
Hashtag games and voting system
for social media management

Autumn 2014

Arnar Þór Sveinsson
Axel Máni Gíslason

Haraldur Andri Stefánsson
Sólberg Bjarki Valdimarsson

BSc | Computer Science

Instructor: Stefán Freyr Stefánsson

Examiner: Birgir Kristmannsson

T-404-LOKA

School of Computer Science

Abstract

The goal of our project is to simplify the process of creating and managing social media

competitions and polls. Our system enables companies and individuals to create different

variations of these competitions and polls, through a simple process of filling in a template.

To control the system, users use a hashtag (#) for the contest or poll so that our system is

able to monitor and manage it. Based on the information filled in by the user, our system

takes care of the complicated and time consuming part. That involves tasks like finding

out which participants meet the qualifications to win, randomly pick winners and then

notify the winners, enabling participants to claim the prizes and show admins statistics

relating to their campaigns. Another feature of our system is to allow users to have a

single competition or poll running on more than one social media, our system takes care

of gathering the data from those social medias and all data from them as one.

Samantekt

Markmið verkefnisins er að einfalda ferlið að búa til samfélagsmiðla keppnir og kannanir.

Kerfið okkar gerir fyrirtækjum og einstaklingum kleift að búa til og halda utan um mismu-

nandi útfærslur af þessum keppnum og könnunum í gegnum mjög hentugt og fljótlegt ferli

þar sem einungis þarf að fylla út einfalt eyðublað. Til að stjórna kerfinu er notað hash-

tag (#) og vinnur kerfið svo úr uppýsingum frá notanda og sér um flóknu og tímafreku

verkin. Það felur í sér að finna út hvaða þáttakendur uppfylla lágmarks þáttökuskilyrði til

að komast í pott, velja vinningshafa af handahófi og hafa samband við þá, gera þeim kleift

að nálgast vinninga og birta stjórnendum tölfræði fyrir þeirra keppnir. Kerfið okkar gerir

eigundum kleyft að hafa sömu keppni eða könnun á mörgum samfélagsmiðlum, en þó eins

og um eina keppni eða leik væri að ræða.

Contents

1 Introduction 2

2 Artifacts 3

3 Organization 4
3.1 Methodology . 4

4 Risk Analysis 6

5 Architecture 12
5.1 Component Details . 12

5.1.1 Midgard . 12
5.1.2 Tagplay Server . 13
5.1.3 Connection Store . 15

5.2 Services . 16
5.2.1 Share Service . 16
5.2.2 Campaign Service . 16
5.2.3 Social Media Services . 17

5.3 Overview . 18
5.4 Sequence diagrams . 19

6 Progress 21
6.1 Sprints . 21

6.1.1 Sprint 0 - Pizza time . 21
6.1.2 Sprint 1 - Facing the Shredder . 21
6.1.3 Sprint 2 - Reborn . 23
6.1.4 Sprint 3 - We will find you! . 25
6.1.5 Sprint 4 - The master . 26
6.1.6 Sprint 5 - The empire . 28
6.1.7 Sprint 7 - Back at the streets . 30
6.1.8 Sprint 8 - Turtles Forever . 32

6.2 Sprint summary . 33

7 Summary 35

8 Future 36

1 Introduction

For most companies today social media sites, such as Facebook and Instagram, are a

huge part of their advertisement and marketing procedures. A popular way for these

companies to advertise and draw attention to themselves on social medias is creating

contests, polls, quizzes and sweepstakes. These competitions and polls usually involve

participants commenting or liking a status to either win a price or express their opinions

on the company or its products. But managing these competitions and polls properly is

usually difficult and very time-consuming. For example if you created a competition you

would need to go through the comments and likes and see whether the participants have

fulfilled all the requirements needed to win. You would then have to pick winners randomly,

notify them and tell them how to claim their prize. This becomes even more complex and

time consuming if you decide to have the competition running on more than one social

media site simultaneously.

Our system simplifies this process in a way that the creator of the contest/poll only

needs to fill out a simple template and then control that contest/poll using a hashtag (#).

2

2 Artifacts

The following artifacts are on the attached CD.

• Final report: This document

• Project journal: An Excel document containing all of our work hours along with

distribution over each sprint

• Work procedure: A document containing how we organized the project and what

tools we use to do it.

• TMNT-README: Document which contains information about how to set up the

project. This document is the READMEs from our repositories combined into one

document.

3

3 Organization

The project started in August with a meeting with Sesselja where she described the project

and what she wanted us to do. After that she gave us keys to the office, the whole product

backlog and access to the Tagplay project.

3.1 Methodology

After looking at the product backlog we decided to use the Scrum methodology. Scrum

was chosen because of familiarity with Scrum from school. The company uses Kanban but

we decided to use Scrum because it fit the project nicely.

We divided Scrum roles between us.

Product owner Sesselja Vilhjálmsdóttir

Companies contact Fannar Snær Harðarson

Scrum master Arnar Þór Sveinsson

The team

Arnar Þór Sveinsson

Axel Máni Gíslason

Haraldur Andri Stefánsson

Sólberg Bjarki Valdimarsson

We broke the project into eight sprints. In the beginning we choose roughly what stories

would go into each sprint, but at the beginning of each sprint we organized the next sprint

beforehand to take in the most important stories.

4

We started at sprint 0, which went mainly into getting familiar with existing Tagplay

code and set-up. We decided to have 8 sprints, excluding sprint 0. The first 6 sprints were

two week sprints but during the last two sprints we switched to one week sprints.

After seeing our timetables we decided to work on Tuesday, Wednesday and Thursdays

and on other days if there weren’t any school assignment. To keep track of this we used

Google Calendar (see Time recording and management on the CD).

Before each sprint we had a small meeting where we talked about what stories should

go into the sprint and created a backlog for the sprint. We used story point system for

measuring work. During these meetings we also discussed what went well during the sprint

we were currently concluding and what we wanted to do better in the next one.

5

4 Risk Analysis

Many risks can arise while developing big projects and must therefore be noted as they

arise. Some risks are discovered during testing and others while designing. The possible

risks that could impact the project evaluated by their severity and consequence are listed

in the table below. Below O stands for odds, S for severity and RF for risk factor. Values

of O and S are given on the interval 1-5.

Event O S RF ↓ Status

1 Wrong evaluation of sprints and user stories

Each user story could be miscalculated and as a result each
sprint could be either too big or too small.
Reaction: In each sprint review we will try to re-estimate
stories that are similar to those that we miscalculated and
if necessary reevaluate the next sprint according to the new
calculations of stories.
Consequences: Extra time needed for sprint planning.
Team member responsible: Arnar Þór
Occurred: During sprint 4.
Resolution: We miscalculated the sprint in the sprint plan-
ning, and realized it the morning after so we decided to re-
organize the whole sprint.

5 2 10 Resolved

2 Too much workload in other classes
Other classes might have large assignments that we need to
hand in during a sprint.
Precautionary actions: Watch Myschool closely so that
we see the assignment as soon as the due date is set.
Reaction: We need to plan/rearrange the sprints that these
large assignments collide with and take time away from this
project to work on and hand in those assignments.
Consequences: Loss of work hours for project.
Team member responsible: The team members who are
taking a given course in which the assignment is due.
Occurred: N/A
Resolution: N/A

3 3 9 Avoided

6

Event O S RF ↓ Status

3 Poorly implemented features on our behalf
A certain feature that we implement, and needs to be used
through out the system, is poorly implemented.
Precautionary actions: Take time to think what the best
implementation would be.
Reaction: We refactor the feature that is poorly imple-
mented.
Consequences: Extra time needed to implement feature.
Opening an already closed task.
Team member responsible: Arnar Þór
Occurred: During sprint 3.
Resolution: We created new tasks which we put into sprint
4 about refactoring certain features.

3 3 9 Avoided

4 Poorly implemented features on behalf of the
company
A feature that exists in the system, that our system relies
on, is poorly implemented.
Precautionary actions: None
Reaction: Case 1: We know the feature and how it works -
One of the team members refactors the feature for the com-
pany. Case 2: We do not know the feature or how it works
- We contact the company and ask them to refactor the fea-
ture. When the company has refactored the feature they
would notify us and we would keep working on the task that
was depending on this feature.
Consequences: Extra time needed to implement feature.
Possibly needing to drop a task for a certain sprint.
Team member responsible: Arnar Þór
Occurred: During sprint 3
Resolution: The Facebook callback implementation that
tagplay had was poor so we reimplemented it for them which
therefor took us longer than expected.

2 4 8 Resolved

7

Event O S RF ↓ Status

5 Problem with heroku server
Heroku server works differently than other servers being used
by Tagplay and therefor it would need a setup phase and
debugging session.
Precautionary actions: None
Reaction: Team member responsible for this action would
contact the company and get assistance in setting up all the
necessary services.
Consequences: Extra time needed to fix server before be-
ing able to work on tasks
Team member responsible: Arnar Þór
Occurred: During first sprint
Resolution: Extra work hours with company CTO in order
to get things up and running.

2 4 8 Resolved

6 Problem with social media APIs
Social media API’s do not offer the services that we need in
certain tasks. This could for example be not being able to
send private messages through apps, not being able to read
certain data.
Precautionary actions: None
Reaction: This would require a meeting with the company
in order to redesign the tasks that this would affect.
Consequences: Extra time needed to design feature. Could
lead to dropping tasks if there is no other way of implement-
ing it.
Team member responsible: Task assignee.
Occurred: During sprint 2 and sprint 8.
Resolution: Sprint 2: Implementation design was changed
to fit the Social Media API, the new design ended up being
even better than the first design. Sprint 8: Instagram media
API was constricting when it came to commenting winners.
We solved it by adding a new view, where people can see if
they won.

2 4 8 Resolved

8

Event O S RF ↓ Status

7 Team members getting sick
Team members are unable to work because of health issues
Precautionary actions: None
Reaction: Everyone that are not sick try to pick up the
slack for the person that is missing. If everything goes well
this will not affect the sprint. If something was not finished
we would need to mention it in sprint review and alter the
next sprint accordingly.
Consequences: More workload on other team members.
Sprint tasks would be delayed.
Team member responsible: Sólberg
Occurred: N/A
Resolution: N/A

3 2 6 Avoided

8 Severe arguments between team members
Team members do not agree on various things, such as de-
sign, workload, etc.
Precautionary actions: Talk things out before they be-
come severe
Reaction: Get both parties to make compromises and find
a common ground that everyone can agree on.
Consequences: Time spent solving argument
Team member responsible: Axel
Occurred: N/A
Resolution: N/A

1 4 4 Avoided

9

Event O S RF ↓ Status

9 Communication issues with company
Product owner or company contact go abroad, become sick
or lose some of their contact with our project. This could
delay acceptance of new designs, prioritising tasks or server
issues.
Precautionary actions: Try to be active in talking to the
company contact and be active on gitter and sending emails
Reaction: The team will have to use other communication,
such as skype, hangout, gitter and email to communicate
with product owner and/or company contact.
Consequences: Delaying tasks until company replies. De-
laying tasks until company accepts new design of a feature.
Team member responsible: Arnar Þór
Occurred: After first sprint
Resolution: Product owner (Sesselja) went to the US until
christmas. Instead of talking to her at the office, asking her
about decision, we will use emails, gitter and skype. On
demo days, we will use skype to communicate and show her
our product.

2 2 4 Resolved

10 Team members computer crashes
Team member’s computer crashes or there are some bugs
with the software.
Precautionary actions: Keep all software updated. Try
to push frequently new code to github, so will not lose any
code. Keep all reports on dropbox and time logs on Microsoft
Office 365
Reaction: Detect the problem, if it is a software problem
install the required software or fresh copy of the operating
system If it is a hardware problem replace the broken one.
Consequences: Extra workload on other team members
during repairs
Team member responsible: Sólberg
Occurred: N/A
Resolution: N/A

1 3 3 Avoided

10

Event O S RF ↓ Status

11 Server and/or network problem at final presen-
tation
Production server is down/slow or there is problem to con-
nect to it on the final presentation.
Precautionary actions: Take screenshots of all views and
pages beforehand to show what the system looks like and
should work.
Reaction: Open the slideshow with the screenshots and
smile.
Consequences: The final presentation will be less impres-
sive as we can not show the flow of the system.
Team member responsible: Axel
Occurred: N/A
Resolution: N/A

1 2 2 Avoided

11

5 Architecture

This design report gives you an overview of the Tagplay campaign system. The campaign

system is used to help companies create, manage and automate campaigns on their Social

Media accounts. Companies will be able to create a campaign, specify the rules to par-

ticipate (ex. What is the capital of England. Comment with the correct answer and like

the post and you can win a trip to the capital.), specify prizes and when the deadline for

the campaign should be. Our system would then automate the rest. We would gather all

answers, filter out which participants are potential winners and even send a message to

those that have won when the deadline is over.

5.1 Component Details

5.1.1 Midgard

Overview: Is the frontend, a part of it had already been written by Tagplay but every-

thing regarding campaigns and sharing to social media is written by us. There are two

possible users that use Midgard, the campaign owner and a campaign participant. The

campaign owner logs into his account and creates a campaign. The campaign participant

authenticates himself through a link that is sent to the winners of the campaign and can

then see details about his prize and claim it.

Our additions: We will implement into this component an overview of all campaigns a

certain user has, statistics for each campaign and detailed information about each campaign

(ex. How many participated, who won, what was the prize for this campaign etc.). We

will also implement a form which users can fill out to create a new campaign.

12

Talks to Through

Tagplay server HTTP

Table 7: Midgard communication

5.1.2 Tagplay Server

Overview: Is the backend, like Midgard a part of it had already be written by Tagplay but

everything regarding campaigns and sharing to social media is written by us. It receives

http requests from Midgard and either stores in PostgreSQL database or forwards it to the

appropriate service through the message queue.

Our additions: We will add all functionality regarding campaigns. This includes the

data models, REST API, reading comments from social media and storing relevant data

for participants and picking winners. We will also add to the formula functionality already

in the Tagplay system regarding formulas that share from one social media to another.

Talks to Through

Services MQTT/Json

PostgreSQL Django ORM

Connection stores HTTP

Table 8: Tagplay server communication

13

REST URI: Bellow is list of all REST URIs on Tagplay server that we will make.

Type URI Description

GET /api/v1/campaign/ Retrieve a list of campaigns

POST /api/v1/campaign/ Create a new campaign

GET /api/v1/campaign/id/ Retrieve a single campaign by ID

PUT /api/v1/campaign/id/ Update an existing campaign

DELETE /api/v1/campaign/id/ Delete an existing campaign

GET /api/v1/connection/ Retrieve a list of connections

POST /api/v1/connection/ Create a new connection

GET /api/v1/connection/id/ Retrieve a single connection by ID

PUT /api/v1/connection/id/ Update an existing connection

DELETE /api/v1/connection/id/ Delete an existing connection

GET /api/v1/participant/ Retrieve a list of participants

POST /api/v1/participant/ Create a new participant

GET /api/v1/participant/id/ Retrieve a single participant by ID

PUT /api/v1/participant/id/ Update an existing participant

DELETE /api/v1/participant/id/ Delete an existing participant

GET /api/v1/prize/ Retrieve a list of prizes

POST /api/v1/prize/ Create a new prize

GET /api/v1/prize/id/ Retrieve a single prize by ID

PUT /api/v1/prize/id/ Update an existing prize

DELETE /api/v1/prize/id/ Delete an existing prize

GET /api/v1/submission/ Retrieve a list of submissions

14

POST /api/v1/submission/ Create a new submission

GET /api/v1/submission/id/ Retrieve a single submission by ID

PUT /api/v1/submission/id/ Update an existing submission

DELETE /api/v1/submission/id/ Delete an existing submission

GET /api/v1/winner/ Retrieve a list of winners

POST /api/v1/winner/ Create a new winner

GET /api/v1/winner/id/ Retrieve a single winner by ID

PUT /api/v1/winner/id/ Update an existing winner

DELETE /api/v1/winner/id/ Delete an existing winner

POST /shareto/service Create a new share to service

GET /campaign/facebook/authenticate Authenticate facebook user

GET /campaign/facebook/callback Get access token from facebook

GET /campaign/instagram/authenticate Authenticate instagram user

GET /campaign/instagram/callback Get access token from instagram

GET /campaign/id/winners List all winners for a certain campaign

Table 9: REST URIs on Tagplay server

5.1.3 Connection Store

Overview: Had already been written by Tagplay, it keeps track of all the connections to

social media accounts and stores them in LevelDB.

Our addations: None

15

5.2 Services

5.2.1 Share Service

Overview: Listens to the message queue and shares to social medias accordingly. This

service gets information about all formulas from the Tagplay server and stores them in

Redis. When the Tagplay server recieves new media it will publish to the message queue

information regarding that. This service will read that information and check if it should

be shared any further which would then be done through the relevant Social Media API.

Our additions: This component is written entirely by us.

Talks to Through

Social Media APIs HTTP

Tagplay server MQTT/Json

Redis Redis client

Table 10: Share service communication

5.2.2 Campaign Service

Overview: Listens to the message queue for messages regarding callbacks from social

medias. This checks if the post should be part of a campaign and creates submissions.

Our additions: This component is written entirely by us.

16

Talks to Through

Social Media services MQTT/Json

Redis Redis client

Tagplay server HTTP

Table 11: Campaign service communication

5.2.3 Social Media Services

Overview: We’ve got one service for each social media (facebook, instagram, twitter and

tumblr), they all listen to the message queue and send http request to their social media

api depending on what is published to the message queue. These services also take care

of normalizing all data they get from the social media APIs and sends it to the tagplay

server to store it.

Overview: The Facebook, Tumblr and Instagram services will be written entirely by us

but the Twitter service exited already and does not need modification.

Talks to Through

Social Media APIs HTTP

Redis Redis client

Connection store MQTT/Json

Tagplay server MQTT/Json

Table 12: Social media services communication

17

5.3 Overview

Figure 1 shows a overview of all components in the system and how they communicate

between each other. For convenience we have shortened social media to SM and message

queue to MQ in our sequence diagrams.

Figure 1: System overview

18

5.4 Sequence diagrams

Figure 2 shows a sequence diagram of a Tagplay user creating a new Campaign. The

diagram shows how the message cascades through all relevant components to make sure

each relevant component knows about the new campaign.

Figure 2: Sequence diagram: User creates a new campagin in the Tagplay system

19

Figure 3 shows a sequence diagram of a Tagplay user that already has a Campaign

in Tagplay and posts a new status/tweet/image to a Social Media. The diagram shows

how the realtime callback reaches the relevant Social Media service which parses the newly

posted media and if it’s part of any Campaign in our system it will send out a message

which cascades through the components until it reaches the database in the Tagplay server.

Figure 3: Sequence diagram: User posts media (status, tweet, image etc.) on social media

20

6 Progress

The initial plan was to work around 150 hours for eight weeks or 1200 hours in total.

During the first sprint, we realised that we needed to raise the working time for each sprint

and reconsider how much each story point weighted. It was clear early on that we would

not finish all the stories we set up with, so we decided to cut the less important stories in

cooperation with the product owner.

6.1 Sprints

6.1.1 Sprint 0 - Pizza time

“Mm-hm. Pizza dude’s got thirty seconds.”

— Michaelangelo

Our goals for this sprint was to start planing the project and set up all required software.

Additionally we started taking a look at existing code from the company that we where

going to be working with.

This sprint was quite good. We had a meeting with the company, where they explained

the project in details for us. Then they gave us keys to the office so we could set up our

working station and have full access to the office.

When all stories had been converted to Github issues we organized Sprint 1 and made

a rough schedule of all other sprints, which will be altered in each Sprint review.

6.1.2 Sprint 1 - Facing the Shredder

“COWABUNGA!”

— Leonardo, Michaelangelo, Raphael, Donatello

Our goals for this sprint was to start programming and get familiar with the Tagplay

system. On the whole we were pleased with this sprint. We managed to finish our most

21

important user stories and on demo day the product owner was pleased with the product

so far. We had some issues with setting up and configuring servers and therefor too much

time went into debugging in our opinion. We also realized that the learning curve for

ReactJS was steeper then we anticipated and we suspect that we will notice this in future

sprints. We also saw that we underestimated some stories and overestimated others. Also

we had to take some time for reports. We added one story when Tagplay changes it system

to use message queue(story #111).

We learned a lot in this short period of time and we should now be more adept at

estimating and planning sprints from now on. There were however some stories that we

didn’t have time to finish and a few that we didn’t start working on. These stories are

important for the beginning of the project and will therefore be moved into the next sprint.

User Story Points Status

#7 Formulas can have share action as well as send to action 6 Closed

#8 Search status for share tags 1 Closed

#9 Search status for no-share tags 1 Closed

#11 Formula deadline 2 Closed

#12 Coupon code 2 Closed

#13 Send coupon code for facebook 2 Closed

#14 Authentication logic for facebook 4 Closed

#16 Sweeptakers winner limit 2 Closed

#17 Sweepstakes (enter/gimme) template 6 Open

#19 Collect form data 2 Open

#20 Giveaways form 2 Open

#21 Inactivate formula with comment for facebook 2 Closed

22

#22 Coupon/Discount/Gift card template (X many) 6 Open

#23 Winner pick with random draw 2 Open

#61 Search post for no-share tags 1 Closed

#111 Create share MQ service 6 Closed

Table 13: Backlog for sprint 1

Figure 4: Burndown chart for sprint 1

6.1.3 Sprint 2 - Reborn

“There will be no mistakes this time... I go myself. And the rat - kill it.”

— Shredder

Our goals for this sprint was to get back on track and reduce the number of mistakes.

This sprint was uneventful compared to the first one due to almost everything going ac-

cording to plan.

What we learned in sprint 1 really showed during the organization of this sprint. We

realized that we needed to count the number of story points we put into each sprint

instead of estimating ourself. We thought that since we were more familiar with the code

23

and Tagplay system we could take in same number of stories point as in the previous sprint

and make the sprint larger according to the story points that went in.

We cancelled four stories all of which had to due with that their social media API

didn’t offer what we needed. We took one extra story in regarding Facebook service (story

#120). We finished every story except one in this sprint. Although we worked less then we

estimated we finished almost everything due to the fact that we had started some stories

in the previous sprint.

User Story Points Status

#17 Sweepstakes (enter/gimme) template 6 Closed

#22 Coupon/Discount/Gift card template (X many) 6 Closed

#24 Winner pick from correct answers for facebook 6 Closed

#25 Giveaways and sneakpeeks 6 Closed

#27 Winner pick limit per user 4 Closed

#33 Submit prize code 2 Closed

#57 Authentication logic for Instagram 6 Closed

#74 Automated messaging direct message for facebook 1 Cancelled

#113 Reimplement share-to parser 4 Closed

#114 Share-to for Pinterest feed and boards 4 Cancelled

#115 Share-to for Tumblr Public and Private Blogs 4 Closed

#116 Share-to for Linkedin Profiles, Groups and Company
Pages and Business page

4 Cancelled

#117 Share-to for Google+ 4 Cancelled

#119 Winner template 4 Open

#120 Facebook service for Realtime callbacks 4 (Added) Open

Table 14: Backlog for sprint 2

24

Figure 5: Burndown chart for sprint 2

6.1.4 Sprint 3 - We will find you!

“Yeeeaaah, we’ll fiiiind yoooou! O’Neil.!... I’m sorry, that came across

super-creepy. We will find you, though!”

— Michelangelo

We decided to make the sprint shorter about third shorter or only 100 hours since

we saw on our timeline that a lot of assignments were due this week. Everything went

according to plan. We saw that changing each sprint size was no problem if we organize

well but we also realized that we took too many stories in. We realized that the size we

took into this sprint should be appropriate for a normal sprint.

We added one story to make it easier for us to test and for others to see the campaigns

they have (story #121).

User Story Points Status

#20 Giveaways form 6 Closed

#23 Winner pick with random draw 2 Closed

25

#28 Participants rules for facebook 4 Closed

#29 Simple comment rules for participants for facebook 6 Open

#34 Submit reply to winners for facebook 4 Closed

#35 Automated comment on deadline for facebook 2 Closed

#119 Winner template 4 Closed

#120 Facebook service for Realtime callbacks 6 Closed

#121 Campaign view 6 (Added) Open

Table 15: Backlog for sprint 3

Figure 6: Burndown chart for sprint 3

6.1.5 Sprint 4 - The master

“Remember my son, everything you know I have shown you. But I have not

shown you everything I know.”

— Master Splinter

We miscalculated the sprint in the beginning but realized it the morning after so we

decided to re-organize the whole sprint and take some time to do reports and plan for

26

meeting. After that, the sprint went fine, we left one story open but we came close to

finishing it. We are overall pleased with how everything went.

User Story Points Status

#29 Simple comment rules for participants for facebook 6 Closed

#76 Automated messaging status update on facebook page 1 Closed

#121 Campaign view 6 Closed

#123 Gather basic information from campaign 4 Closed

#124 Represent campaign information using something like D3 6 Open

#126 Refactor share to functionality 6 Closed

Table 16: Backlog for sprint 4

Figure 7: Burndown chart for sprint 4

27

6.1.6 Sprint 5 - The empire

“Your empire flourishes, Master Shredder”

— Tatsu

Everything went as planned. We added one story since our product owner wanted to

get a working product to test (story #127). We finished 11 of the 12 stories in the sprint.

User Story Points Status

#40 Inactivate formula with comment for Instagram 2 Closed

#41 Winner pick from correct answers for Instagram 6 Closed

#42 Participants rules for Instagram 2 Closed

#43 Simple comment rules for participants for Instagram 6 Closed

#49 Submit message to winners for instagram 2 Closed

#51 Automated comment on deadline for intagram 2 Closed

#91 Email notifications to admin 1 Closed

#104 Voting - limit the pool to one entry per user - Instagram 1 Closed

#122 Create Voting template 6 Closed

#124 Represent campaign information using something like D3 6 Closed

#127 Finalize Campaigns for Facebook 6 (Added) Open

#128 Test sweepstakes for facebook 2 Closed

Table 17: Backlog for sprint 5

28

Figure 8: Burndown chart for sprint 5

Sprint 6 - No defeat, no surrender

“God, I LOVE *BEING A TURTLE*!”

— Michaelangelo

This sprint was shorter then the previous ones excluding sprint 3 because of our final

exams. Only two members worked the first week and the other two worked the latter week.

Even though the sprint was shorter everything went well and we finished everything we

started.

User Story Points Status

#64 How many people participated in sweeptakers for face-
book

2 Closed

#66 As a user I should be able to pick age restirction to
participate or get rewards

2 Cancelled

#67 How many liked sweeptakers for facebook 1 Closed

#72 Check if we can use twitter cards 1 Cancelled

#82 Direct message for instagram 1 Cancelled

#93 How many people participated in sweeptakers for insta-
gram

2 Closed

29

#95 How many liked sweeptakers for instagram 1 Closed

#97 Participation rate for sweeptakers for instagram 6 Closed

#129 Fix backend for new format of data 4 Closed

#137 CSS in campaign view 2 Closed

#138 Fix worker problem in backend 6 Closed

Table 18: Backlog for sprint 6

Figure 9: Burndown chart for sprint 6

6.1.7 Sprint 7 - Back at the streets

“ It’s time for us to go back!”

— Leonardo

In this sprint we changed our plan from previous sprints. We work everyday but the

sprint is only a week long. Most of the time in the sprint went into fine tuning and

debugging features that we had already programmed as well as redesigning our front end.

We also merged Tagplay master branch into our master at their request. This caused some

things we had done changed to not work which added some extra debug on stories.

30

User Story Points Status

#19 Collect form data 2 Cancelled

#59 Authentication site 6 Closed

#127 Finalize Campaigns for Facebook 6 Closed

#131 Word cloud statistics 4 Closed

#132 Refactor doughnut chart for voting 2 Closed

#133 Fix backend to take in multiple answers 2 Closed

#134 Debug instagram submission 2 Closed

#135 Test sweepstakes from two socials media 2 Open

#136 Add open/closed voting questions to backend 6 Closed

#139 Refactor campaign template 6 (Added) Closed

#153 Merge Tagplay back and frontend into our project 4 Closed

Table 19: Backlog for sprint 7

Figure 10: Burndown chart for sprint 7

31

6.1.8 Sprint 8 - Turtles Forever

“You see me as I am, and it will be the last thing you will ever see.”

— Shredder

This sprint as the previous one was all about fine tuning and fixing bugs we knew of. We

hit a small wall when a story we thought was finished resurfaced so we had to add a story

about fixing the message queue bug where it subscribed everything twice.

User Story Points Status

#135 Test sweepstakes from two socials media 2 Closed

#141 Refactor stats page 6 Closed

#142 Delete winning prize for everyone else 2 Closed

#143 Validate campaign template 4 Closed

#144 Fix replies on posts (worker/MQ problem) 6 Closed

#145 CSS on stats page 4 Closed

#146 Generate fake data 2 Closed

#147 CSS datetimepicker 2 Closed

#148 Datetimepicker on campaign template 4 Closed

#149 Validate state page 2 Closed

#150 Fix share-to 4 Closed

#151 Debug frontend after merge 4 Closed

#152 Debug backend after merge 4 Closed

Table 20: Backlog for sprint 8

32

Figure 11: Burndown chart for sprint 8

6.2 Sprint summary

Figure 12 shows the overview of the overall process. As can be seen the curve is almost

linear and according to the guideline. We didn’t implement all feature we set up to begin

with simply because of time was limited and thus the less important features in product

owners opinion were left out.

Figure 12: Project burndown

33

Below in table 21 the time spent on the project can be viewed. A more detailed overview

of hours worked for each sprint can been seen in Time Journal document on an attached

CD. There the hours worked by each team member on each sprint can be viewed as well

as the summarized time.

Name Estemated work time Actual work time Total

Arnar 330 477 145%

Axel 330 369 112%

Haraldur 330 351 106%

Sólberg 330 399 121%

Total 1320 1596 121%

Table 21: Total time summary

34

7 Summary

Overall we are very pleased with the outcome of the project even though the scope of the

project was extensive. We are happy with the teamwork and enthusiasm from the team

as a whole. Each team member was really interested in the project which made working

together and planning easy.

There are some things that could have been better. We underestimated some stories

and overestimated others, but in the end that did not effect the final result. Some time

and knowledge in ReactJS beforehand and getting to know the system would have been

convenient since the learning curve was quite steep, and quite alot bigger then we antici-

pated.

We learned a lot of things during the semester and we are certain it will help us on

future projects. It was clear, as we worked on this project, that programming skills were

not the only essential thing to finish it. It also took good teamwork, communication and

planning. Understanding of Scrum and how it can help a development of a project like

this also became a lot clearer.

We would like to thank Sesselja for giving us the chance to work with something so

new and exciting, Fannar Snær for being our go-to guy and Stefán for always being happy

to give us his opinion.

35

8 Future

Since the beginning of the project we have been working very closely with Tagplay. We

have been working in their repositories on our own branches.

To keep everything updated we have merged their master into ours on a monthly basis to

make sure that merging our project into theirs will be as simple as possible.

To help them sync their project with ours we have put a file TMNT-README.md into

the 2 main components, Midgard (frontend) and Tagplay-server (backend) with instruc-

tions on how to sync their master with ours. (These documents have been put together

into one file attached on the CD as TMNT-README)

When these 2 components have been merged all other service will be as simple plug

and play since they are already configured to work with the components in our state.

Next steps for the company will be to fix a problem we had during development where

we had to change the server to only use one worker thread. There are two possible ways to

fix it, either create a worker queue or change the message queue from Mosca to RabbitMQ.

36

	Introduction
	Artifacts
	Organization
	Methodology

	Risk Analysis
	Architecture
	Component Details
	Midgard
	Tagplay Server
	Connection Store

	Services
	Share Service
	Campaign Service
	Social Media Services

	Overview
	Sequence diagrams

	Progress
	Sprints
	Sprint 0 - Pizza time
	Sprint 1 - Facing the Shredder
	Sprint 2 - Reborn
	Sprint 3 - We will find you!
	Sprint 4 - The master
	Sprint 5 - The empire
	Sprint 7 - Back at the streets
	Sprint 8 - Turtles Forever

	Sprint summary

	Summary
	Future

