)

and

Qν = bdiag
(
σ−2βλI, diag(ψλ)⊗Q−1u , σ−2βτ I,diag(ψτ )⊗Q−1u , σ−2βξ , ψξQ

−1
u

)
(II.24)

where bdiag denotes a block diagonal matrix.

Data-rich block: The modified version of the sampling scheme in Section
II.2.3, outlined in Appendix II.A, was used to obtain MCMC samples from the
conditional posterior π(η | y,ν,θ). The logarithm of the conditional posterior is
of the same form as in equation (II.8), with Z and Qε defined in equation (II.23)
and

f(η) =

12∑
m=1

J∑
j=1

fi(ηmj) =

12∑
m=1

J∑
j=1

T∑
t=1

log πgev (ymj,t| expλmj , exp τmj , ξmj)

(II.25)

where πgev denotes the density function of the generalized extreme value distri-
bution. Therefore, Algorithm 3 was used to obtain MCMC samples from the
conditional posterior from the data-rich block, with I = J · 12 = 120, Qε as in
(II.23) and f(η) as in (II.25).
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Data-poor block: The sampling scheme outlined in Section II.2.4 was used to
obtain MCMC samples from the conditional posterior π(ν,θ | y,η) in the data-
poor block. A proposal density based on the normal distribution centered on the
last draw of θ, as discussed in Roberts et al. (1997), was selected for Algorithm
4, with a precision matrix −cH where H is a finite difference estimate of the
Hessian matrix of log π(θ|η̂) evaluated at the mode. That is,

H ≈ ∇2 log π(θ|η̂)
∣∣
θ=θ0

(II.26)

where η̂ is the maximum likelihood estimate of η for each river and month; θ0
is the mode of log π(log θ|η̂); and c is a scaling constant. Conditioning on η̂,
as opposed of ηk+1 for example, removes the necessity to estimate H in every
iteration. Moreover, setting a specific scaling c removes the need for tuning. The
scaling c = 2.382/dim(θ) was implemented, as it is optimal in a particular large
dimension scenario, see Roberts et al. (1997). The resulting proposal density
therefore becomes

q(θ∗|θk) = N
(
θ∗ | θk, (−cH)

−1
)
. (II.27)

Algorithm 4 was thus implemented to obtain MCMC sampled from the condi-
tional posterior within the data-poor block, with Z, Qε as in equation (II.23);
Qν as in equation (II.24); and the proposal density in (II.27).

Convergence diagnostics

As in Section II.3.1, the following convergence diagnostics are based on four
MCMC chains sampled in parallel with the MCMC split sampler. Each chain was
calculated with 50000 iterations where 10000 iterations were burned in. Runtime
on the same desktop as in Section II.3.1 was approximately 7 hours.

The left panel in Figure II.6 compares the empirical cumulative distribution
from river j = 1 in January with its posterior cumulative distribution functions
based on the MCMC runs. The right panel shows the corresponding probability
- probability plots. These result indicate that the model describes the data well.
Which in turn demonstrates that the MCMC split sampler recaptures the known
underlying model, which was used to generate the simulated data. Analogous
results hold across all rivers and months (results not shown).

Furthermore, as the data was generated from a known model setup, the results
of the inference based on the MCMC runs can be compared to the known values
of the model parameters. In Figure II.7, the known values of the seasonal random
effects are shown along with the corresponding 95% posterior intervals. The top
panel in Figure II.7 shows this comparison for the seasonal random effect u0,m,λ
for the log-location parameter λ as a function of months. The middle and the
bottom panels in Figure II.7 show the same comparison for u0,m,τ for the log-
scale parameter and u0,m,ξ for the shape parameter ξ, respectively. The results
reveal that the 95% posterior intervals for the seasonal random effects contain
their known values. These results demonstrate that the MCMC split sampler
recaptures the known seasonal random effects. Similar results hold for all other
model parameters (results now shown).
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Gelman–Rubin plots and auto-correlation plots for nine model parameters
based on the MCMC run are shown in Figures II.8 and II.9, respectively. Both
plots are based on the same set of parameters and arranged identically. Three
parameters were chosen from the location, scale and shape structures of the
proposed model which were placed in the first, second and third rows of Figures
II.8 and II.9, respectively. The first columns are based on parameters from the
data-rich part of the latent field; the second columns are based on parameters
from the data-poor part of the latent field; and the third column is based on
hyperparamters.

The Gelman–Rubin plots in Figure II.8 show that the sampler has converged
in the mean after roughly 10.000 iteration. Similar results hold for all the model
parameters (results not shown). Furthermore, the autocorrelation plots in Figure
II.9 demonstrate that the MCMC chains for the parameters from both the data-
rich and the data-poor parts of the latent field, exhibit a negligible autocorrelation
after lag 10. The hyperparameters show a negligible autocorrelation after lag 30.
Relying on these results, the MCMC chains exhibit all signs of having converged.
Moreover, these results further indicate that the MCMC split sampler, with the
modified proposal density of Roberts et al. (1997) implied by equation (II.26)
for the hyperparameters, is highly computationally efficient in both the data-rich
and data-poor blocks.

II.4 Discussion

The main or novelty of the MCMC split sampler lies in how the proposed blocking
scheme leads to conditional posterior structures within in the two blocks, which
can be exploited in order to construct computationally efficient sampling schemes
for each block. Additionally, the MCMC split sampler is, in principle, designed as
a modular sampling scheme in the sense that any MCMC sampling scheme can be
implemented within the blocks. Therefore, in the authors’ view, the MCMC split
sampler presents an interesting area of future research as new sampling schemes
for either block can be developed independently of the other block.

In the data-rich block, we proposed a Metropolis–Hastings algorithm with an
independence proposal density which was constructed with a Gaussian approxi-
mation of the conditional posterior density evaluated at its mode. Furthermore,
we proposed a modification the sampler which is applicable if conditional indepen-
dence assumptions are imposed on the data density function. The modification
can potentially increase the computational efficiency of the sampler, as discussed
in Appendix II.A.

Although the proposed sampler in the data-rich block is computationally effi-
cient, it is only applicable in practice if the mode of conditional posterior density
function can be found, and can be calculated reasonably fast. For example, in
the case of models where each observed data point has more than one unique
data density parameters associated with it, say of the type yi ∼ π(yi|µi, σi) for
every measurement i, finding the mode of the conditional posterior π(µi, σi|yi)
becomes computationally impractical in some cases. Models of this type include,
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Figure II.6: The left panel shows the empirical cumulative distribution of maximum
instantaneous flow from river j = 1 in January (black solid curve) and the posterior
mean of the corresponding posterior cumulative distribution functions (blue solid curve)
and corresponding 95% posterior interval (blue dashed curve). The right panel shows a
probability-probability plot of maximum instantaneous flow from river j = 1 in January,
along with 95% posterior intervals.
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Figure II.7: The top panel in shows the known value (denoted with the blue entries)
of the seasonal random effect u0,m,λ for the log-location parameter λ as function of
months m. The middle panel shows the known value (denoted with the green entries)
of the seasonal random effect u0,m,τ for log-scale parameter τ . The bottom panel shows
the known value (denoted with the red entries) of the seasonal random effect u0,m,ξ for
the shape parameter ξ. The errors bars in all panels represent the corresponding 95%
posterior intervals based on the MCMC-runs.
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Figure II.8: The figure shows Gelman–Rubin plots based on the MCMC run. The
black solid curve denotes the median of the Gelman–Rubin statistics, and the blue
dashed curve denotes the upper limit of the 95% confidence interval for the Gelman–
Rubin statistics. The first, second and third rows in the first column are based on a
randomly chosen log-location parameter λ; covariate coefficient βλ; and hyperparameter
ψλ, respectively. The second and third row show an analogous set of parameters based
on the log-scale and shape structures, respectively, of the likelihood.
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Figure II.9: The figure shows auto-correlation plots based on the MCMC run. The
first, second and third rows in the first column are based on a randomly chosen log-
location parameter λ; covariate coefficient βλ; and hyperparameter ψλ, respectively.
The second and third row show an analogous set of parameters based on the log-scale
and shape structures, respectively, of the likelihood.
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for example, certain spatial temporal models (Hrafnkelsson et al. 2012). Similar
computational issues also arise if data dependence at the data-level of a LGM is
desired, see for example Davison et al. (2012) where t-copulas are implemented
with g.e.v. marginal density functions at the data level as a model for spatial ex-
tremes. However, in both of the aforementioned cases different sampling scheme
for the data-rich block can be implemented without changing the sampling scheme
of choice in the data-poor block. For example, sampling scheme based on MALA
and HMC type algorithm are well suited for the structure of the data-rich block
in both cases.

In the data-poor block, the conditional posterior density π(ν|η,θ) is a Gaus-
sian of the form (II.6) and invariant of the data density function. These results
serves as one of the main computational advantage introduced by the MCMC
split sampler due to the following reasons. First, as the conditional posterior
π(ν|η,θ) is Gaussian, a modified version of the one block sampler of Knorr-Held
and Rue (2002), which is known to be a highly efficient sampling scheme when
applicable (Filippone et al. 2013), becomes applicable within the data-poor block
regardless of the data-density function at the data level. As a consequence, com-
putationally efficient sampling algorithms can be used to sample from the exact
conditional posterior Gaussian density π(ν|η,θ). Further, if the prior density
functions in (II.4) have a sparse GMRF precision structure, then π(ν|η,θ) pre-
serves the sparse structure as discussed in Section II.2.4, which in turn allows for
highly efficient sampling algorithms for the Gaussian density π(ν|η,θ). There-
fore, the proposed sampling scheme in Section II.2.4 for the data-poor blocks
scales well in terms of computational speed and efficiency with increasing dimen-
sions of the data-poor part of the latent field, which is of great importance to
achieve, especially in the field of spatial statistics.

Second, as the conditional posterior density π(ν|η,θ) is a known Gaussian
and the acceptance rate in the sampling scheme for the data-poor block in Sec-
tion II.2.4 is only dependent on hyperparameters, the computational efficiency
of the proposed sampling scheme for the data-poor block is only dependent of
the sampling scheme used for the hyperparameters. In this sense, the sampling
scheme in Section II.2.4 is in itself modular, that is, any proposal density for
the hyperparmeters is applicable. Choosing a computationally efficient sampling
scheme for the hyperparameters can thus increase the computational efficiency
of the overall sampling scheme within the data-poor block, as demonstrated in
the examples in Section II.3. That is, in Section II.3.1 we demonstrated how a
proposal density implied by equation (II.20) may be implemented due to its sim-
plicity. However, in Section II.3.2 we proposed a modified version of the sampling
scheme of Roberts et al. (1997) implied by equation (II.26), which reduces the
autocorrelation in the MCMC chains. In practical terms, the proposal density im-
plied by (II.26) can also be implemented Section II.3.1, which in turn reduces the
autocorrelation in the MCMC chains for the hyperparameters (results omitted).

Due to the modularity of the MCMC split sampler, sampling schemes for the
data-rich block can be developed and improved independently of the sampler in
the data-poor block, and vice versa. Additionally, as the conditional posterior
density π(ν|η,θ) becomes invariant of the data in the data-poor block, the com-
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putational advantages introduced by the conditional posterior structure in the
data-poor block hold for all LGMs. Moreover, the MCMC split sampler can be
applied to various LGMs as it is designed to handle LGMs where latent models
Gaussian models are imposed on more than just the mean structure of the data
density function. Thus, in our view, further developing and improving sampling
schemes that utilize the computational advantages introduced by the MCMC
spilt sampler presents an interesting area of future research.

Acknowledgements
The authors would like to thank the University of Iceland Doctoral Fund and
University of Iceland Research Fund which supported the research. The authors
would also like to thank the Icelandic Meteorological Office for providing the data.
The authors give their thanks to the Nordic Network on Statistical Approaches
to Regional Climate Models for Adaptation (SARMA), especially Prof. Peter
Guttorp, for providing travel support. Furthermore, the authors give their thanks
to the Department of Mathematical Sciences at the Norwegian University of
Science and Technology for hosting Óli Páll Geirsson several times, and special
gratitude to Prof. Håvard Rue for his invitation and valuable conversations.



114 Chapter II

II.A Appendix A: Conditionally independent data
density functions

In many applications of LGMs, conditional independence assumptions are im-
posed on the likelihood function, see for example the discussion in Rue et al.
(2009). That is, by the model assumptions there exists a partition of η into
subvectors ηi, i = 1, . . . , I, such that

π(y | η) =

I∏
i=1

πi(yi | ηi) (II.28)

where πi(yi|ηi) denotes the marginal data density functions of the i-th partition.
The conditional independence assumptions in (II.28) imply f(η) =

∑
i fi(ηi),

where fi is the logarithm of the marginal data density function πi(yi|ηi). As
discussed in Section II.2.3, the Gaussian approximation in (II.9) can be, in some
scenarios, a poor approximation of the conditional posterior density in some
partition i, which in turn may cause the sampler to get stuck and thus lose its
efficiency. To address this issue, we suggest a modified version of the sampler
proposed in Section II.2.3 which retains the computational speed gained by using
a Gaussian approximation as a proposal density and is applicable if conditional
independence assumptions are imposed on the data density function. Before we
introduce the modifications to the sampling scheme in Section II.2.3, we give a
few essential technical results for the modifications, which are as follows.

Lemma II.6. Assuming the conditional independence assumptions in (II.28).
Then, every pair of vectors ηi and ηi′ , such that i 6= i′, become conditionally
independent in the posterior given (y,ν,θ). In other words, the following relation
holds

π(ηi | y,η−i,ν,θ) = π(ηi | y,ν,θ) (II.29)

for all partitions i. Furthermore, the conditional posterior density of ηi is in-
dependent of y−i, which denotes the subvector of the data vector y that is not
observed in partition i. That is, the following relationship holds

π(ηi | y,ν,θ) = π(ηi | yi,ν,θ) (II.30)

for all partitions i

For notational simplicity and based on the relation in (II.29) and (II.30), we
denote the conditional posterior density of ηi with πi(ηi | y,ν,θ) henceforth.
The following corollary yields a useful identiy for the conditional posterior ηi
with πi(ηi | y,ν,θ).

Corollary II.7. Assume the conditional independence assumptions in (II.28).
The logaritym of the conditional posterior density πi(ηi | y,ν,θ) is

log πi(ηi | y,ν,θ) = fi(ηi)−
1

2
ηT
i Qε,(i,i)ηi +

(
Qε,(i,i)(Zν)i

)T
ηi +K (II.31)

where K is a constant.
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The subsequent corollary is the immediate from Theorem II.2, Lemma II.6
and the relation in (II.31).

Corollary II.8. Assuming the conditional independence assumptions in (II.28),
the Gaussian approximation of the conditional posterior πi(ηi | y,ν,θ) within
each partition i is

π̃i(ηi | y,θ,ν) = N
(
ηi | η0

i , (Qε −H)(i,i)

)
(II.32)

where η0
i denotes the mode of the marginal posterior density function πi(ηi |

y,ν,θ) and (Qε−H)(i,i) denotes the submatrix of (Qε−H) belonging to partition
i.

The next corollary shows the relation between the Gaussian approximation
density functions in (II.9) and (II.32).

Corollary II.9. Assume the conditional independence assumptions in (II.28).
Furthermore, let π̃(η | y,ν,θ) denote the Gaussian approximation of the con-
ditional posterior density π(η | y,ν,θ), and π̃i(ηi | y,ν,θ) denote the Gaussian
approximation of the conditional posterior πi(ηi | y,ν,θ) within partition i. Then
the following relation holds

π̃(η | y,ν,θ) =

I∏
i

π̃i(ηi | y,ν,θ). (II.33)

The modifications to the sampler proposed in Section II.2.3 are based on the
following observations. From the conditional posterior independence relation in
(II.29) in Lemma II.6 follows directly

π(ηi | y,η−i,ν,θ) = π(ηi | y,ν,θ)

for all partitions i. It is therefore equivalent to update ηi|y,η−i,ν,θ iteratively
over partitions i, with a Gibbs sampling approach using (II.32) as a proposal den-
sity and to update ηi|y,ν,θ separately over partitions i. By updating separately
as opposed to iteratively, the number of functions calls is reduced, which in turn
reduces computational cost.

However, in practical terms it is faster to compute the mode once by comput-
ing the maximum of log π(η|y,ν,θ) than computing the maximum of log πi(ηi|y,ν,θ)
separately in every partition i. This is due to the fact that number of function
calls increases as I increases in the numerical optimizing methods when finding
the mode of log πi(ηi|y,ν,θ) within every partition i. Furthermore, the compu-
tational cost of calculating the function log π(η | y,ν,θ) in (II.8) is minimal and
scales well as the dimension of the data-poor block increases, as the Qε is a diag-
onal matrix and Z is a fixed sparse matrix. Thus, calculating the gradient and
the Hessian matrix of the conditional posterior is also computationally fesiable
in many cases.

The relation in (II.33) demonstrates that it is equivalent to propose a new
vector η∗ from the normal approximation π̃(η | y,ν,θ) and to propose new
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vectors η∗i separately from π̃i(ηi | y,ν,θ) for every i. Therefore, to reduce com-
putational cost and to increase computational efficiency, we propose the following
modifications the sampling scheme in Section II.2.3. That is, propose a new vec-
tor η∗ from q(η) = π̃(η | y,ν,θ) and accept and reject η∗i within each partition
separately with the probability

αi = min

{
1,
π(η∗i | y,ν,θ)

π̃(η∗i | y,ν,θ)

/
π(ηki | y,ν,θ)

π̃(ηki | y,ν,θ)

}
. (II.34)

The acceptance ratio in (II.34) can be calculated separately over partitions i with
a low computational cost, as demonstrated in the following corollary.

Corollary II.10. Assume the conditional independence assumptions in (II.28)
and adopt the same notation as in Lemma II.3. The logarithm of the acceptance
ratio in (II.34), that is

ri = log

(
π(η∗i | y,ν,θ)

π̃(η∗i | y,ν,θ)

/
π(ηki | y,ν,θ)

π̃(ηki | y,ν,θ)

)
where π̃i(ηi | y,ν,θ) denotes the Gaussian approximation of the conditional pos-
terior πi(ηi | y,ν,θ) within partition i. Then ri can be simplified to

ri = fi(η
∗
i ) + ρ(η∗)Ti 1− (fi(η

k
i ) + ρ(ηk)Ti 1)

for all i, where fi is the logarithm of the marginal data density function in par-
tition i and

ρ(η) =

(
1

2
ηTH + bT

)
◦ η

for notational simplicity, where ◦ denotes an entrywise multiplication. The cor-
responding acceptance probability in partition i is thus

αi = min {1, exp ri} .

The sampling scheme for the data-rich block with the aforementioned modi-
fications is summarised in Algorithm 4.

II.B Appendix B: Proofs

II.B.1 Proof of Lemma II.1
Proof. Assume the following prior assumptions

η | ν ∼ N
(
Zν,Q−1ε

)
,

ν ∼ N
(
µν ,Q

−1
ν

)
.

analogous to the setup in (II.4). Since

π(η,ν) = π(η | ν)π(ν)
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it is known that (ηT,νT)T is a Gaussian random vector. In order to find the
mean vector and covariance matrix, note that

π(η,ν) = π(η | ν)π(ν)

∝ exp

{
−1

2
(η −Zν)TQε(η −Zν)− 1

2
(ν − µν)TQν(ν − µν)

}
∝ exp

{
−1

2

(
ηTQεη + νTZTQεZν + νTQνν

)
+ ηTQεZν + (Qνµν)Tν

}
∝ exp

{
−1

2

(
η
ν

)T(
Qε −QεZ

−ZTQε Qν +ZTQεZ

)(
η
ν

)
+

(
0

Qνµν

)T(
η
ν

)}
.

By known results about block inverses it is clear that(
Qε −QεZ

−ZTQε Qν +ZTQεZ

)−1
=

(
Q−1ε +ZQ−1ν Z

T ZQ−1ν
Q−1ν Z

T Q−1ν

)
.

that serves as the covariance matrix of the joint prior distribution. The mean
vector of the joint prior distribution is therefore(

Q−1ε +ZQ−1ν Z
T ZQ−1ν

Q−1ν Z
T Q−1ν

)(
0

Qνµν

)
=

(
Zµν
µν

)
The joint posterior distribution of (η,ν) is thus

π

(
η
ν

)
= N

((
η
ν

)∣∣∣∣ (Zµνµν

)
,

(
Qε −QεZ

−ZTQε Qν +ZTQεZ

)−1)

= N
((
η
ν

)∣∣∣∣ (Zµνµν

)
,

(
Q−1ε +ZQ−1ν Z

T ZQ−1ν
Q−1ν Z

T Q−1ν

))
The conditional distribution ν conditioned on η follows directly from Lemma 2.1
in (Rue and Held 2005), that is,

π(ν | η) = N
(
ν
∣∣∣Q−1ν|η(Qνµν +ZTQεη),Q−1ν|η

)
where Qν|η = Qν +ZTQεZ.

II.B.2 Proof of Theorem II.2
Proof. The conditional posterior density function π(η | y,ν,θ) is proportional
to the product of the data density function and the conditional Gaussian prior
density π(η | ν,θ) given by (II.4), that is

π(η | y,ν,θ) ∝ π(y | η)π(η | ν,θ).

Thus, the logarithm of the conditional posterior density function is given by

log π(η | y,ν,θ) = f(η)− 1

2
ηTQεη + (QεZν)Tη + const
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where f(η) = log π(y | η) for notational convenience. The second order Taylor
approximation of f(η) expanded around the mode η0 of the conditional posterior
π(η | y,ν,θ) is

f(η) ≈ f(η0) +∇f(η0)T(η − η0) +
1

2
(η − η0)TH(η − η0)

=
1

2
ηTHη + (∇f(η0)−Hη0)Tη + const.

Consequently, the second order Taylor approximation of log π(η | y,ν,θ) ex-
panded around η0 becomes

log π(η | y,ν,θ) ≈ 1

2
ηTHη + (∇f(η0)−Hη0)Tη − 1

2
ηTQεη + (QεZν)Tη + const

= −1

2
ηT (Qε −H)η + (QεZν + b)Tη + const,

where b = (∇f(η0) −Hη0). This derivation yields a Gaussian approximation
with a mean vector

(Qε −H)
−1

(QεZν + b)

and covariance matrix (Qε −H)
−1. However, as the vector η0 is the mode of

the conditional posterior function π(η | y,ν,θ) the following relation holds

∇ log π(η0 | y,ν,θ) = ∇f(η0)−Qεη0 + (QεZν)T = 0.

The mean of the Gaussian approximations becomes

(Qε −H)
−1

(QεZν + b)

= (Qε −H)
−1

(QεZν +∇f(η0)−Hη0)

= (Qε −H)
−1

(Qεη
0 −Hη0)

= (Qε −H)
−1

(Qε −H)η0 = η0

Thus, a Gaussian approximation of the conditional posterior density function
π(η | y,ν,θ) evaluated at the mode η0 is given by

π̃(η | y,ν,θ) = N
(
η | η0, (Qε −H)−1

)
.

II.B.3 Proof of Lemma II.3

Proof. The logarithm of the acceptance ratio given in (II.10) is

r = log
π(η∗ | y,ν,θ)q(ηk)

π(ηk | y,ν,θ)q(η∗)
(II.35)
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where π(η | y,ν,θ) is the conditional posterior density function given in (II.4)
and q(η) is the proposal density based on the Gaussian approximation in (II.9).
The right hand side term in (II.35) can be written as

log π(η∗ | y,ν,θ)− log q(η∗)

−
(
log π(ηk | y,ν,θ) + log q(ηk)

)
Since the proposal density q is based on the Gaussian approximation in (II.9) the
following holds

log π(η | y,ν,θ)− log q(η) = f(η)− 1

2
ηTQεη + (QεZν)Tη

−
(

1

2
ηTHη + bTη − 1

2
ηTQεη + (QεZν)Tη

)
+ const

= f(η)−
(

1

2
ηTHη + bTη

)
+ const

which yields the results in (II.11).

II.B.4 Proof of Lemma II.4

Proof. By definition of the proposal density in (II.13) the following holds

q(νk,θk | ν∗,θ∗)
q(ν∗,θ∗ | νk,θk)

=
π(νk | ηk+1,θk)q(θk | θ∗)
π(ν∗ | ηk+1,θ∗)q(θ∗ | θk)

,

where q(θ∗|θk) is some proposal density for θ and π(ν | η,θ) is the conditional
Gaussian density function in (II.6) in Lemma II.1. Therefore, the acceptance
ratio in (II.14) can be written as

π(ν∗,θ∗ | y,ηk+1)

π(νk,θk | y,ηk+1)

π(νk | ηk+1,θk)

π(ν∗ | ηk+1,θ∗)

q(θk | θ∗)
q(θ∗ | θk)

=
π(θ∗ | ηk+1)

π(θk | ηk+1)

q(θk | θ∗)
q(θ∗ | θk)

(II.36)

since π(ν,θ|y,η) = π(ν,θ|η), as discussed in Section II.2.4, and π(ν,θ | η)/π(ν | η,θ) =
π(θ | η) for any η,ν and θ. The result in (II.36) demonstrates that the accep-
tance ratio in (II.14) is only dependant on θ within in the proposed setup. In
other words, the acceptance ratio in (II.14) becomes independent of the value of
ν.

II.B.5 Proof of Theorem II.5

Proof. In order to rewrite π(θ | η) in (II.15) we use the relation

π(θ | η) ∝ π(θ)π(η | θ). (II.37)
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Further, by the law of conditional probability, the following holds

π(η | θ) =
π(η,ν | θ)

π(ν | η,θ)
=
π(η | ν,θ)π(ν | θ)

π(ν | η,θ)
(II.38)

As π(η | θ) is independent of the value of ν, it follows that the two ratios in
(II.38) are invariant of the choice of ν. In particular, the following holds

π(η | θ) =
π(η | 0,θ)π(0 | θ)

π(0 | η,θ)
(II.39)

by choosing the value ν = 0. Combining (II.37) and (II.39) yields

π(θ∗ | ηk+1)

π(θk | ηk+1)
=
π(θ∗)π(ηk+1 | θ∗)
π(θk)π(ηk+1 | θk)

=
π(θ∗)

π(θk)
× π(ηk+1 | 0,θ∗)π(0 | θ∗)

π(0 | ηk+1,θ∗)
× π(0 | ηk+1,θk)

π(ηk+1 | 0,θk)π(0 | θk)
.

Moreover, if the Gaussian prior density functions in (II.4) are GMRFs with sparse
precision structures, then all of the conditional density functions on the rightmost
side of (II.38) are GMRFs with sparse precision structures, by known results
about conditioning on subvectors as demonstrated in Theorem 2.5 in Rue and
Held (2005).

II.B.6 Proof of Lemma II.6
Proof. As the matrix Qε is a diagonal matrix the following holds

π(η | ν,θ) = N
(
η
∣∣Zν,Q−1ε )

=

I∏
i=1

N
(
ηi
∣∣(Zν)i,Q

−1
ε,(i,i)

)
(II.40)

where Qε,(i,i) denotes the submatrix of Qε belonging to partition i. Let

πi(ηi|ν,θ) = N
(
ηi
∣∣(Zν)i,Q

−1
ε,(i,i)

)
which serves as the conditional prior density function for the data-rich part of
the latent field belonging to partition i. The relation in (II.40) along with the
conditional independence assumptions in (II.28) yield

π(η | y,ν,θ) ∝ π(y | η)π(η | ν,θ)

=

I∏
i=1

πi(yi | ηi)πi(ηi|ν,θ)

which demonstrates that the vectors ηi and ηi′ are conditionally independent in
the conditional posterior given (y,ν,θ), for all i 6= i′.
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Furthermore, the conditional independence assumptions in (II.28) also yield

π(ηi | y,ν,θ) ∝ π(yi | ηi)πi(ηi | ν,θ)

∝ π(ηi | yi,ν,θ) (II.41)

which demonstrates that π(ηi | y,ν,θ) is independent of y−i.

II.B.7 Proof of Corollary II.7
Proof. The conditional independence assumptions in (II.28), the relation in (II.40)
and the relation in (II.41) yield

log πi(ηi | yi,ν,θ) = log π(yi | ηi) + log πi(ηi | ν,θ) +K

= fi(ηi)−
1

2
ηT
i Qε,(i,i)ηi +

(
Qε,(i,i)(Zν)i

)T
ηi +K

for every partition i.

II.B.8 Proof of Corollary II.8
Proof. The result follows by using Theorem II.2 on the log πi(ηi | y,ν,θ) given
in (II.31) instead of log π(η|y,ν,θ).

II.B.9 Proof of Corollary II.9
Proof. The relation in (II.29) and (II.30) in Lemma (II.6) implies that the ele-
ments of mode η0 belonging to partition i are also the mode of πi(ηi|yi,ν,θ) in
every partition i. The results then follows from Lemma II.6, Theorem II.2 and
Corollary II.8.

II.B.10 Proof of Corollary II.10
Proof. As conditional independence are imposed over partitions i, Lemma II.6
yields the following

log π(η | y,θ,ν)− log π̃(η | y,ν,θ) = f(η)− 1

2
ηTHη − bTη + const

=
∑
i

(
fi(ηi)−

1

2
ηT
iH(i,i)ηi − b

T
i ηi

)
+ const.

The results follows by similar derivations as in the proof of Lemma II.3.
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Abstract
A computationally efficient statistical method is proposed to obtain distributional
properties of annual maximum 24 hour precipitation on a 1 km by 1 km regu-
lar grid over Iceland. A covariate based on a local meteorological model which
captures information on the physical processes of precipitation is constructed,
providing an additional spatial information on maximum precipitation. A latent
Gaussian model is built which takes into account observed maximum precipita-
tion, the covariate based the local meteorological model and spatial variations.
The observations are assumed to follow the generalized extreme value distribu-
tion, where spatial models based on approximate solutions to stochastic partial
differential equations (SPDE) are implemented for the location, scale and shape
parameters of the likelihood. An efficient MCMC sampler which exploits the
sparse matrices induced by the SPDE modeling is implemented, yielding contin-
uous spatial predictions for spatially varying model parameters and quantiles.

III.1 Introduction
Obtaining distributional properties of maximum precipitation is important in
order to properly plan for extreme precipitation events. Furthermore, this infor-
mation is needed at a fine resolution as the characteristics of extreme precipitation
events can be local, especially in regions with heterogeneous topography. There-
fore, statistical spatial modeling for this type of spatial data becomes challenging
when observational sites are scarce relative to changes in the topography, and
because uncertainties associated with parameter estimates become large when
the observational data set is relatively small.

The aim of this paper is to provide information about the characteristics of
extreme precipitation on a local scale, in particular, where limited spatial in-
formation from relatively sparse observational sites is available. To address the
sparsity of the observational sites, a method is proposed which leverages informa-
tion from an external meteorological model which provides spatial information
about mean precipitation on a fine grid. The leveraged information is thus based
on scientific knowledge on the physical processes of precipitation and not directly
on observations on extreme precipitation. This is a novel extension on the concept
presented in Benestad et al. (2012), which states that observed mean precipita-
tion provides information on observed extreme precipitation. To demonstrate
the use of the proposed method for a particular region, which is Iceland in this
paper, information is extracted from a meteorological model proposed by Smith
and Barstad (2004) which Crochet et al. (2007) have adapted to an Icelandic
data set on a 1 km by 1 km grid. A covariate based on the meteorological model
of Crochet et al. (2007) is constructed at each grid point in order to assimilate
much of the scientific knowledge about mean precipitation in this region into a
statistical model for maximum precipitation.

Various statistical models have been proposed for modeling extreme precipita-
tion, where models based on the generalized extreme value distribution are stan-
dard in the literature, see for example Sang and Gelfand (2009). Furthermore,
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the Bayesian approach is well suited to quantify uncertainty of the underlying
physical processes as further argued in Tebaldi and Sansó (2009). In particu-
lar, the spatial variation can be modeled through the likelihood parameters as
presented in e.g. Davison et al. (2012) and Hrafnkelsson et al. (2012). Alterna-
tive modeling approaches have been explored, such as the peaks over threshold
methods with the generalized Pareto distribution (Cooley et al. 2007).

Latent Gaussian models (LGMs) (Rue and Held 2005), which form a flexible
and practical subclass of Bayesian hierarchical models, play a dominant role in the
vast literature on spatial statistics (Chiles and Delfiner 2009, Diggle et al. 1998,
Guttorp and Gneiting 2006). In the LGM framework, Gaussian fields appear
at the latent level of the hierarchical model. However, posterior inference for
Gaussian fields becomes increasingly computationally demanding as data sets get
larger. Gaussian fields can be approximated by Gaussian Markov random fields
(GMRFs), which increase the speed of computation significantly (Rue 2001, Rue
and Held 2005). LGMs with a GMRF structure are computationally beneficial
modeling options in a spatial setting, see for example Schliep et al. (2010), where
a latent Gaussian model with a GMRF structure is implemented in order to
model spatial extremes.

Although GMRFs are computationally efficient they become difficult to pa-
rameterize in a spatial setting. In Lindgren et al. (2011) numerical approximation
solutions to Gaussian fields with a Matérn covariance structure are presented.
The method constructs an approximation solution of a stochastic partial differ-
ential equation (SPDE) on a triangulated mesh. The approximate solutions can
then be used to construct a GMRF representation of the desired Gaussian field
on the mesh. This allows for continuous spatial predictions.

A computationally efficient Bayesian hierarchical spatial model for maximum
precipitation is presented in this paper which integrates the covariates based the
meteorological model of Crochet et al. (2007); observations on annual maximum
precipitation; and the spatial variation of precipitation in order to obtain dis-
tributional properties of extreme precipitation on a fine grid. To that extent, a
LGM is proposed where the observations are assumed to follow the generalized
extreme value distribution. The spatial variations are modeled through the lo-
cation, scale and shape parameters of the likelihood with SPDE spatial models.
The SPDE spatial models are implemented on a triangulated grid over the spa-
tial domain. An MCMC split sampler, see Paper II, is applied to the model
structure, yielding an efficient inference scheme. Furthermore, the model struc-
ture can also be used to make spatial predictions for the model parameters and
quantiles of extreme precipitation on the fine grid.

The following summarizes the two main novel c ontributions of this paper.
First, there is the method of leveraging information on the physical processes of
precipitation from the local meteorological model, in order to yield additional
spatial information on maximum precipitation. The proposed method and the
covariate construction is extendable to any regions in the world where local meteo-
rological models are available. Secondly, although LGMs with a GMRF structure
have been proposed to model extreme precipitation (Schliep et al. 2010, Cooley
and Sain 2010), LGMs with spatial models based on the SPDE approach have
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not been proposed in the literature on spatial extreme precipitation before. The
proposed modeling strategy is general in the sense that it is extendable to any
spatial domain of interest.

The paper is organized as follows. The data and the meteorological model
are presented in Section 2, where the method for constructing covariates from
outputs of the meteorological model is also outlined. Detailed description of the
model structure, the inference method and spatial prediction is given in Section 3.
Posterior results are presented and discussed in Section 4. The paper concludes
with a discussion in Section 5.

III.2 The data

III.2.1 Observations

The observed data on precipitation were provided by the Icelandic Meteorologi-
cal Office (IMO). The dataset contains observations of 24 hour annual maximum
precipitation from 40 observational sites in Iceland over the years 1958 to 2006, as
seen in (Crochet et al. 2007). The locations of the observational sites can be seen
in Figure III.1. The observations have been corrected according to a dynamic cor-
rection method proposed by (Førland and Hanssen-Bauer 2000), which Crochet
et al. (2007) adapted to the Icelandic dataset. The correction method accounts
for trace; wetting and evaporation losses; and for the catch deficiencies due to
aerodynamic effects and is applied to daily precipitation observations from every
observational site. Time series from four observational sites, Reykjavík, Æðey,
Akureyri and Kvísker, are shown in Figure III.2. Reykjavík and Akureyri were
chosen because they are the most populated areas in Iceland. Æðey was chosen
due to its geological position. Finally, Kvísker was chosen as it has the highest
observed precipitation.

III.2.2 The meteorological model

The meteorological model, that is used in this paper to leverage spatial informa-
tion on precipitation, is based on a linear orographic precipitation model proposed
by Smith and Barstad (2004). Crochet et al. (2007) have adapted the method to
precipitation in Iceland. The model is driven by coarse resolution precipitation,
wind and temperature data obtained from re-analyses (1958-2001) (ERA-40) (Up-
pala et al. 2005) and analyses made by the European Center for Medium Range
Weather Forecast (2002-2004). The model takes into account the topography of
the spatial domain; airflow dynamics; condensed water advection; and downslope
evaporation. This means that outputs from the model contain information about
the underlying physical processes of precipitation. The resulting model, herby
referred to as the meteorological model, simulates daily precipitation on a 1 km
by 1 km regular grid, of the size 521 km × 361 km, across Iceland for the years
1958-2002.
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Figure III.1: The location of the observational sites. The observational sites in Reyk-
javík, Æðey, Akureyri and Kvísker have been highlighted.
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Figure III.2: Observed annual maximum precipitation at the observational sites in
Reykjavík, Æðey, Akureyri and Kvísker as a function of years.
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III.2.3 Covariates

Cooley et al. (2007) demonstrated that covariates which assimilate available spa-
tial information, such as the topography of the domain and the underlying physi-
cal processes of precipitation, are reasonable covariates for extreme precipitation.
By constructing covariates based on the outputs from the meteorological model,
the information about the above factors can be assimilated. Furthermore, Benes-
tad et al. (2012) suggested that observed mean values of precipitation have high
predictive power for maximum precipitation. Extending their argument, we pro-
pose that calculated sample mean values from the outputs of the meteorological
model serve as reliable predictors for extreme precipitation. This is a novel ex-
tension of the concept of Benestad et al. (2012) to spatial prediction of extreme
precipitation. The sample means based on the meteorological model are referred
to hereafter as the simulated means or the meteorological covariate. However, as
observational sites are not necessarily at the regular grid points a spatial smother
was implemented in order construct the covariates at the observational sites, see
Section S1.1 in the supplementary material for details on the implementation of
the smoother. Furthermore, for notational convenience let G denote the set of
every regular grid point and let S denote the set of the observational sites.

The simulated means are calculated over the entire time period of the me-
teorological model at every grid point in G, yielding one simulated mean value
for each grid point. The simulated means serve as a non-time varying spatial
covariate for the average climate, in terms of precipitation, at every grid point
in G. As observations of precipitation demonstrate temporal stationary over the
time period 1958-2006 (results not shown), it is reasonable to assume that the
constructed covariate is also representative for the observed years 2003-2006.

To emphasize, the information stemming from the meteorological model is
primarily based on scientific knowledge on the physical process of precipitation.
For further calibrations of the meteorological model, Crochet et al. (2007) used six
years worth of data on observed daily precipitation and observed monthly means,
not observed annual 24 hour maximum precipitation. The resulting constructed
covariate is thus related to the observed mean of the time period. Extending the
argument made by Benestad et al. (2012), the constructed covariate thus serves
to describe the spatial variation of climate, in terms of precipitation, which is
then relevant for describing extreme precipitation.

III.3 The model and inference

Guttorp and Gneiting (2006) proposed that using Gaussian fields with a Matérn
covariance structure, called Matérn fields, is a flexible and interpretable way of
modeling underlying physical processes of natural phenomena in a spatial setting.
The Matérn covariance function between locations s1 and s2 in Rd is defined as

c(s1, s2) =
σ2

2ν−1Γ(ν)
(κ‖s1 − s1‖)ν Kν (κ‖s1 − s2‖) (III.1)
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where Γ is the Gamma function; Kν is the modified Bessel function of the second
kind of order ν > 0; κ > 0 is a scaling parameter; and σ2 denotes the marginal
variance of the Matérn field (Stein 1999). However, for any set of n locations the
resulting covariance matrix is dense and thus becomes computationally demand-
ing in posterior inference and spatial predictions as datasets get larger.

Approximating Gaussian fields as Gaussian Markov random fields (GMRF),
see for example (Knorr-Held and Rue 2002), provides an efficient framework for
computationally efficient Gaussian models. GMRFs are parameterized with pre-
cision matrices, which are defined as inverses of covariance matrices. Although
GMRFs have very good computational properties, there was no standard way
to parametrize the precision matrix of a GMRF to achieve a predefined spa-
tial covariance structure until Lindgren et al. (2011) addressed the issue with
the introduction of spatial models based on approximate solutions to stochastic
partial differential equations (SPDE). The SPDE spatial models are briefly are
summarized below.

A Gaussian field x(s) with a Matérn covariance function, as in equation
(III.1), is a solution to the stochastic partial differential equation

(κ2 −∆)α/2x(s) =W(s), s ∈ Rd, α = ν + d/2. (III.2)

The operator (κ2−∆)α/2 serves as a pseudo-differential operator; W is a spatial
Gaussian white noise with a unit variance; and ∆ is the Laplacian. Lindgren et al.
(2011) proposed constructing a finite element representation of the solution to
the SPDE in (III.2) on a triangulated mesh over a spatial domain of interest. The
proposed approximate solution u(s) is, for each point s in the spatial domain, on
the form

u(s) =

n∑
k=1

ψk(sk)wk (III.3)

where n is the number of vertices in the mesh, ψk are piecewise linear basis
functions; and wk are Gaussian weights at the vertices of the triangles in the
mesh. In Lindgren et al. (2011), the authors show that approximate solutions
on the form (III.3) can be constructed such that the Gaussian weights wk have
sparse precision matrix structures, and thus making the approximate solutions
computationally beneficial to work with. Moreover, approximate solutions can
be obtained at each point within every triangle using the linear basis function
and the surrounding Gaussian weights. The methods thus forms a GMRF rep-
resentation of the Matérn field at every point within the mesh. A description of
the implementation of the SPDE method is outlined below in Section III.3.1.

In order to model the behavior of the underlying physical processes of ex-
treme precipitation, the location, scale and shape parameters in the likelihood
are allowed to vary in space. To that extent, SPDE spatial models are used at
the latent level of the proposed hierarchical model to describe continuously the
spatial variation of these three latent parameters. Posterior inference and spatial
predictions based on this approach also are presented below.
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III.3.1 Model structure

The data are modeled with a LGM assuming the generalized extreme value dis-
tribution for the observations, where the observations are assumed to be con-
ditionally independent. That is, let yit denote the annual maximum 24 hour
precipitation at station i at year t, with a cumulative density function of the
form

F (yit) = exp

{
−
(

1 + ξi

(
yit − µi
σi

))−1/ξi}
, i = 1, . . . , J, t = 1, . . . , T

if 1 + ξi(x − µi)/σi > 0, F (yit) = 0 otherwise. The parameters µi, σi and ξi
are location, scale and shape parameters; J is the number of observational sites;
and T is the number of years. These distributional assumptions are reasonable
as the generalized extreme value distribution belongs to the family of extremal
distributions and have desired asymptotic properties (Coles et al. 2001).

A preliminary statistical analysis revealed a linear relationship between the
ML estimates of the location parameter µ and the meteorological covariate at
the observational sites, see top left panel in Figure III.4. Therefore, the follow-
ing spatial model structure was implemented for the location parameter µ =
(µ1, . . . , µJ)T,

µ = Xµβµ +ASuµ + vµ, (III.4)

whereXµ is a design matrix consisting of a vector of ones and the meteorological
covariate; βµ are the corresponding weights; uµ is a spatial effect on a triangu-
lated mesh; AS is a known projection matrix from the vertices of the mesh onto
the observational sites; the matrix product ASuµ denotes the spatial effect at
the observational sites which captures the spatial variation in the data that is
unexplained by the covariate; and vµ is an unstructured random effect with a
variance σ2

vµ.
The structure of the spatial effect uµ is based on the SPDE approach. In order

to obtain the SPDE structure for uµ, the spatial domain is subdivided into a mesh
of non-intersecting triangles, see Figure III.3. The GMRF representation is then
constructed for the weights of the basis functions in (III.3), which are denoted
with uµ in (III.4), with a precision matrix Quµ with the SPDE approach of
Lindgren et al. (2011). The precision matrix is based on the geometry of the mesh
and is, by construction, a sparse matrix. In this paper, we chose the smoothness
parameter to be ν = 1, which corresponds to an almost once differentiable Matérn
field and α = 2 in the SPDE method. The structure of the resulting precision
matrixQuµ can be seen in Lindgren et al. (2011). The matrix has two parameters,
κuµ and ωuµ, which enter the model as hyperparameters. The hyperparameter
κuµ is inversely proportional to the range of the approximate Matérn field and
the hyperparameter ωuµ is related to the marginal variance of the spatial effect
uµ.

The spatial locations of uµ are on the vertices of the triangles in the mesh,
which are not necessarily at the observational sites. However, since the approxi-
mate representation (III.3) is assumed to have piecewise linear basis functions, a
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Figure III.3: Triangulated mesh over Iceland

corresponding approximate solution can also be found within each triangle as a
convex linear combination of the approximate solutions at the surrounding ver-
tices. The spatial effect uµ can be projected linearly from the vertices of the mesh
onto every point within every triangle of the mesh. The matrix AS denotes the
linear projection onto the observational sites. Note that the number of non-zero
entries in each line of AS is three and the sum of every line is one.

The preliminary statistical analysis also revealed a linear relationship between
the ML estimates of the scale parameter σ and the meteorological covariate on a
logarithmic scale, see top right panel in Figure III.4. Therefore, a similar model
structure was implemented for the scale parameter on a logarithmic scale. That
is, let τi = log σi and then model τ = (τ1, . . . , τJ)T as

τ = Xτβτ +ASuτ + vτ .

The design matrixXτ consists of a vector of ones and the meteorological covariate
on a logarithmic scale; uτ is a spatial random effect with the same structure as
uµ and has parameters κuτ and ωuτ ; and vτ is an unstructured random effect
with a variance σ2

vτ .
The preliminary statistical analysis revealed that ML estimates for the shape

parameter ξ vary among the observational sites. However, no evidence was seen
for a linear relationship between the ML estimates of ξ and the meteorological
covariate, height above sea level, see Figure III.4 bottom row, or other available
geological covariates (results now shown). Thus, the following spatial model was
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implemented for the shape parameter

ξ = Xξβξ +ASuξ + vξ

where Xξ is vector of ones; the weight βξ serves as an overall effect for the shape
parameter over the spatial domain; uξ is a spatial random effect that captures
the spatial deviation from the overall effect with the same structures as uµ with
parameters κuξ and ωuξ; and vξ is an unstructured random effect with variance
a σ2

vξ.

To summarize the model structure, a directed acyclic graph of the above
model components can be seen in Figure III.5.
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Figure III.4: The top row shows the ML estimates µ̂ and τ̂ as functions of the
meteorological covariate and the logarithm of the meteorological covariate, respectively.
The bottom row shows the ML estimate ξ̂ as a function of the meteorological covariate
and altitude over sea level, respectively.
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Figure III.5: Directed acyclic graph of the stochastic model components of proposed
model. The grey circled note denotes the data vector; the white circled notes denote
the model parameters; and the rhombus shaped notes denote the hyperparameters.

III.3.2 Prior selection
The following prior distributions were assigned,

βµ ∼ N (0, σ2
βµI), βτ ∼ N (0, σ2

βτI), βξ ∼ N (0, σ2
βξ)

uµ ∼ N (0,Q−1uµ), uτ ∼ N (0,Q−1uτ ), uξ ∼ N (0,Q−1uξ ),

vµ ∼ N (0, σ2
vµI), vτ ∼ N (0, σ2

vτI) vξ ∼ N (0, σ2
vξI).

The parameters βµ,βτ and βξ are assumed a priori to have a low precision on
their native scales in order to let the data play the dominate role in their inference.
Thus, the parameter values σβµ = 20, σβτ = 4 and σβξ = 2 were chosen for the
prior distributions.

Lognormal prior distributions with fixed parameters were assigned to all the
remaining hyperparmeters. That is,

κuµ ∼ LN
(
−2.50, 0.52

)
, κuτ ∼ LN

(
−1.85, 0.52

)
, κuξ ∼ LN

(
−1.85, 0.52

)
ωuµ ∼ LN

(
−1.00, 0.252

)
, ωuτ ∼ LN

(
2.00, 0.12

)
, ωuξ ∼ LN

(
2.00, 0.12

)
σvµ ∼ LN

(
1.85, 0.452

)
, σvτ ∼ LN

(
−1.75, 0.302

)
, σvξ ∼ LN

(
−2.00, 0.302

)
where LN denotes the lognormal distribution. The selection of prior distributions
is further discussed in Section S1.2 in the supplementary material.

III.3.3 Posterior inference
Due to the proposed model structure, in particular, the spatial model for the
scale and shape parameters, MCMC methods were necessary to make posterior
inference as opposed to approximation methods such as INLA (Rue et al. 2009).
However, standard MCMCmethods like single site updating converged slowly and
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mixed poorly as many model parameters were heavily correlated in the posterior.
To address this issue, posterior inference was done by using the MCMC split
sampler in Paper II.

The MCMC split sampler is a block Gibbs sampling strategy, where Metropolis–
Hastings steps are implemented within each block. This sampling strategy is well
suited for inferring models that have spatial models entering the likelihood not
only through the location parameter, but also through the scale and shape pa-
rameters of the likelihood, like the proposed model in Section III.3.1. The details
on the implementation of the sampling strategy are summarized in Section S2 in
the supplementary material. Further details on the MCMC split sampler can be
seen in in Paper II.

III.3.4 Spatial prediction

By using the SPDE spatial model structure, the posterior distribution of all the
spatially varying model parameters can be obtained at every regular grid point
in G. The details are as follows.

Let u[k] be the k-th posterior MCMC sample of the spatial effects for the
location, scale or shape parameters. The spatial effects u[k] are located at the
vertices of the triangles in the mesh, which do not necessarily coincide with the
regular grid points in G. However, since every regular grid point belongs to some
triangle in the mesh, the k-th posterior MCMC sample for the spatial effects at
the regular grid points can be obtained with a convex linear combination of u[k],
that is,

u
[k]
G = AGu

[k]. (III.5)

where the matrix AG denotes the linear projection from the vertices of the mesh
onto the regular grid points in G. The term u

[k]
G then serves as the k-th posterior

MCMC sample for the spatial effects on the regular grid G, which is calculated
in post calculations after the MCMC run. Therefore, after calculating u[k]

G for
every iteration k, posterior statistics for the spatial effects can be obtained for
every point in G, in particular posterior means and standard deviations.

The covariates are available by construction at every regular grid point. Thus,
the k-th posterior MCMC sample for the location parameter, denoted with µ[k]

G ,
can be calculated at every regular grid point with

µ
[k]
G = XµGβ

[k]
µ +AGu

[k]
µ + v[k]µ (III.6)

where XµG is a design matrix consisting of ones and the meteorological covariate
at the regular grid points; the vector β[k]

µ is the k-th posterior MCMC sample
of the coefficients of the covariates; and v[k]µ is a vector sampled from a mean
zero normal distribution with independent elements each with standard deviation
σ
[k]
vµ. Analogous results hold for the scale and shape parameters. Consequently,

the posterior distribution of the p-th quantile of the generalized extreme value
distribution can be calculated at every regular grid point. The p-th quantile
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function of the generalized extreme value distribution is

qp(µ, τ, ξ) = µ+
exp(τ)

ξ

(
− log(p)−ξ − 1

)
. (III.7)

The k-th posterior MCMC sample for the p-th quantile is then obtained by plug-
ging in the k-th posterior MCMC samples for the location, scale and shape pa-
rameters. Thus, posterior samples and posterior statistics for the p-th quantile
are obtained for every point in G.

III.4 Results

The main objective of this analysis is to obtain spatial predictions for the location,
the log-scale and shape parameters and to evaluate the posterior distribution of
the 0.95 quantile of maximum precipitation across Iceland on the regular grid G.
In Section 4.1, results from the MCMC convergence diagnostics are briefly sum-
marized while in Section 4.2 tables and figures of posterior estimates of the model
parameters are given and discussed. In Section 4.3 figures of spatial predictions
are shown and discussed.

III.4.1 Convergence diagnostics

The following results are based on four MCMC chains from the sampler in Section
III.3.3. Each chain is calculated with 50000 iterations where 10000 iterations
were burned in. Runtime, on a modern desktop (Ivy Bridge Intel Core i7-3770K,
16GB RAM and a solid state hard drive), was approximately seven hours. All
the calculations were done using R.

Gelman–Rubin statistics (Brooks and Gelman 1998) were calculated for all
model parameters based on the four MCMC chains for both datasets. The
Gelman–Rubin statistics for all the model parameters were evaluated as approxi-
mately 1, indicating that all the MCMC chains converged in the mean. Moreover,
Gelman–Rubin plots (results not shown) indicate that the sampler converges in
the mean after 7500 iterations.

The MCMC chains for µ, τ and ξ and the coefficients of the covariates exhibit
a neglectable autocorrelation after lag 10 (results not shown). Samples of the
hyperparameters show some autocorrelation as they are highly correlated in the
posterior, but within an acceptable range.

III.4.2 Posterior estimates

The following posterior estimates are based on the four MCMC chains after burn-
in. Figure III.6 shows the posterior mean with 95% posterior intervals for the
location, log-scale and shape parameters for each observational site. The obser-
vational sites are placed on the x-axis as follows. The leftmost site on the x-axis
is in Reykjavík. The rest of sites are places on the x-axis corresponding to a
clockwise labeling across the sites shown in Figure III.1. The top left and right
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panels in Figure III.6 show that both the location and the scale parameters of the
generalized extreme values distribution have the highest posterior estimates in
the south-eastern part in Iceland, and the lowest posterior estimates in the north-
ern part. Furthermore, the bottom left panel in Figure III.6 indicates that the
posterior mean of the shape parameter is positive at all the observational sites.
However, some of the 95% posterior interval for the shape parameter include zero.
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Figure III.6: The first row shows the posterior mean and 0.95 posterior interval for
the parameters µ and τ , respectively, for each observational site. The second rows
shows the same posterior estimates for ξ.

Table III.1 shows the posterior mean, posterior standard deviation and pos-
terior 0.025 and 0.975 quantile estimates for the non-spatially varying model
parameters.

The results shown in Table III.1 indicate that the posterior means of βµ1 and
βµ2 are 10.6 and 11.9, respectively, and that both parameters are positive as their
corresponding 95% posterior intervals are both above zero. These results indicate
that the location parameter describing the extreme precipitation is roughly 12
times the corresponding simulated mean value.

Furthermore, the posterior means of βτ1 and βτ2 are close to 2.05 and 0.5,
respectively, and both parameters are positive as their 95% posterior intervals are
above zero. That means that the relationship between the simulated means and
the scale parameter of the generalized extreme value distribution can be roughly
summarized as

σ̂i = eβ̂τ1 x̄∗β̂τ2i ≈ 7.8 · x̄∗0.5i

The posterior mean of βξ is 0.12 and its posterior interval is (0.07, 0.17).
That indicates that the field describing the shape parameter has mean greater
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2.5% mean 97.5% sd
βµ1 2.270 10.615 18.791 4.205
βµ2 9.585 11.922 14.296 1.192
βτ1 1.777 2.054 2.332 0.140
βτ2 0.272 0.513 0.754 0.123
βξ 0.069 0.117 0.165 0.025
ωuµ 0.244 0.393 0.596 0.091
κuµ 0.045 0.074 0.115 0.018
σvµ 2.532 4.997 8.658 1.566
ωuτ 5.473 6.061 6.690 0.312
κuτ 0.095 0.123 0.167 0.021
σvτ 0.075 0.149 0.264 0.048
ωuξ 6.160 7.594 9.192 0.770
κuξ 0.224 0.424 0.861 0.166
σvξ 0.072 0.101 0.138 0.017

Table III.1: Posterior 0.025 quantile, mean, 0.975 quantile and standard deviation of
the non-spatially varying model parameters

than zero.
The posterior mean of the parameters κuµ, κuτ and κuξ, suggest that the

correlation between two points in space is near 0.1 at a roughly 40 km distance
for the location parameter; roughly 25 km distance for the scale parameter; and
almost 7 km for the shape parameter, which is short compared to the range
of µ and τ and the scale of the spatial domain. The posterior mean of the
parameters ωuµ, ωuτ and ωuξ indicate that the marginal standard deviation of
uµ is approximately 8; roughly 0.45 for uτ ; and almost 0.1 for uξ.

The posterior mean of σvµ indicate that the standard deviation of the un-
structured random effect vµ is approximately 5. Which in turn suggests that
there is some variation left in the data that is unexplained by the covariates and
the spatial model, however, a standard deviation σvµ of size 5 is small relative the
scale of µ and the standard deviation of the spatial field for µ. Similar behavior is
observed for the scale parameter, as the posterior mean of σvτ indicate that the
standard deviation of the unstructured random effect vτ is approximately 0.15 on
a logarithmic scale. However, the posterior mean of σvξ is 0.1, which is a similar
value is the posterior mean of the marginal standard deviation of uξ. This is to
be expected, as the the range of the spatial model for the shape parameter ξ is
short compared to the scale of the spatial domain. These results for the shape
parameter indicate that some of the variation left in the data is unexplained by
the overall effect βξ and the spatial field. The cause of this is likely to be a lack of
data, that is, observations from more observational sites that are closer together
are needed in order to capture the spatial behavior of ξ. Furthermore, useful
covariates explaining the spatial variation in ξ could not be found.

In Figure III.7 the prior distributions of all the hyperparameters are shown,
along with the corresponding posterior distributions. The panels in the first and
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second columns of Figure III.7 are shown on transformed scales for interpretabil-
ity.

III.4.3 Model evaluation

In Figure III.8 empirical cumulative distributions for the observational sites Reyk-
javík, Æðey, Akureyri and Kvísker are compared to corresponding posterior cu-
mulative distributions functions. The results indicate that the model describes
the data well.

An overall time effect for location parameter was evaluated based on the fitted
values at each observational site. That is, let mit = yit − E(yit), where E(yit) is
the excepted value of the generalized extreme value distribution with parameter
values based on posterior means. A likelihood ratio test was applied to a model
for the m’s with an overall time effect against a model for the m’s without a time
effect. The results indicated no significant difference between the two models
(significance level 0.05). Thus, there was no reason to add an overall time effect
to the proposed model.

III.4.4 Spatial predictions

Figures III.9, III.10 and III.11 show the spatial predictions for the spatially vary-
ing model parameters, based on the methods from Section III.3.4.

The middle panel of Figure III.9 shows the spatial predictions for the spatial
random effect uµ based on the posterior mean of (III.5) on the regular grid G.
The figure shows where the spatial random effect lowers and raises the prediction
surface, therefore revealing the ares where the effect of the meteorological co-
variate overestimates and underestimates the extreme precipitation, respectively.
The spatial prediction surface is lowered in most of the south-western part of
Iceland, but is raised in the south-eastern part. The spatial random effect yields
high positive values for Kvísker, which is known to have the highest observed pre-
cipitation in Iceland; negative value in the south-eastern part close to Reykjavík
and values close to zero in the interior of Iceland where there are no observational
sites.

The bottom panel of Figure III.9 shows the spatial prediction for the standard
deviation of the spatial random effect uµ on the regular grid G. As expected,
the standard deviation increases at points further away from the observational
sites, forming sinks in the standard deviation near the observational sites. In the
areas where there are no data the estimates for the standard deviation for points
inside the triangles are lower than for the corresponding edges or vertices. This
happens due to the linear basis functions in the SPDE approach and because the
standard deviation is estimated based on (III.5).

The top panel of Figure III.9 shows the spatial prediction of the location
parameter µG , based on (III.6), on the regular grid G. The figure shows that the
location parameter is at its highest in the south-eastern parts of Iceland, in the
vicinity of the southern side of Vatnajökull Glacier. This is to be expected, as
the spatial gradient at the southern side of Vatnajökull increases rapidly moving
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Figure III.7: Prior distribution for all the hyperparameters and corresponding poste-
rior distributions.
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Figure III.8: The top row shows probability-probability plots based on the proposed
model for Reykjavík, Æðey, Akureyri and Kvísker. The bottom row shows the empiri-
cal cummulative density function (the black curve) and the model cumulative density
function (blue curve) along with 95% posterior intervals (dashed blue curves) for the
same observational sites.

from the nearby coastline to the top of the glacier. Due to these topographical
properties and the fact that humid air blows in from the southern shoreline
towards the roots of the glacier, the physical law of orographic precipitation
predicts high precipitation. However, the areas north of Vatnajökull Glacier and
in the middle of the country are known to be in a rain shadow by the same
meteorological law. This is in line with the results seen in the bottom left panel
of Figure III.9.

Figure III.10 shows the spatial prediction for the scale parameter on a log-
arithmic scale. The figure is arranged in the same manner as Figure III.9. In
the middle panel of Figure III.10 it can been seen that the spatial random effect
uτ raises the spatial prediction surface in the eastern, south-eastern and north-
western parts and lowers it in the south-western part. In the bottom panel of
Figure III.10, similar results appear for the standard deviation as for the location
parameter, that is, sinks in the standard deviation form close to the observational
sites. Moreover, the figure demonstrates that the spatial range for τ is shorter
than for µ, as discussed above. On the top panel of Figure III.10, it can be seen
that the estimates for the scale parameter are highest along the south-eastern
coastline.

Figure III.11 shows the spatial prediction for the shape parameter, arranged
in the ame manner as Figures III.9 and III.10. The middle panel of Figure III.11
shows the posterior mean of uξ on the regular grid G. The magnitude of uξ is
only 0.015 which is smaller that the variation in the ML estimates (results not
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shown). Furthermore, the bottom panel in Figure III.11 shows that the sinks in
the standard deviation of the spatial field for ξ are almost not visible. This is
to be expected as the range of the spatial field for ξ is only 7 km, as discussed
above. The top panel of Figure III.11 demonstrates that the predicted posterior
mean values of ξ are close to the posterior mean of the overall shape effect βξ,
which is 0.117. These results indicate that a dataset based on a denser network
of observational sites is required to give better spatial predictions for ξ.

Spatial predictions for the posterior mean of the 0.95 quantile of the gener-
alized extreme value distribution can be seen in Figure III.12. The predictions
are based on the methods discussed in Section III.7 and can be interpreted as
the 20-year precipitation event. The results reflect the previous posterior results
about the location and scale parameters. For example, the highest predicted 20-
year precipitation events are along the south and south-eastern coastlines, while
the lowest predicted events are in the interior of Iceland. The maximum of the
predicted values is at the southern side of Hvannadalshnjúkur and is approxi-
mately 450 mm per 24 hours. The peak of Hvannadalshnjúkur, which is a part
Vatnajökull, is the highest point of Iceland and is approximately 10 km north
west of the observational site Kvísker. These results demonstrate the effects of
orographic precipitation as Kvísker is around 30 m above sea level and the highest
point of Hvannadalshnjúkur is roughly 2110 m above sea level. Furthermore, the
predicted 20-year precipitation event in Reykjavík and surroundings is predicted
approximately 60 mm per 24 hours and in the vicinity of Akureyri it is around
55 mm per 24 hours.

III.5 Discussion

The proposed method which leverages spatial information on extreme precipita-
tion by calculating sample mean values from outputs of a local meteorological
model is extendable to any other location in the world where outputs from local
meteorological models are available on a fine grid. Furthermore, the method can
also be extended to other response variables. For example, the method is likely
to be well suited to resolve spatial information on annual or monthly precipi-
tation. Additionally, the method can be utilized to extract any desired sample
statistics from meteorological models in order to leverage spatial information. In
the authors’ view, leveraging information from meteorological models for differ-
ent regions, for other response variables and basing the information on various
extracted sample statistics presents an interesting area of future research.

The proposed LGM for extreme events with the SPDE spatial models struc-
ture is extendable to any regions in world or spatial domains of interest, and for
other response variables than precipitation. Furthermore, as the proposed statis-
tical modeling framework is modular by design, other likelihoods can be chosen
for the observations without the need to change the structure of the SPDE spatial
model at the latent level.

A different likelihood choice for extreme precipitation is, for example, the
peaks over threshold methods with the generalized Pareto distribution as pre-
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Figure III.9: The figure shows spatial predictions for the location parameter on the
regular grid G. The middle panel shows the posterior mean of the spatial random effect
uµ; the bottom panel shows the posterior standard deviation of the spatial random
effect uµ and the top panel shows posterior mean of the location parameter µG
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Figure III.10: The figure shows spatial predictions for the scale parameter on a
logarithmic scale on the regular grid G. The middle panel shows the posterior mean of
the spatial random effect uτ ; the bottom panel shows the posterior standard deviation
of the spatial random effect uτ and the top panel shows posterior mean of the scale
parameter τG on a logarithmic scale.
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Figure III.11: The figure shows spatial predictions for the shape parameter on the
regular grid G. The middle panel shows the posterior mean of the spatial random effect
uξ; the bottom panel shows the posterior standard deviation of the spatial random
effect uξ and the top panel shows posterior mean of the shape parameter ξG
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Figure III.12: The posterior mean of the 0.95 quantile of annual maximum 24 hour
precipitation assuming the generalized extreme value distribution.

sented in (Cooley et al. 2007). The advantage of thatapproach is that more
of the data can be incorporated into the modeling, depending on the choice of
threshold. However, this approach was not chosen for the modeling in this paper,
as choosing a common threshold for each station is somewhat unrealistic for the
datasets explored in this paper. For example, in Figure III.2, it can be seen that
highest observed value in Reykjavík is lower than the lowest observed value in
Kvísker. Further, selecting a spatially varying threshold requires more research.

Other likelihood approaches are copula likelihoods with marginals based on
the generalized extreme value distribution. Likelihoods constructed with the t-
copula have been explored for example by Davison et al. (2012) to model extreme
precipitation and present an appealing choice to model the probabilistic depen-
dence of the observations. The approach is well suited for simulating spatial
realizations of the extreme precipitation for the next year or unobserved sites for
an observed year. Although the copula likelihood can be implemented within
the presented modeling framework, there were two main reasons why it was not
chosen in this paper. First, the main purpose is to give spatial predictions of
marginal quantiles using the SPDE approach but not to simulate spatial real-
izations of the extremal surfaces. Secondly, many of the observational sites had
missing observations, which presents further computational difficulties with the
copula based likelihood.

Stationary SPDE spatial models were implemented at the latent level of the
proposed model. However, the results indicate a non-stationary behavior in some
of the mountainous regions, for example near Kvísker, as discussed in Section
III.4.2. Non-stationary SPDE spatial models have been proposed, see for exam-
ple Fuglstad et al. (2013) and Ingebrigtsen et al. (2014). Implementing these
models here was beyond the scope of this paper. However, these models yield
an appealing modeling option for non-stationary spatial fields. Future research
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could involve using spatial covariates in the dependence structure of the spatial
model in a similar fashion as in Ingebrigtsen et al. (2014). For example, new
spatial covariates based on outputs from a local meteorological model, as sug-
gested here, could be designed to provide useful information for the dependence
structure. This is, in the authors’ view, an interesting example how the proposed
method can be extended to other areas of future research.
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III.A Appendix

III.A.1 Spatial smoother

Let G denote the set of every regular grid point and let S denote the set of the
observational sites. Furthermore, let x̄∗j denote the simulated means at every grid
point j ∈ G and x̄i denote observed means at each observational site i ∈ S. For
a given tuning distance r > 0, find every grid point j ∈ G that is within distance
r of point i ∈ S and denote that index set with D(r, i).

The goal is to construct a covariate at site i that uses information from the
grid points in D(r, i). Assign the following decay function

wij = 1− Fα
(
dij
r

)
for all j ∈ D(r, i)

where Fα denotes the cumulative density function of the beta distribution with
parameters α and α, and dij denotes the Euclidean distance from point i to point
j. The two parameters of the beta distribution are chosen to be the same in order
to avoid interactions between the tuning distance r and the shape of the decay
function. The wijs describe the relative weights of the neighboring grid points
in D(r, i). The covariate at observation point i can then be constructed as the
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weighted mean of the surrounding simulated means, that is

x̄∗i (r, α) =

∑
j∈D(r,i)

wij x̄
∗
j∑

j∈D(r,i)

wij
for every i in S. (III.8)

Following the (Benestad et al. 2012) argument, the parameters in the spatial
smoother are tuned such that the simulated means at the observational sites are
close to the observed means. We chose to measure the distance between the
simulated means, which are calculated with equation (III.8), and the observed
means by using mean square distance. Then the optimal r and α can be found
in the mean square sense by calculating the following

(r0, α0) = arg min
r,α

∑
i∈S
||x̄∗i (r, α)− x̄i||2.

The covariates that will be used in this paper are then x̄∗i = x̄∗i (r0, α0) for all
observational sites i ∈ S.

III.A.2 Prior selection: Details

The fixed parameters in the priors for κuµ, κuτ and κuξ were chosen in a weakly
informative manner to ensure that the range of the spatial effects is sensible rela-
tive to the size of domain of interest. The relationshiphip between the parameters
κuµ, κuτ and κuξ and the spatial range of the approximated Matérn field used in
this paper is ρ =

√
8ν/κ, which corresponds to correlation near 0.1 at a distance

ρ. Consequently, the prior distributions for κuµ, κuτ and κuξ were chosen such
that the corresponding ρ’s range up to 150 km, which is approximately half of
the length of the spatial domain in this paper.

Exploratory data analysis revealed that the marginal standard deviations for
uµ, uτ and uξ should exceed 50, 5 and 5, respectively, with low probability
on their native scales. The relationship between the parameters (κuµ, ωuµ),
(κuτ , ωuτ ) and (κuξ, ωuξ) and the marginal standard deviation of the Matérn
fields is approximately 1/(

√
4πκω).

The unstructured random effects vµ, vτ and vξ capture the variation in the
data which is unexplained by the covariates and the spatial random effects. The
standard deviations of vµ, vτ and vξ are believed to be mainly between 2 and
20; 0.05 and 1; and 0.05 and 0.75 respectively. This is based on an exploratory
data analysis and is in line with the priors for the marginal standard deviation
for the Matérn fields.

III.A.3 Implementation of the MCMC split sampler

In order to implement the MCMC split sampling strategy, the model param-
eters are split into two main blocks. Namely, the data-rich block which in-
cludes the following η = (µT, τT, ξT)T and the data-poor block which consists
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of ν = (βT
µ,u

T
µ,β

T
τ ,u

T
τ , β

T
ξ ,u

T
ξ )T and the hyperparameters

θ = (κuµ, ωuµ, σvµ, κuτ , ωuτ , σvτ , κuξ, ωuξ, σvξ)
T.

Then define the following sparse matrices

Z =

Xµ AS · · · ·
· · Xτ AS · ·
· · · · Xξ AS

 , Qε =

σ−2vµ I · ·
· σ−2vτ I ·
· · σ−2vξ I


and

Qν =


κβµI · · · · ·
· Quµ(ψuµ) · · · ·
· · κβτI · · ·
· · · Quτ (ψuτ ) · ·
· · · · κβξI ·
· · · · · Quτ (ψuξ)

 .

The posterior density function is

π(η,ν,θ|y) ∝ π(y|η)π(η,ν|θ)π(θ).

therefore, the (k + 1)-th MCMC sample from the posterior density π(η,ν,θ|y)
can be obtained by

Data-rich step: sampling ηk+1 from π(η | y,νk,θk) and

Data-poor step: sampling (νk+1,θk+1) jointly from π(ν,θ | y,ηk+1).

The details of sampling strategies within each block are as follows.

Data-rich block The structure of the data-rich part is as follows. Let and
ηi = (µi, τi, ξi)

T for i = 1, . . . , J . The logarithm of the conditional posterior
becomes

log π(η|y,ν,θ) = −1

2
ηTQεη + (QεZν)Tη + f(η) + constant

where

f(η) =

J∑
i=1

fi(ηi) =

J∑
i=1

∑
t∈Ai

log πgev(yit|µi, exp τi, ξi),

where πgev denotes the density of the generalized extreme value distribution and
the set Ai contains the indices of the years t observed at site i.

A proposal density q based on a Gaussian approximation was implemented at
the mode of the logarithm of conditional posterior density function, i.e. log π(η|y,ν,θ).
Then q is given by

q(η∗) = N
(
η∗ | η0, (Qε −H)

−1
)
, (III.9)
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where η0 denotes the mode of the conditional posterior density andH = ∇2f(η0).
The proposal density q in (III.9) is therefore an independence proposal density,
see (Chib and Greenberg 1995) and (Rue and Held 2005).

In order to the calculate the mode η0, numerical optimizing methods are
necessary. In this paper, the Newton–Raphson algorithm was implemented with
fixed starting values in each MCMC iteration. The calculated mode, denoted
by η̂0, is not neccesarly the true mode but a value close to it. However, as
fixed starting values are used in the Newton–Raphson algorithm the calculated
mode η̂0 is found independently of ηk in every k-th iteration. Thus, the proposal
density q in (III.9) is ensured to be an independence proposal density. The steps
of the sampler are outlined in Algorithm 3 in Paper II.

Data-poor part The proposal strategy suggested in is used for each element
of θ. That is, let θ∗i = fθki where the scaling factor f has the density

π(f) ∝ 1 + 1/f for f ∈ [1/F, F ] (III.10)

where F > 1 is a tuning parameter. It can be shown that this is a symmetric
proposal density in the sense that

q(θ∗i |θki ) = q(θki |θ∗i )

A joint proposal strategy for (ν,θ) is implemented as seen in Paper II. The
steps of the sampler are outlined in Algorithm 4 in Paper II.
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